
119

Deep learning
for computer vision

This chapter introduces convolutional neural networks, also known as convnets, a

type of deep-learning model almost universally used in computer vision applica-

tions. You’ll learn to apply convnets to image-classification problems—in particular

those involving small training datasets, which are the most common use case if you

aren’t a large tech company.

This chapter covers

 Understanding convolutional neural networks

(convnets)

 Using data augmentation to mitigate overfitting

 Using a pretrained convnet to do feature

extraction

 Fine-tuning a pretrained convnet

 Visualizing what convnets learn and how they

make classification decisions

120 CHAPTER 5 Deep learning for computer vision

5.1 Introduction to convnets

We’re about to dive into the theory of what convnets are and why they have been so

successful at computer vision tasks. But first, let’s take a practical look at a simple conv-

net example. It uses a convnet to classify MNIST digits, a task we performed in chapter

2 using a densely connected network (our test accuracy then was 97.8%). Even though

the convnet will be basic, its accuracy will blow out of the water that of the densely

connected model from chapter 2.

 The following lines of code show you what a basic convnet looks like. It’s a stack of

Conv2D and MaxPooling2D layers. You’ll see in a minute exactly what they do.

from keras import layers

from keras import models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

Importantly, a convnet takes as input tensors of shape (image_height, image_width,

image_channels) (not including the batch dimension). In this case, we’ll configure

the convnet to process inputs of size (28, 28, 1), which is the format of MNIST

images. We’ll do this by passing the argument input_shape=(28, 28, 1) to the first

layer.

 Let’s display the architecture of the convnet so far:

>>> model.summary()

__

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

__

maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0

__

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0

__

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

==

Total params: 55,744

Trainable params: 55,744

Non-trainable params: 0

You can see that the output of every Conv2D and MaxPooling2D layer is a 3D tensor of

shape (height, width, channels). The width and height dimensions tend to shrink

Listing 5.1 Instantiating a small convnet

121Introduction to convnets

as you go deeper in the network. The number of channels is controlled by the first

argument passed to the Conv2D layers (32 or 64).

 The next step is to feed the last output tensor (of shape (3, 3, 64)) into a densely

connected classifier network like those you’re already familiar with: a stack of Dense

layers. These classifiers process vectors, which are 1D, whereas the current output is a

3D tensor. First we have to flatten the 3D outputs to 1D, and then add a few Dense lay-

ers on top.

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

We’ll do 10-way classification, using a final layer with 10 outputs and a softmax activa-

tion. Here’s what the network looks like now:

>>> model.summary()

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

__

maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0

__

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0

__

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

__

flatten_1 (Flatten) (None, 576) 0

__

dense_1 (Dense) (None, 64) 36928

__

dense_2 (Dense) (None, 10) 650

==

Total params: 93,322

Trainable params: 93,322

Non-trainable params: 0

As you can see, the (3, 3, 64) outputs are flattened into vectors of shape (576,)

before going through two Dense layers.

 Now, let’s train the convnet on the MNIST digits. We’ll reuse a lot of the code from

the MNIST example in chapter 2.

from keras.datasets import mnist

from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Listing 5.2 Adding a classifier on top of the convnet

Listing 5.3 Training the convnet on MNIST images

122 CHAPTER 5 Deep learning for computer vision

train_images = train_images.reshape((60000, 28, 28, 1))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))

test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=64)

Let’s evaluate the model on the test data:

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)

>>> test_acc

0.99080000000000001

Whereas the densely connected network from chapter 2 had a test accuracy of 97.8%,

the basic convnet has a test accuracy of 99.3%: we decreased the error rate by 68%

(relative). Not bad!

 But why does this simple convnet work so well, compared to a densely connected

model? To answer this, let’s dive into what the Conv2D and MaxPooling2D layers do.

5.1.1 The convolution operation

The fundamental difference between a densely connected layer and a convolution

layer is this: Dense layers learn global patterns in their input feature space (for exam-

ple, for a MNIST digit, patterns involving all pixels), whereas convolution layers learn

local patterns (see figure 5.1): in the case of images, patterns found in small 2D win-

dows of the inputs. In the previous example, these windows were all 3 × 3.

Figure 5.1 Images can be broken

into local patterns such as edges,

textures, and so on.

123Introduction to convnets

This key characteristic gives convnets two interesting properties:

 The patterns they learn are translation invariant. After learning a certain pattern in

the lower-right corner of a picture, a convnet can recognize it anywhere: for

example, in the upper-left corner. A densely connected network would have to

learn the pattern anew if it appeared at a new location. This makes convnets

data efficient when processing images (because the visual world is fundamentally

translation invariant): they need fewer training samples to learn representations

that have generalization power.

 They can learn spatial hierarchies of patterns (see figure 5.2). A first convolution layer

will learn small local patterns such as edges, a second convolution layer will

learn larger patterns made of the features of the first layers, and so on. This

allows convnets to efficiently learn increasingly complex and abstract visual con-

cepts (because the visual world is fundamentally spatially hierarchical).

Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height

and width) as well as a depth axis (also called the channels axis). For an RGB image, the

dimension of the depth axis is 3, because the image has three color channels: red,

green, and blue. For a black-and-white picture, like the MNIST digits, the depth is 1

(levels of gray). The convolution operation extracts patches from its input feature

map and applies the same transformation to all of these patches, producing an output

feature map. This output feature map is still a 3D tensor: it has a width and a height. Its

depth can be arbitrary, because the output depth is a parameter of the layer, and the

“cat”

Figure 5.2 The visual world forms a spatial hierarchy of visual

modules: hyperlocal edges combine into local objects such as eyes

or ears, which combine into high-level concepts such as “cat.”

124 CHAPTER 5 Deep learning for computer vision

different channels in that depth axis no longer stand for specific colors as in RGB

input; rather, they stand for filters. Filters encode specific aspects of the input data: at a

high level, a single filter could encode the concept “presence of a face in the input,”

for instance.

 In the MNIST example, the first convolution layer takes a feature map of size (28,

28, 1) and outputs a feature map of size (26, 26, 32): it computes 32 filters over its

input. Each of these 32 output channels contains a 26 × 26 grid of values, which is a

response map of the filter over the input, indicating the response of that filter pattern at

different locations in the input (see figure 5.3). That is what the term feature map

means: every dimension in the depth axis is a feature (or filter), and the 2D tensor

output[:, :, n] is the 2D spatial map of the response of this filter over the input.

Convolutions are defined by two key parameters:

 Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5. In the

example, they were 3 × 3, which is a common choice.

 Depth of the output feature map—The number of filters computed by the convolu-

tion. The example started with a depth of 32 and ended with a depth of 64.

In Keras Conv2D layers, these parameters are the first arguments passed to the layer:

Conv2D(output_depth, (window_height, window_width)).

 A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D input

feature map, stopping at every possible location, and extracting the 3D patch of sur-

rounding features (shape (window_height, window_width, input_depth)). Each

such 3D patch is then transformed (via a tensor product with the same learned weight

matrix, called the convolution kernel) into a 1D vector of shape (output_depth,). All of

these vectors are then spatially reassembled into a 3D output map of shape (height,

width, output_depth). Every spatial location in the output feature map corresponds

to the same location in the input feature map (for example, the lower-right corner of

the output contains information about the lower-right corner of the input). For

instance, with 3 × 3 windows, the vector output[i, j, :] comes from the 3D patch

input[i-1:i+1, j-1:j+1, :]. The full process is detailed in figure 5.4.

Response map,

quantifying the presence

of the filter’s pattern at

different locationsOriginal input

Single filter

Figure 5.3 The concept of a

response map: a 2D map of the

presence of a pattern at different

locations in an input

125Introduction to convnets

Note that the output width and height may differ from the input width and height.

They may differ for two reasons:

 Border effects, which can be countered by padding the input feature map

 The use of strides, which I’ll define in a second

Let’s take a deeper look at these notions.

UNDERSTANDING BORDER EFFECTS AND PADDING

Consider a 5 × 5 feature map (25 tiles total). There are only 9 tiles around which you

can center a 3 × 3 window, forming a 3 × 3 grid (see figure 5.5). Hence, the output fea-

ture map will be 3 × 3. It shrinks a little: by exactly two tiles alongside each dimension,

in this case. You can see this border effect in action in the earlier example: you start

with 28 × 28 inputs, which become 26 × 26 after the first convolution layer.

Height

Input feature map

Output feature map

3 × 3 input patches

Transformed patches

Width

Input

depth

Dot product

with kernel

Output

depth

Output

depth

Figure 5.4 How convolution works

126 CHAPTER 5 Deep learning for computer vision

If you want to get an output feature map with the same spatial dimensions as the

input, you can use padding. Padding consists of adding an appropriate number of rows

and columns on each side of the input feature map so as to make it possible to fit cen-

ter convolution windows around every input tile. For a 3 × 3 window, you add one col-

umn on the right, one column on the left, one row at the top, and one row at the

bottom. For a 5 × 5 window, you add two rows (see figure 5.6).

In Conv2D layers, padding is configurable via the padding argument, which takes two

values: "valid", which means no padding (only valid window locations will be used);

and "same", which means “pad in such a way as to have an output with the same width

and height as the input.” The padding argument defaults to "valid".

Figure 5.5 Valid locations of 3 × 3 patches in a 5 × 5 input feature map

etc.

Figure 5.6 Padding a 5 × 5 input in order to be able to extract 25 3 × 3 patches

127Introduction to convnets

UNDERSTANDING CONVOLUTION STRIDES

The other factor that can influence output size is the notion of strides. The description

of convolution so far has assumed that the center tiles of the convolution windows are

all contiguous. But the distance between two successive windows is a parameter of the

convolution, called its stride, which defaults to 1. It’s possible to have strided convolu-

tions : convolutions with a stride higher than 1. In figure 5.7, you can see the patches

extracted by a 3 × 3 convolution with stride 2 over a 5 × 5 input (without padding).

Using stride 2 means the width and height of the feature map are downsampled by a

factor of 2 (in addition to any changes induced by border effects). Strided convolu-

tions are rarely used in practice, although they can come in handy for some types of

models; it’s good to be familiar with the concept.

 To downsample feature maps, instead of strides, we tend to use the max-pooling

operation, which you saw in action in the first convnet example. Let’s look at it in

more depth.

5.1.2 The max-pooling operation

In the convnet example, you may have noticed that the size of the feature maps is

halved after every MaxPooling2D layer. For instance, before the first MaxPooling2D lay-

ers, the feature map is 26 × 26, but the max-pooling operation halves it to 13 × 13.

That’s the role of max pooling: to aggressively downsample feature maps, much like

strided convolutions.

 Max pooling consists of extracting windows from the input feature maps and out-

putting the max value of each channel. It’s conceptually similar to convolution, except

that instead of transforming local patches via a learned linear transformation (the con-

volution kernel), they’re transformed via a hardcoded max tensor operation. A big dif-

ference from convolution is that max pooling is usually done with 2 × 2 windows and

1

1 2

3 4

2

3 4

Figure 5.7 3 × 3 convolution patches with 2 × 2 strides

128 CHAPTER 5 Deep learning for computer vision

stride 2, in order to downsample the feature maps by a factor of 2. On the other hand,

convolution is typically done with 3 × 3 windows and no stride (stride 1).

 Why downsample feature maps this way? Why not remove the max-pooling layers

and keep fairly large feature maps all the way up? Let’s look at this option. The convo-

lutional base of the model would then look like this:

model_no_max_pool = models.Sequential()

model_no_max_pool.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)))

model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

Here’s a summary of the model:

>>> model_no_max_pool.summary()

Layer (type) Output Shape Param #

==

conv2d_4 (Conv2D) (None, 26, 26, 32) 320

__

conv2d_5 (Conv2D) (None, 24, 24, 64) 18496

__

conv2d_6 (Conv2D) (None, 22, 22, 64) 36928

==

Total params: 55,744

Trainable params: 55,744

Non-trainable params: 0

What’s wrong with this setup? Two things:

 It isn’t conducive to learning a spatial hierarchy of features. The 3 × 3 windows

in the third layer will only contain information coming from 7 × 7 windows in

the initial input. The high-level patterns learned by the convnet will still be very

small with regard to the initial input, which may not be enough to learn to clas-

sify digits (try recognizing a digit by only looking at it through windows that are

7 × 7 pixels!). We need the features from the last convolution layer to contain

information about the totality of the input.

 The final feature map has 22 × 22 × 64 = 30,976 total coefficients per sample.

This is huge. If you were to flatten it to stick a Dense layer of size 512 on top,

that layer would have 15.8 million parameters. This is far too large for such a

small model and would result in intense overfitting.

In short, the reason to use downsampling is to reduce the number of feature-map

coefficients to process, as well as to induce spatial-filter hierarchies by making succes-

sive convolution layers look at increasingly large windows (in terms of the fraction of

the original input they cover).

 Note that max pooling isn’t the only way you can achieve such downsampling. As

you already know, you can also use strides in the prior convolution layer. And you can

129Introduction to convnets

use average pooling instead of max pooling, where each local input patch is trans-

formed by taking the average value of each channel over the patch, rather than the

max. But max pooling tends to work better than these alternative solutions. In a nut-

shell, the reason is that features tend to encode the spatial presence of some pattern

or concept over the different tiles of the feature map (hence, the term feature map),

and it’s more informative to look at the maximal presence of different features than at

their average presence. So the most reasonable subsampling strategy is to first produce

dense maps of features (via unstrided convolutions) and then look at the maximal

activation of the features over small patches, rather than looking at sparser windows of

the inputs (via strided convolutions) or averaging input patches, which could cause

you to miss or dilute feature-presence information.

 At this point, you should understand the basics of convnets—feature maps, convo-

lution, and max pooling—and you know how to build a small convnet to solve a toy

problem such as MNIST digits classification. Now let’s move on to more useful, practi-

cal applications.

130 CHAPTER 5 Deep learning for computer vision

5.2 Training a convnet from scratch on a small dataset

Having to train an image-classification model using very little data is a common situ-

ation, which you’ll likely encounter in practice if you ever do computer vision in a

professional context. A “few” samples can mean anywhere from a few hundred to a

few tens of thousands of images. As a practical example, we’ll focus on classifying

images as dogs or cats, in a dataset containing 4,000 pictures of cats and dogs (2,000

cats, 2,000 dogs). We’ll use 2,000 pictures for training—1,000 for validation, and

1,000 for testing.

 In this section, we’ll review one basic strategy to tackle this problem: training a new

model from scratch using what little data you have. You’ll start by naively training a

small convnet on the 2,000 training samples, without any regularization, to set a base-

line for what can be achieved. This will get you to a classification accuracy of 71%. At

that point, the main issue will be overfitting. Then we’ll introduce data augmentation, a

powerful technique for mitigating overfitting in computer vision. By using data aug-

mentation, you’ll improve the network to reach an accuracy of 82%.

 In the next section, we’ll review two more essential techniques for applying deep

learning to small datasets: feature extraction with a pretrained network (which will get you

to an accuracy of 90% to 96%) and fine-tuning a pretrained network (this will get you to a

final accuracy of 97%). Together, these three strategies—training a small model from

scratch, doing feature extraction using a pretrained model, and fine-tuning a pre-

trained model—will constitute your future toolbox for tackling the problem of per-

forming image classification with small datasets.

5.2.1 The relevance of deep learning for small-data problems

You’ll sometimes hear that deep learning only works when lots of data is available.

This is valid in part: one fundamental characteristic of deep learning is that it can find

interesting features in the training data on its own, without any need for manual fea-

ture engineering, and this can only be achieved when lots of training examples are

available. This is especially true for problems where the input samples are very high-

dimensional, like images.

 But what constitutes lots of samples is relative—relative to the size and depth of the

network you’re trying to train, for starters. It isn’t possible to train a convnet to solve a

complex problem with just a few tens of samples, but a few hundred can potentially

suffice if the model is small and well regularized and the task is simple. Because conv-

nets learn local, translation-invariant features, they’re highly data efficient on percep-

tual problems. Training a convnet from scratch on a very small image dataset will still

yield reasonable results despite a relative lack of data, without the need for any custom

feature engineering. You’ll see this in action in this section.

 What’s more, deep-learning models are by nature highly repurposable: you can

take, say, an image-classification or speech-to-text model trained on a large-scale dataset

and reuse it on a significantly different problem with only minor changes. Specifically,

131Training a convnet from scratch on a small dataset

in the case of computer vision, many pretrained models (usually trained on the Image-

Net dataset) are now publicly available for download and can be used to bootstrap pow-

erful vision models out of very little data. That’s what you’ll do in the next section. Let’s

start by getting your hands on the data.

5.2.2 Downloading the data

The Dogs vs. Cats dataset that you’ll use isn’t packaged with Keras. It was made avail-

able by Kaggle as part of a computer-vision competition in late 2013, back when

convnets weren’t mainstream. You can download the original dataset from www.kaggle

.com/c/dogs-vs-cats/data (you’ll need to create a Kaggle account if you don’t already

have one—don’t worry, the process is painless).

 The pictures are medium-resolution color JPEGs. Figure 5.8 shows some examples.

Unsurprisingly, the dogs-versus-cats Kaggle competition in 2013 was won by entrants

who used convnets. The best entries achieved up to 95% accuracy. In this example,

you’ll get fairly close to this accuracy (in the next section), even though you’ll train

your models on less than 10% of the data that was available to the competitors.

 This dataset contains 25,000 images of dogs and cats (12,500 from each class) and

is 543 MB (compressed). After downloading and uncompressing it, you’ll create a new

dataset containing three subsets: a training set with 1,000 samples of each class, a vali-

dation set with 500 samples of each class, and a test set with 500 samples of each class.

Figure 5.8 Samples from the Dogs vs. Cats dataset. Sizes weren’t modified: the samples are

heterogeneous in size, appearance, and so on.

132 CHAPTER 5 Deep learning for computer vision

 Following is the code to do this.

import os, shutil

original_dataset_dir = '/Users/fchollet/Downloads/kaggle_original_data'

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'

os.mkdir(base_dir)

train_dir = os.path.join(base_dir, 'train')

os.mkdir(train_dir)

validation_dir = os.path.join(base_dir, 'validation')

os.mkdir(validation_dir)

test_dir = os.path.join(base_dir, 'test')

os.mkdir(test_dir)

train_cats_dir = os.path.join(train_dir, 'cats')

os.mkdir(train_cats_dir)

train_dogs_dir = os.path.join(train_dir, 'dogs')

os.mkdir(train_dogs_dir)

validation_cats_dir = os.path.join(validation_dir, 'cats')

os.mkdir(validation_cats_dir)

validation_dogs_dir = os.path.join(validation_dir, 'dogs')

os.mkdir(validation_dogs_dir)

test_cats_dir = os.path.join(test_dir, 'cats')

os.mkdir(test_cats_dir)

test_dogs_dir = os.path.join(test_dir, 'dogs')

os.mkdir(test_dogs_dir)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(train_cats_dir, fname)

shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(validation_cats_dir, fname)

shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(test_cats_dir, fname)

shutil.copyfile(src, dst)

Listing 5.4 Copying images to training, validation, and test directories

Path to the directory where the
original dataset was uncompressed

Directory where you’ll store
your smaller dataset

Directories for
the training,
validation, and
test splits

Directory with
training cat pictures

Directory with
training dog pictures

Directory with
validation cat pictures

Directory with
validation dog pictures

Directory with test cat pictures

Directory with test dog pictures

Copies the first
1,000 cat images
to train_cats_dir

Copies the next 500
cat images to
validation_cats_dir

Copies the next 500
cat images to
test_cats_dir

133Training a convnet from scratch on a small dataset

fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(train_dogs_dir, fname)

shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(validation_dogs_dir, fname)

shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]

for fname in fnames:

src = os.path.join(original_dataset_dir, fname)

dst = os.path.join(test_dogs_dir, fname)

shutil.copyfile(src, dst)

As a sanity check, let’s count how many pictures are in each training split (train/vali-

dation/test):

>>> print('total training cat images:', len(os.listdir(train_cats_dir)))

total training cat images: 1000

>>> print('total training dog images:', len(os.listdir(train_dogs_dir)))

total training dog images: 1000

>>> print('total validation cat images:', len(os.listdir(validation_cats_dir)))

total validation cat images: 500

>>> print('total validation dog images:', len(os.listdir(validation_dogs_dir)))

total validation dog images: 500

>>> print('total test cat images:', len(os.listdir(test_cats_dir)))

total test cat images: 500

>>> print('total test dog images:', len(os.listdir(test_dogs_dir)))

total test dog images: 500

So you do indeed have 2,000 training images, 1,000 validation images, and 1,000 test

images. Each split contains the same number of samples from each class: this is a bal-

anced binary-classification problem, which means classification accuracy will be an

appropriate measure of success.

5.2.3 Building your network

You built a small convnet for MNIST in the previous example, so you should be famil-

iar with such convnets. You’ll reuse the same general structure: the convnet will be a

stack of alternated Conv2D (with relu activation) and MaxPooling2D layers.

 But because you’re dealing with bigger images and a more complex problem, you’ll

make your network larger, accordingly: it will have one more Conv2D + MaxPooling2D

stage. This serves both to augment the capacity of the network and to further reduce

the size of the feature maps so they aren’t overly large when you reach the Flatten

layer. Here, because you start from inputs of size 150 × 150 (a somewhat arbitrary

choice), you end up with feature maps of size 7 × 7 just before the Flatten layer.

Copies the first
1,000 dog images
to train_dogs_dir

Copies the next 500
dog images to
validation_dogs_dir

Copies the next 500
dog images to
test_dogs_dir

134 CHAPTER 5 Deep learning for computer vision

NOTE The depth of the feature maps progressively increases in the network
(from 32 to 128), whereas the size of the feature maps decreases (from 148 ×
148 to 7 × 7). This is a pattern you’ll see in almost all convnets.

Because you’re attacking a binary-classification problem, you’ll end the network with a

single unit (a Dense layer of size 1) and a sigmoid activation. This unit will encode the

probability that the network is looking at one class or the other.

from keras import layers

from keras import models

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(150, 150, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

Let’s look at how the dimensions of the feature maps change with every successive

layer:

>>> model.summary()

Layer (type) Output Shape Param #

==

conv2d_1 (Conv2D) (None, 148, 148, 32) 896

__

maxpooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0

__

conv2d_2 (Conv2D) (None, 72, 72, 64) 18496

__

maxpooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0

__

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

__

maxpooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0

__

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584

__

maxpooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0

__

flatten_1 (Flatten) (None, 6272) 0

__

dense_1 (Dense) (None, 512) 3211776

__

Listing 5.5 Instantiating a small convnet for dogs vs. cats classification

135Training a convnet from scratch on a small dataset

dense_2 (Dense) (None, 1) 513

==

Total params: 3,453,121

Trainable params: 3,453,121

Non-trainable params: 0

For the compilation step, you’ll go with the RMSprop optimizer, as usual. Because you

ended the network with a single sigmoid unit, you’ll use binary crossentropy as the

loss (as a reminder, check out table 4.1 for a cheatsheet on what loss function to use in

various situations).

from keras import optimizers

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=1e-4),

metrics=['acc'])

5.2.4 Data preprocessing

As you know by now, data should be formatted into appropriately preprocessed floating-

point tensors before being fed into the network. Currently, the data sits on a drive as

JPEG files, so the steps for getting it into the network are roughly as follows:

1 Read the picture files.

2 Decode the JPEG content to RGB grids of pixels.

3 Convert these into floating-point tensors.

4 Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know,

neural networks prefer to deal with small input values).

It may seem a bit daunting, but fortunately Keras has utilities to take care of these

steps automatically. Keras has a module with image-processing helper tools, located at

keras.preprocessing.image. In particular, it contains the class ImageDataGenerator,

which lets you quickly set up Python generators that can automatically turn image files

on disk into batches of preprocessed tensors. This is what you’ll use here.

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150)

batch_size=20,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

Listing 5.6 Configuring the model for training

Listing 5.7 Using ImageDataGenerator to read images from directories

Rescales all images by 1/255

Target
directory

Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

136 CHAPTER 5 Deep learning for computer vision

target_size=(150, 150),

batch_size=20,

class_mode='binary')

Let’s look at the output of one of these generators: it yields batches of 150 × 150 RGB

images (shape (20, 150, 150, 3)) and binary labels (shape (20,)). There are 20 sam-

ples in each batch (the batch size). Note that the generator yields these batches indef-

initely: it loops endlessly over the images in the target folder. For this reason, you need

to break the iteration loop at some point:

>>> for data_batch, labels_batch in train_generator:

>>> print('data batch shape:', data_batch.shape)

>>> print('labels batch shape:', labels_batch.shape)

>>> break

data batch shape: (20, 150, 150, 3)

labels batch shape: (20,)

Let’s fit the model to the data using the generator. You do so using the fit_generator

method, the equivalent of fit for data generators like this one. It expects as its first

argument a Python generator that will yield batches of inputs and targets indefinitely,

like this one does. Because the data is being generated endlessly, the Keras model

needs to know how many samples to draw from the generator before declaring an

epoch over. This is the role of the steps_per_epoch argument: after having drawn

steps_per_epoch batches from the generator—that is, after having run for

Understanding Python generators

A Python generator is an object that acts as an iterator: it’s an object you can use

with the for … in operator. Generators are built using the yield operator.

Here is an example of a generator that yields integers:

def generator():

i = 0

while True:

i += 1

yield i

for item in generator():

print(item)

if item > 4:

break

It prints this:

1

2

3

4

5

137Training a convnet from scratch on a small dataset

steps_per_epoch gradient descent steps—the fitting process will go to the next

epoch. In this case, batches are 20 samples, so it will take 100 batches until you see

your target of 2,000 samples.

 When using fit_generator, you can pass a validation_data argument, much as

with the fit method. It’s important to note that this argument is allowed to be a data

generator, but it could also be a tuple of Numpy arrays. If you pass a generator as

validation_data, then this generator is expected to yield batches of validation data

endlessly; thus you should also specify the validation_steps argument, which tells

the process how many batches to draw from the validation generator for evaluation.

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=30,

validation_data=validation_generator,

validation_steps=50)

It’s good practice to always save your models after training.

model.save('cats_and_dogs_small_1.h5')

Let’s plot the loss and accuracy of the model over the training and validation data

during training (see figures 5.9 and 5.10).

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Listing 5.8 Fitting the model using a batch generator

Listing 5.9 Saving the model

Listing 5.10 Displaying curves of loss and accuracy during training

138 CHAPTER 5 Deep learning for computer vision

These plots are characteristic of overfitting. The training accuracy increases linearly

over time, until it reaches nearly 100%, whereas the validation accuracy stalls at 70–72%.

The validation loss reaches its minimum after only five epochs and then stalls, whereas

the training loss keeps decreasing linearly until it reaches nearly 0.

 Because you have relatively few training samples (2,000), overfitting will be your

number-one concern. You already know about a number of techniques that can help

mitigate overfitting, such as dropout and weight decay (L2 regularization). We’re now

going to work with a new one, specific to computer vision and used almost universally

when processing images with deep-learning models: data augmentation.

5.2.5 Using data augmentation

Overfitting is caused by having too few samples to learn from, rendering you unable

to train a model that can generalize to new data. Given infinite data, your model

Figure 5.9 Training and

validation accuracy

Figure 5.10 Training and

validation loss

139Training a convnet from scratch on a small dataset

would be exposed to every possible aspect of the data distribution at hand: you would

never overfit. Data augmentation takes the approach of generating more training data

from existing training samples, by augmenting the samples via a number of random

transformations that yield believable-looking images. The goal is that at training time,

your model will never see the exact same picture twice. This helps expose the model

to more aspects of the data and generalize better.

 In Keras, this can be done by configuring a number of random transformations to

be performed on the images read by the ImageDataGenerator instance. Let’s get

started with an example.

datagen = ImageDataGenerator(

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

fill_mode='nearest')

These are just a few of the options available (for more, see the Keras documentation).

Let’s quickly go over this code:

 rotation_range is a value in degrees (0–180), a range within which to ran-

domly rotate pictures.

 width_shift and height_shift are ranges (as a fraction of total width or

height) within which to randomly translate pictures vertically or horizontally.

 shear_range is for randomly applying shearing transformations.

 zoom_range is for randomly zooming inside pictures.

 horizontal_flip is for randomly flipping half the images horizontally—rele-

vant when there are no assumptions of horizontal asymmetry (for example,

real-world pictures).

 fill_mode is the strategy used for filling in newly created pixels, which can

appear after a rotation or a width/height shift.

Let’s look at the augmented images (see figure 5.11).

from keras.preprocessing import image

fnames = [os.path.join(train_cats_dir, fname) for

fname in os.listdir(train_cats_dir)]

img_path = fnames[3]

img = image.load_img(img_path, target_size=(150, 150))

Listing 5.11 Setting up a data augmentation configuration via ImageDataGenerator

Listing 5.12 Displaying some randomly augmented training images

Module with image-
preprocessing utilities

Chooses one image to augment

Reads the image
and resizes it

140 CHAPTER 5 Deep learning for computer vision

x = image.img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0

for batch in datagen.flow(x, batch_size=1):

plt.figure(i)

imgplot = plt.imshow(image.array_to_img(batch[0]))

i += 1

if i % 4 == 0:

break

plt.show()

If you train a new network using this data-augmentation configuration, the network

will never see the same input twice. But the inputs it sees are still heavily intercor-

related, because they come from a small number of original images—you can’t pro-

duce new information, you can only remix existing information. As such, this may not

be enough to completely get rid of overfitting. To further fight overfitting, you’ll also

add a Dropout layer to your model, right before the densely connected classifier.

Converts it to a Numpy array with shape (150, 150, 3)

Reshapes it to (1, 150, 150, 3)

Generates batches of
randomly transformed
images. Loops indefinitely,
so you need to break the
loop at some point!

Figure 5.11 Generation of cat pictures via random data augmentation

141Training a convnet from scratch on a small dataset

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(150, 150, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dropout(0.5))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=1e-4),

metrics=['acc'])

Let’s train the network using data augmentation and dropout.

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=100,

validation_data=validation_generator,

validation_steps=50)

Listing 5.13 Defining a new convnet that includes dropout

Listing 5.14 Training the convnet using data-augmentation generators

Note that the
validation data
shouldn’t be
augmented!

Target
directory Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

142 CHAPTER 5 Deep learning for computer vision

Let’s save the model—you’ll use it in section 5.4.

model.save('cats_and_dogs_small_2.h5')

And let’s plot the results again: see figures 5.12 and 5.13. Thanks to data augmenta-

tion and dropout, you’re no longer overfitting: the training curves are closely tracking

the validation curves. You now reach an accuracy of 82%, a 15% relative improvement

over the non-regularized model.

By using regularization techniques even further, and by tuning the network’s parame-

ters (such as the number of filters per convolution layer, or the number of layers in

the network), you may be able to get an even better accuracy, likely up to 86% or 87%.

But it would prove difficult to go any higher just by training your own convnet from

scratch, because you have so little data to work with. As a next step to improve your

accuracy on this problem, you’ll have to use a pretrained model, which is the focus of

the next two sections.

Listing 5.15 Saving the model

Figure 5.12 Training and validation

accuracy with data augmentation

Figure 5.13 Training and validation

loss with data augmentation

143Using a pretrained convnet

5.3 Using a pretrained convnet

A common and highly effective approach to deep learning on small image datasets is

to use a pretrained network. A pretrained network is a saved network that was previously

trained on a large dataset, typically on a large-scale image-classification task. If this

original dataset is large enough and general enough, then the spatial hierarchy of fea-

tures learned by the pretrained network can effectively act as a generic model of the

visual world, and hence its features can prove useful for many different computer-

vision problems, even though these new problems may involve completely different

classes than those of the original task. For instance, you might train a network on

ImageNet (where classes are mostly animals and everyday objects) and then repur-

pose this trained network for something as remote as identifying furniture items in

images. Such portability of learned features across different problems is a key advan-

tage of deep learning compared to many older, shallow-learning approaches, and it

makes deep learning very effective for small-data problems.

 In this case, let’s consider a large convnet trained on the ImageNet dataset

(1.4 million labeled images and 1,000 different classes). ImageNet contains many ani-

mal classes, including different species of cats and dogs, and you can thus expect to

perform well on the dogs-versus-cats classification problem.

 You’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew

Zisserman in 2014; it’s a simple and widely used convnet architecture for ImageNet.1

Although it’s an older model, far from the current state of the art and somewhat

heavier than many other recent models, I chose it because its architecture is similar to

what you’re already familiar with and is easy to understand without introducing any

new concepts. This may be your first encounter with one of these cutesy model

names—VGG, ResNet, Inception, Inception-ResNet, Xception, and so on; you’ll get

used to them, because they will come up frequently if you keep doing deep learning

for computer vision.

 There are two ways to use a pretrained network: feature extraction and fine-tuning.

We’ll cover both of them. Let’s start with feature extraction.

5.3.1 Feature extraction

Feature extraction consists of using the representations learned by a previous network

to extract interesting features from new samples. These features are then run through

a new classifier, which is trained from scratch.

 As you saw previously, convnets used for image classification comprise two parts:

they start with a series of pooling and convolution layers, and they end with a densely

connected classifier. The first part is called the convolutional base of the model. In the

case of convnets, feature extraction consists of taking the convolutional base of a

1 Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,” arXiv (2014), https://arxiv.org/abs/1409.1556.

144 CHAPTER 5 Deep learning for computer vision

previously trained network, running the new data through it, and training a new clas-

sifier on top of the output (see figure 5.14).

Why only reuse the convolutional base? Could you reuse the densely connected classi-

fier as well? In general, doing so should be avoided. The reason is that the representa-

tions learned by the convolutional base are likely to be more generic and therefore

more reusable: the feature maps of a convnet are presence maps of generic concepts

over a picture, which is likely to be useful regardless of the computer-vision problem at

hand. But the representations learned by the classifier will necessarily be specific to the

set of classes on which the model was trained—they will only contain information about

the presence probability of this or that class in the entire picture. Additionally, repre-

sentations found in densely connected layers no longer contain any information about

where objects are located in the input image: these layers get rid of the notion of space,

whereas the object location is still described by convolutional feature maps. For prob-

lems where object location matters, densely connected features are largely useless.

 Note that the level of generality (and therefore reusability) of the representations

extracted by specific convolution layers depends on the depth of the layer in the

model. Layers that come earlier in the model extract local, highly generic feature

maps (such as visual edges, colors, and textures), whereas layers that are higher up

extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset

differs a lot from the dataset on which the original model was trained, you may be bet-

ter off using only the first few layers of the model to do feature extraction, rather than

using the entire convolutional base.

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

New classifier

(randomly initialized)

Trained

convolutional

base

(frozen)

Figure 5.14 Swapping classifiers while keeping the same convolutional base

145Using a pretrained convnet

 In this case, because the ImageNet class set contains multiple dog and cat classes,

it’s likely to be beneficial to reuse the information contained in the densely connected

layers of the original model. But we’ll choose not to, in order to cover the more gen-

eral case where the class set of the new problem doesn’t overlap the class set of the

original model. Let’s put this in practice by using the convolutional base of the VGG16

network, trained on ImageNet, to extract interesting features from cat and dog

images, and then train a dogs-versus-cats classifier on top of these features.

 The VGG16 model, among others, comes prepackaged with Keras. You can import

it from the keras.applications module. Here’s the list of image-classification

models (all pretrained on the ImageNet dataset) that are available as part of keras

.applications:

 Xception

 Inception V3

 ResNet50

 VGG16
 VGG19

 MobileNet

Let’s instantiate the VGG16 model.

from keras.applications import VGG16

conv_base = VGG16(weights='imagenet',

include_top=False,

input_shape=(150, 150, 3))

You pass three arguments to the constructor:

 weights specifies the weight checkpoint from which to initialize the model.

 include_top refers to including (or not) the densely connected classifier on

top of the network. By default, this densely connected classifier corresponds to

the 1,000 classes from ImageNet. Because you intend to use your own densely

connected classifier (with only two classes: cat and dog), you don’t need to

include it.

 input_shape is the shape of the image tensors that you’ll feed to the network.

This argument is purely optional: if you don’t pass it, the network will be able to

process inputs of any size.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to

the simple convnets you’re already familiar with:

>>> conv_base.summary()

Layer (type) Output Shape Param #

==

input_1 (InputLayer) (None, 150, 150, 3) 0

Listing 5.16 Instantiating the VGG16 convolutional base

146 CHAPTER 5 Deep learning for computer vision

__

block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792

__

block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928

__

block1_pool (MaxPooling2D) (None, 75, 75, 64) 0

__

block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856

__

block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584

__

block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

__

block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168

__

block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_pool (MaxPooling2D) (None, 18, 18, 256) 0

__

block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160

__

block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

__

block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_pool (MaxPooling2D) (None, 4, 4, 512) 0

==

Total params: 14,714,688

Trainable params: 14,714,688

Non-trainable params: 0

The final feature map has shape (4, 4, 512). That’s the feature on top of which you’ll

stick a densely connected classifier.

 At this point, there are two ways you could proceed:

 Running the convolutional base over your dataset, recording its output to a

Numpy array on disk, and then using this data as input to a standalone, densely

connected classifier similar to those you saw in part 1 of this book. This solution

is fast and cheap to run, because it only requires running the convolutional

base once for every input image, and the convolutional base is by far the most

expensive part of the pipeline. But for the same reason, this technique won’t

allow you to use data augmentation.

147Using a pretrained convnet

 Extending the model you have (conv_base) by adding Dense layers on top, and

running the whole thing end to end on the input data. This will allow you to use

data augmentation, because every input image goes through the convolutional

base every time it’s seen by the model. But for the same reason, this technique is

far more expensive than the first.

We’ll cover both techniques. Let’s walk through the code required to set up the first

one: recording the output of conv_base on your data and using these outputs as

inputs to a new model.

FAST FEATURE EXTRACTION WITHOUT DATA AUGMENTATION

You’ll start by running instances of the previously introduced ImageDataGenerator to

extract images as Numpy arrays as well as their labels. You’ll extract features from

these images by calling the predict method of the conv_base model.

import os

import numpy as np

from keras.preprocessing.image import ImageDataGenerator

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'

train_dir = os.path.join(base_dir, 'train')

validation_dir = os.path.join(base_dir, 'validation')

test_dir = os.path.join(base_dir, 'test')

datagen = ImageDataGenerator(rescale=1./255)

batch_size = 20

def extract_features(directory, sample_count):

features = np.zeros(shape=(sample_count, 4, 4, 512))

labels = np.zeros(shape=(sample_count))

generator = datagen.flow_from_directory(

directory,

target_size=(150, 150),

batch_size=batch_size,

class_mode='binary')

i = 0

for inputs_batch, labels_batch in generator:

features_batch = conv_base.predict(inputs_batch)

features[i * batch_size : (i + 1) * batch_size] = features_batch

labels[i * batch_size : (i + 1) * batch_size] = labels_batch

i += 1

if i * batch_size >= sample_count:

break

return features, labels

train_features, train_labels = extract_features(train_dir, 2000)

validation_features, validation_labels = extract_features(validation_dir, 1000)

test_features, test_labels = extract_features(test_dir, 1000)

The extracted features are currently of shape (samples, 4, 4, 512). You’ll feed them

to a densely connected classifier, so first you must flatten them to (samples, 8192):

Listing 5.17 Extracting features using the pretrained convolutional base

Note that because generators
yield data indefinitely in a loop,

you must break after every
image has been seen once.

148 CHAPTER 5 Deep learning for computer vision

train_features = np.reshape(train_features, (2000, 4 * 4 * 512))

validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))

test_features = np.reshape(test_features, (1000, 4 * 4 * 512))

At this point, you can define your densely connected classifier (note the use of drop-

out for regularization) and train it on the data and labels that you just recorded.

from keras import models

from keras import layers

from keras import optimizers

model = models.Sequential()

model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(train_features, train_labels,

epochs=30,

batch_size=20,

validation_data=(validation_features, validation_labels))

Training is very fast, because you only have to deal with two Dense layers—an epoch

takes less than one second even on CPU.

 Let’s look at the loss and accuracy curves during training (see figures 5.15 and

5.16).

import matplotlib.pyplot as plt

acc = history.history['acc']

val_acc = history.history['val_acc']

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Listing 5.18 Defining and training the densely connected classifier

Listing 5.19 Plotting the results

149Using a pretrained convnet

You reach a validation accuracy of about 90%—much better than you achieved in the

previous section with the small model trained from scratch. But the plots also indicate

that you’re overfitting almost from the start—despite using dropout with a fairly large

rate. That’s because this technique doesn’t use data augmentation, which is essential

for preventing overfitting with small image datasets.

FEATURE EXTRACTION WITH DATA AUGMENTATION

Now, let’s review the second technique I mentioned for doing feature extraction,

which is much slower and more expensive, but which allows you to use data augmenta-

tion during training: extending the conv_base model and running it end to end on

the inputs.

NOTE This technique is so expensive that you should only attempt it if you
have access to a GPU—it’s absolutely intractable on CPU. If you can’t run your
code on GPU, then the previous technique is the way to go.

Figure 5.15 Training and validation

accuracy for simple feature extraction

Figure 5.16 Training and validation

loss for simple feature extraction

150 CHAPTER 5 Deep learning for computer vision

Because models behave just like layers, you can add a model (like conv_base) to a

Sequential model just like you would add a layer.

from keras import models

from keras import layers

model = models.Sequential()

model.add(conv_base)

model.add(layers.Flatten())

model.add(layers.Dense(256, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

This is what the model looks like now:

>>> model.summary()

Layer (type) Output Shape Param #

==

vgg16 (Model) (None, 4, 4, 512) 14714688

__

flatten_1 (Flatten) (None, 8192) 0

__

dense_1 (Dense) (None, 256) 2097408

__

dense_2 (Dense) (None, 1) 257

==

Total params: 16,812,353

Trainable params: 16,812,353

Non-trainable params: 0

As you can see, the convolutional base of VGG16 has 14,714,688 parameters, which is

very large. The classifier you’re adding on top has 2 million parameters.

 Before you compile and train the model, it’s very important to freeze the convolu-

tional base. Freezing a layer or set of layers means preventing their weights from being

updated during training. If you don’t do this, then the representations that were pre-

viously learned by the convolutional base will be modified during training. Because

the Dense layers on top are randomly initialized, very large weight updates would be

propagated through the network, effectively destroying the representations previously

learned.

 In Keras, you freeze a network by setting its trainable attribute to False:

>>> print('This is the number of trainable weights '

'before freezing the conv base:', len(model.trainable_weights))

This is the number of trainable weights before freezing the conv base: 30

>>> conv_base.trainable = False

>>> print('This is the number of trainable weights '

'after freezing the conv base:', len(model.trainable_weights))

This is the number of trainable weights after freezing the conv base: 4

Listing 5.20 Adding a densely connected classifier on top of the convolutional base

151Using a pretrained convnet

With this setup, only the weights from the two Dense layers that you added will be

trained. That’s a total of four weight tensors: two per layer (the main weight matrix

and the bias vector). Note that in order for these changes to take effect, you must first

compile the model. If you ever modify weight trainability after compilation, you

should then recompile the model, or these changes will be ignored.

 Now you can start training your model, with the same data-augmentation configu-

ration that you used in the previous example.

from keras.preprocessing.image import ImageDataGenerator

from keras import optimizers

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=40,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

fill_mode='nearest')

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

validation_generator = test_datagen.flow_from_directory(

validation_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=2e-5),

metrics=['acc'])

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=30,

validation_data=validation_generator,

validation_steps=50)

Let’s plot the results again (see figures 5.17 and 5.18). As you can see, you reach a val-

idation accuracy of about 96%. This is much better than you achieved with the small

convnet trained from scratch.

Listing 5.21 Training the model end to end with a frozen convolutional base

Note that the
validation data

shouldn’t be
augmented!

Target
directory Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

152 CHAPTER 5 Deep learning for computer vision

5.3.2 Fine-tuning

Another widely used technique for model reuse, complementary to feature

extraction, is fine-tuning (see figure 5.19). Fine-tuning consists of unfreezing a few of

the top layers of a frozen model base used for feature extraction, and jointly training

both the newly added part of the model (in this case, the fully connected classifier)

and these top layers. This is called fine-tuning because it slightly adjusts the more

abstract representations of the model being reused, in order to make them more rele-

vant for the problem at hand.

Figure 5.17 Training and validation

accuracy for feature extraction with

data augmentation

Figure 5.18 Training and validation

loss for feature extraction with data

augmentation

153Using a pretrained convnet

Dense

Dense

Flatten

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3:
frozen

Conv block 4:
frozen

We fine-tune
Conv block 5.

We fine-tune
our own fully
connected
classifier.

Figure 5.19 Fine-tuning the last

convolutional block of the VGG16 network

154 CHAPTER 5 Deep learning for computer vision

I stated earlier that it’s necessary to freeze the convolution base of VGG16 in order to

be able to train a randomly initialized classifier on top. For the same reason, it’s only

possible to fine-tune the top layers of the convolutional base once the classifier on top

has already been trained. If the classifier isn’t already trained, then the error signal

propagating through the network during training will be too large, and the represen-

tations previously learned by the layers being fine-tuned will be destroyed. Thus the

steps for fine-tuning a network are as follow:

1 Add your custom network on top of an already-trained base network.

2 Freeze the base network.

3 Train the part you added.

4 Unfreeze some layers in the base network.

5 Jointly train both these layers and the part you added.

You already completed the first three steps when doing feature extraction. Let’s pro-

ceed with step 4: you’ll unfreeze your conv_base and then freeze individual layers

inside it.

 As a reminder, this is what your convolutional base looks like:

>>> conv_base.summary()

Layer (type) Output Shape Param #

==

input_1 (InputLayer) (None, 150, 150, 3) 0

__

block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792

__

block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928

__

block1_pool (MaxPooling2D) (None, 75, 75, 64) 0

__

block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856

__

block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584

__

block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

__

block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168

__

block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080

__

block3_pool (MaxPooling2D) (None, 18, 18, 256) 0

__

block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160

__

block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808

__

block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

155Using a pretrained convnet

__

block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808

__

block5_pool (MaxPooling2D) (None, 4, 4, 512) 0

==

Total params: 14714688

You’ll fine-tune the last three convolutional layers, which means all layers up to

block4_pool should be frozen, and the layers block5_conv1, block5_conv2, and

block5_conv3 should be trainable.

 Why not fine-tune more layers? Why not fine-tune the entire convolutional base?

You could. But you need to consider the following:

 Earlier layers in the convolutional base encode more-generic, reusable features,

whereas layers higher up encode more-specialized features. It’s more useful to

fine-tune the more specialized features, because these are the ones that need to

be repurposed on your new problem. There would be fast-decreasing returns in

fine-tuning lower layers.

 The more parameters you’re training, the more you’re at risk of overfitting.

The convolutional base has 15 million parameters, so it would be risky to

attempt to train it on your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers

in the convolutional base. Let’s set this up, starting from where you left off in the pre-

vious example.

conv_base.trainable = True

set_trainable = False

for layer in conv_base.layers:

if layer.name == 'block5_conv1':

set_trainable = True

if set_trainable:

layer.trainable = True

else:

layer.trainable = False

Now you can begin fine-tuning the network. You’ll do this with the RMSProp opti-

mizer, using a very low learning rate. The reason for using a low learning rate is that

you want to limit the magnitude of the modifications you make to the representations

of the three layers you’re fine-tuning. Updates that are too large may harm these rep-

resentations.

Listing 5.22 Freezing all layers up to a specific one

156 CHAPTER 5 Deep learning for computer vision

model.compile(loss='binary_crossentropy',

optimizer=optimizers.RMSprop(lr=1e-5),

metrics=['acc'])

history = model.fit_generator(

train_generator,

steps_per_epoch=100,

epochs=100,

validation_data=validation_generator,

validation_steps=50)

Let’s plot the results using the same plotting code as before (see figures 5.20 and 5.21).

These curves look noisy. To make them more readable, you can smooth them by

replacing every loss and accuracy with exponential moving averages of these quanti-

ties. Here’s a trivial utility function to do this (see figures 5.22 and 5.23).

Listing 5.23 Fine-tuning the model

Figure 5.20 Training and

validation accuracy for fine-tuning

Figure 5.21 Training and

validation loss for fine-tuning

157Using a pretrained convnet

def smooth_curve(points, factor=0.8):

smoothed_points = []

for point in points:

if smoothed_points:

previous = smoothed_points[-1]

smoothed_points.append(previous * factor + point * (1 - factor))

else:

smoothed_points.append(point)

return smoothed_points

plt.plot(epochs,

smooth_curve(acc), 'bo', label='Smoothed training acc')

plt.plot(epochs,

smooth_curve(val_acc), 'b', label='Smoothed validation acc')

plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

plt.plot(epochs,

smooth_curve(loss), 'bo', label='Smoothed training loss')

plt.plot(epochs,

smooth_curve(val_loss), 'b', label='Smoothed validation loss')

plt.title('Training and validation loss')

plt.legend()

plt.show()

Listing 5.24 Smoothing the plots

Figure 5.22 Smoothed curves for training and validation accuracy

for fine-tuning

158 CHAPTER 5 Deep learning for computer vision

The validation accuracy curve look much cleaner. You’re seeing a nice 1% absolute

improvement in accuracy, from about 96% to above 97%.

 Note that the loss curve doesn’t show any real improvement (in fact, it’s deteriorat-

ing). You may wonder, how could accuracy stay stable or improve if the loss isn’t

decreasing? The answer is simple: what you display is an average of pointwise loss val-

ues; but what matters for accuracy is the distribution of the loss values, not their aver-

age, because accuracy is the result of a binary thresholding of the class probability

predicted by the model. The model may still be improving even if this isn’t reflected

in the average loss.

 You can now finally evaluate this model on the test data:

test_generator = test_datagen.flow_from_directory(

test_dir,

target_size=(150, 150),

batch_size=20,

class_mode='binary')

test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)

print('test acc:', test_acc)

Here you get a test accuracy of 97%. In the original Kaggle competition around this

dataset, this would have been one of the top results. But using modern deep-learning

techniques, you managed to reach this result using only a small fraction of the train-

ing data available (about 10%). There is a huge difference between being able to train

on 20,000 samples compared to 2,000 samples!

Figure 5.23 Smoothed curves for training and validation loss for fine-tuning

159Using a pretrained convnet

5.3.3 Wrapping up

Here’s what you should take away from the exercises in the past two sections:

 Convnets are the best type of machine-learning models for computer-vision

tasks. It’s possible to train one from scratch even on a very small dataset, with

decent results.

 On a small dataset, overfitting will be the main issue. Data augmentation is a

powerful way to fight overfitting when you’re working with image data.

 It’s easy to reuse an existing convnet on a new dataset via feature extraction.

This is a valuable technique for working with small image datasets.

 As a complement to feature extraction, you can use fine-tuning, which adapts to

a new problem some of the representations previously learned by an existing

model. This pushes performance a bit further.

Now you have a solid set of tools for dealing with image-classification problems—in

particular with small datasets.

160 CHAPTER 5 Deep learning for computer vision

5.4 Visualizing what convnets learn

It’s often said that deep-learning models are “black boxes”: learning representations

that are difficult to extract and present in a human-readable form. Although this is

partially true for certain types of deep-learning models, it’s definitely not true for

convnets. The representations learned by convnets are highly amenable to visualiza-

tion, in large part because they’re representations of visual concepts. Since 2013, a wide

array of techniques have been developed for visualizing and interpreting these repre-

sentations. We won’t survey all of them, but we’ll cover three of the most accessible

and useful ones:

 Visualizing intermediate convnet outputs (intermediate activations)—Useful for

understanding how successive convnet layers transform their input, and for get-

ting a first idea of the meaning of individual convnet filters.

 Visualizing convnets filters—Useful for understanding precisely what visual pat-

tern or concept each filter in a convnet is receptive to.

 Visualizing heatmaps of class activation in an image—Useful for understanding

which parts of an image were identified as belonging to a given class, thus allow-

ing you to localize objects in images.

For the first method—activation visualization—you’ll use the small convnet that you

trained from scratch on the dogs-versus-cats classification problem in section 5.2. For

the next two methods, you’ll use the VGG16 model introduced in section 5.3.

5.4.1 Visualizing intermediate activations

Visualizing intermediate activations consists of displaying the feature maps that are

output by various convolution and pooling layers in a network, given a certain input

(the output of a layer is often called its activation, the output of the activation func-

tion). This gives a view into how an input is decomposed into the different filters

learned by the network. You want to visualize feature maps with three dimensions:

width, height, and depth (channels). Each channel encodes relatively independent

features, so the proper way to visualize these feature maps is by independently plot-

ting the contents of every channel as a 2D image. Let’s start by loading the model that

you saved in section 5.2:

>>> from keras.models import load_model

>>> model = load_model('cats_and_dogs_small_2.h5')

>>> model.summary() <1> As a reminder.

__

Layer (type) Output Shape Param #

==

conv2d_5 (Conv2D) (None, 148, 148, 32) 896

__

maxpooling2d_5 (MaxPooling2D) (None, 74, 74, 32) 0

__

conv2d_6 (Conv2D) (None, 72, 72, 64) 18496

__

maxpooling2d_6 (MaxPooling2D) (None, 36, 36, 64) 0

161Visualizing what convnets learn

__

conv2d_7 (Conv2D) (None, 34, 34, 128) 73856

__

maxpooling2d_7 (MaxPooling2D) (None, 17, 17, 128) 0

__

conv2d_8 (Conv2D) (None, 15, 15, 128) 147584

__

maxpooling2d_8 (MaxPooling2D) (None, 7, 7, 128) 0

__

flatten_2 (Flatten) (None, 6272) 0

__

dropout_1 (Dropout) (None, 6272) 0

__

dense_3 (Dense) (None, 512) 3211776

__

dense_4 (Dense) (None, 1) 513

==

Total params: 3,453,121

Trainable params: 3,453,121

Non-trainable params: 0

Next, you’ll get an input image—a picture of a cat, not part of the images the network

was trained on.

img_path = '/Users/fchollet/Downloads/cats_and_dogs_small/test/cats/cat.1700.jpg'

from keras.preprocessing import image

import numpy as np

img = image.load_img(img_path, target_size=(150, 150))

img_tensor = image.img_to_array(img)

img_tensor = np.expand_dims(img_tensor, axis=0)

img_tensor /= 255.

<1> Its shape is (1, 150, 150, 3)

print(img_tensor.shape)

Let’s display the picture (see figure 5.24).

import matplotlib.pyplot as plt

plt.imshow(img_tensor[0])

plt.show()

Listing 5.25 Preprocessing a single image

Listing 5.26 Displaying the test picture

Preprocesses the image
into a 4D tensor

Remember that the model
was trained on inputs that
were preprocessed this way.

162 CHAPTER 5 Deep learning for computer vision

In order to extract the feature maps you want to look at, you’ll create a Keras model

that takes batches of images as input, and outputs the activations of all convolution and

pooling layers. To do this, you’ll use the Keras class Model. A model is instantiated

using two arguments: an input tensor (or list of input tensors) and an output tensor

(or list of output tensors). The resulting class is a Keras model, just like the Sequential

models you’re familiar with, mapping the specified inputs to the specified outputs.

What sets the Model class apart is that it allows for models with multiple outputs, unlike

Sequential. For more information about the Model class, see section 7.1.

from keras import models

layer_outputs = [layer.output for layer in model.layers[:8]]

activation_model = models.Model(inputs=model.input, outputs=layer_outputs)

When fed an image input, this model returns the values of the layer activations in the

original model. This is the first time you’ve encountered a multi-output model in this

book: until now, the models you’ve seen have had exactly one input and one output.

In the general case, a model can have any number of inputs and outputs. This one has

one input and eight outputs: one output per layer activation.

Listing 5.27 Instantiating a model from an input tensor and a list of output tensors

Figure 5.24 The test cat picture

Extracts the outputs of
the top eight layers

Creates a model that will return these
outputs, given the model input

163Visualizing what convnets learn

activations = activation_model.predict(img_tensor)

For instance, this is the activation of the first convolution layer for the cat image input:

>>> first_layer_activation = activations[0]

>>> print(first_layer_activation.shape)

(1, 148, 148, 32)

It’s a 148 × 148 feature map with 32 channels. Let’s try plotting the fourth channel of

the activation of the first layer of the original model (see figure 5.25).

import matplotlib.pyplot as plt

plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')

This channel appears to encode a diagonal edge detector. Let’s try the seventh chan-

nel (see figure 5.26)—but note that your own channels may vary, because the specific

filters learned by convolution layers aren’t deterministic.

plt.matshow(first_layer_activation[0, :, :, 7], cmap='viridis')

Listing 5.28 Running the model in predict mode

Listing 5.29 Visualizing the fourth channel

Listing 5.30 Visualizing the seventh channel

Returns a list of five
Numpy arrays: one array
per layer activation

Figure 5.25 Fourth channel of the activation

of the first layer on the test cat picture

164 CHAPTER 5 Deep learning for computer vision

This one looks like a “bright green dot” detector, useful to encode cat eyes. At this

point, let’s plot a complete visualization of all the activations in the network (see fig-

ure 5.27). You’ll extract and plot every channel in each of the eight activation maps,

and you’ll stack the results in one big image tensor, with channels stacked side by side.

layer_names = []

for layer in model.layers[:8]:

layer_names.append(layer.name)

images_per_row = 16

for layer_name, layer_activation in zip(layer_names, activations):

n_features = layer_activation.shape[-1]

size = layer_activation.shape[1]

n_cols = n_features // images_per_row

display_grid = np.zeros((size * n_cols, images_per_row * size))

for col in range(n_cols):

for row in range(images_per_row):

channel_image = layer_activation[0,

:, :,

col * images_per_row + row]

channel_image -= channel_image.mean()

channel_image /= channel_image.std()

channel_image *= 64

channel_image += 128

channel_image = np.clip(channel_image, 0, 255).astype('uint8')

display_grid[col * size : (col + 1) * size,

row * size : (row + 1) * size] = channel_image

scale = 1. / size

plt.figure(figsize=(scale * display_grid.shape[1],

scale * display_grid.shape[0]))

plt.title(layer_name)

plt.grid(False)

plt.imshow(display_grid, aspect='auto', cmap='viridis')

Listing 5.31 Visualizing every channel in every intermediate activation

Figure 5.26 Seventh channel of the activation

of the first layer on the test cat picture

Names of the layers, so you can
have them as part of your plot

Displays the feature maps

Number of
features in the

feature map

The feature map has shape
(1, size, size, n_features).

Tiles the
activation

channels in
this matrix

Tiles each filter into
a big horizontal grid

Post-processes
the feature to

make it visually
palatable

Displays the grid

165Visualizing what convnets learn

Figure 5.27 Every channel of every layer activation on the test cat picture

166 CHAPTER 5 Deep learning for computer vision

There are a few things to note here:

 The first layer acts as a collection of various edge detectors. At that stage, the

activations retain almost all of the information present in the initial picture.

 As you go higher, the activations become increasingly abstract and less visually

interpretable. They begin to encode higher-level concepts such as “cat ear” and

“cat eye.” Higher presentations carry increasingly less information about the

visual contents of the image, and increasingly more information related to the

class of the image.

 The sparsity of the activations increases with the depth of the layer: in the first

layer, all filters are activated by the input image; but in the following layers,

more and more filters are blank. This means the pattern encoded by the filter

isn’t found in the input image.

We have just evidenced an important universal characteristic of the representations

learned by deep neural networks: the features extracted by a layer become increas-

ingly abstract with the depth of the layer. The activations of higher layers carry less

and less information about the specific input being seen, and more and more infor-

mation about the target (in this case, the class of the image: cat or dog). A deep neu-

ral network effectively acts as an information distillation pipeline, with raw data going in

(in this case, RGB pictures) and being repeatedly transformed so that irrelevant infor-

mation is filtered out (for example, the specific visual appearance of the image), and

useful information is magnified and refined (for example, the class of the image).

 This is analogous to the way humans and animals perceive the world: after observ-

ing a scene for a few seconds, a human can remember which abstract objects were

present in it (bicycle, tree) but can’t remember the specific appearance of these

objects. In fact, if you tried to draw a generic bicycle from memory, chances are you

couldn’t get it even remotely right, even though you’ve seen thousands of bicycles in

your lifetime (see, for example, figure 5.28). Try it right now: this effect is absolutely

real. You brain has learned to completely abstract its visual input—to transform it into

high-level visual concepts while filtering out irrelevant visual details—making it tre-

mendously difficult to remember how things around you look.

Figure 5.28 Left: attempts

to draw a bicycle from

memory. Right: what a

schematic bicycle should

look like.

167Visualizing what convnets learn

5.4.2 Visualizing convnet filters

Another easy way to inspect the filters learned by convnets is to display the visual pat-

tern that each filter is meant to respond to. This can be done with gradient ascent in

input space : applying gradient descent to the value of the input image of a convnet so as

to maximize the response of a specific filter, starting from a blank input image. The

resulting input image will be one that the chosen filter is maximally responsive to.

 The process is simple: you’ll build a loss function that maximizes the value of a

given filter in a given convolution layer, and then you’ll use stochastic gradient

descent to adjust the values of the input image so as to maximize this activation value.

For instance, here’s a loss for the activation of filter 0 in the layer block3_conv1 of the

VGG16 network, pretrained on ImageNet.

from keras.applications import VGG16

from keras import backend as K

model = VGG16(weights='imagenet',

include_top=False)

layer_name = 'block3_conv1'

filter_index = 0

layer_output = model.get_layer(layer_name).output

loss = K.mean(layer_output[:, :, :, filter_index])

To implement gradient descent, you’ll need the gradient of this loss with respect to

the model’s input. To do this, you’ll use the gradients function packaged with the

backend module of Keras.

grads = K.gradients(loss, model.input)[0]

A non-obvious trick to use to help the gradient-descent process go smoothly is to nor-

malize the gradient tensor by dividing it by its L2 norm (the square root of the average

of the square of the values in the tensor). This ensures that the magnitude of the

updates done to the input image is always within the same range.

grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

Now you need a way to compute the value of the loss tensor and the gradient tensor,

given an input image. You can define a Keras backend function to do this: iterate is

Listing 5.32 Defining the loss tensor for filter visualization

Listing 5.33 Obtaining the gradient of the loss with regard to the input

Listing 5.34 Gradient-normalization trick

The call to gradients returns a list of
tensors (of size 1 in this case). Hence,
you keep only the first element—
which is a tensor.

Add 1e–5 before dividing
to avoid accidentally
dividing by 0.

168 CHAPTER 5 Deep learning for computer vision

a function that takes a Numpy tensor (as a list of tensors of size 1) and returns a list of

two Numpy tensors: the loss value and the gradient value.

iterate = K.function([model.input], [loss, grads])

import numpy as np

loss_value, grads_value = iterate([np.zeros((1, 150, 150, 3))])

At this point, you can define a Python loop to do stochastic gradient descent.

input_img_data = np.random.random((1, 150, 150, 3)) * 20 + 128.

step = 1.

for i in range(40):

loss_value, grads_value = iterate([input_img_data])

input_img_data += grads_value * step

The resulting image tensor is a floating-point tensor of shape (1, 150, 150, 3), with

values that may not be integers within [0, 255]. Hence, you need to postprocess this

tensor to turn it into a displayable image. You do so with the following straightforward

utility function.

def deprocess_image(x):

x -= x.mean()

x /= (x.std() + 1e-5)

x *= 0.1

x += 0.5

x = np.clip(x, 0, 1)

x *= 255

x = np.clip(x, 0, 255).astype('uint8')

return x

Now you have all the pieces. Let’s put them together into a Python function that takes

as input a layer name and a filter index, and returns a valid image tensor representing

the pattern that maximizes the activation of the specified filter.

Listing 5.35 Fetching Numpy output values given Numpy input values

Listing 5.36 Loss maximization via stochastic gradient descent

Listing 5.37 Utility function to convert a tensor into a valid image

Starts from a gray image
with some noise

Runs gradient
ascent for 40
steps

Computes the loss value
and gradient value

Adjusts the input image in the
direction that maximizes the loss

Magnitude of each gradient update

Normalizes the tensor:
centers on 0, ensures
that std is 0.1

Clips to [0, 1]

Converts to an RGB array

169Visualizing what convnets learn

def generate_pattern(layer_name, filter_index, size=150):

layer_output = model.get_layer(layer_name).output

loss = K.mean(layer_output[:, :, :, filter_index])

grads = K.gradients(loss, model.input)[0]

grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

iterate = K.function([model.input], [loss, grads])

input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.

step = 1.

for i in range(40):

loss_value, grads_value = iterate([input_img_data])

input_img_data += grads_value * step

img = input_img_data[0]

return deprocess_image(img)

Let’s try it (see figure 5.29):

>>> plt.imshow(generate_pattern('block3_conv1', 0))

It seems that filter 0 in layer block3_conv1 is responsive to a polka-dot pattern. Now

the fun part: you can start visualizing every filter in every layer. For simplicity, you’ll

only look at the first 64 filters in each layer, and you’ll only look at the first layer of

each convolution block (block1_conv1, block2_conv1, block3_conv1, block4_

conv1, block5_conv1). You’ll arrange the outputs on an 8 × 8 grid of 64 × 64 filter pat-

terns, with some black margins between each filter pattern (see figures 5.30–5.33).

Listing 5.38 Function to generate filter visualizations

Runs
gradient

ascent for
40 steps

Builds a loss function that maximizes
the activation of the nth filter of the
layer under consideration

Computes the
gradient of the
input picture with
regard to this loss

Normalization
trick: normalizes
the gradient

Returns the loss
and grads given
the input picture

Starts from a
gray image with

some noise

Figure 5.29 Pattern that the zeroth

channel in layer block3_conv1

responds to maximally

170 CHAPTER 5 Deep learning for computer vision

layer_name = 'block1_conv1'

size = 64

margin = 5

results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3))

for i in range(8):

for j in range(8):

filter_img = generate_pattern(layer_name, i + (j * 8), size=size)

horizontal_start = i * size + i * margin

horizontal_end = horizontal_start + size

vertical_start = j * size + j * margin

vertical_end = vertical_start + size

results[horizontal_start: horizontal_end,

vertical_start: vertical_end, :] = filter_img

plt.figure(figsize=(20, 20))

plt.imshow(results)

Listing 5.39 Generating a grid of all filter response patterns in a layer

Empty (black) image
to store results

Iterates over the rows of the results grid

Iterates over the columns of the results grid

Generates the
pattern for

filter i + (j * 8)
in layer_name

Puts the result
in the square
(i, j) of the
results grid

Displays the results grid

Figure 5.30 Filter patterns for layer block1_conv1

171Visualizing what convnets learn

Figure 5.31 Filter patterns for layer block2_conv1

Figure 5.32 Filter patterns for layer block3_conv1

172 CHAPTER 5 Deep learning for computer vision

These filter visualizations tell you a lot about how convnet layers see the world: each

layer in a convnet learns a collection of filters such that their inputs can be expressed

as a combination of the filters. This is similar to how the Fourier transform decom-

poses signals onto a bank of cosine functions. The filters in these convnet filter banks

get increasingly complex and refined as you go higher in the model:

 The filters from the first layer in the model (block1_conv1) encode simple

directional edges and colors (or colored edges, in some cases).

 The filters from block2_conv1 encode simple textures made from combina-

tions of edges and colors.

 The filters in higher layers begin to resemble textures found in natural images:

feathers, eyes, leaves, and so on.

5.4.3 Visualizing heatmaps of class activation

I’ll introduce one more visualization technique: one that is useful for understanding

which parts of a given image led a convnet to its final classification decision. This is

helpful for debugging the decision process of a convnet, particularly in the case of a

classification mistake. It also allows you to locate specific objects in an image.

 This general category of techniques is called class activation map (CAM) visualization,

and it consists of producing heatmaps of class activation over input images. A class acti-

vation heatmap is a 2D grid of scores associated with a specific output class, computed

for every location in any input image, indicating how important each location is with

Figure 5.33 Filter patterns for layer block4_conv1

173Visualizing what convnets learn

respect to the class under consideration. For instance, given an image fed into a dogs-

versus-cats convnet, CAM visualization allows you to generate a heatmap for the class

“cat,” indicating how cat-like different parts of the image are, and also a heatmap for the

class “dog,” indicating how dog-like parts of the image are.

 The specific implementation you’ll use is the one described in “Grad-CAM: Visual

Explanations from Deep Networks via Gradient-based Localization.”2 It’s very simple:

it consists of taking the output feature map of a convolution layer, given an input

image, and weighing every channel in that feature map by the gradient of the class

with respect to the channel. Intuitively, one way to understand this trick is that you’re

weighting a spatial map of “how intensely the input image activates different chan-

nels” by “how important each channel is with regard to the class,” resulting in a spatial

map of “how intensely the input image activates the class.”

 We’ll demonstrate this technique using the pretrained VGG16 network again.

from keras.applications.vgg16 import VGG16

model = VGG16(weights='imagenet')

Consider the image of two African elephants shown in figure 5.34 (under a Creative

Commons license), possibly a mother and her calf, strolling on the savanna. Let’s con-

vert this image into something the VGG16 model can read: the model was trained on

images of size 224 × 244, preprocessed according to a few rules that are packaged in

the utility function keras.applications.vgg16.preprocess_input. So you need to

load the image, resize it to 224 × 224, convert it to a Numpy float32 tensor, and apply

these preprocessing rules.

2 Ramprasaath R. Selvaraju et al., arXiv (2017), https://arxiv.org/abs/ 1610.02391.

Listing 5.40 Loading the VGG16 network with pretrained weights

Note that you include the densely
connected classifier on top; in all
previous cases, you discarded it.

Figure 5.34 Test picture of African elephants

174 CHAPTER 5 Deep learning for computer vision

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input, decode_predictions

import numpy as np

img_path = '/Users/fchollet/Downloads/creative_commons_elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

You can now run the pretrained network on the image and decode its prediction vec-

tor back to a human-readable format:

>>> preds = model.predict(x)

>>> print('Predicted:', decode_predictions(preds, top=3)[0])

Predicted:', [(u'n02504458', u'African_elephant', 0.92546833),

(u'n01871265', u'tusker', 0.070257246),

(u'n02504013', u'Indian_elephant', 0.0042589349)]

The top three classes predicted for this image are as follows:

 African elephant (with 92.5% probability)

 Tusker (with 7% probability)

 Indian elephant (with 0.4% probability)

The network has recognized the image as containing an undetermined quantity of

African elephants. The entry in the prediction vector that was maximally activated is

the one corresponding to the “African elephant” class, at index 386:

>>> np.argmax(preds[0])

386

To visualize which parts of the image are the most African elephant–like, let’s set up

the Grad-CAM process.

african_e66lephant_output = model.output[:, 386]

last_conv_layer = model.get_layer('block5_conv3')

Listing 5.41 Preprocessing an input image for VGG16

Listing 5.42 Setting up the Grad-CAM algorithm

Python Imaging Library (PIL) image
of size 224 × 224

Local path to the target image

float32 Numpy array of shape
(224, 224, 3)

Adds a dimension to transform the array
into a batch of size (1, 224, 224, 3)

Preprocesses the batch (this does
channel-wise color normalization)

“African elephant” entry in the
prediction vector

Output feature map of
the block5_conv3 layer,
the last convolutional
layer in VGG16

175Visualizing what convnets learn

grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]

pooled_grads = K.mean(grads, axis=(0, 1, 2))

iterate = K.function([model.input],

[pooled_grads, last_conv_layer.output[0]])

pooled_grads_value, conv_layer_output_value = iterate([x])

for i in range(512):

conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

heatmap = np.mean(conv_layer_output_value, axis=-1)

For visualization purposes, you’ll also normalize the heatmap between 0 and 1. The

result is shown in figure 5.35.

heatmap = np.maximum(heatmap, 0)

heatmap /= np.max(heatmap)

plt.matshow(heatmap)

Listing 5.43 Heatmap post-processing

Gradient of the “African
elephant” class with regard to
the output feature map of
block5_conv3

Vector of shape (512,), where each entry
is the mean intensity of the gradient
over a specific feature-map channel

Values of these two quantities, as
Numpy arrays, given the sample image
of two elephants

Lets you access the values of the quantities
you just defined: pooled_grads and the
output feature map of block5_conv3, given
a sample image

The channel-wise mean of
the resulting feature map

is the heatmap of the
class activation.

Multiplies each
channel in the

feature-map array
by “how

important this
channel is” with

regard to the
“elephant” class

0
0

2

4

6

8

10

12

2 4 6 8 10 12

Figure 5.35 African elephant class
activation heatmap over the test picture

176 CHAPTER 5 Deep learning for computer vision

Finally, you’ll use OpenCV to generate an image that superimposes the original image

on the heatmap you just obtained (see figure 5.36).

import cv2

img = cv2.imread(img_path)

heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

heatmap = np.uint8(255 * heatmap)

heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

superimposed_img = heatmap * 0.4 + img

cv2.imwrite('/Users/fchollet/Downloads/elephant_cam.jpg', superimposed_img)

This visualization technique answers two important questions:

 Why did the network think this image contained an African elephant?

 Where is the African elephant located in the picture?

In particular, it’s interesting to note that the ears of the elephant calf are strongly acti-

vated: this is probably how the network can tell the difference between African and

Indian elephants.

Listing 5.44 Superimposing the heatmap with the original picture

Uses cv2 to load the
original image

Resizes the heatmap to
be the same size as the

original image

Applies the heatmap to the
original image

Converts the
heatmap to RGB

0.4 here is a heatmap
intensity factor.

Saves the image to disk

Figure 5.36 Superimposing the class activation heatmap on the original picture

177Visualizing what convnets learn

Chapter summary

 Convnets are the best tool for attacking visual-classification problems.

 Convnets work by learning a hierarchy of modular patterns and concepts

to represent the visual world.

 The representations they learn are easy to inspect—convnets are the

opposite of black boxes!

 You’re now capable of training your own convnet from scratch to solve an

image-classification problem.

 You understand how to use visual data augmentation to fight overfitting.

 You know how to use a pretrained convnet to do feature extraction and

fine-tuning.

 You can generate visualizations of the filters learned by your convnets, as

well as heatmaps of class activity.

