MAKALAH

MESIN HIDROLIK PENGANGKAT MOBIL

Mata Kuliah : Mekanika

Dosen Pengampu: Dr. Doni Andra, S.Pd., M.Sc

Disusun Oleh:

Nama : Pita Nadia

NPM : 2013022008

Kelas : B

PROGRAM STUDI PENDIDIKAN FISIKA

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

UNIVERSITAS LAMPUNG

2021

KATA PENGANTAR

Segala puji bagi Tuhan Yang Maha Esa yang telah memberikan penulis

kemudahan sehingga penulis dapat menyelesaikan makalah ini dengan baik dan tepat

waktu. Karena atas limpahan nikmat-Nya, baik itu berupa sehat fisik maupun akal pikiran,

penulis mampu untuk menyelesaikan pembuatan makalah ini sebagai pemenuhan tugas

mata kuliah Mekanika dengan judul "Mesin Hidrolik Pengangkat Mobil".

Makalah ini berisi tentang penjelasan tentang konsep fisika dan prinsip kerja pada

mesin hidrolik pengangkat mobil serta penyebab mesin tersebut dapat mengangkat beban

yang sangat berat seperti mobil.

Penulis mengucapkan terimakasih kepada semua pihak yang telah membantu

dalam pembuatan makalah ini, khususnya dosen pengampu mata kuliah yang telah

memberikan pengarahan dan membimbing penulis sehingga dapat menyelesaikan

makalah ini.

Penulis berharap makalah ini dapat bermanfaat bagi masyarakat, nusa dan bangsa

dalam pengembangan wawasan dan peningkatan ilmu pengetahuan. Penulis menyadari

makalah ini masih jauh dari sempurna, dengan hati terbuka penulis menerima segala kritik

dan saran yang membangun.

Lampung, 21 Desember 2021

Penulis

ii

DAFTAR ISI

KATA PENGANTARi	ii
DAFTAR ISIi	iii
BAB I PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	1
1.3 Tujuan	1
BAB II PEMBAHASAN	
2.1 Mesin Hidrolik Pengangkat Mobil	2
2.2 Prinsip Kerja Dongkrak Hidrolik	2
BAB III KESIMPULAN	
3.1 Kesimpulan	5
DAFTAR PUSTAKA	7

BABI

PENDAHULUAN

1.1 Latar Belakang

Fisika merupakan salah satu ilmu memiliki pengaruh yang cukup besar terhadap perkembangan teknologi dunia. Teknologi yang berkembang sampai sekarang ini, tidak lain berguna untuk mempermudah pekerjaan manusia. Tanpa kita sadari mesin hidrolik pengangkat mobil merupakan salah satu aplikasi fisika dalam kehidupan sehari-hari. Mesin hidrolik pengangkat mobil merupakan salah satu dari teknologi yang banyak digunakan dalam kehidupan sehari-hari, terutama pada tempat perbaikan mobil. Dalam hal ini mesin hidrolik pengangkat mobil bekerja berdasarkan sifat fluida atau yang biasa disebut dengan hukum Pascal. Dimana, ketika tekanan yang diberikan ke fluida pada ruang atau tabung tertutup akan diteruskan dengan sama besar ke segala arah di dalam tabung. Dengan demikian, hukum Pascal inilah yang menjadi konsep mesin hidrolik pengangkat mobil.

1.2 Rumusan Masalah

- 1. Apakah mesin hidrolik pengangkat mobil itu?
- 2. Bagaimana konsep fisika dan prinsip kerja mesin hidrolik pengangkat mobil?

1.3 Tujuan

- 1. Untuk mengetahui apakah mesin hidrolik pengangkat mobil itu.
- 2. Untuk mengetahui konsep fisika dan prinsip kerja mesin hidrolik pengangkat mobil.

BAB II

PEMBAHASAN

2.1 Mesin Hidrolik Pengangkat Mobil

Hidrolik berasal dari kata bahasa Inggris, yaitu "hydraulic" yang artinya cairan atau minyak. Jadi, dapat disimpulkan bahwa Hidrolik adalah suatu sistem yang memanfaatkan tekanan fluida sebagai sumber tenaga pada sebuah mekanisme.

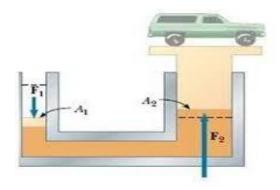
Mesin hidrolik pengangkat mobil ini biasanya terdapat pada tempat perbaikan atau tempat pencucian mobil. Mesin ini digunakan untuk menaikkan mobil ke atas aagar memudahkan saat memperbaiki mesin atau mencuci bagian bawah mobil tersebut. Mesin hidrolik pengangkat mobil memiliki ukuran yang sangat bervariasi, dari peralatan yang hanya memiliki kekuatan sekitar 1 ton sampai dengan 50 ton. Jenis yang digunakan disesuaikan dengan mobilnya. Jenisnya juga beragam dan beberapa alat dapat saling dikombinasikan.



Gambar 2.1 Mesin hidrolik pengangkat mobil

2.2 Konsep Fisika Dan Prinsip Kerja Mesin Hidrolik Pengangkat Mobil

Prinsip kerja mesin hidrolik pengangkat mobil memanfaatkan hukum Pascal. Hukum Pascal menyatakan bahwa "Tekanan yang diberikan pada suatu fluida dalam ruang tertutup akan diteruskan ke segala arah sama rata". Mesin hidrolik pengangkat mobil ini memiliki prinsip kerja yang hamper sama dengan


dongkrak hidrolik. Hanya saja, perbandingan antara luas penampang kedua pengisap amatlah besar, sehingga gaya angkat yang akan dihasilkan di pipa berpenampang pun besar, agar mampu dipakai untuk mengangkat mobil .

Gambar 2.2. Sketsa mesin hidrolik pengangkat mobil

Mesin hidrolik pengangkat mobil terdiri dari dua tabung yang berhubungan dengan ukuran diameter yang berbeda. Masing- masing ditutup dan diisi cairan seperti pelumas (oli, minyak, atau lainnya). Ketika tabung yang permukaannya kecil ditekan ke bawah, maka setiap bagian cairan ikut tertekan juga. Besarnya tekanan yang diberikan oleh tabung yang berukuran kecil diteruskan ke seluruh bagian cairan. Akibatnya, cairan menekan pipa yang luas permukaannya lebih besar hingga menghasilkan gaya angkat pada pipa agar terdorong ke atas.

Luas permukaan pipa yang ditekan berukuran kecil, sehingga gaya yang diperlukan untuk menekan cairan juga kecil. Namun, karena tekanan diteruskan ke seluruh bagian cairan, maka gaya yang kecil tadi akan berubah menjadi sangat besar ketika cairan menekan ke pipa yang luas permukaannya besar. Tekanan pada tabung yang berukuran kecil adalah ρ_1 , sedangkan tekanan pada tabung yang berukuran besar adalah ρ_2 .

Gambar 2.3. Mekanisme hukum Pascal pada mesin hidrolik pengangkat mobil

Pesamaan Matematis:

$$\rho_1 = \rho_2$$

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$\frac{F_1}{F_2} = \frac{A_1}{A_2}$$

Keterangan:

 F_1 = besar gaya masuk 1 (N)

 F_2 = besar gaya keluar 2 (N)

 A_1 = Luas penampang penghisap 1 (m^2)

 A_1 = Luas penampang penghisap 2 (m^2)

Dengan mengetahui gaya berat mobil maka bisa dihitung gaya minimal yang diberikan pada mesin hidrolik untuk mengangkat mobil tersebut. Semakin besar gaya pada berat mobil yang diangkat, maka semakin besar luas permukaan keluaran (A_2) dari mesin hidrolik. Minimal gaya keluaran (F_2) yang dihasilkan oleh mesin hidrolik harus lebih besar atau sama dengan gaya berat benda yang diangkat.

Jadi, mesin hidrolik pengangkat mobil ini bisa mengangkat benda-benda dengan massa yang besar tersebut bekerja dengan memanfaatkan prinsip dari hukum pascal. Mesin hidrolik pengangkat mobil mampu menghasilkan gaya yang besar dengan hanya memberikan gaya yang sangat kecil. Dengan kata lain, mesin hidrolik ini melipat gandakan gaya.

BAB III

PENUTUP

3.1 Kesimpulan

Tanpa kita sadari mesin hidrolik pengangkat mobil merupakan salah satu aplikasi fisika dalam kehidupan sehari-hari. Mesin ini digunakan untuk menaikkan mobil ke atas aagar memudahkan saat memperbaiki mesin atau mencuci bagian bawah mobil tersebut. Dalam hal ini, mesin hidrolik pengangkat mobil merupakan penerapan dari hukum Pascal pada fluida. Dalam hal ini, prinsip utama hukum Pascal yaitu adanya keterkaitan antara gaya (tekanan) pada tabung atau pipa kecil dengan gaya (tekanan) pada tabung atau pipa besar. Dimana, mesin hidrolik pengangkat mobil mampu menghasilkan gaya yang besar dengan hanya memberikan gaya yang sangat kecil. Dengan demikian, hukum Pascal inilah yang menjadi konsep mesin hidrolik pengangkat mobil.

DAFTAR PUSTAKA

- Havize, M Gery. 2019. Rancang Bangun Dongkrak Hidrolik Pesawat Cessna 154 (Perawatan). Laporan Akhir D3, Politeknik Negeri Sriwijaya. Diakses pada tanggal 20 Desember 2021.
- Mareta, Satria. 2015. Rancang Bangunan Scissors Lift Kapasitas 150 Kg (Proses Pembuatan). Laporan Akhir D3, Jurusan Teknik Mesin Politeknik Negeri Sriwijaya. Diakses pada tanggal 20 Desember 2021.
- Sahjehan, M Mirza. 2019. Rancang Bangun Dongkrak Hidrolik Pesawat Cessna 154 (pengujian). Laporan Akhir D3, Jurusan Teknik Mesin AirFrame Power plant Politeknik Negeri Sriwijaya. Diakses pada tanggal 20 Desember 2021.
- Testblog. 2014. Bagaimana Cara Kerja Alat Pengangkat Mobil. Diakses dari: http://klikfisikaku.blogspot.com/2014/07/bagaimana-cara-kerja-alat-pengangkat.html. Pada tanggal 20 Desember 2021.
- Wasis dan Sugeng Yuli Irianto.2008.Ilmu pengetahuan Alam.Jakarta:Pusat Perbukuan Departemen Pendidikan Nasional.
- Wijaya, Hendry Septia. 2014. "Rancang Bangun Dongkrak Gunting Elektrik Pada Mobil (Proses Pembuatan Dan Biaya Produksi)". Laporan Akhir D3, Jurusan Teknik Mesin Politeknik Negeri Sriwijaya. Diakses pada tanggal 20 Desember 2021.