
178

Deep learning for
text and sequences

This chapter explores deep-learning models that can process text (understood as

sequences of word or sequences of characters), timeseries, and sequence data in

general. The two fundamental deep-learning algorithms for sequence processing

are recurrent neural networks and 1D convnets, the one-dimensional version of the 2D

convnets that we covered in the previous chapters. We’ll discuss both of these

approaches in this chapter.

 Applications of these algorithms include the following:

 Document classification and timeseries classification, such as identifying the

topic of an article or the author of a book

 Timeseries comparisons, such as estimating how closely related two docu-

ments or two stock tickers are

This chapter covers

 Preprocessing text data into useful

representations

 Working with recurrent neural networks

 Using 1D convnets for sequence processing

179

 Sequence-to-sequence learning, such as decoding an English sentence into

French

 Sentiment analysis, such as classifying the sentiment of tweets or movie reviews

as positive or negative

 Timeseries forecasting, such as predicting the future weather at a certain loca-

tion, given recent weather data

This chapter’s examples focus on two narrow tasks: sentiment analysis on the IMDB

dataset, a task we approached earlier in the book, and temperature forecasting. But

the techniques demonstrated for these two tasks are relevant to all the applications

just listed, and many more.

180 CHAPTER 6 Deep learning for text and sequences

6.1 Working with text data

Text is one of the most widespread forms of sequence data. It can be understood as

either a sequence of characters or a sequence of words, but it’s most common to work

at the level of words. The deep-learning sequence-processing models introduced in

the following sections can use text to produce a basic form of natural-language under-

standing, sufficient for applications including document classification, sentiment

analysis, author identification, and even question-answering (QA) (in a constrained

context). Of course, keep in mind throughout this chapter that none of these deep-

learning models truly understand text in a human sense; rather, these models can

map the statistical structure of written language, which is sufficient to solve many sim-

ple textual tasks. Deep learning for natural-language processing is pattern recognition

applied to words, sentences, and paragraphs, in much the same way that computer

vision is pattern recognition applied to pixels.

 Like all other neural networks, deep-learning models don’t take as input raw text:

they only work with numeric tensors. Vectorizing text is the process of transforming text

into numeric tensors. This can be done in multiple ways:

 Segment text into words, and transform each word into a vector.

 Segment text into characters, and transform each character into a vector.

 Extract n-grams of words or characters, and transform each n-gram into a vector.

N-grams are overlapping groups of multiple consecutive words or characters.

Collectively, the different units into which you can break down text (words, charac-

ters, or n-grams) are called tokens, and breaking text into such tokens is called tokeniza-

tion. All text-vectorization processes consist of applying some tokenization scheme and

then associating numeric vectors with the generated tokens. These vectors, packed

into sequence tensors, are fed into deep neural networks. There are multiple ways to

associate a vector with a token. In this section, I’ll present two major ones: one-hot

encoding of tokens, and token embedding (typically used exclusively for words, and called

word embedding). The remainder of this section explains these techniques and shows

how to use them to go from raw text to a Numpy tensor that you can send to a Keras

network.

Text

“The cat sat on the mat.”

Tokens

“the”, “cat”, “sat”, “on”, “the”, “mat”, “.”

Vector encoding of the tokens

0.0 0.0 0.4 0.0 0.0 1.0 0.0

0.5 1.0 0.5 0.2 0.5 0.5 0.0

1.0 0.2 1.0 1.0 1.0 0.0 0.0

the cat sat on the mat .
Figure 6.1 From text

to tokens to vectors

181Working with text data

6.1.1 One-hot encoding of words and characters

One-hot encoding is the most common, most basic way to turn a token into a vector.

You saw it in action in the initial IMDB and Reuters examples in chapter 3 (done with

words, in that case). It consists of associating a unique integer index with every word

and then turning this integer index i into a binary vector of size N (the size of the

vocabulary); the vector is all zeros except for the i th entry, which is 1.

 Of course, one-hot encoding can be done at the character level, as well. To unam-

biguously drive home what one-hot encoding is and how to implement it, listings 6.1

and 6.2 show two toy examples: one for words, the other for characters.

Understanding n-grams and bag-of-words

Word n-grams are groups of N (or fewer) consecutive words that you can extract from

a sentence. The same concept may also be applied to characters instead of words.

Here’s a simple example. Consider the sentence “The cat sat on the mat.” It may be

decomposed into the following set of 2-grams:

{"The", "The cat", "cat", "cat sat", "sat",

"sat on", "on", "on the", "the", "the mat", "mat"}

It may also be decomposed into the following set of 3-grams:

{"The", "The cat", "cat", "cat sat", "The cat sat",

"sat", "sat on", "on", "cat sat on", "on the", "the",

"sat on the", "the mat", "mat", "on the mat"}

Such a set is called a bag-of-2-grams or bag-of-3-grams, respectively. The term bag

here refers to the fact that you’re dealing with a set of tokens rather than a list or

sequence: the tokens have no specific order. This family of tokenization methods is

called bag-of-words.

Because bag-of-words isn’t an order-preserving tokenization method (the tokens gen-

erated are understood as a set, not a sequence, and the general structure of the sen-

tences is lost), it tends to be used in shallow language-processing models rather than

in deep-learning models. Extracting n-grams is a form of feature engineering, and

deep learning does away with this kind of rigid, brittle approach, replacing it with hier-

archical feature learning. One-dimensional convnets and recurrent neural networks,

introduced later in this chapter, are capable of learning representations for groups of

words and characters without being explicitly told about the existence of such groups,

by looking at continuous word or character sequences. For this reason, we won’t

cover n-grams any further in this book. But do keep in mind that they’re a powerful,

unavoidable feature-engineering tool when using lightweight, shallow text-processing

models such as logistic regression and random forests.

182 CHAPTER 6 Deep learning for text and sequences

import numpy as np

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

token_index = {}

for sample in samples:

for word in sample.split():

if word not in token_index:

token_index[word] = len(token_index) + 1

max_length = 10

results = np.zeros(shape=(len(samples),

max_length,

max(token_index.values()) + 1))

for i, sample in enumerate(samples):

for j, word in list(enumerate(sample.split()))[:max_length]:

index = token_index.get(word)

results[i, j, index] = 1.

import string

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

characters = string.printable

token_index = dict(zip(range(1, len(characters) + 1), characters))

max_length = 50

results = np.zeros((len(samples), max_length, max(token_index.keys()) + 1))

for i, sample in enumerate(samples):

for j, character in enumerate(sample):

index = token_index.get(character)

results[i, j, index] = 1.

Note that Keras has built-in utilities for doing one-hot encoding of text at the word level

or character level, starting from raw text data. You should use these utilities, because

they take care of a number of important features such as stripping special characters

from strings and only taking into account the N most common words in your dataset (a

common restriction, to avoid dealing with very large input vector spaces).

Listing 6.1 Word-level one-hot encoding (toy example)

Listing 6.2 Character-level one-hot encoding (toy example)

Initial data: one entry per sample (in
this example, a sample is a sentence,
but it could be an entire document)

Builds an index of all tokens in the data

Tokenizes the samples via the split
method. In real life, you’d also strip
punctuation and special characters

from the samples.

Assigns a unique index to each
unique word. Note that you don’t
attribute index 0 to anything.

This is where you
store the results.

Vectorizes the samples. You’ll only
consider the first max_length

words in each sample.

All printable ASCII
characters

183Working with text data

from keras.preprocessing.text import Tokenizer

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

tokenizer = Tokenizer(num_words=1000)

tokenizer.fit_on_texts(samples)

sequences = tokenizer.texts_to_sequences(samples)

one_hot_results = tokenizer.texts_to_matrix(samples, mode='binary')

word_index = tokenizer.word_index

print('Found %s unique tokens.' % len(word_index))

A variant of one-hot encoding is the so-called one-hot hashing trick, which you can use

when the number of unique tokens in your vocabulary is too large to handle explicitly.

Instead of explicitly assigning an index to each word and keeping a reference of these

indices in a dictionary, you can hash words into vectors of fixed size. This is typically

done with a very lightweight hashing function. The main advantage of this method is

that it does away with maintaining an explicit word index, which saves memory and

allows online encoding of the data (you can generate token vectors right away, before

you’ve seen all of the available data). The one drawback of this approach is that it’s

susceptible to hash collisions : two different words may end up with the same hash, and

subsequently any machine-learning model looking at these hashes won’t be able to tell

the difference between these words. The likelihood of hash collisions decreases when

the dimensionality of the hashing space is much larger than the total number of

unique tokens being hashed.

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

dimensionality = 1000

max_length = 10

results = np.zeros((len(samples), max_length, dimensionality))

for i, sample in enumerate(samples):

for j, word in list(enumerate(sample.split()))[:max_length]:

index = abs(hash(word)) % dimensionality

results[i, j, index] = 1.

Listing 6.3 Using Keras for word-level one-hot encoding

Listing 6.4 Word-level one-hot encoding with hashing trick (toy example)

Creates a tokenizer, configured
to only take into account the
1,000 most common words

Turns strings into lists
of integer indices

How you can recover
the word index that
was computed

You could also directly get the one-hot
binary representations. Vectorization
modes other than one-hot encoding
are supported by this tokenizer.

Builds
the

word
index

Stores the words as vectors of size 1,000. If you have close
to 1,000 words (or more), you’ll see many hash collisions,
which will decrease the accuracy of this encoding method.

Hashes the word into a
random integer index
between 0 and 1,000

184 CHAPTER 6 Deep learning for text and sequences

6.1.2 Using word embeddings

Another popular and powerful way to associate a vector with a word is the use of dense

word vectors, also called word embeddings. Whereas the vectors obtained through one-hot

encoding are binary, sparse (mostly made of zeros), and very high-dimensional (same

dimensionality as the number of words in the vocabulary), word embeddings are low-

dimensional floating-point vectors (that is, dense vectors, as opposed to sparse vec-

tors); see figure 6.2. Unlike the word vectors obtained via one-hot encoding, word

embeddings are learned from data. It’s common to see word embeddings that are

256-dimensional, 512-dimensional, or 1,024-dimensional when dealing with very large

vocabularies. On the other hand, one-hot encoding words generally leads to vectors

that are 20,000-dimensional or greater (capturing a vocabulary of 20,000 tokens, in

this case). So, word embeddings pack more information into far fewer dimensions.

There are two ways to obtain word embeddings:

 Learn word embeddings jointly with the main task you care about (such as doc-

ument classification or sentiment prediction). In this setup, you start with ran-

dom word vectors and then learn word vectors in the same way you learn the

weights of a neural network.

 Load into your model word embeddings that were precomputed using a differ-

ent machine-learning task than the one you’re trying to solve. These are called

pretrained word embeddings.

Let’s look at both.

One-hot word vectors:

 - Sparse

 - High-dimensional

 - Hardcoded

Word embeddings:

 - Dense

 - Lower-dimensional

 - Learned from data

Figure 6.2 Whereas word representations

obtained from one-hot encoding or hashing are

sparse, high-dimensional, and hardcoded, word

embeddings are dense, relatively low-

dimensional, and learned from data.

185Working with text data

LEARNING WORD EMBEDDINGS WITH THE EMBEDDING LAYER

The simplest way to associate a dense vector with a word is to choose the vector at

random. The problem with this approach is that the resulting embedding space has

no structure: for instance, the words accurate and exact may end up with completely

different embeddings, even though they’re interchangeable in most sentences. It’s

difficult for a deep neural network to make sense of such a noisy, unstructured

embedding space.

 To get a bit more abstract, the geometric relationships between word vectors

should reflect the semantic relationships between these words. Word embeddings are

meant to map human language into a geometric space. For instance, in a reasonable

embedding space, you would expect synonyms to be embedded into similar word vec-

tors; and in general, you would expect the geometric distance (such as L2 distance)

between any two word vectors to relate to the semantic distance between the associ-

ated words (words meaning different things are embedded at points far away from

each other, whereas related words are closer). In addition to distance, you may want

specific directions in the embedding space to be meaningful. To make this clearer, let’s

look at a concrete example.

 In figure 6.3, four words are embedded on a 2D plane:

cat, dog, wolf, and tiger. With the vector representations we

chose here, some semantic relationships between these

words can be encoded as geometric transformations. For

instance, the same vector allows us to go from cat to tiger

and from dog to wolf : this vector could be interpreted as the

“from pet to wild animal” vector. Similarly, another vector

lets us go from dog to cat and from wolf to tiger, which could

be interpreted as a “from canine to feline” vector.

 In real-world word-embedding spaces, common exam-

ples of meaningful geometric transformations are “gender”

vectors and “plural” vectors. For instance, by adding a “female” vector to the vector

“king,” we obtain the vector “queen.” By adding a “plural” vector, we obtain “kings.”

Word-embedding spaces typically feature thousands of such interpretable and poten-

tially useful vectors.

 Is there some ideal word-embedding space that would perfectly map human lan-

guage and could be used for any natural-language-processing task? Possibly, but we

have yet to compute anything of the sort. Also, there is no such a thing as human lan-

guage—there are many different languages, and they aren’t isomorphic, because a lan-

guage is the reflection of a specific culture and a specific context. But more

pragmatically, what makes a good word-embedding space depends heavily on your task:

the perfect word-embedding space for an English-language movie-review sentiment-

analysis model may look different from the perfect embedding space for an English-

language legal-document-classification model, because the importance of certain

semantic relationships varies from task to task.

1

0
10

Wolf
Tiger

Cat
Dog

X

Figure 6.3 A toy example

of a word-embedding space

186 CHAPTER 6 Deep learning for text and sequences

 It’s thus reasonable to learn a new embedding space with every new task. Fortu-

nately, backpropagation makes this easy, and Keras makes it even easier. It’s about

learning the weights of a layer: the Embedding layer.

from keras.layers import Embedding

embedding_layer = Embedding(1000, 64)

The Embedding layer is best understood as a dictionary that maps integer indices

(which stand for specific words) to dense vectors. It takes integers as input, it looks up

these integers in an internal dictionary, and it returns the associated vectors. It’s effec-

tively a dictionary lookup (see figure 6.4).

The Embedding layer takes as input a 2D tensor of integers, of shape (samples,

sequence_length), where each entry is a sequence of integers. It can embed

sequences of variable lengths: for instance, you could feed into the Embedding layer in

the previous example batches with shapes (32, 10) (batch of 32 sequences of length

10) or (64, 15) (batch of 64 sequences of length 15). All sequences in a batch must

have the same length, though (because you need to pack them into a single tensor),

so sequences that are shorter than others should be padded with zeros, and sequences

that are longer should be truncated.

 This layer returns a 3D floating-point tensor of shape (samples, sequence_

length, embedding_dimensionality). Such a 3D tensor can then be processed by

an RNN layer or a 1D convolution layer (both will be introduced in the following

sections).

 When you instantiate an Embedding layer, its weights (its internal dictionary of

token vectors) are initially random, just as with any other layer. During training, these

word vectors are gradually adjusted via backpropagation, structuring the space into

something the downstream model can exploit. Once fully trained, the embedding

space will show a lot of structure—a kind of structure specialized for the specific prob-

lem for which you’re training your model.

 Let’s apply this idea to the IMDB movie-review sentiment-prediction task that

you’re already familiar with. First, you’ll quickly prepare the data. You’ll restrict the

movie reviews to the top 10,000 most common words (as you did the first time you

worked with this dataset) and cut off the reviews after only 20 words. The network will

learn 8-dimensional embeddings for each of the 10,000 words, turn the input integer

Listing 6.5 Instantiating an Embedding layer

The Embedding layer takes at least two
arguments: the number of possible tokens
(here, 1,000: 1 + maximum word index)
and the dimensionality of the embeddings
(here, 64).

Word index Embedding layer Corresponding word vector

Figure 6.4 The Embedding layer

187Working with text data

sequences (2D integer tensor) into embedded sequences (3D float tensor), flatten the

tensor to 2D, and train a single Dense layer on top for classification.

from keras.datasets import imdb

from keras import preprocessing

max_features = 10000

maxlen = 20

(x_train, y_train), (x_test, y_test) = imdb.load_data(

num_words=max_features)

x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen

x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)

from keras.models import Sequential

from keras.layers import Flatten, Dense

model = Sequential()

model.add(Embedding(10000, 8, input_length=maxlen))

model.add(Flatten())

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

model.summary()

history = model.fit(x_train, y_train,

epochs=10,

batch_size=32,

validation_split=0.2)

You get to a validation accuracy of ~76%, which is pretty good considering that you’re

only looking at the first 20 words in every review. But note that merely flattening the

embedded sequences and training a single Dense layer on top leads to a model that

treats each word in the input sequence separately, without considering inter-word

relationships and sentence structure (for example, this model would likely treat both

“this movie is a bomb” and “this movie is the bomb” as being negative reviews). It’s

much better to add recurrent layers or 1D convolutional layers on top of the embed-

ded sequences to learn features that take into account each sequence as a whole.

That’s what we’ll focus on in the next few sections.

Listing 6.6 Loading the IMDB data for use with an Embedding layer

Listing 6.7 Using an Embedding layer and classifier on the IMDB data

Number of words to
consider as features

Cuts off the text after this
number of words (among
the max_features most
common words)

Loads the data as lists of integers

Turns the lists of integers into
a 2D integer tensor of shape

(samples, maxlen)

Specifies the maximum input length to the
Embedding layer so you can later flatten the
embedded inputs. After the Embedding layer,
the activations have shape (samples, maxlen, 8). Flattens the 3D tensor of

embeddings into a 2D
tensor of shape (samples,
maxlen * 8)

Adds the
classifier on top

188 CHAPTER 6 Deep learning for text and sequences

USING PRETRAINED WORD EMBEDDINGS

Sometimes, you have so little training data available that you can’t use your data

alone to learn an appropriate task-specific embedding of your vocabulary. What do

you do then?

 Instead of learning word embeddings jointly with the problem you want to solve,

you can load embedding vectors from a precomputed embedding space that you

know is highly structured and exhibits useful properties—that captures generic

aspects of language structure. The rationale behind using pretrained word embed-

dings in natural-language processing is much the same as for using pretrained conv-

nets in image classification: you don’t have enough data available to learn truly

powerful features on your own, but you expect the features that you need to be fairly

generic—that is, common visual features or semantic features. In this case, it makes

sense to reuse features learned on a different problem.

 Such word embeddings are generally computed using word-occurrence statistics

(observations about what words co-occur in sentences or documents), using a variety of

techniques, some involving neural networks, others not. The idea of a dense, low-

dimensional embedding space for words, computed in an unsupervised way, was ini-

tially explored by Bengio et al. in the early 2000s,1 but it only started to take off in

research and industry applications after the release of one of the most famous and suc-

cessful word-embedding schemes: the Word2vec algorithm (https://code.google.com/

archive/p/word2vec), developed by Tomas Mikolov at Google in 2013. Word2vec

dimensions capture specific semantic properties, such as gender.

 There are various precomputed databases of word embeddings that you can down-

load and use in a Keras Embedding layer. Word2vec is one of them. Another popular

one is called Global Vectors for Word Representation (GloVe, https://nlp.stanford

.edu/projects/glove), which was developed by Stanford researchers in 2014. This

embedding technique is based on factorizing a matrix of word co-occurrence statis-

tics. Its developers have made available precomputed embeddings for millions of

English tokens, obtained from Wikipedia data and Common Crawl data.

 Let’s look at how you can get started using GloVe embeddings in a Keras model.

The same method is valid for Word2vec embeddings or any other word-embedding

database. You’ll also use this example to refresh the text-tokenization techniques

introduced a few paragraphs ago: you’ll start from raw text and work your way up.

6.1.3 Putting it all together: from raw text to word embeddings

You’ll use a model similar to the one we just went over: embedding sentences in

sequences of vectors, flattening them, and training a Dense layer on top. But you’ll do

so using pretrained word embeddings; and instead of using the pretokenized IMDB

data packaged in Keras, you’ll start from scratch by downloading the original text data.

1 Yoshua Bengio et al., Neural Probabilistic Language Models (Springer, 2003).

189Working with text data

DOWNLOADING THE IMDB DATA AS RAW TEXT

First, head to http://mng.bz/0tIo and download the raw IMDB dataset. Uncompress it.

 Now, let’s collect the individual training reviews into a list of strings, one string per

review. You’ll also collect the review labels (positive/negative) into a labels list.

import os

imdb_dir = '/Users/fchollet/Downloads/aclImdb'

train_dir = os.path.join(imdb_dir, 'train')

labels = []

texts = []

for label_type in ['neg', 'pos']:

dir_name = os.path.join(train_dir, label_type)

for fname in os.listdir(dir_name):

if fname[-4:] == '.txt':

f = open(os.path.join(dir_name, fname))

texts.append(f.read())

f.close()

if label_type == 'neg':

labels.append(0)

else:

labels.append(1)

TOKENIZING THE DATA

Let’s vectorize the text and prepare a training and validation split, using the concepts

introduced earlier in this section. Because pretrained word embeddings are meant to

be particularly useful on problems where little training data is available (otherwise,

task-specific embeddings are likely to outperform them), we’ll add the following twist:

restricting the training data to the first 200 samples. So you’ll learn to classify movie

reviews after looking at just 200 examples.

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

import numpy as np

maxlen = 100

training_samples = 200

validation_samples = 10000

max_words = 10000

tokenizer = Tokenizer(num_words=max_words)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

Listing 6.8 Processing the labels of the raw IMDB data

Listing 6.9 Tokenizing the text of the raw IMDB data

Cuts off reviews after 100 words

Trains on 200 samples

Validates on 10,000 samples

Considers only the top
10,000 words in the dataset

190 CHAPTER 6 Deep learning for text and sequences

word_index = tokenizer.word_index

print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=maxlen)

labels = np.asarray(labels)

print('Shape of data tensor:', data.shape)

print('Shape of label tensor:', labels.shape)

indices = np.arange(data.shape[0])

np.random.shuffle(indices)

data = data[indices]

labels = labels[indices]

x_train = data[:training_samples]

y_train = labels[:training_samples]

x_val = data[training_samples: training_samples + validation_samples]

y_val = labels[training_samples: training_samples + validation_samples]

DOWNLOADING THE GLOVE WORD EMBEDDINGS

Go to https://nlp.stanford.edu/projects/glove, and download the precomputed

embeddings from 2014 English Wikipedia. It’s an 822 MB zip file called glove.6B.zip,

containing 100-dimensional embedding vectors for 400,000 words (or nonword

tokens). Unzip it.

PREPROCESSING THE EMBEDDINGS

Let’s parse the unzipped file (a .txt file) to build an index that maps words (as strings)

to their vector representation (as number vectors).

glove_dir = '/Users/fchollet/Downloads/glove.6B'

embeddings_index = {}

f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))

for line in f:

values = line.split()

word = values[0]

coefs = np.asarray(values[1:], dtype='float32')

embeddings_index[word] = coefs

f.close()

print('Found %s word vectors.' % len(embeddings_index))

Next, you’ll build an embedding matrix that you can load into an Embedding layer. It

must be a matrix of shape (max_words, embedding_dim), where each entry i contains

the embedding_dim-dimensional vector for the word of index i in the reference word

index (built during tokenization). Note that index 0 isn’t supposed to stand for any

word or token—it’s a placeholder.

Listing 6.10 Parsing the GloVe word-embeddings file

Splits the data into a training set and a
validation set, but first shuffles the data,
because you’re starting with data in which
samples are ordered (all negative first, then
all positive)

191Working with text data

embedding_dim = 100

embedding_matrix = np.zeros((max_words, embedding_dim))

for word, i in word_index.items():

if i < max_words:

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

DEFINING A MODEL

You’ll use the same model architecture as before.

from keras.models import Sequential

from keras.layers import Embedding, Flatten, Dense

model = Sequential()

model.add(Embedding(max_words, embedding_dim, input_length=maxlen))

model.add(Flatten())

model.add(Dense(32, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.summary()

LOADING THE GLOVE EMBEDDINGS IN THE MODEL

The Embedding layer has a single weight matrix: a 2D float matrix where each entry i is

the word vector meant to be associated with index i. Simple enough. Load the GloVe

matrix you prepared into the Embedding layer, the first layer in the model.

model.layers[0].set_weights([embedding_matrix])

model.layers[0].trainable = False

Additionally, you’ll freeze the Embedding layer (set its trainable attribute to False),

following the same rationale you’re already familiar with in the context of pretrained

convnet features: when parts of a model are pretrained (like your Embedding layer)

and parts are randomly initialized (like your classifier), the pretrained parts shouldn’t

be updated during training, to avoid forgetting what they already know. The large gra-

dient updates triggered by the randomly initialized layers would be disruptive to the

already-learned features.

Listing 6.11 Preparing the GloVe word-embeddings matrix

Listing 6.12 Model definition

Listing 6.13 Loading pretrained word embeddings into the Embedding layer

Words not found in the
embedding index will
be all zeros.

192 CHAPTER 6 Deep learning for text and sequences

TRAINING AND EVALUATING THE MODEL

Compile and train the model.

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(x_train, y_train,

epochs=10,

batch_size=32,

validation_data=(x_val, y_val))

model.save_weights('pre_trained_glove_model.h5')

Now, plot the model’s performance over time (see figures 6.5 and 6.6).

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Listing 6.14 Training and evaluation

Listing 6.15 Plotting the results

Figure 6.5 Training and validation loss

when using pretrained word embeddings

193Working with text data

The model quickly starts overfitting, which is unsurprising given the small number of

training samples. Validation accuracy has high variance for the same reason, but it

seems to reach the high 50s.

 Note that your mileage may vary: because you have so few training samples, perfor-

mance is heavily dependent on exactly which 200 samples you choose—and you’re

choosing them at random. If this works poorly for you, try choosing a different ran-

dom set of 200 samples, for the sake of the exercise (in real life, you don’t get to

choose your training data).

 You can also train the same model without loading the pretrained word embed-

dings and without freezing the embedding layer. In that case, you’ll learn a task-

specific embedding of the input tokens, which is generally more powerful than

pretrained word embeddings when lots of data is available. But in this case, you have

only 200 training samples. Let’s try it (see figures 6.7 and 6.8).

from keras.models import Sequential

from keras.layers import Embedding, Flatten, Dense

model = Sequential()

model.add(Embedding(max_words, embedding_dim, input_length=maxlen))

model.add(Flatten())

model.add(Dense(32, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.summary()

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(x_train, y_train,

epochs=10,

batch_size=32,

validation_data=(x_val, y_val))

Listing 6.16 Training the same model without pretrained word embeddings

Figure 6.6 Training and

validation accuracy when using

pretrained word embeddings

194 CHAPTER 6 Deep learning for text and sequences

Validation accuracy stalls in the low 50s. So in this case, pretrained word embeddings

outperform jointly learned embeddings. If you increase the number of training sam-

ples, this will quickly stop being the case—try it as an exercise.

 Finally, let’s evaluate the model on the test data. First, you need to tokenize the test

data.

test_dir = os.path.join(imdb_dir, 'test')

labels = []

texts = []

for label_type in ['neg', 'pos']:

dir_name = os.path.join(test_dir, label_type)

for fname in sorted(os.listdir(dir_name)):

if fname[-4:] == '.txt':

f = open(os.path.join(dir_name, fname))

texts.append(f.read())

Listing 6.17 Tokenizing the data of the test set

Figure 6.7 Training and

validation loss without using

pretrained word embeddings

Figure 6.8 Training and validation

accuracy without using pretrained

word embeddings

195Working with text data

f.close()

if label_type == 'neg':

labels.append(0)

else:

labels.append(1)

sequences = tokenizer.texts_to_sequences(texts)

x_test = pad_sequences(sequences, maxlen=maxlen)

y_test = np.asarray(labels)

Next, load and evaluate the first model.

model.load_weights('pre_trained_glove_model.h5')

model.evaluate(x_test, y_test)

You get an appalling test accuracy of 56%. Working with just a handful of training

samples is difficult!

6.1.4 Wrapping up

Now you’re able to do the following:

 Turn raw text into something a neural network can process

 Use the Embedding layer in a Keras model to learn task-specific token embed-

dings

 Use pretrained word embeddings to get an extra boost on small natural-

language-processing problems

Listing 6.18 Evaluating the model on the test set

196 CHAPTER 6 Deep learning for text and sequences

6.2 Understanding recurrent neural networks

A major characteristic of all neural networks you’ve seen so far, such as densely con-

nected networks and convnets, is that they have no memory. Each input shown to

them is processed independently, with no state kept in between inputs. With such net-

works, in order to process a sequence or a temporal series of data points, you have to

show the entire sequence to the network at once: turn it into a single data point. For

instance, this is what you did in the IMDB example: an entire movie review was trans-

formed into a single large vector and processed in one go. Such networks are called

feedforward networks.

 In contrast, as you’re reading the present sentence, you’re processing it word by

word—or rather, eye saccade by eye saccade—while keeping memories of what came

before; this gives you a fluid representation of the meaning conveyed by this sentence.

Biological intelligence processes information incrementally while maintaining an

internal model of what it’s processing, built from past information and constantly

updated as new information comes in.

 A recurrent neural network (RNN) adopts the same principle, albeit in an extremely

simplified version: it processes sequences by iterating through the sequence elements

and maintaining a state containing information relative

to what it has seen so far. In effect, an RNN is a type of

neural network that has an internal loop (see figure 6.9).

The state of the RNN is reset between processing two dif-

ferent, independent sequences (such as two different

IMDB reviews), so you still consider one sequence a sin-

gle data point: a single input to the network. What

changes is that this data point is no longer processed in a

single step; rather, the network internally loops over

sequence elements.

 To make these notions of loop and state clear, let’s implement the forward pass of a

toy RNN in Numpy. This RNN takes as input a sequence of vectors, which you’ll encode

as a 2D tensor of size (timesteps, input_features). It loops over timesteps, and at

each timestep, it considers its current state at t and the input at t (of shape (input_

features,), and combines them to obtain the output at t. You’ll then set the state for

the next step to be this previous output. For the first timestep, the previous output

isn’t defined; hence, there is no current state. So, you’ll initialize the state as an all-

zero vector called the initial state of the network.

 In pseudocode, this is the RNN.

state_t = 0

for input_t in input_sequence:

output_t = f(input_t, state_t)

state_t = output_t

Listing 6.19 Pseudocode RNN

The state at t

Iterates over sequence elements

The previous output becomes the state for the next iteration.

RNN

Input

Output

Recurrent

connection

Figure 6.9 A recurrent

network: a network with a loop

197Understanding recurrent neural networks

You can even flesh out the function f: the transformation of the input and state into an

output will be parameterized by two matrices, W and U, and a bias vector. It’s similar to

the transformation operated by a densely connected layer in a feedforward network.

state_t = 0

for input_t in input_sequence:

output_t = activation(dot(W, input_t) + dot(U, state_t) + b)

state_t = output_t

To make these notions absolutely unambiguous, let’s write a naive Numpy implemen-

tation of the forward pass of the simple RNN.

import numpy as np

timesteps = 100

input_features = 32

output_features = 64

inputs = np.random.random((timesteps, input_features))

state_t = np.zeros((output_features,))

W = np.random.random((output_features, input_features))

U = np.random.random((output_features, output_features))

b = np.random.random((output_features,))

successive_outputs = []

for input_t in inputs:

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

successive_outputs.append(output_t)

state_t = output_t

final_output_sequence = np.concatenate(successive_outputs, axis=0)

Easy enough: in summary, an RNN is a for loop that reuses quantities computed

during the previous iteration of the loop, nothing more. Of course, there are many

different RNNs fitting this definition that you could build—this example is one of the

simplest RNN formulations. RNNs are characterized by their step function, such as the

following function in this case (see figure 6.10):

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

Listing 6.20 More detailed pseudocode for the RNN

Listing 6.21 Numpy implementation of a simple RNN

Number of timesteps in
the input sequence

Dimensionality of the
input feature space

Dimensionality of the
output feature space

Input data: random
noise for the sake of
the example

Initial state: an
all-zero vector

Creates random
weight matrices

input_t is a vector of
shape (input_features,).

Combines the input with the current
state (the previous output) to obtain
the current output

Stores this output in a list

Updates the state of the
network for the next timestep

The final output is a 2D tensor of
shape (timesteps, output_features).

198 CHAPTER 6 Deep learning for text and sequences

NOTE In this example, the final output is a 2D tensor of shape (timesteps,
output_features), where each timestep is the output of the loop at time t.
Each timestep t in the output tensor contains information about timesteps 0
to t in the input sequence—about the entire past. For this reason, in many
cases, you don’t need this full sequence of outputs; you just need the last out-
put (output_t at the end of the loop), because it already contains informa-
tion about the entire sequence.

6.2.1 A recurrent layer in Keras

The process you just naively implemented in Numpy corresponds to an actual Keras

layer—the SimpleRNN layer:

from keras.layers import SimpleRNN

There is one minor difference: SimpleRNN processes batches of sequences, like all other

Keras layers, not a single sequence as in the Numpy example. This means it takes inputs

of shape (batch_size, timesteps, input_features), rather than (timesteps,

input_features).

 Like all recurrent layers in Keras, SimpleRNN can be run in two different modes: it

can return either the full sequences of successive outputs for each timestep (a 3D ten-

sor of shape (batch_size, timesteps, output_features)) or only the last output for

each input sequence (a 2D tensor of shape (batch_size, output_features)). These

two modes are controlled by the return_sequences constructor argument. Let’s look

at an example that uses SimpleRNN and returns only the output at the last timestep:

>>> from keras.models import Sequential

>>> from keras.layers import Embedding, SimpleRNN

>>> model = Sequential()

>>> model.add(Embedding(10000, 32))

>>> model.add(SimpleRNN(32))

>>> model.summary()

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =

 activation(

 W•input_t +

 U•state_t +

 bo)

Figure 6.10 A simple RNN, unrolled over time

199Understanding recurrent neural networks

__

Layer (type) Output Shape Param #

==

embedding_22 (Embedding) (None, None, 32) 320000

__

simplernn_10 (SimpleRNN) (None, 32) 2080

==

Total params: 322,080

Trainable params: 322,080

Non-trainable params: 0

The following example returns the full state sequence:

>>> model = Sequential()

>>> model.add(Embedding(10000, 32))

>>> model.add(SimpleRNN(32, return_sequences=True))

>>> model.summary()

__

Layer (type) Output Shape Param #

==

embedding_23 (Embedding) (None, None, 32) 320000

__

simplernn_11 (SimpleRNN) (None, None, 32) 2080

==

Total params: 322,080

Trainable params: 322,080

Non-trainable params: 0

It’s sometimes useful to stack several recurrent layers one after the other in order to

increase the representational power of a network. In such a setup, you have to get all

of the intermediate layers to return full sequence of outputs:

>>> model = Sequential()

>>> model.add(Embedding(10000, 32))

>>> model.add(SimpleRNN(32, return_sequences=True))

>>> model.add(SimpleRNN(32, return_sequences=True))

>>> model.add(SimpleRNN(32, return_sequences=True))

>>> model.add(SimpleRNN(32))

>>> model.summary()

__

Layer (type) Output Shape Param #

==

embedding_24 (Embedding) (None, None, 32) 320000

__

simplernn_12 (SimpleRNN) (None, None, 32) 2080

__

simplernn_13 (SimpleRNN) (None, None, 32) 2080

__

simplernn_14 (SimpleRNN) (None, None, 32) 2080

__

simplernn_15 (SimpleRNN) (None, 32) 2080

==

Total params: 328,320

Trainable params: 328,320

Non-trainable params: 0

Last layer only returns
the last output

200 CHAPTER 6 Deep learning for text and sequences

Now, let’s use such a model on the IMDB movie-review-classification problem. First,

preprocess the data.

from keras.datasets import imdb

from keras.preprocessing import sequence

max_features = 10000

maxlen = 500

batch_size = 32

print('Loading data...')

(input_train, y_train), (input_test, y_test) = imdb.load_data(

num_words=max_features)

print(len(input_train), 'train sequences')

print(len(input_test), 'test sequences')

print('Pad sequences (samples x time)')

input_train = sequence.pad_sequences(input_train, maxlen=maxlen)

input_test = sequence.pad_sequences(input_test, maxlen=maxlen)

print('input_train shape:', input_train.shape)

print('input_test shape:', input_test.shape)

Let’s train a simple recurrent network using an Embedding layer and a SimpleRNN

layer.

from keras.layers import Dense

model = Sequential()

model.add(Embedding(max_features, 32))

model.add(SimpleRNN(32))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

history = model.fit(input_train, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

Now, let’s display the training and validation loss and accuracy (see figures 6.11 and 6.12).

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

Listing 6.22 Preparing the IMDB data

Listing 6.23 Training the model with Embedding and SimpleRNN layers

Listing 6.24 Plotting results

Number of words to
consider as features

Cuts off texts after this many words (among
the max_features most common words)

201Understanding recurrent neural networks

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

As a reminder, in chapter 3, the first naive approach to this dataset got you to a test

accuracy of 88%. Unfortunately, this small recurrent network doesn’t perform well

compared to this baseline (only 85% validation accuracy). Part of the problem is that

your inputs only consider the first 500 words, rather than full sequences—hence, the

RNN has access to less information than the earlier baseline model. The remainder of

the problem is that SimpleRNN isn’t good at processing long sequences, such as text.

Figure 6.11 Training and validation

loss on IMDB with SimpleRNN

Figure 6.12 Training and validation

accuracy on IMDB with SimpleRNN

202 CHAPTER 6 Deep learning for text and sequences

Other types of recurrent layers perform much better. Let’s look at some more-

advanced layers.

6.2.2 Understanding the LSTM and GRU layers

SimpleRNN isn’t the only recurrent layer available in Keras. There are two others: LSTM

and GRU. In practice, you’ll always use one of these, because SimpleRNN is generally too

simplistic to be of real use. SimpleRNN has a major issue: although it should theoretically

be able to retain at time t information about inputs seen many timesteps before, in

practice, such long-term dependencies are impossible to learn. This is due to the van-

ishing gradient problem, an effect that is similar to what is observed with non-recurrent

networks (feedforward networks) that are many layers deep: as you keep adding layers

to a network, the network eventually becomes untrainable. The theoretical reasons for

this effect were studied by Hochreiter, Schmidhuber, and Bengio in the early 1990s.2

The LSTM and GRU layers are designed to solve this problem.

 Let’s consider the LSTM layer. The underlying Long Short-Term Memory (LSTM)

algorithm was developed by Hochreiter and Schmidhuber in 1997;3 it was the culmi-

nation of their research on the vanishing gradient problem.

 This layer is a variant of the SimpleRNN layer you already know about; it adds a way

to carry information across many timesteps. Imagine a conveyor belt running parallel

to the sequence you’re processing. Information from the sequence can jump onto the

conveyor belt at any point, be transported to a later timestep, and jump off, intact,

when you need it. This is essentially what LSTM does: it saves information for later,

thus preventing older signals from gradually vanishing during processing.

 To understand this in detail, let’s start from the SimpleRNN cell (see figure 6.13).

Because you’ll have a lot of weight matrices, index the W and U matrices in the cell with

the letter o (Wo and Uo) for output.

2 See, for example, Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning Long-Term Dependencies
with Gradient Descent Is Difficult,” IEEE Transactions on Neural Networks 5, no. 2 (1994).

3 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation 9, no. 8 (1997).

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =

 activation(

 Wo•input_t +

 Uo•state_t +

 bo)

Figure 6.13 The starting point of an LSTM layer: a SimpleRNN

203Understanding recurrent neural networks

Let’s add to this picture an additional data flow that carries information across time-

steps. Call its values at different timesteps Ct, where C stands for carry. This informa-

tion will have the following impact on the cell: it will be combined with the input

connection and the recurrent connection (via a dense transformation: a dot product

with a weight matrix followed by a bias add and the application of an activation func-

tion), and it will affect the state being sent to the next timestep (via an activation

function an a multiplication operation). Conceptually, the carry dataflow is a way to

modulate the next output and the next state (see figure 6.14). Simple so far.

Now the subtlety: the way the next value of the carry dataflow is computed. It involves

three distinct transformations. All three have the form of a SimpleRNN cell:

y = activation(dot(state_t, U) + dot(input_t, W) + b)

But all three transformations have their own weight matrices, which you’ll index with

the letters i, f, and k. Here’s what you have so far (it may seem a bit arbitrary, but bear

with me).

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)

f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)

k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

You obtain the new carry state (the next c_t) by combining i_t, f_t, and k_t.

c_t+1 = i_t * k_t + c_t * f_t

Add this as shown in figure 6.15. And that’s it. Not so complicated—merely a tad

complex.

Listing 6.25 Pseudocode details of the LSTM architecture (1/2)

Listing 6.26 Pseudocode details of the LSTM architecture (2/2)

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =

 activation(

 Wo•input_t +

 Uo•state_t +

 Vo•c_t +

 bo)

Figure 6.14 Going from a SimpleRNN to an LSTM: adding a carry track

204 CHAPTER 6 Deep learning for text and sequences

If you want to get philosophical, you can interpret what each of these operations is

meant to do. For instance, you can say that multiplying c_t and f_t is a way to deliber-

ately forget irrelevant information in the carry dataflow. Meanwhile, i_t and k_t pro-

vide information about the present, updating the carry track with new information.

But at the end of the day, these interpretations don’t mean much, because what these

operations actually do is determined by the contents of the weights parameterizing

them; and the weights are learned in an end-to-end fashion, starting over with each

training round, making it impossible to credit this or that operation with a specific

purpose. The specification of an RNN cell (as just described) determines your hypoth-

esis space—the space in which you’ll search for a good model configuration during

training—but it doesn’t determine what the cell does; that is up to the cell weights.

The same cell with different weights can be doing very different things. So the combi-

nation of operations making up an RNN cell is better interpreted as a set of constraints

on your search, not as a design in an engineering sense.

 To a researcher, it seems that the choice of such constraints—the question of how to

implement RNN cells—is better left to optimization algorithms (like genetic algorithms

or reinforcement learning processes) than to human engineers. And in the future,

that’s how we’ll build networks. In summary: you don’t need to understand anything

about the specific architecture of an LSTM cell; as a human, it shouldn’t be your job to

understand it. Just keep in mind what the LSTM cell is meant to do: allow past informa-

tion to be reinjected at a later time, thus fighting the vanishing-gradient problem.

6.2.3 A concrete LSTM example in Keras

Now let’s switch to more practical concerns: you’ll set up a model using an LSTM layer

and train it on the IMDB data (see figures 6.16 and 6.17). The network is similar to the

one with SimpleRNN that was just presented. You only specify the output dimensional-

ity of the LSTM layer; leave every other argument (there are many) at the Keras

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =

 activation(

 Wo•input_t +

 Uo•state_t +

 Vo•c_t +

 bo)

Compute

new

carry

Compute

new

carry

Figure 6.15 Anatomy of an LSTM

205Understanding recurrent neural networks

defaults. Keras has good defaults, and things will almost always “just work” without you

having to spend time tuning parameters by hand.

from keras.layers import LSTM

model = Sequential()

model.add(Embedding(max_features, 32))

model.add(LSTM(32))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(input_train, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

Listing 6.27 Using the LSTM layer in Keras

Figure 6.16 Training and validation

loss on IMDB with LSTM

Figure 6.17 Training and validation

accuracy on IMDB with LSTM

206 CHAPTER 6 Deep learning for text and sequences

This time, you achieve up to 89% validation accuracy. Not bad: certainly much better

than the SimpleRNN network—that’s largely because LSTM suffers much less from the

vanishing-gradient problem—and slightly better than the fully connected approach

from chapter 3, even though you’re looking at less data than you were in chapter 3.

You’re truncating sequences after 500 timesteps, whereas in chapter 3, you were con-

sidering full sequences.

 But this result isn’t groundbreaking for such a computationally intensive

approach. Why isn’t LSTM performing better? One reason is that you made no effort

to tune hyperparameters such as the embeddings dimensionality or the LSTM output

dimensionality. Another may be lack of regularization. But honestly, the primary rea-

son is that analyzing the global, long-term structure of the reviews (what LSTM is good

at) isn’t helpful for a sentiment-analysis problem. Such a basic problem is well solved

by looking at what words occur in each review, and at what frequency. That’s what the

first fully connected approach looked at. But there are far more difficult natural-

language-processing problems out there, where the strength of LSTM will become

apparent: in particular, question-answering and machine translation.

6.2.4 Wrapping up

Now you understand the following:

 What RNNs are and how they work

 What LSTM is, and why it works better on long sequences than a naive RNN

 How to use Keras RNN layers to process sequence data

Next, we’ll review a number of more advanced features of RNNs, which can help you

get the most out of your deep-learning sequence models.

207Advanced use of recurrent neural networks

6.3 Advanced use of recurrent neural networks

In this section, we’ll review three advanced techniques for improving the perfor-

mance and generalization power of recurrent neural networks. By the end of the sec-

tion, you’ll know most of what there is to know about using recurrent networks with

Keras. We’ll demonstrate all three concepts on a temperature-forecasting problem,

where you have access to a timeseries of data points coming from sensors installed on

the roof of a building, such as temperature, air pressure, and humidity, which you use

to predict what the temperature will be 24 hours after the last data point. This is a

fairly challenging problem that exemplifies many common difficulties encountered

when working with timeseries.

 We’ll cover the following techniques:

 Recurrent dropout—This is a specific, built-in way to use dropout to fight overfit-

ting in recurrent layers.

 Stacking recurrent layers—This increases the representational power of the net-

work (at the cost of higher computational loads).

 Bidirectional recurrent layers—These present the same information to a recurrent

network in different ways, increasing accuracy and mitigating forgetting issues.

6.3.1 A temperature-forecasting problem

Until now, the only sequence data we’ve covered has been text data, such as the IMDB

dataset and the Reuters dataset. But sequence data is found in many more problems

than just language processing. In all the examples in this section, you’ll play with a

weather timeseries dataset recorded at the Weather Station at the Max Planck Insti-

tute for Biogeochemistry in Jena, Germany.4

 In this dataset, 14 different quantities (such air temperature, atmospheric pres-

sure, humidity, wind direction, and so on) were recorded every 10 minutes, over sev-

eral years. The original data goes back to 2003, but this example is limited to data

from 2009–2016. This dataset is perfect for learning to work with numerical

timeseries. You’ll use it to build a model that takes as input some data from the recent

past (a few days’ worth of data points) and predicts the air temperature 24 hours in

the future.

 Download and uncompress the data as follows:

cd ~/Downloads

mkdir jena_climate

cd jena_climate

wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip

unzip jena_climate_2009_2016.csv.zip

Let’s look at the data.

4 Olaf Kolle, www.bgc-jena.mpg.de/wetter.

208 CHAPTER 6 Deep learning for text and sequences

import os

data_dir = '/users/fchollet/Downloads/jena_climate'

fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')

f = open(fname)

data = f.read()

f.close()

lines = data.split('\n')

header = lines[0].split(',')

lines = lines[1:]

print(header)

print(len(lines))

This outputs a count of 420,551 lines of data (each line is a timestep: a record of a

date and 14 weather-related values), as well as the following header:

["Date Time",

"p (mbar)",

"T (degC)",

"Tpot (K)",

"Tdew (degC)",

"rh (%)",

"VPmax (mbar)",

"VPact (mbar)",

"VPdef (mbar)",

"sh (g/kg)",

"H2OC (mmol/mol)",

"rho (g/m**3)",

"wv (m/s)",

"max. wv (m/s)",

"wd (deg)"]

Now, convert all 420,551 lines of data into a Numpy array.

import numpy as np

float_data = np.zeros((len(lines), len(header) - 1))

for i, line in enumerate(lines):

values = [float(x) for x in line.split(',')[1:]]

float_data[i, :] = values

For instance, here is the plot of temperature (in degrees Celsius) over time (see figure

6.18). On this plot, you can clearly see the yearly periodicity of temperature.

Listing 6.28 Inspecting the data of the Jena weather dataset

Listing 6.29 Parsing the data

209Advanced use of recurrent neural networks

from matplotlib import pyplot as plt

temp = float_data[:, 1] <1> temperature (in degrees Celsius)

plt.plot(range(len(temp)), temp)

Here is a more narrow plot of the first 10 days of temperature data (see figure 6.19).

Because the data is recorded every 10 minutes, you get 144 data points per day.

plt.plot(range(1440), temp[:1440])

Listing 6.30 Plotting the temperature timeseries

Listing 6.31 Plotting the first 10 days of the temperature timeseries

Figure 6.18 Temperature

over the full temporal range of

the dataset (ºC)

Figure 6.19 Temperature

over the first 10 days of the

dataset (ºC)

210 CHAPTER 6 Deep learning for text and sequences

On this plot, you can see daily periodicity, especially evident for the last 4 days. Also

note that this 10-day period must be coming from a fairly cold winter month.

 If you were trying to predict average temperature for the next month given a few

months of past data, the problem would be easy, due to the reliable year-scale period-

icity of the data. But looking at the data over a scale of days, the temperature looks a

lot more chaotic. Is this timeseries predictable at a daily scale? Let’s find out.

6.3.2 Preparing the data

The exact formulation of the problem will be as follows: given data going as far back

as lookback timesteps (a timestep is 10 minutes) and sampled every steps timesteps,

can you predict the temperature in delay timesteps? You’ll use the following parame-

ter values:

 lookback = 720—Observations will go back 5 days.

 steps = 6—Observations will be sampled at one data point per hour.

 delay = 144—Targets will be 24 hours in the future.

To get started, you need to do two things:

 Preprocess the data to a format a neural network can ingest. This is easy: the

data is already numerical, so you don’t need to do any vectorization. But each

timeseries in the data is on a different scale (for example, temperature is typi-

cally between -20 and +30, but atmospheric pressure, measured in mbar, is

around 1,000). You’ll normalize each timeseries independently so that they all

take small values on a similar scale.

 Write a Python generator that takes the current array of float data and yields

batches of data from the recent past, along with a target temperature in the

future. Because the samples in the dataset are highly redundant (sample N and

sample N + 1 will have most of their timesteps in common), it would be wasteful

to explicitly allocate every sample. Instead, you’ll generate the samples on the

fly using the original data.

You’ll preprocess the data by subtracting the mean of each timeseries and dividing by

the standard deviation. You’re going to use the first 200,000 timesteps as training data,

so compute the mean and standard deviation only on this fraction of the data.

mean = float_data[:200000].mean(axis=0)

float_data -= mean

std = float_data[:200000].std(axis=0)

float_data /= std

Listing 6.33 shows the data generator you’ll use. It yields a tuple (samples, targets),

where samples is one batch of input data and targets is the corresponding array of

target temperatures. It takes the following arguments:

Listing 6.32 Normalizing the data

211Advanced use of recurrent neural networks

 data—The original array of floating-point data, which you normalized in listing 6.32.

 lookback—How many timesteps back the input data should go.

 delay—How many timesteps in the future the target should be.

 min_index and max_index—Indices in the data array that delimit which time-

steps to draw from. This is useful for keeping a segment of the data for valida-

tion and another for testing.

 shuffle—Whether to shuffle the samples or draw them in chronological order.

 batch_size—The number of samples per batch.

 step—The period, in timesteps, at which you sample data. You’ll set it to 6 in

order to draw one data point every hour.

def generator(data, lookback, delay, min_index, max_index,

shuffle=False, batch_size=128, step=6):

if max_index is None:

max_index = len(data) - delay - 1

i = min_index + lookback

while 1:

if shuffle:

rows = np.random.randint(

min_index + lookback, max_index, size=batch_size)

else:

if i + batch_size >= max_index:

i = min_index + lookback

rows = np.arange(i, min(i + batch_size, max_index))

i += len(rows)

samples = np.zeros((len(rows),

lookback // step,

data.shape[-1]))

targets = np.zeros((len(rows),))

for j, row in enumerate(rows):

indices = range(rows[j] - lookback, rows[j], step)

samples[j] = data[indices]

targets[j] = data[rows[j] + delay][1]

yield samples, targets

Now, let’s use the abstract generator function to instantiate three generators: one for

training, one for validation, and one for testing. Each will look at different temporal

segments of the original data: the training generator looks at the first 200,000 time-

steps, the validation generator looks at the following 100,000, and the test generator

looks at the remainder.

lookback = 1440

step = 6

delay = 144

batch_size = 128

Listing 6.33 Generator yielding timeseries samples and their targets

Listing 6.34 Preparing the training, validation, and test generators

212 CHAPTER 6 Deep learning for text and sequences

train_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=0,

max_index=200000,

shuffle=True,

step=step,

batch_size=batch_size)

val_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=200001,

max_index=300000,

step=step,

batch_size=batch_size)

test_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=300001,

max_index=None,

step=step,

batch_size=batch_size)

val_steps = (300000 - 200001 - lookback)

test_steps = (len(float_data) - 300001 - lookback)

6.3.3 A common-sense, non-machine-learning baseline

Before you start using black-box deep-learning models to solve the temperature-

prediction problem, let’s try a simple, common-sense approach. It will serve as a sanity

check, and it will establish a baseline that you’ll have to beat in order to demonstrate

the usefulness of more-advanced machine-learning models. Such common-sense base-

lines can be useful when you’re approaching a new problem for which there is no

known solution (yet). A classic example is that of unbalanced classification tasks,

where some classes are much more common than others. If your dataset contains 90%

instances of class A and 10% instances of class B, then a common-sense approach to

the classification task is to always predict “A” when presented with a new sample. Such

a classifier is 90% accurate overall, and any learning-based approach should therefore

beat this 90% score in order to demonstrate usefulness. Sometimes, such elementary

baselines can prove surprisingly hard to beat.

 In this case, the temperature timeseries can safely be assumed to be continuous

(the temperatures tomorrow are likely to be close to the temperatures today) as well

as periodical with a daily period. Thus a common-sense approach is to always predict

that the temperature 24 hours from now will be equal to the temperature right now.

Let’s evaluate this approach, using the mean absolute error (MAE) metric:

np.mean(np.abs(preds - targets))

How many steps to draw from
val_gen in order to see the
entire validation set

How many steps to draw
from test_gen in order to
see the entire test set

213Advanced use of recurrent neural networks

Here’s the evaluation loop.

def evaluate_naive_method():

batch_maes = []

for step in range(val_steps):

samples, targets = next(val_gen)

preds = samples[:, -1, 1]

mae = np.mean(np.abs(preds - targets))

batch_maes.append(mae)

print(np.mean(batch_maes))

evaluate_naive_method()

This yields an MAE of 0.29. Because the temperature data has been normalized to be

centered on 0 and have a standard deviation of 1, this number isn’t immediately inter-

pretable. It translates to an average absolute error of 0.29 × temperature_std degrees

Celsius: 2.57˚C.

celsius_mae = 0.29 * std[1]

That’s a fairly large average absolute error. Now the game is to use your knowledge of

deep learning to do better.

6.3.4 A basic machine-learning approach

In the same way that it’s useful to establish a common-sense baseline before trying

machine-learning approaches, it’s useful to try simple, cheap machine-learning mod-

els (such as small, densely connected networks) before looking into complicated and

computationally expensive models such as RNNs. This is the best way to make sure any

further complexity you throw at the problem is legitimate and delivers real benefits.

 The following listing shows a fully connected model that starts by flattening the

data and then runs it through two Dense layers. Note the lack of activation function on

the last Dense layer, which is typical for a regression problem. You use MAE as the loss.

Because you evaluate on the exact same data and with the exact same metric you did

with the common-sense approach, the results will be directly comparable.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Flatten(input_shape=(lookback // step, float_data.shape[-1])))

model.add(layers.Dense(32, activation='relu'))

model.add(layers.Dense(1))

Listing 6.35 Computing the common-sense baseline MAE

Listing 6.36 Converting the MAE back to a Celsius error

Listing 6.37 Training and evaluating a densely connected model

214 CHAPTER 6 Deep learning for text and sequences

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=20,

validation_data=val_gen,

validation_steps=val_steps)

Let’s display the loss curves for validation and training (see figure 6.20).

import matplotlib.pyplot as plt

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Some of the validation losses are close to the no-learning baseline, but not reliably.

This goes to show the merit of having this baseline in the first place: it turns out to be

not easy to outperform. Your common sense contains a lot of valuable information

that a machine-learning model doesn’t have access to.

 You may wonder, if a simple, well-performing model exists to go from the data to

the targets (the common-sense baseline), why doesn’t the model you’re training find it

and improve on it? Because this simple solution isn’t what your training setup is look-

ing for. The space of models in which you’re searching for a solution—that is, your

hypothesis space—is the space of all possible two-layer networks with the configuration

you defined. These networks are already fairly complicated. When you’re looking for a

Listing 6.38 Plotting results

Figure 6.20 Training and validation

loss on the Jena temperature-

forecasting task with a simple, densely

connected network

215Advanced use of recurrent neural networks

solution with a space of complicated models, the simple, well-performing baseline may

be unlearnable, even if it’s technically part of the hypothesis space. That is a pretty sig-

nificant limitation of machine learning in general: unless the learning algorithm is

hardcoded to look for a specific kind of simple model, parameter learning can some-

times fail to find a simple solution to a simple problem.

6.3.5 A first recurrent baseline

The first fully connected approach didn’t do well, but that doesn’t mean machine

learning isn’t applicable to this problem. The previous approach first flattened the

timeseries, which removed the notion of time from the input data. Let’s instead look

at the data as what it is: a sequence, where causality and order matter. You’ll try a

recurrent-sequence processing model—it should be the perfect fit for such sequence

data, precisely because it exploits the temporal ordering of data points, unlike the first

approach.

 Instead of the LSTM layer introduced in the previous section, you’ll use the GRU

layer, developed by Chung et al. in 2014.5 Gated recurrent unit (GRU) layers work

using the same principle as LSTM, but they’re somewhat streamlined and thus

cheaper to run (although they may not have as much representational power as

LSTM). This trade-off between computational expensiveness and representational

power is seen everywhere in machine learning.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=20,

validation_data=val_gen,

validation_steps=val_steps)

Figure 6.21 shows the results. Much better! You can significantly beat the common-

sense baseline, demonstrating the value of machine learning as well as the superiority

of recurrent networks compared to sequence-flattening dense networks on this type

of task.

5 Junyoung Chung et al., “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,”
Conference on Neural Information Processing Systems (2014), https://arxiv.org/abs/1412.3555.

Listing 6.39 Training and evaluating a GRU-based model

216 CHAPTER 6 Deep learning for text and sequences

The new validation MAE of ~0.265 (before you start significantly overfitting) translates

to a mean absolute error of 2.35˚C after denormalization. That’s a solid gain on the

initial error of 2.57˚C, but you probably still have a bit of a margin for improvement.

6.3.6 Using recurrent dropout to fight overfitting

It’s evident from the training and validation curves that the model is overfitting: the

training and validation losses start to diverge considerably after a few epochs. You’re

already familiar with a classic technique for fighting this phenomenon: dropout,

which randomly zeros out input units of a layer in order to break happenstance cor-

relations in the training data that the layer is exposed to. But how to correctly apply

dropout in recurrent networks isn’t a trivial question. It has long been known that

applying dropout before a recurrent layer hinders learning rather than helping with

regularization. In 2015, Yarin Gal, as part of his PhD thesis on Bayesian deep learn-

ing,6 determined the proper way to use dropout with a recurrent network: the same

dropout mask (the same pattern of dropped units) should be applied at every time-

step, instead of a dropout mask that varies randomly from timestep to timestep.

What’s more, in order to regularize the representations formed by the recurrent gates

of layers such as GRU and LSTM, a temporally constant dropout mask should be applied

to the inner recurrent activations of the layer (a recurrent dropout mask). Using the

same dropout mask at every timestep allows the network to properly propagate its

learning error through time; a temporally random dropout mask would disrupt this

error signal and be harmful to the learning process.

 Yarin Gal did his research using Keras and helped build this mechanism directly

into Keras recurrent layers. Every recurrent layer in Keras has two dropout-related

arguments: dropout, a float specifying the dropout rate for input units of the layer,

6 See Yarin Gal, “Uncertainty in Deep Learning (PhD Thesis),” October 13, 2016, http://mlg.eng.cam.ac.uk/
yarin/blog_2248.html.

Figure 6.21 Training and validation

loss on the Jena temperature-

forecasting task with a GRU

217Advanced use of recurrent neural networks

and recurrent_dropout, specifying the dropout rate of the recurrent units. Let’s add

dropout and recurrent dropout to the GRU layer and see how doing so impacts overfit-

ting. Because networks being regularized with dropout always take longer to fully con-

verge, you’ll train the network for twice as many epochs.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.GRU(32,

dropout=0.2,

recurrent_dropout=0.2,

input_shape=(None, float_data.shape[-1])))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=40,

validation_data=val_gen,

validation_steps=val_steps)

Figure 6.22 shows the results. Success! You’re no longer overfitting during the first 30

epochs. But although you have more stable evaluation scores, your best scores aren’t

much lower than they were previously.

6.3.7 Stacking recurrent layers

Because you’re no longer overfitting but seem to have hit a performance bottleneck,

you should consider increasing the capacity of the network. Recall the description of

the universal machine-learning workflow: it’s generally a good idea to increase the

capacity of your network until overfitting becomes the primary obstacle (assuming

Listing 6.40 Training and evaluating a dropout-regularized GRU-based model

Figure 6.22 Training and validation

loss on the Jena temperature-

forecasting task with a dropout-

regularized GRU

218 CHAPTER 6 Deep learning for text and sequences

you’re already taking basic steps to mitigate overfitting, such as using dropout). As

long as you aren’t overfitting too badly, you’re likely under capacity.

 Increasing network capacity is typically done by increasing the number of units in

the layers or adding more layers. Recurrent layer stacking is a classic way to build

more-powerful recurrent networks: for instance, what currently powers the Google

Translate algorithm is a stack of seven large LSTM layers—that’s huge.

 To stack recurrent layers on top of each other in Keras, all intermediate layers

should return their full sequence of outputs (a 3D tensor) rather than their output at

the last timestep. This is done by specifying return_sequences=True.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.GRU(32,

dropout=0.1,

recurrent_dropout=0.5,

return_sequences=True,

input_shape=(None, float_data.shape[-1])))

model.add(layers.GRU(64, activation='relu',

dropout=0.1,

recurrent_dropout=0.5))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=40,

validation_data=val_gen,

validation_steps=val_steps)

Figure 6.23 shows the results. You can see that the added layer does improve the

results a bit, though not significantly. You can draw two conclusions:

 Because you’re still not overfitting too badly, you could safely increase the size of

your layers in a quest for validation-loss improvement. This has a non-negligible

computational cost, though.

 Adding a layer didn’t help by a significant factor, so you may be seeing diminish-

ing returns from increasing network capacity at this point.

Listing 6.41 Training and evaluating a dropout-regularized, stacked GRU model

219Advanced use of recurrent neural networks

6.3.8 Using bidirectional RNNs

The last technique introduced in this section is called bidirectional RNNs. A bidirec-

tional RNN is a common RNN variant that can offer greater performance than a regu-

lar RNN on certain tasks. It’s frequently used in natural-language processing—you

could call it the Swiss Army knife of deep learning for natural-language processing.

 RNNs are notably order dependent, or time dependent: they process the timesteps

of their input sequences in order, and shuffling or reversing the timesteps can com-

pletely change the representations the RNN extracts from the sequence. This is pre-

cisely the reason they perform well on problems where order is meaningful, such as

the temperature-forecasting problem. A bidirectional RNN exploits the order sensitiv-

ity of RNNs: it consists of using two regular RNNs, such as the GRU and LSTM layers

you’re already familiar with, each of which processes the input sequence in one direc-

tion (chronologically and antichronologically), and then merging their representa-

tions. By processing a sequence both ways, a bidirectional RNN can catch patterns that

may be overlooked by a unidirectional RNN.

 Remarkably, the fact that the RNN layers in this section have processed sequences in

chronological order (older timesteps first) may have been an arbitrary decision. At least,

it’s a decision we made no attempt to question so far. Could the RNNs have performed

well enough if they processed input sequences in antichronological order, for instance

(newer timesteps first)? Let’s try this in practice and see what happens. All you need to

do is write a variant of the data generator where the input sequences are reverted along

the time dimension (replace the last line with yield samples[:, ::-1, :], targets).

Training the same one-GRU-layer network that you used in the first experiment in this

section, you get the results shown in figure 6.24.

Figure 6.23 Training and validation

loss on the Jena temperature-

forecasting task with a stacked

GRU network

220 CHAPTER 6 Deep learning for text and sequences

The reversed-order GRU strongly underperforms even the common-sense baseline,

indicating that in this case, chronological processing is important to the success of your

approach. This makes perfect sense: the underlying GRU layer will typically be better at

remembering the recent past than the distant past, and naturally the more recent

weather data points are more predictive than older data points for the problem (that’s

what makes the common-sense baseline fairly strong). Thus the chronological version

of the layer is bound to outperform the reversed-order version. Importantly, this isn’t

true for many other problems, including natural language: intuitively, the importance

of a word in understanding a sentence isn’t usually dependent on its position in the sen-

tence. Let’s try the same trick on the LSTM IMDB example from section 6.2.

from keras.datasets import imdb

from keras.preprocessing import sequence

from keras import layers

from keras.models import Sequential

max_features = 10000

maxlen = 500

(x_train, y_train), (x_test, y_test) = imdb.load_data(

num_words=max_features)

x_train = [x[::-1] for x in x_train]

x_test = [x[::-1] for x in x_test]

x_train = sequence.pad_sequences(x_train, maxlen=maxlen)

x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

model = Sequential()

model.add(layers.Embedding(max_features, 128))

model.add(layers.LSTM(32))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

Listing 6.42 Training and evaluating an LSTM using reversed sequences

Figure 6.24 Training and validation

loss on the Jena temperature-

forecasting task with a GRU trained

on reversed sequences

Number of words
to consider as
features

Cuts off texts after this
number of words (among
the max_features most
common words)

Loads
data Reverses

sequences

Pads
sequences

221Advanced use of recurrent neural networks

history = model.fit(x_train, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

You get performance nearly identical to that of the chronological-order LSTM.

Remarkably, on such a text dataset, reversed-order processing works just as well as

chronological processing, confirming the hypothesis that, although word order does

matter in understanding language, which order you use isn’t crucial. Importantly, an

RNN trained on reversed sequences will learn different representations than one

trained on the original sequences, much as you would have different mental models if

time flowed backward in the real world—if you lived a life where you died on your first

day and were born on your last day. In machine learning, representations that are dif-

ferent yet useful are always worth exploiting, and the more they differ, the better: they

offer a new angle from which to look at your data, capturing aspects of the data that

were missed by other approaches, and thus they can help boost performance on a

task. This is the intuition behind ensembling, a concept we’ll explore in chapter 7.

 A bidirectional RNN exploits this idea to improve on the performance of chronological-

order RNNs. It looks at its input sequence both ways (see figure 6.25), obtaining poten-

tially richer representations and capturing patterns that may have been missed by the

chronological-order version alone.

To instantiate a bidirectional RNN in Keras, you use the Bidirectional layer, which takes

as its first argument a recurrent layer instance. Bidirectional creates a second, separate

instance of this recurrent layer and uses one instance for processing the input sequences

in chronological order and the other instance for processing the input sequences in

reversed order. Let’s try it on the IMDB sentiment-analysis task.

model = Sequential()

model.add(layers.Embedding(max_features, 32))

model.add(layers.Bidirectional(layers.LSTM(32)))

model.add(layers.Dense(1, activation='sigmoid'))

Listing 6.43 Training and evaluating a bidirectional LSTM

Chronological

sequence

Reversed

sequence

Merge (add,

concatenate)

Input data

a, b, c, d, e

a, b, c, d, e

e, d, c, b, a

RNN RNN

Figure 6.25 How a

bidirectional RNN layer works

222 CHAPTER 6 Deep learning for text and sequences

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

history = model.fit(x_train, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

It performs slightly better than the regular LSTM you tried in the previous section,

achieving over 89% validation accuracy. It also seems to overfit more quickly, which is

unsurprising because a bidirectional layer has twice as many parameters as a chrono-

logical LSTM. With some regularization, the bidirectional approach would likely be a

strong performer on this task.

 Now let’s try the same approach on the temperature-prediction task.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Bidirectional(

layers.GRU(32), input_shape=(None, float_data.shape[-1])))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=40,

validation_data=val_gen,

validation_steps=val_steps)

This performs about as well as the regular GRU layer. It’s easy to understand why: all the

predictive capacity must come from the chronological half of the network, because the

antichronological half is known to be severely underperforming on this task (again,

because the recent past matters much more than the distant past in this case).

6.3.9 Going even further

There are many other things you could try, in order to improve performance on the

temperature-forecasting problem:

 Adjust the number of units in each recurrent layer in the stacked setup. The

current choices are largely arbitrary and thus probably suboptimal.

 Adjust the learning rate used by the RMSprop optimizer.

 Try using LSTM layers instead of GRU layers.

 Try using a bigger densely connected regressor on top of the recurrent layers:

that is, a bigger Dense layer or even a stack of Dense layers.

 Don’t forget to eventually run the best-performing models (in terms of valida-

tion MAE) on the test set! Otherwise, you’ll develop architectures that are over-

fitting to the validation set.

Listing 6.44 Training a bidirectional GRU

223Advanced use of recurrent neural networks

As always, deep learning is more an art than a science. We can provide guidelines that

suggest what is likely to work or not work on a given problem, but, ultimately, every

problem is unique; you’ll have to evaluate different strategies empirically. There is

currently no theory that will tell you in advance precisely what you should do to opti-

mally solve a problem. You must iterate.

6.3.10 Wrapping up

Here’s what you should take away from this section:

 As you first learned in chapter 4, when approaching a new problem, it’s good to

first establish common-sense baselines for your metric of choice. If you don’t

have a baseline to beat, you can’t tell whether you’re making real progress.

 Try simple models before expensive ones, to justify the additional expense.

Sometimes a simple model will turn out to be your best option.

 When you have data where temporal ordering matters, recurrent networks are

a great fit and easily outperform models that first flatten the temporal data.

 To use dropout with recurrent networks, you should use a time-constant drop-

out mask and recurrent dropout mask. These are built into Keras recurrent lay-

ers, so all you have to do is use the dropout and recurrent_dropout arguments

of recurrent layers.

 Stacked RNNs provide more representational power than a single RNN layer.

They’re also much more expensive and thus not always worth it. Although they

offer clear gains on complex problems (such as machine translation), they may

not always be relevant to smaller, simpler problems.

 Bidirectional RNNs, which look at a sequence both ways, are useful on natural-

language processing problems. But they aren’t strong performers on sequence

data where the recent past is much more informative than the beginning of the

sequence.

NOTE There are two important concepts we won’t cover in detail here: recur-
rent attention and sequence masking. Both tend to be especially relevant for
natural-language processing, and they aren’t particularly applicable to the
temperature-forecasting problem. We’ll leave them for future study outside of
this book.

224 CHAPTER 6 Deep learning for text and sequences

Markets and machine learning

Some readers are bound to want to take the techniques we’ve introduced here and

try them on the problem of forecasting the future price of securities on the stock mar-

ket (or currency exchange rates, and so on). Markets have very different statistical

characteristics than natural phenomena such as weather patterns. Trying to use

machine learning to beat markets, when you only have access to publicly available

data, is a difficult endeavor, and you’re likely to waste your time and resources with

nothing to show for it.

Always remember that when it comes to markets, past performance is not a good

predictor of future returns—looking in the rear-view mirror is a bad way to drive.

Machine learning, on the other hand, is applicable to datasets where the past is a

good predictor of the future.

225Sequence processing with convnets

6.4 Sequence processing with convnets

In chapter 5, you learned about convolutional neural networks (convnets) and how

they perform particularly well on computer vision problems, due to their ability to

operate convolutionally, extracting features from local input patches and allowing for

representation modularity and data efficiency. The same properties that make conv-

nets excel at computer vision also make them highly relevant to sequence processing.

Time can be treated as a spatial dimension, like the height or width of a 2D image.

 Such 1D convnets can be competitive with RNNs on certain sequence-processing

problems, usually at a considerably cheaper computational cost. Recently, 1D conv-

nets, typically used with dilated kernels, have been used with great success for audio

generation and machine translation. In addition to these specific successes, it has long

been known that small 1D convnets can offer a fast alternative to RNNs for simple tasks

such as text classification and timeseries forecasting.

6.4.1 Understanding 1D convolution for sequence data

The convolution layers introduced previously were 2D convolutions, extracting 2D

patches from image tensors and applying an identical transformation to every patch.

In the same way, you can use 1D convolutions, extracting local 1D patches (subse-

quences) from sequences (see figure 6.26).

Such 1D convolution layers can recognize local patterns in a sequence. Because the

same input transformation is performed on every patch, a pattern learned at a certain

position in a sentence can later be recognized at a different position, making 1D conv-

nets translation invariant (for temporal translations). For instance, a 1D convnet pro-

cessing sequences of characters using convolution windows of size 5 should be able to

learn words or word fragments of length 5 or less, and it should be able to recognize

Input

features
Input

Output

Extracted

patch

Window of

size 5

Dot product

with weights

Output

features

Time

Figure 6.26 How 1D convolution

works: each output timestep is

obtained from a temporal patch in

the input sequence.

226 CHAPTER 6 Deep learning for text and sequences

these words in any context in an input sequence. A character-level 1D convnet is thus

able to learn about word morphology.

6.4.2 1D pooling for sequence data

You’re already familiar with 2D pooling operations, such as 2D average pooling and

max pooling, used in convnets to spatially downsample image tensors. The 2D pooling

operation has a 1D equivalent: extracting 1D patches (subsequences) from an input

and outputting the maximum value (max pooling) or average value (average pooling).

Just as with 2D convnets, this is used for reducing the length of 1D inputs (subsampling).

6.4.3 Implementing a 1D convnet

In Keras, you use a 1D convnet via the Conv1D layer, which has an interface similar to

Conv2D. It takes as input 3D tensors with shape (samples, time, features) and

returns similarly shaped 3D tensors. The convolution window is a 1D window on the

temporal axis: axis 1 in the input tensor.

 Let’s build a simple two-layer 1D convnet and apply it to the IMDB sentiment-

classification task you’re already familiar with. As a reminder, this is the code for

obtaining and preprocessing the data.

from keras.datasets import imdb

from keras.preprocessing import sequence

max_features = 10000

max_len = 500

print('Loading data...')

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

print(len(x_train), 'train sequences')

print(len(x_test), 'test sequences')

print('Pad sequences (samples x time)')

x_train = sequence.pad_sequences(x_train, maxlen=max_len)

x_test = sequence.pad_sequences(x_test, maxlen=max_len)

print('x_train shape:', x_train.shape)

print('x_test shape:', x_test.shape)

1D convnets are structured in the same way as their 2D counterparts, which you used

in chapter 5: they consist of a stack of Conv1D and MaxPooling1D layers, ending in

either a global pooling layer or a Flatten layer, that turn the 3D outputs into 2D out-

puts, allowing you to add one or more Dense layers to the model for classification or

regression.

 One difference, though, is the fact that you can afford to use larger convolution

windows with 1D convnets. With a 2D convolution layer, a 3 × 3 convolution window

contains 3 × 3 = 9 feature vectors; but with a 1D convolution layer, a convolution win-

dow of size 3 contains only 3 feature vectors. You can thus easily afford 1D convolution

windows of size 7 or 9.

Listing 6.45 Preparing the IMDB data

227Sequence processing with convnets

 This is the example 1D convnet for the IMDB dataset.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Embedding(max_features, 128, input_length=max_len))

model.add(layers.Conv1D(32, 7, activation='relu'))

model.add(layers.MaxPooling1D(5))

model.add(layers.Conv1D(32, 7, activation='relu'))

model.add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(lr=1e-4),

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(x_train, y_train,

epochs=10,

batch_size=128,

validation_split=0.2)

Figures 6.27 and 6.28 show the training and validation results. Validation accuracy is

somewhat less than that of the LSTM, but runtime is faster on both CPU and GPU (the

exact increase in speed will vary greatly depending on your exact configuration). At this

point, you could retrain this model for the right number of epochs (eight) and run it

on the test set. This is a convincing demonstration that a 1D convnet can offer a fast,

cheap alternative to a recurrent network on a word-level sentiment-classification task.

Listing 6.46 Training and evaluating a simple 1D convnet on the IMDB data

Figure 6.27 Training and

validation loss on IMDB with a

simple 1D convnet

228 CHAPTER 6 Deep learning for text and sequences

6.4.4 Combining CNNs and RNNs to process long sequences

Because 1D convnets process input patches independently, they aren’t sensitive to the

order of the timesteps (beyond a local scale, the size of the convolution windows),

unlike RNNs. Of course, to recognize longer-term patterns, you can stack many convo-

lution layers and pooling layers, resulting in upper layers that will see long chunks of

the original inputs—but that’s still a fairly weak way to induce order sensitivity. One

way to evidence this weakness is to try 1D convnets on the temperature-forecasting

problem, where order-sensitivity is key to producing good predictions. The following

example reuses the following variables defined previously: float_data, train_gen,

val_gen, and val_steps.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Conv1D(32, 5, activation='relu',

input_shape=(None, float_data.shape[-1])))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation='relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation='relu'))

model.add(layers.GlobalMaxPooling1D())

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=20,

validation_data=val_gen,

validation_steps=val_steps)

Listing 6.47 Training and evaluating a simple 1D convnet on the Jena data

Figure 6.28 Training and

validation accuracy on IMDB

with a simple 1D convnet

229Sequence processing with convnets

Figure 6.29 shows the training and validation MAEs.

The validation MAE stays in the 0.40s: you can’t even beat the common-sense baseline

using the small convnet. Again, this is because the convnet looks for patterns any-

where in the input timeseries and has no knowledge of the temporal position of a pat-

tern it sees (toward the beginning, toward the end, and so on). Because more recent

data points should be interpreted differently from older data points in the case of this

specific forecasting problem, the convnet fails at producing meaningful results. This

limitation of convnets isn’t an issue with the IMDB data, because patterns of keywords

associated with a positive or negative sentiment are informative independently of

where they’re found in the input sentences.

 One strategy to combine the speed and lightness of convnets with the order-sensitivity

of RNNs is to use a 1D convnet as a preprocessing step before an RNN (see figure 6.30).

This is especially beneficial when you’re deal-

ing with sequences that are so long they can’t

realistically be processed with RNNs, such as

sequences with thousands of steps. The conv-

net will turn the long input sequence into

much shorter (downsampled) sequences of

higher-level features. This sequence of

extracted features then becomes the input to

the RNN part of the network.

 This technique isn’t seen often in

research papers and practical applications,

possibly because it isn’t well known. It’s effec-

tive and ought to be more common. Let’s try

it on the temperature-forecasting dataset.

Because this strategy allows you to manipu-

late much longer sequences, you can either

Figure 6.29 Training and

validation loss on the Jena

temperature-forecasting task

with a simple 1D convnet

RNN

1D CNN

Long sequence

Shorter

sequence
CNN features

Figure 6.30 Combining a 1D convnet and

an RNN for processing long sequences

230 CHAPTER 6 Deep learning for text and sequences

look at data from longer ago (by increasing the lookback parameter of the data gen-

erator) or look at high-resolution timeseries (by decreasing the step parameter of the

generator). Here, somewhat arbitrarily, you’ll use a step that’s half as large, resulting

in a timeseries twice as long, where the temperature data is sampled at a rate of

1 point per 30 minutes. The example reuses the generator function defined earlier.

step = 3

lookback = 720

delay = 144

train_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=0,

max_index=200000,

shuffle=True,

step=step)

val_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=200001,

max_index=300000,

step=step)

test_gen = generator(float_data,

lookback=lookback,

delay=delay,

min_index=300001,

max_index=None,

step=step)

val_steps = (300000 - 200001 - lookback) // 128

test_steps = (len(float_data) - 300001 - lookback) // 128

This is the model, starting with two Conv1D layers and following up with a GRU layer.

Figure 6.31 shows the results.

from keras.models import Sequential

from keras import layers

from keras.optimizers import RMSprop

model = Sequential()

model.add(layers.Conv1D(32, 5, activation='relu',

input_shape=(None, float_data.shape[-1])))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation='relu'))

model.add(layers.GRU(32, dropout=0.1, recurrent_dropout=0.5))

model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(), loss='mae')

Listing 6.48 Preparing higher-resolution data generators for the Jena dataset

Listing 6.49 Model combining a 1D convolutional base and a GRU layer

Previously set to 6 (1 point per hour);
now 3 (1 point per 30 min)Unchanged

231Sequence processing with convnets

history = model.fit_generator(train_gen,

steps_per_epoch=500,

epochs=20,

validation_data=val_gen,

validation_steps=val_steps)

Judging from the validation loss, this setup isn’t as good as the regularized GRU alone,

but it’s significantly faster. It looks at twice as much data, which in this case doesn’t

appear to be hugely helpful but may be important for other datasets.

6.4.5 Wrapping up

Here’s what you should take away from this section:

 In the same way that 2D convnets perform well for processing visual patterns in

2D space, 1D convnets perform well for processing temporal patterns. They

offer a faster alternative to RNNs on some problems, in particular natural-

language processing tasks.

 Typically, 1D convnets are structured much like their 2D equivalents from the

world of computer vision: they consist of stacks of Conv1D layers and Max-

Pooling1D layers, ending in a global pooling operation or flattening operation.

 Because RNNs are extremely expensive for processing very long sequences, but

1D convnets are cheap, it can be a good idea to use a 1D convnet as a prepro-

cessing step before an RNN, shortening the sequence and extracting useful rep-

resentations for the RNN to process.

Figure 6.31 Training and validation

loss on the Jena temperature-

forecasting task with a 1D convnet

followed by a GRU

232 CHAPTER 6 Deep learning for text and sequences

Chapter summary

 In this chapter, you learned the following techniques, which are widely

applicable to any dataset of sequence data, from text to timeseries:

– How to tokenize text

– What word embeddings are, and how to use them

– What recurrent networks are, and how to use them

– How to stack RNN layers and use bidirectional RNNs to build more-power-

ful sequence-processing models

– How to use 1D convnets for sequence processing

– How to combine 1D convnets and RNNs to process long sequences

 You can use RNNs for timeseries regression (“predicting the future”),

timeseries classification, anomaly detection in timeseries, and sequence

labeling (such as identifying names or dates in sentences).

 Similarly, you can use 1D convnets for machine translation (sequence-to-

sequence convolutional models, like SliceNeta), document classification,

and spelling correction.

 If global order matters in your sequence data, then it’s preferable to use a

recurrent network to process it. This is typically the case for timeseries,

where the recent past is likely to be more informative than the distant

past.

 If global ordering isn’t fundamentally meaningful, then 1D convnets will turn

out to work at least as well and are cheaper. This is often the case for text

data, where a keyword found at the beginning of a sentence is just as

meaningful as a keyword found at the end.

a See https://arxiv.org/abs/1706.03059.

