Dilaksanakan ujian tengah semester untuk kelompok model simulasi: 1) sistem perpustakaan, 2) sistem traffic light, 3) sistem parkir, 4) sistem fast food, 5) sistem pelabuhan, 6) sistem gerbang tol, 7) sistem bank bni. Bagi anggota kelompok yang berhalangan hadir di uts kemarin, anda mengerjakan alokasi soal yang dibagikan ketua kelompok anda selanjutnya jawaban dikirim via e-mail ke alamat surel dosen yaitu rasp@eng.unila.ac.id
UJIAN AKHIR SEMESTER - Insya Allah, dilaksanakan pada hari Jumat 8 Januari 2016. PETUNJUK: Peserta ujian dilarang bekerja sama dalam segala macam bentuk. Mahasiswa dengan NPM ganjil mengerjakan nomor soal ganjil, mahasiswa dengan NPM genap mengerjakan nomor soal genap.
1) Usulkan paling tidak dua aplikasi yang mendekati untuk analisis simulasi dalam pengaturan bisnis /pabrik, dan pembenaran penggunaan simulasi sebagai lawan ke model analitis. Aspek apa analisis simulasi yang terutama merupakan kelebihan untuk aplikasi yang anda pilih?
2) Usulkan suatu aplikasi sistem simulasi di mana kombinasi optimisasi dan model simulasi mungkin menguntungkan diaplikasikan, dan indikasikan bagai mana dua teknik itu dihubungkan?
Untuk soal 3 dan soal 4 perhatikan uraian berikut. Untuk setiap sistem berikut, eksekusi tugas-tugas spesifik dalam Tahapan Formulasi Problem analisis simulasi, yang dinamai: Spesifikasi pertanyaan yang diinvestigasi oleh studi; Identifikasi variabel keputusan dan tidak terkontrol; Spesifikasi jangkauan pada variabel keputusan; Tentukan ukuran kinerja sistem; Tentukan fungsi objektif; dan usulkan relasi di antara ukuran kinerja dan variabel.
3) Lift ganda dalam bangunan lima lantai.
4) Sistem sinyal kendali lalu lintas pada irisan dua jalan (traffic flows in four directions) di perempatan dekat Terminal Rajabasa.
5) In remote part of the country five radar units are used to give early warning of any unauthorized planes coming into the area. A particular component of the radar is subject to frequent failures and, in order to keep all five units operational, extra components are kept on hand. When one of the radars has such a component failure, a spare component is installed, if available. The failed component is sent off for repair and will be returned or replaced. Assume that the times between failures of these components is exponentially distributed with a mean of 20 days, and when a component is sent off for repair, it will take exactly 15 days until it is returned to the radar center. The component is very expensive, and therefore it is desirable to have no more on hand than necessary.
a> What are the decision variables and objective function for this system?
b> Construct an event diagram for this system!
c> Construct the logic for a simulation model of this system that can be used to determine the "optimum" number of spare units!
6) An automatic packaging machine requires operator intervention periodically for such taks as clearing jams, restocking packing materials, alignment, and periodic maintenance. One operator can keep several machines operating, but if a machine needs attendance when the operator is busy with another machine, it becomes idle, causing a loss in production. On the other hand, if too few machines are assigned to an operator, the cost of operating the machine may be excessive. Consider a machine that requires operator intervention on the average of three times per-hour and the mean length of time the operator must attend the machine is 2.5 minutes per-instance. Assume the times between calls for operator assistance and the length of assistance are random variables.
a> Formulate this problem in terms of an objective function and constraints! Identify the variables in the system!
b> Construct an event diagram for this system!
c> Construct a logic diagram that could be used to build a simulation model of the system.
SELAMAT MENGERJAKAN.