Hasil Diskusi Kelompok 5A

Anggota Kelompok:

Hamida Syah Putri (1913021019)

Herfebie Yanti (1913021029)

Syifa Salsabila (1913021049)

Yulia Maya Sari (1913021023)

Dinamika Populasi

Anggapan:

Perubahan penduduk hanya dipengaruhi oleh kelahiran dan kematian

Misal

 $-\beta(t)$ adalah jumlah kelahiran per satuan penduduk dalam satuan waktu (laju kelahiran)

 $-\delta(t)$ adalah jumlah kematian per unit populasi dalam satuan waktu (laju kematian)

Jumlah kelahiran dan kematian proporsional terhadap ukuran populasi dan interval waktu tertentu Δt , yaitu

Jumlah Kelahiran = $\beta(t)P(t)\Delta t$

Jumlah Kematian = $\delta(t)P(t)\Delta t$

Dengan P(t) adalah jumlah populasi pada waktu t

Sehingga, perubahan populasi ΔP dalam interval waktu Δt diberikan oleh

 ΔP = Banyaknya Kelahiran- Banyaknya Kematian

$$\approx \beta(t)P(t)\Delta t - \delta(t)P(t)\Delta t$$

Sehingga

$$\frac{\Delta P}{\Delta t} \approx (\beta(t) - \delta(t))P(t)$$

Jika, $\Delta t \rightarrow 0$ maka

$$\frac{dP(t)}{dt} = (\beta(t) - \delta(t))P(t)$$

Persamaan diatas yang disebut dengan Persamaan Populasi Umum.

Solusi umum dari persamaan populasi umum adalah

$$P(t) = P(t_0)e^{(\int (\beta(t) - \delta(t))dt)}$$

dengan $P(t_0)$ adalah jumlah populasi pada pengamatan awal. Jika $\beta(t)$ dan $\delta(t)$ adalah fungsi konstan maka persamaan diatas menjadi

$$P(t) = P(t_0)e^{kt}$$

dengan $k = \beta - \delta$

Jika $\beta(t)$ adalah fungsi menurun linier terhadap P(t) sehingga $\beta(t) = \beta_0 - \beta_1 P(t)$, dimana β_0 dan β_1 keduanya positif, dan $\delta(t) = \delta_0$ konstan, maka persamaan populasi umum menjadi

$$\frac{dP(t)}{dt} = aP(t) - bP^2(t)$$

dimana $a=\beta_0-\delta_0$ dan $b=\beta_1=0$. Jika a dan b positif maka persamaan diatas disebut **Persamaan Logistik.**

Persamaan diatas dapat ditulis menjadi

$$\frac{dP(t)}{dt} = kP(t)(M - P(t))$$

dimana k = b dan M = a/b. Jelas bahwa P(t) = M adalah solusi dari persamaan di atas. Untuk mendapatkan solusi $P(t) \neq M$, metode pemisahan variabel dapat diterapkan dan didapatkan

$$P(t) = \frac{M}{1 + Ae^{(-kMt)}}$$

dimana A adalah konstanta integrasi.

Jika $P(t_0 = 0) = P_0$, dan $A = \frac{M - P_0}{P_0}$, maka persamaan diatas menjadi

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{(-kMt)}}$$

Jadi, solusi IVP untuk Persamaan Logistik adalah $P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{(-kMt)}}$ dan P(t) mendekati M karena t cenderung tak hingga. Ini berarti solusi Persamaan Logistik terbatas.