Kelompok 4B

•	Lusia Rahmawati Dewi	1913021010
•	Nabela Hairunisa	1913021020
•	Shella Oktaviani	1913021024
•	Dandi Rizka Utami	1913021026
•	Febri	1913021030

KEUANGAN PERSONAL DAN REAKSI KIMIA

1. Keuangan Personal

Personal Finance adalah keuangan pribadi. Secara umum *personal finance* dapat diartikan sebagai ilmu yang isinya tentang cara mengatur atau mengelola keuangan secara pribadi. Kegiatan ini meliputi banyak hal mulai dari pendapatan, pengeluaran, tabungan hingga cara berinyestasi.

Asumsikan:

Perubahan saldo hanya dipengaruhi oleh bunga dan penarikan.

Misalkan : I(t) adalah bunga yang diperoleh dalam waktu Δt

W(t) adalah penarikan dalam waktu Δt

Maka, perubahan saldo P(t) pada waktu $[t, t+\Delta t]$ adalah

$$\Delta P = Bunga \ yang \ diperoleh - penarikan$$

 $\approx rP(t)\Delta t - W\Delta t$

Dengan:

r = tingkat bunga tahunan

W = jumlah penarikan

Persamaan rekening berbunga dengan penarikan tetap/stabil adalah

$$\frac{dP(t)}{dt} = r P(t) - W$$

Persamaan rekening berbunga dengan deposit(D) tetap/stabil adalah

$$\frac{dP(t)}{dt} = rP(t) + D$$

A. Reaksi Kimia

Differential rate equation

Pada reaction equation dengan rumus

$$aA + bB \rightarrow cC + dD$$

Dengan

A, B : reactants

C, D: products

a, b, c, dan d: stoichiometric coefficient

Molekulitas reaksi kimia adalah jumlah molekul yang diubah dalam reaksi **Order reaksi** adalah deskripsi dari kinetika reaksi. Orde reaksi mendefinisikan berapa banyak konsentrasi harus dikalikan bersama untuk mendapatkan ekspresi untuk laju, atau kecepatan, dari reaksi.

Mengingat bahwa

Jika satu molekul diubah menjadi satu molekul P, yaitu

$$S \rightarrow P$$

Reaksinya adalah unimolekular

Untuk reaksi order satu kecepatan reaksi sebanding dengan satu konsentrasi Misalnya:

$$S \xrightarrow{k} P$$

Jika s adalah konsentrasi dalam mol per liter S dan P adalah konsentrasi dalam mol per liter P, maka

$$\frac{dp}{dt} = k s$$

Mengingat reaksi bimolekuler orde dua

Jika satu molekul S_1 ditambah satu molekul S_2 bergabumg untuk memberikan satu molekul P

$$S_1 + S_2 \rightarrow P$$

Sama dengan bimolecular reaksi

$$S_1 + S_2 \xrightarrow{k} P$$

Adalah order dua dan

$$\frac{dp}{dt} = k \, s_1 s_2$$

Demikian pula

$$S_1 + S_2 + S_3 \rightarrow P \text{ dan } 2S_1 + S_2 \rightarrow P$$
 Adalah trimolekular

$$S_1 + S_2 \stackrel{k_1}{\rightarrow} X, X + S_3 \stackrel{k_2}{\rightarrow} P$$

Trimolekular reaksinya adalah $S_1 + S_2 \xrightarrow{k_1} X$, $X + S_3 \xrightarrow{k_2} P$ Terdiri dari dua reaksi order dua yang kecepatannya di deskripsikan oleh

$$\frac{dx}{dt} = k_1 s_1 s_2 - k_2 s_3, \frac{dp}{dt} = k_2 x s_3$$