
56

Getting started
with neural networks

This chapter is designed to get you started with using neural networks to solve real

problems. You’ll consolidate the knowledge you gained from our first practical

example in chapter 2, and you’ll apply what you’ve learned to three new problems

covering the three most common use cases of neural networks: binary classifica-

tion, multiclass classification, and scalar regression.

 In this chapter, we’ll take a closer look at the core components of neural networks

that we introduced in chapter 2: layers, networks, objective functions, and optimiz-

ers. We’ll give you a quick introduction to Keras, the Python deep-learning library

that we’ll use throughout the book. You’ll set up a deep-learning workstation, with

This chapter covers

Core components of neural networks

An introduction to Keras

Setting up a deep-learning workstation

Using neural networks to solve basic

classification and regression problems

57

TensorFlow, Keras, and GPU support. We’ll dive into three introductory examples of

how to use neural networks to address real problems:

Classifying movie reviews as positive or negative (binary classification)

Classifying news wires by topic (multiclass classification)

Estimating the price of a house, given real-estate data (regression)

By the end of this chapter, you’ll be able to use neural networks to solve simple

machine problems such as classification and regression over vector data. You’ll then

be ready to start building a more principled, theory-driven understanding of machine

learning in chapter 4.

58 CHAPTER 3 Getting started with neural networks

3.1 Anatomy of a neural network

As you saw in the previous chapters, training a neural network revolves around the fol-

lowing objects:

Layers, which are combined into a network (or model)

The input data and corresponding targets

The loss function, which defines the feedback signal used for learning

The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed

of layers that are chained together, maps the input data to predictions. The loss func-

tion then compares these predictions to the targets, producing a loss value: a measure

of how well the network’s predictions match what was expected. The optimizer uses

this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were

introduced in chapter 2. A layer is a data-processing module that takes as input one or

more tensors and that outputs one or more tensors. Some layers are stateless, but

more frequently layers have a state: the layer’s weights, one or several tensors learned

with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data

processing. For instance, simple vector data, stored in 2D tensors of shape (samples,

features), is often processed by densely connected layers, also called fully connected or dense

layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,

timesteps, features), is typically processed by recurrent layers such as an LSTM layer.

Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).

Layer

(data transformation)

Input X

Weights

Layer

(data transformation)

Predictions

Y'

Weight

update
True targets

Y

Weights

Loss functionOptimizer

Loss score
Figure 3.1 Relationship between the

network, layers, loss function, and optimizer

59Anatomy of a neural network

 You can think of layers as the LEGO bricks of deep learning, a metaphor that is

made explicit by frameworks like Keras. Building deep-learning models in Keras is

done by clipping together compatible layers to form useful data-transformation pipe-

lines. The notion of layer compatibility here refers specifically to the fact that every layer

will only accept input tensors of a certain shape and will return output tensors of a cer-

tain shape. Consider the following example:

from keras import layers

layer = layers.Dense(32, input_shape=(784,))

We’re creating a layer that will only accept as input 2D tensors where the first dimen-

sion is 784 (axis 0, the batch dimension, is unspecified, and thus any value would be

accepted). This layer will return a tensor where the first dimension has been trans-

formed to be 32.

 Thus this layer can only be connected to a downstream layer that expects 32-

dimensional vectors as its input. When using Keras, you don’t have to worry about

compatibility, because the layers you add to your models are dynamically built to

match the shape of the incoming layer. For instance, suppose you write the following:

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, input_shape=(784,)))

model.add(layers.Dense(32))

The second layer didn’t receive an input shape argument—instead, it automatically

inferred its input shape as being the output shape of the layer that came before.

3.1.2 Models: networks of layers

A deep-learning model is a directed, acyclic graph of layers. The most common

instance is a linear stack of layers, mapping a single input to a single output.

 But as you move forward, you’ll be exposed to a much broader variety of network

topologies. Some common ones include the following:

Two-branch networks

Multihead networks

Inception blocks

The topology of a network defines a hypothesis space. You may remember that in chap-

ter 1, we defined machine learning as “searching for useful representations of some

input data, within a predefined space of possibilities, using guidance from a feedback

signal.” By choosing a network topology, you constrain your space of possibilities

(hypothesis space) to a specific series of tensor operations, mapping input data to out-

put data. What you’ll then be searching for is a good set of values for the weight ten-

sors involved in these tensor operations.

A dense layer with 32
output units

60 CHAPTER 3 Getting started with neural networks

 Picking the right network architecture is more an art than a science; and although

there are some best practices and principles you can rely on, only practice can help

you become a proper neural-network architect. The next few chapters will both teach

you explicit principles for building neural networks and help you develop intuition as

to what works or doesn’t work for specific problems.

3.1.3 Loss functions and optimizers:

keys to configuring the learning process

Once the network architecture is defined, you still have to choose two more things:

Loss function (objective function)—The quantity that will be minimized during

training. It represents a measure of success for the task at hand.

Optimizer—Determines how the network will be updated based on the loss func-

tion. It implements a specific variant of stochastic gradient descent (SGD).

A neural network that has multiple outputs may have multiple loss functions (one per

output). But the gradient-descent process must be based on a single scalar loss value;

so, for multiloss networks, all losses are combined (via averaging) into a single scalar

quantity.

 Choosing the right objective function for the right problem is extremely import-

ant: your network will take any shortcut it can, to minimize the loss; so if the objective

doesn’t fully correlate with success for the task at hand, your network will end up

doing things you may not have wanted. Imagine a stupid, omnipotent AI trained via

SGD, with this poorly chosen objective function: “maximizing the average well-being

of all humans alive.” To make its job easier, this AI might choose to kill all humans

except a few and focus on the well-being of the remaining ones—because average

well-being isn’t affected by how many humans are left. That might not be what you

intended! Just remember that all neural networks you build will be just as ruthless in

lowering their loss function—so choose the objective wisely, or you’ll have to face

unintended side effects.

 Fortunately, when it comes to common problems such as classification, regression,

and sequence prediction, there are simple guidelines you can follow to choose the

correct loss. For instance, you’ll use binary crossentropy for a two-class classification

problem, categorical crossentropy for a many-class classification problem, mean-

squared error for a regression problem, connectionist temporal classification (CTC)

for a sequence-learning problem, and so on. Only when you’re working on truly new

research problems will you have to develop your own objective functions. In the next

few chapters, we’ll detail explicitly which loss functions to choose for a wide range of

common tasks.

61Introduction to Keras

3.2 Introduction to Keras

Throughout this book, the code examples use Keras (https://keras.io). Keras is a

deep-learning framework for Python that provides a convenient way to define and

train almost any kind of deep-learning model. Keras was initially developed for

researchers, with the aim of enabling fast experimentation.

 Keras has the following key features:

It allows the same code to run seamlessly on CPU or GPU.

It has a user-friendly API that makes it easy to quickly prototype deep-learning

models.

It has built-in support for convolutional networks (for computer vision), recur-

rent networks (for sequence processing), and any combination of both.

It supports arbitrary network architectures: multi-input or multi-output models,

layer sharing, model sharing, and so on. This means Keras is appropriate for

building essentially any deep-learning model, from a generative adversarial net-

work to a neural Turing machine.

Keras is distributed under the permissive MIT license, which means it can be freely

used in commercial projects. It’s compatible with any version of Python from 2.7 to 3.6

(as of mid-2017).

 Keras has well over 200,000 users, ranging from academic researchers and engi-

neers at both startups and large companies to graduate students and hobbyists. Keras

is used at Google, Netflix, Uber, CERN, Yelp, Square, and hundreds of startups work-

ing on a wide range of problems. Keras is also a popular framework on Kaggle, the

machine-learning competition website, where almost every recent deep-learning com-

petition has been won using Keras models.

Figure 3.2 Google web search interest for different deep-learning frameworks over time

62 CHAPTER 3 Getting started with neural networks

3.2.1 Keras, TensorFlow, Theano, and CNTK

Keras is a model-level library, providing high-level building blocks for developing

deep-learning models. It doesn’t handle low-level operations such as tensor manipula-

tion and differentiation. Instead, it relies on a specialized, well-optimized tensor

library to do so, serving as the backend engine of Keras. Rather than choosing a single

tensor library and tying the implementation of Keras to that library, Keras handles the

problem in a modular way (see figure 3.3); thus several different backend engines can

be plugged seamlessly into Keras. Currently, the three existing backend implementa-

tions are the TensorFlow backend, the Theano backend, and the Microsoft Cognitive

Toolkit (CNTK) backend. In the future, it’s likely that Keras will be extended to work

with even more deep-learning execution engines.

TensorFlow, CNTK, and Theano are some of the primary platforms for deep learning

today. Theano (http://deeplearning.net/software/theano) is developed by the MILA

lab at Université de Montréal , TensorFlow (www.tensorflow.org) is developed by Google,

and CNTK (https://github.com/Microsoft/CNTK) is developed by Microsoft. Any

piece of code that you write with Keras can be run with any of these backends without

having to change anything in the code: you can seamlessly switch between the two

during development, which often proves useful—for instance, if one of these backends

proves to be faster for a specific task. We recommend using the TensorFlow backend as

the default for most of your deep-learning needs, because it’s the most widely adopted,

scalable, and production ready.

 Via TensorFlow (or Theano, or CNTK), Keras is able to run seamlessly on both

CPUs and GPUs. When running on CPU, TensorFlow is itself wrapping a low-level

library for tensor operations called Eigen (http://eigen.tuxfamily.org). On GPU,

TensorFlow wraps a library of well-optimized deep-learning operations called the

NVIDIA CUDA Deep Neural Network library (cuDNN).

3.2.2 Developing with Keras: a quick overview

You’ve already seen one example of a Keras model: the MNIST example. The typical

Keras workflow looks just like that example:

1 Define your training data: input tensors and target tensors.

2 Define a network of layers (or model) that maps your inputs to your targets.

Figure 3.3 The deep-learning

software and hardware stack

63Introduction to Keras

3 Configure the learning process by choosing a loss function, an optimizer, and

some metrics to monitor.

4 Iterate on your training data by calling the fit() method of your model.

There are two ways to define a model: using the Sequential class (only for linear

stacks of layers, which is the most common network architecture by far) or the func-

tional API (for directed acyclic graphs of layers, which lets you build completely arbi-

trary architectures).

 As a refresher, here’s a two-layer model defined using the Sequential class (note

that we’re passing the expected shape of the input data to the first layer):

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, activation='relu', input_shape=(784,)))

model.add(layers.Dense(10, activation='softmax'))

And here’s the same model defined using the functional API:

input_tensor = layers.Input(shape=(784,))

x = layers.Dense(32, activation='relu')(input_tensor)

output_tensor = layers.Dense(10, activation='softmax')(x)

model = models.Model(inputs=input_tensor, outputs=output_tensor)

With the functional API, you’re manipulating the data tensors that the model pro-

cesses and applying layers to this tensor as if they were functions.

NOTE A detailed guide to what you can do with the functional API can be
found in chapter 7. Until chapter 7, we’ll only be using the Sequential class
in our code examples.

Once your model architecture is defined, it doesn’t matter whether you used a

Sequential model or the functional API. All of the following steps are the same.

 The learning process is configured in the compilation step, where you specify the

optimizer and loss function(s) that the model should use, as well as the metrics you

want to monitor during training. Here’s an example with a single loss function, which

is by far the most common case:

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss='mse',

metrics=['accuracy'])

Finally, the learning process consists of passing Numpy arrays of input data (and the

corresponding target data) to the model via the fit() method, similar to what you

would do in Scikit-Learn and several other machine-learning libraries:

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

64 CHAPTER 3 Getting started with neural networks

Over the next few chapters, you’ll build a solid intuition about what type of network

architectures work for different kinds of problems, how to pick the right learning con-

figuration, and how to tweak a model until it gives the results you want to see. We’ll

look at three basic examples in sections 3.4, 3.5, and 3.6: a two-class classification

example, a many-class classification example, and a regression example.

65Setting up a deep-learning workstation

3.3 Setting up a deep-learning workstation

Before you can get started developing deep-learning applications, you need to set up

your workstation. It’s highly recommended, although not strictly necessary, that you

run deep-learning code on a modern NVIDIA GPU. Some applications—in particular,

image processing with convolutional networks and sequence processing with recur-

rent neural networks—will be excruciatingly slow on CPU, even a fast multicore CPU.

And even for applications that can realistically be run on CPU, you’ll generally see

speed increase by a factor or 5 or 10 by using a modern GPU. If you don’t want to

install a GPU on your machine, you can alternatively consider running your experi-

ments on an AWS EC2 GPU instance or on Google Cloud Platform. But note that cloud

GPU instances can become expensive over time.

 Whether you’re running locally or in the cloud, it’s better to be using a Unix work-

station. Although it’s technically possible to use Keras on Windows (all three Keras

backends support Windows), We don’t recommend it. In the installation instructions

in appendix A, we’ll consider an Ubuntu machine. If you’re a Windows user, the sim-

plest solution to get everything running is to set up an Ubuntu dual boot on your

machine. It may seem like a hassle, but using Ubuntu will save you a lot of time and

trouble in the long run.

 Note that in order to use Keras, you need to install TensorFlow or CNTK or Theano

(or all of them, if you want to be able to switch back and forth among the three back-

ends). In this book, we’ll focus on TensorFlow, with some light instructions relative to

Theano. We won’t cover CNTK.

3.3.1 Jupyter notebooks: the preferred way

to run deep-learning experiments

Jupyter notebooks are a great way to run deep-learning experiments—in particular,

the many code examples in this book. They’re widely used in the data-science and

machine-learning communities. A notebook is a file generated by the Jupyter Notebook

app (https://jupyter.org), which you can edit in your browser. It mixes the ability to

execute Python code with rich text-editing capabilities for annotating what you’re

doing. A notebook also allows you to break up long experiments into smaller pieces

that can be executed independently, which makes development interactive and means

you don’t have to rerun all of your previous code if something goes wrong late in an

experiment.

 We recommend using Jupyter notebooks to get started with Keras, although that

isn’t a requirement: you can also run standalone Python scripts or run code from within

an IDE such as PyCharm. All the code examples in this book are available as open source

notebooks; you can download them from the book’s website at www.manning

.com/books/deep-learning-with-python.

66 CHAPTER 3 Getting started with neural networks

3.3.2 Getting Keras running: two options

To get started in practice, we recommend one of the following two options:

Use the official EC2 Deep Learning AMI (https://aws.amazon.com/amazon-

ai/amis), and run Keras experiments as Jupyter notebooks on EC2. Do this if

you don’t already have a GPU on your local machine. Appendix B provides a

step-by-step guide.

Install everything from scratch on a local Unix workstation. You can then run

either local Jupyter notebooks or a regular Python codebase. Do this if you

already have a high-end NVIDIA GPU. Appendix A provides an Ubuntu-specific,

step-by-step guide.

Let’s take a closer look at some of the compromises involved in picking one option

over the other.

3.3.3 Running deep-learning jobs in the cloud: pros and cons

If you don’t already have a GPU that you can use for deep learning (a recent, high-end

NVIDIA GPU), then running deep-learning experiments in the cloud is a simple, low-

cost way for you to get started without having to buy any additional hardware. If you’re

using Jupyter notebooks, the experience of running in the cloud is no different from

running locally. As of mid-2017, the cloud offering that makes it easiest to get started

with deep learning is definitely AWS EC2. Appendix B provides a step-by-step guide to

running Jupyter notebooks on a EC2 GPU instance.

 But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long

term—or even for more than a few weeks. EC2 instances are expensive: the instance

type recommended in appendix B (the p2.xlarge instance, which won’t provide you

with much power) costs $0.90 per hour as of mid-2017. Meanwhile, a solid consumer-

class GPU will cost you somewhere between $1,000 and $1,500—a price that has been

fairly stable over time, even as the specs of these GPUs keep improving. If you’re serious

about deep learning, you should set up a local workstation with one or more GPUs.

 In short, EC2 is a great way to get started. You could follow the code examples in

this book entirely on an EC2 GPU instance. But if you’re going to be a power user of

deep learning, get your own GPUs.

3.3.4 What is the best GPU for deep learning?

If you’re going to buy a GPU, which one should you choose? The first thing to note is

that it must be an NVIDIA GPU. NVIDIA is the only graphics computing company that

has invested heavily in deep learning so far, and modern deep-learning frameworks

can only run on NVIDIA cards.

 As of mid-2017, we recommend the NVIDIA TITAN Xp as the best card on the mar-

ket for deep learning. For lower budgets, you may want to consider the GTX 1060. If

you’re reading these pages in 2018 or later, take the time to look online for fresher

recommendations, because new models come out every year.

67Setting up a deep-learning workstation

 From this section onward, we’ll assume that you have access to a machine with

Keras and its dependencies installed—preferably with GPU support. Make sure you

finish this step before you proceed. Go through the step-by-step guides in the appen-

dixes, and look online if you need further help. There is no shortage of tutorials on

how to install Keras and common deep-learning dependencies.

 We can now dive into practical Keras examples.

68 CHAPTER 3 Getting started with neural networks

3.4 Classifying movie reviews:
a binary classification example

Two-class classification, or binary classification, may be the most widely applied kind

of machine-learning problem. In this example, you’ll learn to classify movie reviews as

positive or negative, based on the text content of the reviews.

3.4.1 The IMDB dataset

You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the

Internet Movie Database. They’re split into 25,000 reviews for training and 25,000

reviews for testing, each set consisting of 50% negative and 50% positive reviews.

 Why use separate training and test sets? Because you should never test a machine-

learning model on the same data that you used to train it! Just because a model per-

forms well on its training data doesn’t mean it will perform well on data it has never

seen; and what you care about is your model’s performance on new data (because you

already know the labels of your training data—obviously you don’t need your model

to predict those). For instance, it’s possible that your model could end up merely mem-

orizing a mapping between your training samples and their targets, which would be

useless for the task of predicting targets for data the model has never seen before.

We’ll go over this point in much more detail in the next chapter.

 Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has

already been preprocessed: the reviews (sequences of words) have been turned into

sequences of integers, where each integer stands for a specific word in a dictionary.

 The following code will load the dataset (when you run it the first time, about

80 MB of data will be downloaded to your machine).

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(

num_words=10000)

The argument num_words=10000 means you’ll only keep the top 10,000 most fre-

quently occurring words in the training data. Rare words will be discarded. This allows

you to work with vector data of manageable size.

 The variables train_data and test_data are lists of reviews; each review is a list of

word indices (encoding a sequence of words). train_labels and test_labels are

lists of 0s and 1s, where 0 stands for negative and 1 stands for positive :

>>> train_data[0]

[1, 14, 22, 16, ... 178, 32]

>>> train_labels[0]

1

Listing 3.1 Loading the IMDB dataset

69Classifying movie reviews: a binary classification example

Because you’re restricting yourself to the top 10,000 most frequent words, no word

index will exceed 10,000:

>>> max([max(sequence) for sequence in train_data])

9999

For kicks, here’s how you can quickly decode one of these reviews back to English

words:

word_index = imdb.get_word_index()

reverse_word_index = dict(

[(value, key) for (key, value) in word_index.items()])

decoded_review = ' '.join(

[reverse_word_index.get(i - 3, '?') for i in train_data[0]])

3.4.2 Preparing the data

You can’t feed lists of integers into a neural network. You have to turn your lists into

tensors. There are two ways to do that:

Pad your lists so that they all have the same length, turn them into an integer

tensor of shape (samples, word_indices), and then use as the first layer in

your network a layer capable of handling such integer tensors (the Embedding

layer, which we’ll cover in detail later in the book).

One-hot encode your lists to turn them into vectors of 0s and 1s. This would

mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vec-

tor that would be all 0s except for indices 3 and 5, which would be 1s. Then you

could use as the first layer in your network a Dense layer, capable of handling

floating-point vector data.

Let’s go with the latter solution to vectorize the data, which you’ll do manually for

maximum clarity.

import numpy as np

def vectorize_sequences(sequences, dimension=10000):

results = np.zeros((len(sequences), dimension))

for i, sequence in enumerate(sequences):

results[i, sequence] = 1.

return results

x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)

Listing 3.2 Encoding the integer sequences into a binary matrix

word_index is a dictionary mapping
words to an integer index.

Reverses it, mapping
integer indices to words

Decodes the review. Note that the indices
are offset by 3 because 0, 1, and 2 are

reserved indices for “padding,” “start of
sequence,” and “unknown.”

Creates an all-zero matrix
of shape (len(sequences),
dimension)

Sets specific indices
of results[i] to 1s

Vectorized training data
Vectorized test data

70 CHAPTER 3 Getting started with neural networks

Here’s what the samples look like now:

>>> x_train[0]

array([0., 1., 1., ..., 0., 0., 0.])

You should also vectorize your labels, which is straightforward:

y_train = np.asarray(train_labels).astype('float32')

y_test = np.asarray(test_labels).astype('float32')

Now the data is ready to be fed into a neural network.

3.4.3 Building your network

The input data is vectors, and the labels are scalars (1s and 0s): this is the easiest setup

you’ll ever encounter. A type of network that performs well on such a problem is

a simple stack of fully connected (Dense) layers with relu activations: Dense(16,

activation='relu').

 The argument being passed to each Dense layer (16) is the number of hidden

units of the layer. A hidden unit is a dimension in the representation space of the layer.

You may remember from chapter 2 that each such Dense layer with a relu activation

implements the following chain of tensor operations:

output = relu(dot(W, input) + b)

Having 16 hidden units means the weight matrix W will have shape (input_dimension,

16): the dot product with W will project the input data onto a 16-dimensional represen-

tation space (and then you’ll add the bias vector b and apply the relu operation). You

can intuitively understand the dimensionality of your representation space as “how

much freedom you’re allowing the network to have when learning internal represen-

tations.” Having more hidden units (a higher-dimensional representation space)

allows your network to learn more-complex representations, but it makes the network

more computationally expensive and may lead to learning unwanted patterns (pat-

terns that will improve performance on the training data but not on the test data).

 There are two key architecture decisions to be made about such a stack of Dense layers:

How many layers to use

How many hidden units to choose for each layer

In chapter 4, you’ll learn formal principles to guide you in making these choices. For

the time being, you’ll have to trust me with the following architecture choice:

Two intermediate layers with 16 hidden units each

A third layer that will output the scalar prediction regarding the sentiment of

the current review

The intermediate layers will use relu as their activation function, and the final layer

will use a sigmoid activation so as to output a probability (a score between 0 and 1,

71Classifying movie reviews: a binary classification example

indicating how likely the sample is to have the target “1”: how likely the review is to be

positive). A relu (rectified linear unit) is a function meant to zero out negative values

(see figure 3.4), whereas a sigmoid “squashes” arbitrary values into the [0, 1] interval

(see figure 3.5), outputting something that can be interpreted as a probability.

Figure 3.4 The rectified linear unit function

Figure 3.5 The sigmoid function

72 CHAPTER 3 Getting started with neural networks

Figure 3.6 shows what the network looks like. And here’s the Keras implementation,

similar to the MNIST example you saw previously.

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

Finally, you need to choose a loss function and an optimizer. Because you’re facing a

binary classification problem and the output of your network is a probability (you end

your network with a single-unit layer with a sigmoid activation), it’s best to use the

Listing 3.3 The model definition

Dense (units=1)

Output

(probability)

Input

(vectorized text)

Sequential

Dense (units=16)

Dense (units=16)

Figure 3.6 The three-layer network

What are activation functions, and why are they necessary?

Without an activation function like relu (also called a non-linearity), the Dense layer

would consist of two linear operations—a dot product and an addition:

output = dot(W, input) + b

So the layer could only learn linear transformations (affine transformations) of the

input data: the hypothesis space of the layer would be the set of all possible linear

transformations of the input data into a 16-dimensional space. Such a hypothesis

space is too restricted and wouldn’t benefit from multiple layers of representations,

because a deep stack of linear layers would still implement a linear operation: adding

more layers wouldn’t extend the hypothesis space.

In order to get access to a much richer hypothesis space that would benefit from

deep representations, you need a non-linearity, or activation function. relu is the

most popular activation function in deep learning, but there are many other candi-

dates, which all come with similarly strange names: prelu, elu, and so on.

73Classifying movie reviews: a binary classification example

binary_crossentropy loss. It isn’t the only viable choice: you could use, for instance,

mean_squared_error. But crossentropy is usually the best choice when you’re dealing

with models that output probabilities. Crossentropy is a quantity from the field of Infor-

mation Theory that measures the distance between probability distributions or, in this

case, between the ground-truth distribution and your predictions.

 Here’s the step where you configure the model with the rmsprop optimizer and

the binary_crossentropy loss function. Note that you’ll also monitor accuracy

during training.

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['accuracy'])

You’re passing your optimizer, loss function, and metrics as strings, which is possible

because rmsprop, binary_crossentropy, and accuracy are packaged as part of Keras.

Sometimes you may want to configure the parameters of your optimizer or pass a cus-

tom loss function or metric function. The former can be done by passing an optimizer

class instance as the optimizer argument, as shown in listing 3.5; the latter can be

done by passing function objects as the loss and/or metrics arguments, as shown in

listing 3.6.

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss='binary_crossentropy',

metrics=['accuracy'])

from keras import losses

from keras import metrics

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss=losses.binary_crossentropy,

metrics=[metrics.binary_accuracy])

3.4.4 Validating your approach

In order to monitor during training the accuracy of the model on data it has never

seen before, you’ll create a validation set by setting apart 10,000 samples from the

original training data.

x_val = x_train[:10000]

partial_x_train = x_train[10000:]

Listing 3.4 Compiling the model

Listing 3.5 Configuring the optimizer

Listing 3.6 Using custom losses and metrics

Listing 3.7 Setting aside a validation set

74 CHAPTER 3 Getting started with neural networks

y_val = y_train[:10000]

partial_y_train = y_train[10000:]

You’ll now train the model for 20 epochs (20 iterations over all samples in the

x_train and y_train tensors), in mini-batches of 512 samples. At the same time,

you’ll monitor loss and accuracy on the 10,000 samples that you set apart. You do so by

passing the validation data as the validation_data argument.

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['acc'])

history = model.fit(partial_x_train,

partial_y_train,

epochs=20,

batch_size=512,

validation_data=(x_val, y_val))

On CPU, this will take less than 2 seconds per epoch—training is over in 20 seconds.

At the end of every epoch, there is a slight pause as the model computes its loss and

accuracy on the 10,000 samples of the validation data.

 Note that the call to model.fit() returns a History object. This object has a mem-

ber history, which is a dictionary containing data about everything that happened

during training. Let’s look at it:

>>> history_dict = history.history

>>> history_dict.keys()

[u'acc', u'loss', u'val_acc', u'val_loss']

The dictionary contains four entries: one per metric that was being monitored during

training and during validation. In the following two listing, let’s use Matplotlib to plot

the training and validation loss side by side (see figure 3.7), as well as the training and

validation accuracy (see figure 3.8). Note that your own results may vary slightly due to

a different random initialization of your network.

import matplotlib.pyplot as plt

history_dict = history.history

loss_values = history_dict['loss']

val_loss_values = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')

plt.plot(epochs, val_loss_values, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Listing 3.8 Training your model

Listing 3.9 Plotting the training and validation loss

“bo” is for
“blue dot.”

“b” is for “solid
blue line.”

75Classifying movie reviews: a binary classification example

plt.clf()

acc_values = history_dict['acc']

val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Listing 3.10 Plotting the training and validation accuracy

Figure 3.7 Training and validation loss

Clears the figure

Figure 3.8 Training and validation accuracy

76 CHAPTER 3 Getting started with neural networks

As you can see, the training loss decreases with every epoch, and the training accuracy

increases with every epoch. That’s what you would expect when running gradient-

descent optimization—the quantity you’re trying to minimize should be less with

every iteration. But that isn’t the case for the validation loss and accuracy: they seem to

peak at the fourth epoch. This is an example of what we warned against earlier: a

model that performs better on the training data isn’t necessarily a model that will do

better on data it has never seen before. In precise terms, what you’re seeing is overfit-

ting : after the second epoch, you’re overoptimizing on the training data, and you end

up learning representations that are specific to the training data and don’t generalize

to data outside of the training set.

 In this case, to prevent overfitting, you could stop training after three epochs. In

general, you can use a range of techniques to mitigate overfitting, which we’ll cover in

chapter 4.

 Let’s train a new network from scratch for four epochs and then evaluate it on the

test data.

model = models.Sequential()

model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(16, activation='relu'))

model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['accuracy'])

model.fit(x_train, y_train, epochs=4, batch_size=512)

results = model.evaluate(x_test, y_test)

The final results are as follows:

>>> results

[0.2929924130630493, 0.88327999999999995]

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art

approaches, you should be able to get close to 95%.

3.4.5 Using a trained network to generate predictions on new data

After having trained a network, you’ll want to use it in a practical setting. You can gen-

erate the likelihood of reviews being positive by using the predict method:

>>> model.predict(x_test)

array([[0.98006207]

[0.99758697]

[0.99975556]

...,

[0.82167041]

[0.02885115]

[0.65371346]], dtype=float32)

Listing 3.11 Retraining a model from scratch

77Classifying movie reviews: a binary classification example

As you can see, the network is confident for some samples (0.99 or more, or 0.01 or

less) but less confident for others (0.6, 0.4).

3.4.6 Further experiments

The following experiments will help convince you that the architecture choices you’ve

made are all fairly reasonable, although there’s still room for improvement:

You used two hidden layers. Try using one or three hidden layers, and see how

doing so affects validation and test accuracy.

Try using layers with more hidden units or fewer hidden units: 32 units, 64 units,

and so on.

Try using the mse loss function instead of binary_crossentropy.

Try using the tanh activation (an activation that was popular in the early days of

neural networks) instead of relu.

3.4.7 Wrapping up

Here’s what you should take away from this example:

You usually need to do quite a bit of preprocessing on your raw data in order to

be able to feed it—as tensors—into a neural network. Sequences of words can

be encoded as binary vectors, but there are other encoding options, too.

Stacks of Dense layers with relu activations can solve a wide range of problems

(including sentiment classification), and you’ll likely use them frequently.

In a binary classification problem (two output classes), your network should

end with a Dense layer with one unit and a sigmoid activation: the output of

your network should be a scalar between 0 and 1, encoding a probability.

With such a scalar sigmoid output on a binary classification problem, the loss

function you should use is binary_crossentropy.

The rmsprop optimizer is generally a good enough choice, whatever your prob-

lem. That’s one less thing for you to worry about.

As they get better on their training data, neural networks eventually start over-

fitting and end up obtaining increasingly worse results on data they’ve never

seen before. Be sure to always monitor performance on data that is outside of

the training set.

78 CHAPTER 3 Getting started with neural networks

3.5 Classifying newswires:
a multiclass classification example

In the previous section, you saw how to classify vector inputs into two mutually exclu-
sive classes using a densely connected neural network. But what happens when you
have more than two classes?

 In this section, you’ll build a network to classify Reuters newswires into 46 mutually
exclusive topics. Because you have many classes, this problem is an instance of multi-

class classification; and because each data point should be classified into only one cate-
gory, the problem is more specifically an instance of single-label, multiclass classification.
If each data point could belong to multiple categories (in this case, topics), you’d be
facing a multilabel, multiclass classification problem.

3.5.1 The Reuters dataset

You’ll work with the Reuters dataset, a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy dataset for text classification. There
are 46 different topics; some topics are more represented than others, but each topic
has at least 10 examples in the training set.

 Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(

num_words=10000)

As with the IMDB dataset, the argument num_words=10000 restricts the data to the
10,000 most frequently occurring words found in the data.

 You have 8,982 training examples and 2,246 test examples:

>>> len(train_data)

8982

>>> len(test_data)

2246

As with the IMDB reviews, each example is a list of integers (word indices):

>>> train_data[10]

[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,

3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

Here’s how you can decode it back to words, in case you’re curious.

word_index = reuters.get_word_index()

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in

train_data[0]])

Listing 3.12 Loading the Reuters dataset

Listing 3.13 Decoding newswires back to text

Note that the indices are offset by 3 because 0, 1, and 2 are reserved
indices for “padding,” “start of sequence,” and “unknown.”

79Classifying newswires: a multiclass classification example

The label associated with an example is an integer between 0 and 45—a topic index:

>>> train_labels[10]

3

3.5.2 Preparing the data

You can vectorize the data with the exact same code as in the previous example.

import numpy as np

def vectorize_sequences(sequences, dimension=10000):

results = np.zeros((len(sequences), dimension))

for i, sequence in enumerate(sequences):

results[i, sequence] = 1.

return results

x_train = vectorize_sequences(train_data)

x_test = vectorize_sequences(test_data)

To vectorize the labels, there are two possibilities: you can cast the label list as an inte-

ger tensor, or you can use one-hot encoding. One-hot encoding is a widely used for-

mat for categorical data, also called categorical encoding. For a more detailed

explanation of one-hot encoding, see section 6.1. In this case, one-hot encoding of

the labels consists of embedding each label as an all-zero vector with a 1 in the place of

the label index. Here’s an example:

def to_one_hot(labels, dimension=46):

results = np.zeros((len(labels), dimension))

for i, label in enumerate(labels):

results[i, label] = 1.

return results

one_hot_train_labels = to_one_hot(train_labels)

one_hot_test_labels = to_one_hot(test_labels)

Note that there is a built-in way to do this in Keras, which you’ve already seen in action

in the MNIST example:

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)

one_hot_test_labels = to_categorical(test_labels)

3.5.3 Building your network

This topic-classification problem looks similar to the previous movie-review classifica-

tion problem: in both cases, you’re trying to classify short snippets of text. But there is

a new constraint here: the number of output classes has gone from 2 to 46. The

dimensionality of the output space is much larger.

 In a stack of Dense layers like that you’ve been using, each layer can only access infor-

mation present in the output of the previous layer. If one layer drops some information

Listing 3.14 Encoding the data

Vectorized training data

Vectorized test data

Vectorized training labels

Vectorized test labels

80 CHAPTER 3 Getting started with neural networks

relevant to the classification problem, this information can never be recovered by later

layers: each layer can potentially become an information bottleneck. In the previous

example, you used 16-dimensional intermediate layers, but a 16-dimensional space may

be too limited to learn to separate 46 different classes: such small layers may act as infor-

mation bottlenecks, permanently dropping relevant information.

 For this reason you’ll use larger layers. Let’s go with 64 units.

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))

There are two other things you should note about this architecture:

You end the network with a Dense layer of size 46. This means for each input

sample, the network will output a 46-dimensional vector. Each entry in this vec-

tor (each dimension) will encode a different output class.

The last layer uses a softmax activation. You saw this pattern in the MNIST

example. It means the network will output a probability distribution over the 46

different output classes—for every input sample, the network will produce a 46-

dimensional output vector, where output[i] is the probability that the sample

belongs to class i. The 46 scores will sum to 1.

The best loss function to use in this case is categorical_crossentropy. It measures

the distance between two probability distributions: here, between the probability dis-

tribution output by the network and the true distribution of the labels. By minimizing

the distance between these two distributions, you train the network to output some-

thing as close as possible to the true labels.

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

3.5.4 Validating your approach

Let’s set apart 1,000 samples in the training data to use as a validation set.

x_val = x_train[:1000]

partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]

partial_y_train = one_hot_train_labels[1000:]

Listing 3.15 Model definition

Listing 3.16 Compiling the model

Listing 3.17 Setting aside a validation set

81Classifying newswires: a multiclass classification example

Now, let’s train the network for 20 epochs.

history = model.fit(partial_x_train,

partial_y_train,

epochs=20,

batch_size=512,

validation_data=(x_val, y_val))

And finally, let’s display its loss and accuracy curves (see figures 3.9 and 3.10).

import matplotlib.pyplot as plt

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.clf()

acc = history.history['acc']

val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')

plt.plot(epochs, val_acc, 'b', label='Validation acc')

plt.title('Training and validation accuracy')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Listing 3.18 Training the model

Listing 3.19 Plotting the training and validation loss

Listing 3.20 Plotting the training and validation accuracy

Clears the figure

Figure 3.9 Training and validation loss

82 CHAPTER 3 Getting started with neural networks

The network begins to overfit after nine epochs. Let’s train a new network from

scratch for nine epochs and then evaluate it on the test set.

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(partial_x_train,

partial_y_train,

epochs=9,

batch_size=512,

validation_data=(x_val, y_val))

results = model.evaluate(x_test, one_hot_test_labels)

Here are the final results:

>>> results

[0.9565213431445807, 0.79697239536954589]

This approach reaches an accuracy of ~80%. With a balanced binary classification

problem, the accuracy reached by a purely random classifier would be 50%. But in

this case it’s closer to 19%, so the results seem pretty good, at least when compared to

a random baseline:

>>> import copy

>>> test_labels_copy = copy.copy(test_labels)

>>> np.random.shuffle(test_labels_copy)

>>> hits_array = np.array(test_labels) == np.array(test_labels_copy)

>>> float(np.sum(hits_array)) / len(test_labels)

0.18655387355298308

Listing 3.21 Retraining a model from scratch

Figure 3.10 Training and

validation accuracy

83Classifying newswires: a multiclass classification example

3.5.5 Generating predictions on new data

You can verify that the predict method of the model instance returns a probability

distribution over all 46 topics. Let’s generate topic predictions for all of the test data.

predictions = model.predict(x_test)

Each entry in predictions is a vector of length 46:

>>> predictions[0].shape

(46,)

The coefficients in this vector sum to 1:

>>> np.sum(predictions[0])

1.0

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax(predictions[0])

4

3.5.6 A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as

an integer tensor, like this:

y_train = np.array(train_labels)

y_test = np.array(test_labels)

The only thing this approach would change is the choice of the loss function. The loss

function used in listing 3.21, categorical_crossentropy, expects the labels to follow

a categorical encoding. With integer labels, you should use sparse_categorical_

crossentropy:

model.compile(optimizer='rmsprop',

loss='sparse_categorical_crossentropy',

metrics=['acc'])

This new loss function is still mathematically the same as categorical_crossentropy;

it just has a different interface.

3.5.7 The importance of having sufficiently large intermediate layers

We mentioned earlier that because the final outputs are 46-dimensional, you should

avoid intermediate layers with many fewer than 46 hidden units. Now let’s see what

happens when you introduce an information bottleneck by having intermediate layers

that are significantly less than 46-dimensional: for example, 4-dimensional.

Listing 3.22 Generating predictions for new data

84 CHAPTER 3 Getting started with neural networks

model = models.Sequential()

model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model.add(layers.Dense(4, activation='relu'))

model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(partial_x_train,

partial_y_train,

epochs=20,

batch_size=128,

validation_data=(x_val, y_val))

The network now peaks at ~71% validation accuracy, an 8% absolute drop. This drop

is mostly due to the fact that you’re trying to compress a lot of information (enough

information to recover the separation hyperplanes of 46 classes) into an intermediate

space that is too low-dimensional. The network is able to cram most of the necessary

information into these eight-dimensional representations, but not all of it.

3.5.8 Further experiments

Try using larger or smaller layers: 32 units, 128 units, and so on.

You used two hidden layers. Now try using a single hidden layer, or three hid-

den layers.

3.5.9 Wrapping up

Here’s what you should take away from this example:

If you’re trying to classify data points among N classes, your network should end

with a Dense layer of size N.

In a single-label, multiclass classification problem, your network should end

with a softmax activation so that it will output a probability distribution over the

N output classes.

Categorical crossentropy is almost always the loss function you should use for

such problems. It minimizes the distance between the probability distributions

output by the network and the true distribution of the targets.

There are two ways to handle labels in multiclass classification:

– Encoding the labels via categorical encoding (also known as one-hot encod-

ing) and using categorical_crossentropy as a loss function

– Encoding the labels as integers and using the sparse_categorical_crossentropy

loss function

If you need to classify data into a large number of categories, you should avoid

creating information bottlenecks in your network due to intermediate layers

that are too small.

Listing 3.23 A model with an information bottleneck

85Predicting house prices: a regression example

3.6 Predicting house prices: a regression example

The two previous examples were considered classification problems, where the goal

was to predict a single discrete label of an input data point. Another common type of

machine-learning problem is regression, which consists of predicting a continuous

value instead of a discrete label: for instance, predicting the temperature tomorrow,

given meteorological data; or predicting the time that a software project will take to

complete, given its specifications.

NOTE Don’t confuse regression and the algorithm logistic regression. Con-
fusingly, logistic regression isn’t a regression algorithm—it’s a classification
algorithm.

3.6.1 The Boston Housing Price dataset

You’ll attempt to predict the median price of homes in a given Boston suburb in the

mid-1970s, given data points about the suburb at the time, such as the crime rate, the

local property tax rate, and so on. The dataset you’ll use has an interesting difference

from the two previous examples. It has relatively few data points: only 506, split

between 404 training samples and 102 test samples. And each feature in the input data

(for example, the crime rate) has a different scale. For instance, some values are pro-

portions, which take values between 0 and 1; others take values between 1 and 12, oth-

ers between 0 and 100, and so on.

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =

➥boston_housing.load_data()

Let’s look at the data:

>>> train_data.shape

(404, 13)

>>> test_data.shape

(102, 13)

As you can see, you have 404 training samples and 102 test samples, each with 13

numerical features, such as per capita crime rate, average number of rooms per dwell-

ing, accessibility to highways, and so on.

 The targets are the median values of owner-occupied homes, in thousands of

dollars:

>>> train_targets

[15.2, 42.3, 50. ... 19.4, 19.4, 29.1]

The prices are typically between $10,000 and $50,000. If that sounds cheap, remem-

ber that this was the mid-1970s, and these prices aren’t adjusted for inflation.

Listing 3.24 Loading the Boston housing dataset

86 CHAPTER 3 Getting started with neural networks

3.6.2 Preparing the data

It would be problematic to feed into a neural network values that all take wildly differ-

ent ranges. The network might be able to automatically adapt to such heterogeneous

data, but it would definitely make learning more difficult. A widespread best practice

to deal with such data is to do feature-wise normalization: for each feature in the input

data (a column in the input data matrix), you subtract the mean of the feature and

divide by the standard deviation, so that the feature is centered around 0 and has a

unit standard deviation. This is easily done in Numpy.

mean = train_data.mean(axis=0)

train_data -= mean

std = train_data.std(axis=0)

train_data /= std

test_data -= mean

test_data /= std

Note that the quantities used for normalizing the test data are computed using the

training data. You should never use in your workflow any quantity computed on the

test data, even for something as simple as data normalization.

3.6.3 Building your network

Because so few samples are available, you’ll use a very small network with two hidden

layers, each with 64 units. In general, the less training data you have, the worse overfit-

ting will be, and using a small network is one way to mitigate overfitting.

from keras import models

from keras import layers

def build_model():

model = models.Sequential()

model.add(layers.Dense(64, activation='relu',

input_shape=(train_data.shape[1],)))

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(1))

model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

return model

The network ends with a single unit and no activation (it will be a linear layer). This is

a typical setup for scalar regression (a regression where you’re trying to predict a single

continuous value). Applying an activation function would constrain the range the out-

put can take; for instance, if you applied a sigmoid activation function to the last layer,

the network could only learn to predict values between 0 and 1. Here, because the last

layer is purely linear, the network is free to learn to predict values in any range.

Listing 3.25 Normalizing the data

Listing 3.26 Model definition

Because you’ll need to instantiate
the same model multiple times, you
use a function to construct it.

87Predicting house prices: a regression example

 Note that you compile the network with the mse loss function—mean squared error,

the square of the difference between the predictions and the targets. This is a widely

used loss function for regression problems.

 You’re also monitoring a new metric during training: mean absolute error (MAE). It’s

the absolute value of the difference between the predictions and the targets. For

instance, an MAE of 0.5 on this problem would mean your predictions are off by $500

on average.

3.6.4 Validating your approach using K-fold validation

To evaluate your network while you keep adjusting its parameters (such as the number

of epochs used for training), you could split the data into a training set and a valida-

tion set, as you did in the previous examples. But because you have so few data points,

the validation set would end up being very small (for instance, about 100 examples).

As a consequence, the validation scores might change a lot depending on which data

points you chose to use for validation and which you chose for training: the validation

scores might have a high variance with regard to the validation split. This would pre-

vent you from reliably evaluating your model.

 The best practice in such situations is to use K-fold cross-validation (see figure 3.11).

It consists of splitting the available data into K partitions (typically K = 4 or 5), instanti-

ating K identical models, and training each one on K – 1 partitions while evaluating on

the remaining partition. The validation score for the model used is then the average of

the K validation scores obtained. In terms of code, this is straightforward.

import numpy as np

k = 4

num_val_samples = len(train_data) // k

num_epochs = 100

all_scores = []

Listing 3.27 K-fold validation

Data split into 3 partitions

Validation Training Training
Validation

score #1
Fold 1

Validation Validation Training
Validation

score #2

Final score:

average
Fold 2

Validation Training Validation
Validation

score #3
Fold 3

Figure 3.11 3-fold cross-validation

88 CHAPTER 3 Getting started with neural networks

for i in range(k):

print('processing fold #', i)

val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

train_data[(i + 1) * num_val_samples:]],

axis=0)

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

train_targets[(i + 1) * num_val_samples:]],

axis=0)

model = build_model()

model.fit(partial_train_data, partial_train_targets,

epochs=num_epochs, batch_size=1, verbose=0)

val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)

all_scores.append(val_mae)

Running this with num_epochs = 100 yields the following results:

>>> all_scores

[2.588258957792037, 3.1289568449719116, 3.1856116051248984, 3.0763342615401386]

>>> np.mean(all_scores)

2.9947904173572462

The different runs do indeed show rather different validation scores, from 2.6 to 3.2.

The average (3.0) is a much more reliable metric than any single score—that’s the

entire point of K-fold cross-validation. In this case, you’re off by $3,000 on average,

which is significant considering that the prices range from $10,000 to $50,000.

 Let’s try training the network a bit longer: 500 epochs. To keep a record of how

well the model does at each epoch, you’ll modify the training loop to save the per-

epoch validation score log.

num_epochs = 500

all_mae_histories = []

for i in range(k):

print('processing fold #', i)

val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]

val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

partial_train_data = np.concatenate(

[train_data[:i * num_val_samples],

train_data[(i + 1) * num_val_samples:]],

axis=0)

Listing 3.28 Saving the validation logs at each fold

Prepares the validation data:
data from partition #k

Prepares the training data:
data from all other partitions

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

Evaluates the model
on the validation data

Prepares the validation data:
data from partition #k

Prepares the training
data: data from all
other partitions

89Predicting house prices: a regression example

partial_train_targets = np.concatenate(

[train_targets[:i * num_val_samples],

train_targets[(i + 1) * num_val_samples:]],

axis=0)

model = build_model()

history = model.fit(partial_train_data, partial_train_targets,

validation_data=(val_data, val_targets),

epochs=num_epochs, batch_size=1, verbose=0)

mae_history = history.history['val_mean_absolute_error']

all_mae_histories.append(mae_history)

You can then compute the average of the per-epoch MAE scores for all folds.

average_mae_history = [

np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

Let’s plot this; see figure 3.12.

import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

It may be a little difficult to see the plot, due to scaling issues and relatively high vari-

ance. Let’s do the following:

Omit the first 10 data points, which are on a different scale than the rest of the curve.

Replace each point with an exponential moving average of the previous points,

to obtain a smooth curve.

Listing 3.29 Building the history of successive mean K-fold validation scores

Listing 3.30 Plotting validation scores

Builds the Keras model
(already compiled)

Trains the model
(in silent mode, verbose=0)

Figure 3.12 Validation

MAE by epoch

90 CHAPTER 3 Getting started with neural networks

The result is shown in figure 3.13.

def smooth_curve(points, factor=0.9):

smoothed_points = []

for point in points:

if smoothed_points:

previous = smoothed_points[-1]

smoothed_points.append(previous * factor + point * (1 - factor))

else:

smoothed_points.append(point)

return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)

plt.xlabel('Epochs')

plt.ylabel('Validation MAE')

plt.show()

According to this plot, validation MAE stops improving significantly after 80 epochs.

Past that point, you start overfitting.

 Once you’re finished tuning other parameters of the model (in addition to the

number of epochs, you could also adjust the size of the hidden layers), you can train a

final production model on all of the training data, with the best parameters, and then

look at its performance on the test data.

model = build_model()

model.fit(train_data, train_targets,

epochs=80, batch_size=16, verbose=0)

test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

Listing 3.31 Plotting validation scores, excluding the first 10 data points

Listing 3.32 Training the final model

Figure 3.13 Validation MAE

by epoch, excluding the first

10 data points

Gets a fresh, compiled model

Trains it on the entirety of the data

91Predicting house prices: a regression example

Here’s the final result:

>>> test_mae_score

2.5532484335057877

You’re still off by about $2,550.

3.6.5 Wrapping up

Here’s what you should take away from this example:

Regression is done using different loss functions than what we used for classifi-

cation. Mean squared error (MSE) is a loss function commonly used for regres-

sion.

Similarly, evaluation metrics to be used for regression differ from those used for

classification; naturally, the concept of accuracy doesn’t apply for regression. A

common regression metric is mean absolute error (MAE).

When features in the input data have values in different ranges, each feature

should be scaled independently as a preprocessing step.

When there is little data available, using K-fold validation is a great way to reli-

ably evaluate a model.

When little training data is available, it’s preferable to use a small network with

few hidden layers (typically only one or two), in order to avoid severe overfitting.

92 CHAPTER 3 Getting started with neural networks

Chapter summary

You’re now able to handle the most common kinds of machine-learning

tasks on vector data: binary classification, multiclass classification, and sca-

lar regression. The “Wrapping up” sections earlier in the chapter summa-

rize the important points you’ve learned regarding these types of tasks.

You’ll usually need to preprocess raw data before feeding it into a neural

network.

When your data has features with different ranges, scale each feature

independently as part of preprocessing.

As training progresses, neural networks eventually begin to overfit and

obtain worse results on never-before-seen data.

If you don’t have much training data, use a small network with only one or

two hidden layers, to avoid severe overfitting.

If your data is divided into many categories, you may cause information

bottlenecks if you make the intermediate layers too small.

Regression uses different loss functions and different evaluation metrics

than classification.

When you’re working with little data, K-fold validation can help reliably

evaluate your model.

