
93

Fundamentals of
machine learning

After the three practical examples in chapter 3, you should be starting to feel famil-

iar with how to approach classification and regression problems using neural net-

works, and you’ve witnessed the central problem of machine learning: overfitting.

This chapter will formalize some of your new intuition into a solid conceptual

framework for attacking and solving deep-learning problems. We’ll consolidate all

of these concepts—model evaluation, data preprocessing and feature engineering,

and tackling overfitting—into a detailed seven-step workflow for tackling any

machine-learning task.

This chapter covers

Forms of machine learning beyond classification

and regression

Formal evaluation procedures for machine-

learning models

Preparing data for deep learning

Feature engineering

Tackling overfitting

The universal workflow for approaching machine-

learning problems

94 CHAPTER 4 Fundamentals of machine learning

4.1 Four branches of machine learning

In our previous examples, you’ve become familiar with three specific types of

machine-learning problems: binary classification, multiclass classification, and scalar

regression. All three are instances of supervised learning, where the goal is to learn the

relationship between training inputs and training targets.

 Supervised learning is just the tip of the iceberg—machine learning is a vast field

with a complex subfield taxonomy. Machine-learning algorithms generally fall into

four broad categories, described in the following sections.

4.1.1 Supervised learning

This is by far the most common case. It consists of learning to map input data to

known targets (also called annotations), given a set of examples (often annotated by

humans). All four examples you’ve encountered in this book so far were canonical

examples of supervised learning. Generally, almost all applications of deep learning

that are in the spotlight these days belong in this category, such as optical character

recognition, speech recognition, image classification, and language translation.

 Although supervised learning mostly consists of classification and regression, there

are more exotic variants as well, including the following (with examples):

Sequence generation—Given a picture, predict a caption describing it. Sequence

generation can sometimes be reformulated as a series of classification problems

(such as repeatedly predicting a word or token in a sequence).

Syntax tree prediction—Given a sentence, predict its decomposition into a syntax

tree.

Object detection—Given a picture, draw a bounding box around certain objects

inside the picture. This can also be expressed as a classification problem (given

many candidate bounding boxes, classify the contents of each one) or as a joint

classification and regression problem, where the bounding-box coordinates are

predicted via vector regression.

Image segmentation—Given a picture, draw a pixel-level mask on a specific object.

4.1.2 Unsupervised learning

This branch of machine learning consists of finding interesting transformations of the

input data without the help of any targets, for the purposes of data visualization, data

compression, or data denoising, or to better understand the correlations present in

the data at hand. Unsupervised learning is the bread and butter of data analytics, and

it’s often a necessary step in better understanding a dataset before attempting to solve

a supervised-learning problem. Dimensionality reduction and clustering are well-known

categories of unsupervised learning.

4.1.3 Self-supervised learning

This is a specific instance of supervised learning, but it’s different enough that it

deserves its own category. Self-supervised learning is supervised learning without

95Four branches of machine learning

human-annotated labels—you can think of it as supervised learning without any

humans in the loop. There are still labels involved (because the learning has to be

supervised by something), but they’re generated from the input data, typically using a

heuristic algorithm.

 For instance, autoencoders are a well-known instance of self-supervised learning,

where the generated targets are the input, unmodified. In the same way, trying to pre-

dict the next frame in a video, given past frames, or the next word in a text, given previ-

ous words, are instances of self-supervised learning (temporally supervised learning, in this

case: supervision comes from future input data). Note that the distinction between

supervised, self-supervised, and unsupervised learning can be blurry sometimes—these

categories are more of a continuum without solid borders. Self-supervised learning can

be reinterpreted as either supervised or unsupervised learning, depending on whether

you pay attention to the learning mechanism or to the context of its application.

NOTE In this book, we’ll focus specifically on supervised learning, because
it’s by far the dominant form of deep learning today, with a wide range of
industry applications. We’ll also take a briefer look at self-supervised learning
in later chapters.

4.1.4 Reinforcement learning

Long overlooked, this branch of machine learning recently started to get a lot of

attention after Google DeepMind successfully applied it to learning to play Atari

games (and, later, learning to play Go at the highest level). In reinforcement learning,

an agent receives information about its environment and learns to choose actions that

will maximize some reward. For instance, a neural network that “looks” at a video-

game screen and outputs game actions in order to maximize its score can be trained

via reinforcement learning.

 Currently, reinforcement learning is mostly a research area and hasn’t yet had sig-

nificant practical successes beyond games. In time, however, we expect to see rein-

forcement learning take over an increasingly large range of real-world applications:

self-driving cars, robotics, resource management, education, and so on. It’s an idea

whose time has come, or will come soon.

Classification and regression glossary

Classification and regression involve many specialized terms. You’ve come across

some of them in earlier examples, and you’ll see more of them in future chapters.

They have precise, machine-learning-specific definitions, and you should be familiar

with them:

Sample or input—One data point that goes into your model.

Prediction or output—What comes out of your model.

Target—The truth. What your model should ideally have predicted, according

to an external source of data.

96 CHAPTER 4 Fundamentals of machine learning

(continued)

Prediction error or loss value—A measure of the distance between your

model’s prediction and the target.

Classes—A set of possible labels to choose from in a classification problem.

For example, when classifying cat and dog pictures, “dog” and “cat” are the

two classes.

Label—A specific instance of a class annotation in a classification problem.

For instance, if picture #1234 is annotated as containing the class “dog,”

then “dog” is a label of picture #1234.

Ground-truth or annotations—All targets for a dataset, typically collected by

humans.

Binary classification—A classification task where each input sample should

be categorized into two exclusive categories.

Multiclass classification—A classification task where each input sample

should be categorized into more than two categories: for instance, classifying

handwritten digits.

Multilabel classification—A classification task where each input sample can

be assigned multiple labels. For instance, a given image may contain both a

cat and a dog and should be annotated both with the “cat” label and the

“dog” label. The number of labels per image is usually variable.

Scalar regression—A task where the target is a continuous scalar value. Pre-

dicting house prices is a good example: the different target prices form a con-

tinuous space.

Vector regression—A task where the target is a set of continuous values: for

example, a continuous vector. If you’re doing regression against multiple val-

ues (such as the coordinates of a bounding box in an image), then you’re

doing vector regression.

Mini-batch or batch—A small set of samples (typically between 8 and 128)

that are processed simultaneously by the model. The number of samples is

often a power of 2, to facilitate memory allocation on GPU. When training, a

mini-batch is used to compute a single gradient-descent update applied to

the weights of the model.

97Evaluating machine-learning models

4.2 Evaluating machine-learning models

In the three examples presented in chapter 3, we split the data into a training set, a

validation set, and a test set. The reason not to evaluate the models on the same data

they were trained on quickly became evident: after just a few epochs, all three models

began to overfit. That is, their performance on never-before-seen data started stalling

(or worsening) compared to their performance on the training data—which always

improves as training progresses.

 In machine learning, the goal is to achieve models that generalize—that perform

well on never-before-seen data—and overfitting is the central obstacle. You can only

control that which you can observe, so it’s crucial to be able to reliably measure the

generalization power of your model. The following sections look at strategies for miti-

gating overfitting and maximizing generalization. In this section, we’ll focus on how

to measure generalization: how to evaluate machine-learning models.

4.2.1 Training, validation, and test sets

Evaluating a model always boils down to splitting the available data into three sets:

training, validation, and test. You train on the training data and evaluate your model

on the validation data. Once your model is ready for prime time, you test it one final

time on the test data.

 You may ask, why not have two sets: a training set and a test set? You’d train on the

training data and evaluate on the test data. Much simpler!

 The reason is that developing a model always involves tuning its configuration: for

example, choosing the number of layers or the size of the layers (called the hyper-

parameters of the model, to distinguish them from the parameters, which are the net-

work’s weights). You do this tuning by using as a feedback signal the performance of

the model on the validation data. In essence, this tuning is a form of learning : a search

for a good configuration in some parameter space. As a result, tuning the configura-

tion of the model based on its performance on the validation set can quickly result in

overfitting to the validation set, even though your model is never directly trained on it.

 Central to this phenomenon is the notion of information leaks. Every time you tune

a hyperparameter of your model based on the model’s performance on the validation

set, some information about the validation data leaks into the model. If you do this

only once, for one parameter, then very few bits of information will leak, and your val-

idation set will remain reliable to evaluate the model. But if you repeat this many

times—running one experiment, evaluating on the validation set, and modifying your

model as a result—then you’ll leak an increasingly significant amount of information

about the validation set into the model.

 At the end of the day, you’ll end up with a model that performs artificially well on

the validation data, because that’s what you optimized it for. You care about perfor-

mance on completely new data, not the validation data, so you need to use a com-

pletely different, never-before-seen dataset to evaluate the model: the test dataset. Your

model shouldn’t have had access to any information about the test set, even indirectly.

98 CHAPTER 4 Fundamentals of machine learning

If anything about the model has been tuned based on test set performance, then your

measure of generalization will be flawed.

 Splitting your data into training, validation, and test sets may seem straightforward,

but there are a few advanced ways to do it that can come in handy when little data is

available. Let’s review three classic evaluation recipes: simple hold-out validation, K-

fold validation, and iterated K-fold validation with shuffling.

SIMPLE HOLD-OUT VALIDATION

Set apart some fraction of your data as your test set. Train on the remaining data, and

evaluate on the test set. As you saw in the previous sections, in order to prevent infor-

mation leaks, you shouldn’t tune your model based on the test set, and therefore you

should also reserve a validation set.

 Schematically, hold-out validation looks like figure 4.1. The following listing shows

a simple implementation.

num_validation_samples = 10000

np.random.shuffle(data)

validation_data = data[:num_validation_samples]

data = data[num_validation_samples:]

training_data = data[:]

model = get_model()

model.train(training_data)

validation_score = model.evaluate(validation_data)

At this point you can tune your model,

retrain it, evaluate it, tune it again...

model = get_model()

model.train(np.concatenate([training_data,

validation_data]))

test_score = model.evaluate(test_data)

Listing 4.1 Hold-out validation

Training set

Total available labeled data

Train on this Evaluate

on this

Held-out

validation

set

Figure 4.1 Simple hold-

out validation split

Shuffling the data is
usually appropriate.

Defines the
validation set

Defines the training set

Trains a model on the training
data, and evaluates it on the
validation data

Once you’ve tuned your
hyperparameters, it’s common to
train your final model from scratch
on all non-test data available.

99Evaluating machine-learning models

This is the simplest evaluation protocol, and it suffers from one flaw: if little data is

available, then your validation and test sets may contain too few samples to be statisti-

cally representative of the data at hand. This is easy to recognize: if different random

shuffling rounds of the data before splitting end up yielding very different measures

of model performance, then you’re having this issue. K-fold validation and iterated

K-fold validation are two ways to address this, as discussed next.

K-FOLD VALIDATION

With this approach, you split your data into K partitions of equal size. For each parti-

tion i, train a model on the remaining K – 1 partitions, and evaluate it on partition i.

Your final score is then the averages of the K scores obtained. This method is helpful

when the performance of your model shows significant variance based on your train-

test split. Like hold-out validation, this method doesn’t exempt you from using a dis-

tinct validation set for model calibration.

 Schematically, K-fold cross-validation looks like figure 4.2. Listing 4.2 shows a simple

implementation.

k = 4

num_validation_samples = len(data) // k

np.random.shuffle(data)

validation_scores = []

for fold in range(k):

validation_data = data[num_validation_samples * fold:

num_validation_samples * (fold + 1)]

training_data = data[:num_validation_samples * fold] +

data[num_validation_samples * (fold + 1):]

model = get_model()

model.train(training_data)

validation_score = model.evaluate(validation_data)

validation_scores.append(validation_score)

Listing 4.2 K-fold cross-validation

Data split into 3 partitions

Validation Training Training
Validation

score #1
Fold 1

Validation Validation Training
Validation

score #2

Final score:

average
Fold 2

Validation Training Validation
Validation

score #3
Fold 3

Figure 4.2 Three-fold validation

Selects the validation-
data partition

Uses the remainder of the data
as training data. Note that the
+ operator is list concatenation,
not summation.

Creates a brand-new instance
of the model (untrained)

100 CHAPTER 4 Fundamentals of machine learning

validation_score = np.average(validation_scores)

model = get_model()

model.train(data)

test_score = model.evaluate(test_data)

ITERATED K-FOLD VALIDATION WITH SHUFFLING

This one is for situations in which you have relatively little data available and you need

to evaluate your model as precisely as possible. I’ve found it to be extremely helpful in

Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling

the data every time before splitting it K ways. The final score is the average of the

scores obtained at each run of K-fold validation. Note that you end up training and

evaluating P × K models (where P is the number of iterations you use), which can very

expensive.

4.2.2 Things to keep in mind

Keep an eye out for the following when you’re choosing an evaluation protocol:

Data representativeness—You want both your training set and test set to be repre-

sentative of the data at hand. For instance, if you’re trying to classify images of

digits, and you’re starting from an array of samples where the samples are

ordered by their class, taking the first 80% of the array as your training set and

the remaining 20% as your test set will result in your training set containing

only classes 0–7, whereas your test set contains only classes 8–9. This seems like

a ridiculous mistake, but it’s surprisingly common. For this reason, you usually

should randomly shuffle your data before splitting it into training and test sets.

The arrow of time—If you’re trying to predict the future given the past (for exam-

ple, tomorrow’s weather, stock movements, and so on), you should not ran-

domly shuffle your data before splitting it, because doing so will create a

temporal leak: your model will effectively be trained on data from the future. In

such situations, you should always make sure all data in your test set is posterior

to the data in the training set.

Redundancy in your data—If some data points in your data appear twice (fairly

common with real-world data), then shuffling the data and splitting it into a

training set and a validation set will result in redundancy between the training

and validation sets. In effect, you’ll be testing on part of your training data,

which is the worst thing you can do! Make sure your training set and validation

set are disjoint.

Validation score:
average of the
validation scores
of the k folds

Trains the final
model on all non-
test data available

101Data preprocessing, feature engineering, and feature learning

4.3 Data preprocessing, feature engineering,
and feature learning

In addition to model evaluation, an important question we must tackle before we dive

deeper into model development is the following: how do you prepare the input data

and targets before feeding them into a neural network? Many data-preprocessing and

feature-engineering techniques are domain specific (for example, specific to text data

or image data); we’ll cover those in the following chapters as we encounter them in

practical examples. For now, we’ll review the basics that are common to all data

domains.

4.3.1 Data preprocessing for neural networks

Data preprocessing aims at making the raw data at hand more amenable to neural

networks. This includes vectorization, normalization, handling missing values, and

feature extraction.

VECTORIZATION

All inputs and targets in a neural network must be tensors of floating-point data (or, in

specific cases, tensors of integers). Whatever data you need to process—sound,

images, text—you must first turn into tensors, a step called data vectorization. For

instance, in the two previous text-classification examples, we started from text repre-

sented as lists of integers (standing for sequences of words), and we used one-hot

encoding to turn them into a tensor of float32 data. In the examples of classifying

digits and predicting house prices, the data already came in vectorized form, so you

were able to skip this step.

VALUE NORMALIZATION

In the digit-classification example, you started from image data encoded as integers in

the 0–255 range, encoding grayscale values. Before you fed this data into your net-

work, you had to cast it to float32 and divide by 255 so you’d end up with floating-

point values in the 0–1 range. Similarly, when predicting house prices, you started

from features that took a variety of ranges—some features had small floating-point val-

ues, others had fairly large integer values. Before you fed this data into your network,

you had to normalize each feature independently so that it had a standard deviation

of 1 and a mean of 0.

 In general, it isn’t safe to feed into a neural network data that takes relatively large val-

ues (for example, multidigit integers, which are much larger than the initial values taken

by the weights of a network) or data that is heterogeneous (for example, data where one

feature is in the range 0–1 and another is in the range 100–200). Doing so can trigger

large gradient updates that will prevent the network from converging. To make learning

easier for your network, your data should have the following characteristics:

Take small values—Typically, most values should be in the 0–1 range.

Be homogenous—That is, all features should take values in roughly the same

range.

102 CHAPTER 4 Fundamentals of machine learning

Additionally, the following stricter normalization practice is common and can help,

although it isn’t always necessary (for example, you didn’t do this in the digit-classification

example):

Normalize each feature independently to have a mean of 0.

Normalize each feature independently to have a standard deviation of 1.

This is easy to do with Numpy arrays:

x -= x.mean(axis=0)

x /= x.std(axis=0)

HANDLING MISSING VALUES

You may sometimes have missing values in your data. For instance, in the house-price

example, the first feature (the column of index 0 in the data) was the per capita crime

rate. What if this feature wasn’t available for all samples? You’d then have missing val-

ues in the training or test data.

 In general, with neural networks, it’s safe to input missing values as 0, with the con-

dition that 0 isn’t already a meaningful value. The network will learn from exposure to

the data that the value 0 means missing data and will start ignoring the value.

 Note that if you’re expecting missing values in the test data, but the network was

trained on data without any missing values, the network won’t have learned to ignore

missing values! In this situation, you should artificially generate training samples with

missing entries: copy some training samples several times, and drop some of the fea-

tures that you expect are likely to be missing in the test data.

4.3.2 Feature engineering

Feature engineering is the process of using your own knowledge about the data and about

the machine-learning algorithm at hand (in this case, a neural network) to make the

algorithm work better by applying

hardcoded (nonlearned) transfor-

mations to the data before it goes

into the model. In many cases, it isn’t

reasonable to expect a machine-

learning model to be able to learn

from completely arbitrary data. The

data needs to be presented to the

model in a way that will make the

model’s job easier.

 Let’s look at an intuitive example.

Suppose you’re trying to develop a

model that can take as input an

image of a clock and can output the

time of day (see figure 4.3).

Assuming x is a 2D data matrix
of shape (samples, features)

Raw data:

pixel grid

Better

features:

clock hands’

coordinates

{x1: 0.7,

y1: 0.7}

{x2: 0.5,

y2: 0.0}

{x1: 0.0,

y2: 1.0}

{x2: -0.38,

2: 0.32}

Even better

features:

angles of

clock hands

theta1: 45

theta2: 0

theta1: 90

theta2: 140

Figure 4.3 Feature engineering for reading the time on

a clock

103Data preprocessing, feature engineering, and feature learning

If you choose to use the raw pixels of the image as input data, then you have a difficult

machine-learning problem on your hands. You’ll need a convolutional neural net-

work to solve it, and you’ll have to expend quite a bit of computational resources to

train the network.

 But if you already understand the problem at a high level (you understand how

humans read time on a clock face), then you can come up with much better input fea-

tures for a machine-learning algorithm: for instance, it’s easy to write a five-line

Python script to follow the black pixels of the clock hands and output the (x, y) coor-

dinates of the tip of each hand. Then a simple machine-learning algorithm can learn

to associate these coordinates with the appropriate time of day.

 You can go even further: do a coordinate change, and express the (x, y) coordi-

nates as polar coordinates with regard to the center of the image. Your input will

become the angle theta of each clock hand. At this point, your features are making

the problem so easy that no machine learning is required; a simple rounding opera-

tion and dictionary lookup are enough to recover the approximate time of day.

 That’s the essence of feature engineering: making a problem easier by expressing

it in a simpler way. It usually requires understanding the problem in depth.

 Before deep learning, feature engineering used to be critical, because classical

shallow algorithms didn’t have hypothesis spaces rich enough to learn useful features

by themselves. The way you presented the data to the algorithm was essential to its suc-

cess. For instance, before convolutional neural networks became successful on the

MNIST digit-classification problem, solutions were typically based on hardcoded fea-

tures such as the number of loops in a digit image, the height of each digit in an

image, a histogram of pixel values, and so on.

 Fortunately, modern deep learning removes the need for most feature engineer-

ing, because neural networks are capable of automatically extracting useful features

from raw data. Does this mean you don’t have to worry about feature engineering as

long as you’re using deep neural networks? No, for two reasons:

Good features still allow you to solve problems more elegantly while using fewer

resources. For instance, it would be ridiculous to solve the problem of reading a

clock face using a convolutional neural network.

Good features let you solve a problem with far less data. The ability of deep-

learning models to learn features on their own relies on having lots of training

data available; if you have only a few samples, then the information value in

their features becomes critical.

104 CHAPTER 4 Fundamentals of machine learning

4.4 Overfitting and underfitting

In all three examples in the previous chapter—predicting movie reviews, topic classifi-

cation, and house-price regression—the performance of the model on the held-out

validation data always peaked after a few epochs and then began to degrade: the

model quickly started to overfit to the training data. Overfitting happens in every

machine-learning problem. Learning how to deal with overfitting is essential to mas-

tering machine learning.

 The fundamental issue in machine learning is the tension between optimization

and generalization. Optimization refers to the process of adjusting a model to get the

best performance possible on the training data (the learning in machine learning),

whereas generalization refers to how well the trained model performs on data it has

never seen before. The goal of the game is to get good generalization, of course, but

you don’t control generalization; you can only adjust the model based on its training

data.

 At the beginning of training, optimization and generalization are correlated: the

lower the loss on training data, the lower the loss on test data. While this is happening,

your model is said to be underfit: there is still progress to be made; the network hasn’t

yet modeled all relevant patterns in the training data. But after a certain number of

iterations on the training data, generalization stops improving, and validation metrics

stall and then begin to degrade: the model is starting to overfit. That is, it’s beginning

to learn patterns that are specific to the training data but that are misleading or irrele-

vant when it comes to new data.

 To prevent a model from learning misleading or irrelevant patterns found in the

training data, the best solution is to get more training data. A model trained on more data

will naturally generalize better. When that isn’t possible, the next-best solution is to

modulate the quantity of information that your model is allowed to store or to add

constraints on what information it’s allowed to store. If a network can only afford to

memorize a small number of patterns, the optimization process will force it to focus

on the most prominent patterns, which have a better chance of generalizing well.

 The processing of fighting overfitting this way is called regularization. Let’s review

some of the most common regularization techniques and apply them in practice to

improve the movie-classification model from section 3.4.

4.4.1 Reducing the network’s size

The simplest way to prevent overfitting is to reduce the size of the model: the number

of learnable parameters in the model (which is determined by the number of layers

and the number of units per layer). In deep learning, the number of learnable param-

eters in a model is often referred to as the model’s capacity. Intuitively, a model with

more parameters has more memorization capacity and therefore can easily learn a per-

fect dictionary-like mapping between training samples and their targets—a mapping

without any generalization power. For instance, a model with 500,000 binary parame-

ters could easily be made to learn the class of every digit in the MNIST training set:

105Overfitting and underfitting

we’d need only 10 binary parameters for each of the 50,000 digits. But such a model

would be useless for classifying new digit samples. Always keep this in mind: deep-

learning models tend to be good at fitting to the training data, but the real challenge

is generalization, not fitting.

 On the other hand, if the network has limited memorization resources, it won’t be

able to learn this mapping as easily; thus, in order to minimize its loss, it will have to

resort to learning compressed representations that have predictive power regarding

the targets—precisely the type of representations we’re interested in. At the same

time, keep in mind that you should use models that have enough parameters that they

don’t underfit: your model shouldn’t be starved for memorization resources. There is

a compromise to be found between too much capacity and not enough capacity.

 Unfortunately, there is no magical formula to determine the right number of lay-

ers or the right size for each layer. You must evaluate an array of different architec-

tures (on your validation set, not on your test set, of course) in order to find the

correct model size for your data. The general workflow to find an appropriate model

size is to start with relatively few layers and parameters, and increase the size of the lay-

ers or add new layers until you see diminishing returns with regard to validation loss.

 Let’s try this on the movie-review classification network. The original network is

shown next.

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

Now let’s try to replace it with this smaller network.

model = models.Sequential()

model.add(layers.Dense(4, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(4, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.4 shows a comparison of the validation losses of the original network and the

smaller network. The dots are the validation loss values of the smaller network, and

the crosses are the initial network (remember, a lower validation loss signals a better

model).

Listing 4.3 Original model

Listing 4.4 Version of the model with lower capacity

106 CHAPTER 4 Fundamentals of machine learning

As you can see, the smaller network starts overfitting later than the reference network

(after six epochs rather than four), and its performance degrades more slowly once it

starts overfitting.

 Now, for kicks, let’s add to this benchmark a network that has much more capac-

ity—far more than the problem warrants.

model = models.Sequential()

model.add(layers.Dense(512, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.5 shows how the bigger network fares compared to the reference network.

The dots are the validation loss values of the bigger network, and the crosses are the

initial network.

Listing 4.5 Version of the model with higher capacity

Figure 4.4 Effect of model

capacity on validation loss: trying

a smaller model

Figure 4.5 Effect of model

capacity on validation loss:

trying a bigger model

107Overfitting and underfitting

The bigger network starts overfitting almost immediately, after just one epoch, and it

overfits much more severely. Its validation loss is also noisier.

 Meanwhile, figure 4.6 shows the training losses for the two networks. As you can

see, the bigger network gets its training loss near zero very quickly. The more capacity

the network has, the more quickly it can model the training data (resulting in a low

training loss), but the more susceptible it is to overfitting (resulting in a large differ-

ence between the training and validation loss).

4.4.2 Adding weight regularization

You may be familiar with the principle of Occam’s razor : given two explanations for

something, the explanation most likely to be correct is the simplest one—the one that

makes fewer assumptions. This idea also applies to the models learned by neural net-

works: given some training data and a network architecture, multiple sets of weight

values (multiple models) could explain the data. Simpler models are less likely to over-

fit than complex ones.

 A simple model in this context is a model where the distribution of parameter values

has less entropy (or a model with fewer parameters, as you saw in the previous sec-

tion). Thus a common way to mitigate overfitting is to put constraints on the complex-

ity of a network by forcing its weights to take only small values, which makes the

distribution of weight values more regular. This is called weight regularization, and it’s

done by adding to the loss function of the network a cost associated with having large

weights. This cost comes in two flavors:

L1 regularization—The cost added is proportional to the absolute value of the

weight coefficients (the L1 norm of the weights).

L2 regularization—The cost added is proportional to the square of the value of the

weight coefficients (the L2 norm of the weights). L2 regularization is also called

weight decay in the context of neural networks. Don’t let the different name con-

fuse you: weight decay is mathematically the same as L2 regularization.

Figure 4.6 Effect of model

capacity on training loss:

trying a bigger model

108 CHAPTER 4 Fundamentals of machine learning

In Keras, weight regularization is added by passing weight regularizer instances to layers

as keyword arguments. Let’s add L2 weight regularization to the movie-review classifi-

cation network.

from keras import regularizers

model = models.Sequential()

model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),

activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),

activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

l2(0.001) means every coefficient in the weight matrix of the layer will add 0.001 *

weight_coefficient_value to the total loss of the network. Note that because this

penalty is only added at training time, the loss for this network will be much higher at

training than at test time.

 Figure 4.7 shows the impact of the L2 regularization penalty. As you can see, the

model with L2 regularization (dots) has become much more resistant to overfitting

than the reference model (crosses), even though both models have the same number

of parameters.

As an alternative to L2 regularization, you can use one of the following Keras weight

regularizers.

from keras import regularizers

regularizers.l1(0.001)

regularizers.l1_l2(l1=0.001, l2=0.001)

Listing 4.6 Adding L2 weight regularization to the model

Listing 4.7 Different weight regularizers available in Keras

Figure 4.7 Effect of L2 weight

regularization on validation loss

L1 regularization Simultaneous L1 and
L2 regularization

109Overfitting and underfitting

4.4.3 Adding dropout

Dropout is one of the most effective and most commonly used regularization tech-

niques for neural networks, developed by Geoff Hinton and his students at the Uni-

versity of Toronto. Dropout, applied to a layer, consists of randomly dropping out

(setting to zero) a number of output features of the layer during training. Let’s say a

given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given input

sample during training. After applying dropout, this vector will have a few zero entries

distributed at random: for example, [0, 0.5, 1.3, 0, 1.1]. The dropout rate is the fraction

of the features that are zeroed out; it’s usually set between 0.2 and 0.5. At test time, no

units are dropped out; instead, the layer’s output values are scaled down by a factor

equal to the dropout rate, to balance for the fact that more units are active than at

training time.

 Consider a Numpy matrix containing the output of a layer, layer_output, of

shape (batch_size, features). At training time, we zero out at random a fraction of

the values in the matrix:

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)

At test time, we scale down the output by the dropout rate. Here, we scale by 0.5

(because we previously dropped half the units):

layer_output *= 0.5

Note that this process can be implemented by doing both operations at training time

and leaving the output unchanged at test time, which is often the way it’s imple-

mented in practice (see figure 4.8):

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)

layer_output /= 0.5

This technique may seem strange and arbitrary. Why would this help reduce overfit-

ting? Hinton says he was inspired by, among other things, a fraud-prevention mecha-

nism used by banks. In his own words, “I went to my bank. The tellers kept changing

and I asked one of them why. He said he didn’t know but they got moved around a lot.

At training time, drops out 50%
of the units in the output

At test time

At training timeNote that we’re scaling up rather
scaling down in this case.

0.3

* 2

0.6

0.2

0.7

0.2

0.1

1.9

0.5

1.5

0.0

0.3

1.0

0.0

0.3

1.2

0.0

0.0

50%

dropout 0.6

0.0

0.7

0.2

0.1

1.9

0.0

1.5

0.0

0.3

0.0

0.0

0.3

0.0

0.0

Figure 4.8 Dropout applied to an

activation matrix at training time,

with rescaling happening during

training. At test time, the activation

matrix is unchanged.

110 CHAPTER 4 Fundamentals of machine learning

I figured it must be because it would require cooperation between employees to suc-

cessfully defraud the bank. This made me realize that randomly removing a different

subset of neurons on each example would prevent conspiracies and thus reduce over-

fitting.”1 The core idea is that introducing noise in the output values of a layer can

break up happenstance patterns that aren’t significant (what Hinton refers to as con-

spiracies), which the network will start memorizing if no noise is present.

 In Keras, you can introduce dropout in a network via the Dropout layer, which is

applied to the output of the layer right before it:

model.add(layers.Dropout(0.5))

Let’s add two Dropout layers in the IMDB network to see how well they do at reducing

overfitting.

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.9 shows a plot of the results. Again, this is a clear improvement over the refer-

ence network.

To recap, these are the most common ways to prevent overfitting in neural networks:

Get more training data.

Reduce the capacity of the network.

Add weight regularization.

Add dropout.

1 See the Reddit thread “AMA: We are the Google Brain team. We’d love to answer your questions about
machine learning,” http://mng.bz/XrsS.

Listing 4.8 Adding dropout to the IMDB network

Figure 4.9 Effect of dropout

on validation loss

111The universal workflow of machine learning

4.5 The universal workflow of machine learning

In this section, we’ll present a universal blueprint that you can use to attack and solve

any machine-learning problem. The blueprint ties together the concepts you’ve

learned about in this chapter: problem definition, evaluation, feature engineering,

and fighting overfitting.

4.5.1 Defining the problem and assembling a dataset

First, you must define the problem at hand:

What will your input data be? What are you trying to predict? You can only learn

to predict something if you have available training data: for example, you can

only learn to classify the sentiment of movie reviews if you have both movie

reviews and sentiment annotations available. As such, data availability is usually

the limiting factor at this stage (unless you have the means to pay people to col-

lect data for you).

What type of problem are you facing? Is it binary classification? Multiclass classi-

fication? Scalar regression? Vector regression? Multiclass, multilabel classifica-

tion? Something else, like clustering, generation, or reinforcement learning?

Identifying the problem type will guide your choice of model architecture, loss

function, and so on.

You can’t move to the next stage until you know what your inputs and outputs are, and

what data you’ll use. Be aware of the hypotheses you make at this stage:

You hypothesize that your outputs can be predicted given your inputs.

You hypothesize that your available data is sufficiently informative to learn the

relationship between inputs and outputs.

Until you have a working model, these are merely hypotheses, waiting to be validated

or invalidated. Not all problems can be solved; just because you’ve assembled exam-

ples of inputs X and targets Y doesn’t mean X contains enough information to predict

Y. For instance, if you’re trying to predict the movements of a stock on the stock mar-

ket given its recent price history, you’re unlikely to succeed, because price history

doesn’t contain much predictive information.

 One class of unsolvable problems you should be aware of is nonstationary problems.

Suppose you’re trying to build a recommendation engine for clothing, you’re training

it on one month of data (August), and you want to start generating recommendations

in the winter. One big issue is that the kinds of clothes people buy change from season

to season: clothes buying is a nonstationary phenomenon over the scale of a few

months. What you’re trying to model changes over time. In this case, the right move is

to constantly retrain your model on data from the recent past, or gather data at a

timescale where the problem is stationary. For a cyclical problem like clothes buying, a

few years’ worth of data will suffice to capture seasonal variation—but remember to

make the time of the year an input of your model!

112 CHAPTER 4 Fundamentals of machine learning

 Keep in mind that machine learning can only be used to memorize patterns that

are present in your training data. You can only recognize what you’ve seen before.

Using machine learning trained on past data to predict the future is making the

assumption that the future will behave like the past. That often isn’t the case.

4.5.2 Choosing a measure of success

To control something, you need to be able to observe it. To achieve success, you must

define what you mean by success—accuracy? Precision and recall? Customer-retention

rate? Your metric for success will guide the choice of a loss function: what your model

will optimize. It should directly align with your higher-level goals, such as the success

of your business.

 For balanced-classification problems, where every class is equally likely, accuracy and

area under the receiver operating characteristic curve (ROC AUC) are common metrics. For

class-imbalanced problems, you can use precision and recall. For ranking problems or

multilabel classification, you can use mean average precision. And it isn’t uncommon

to have to define your own custom metric by which to measure success. To get a sense

of the diversity of machine-learning success metrics and how they relate to different

problem domains, it’s helpful to browse the data science competitions on Kaggle

(https://kaggle.com); they showcase a wide range of problems and evaluation metrics.

4.5.3 Deciding on an evaluation protocol

Once you know what you’re aiming for, you must establish how you’ll measure your

current progress. We’ve previously reviewed three common evaluation protocols:

Maintaining a hold-out validation set—The way to go when you have plenty of

data

Doing K-fold cross-validation—The right choice when you have too few samples

for hold-out validation to be reliable

Doing iterated K-fold validation—For performing highly accurate model evalua-

tion when little data is available

Just pick one of these. In most cases, the first will work well enough.

4.5.4 Preparing your data

Once you know what you’re training on, what you’re optimizing for, and how to evalu-

ate your approach, you’re almost ready to begin training models. But first, you should

format your data in a way that can be fed into a machine-learning model—here, we’ll

assume a deep neural network:

As you saw previously, your data should be formatted as tensors.

The values taken by these tensors should usually be scaled to small values: for

example, in the [-1, 1] range or [0, 1] range.

113The universal workflow of machine learning

If different features take values in different ranges (heterogeneous data), then

the data should be normalized.

You may want to do some feature engineering, especially for small-data problems.

Once your tensors of input data and target data are ready, you can begin to train models.

4.5.5 Developing a model that does better than a baseline

Your goal at this stage is to achieve statistical power : that is, to develop a small model

that is capable of beating a dumb baseline. In the MNIST digit-classification example,

anything that achieves an accuracy greater than 0.1 can be said to have statistical

power; in the IMDB example, it’s anything with an accuracy greater than 0.5.

 Note that it’s not always possible to achieve statistical power. If you can’t beat a ran-

dom baseline after trying multiple reasonable architectures, it may be that the answer

to the question you’re asking isn’t present in the input data. Remember that you make

two hypotheses:

You hypothesize that your outputs can be predicted given your inputs.

You hypothesize that the available data is sufficiently informative to learn the

relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you must go back to the

drawing board.

 Assuming that things go well, you need to make three key choices to build your

first working model:

Last-layer activation—This establishes useful constraints on the network’s out-

put. For instance, the IMDB classification example used sigmoid in the last

layer; the regression example didn’t use any last-layer activation; and so on.

Loss function—This should match the type of problem you’re trying to solve. For

instance, the IMDB example used binary_crossentropy, the regression exam-

ple used mse, and so on.

Optimization configuration—What optimizer will you use? What will its learning

rate be? In most cases, it’s safe to go with rmsprop and its default learning rate.

Regarding the choice of a loss function, note that it isn’t always possible to directly

optimize for the metric that measures success on a problem. Sometimes there is no

easy way to turn a metric into a loss function; loss functions, after all, need to be com-

putable given only a mini-batch of data (ideally, a loss function should be computable

for as little as a single data point) and must be differentiable (otherwise, you can’t use

backpropagation to train your network). For instance, the widely used classification

metric ROC AUC can’t be directly optimized. Hence, in classification tasks, it’s com-

mon to optimize for a proxy metric of ROC AUC, such as crossentropy. In general, you

can hope that the lower the crossentropy gets, the higher the ROC AUC will be.

 Table 4.1 can help you choose a last-layer activation and a loss function for a few

common problem types.

114 CHAPTER 4 Fundamentals of machine learning

4.5.6 Scaling up: developing a model that overfits

Once you’ve obtained a model that has statistical power, the question becomes, is your

model sufficiently powerful? Does it have enough layers and parameters to properly

model the problem at hand? For instance, a network with a single hidden layer with

two units would have statistical power on MNIST but wouldn’t be sufficient to solve the

problem well. Remember that the universal tension in machine learning is between

optimization and generalization; the ideal model is one that stands right at the border

between underfitting and overfitting; between undercapacity and overcapacity. To fig-

ure out where this border lies, first you must cross it.

 To figure out how big a model you’ll need, you must develop a model that overfits.

This is fairly easy:

1 Add layers.

2 Make the layers bigger.

3 Train for more epochs.

Always monitor the training loss and validation loss, as well as the training and valida-

tion values for any metrics you care about. When you see that the model’s perfor-

mance on the validation data begins to degrade, you’ve achieved overfitting.

 The next stage is to start regularizing and tuning the model, to get as close as pos-

sible to the ideal model that neither underfits nor overfits.

4.5.7 Regularizing your model and tuning your hyperparameters

This step will take the most time: you’ll repeatedly modify your model, train it, evalu-

ate on your validation data (not the test data, at this point), modify it again, and

repeat, until the model is as good as it can get. These are some things you should try:

Add dropout.

Try different architectures: add or remove layers.

Add L1 and/or L2 regularization.

Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type Last-layer activation Loss function

Binary classification sigmoid binary_crossentropy

Multiclass, single-label classification softmax categorical_crossentropy

Multiclass, multilabel classification sigmoid binary_crossentropy

Regression to arbitrary values None mse

Regression to values between 0 and 1 sigmoid mse or binary_crossentropy

115The universal workflow of machine learning

Try different hyperparameters (such as the number of units per layer or the

learning rate of the optimizer) to find the optimal configuration.

Optionally, iterate on feature engineering: add new features, or remove fea-

tures that don’t seem to be informative.

Be mindful of the following: every time you use feedback from your validation process

to tune your model, you leak information about the validation process into the model.

Repeated just a few times, this is innocuous; but done systematically over many itera-

tions, it will eventually cause your model to overfit to the validation process (even

though no model is directly trained on any of the validation data). This makes the

evaluation process less reliable.

 Once you’ve developed a satisfactory model configuration, you can train your final

production model on all the available data (training and validation) and evaluate it

one last time on the test set. If it turns out that performance on the test set is signifi-

cantly worse than the performance measured on the validation data, this may mean

either that your validation procedure wasn’t reliable after all, or that you began over-

fitting to the validation data while tuning the parameters of the model. In this case,

you may want to switch to a more reliable evaluation protocol (such as iterated K-fold

validation).

116 CHAPTER 4 Fundamentals of machine learning

Chapter summary

Define the problem at hand and the data on which you’ll train. Collect

this data, or annotate it with labels if need be.

Choose how you’ll measure success on your problem. Which metrics will

you monitor on your validation data?

Determine your evaluation protocol: hold-out validation? K-fold valida-

tion? Which portion of the data should you use for validation?

Develop a first model that does better than a basic baseline: a model with

statistical power.

Develop a model that overfits.

Regularize your model and tune its hyperparameters, based on perfor-

mance on the validation data. A lot of machine-learning research tends to

focus only on this step—but keep the big picture in mind.

