Introduction to
Tensor Calculus,
Relativity and
Cosmology

DO.F. Lawden

This elementary introduction pays special attention to aspects of tensor calculus
and relativity that students tend to find most difficult. lts use of relatively
unsophisticated mathematics in the early chapters allows readers to develop
their confidence within the framework of Cartesian coordinates before undertaking
the theory of tensors in curved spaces and its application to general relativity theory.

Topics include the special principle of relativity and Lorentz transformations;
orthogonal transformations and Cartesian tensors; special relativity mechanics
and electrodynamics; general tensor calculus and Riemannian space; and the general
theory of relativity, including a focus on black holes and gravitational waves. The
text concludes with a chapter offering a sound background in applying the principles
of general relativity to cosmology.

Numerous exercises advance the theoretical developments of the main text, thus
enhancing this volume’s appeal to students of applied mathematics and physics
at both undergraduate and postgraduate levels.

Dover (2002) unabridged republication of the third edition, originally published
by John Wiley & Sons, New York, 1982. Preface. List of Constants. References.
Bibliography. Index. xiii+205pp. 6'k x 9'%. Paperbound.

ALSO AVAILABLE
MATHEMATICS FOR PHysicists, Philippe Dennery and André Krzywicki. 400pp. 6'% x 9.
691934
TeNsor CaLcuLus, J. L. Synge and A. Schild. 324pp. 5% x 8. 63612-7
TENSOR ANALYSIS FOR PHysicists, J. A. Schouten. 289pp. 5% x 8 /. 65582-2

For current price information write to Dover Publications, or log on to
www.doverpublications.com—and see every Dover book in print.

Free Dover Mathematics and Science Catalog
(59065-8) available upon request.

ISBN O-48k-42540-1

! Il 9co000
fzﬁ |
$14.95 IN USA |
olizg0486l425405! i

s22.50 IN CANADA

ADOIONSOI ONV ALIALLYTIM

‘S 1T 10TV HOSNAL

uapme]

1-0tS2-981-0 13700

Q

0 NOLL 0N

Introduction to
Tensor (alculus,
Relativity and
LCosmology

. F. Lawden



Introduction to
TENSOR CALCULUS,
RELATIVITY AND COSMOLOGY

Third Edition

D. F. Lawden

Emeritus Professor
University of Aston in Birmingham, U.K

DOVER PUBLICATIONS, INC.
Mineola, New York



Copyright
Copyright € 1962. 1967, 1975 by D. F. Lawden
Copyright € 1982 by John Wiley & Sons, Ltd.
All rights reserved under Pan American and International Copyright
Conventions.

Bibliographical Note

This Dover edition, first published in 2002. is an unabridged republication of
the third edition of the work. originally published by John Wiley & Sons, New
York. in 1982.

Readers of this book who would like to receive the solutions to the exercises
may request them from the publisher at the following e-mail address:
editors@doverpublications.com.

Library of Congress Cataloging-in-Publication Data

Lawden, Derek F.
Introduction to tensor calculus, relativity, and cosmology / D.F. Lawden. —
3rd ed.
p.cm.

Originally published: 3rd ed. Chichester [Sussex] : New York : Wiley. ¢1982.
Includes bibliographical references and index.

ISBN 0-486-42540-1 (pbk.)

1. Relativity (Physics) 2. Calculus of tensors. 3. Cosmology. 1. Title.

QC173.55 .L38 2002
530.11—dc21

Manufactured in the United Siates of Amcrica
Dover Publications. Inc.. 31 East 2nd Street. Mineola. N.Y. 11501






Contents

Preface . . . . .. ... ... ... ix
Listof Constants. . . ... . ... ... .. .......................... Xiii
Chapter 1 Special Principle of Relativity. Lorentz Transformations . 1
1. Newtons laws of motion . . . . . ... ... ............ 1

2. Covariance of the laws of motion . . . . . ... .. .. ... . .. 3

3. Special principle of relativity . . . ... ... ... ... ... ... 4

4. Lorentz transformations. Minkowski space-time . . . . .. ... 6

5. The special Loreniz transformation . . . . ... .. .. ... ... 9

6. Fitzgerald contraction. Time dilation . . .. . ... .. ... ... 12

7. Spacelike and timelike intervals. Lightcone . . .. ... ... .. 14
Exercises 1 . . ... ... .. ... ... 17
Chapter 2 Orthogonal Transformations. Cartesian Tensors . . . . . . 21
8. Orthogonal transformations. . . . .. . ... ....... .... 21

9. Repeated-index summation convention . . . . ... ... ... .. 23

10. Rectangular Cartesian tensors. . . . . . . ... ........... 24

11. Invariants. Gradients. Derivatives of tensors . . . . . .. ... .. 27

12. Contraction. Scalar product. Divergence . . . ... ... ... .. 28

13. Pseudotensors. . . .. .. ... . ... .. ... 29

14. Vector products. Curl . . .. .. ... ... ... ... 30
Exercises 2. . .. . ... ... ... .. 31
Chapter 3 Special Relativity Mechanies . . . ... ... ... .. .... 39
15. The velocity vector . . . . . . .. .. .. .. ... ... 39

16. Mass and momentum . . . .. ... ... ... ... ... 41

17. The force vector. Emergy. . . . ... .. ... ... ........ 4

18. Lorentz transformation equations for force. . . . . .. ... . .. 46

19. Fundamental particles. Photon and neutrino. . . . . .. ... .. 47

20. Lagrange's and Hamilton’s equations . . . . . ... ... ... .. 48

21. Energy-momentum tensor. . . . . . .. . . ... et 50

22. Energy-momentum tensor forafluid . . . . .. ... .. ..... 53

23. Angular momentum . . . ... ... ... 57
Exercises 3 . . . . . . ... 59



vl

Chapter 4 Special Relativity Electrodynamics. . . . . .. ... ... .. 73
24. 4-Currentdensity . . . .. . . ... .. 73
25. 4-Vector potential. . . . . . . ... ..o 74
26. Thefield tensor . . . . .. .. .. ... ... 75
27. Loreniz transformations of electric and magnetic vectors . . . . 77
28. The Lorentz force. . . . .. ... ... ... .. ........... 79
29. The energy-momentum tensor for an electromagnetic field . . . 79
Exercises 4. . . . . ... ... 82

Chapter 5§ General Tensor Calculus. Riemannian Space. . . . . . . . . 86
30. Generalized N-dimensional spaces . . . . .. ... ... ... .... 86
31. Contravariant and covariant tensors. . . . . .. ... .. ... .. 89
32. The quotient theorem. Conjugate tensors. . . . . . . .. .. ... 94
33. Covariant derivatives. Parallel displacement. Affine connection . 95
34. Transformation of an affinity. . . .. ... ... .. ... .. . .. 98
35. Covariant derivatives of tensors . . . . . .. ... ... ... ... 100
36. The Riemann--Christoffel curvature tensor . . . . .. .. ... .. 102
37. Metrical connection. Raising and lowering indices. . . . . . . .. 105
38. Scalar products. Magnitudes of vectors . . . . .. ... L. 107
39. Geodesic frame. Christoffel symbols. . . . . ... . ... ... .. 108
40. Bianchiidentity . . . .. . ... .o 111
41. The covariant curvature tensor . . . . . . . . ... ... ... ... 11
42. Divergence. The Laplacian. Einstein's tensor . . . ... . ... .. 112
43. Geodesics . . . ... L. 114
Exercises 5. .. .. . . . . ... 117

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

Chapter 6 General Theory of Relativity . . . . .. ... .. ... . . 127
Principle of equivalence . . . . ... . ... ... .. ... ... .. 127
Metric in a gravitational field. . . . . ... ... ... ....... 130
Motion of a free particle in a gravitational field. . . ... . ... 133
Einstein’s law of gravitation. . . .. .. ... .. ... ....... 135
Acceleration of a particle in a weak gravitational field . . . . .. 137
Newton’s law of gravitation. . . ... .. ... .. ...... ... 139
Freely fallingdustcloud. . . . ... ... ... ........... 140
Metrics with spherical symmetry. . . ... .. ... ... 142
Schwarzschild’s solution . . . . . . .. ... ... ... ... 145
Planetaryorbits. . . . . . ... ... .. ... . ... ... .. 147
Gravitational deflection of a lightray . . . .. . .. ... ... .. 150
Gravitational displacement of spectral lines. . . . ... ... ... 152
Maxwell's equations in a gravitational field. . . . .. ... . .. 154
Black holes. . . . ... .. ... ... 155
Gravitational waves. . . . . . .. .. ... ... ... ... .. 159

58.



Chapter 7 Cosmology . . . . . ... ... ... . ... ... .. 174
59. Cosmological principle. Cosmical time . . . . . ... ... . ... 174
60. Spaces of constant curvature . . .. . . ... ... ... .. ... 176
61. The Robertson-Walker metric . . . . . ... ... ... ... .... 180
62. Hubble's constant and the deceleration parameter. . . . . . . . . 181
63. Red shift of galaxies . . ... ... ... ... ... ... ....... 182
64. Luminosity distance . . . . . ... ... ... oL 183
65. Cosmicdynamics . . . . . ... .. .. ... L 185
66. Model universes of Einstein and de Sitter . . . . . .. .. .. .. 188
67. Friedmann universes . . . . . .. . ... .. ... ... ... 189
68. Radiation model . . . . ... ... ... L 193
69. Particle and event horizons . . . . . ... ... ... ... ... 195
Exercises 7. . .. .. ... L 197
References . . . . . . . . . ... 199
Bibliography. . . . . . . .. ... 200






Preface

The revolt against the ancient world view of a universe centred upon the earth,
which was initiated by Copernicus and further developed by Kepler, Galileo and
Newton, reached its natural termination in Einstein's theories of relativity.
Starting from the concept that there exists a unique privileged observer of the
cosmos, namely man himself, natural philosophy has journeyed to the opposite
pole and now accepts as a fundamental principle that all observers are equivalent,
in the sense that each can explain the behaviour of the cosmos by application of
the same set of natural laws. Another line of thought whose complete
development takes place within the context of special relativity is that pioneered
by Maxwell, electromagnetic field theory. Indeed, since the Lorentz transform-
ation equations upon which the special theory is based constitute none other than
the transformation group under which Maxwell’s equations remain of invariant
form, the relativistic expression of these equations discovered by Minkowski is
more natural than Maxwell’s. In the history of natural philosophy, therefore,
relativity theory represents the culmination of three centuries of mathematical
modelling of the macroscopic physical world; it stands at the end ofaneraand is a
magnificent and fitting memorial to the golden age of mathematical physics which
came to anend at the time of the First World War. Einstein’s triumph was also his
tragedy; although he was inspired 1o create a masterpiece, this proved to be a
monument to the past and its very perfection a barrier 1o future development.
Thus, although all the implications of the general theory have not yet been
uncovered, the barrenness of Einstein’s later explorations indicates that the
growth areas of mathematical physics lie elsewhere, presumably in the fecund soil
of quantum and elementary-particle theory.

Nevertheless, relativity theory, especially the special form, provides a found-
ation upon which all later developments have been constructed and it seems
destined 1o continue in this role for a long time yet. A thorough knowledge of its
elements is accordingly a prerequisite for all students who wish to understand
contemporary theories of the physical world and possibly to contribute to their
expansion. This being universally recognized, university courses in applied
mathematics and mathematical physics commonly include an introductory
course in the subject at the undergraduate level, usually in the second and third
years, but occasionally even in the first year. This book has been written to
provide a suitable supporting text for such courses. The author has 1aught this
type of class for the past twenty-five years and has become very familiar with the
difficulties regularly experienced by students when they first study this subject;
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the identification of these perplexities and their careful resolution has therefore
been one of my main aims when preparing this account. To assist the student
further in mastering the subject, | have collected together a large number of
exercises and these will be found at the end of each chapter; most have been set as
course work or in examinations for my own classes and, I think, cover almost all
aspects normally treated at this level. It is hoped, therefore, that the book wili also
prove helpful to lecturers as a source of problems for setting in exercise classes.

When preparing my plan for the devciopment of the subject, I decided to
disregard completely the historical order of evolution of the ideas and 1o present
these in the most natural logical and didactic manner possible. In the case of a
fully established (and, indeed, venerable) theory, any other arrangement for an
introductory text is unjustifiable. As a consequence, many facets of the subject
which were at the centre of atiention during the early years of its evolution have
been relegated to the exercises or omitted entirely. For example, details of the
seminal Michelson-Morley experiment and its associated calculations have not
been included. Although this event was the spark which ignited the relativistic
tinder, it is now apparent that this was an historical accident and that, being
implicit in Maxwell’s principles of electromagnetism. it was incvitable that the
special theory would be formulated near the turn of the century. Neither is the
experiment any longer to be regarded as a crucial test of the theory. since the
theory’s manifold implications for all branches of physics have provided
countless other checks, all of which have told inits favour. The early controversies
attending the birth of relativity theory are, however, of great human interest and
students who wish to follow these are referred to the books by Clark, Hoffmann
and Lanczos listed in the Bibliography at the end of this book.

A curious feature of the history of the special theory is the persistence of certain
paradoxes which arose shortly after it was first propounded by Einstein and
which were largely disposed of at that time. In spite of this, they are rediscovered
every decade or so and editors of popular scientific periodicals (and occasionally,
and more reprehensibly, serious research journals) seem happy to provide space
in which these old battles can be refought, thus generating a good deal of
acrimony on all sides (and, presumably, improving circulation). The source of the
paradoxes is invariably a failure to appreciate that the special theory is restricted
in its validity to inertial frames of reference or an inability 1o jettison the
Newtonian concept of a unique ordering of events in time. Complete books based
on these misconceptions have been published by authors who should know
better, thus giving students the unfortunate impression that the consistency of
this system of ideas is still in doubt. I have therefore felt it necessary to mention
some of these ‘paradoxes’ at appropriate points in the text and to indicate how
they are resolved; others have been used as a basis for exercises, providing
excellent practice for the student to train himself to think relativistically.

Much of the text was originally published in 1962 under the title An
Introduction to Tensor Calculus and Relativity. All these sections have been
thoroughly revised in the light of my teaching experience, one or two sections
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have been discarded as containing material which has proved to be of little
importance for an understanding of the basics (e.g. relative tensors) and a number
of new sections have been added (e.g. equations of motion of an elastic fluid, black
holes. gravitational waves, and a more detailed account of the relationship
between the metric and affine connections). But the main improvement is the
addition of a chapter covering the application of the general theory 1o cosmology.
As a result of the great strides made in the development of optical and,
particularly, radio astronomy during the last twenty years, cosmological science
has moved towards the centre of interest for physics and very few university
courses in the general theory now fail to include lectures in this area.

It is a common (and desirable) practice to provide separate courses in the special
and general theories, the special being covered in the second or third under-
graduate year and the general in the final year of the undergraduate course or the
first year of a postgraduate course. The book has been arranged with this in mind
and the first four chapters form a complete unit, suitable for reading by students
who may not progress to the general theory. Such students need not be burdened
with the general theory of tensors and Riemannian spaces, but can acquire a
mastery of the principles of the special theory using only the unsophisticated tool
of Cartesian tensors in Euclidean (or quasi-Euclidean) space. In my experience,
even students who intend to take a course in the general theory also benefit from
exposure 1o the special theory in this form, since it enables them to concentrate
upon the difficulties of the relativity principles and not to be distracted by
avoidable complexities of notation. I have no sympathy with the teacher who,
encouraged by the shallow values of the times, regards it as a virtue that his
lectures exhibit his own present mastery of the subject rather than his
appreciation of his students’ bewilderment on being led into unfamiliar territory.
Allstudents should, in any case, be aware of the simpler form the theory of tensors
assumes when the transformation group is restricted to be orthogonal.

As a consequence of my decision to develop the special theory within the
context of Cartesian tensors, it was necessary to reduce the special relativistic
metric to Pythagorean form by the introduction of either purely imaginary
spatial coordinates or a purely imaginary time coordinate for an event. I have
followed Minkowski and put x4 = ict; thus, the metric has necessarily been taken
in the form

ds? = dx,? +dx,% +dx;2 4+ dx,? = dx? +dy? + dz? —c2de?

and ds has the dimension of length. I have retained this definition of the interval
between two events observed from a freely falling frame in the general theory; this
not only avoids confusion but, in the weak-field approximation, permits the
distinction between covariant and contravariant components of a tensor to be
eliminated by the introduction of an imaginary time. A disadvantage is that ds is
imaginary for timelike intervals and the interval parameter s accordingly takes
imaginary values along the world-line of any material body. Thus, when writing
down the equations for the geodesic world-line of a freely falling body, it is
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usually convenient to replace s by 1, defined by the equation s = ict,  being called
the proper time and dr the proper time interval. However, it is understood
throughout the exposition of the general theory that the metric tensor for space-
time g,; is such that ds? = g,; dx* dx/; a consequence is that the cosmical constant
term in Einstein’s equation of gravitation has a sign opposite to that taken by
some authors.

References in the text are made by author and year and have been collected
together at the end of the book.

D. F. LawDEN

Department of Mathematics,
The University of Aston in Birmingham.
May, 1981.
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CHAPTER 1

Special Principle of Relativity. Lorentz
Transformations

1. Newton’s laws of motion

A proper appreciation of the physical content of Newton’s three laws of motion is
an essential prerequisite for any study of the special theory of relativity. It will be
shown that these laws are in accordance with the fundamental principle upon
which the theory is based and thus they will also serve as a convenient
introduction to this principle.

The first law states that any particle which is not subjecied to forces moves along
a straight line at constant speed. Since the motion of a particle can only be specified
relative to some coordinate frame of reference, this statement has meaning only
when the reference frame to be employed when observing the particle’s motion
has been indicated. Also, since the concept of force has not, at this point, received
a definition, it will be necessary to explain how we are to judge when a particle is
‘not subjected to forces’. It will be taken as an observed fact that if rectangular
axes are taken with their origin at the centre of the sun and these axes do not
rotate relative to the most distant objects known to astronomy, viz. the
extragalactic nebulae, then the motions of the neighbouring stars relative to this
frame are very nearly uniform. The departure from uniformity can reasonably be
accounted for as due to the influence of the stars upon one another and the
evidence available suggests very strongly that if the motion of a body in a region
infinitely remote from all other bodies could be observed, then its motion would
always prove to be uniform relative to our reference frame irrespective of the
manner in which the motion was initiated.

We shall accordingly regard the first law as asserting that, in a region of space
remote from all other matter and empty save for a single test particle, a reference
frame can be defined relative 1o which the particle will always have a uniform
motion. Such a frame will be referred to as an inertial frame. An example of such
an inertial frame which is conveniently employed when discussing the motions of
bodies within the solar system has been described above. However, if S is any
inertial frame and §is another frame whose axes are always parallel to those of S
but whose origin moves with a constant velocity u relative to S, then § also is
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inertial. For. if v, ¥ are the velocities of the test particle relative to S, S respectively,
then

V=v—u (1.1)

and, since v is always constant, so is v. It follows, therefore, that a frame whose
originisat the earth’s centre and whose axes do not rotate relative to the siars can,
for most practical purposes, be looked upon as an inertial frame, for the motion of
the earth relative to the sun is very nearly uniform over periods of time which are
normally the subject of dynamical calculations. In fact, since the earth’s rotation
is slow by ordinary standards, a frame which is fixed in this body can aiso be
treated as approximately inertial and this assumption will only lead to
appreciable errors when motions over relatively long periods of time are being
investigated, e.g. Foucault's pendulum, long-range gunnery caiculations. A frame
attached to a non-rotating spaceship, whose rocket motor is inoperative and
which is moving in a negligible gravitational field (e.g. in interstellar space),
provides another example of an inertial frame. Since the stars of our galaxy move
uniformly relative to one another over very long periods of time, the frames
attached to them will all be inertial provided they do not rotate relative to the
other galaxies.

Havingestablished an inertial frame, if it is found by observation that a particle
does not have a uniform motion relative to the frame, the lack of uniformity is
attributed to the action of a force which is exerted upon the particle by some
agency. For example, the orbits of the planets are considered 1o be curved on
account of the force of gravitational attraction exerted upon these bodies by the
sun and when a beam of charged particles is observed to be deflected when a bar
magnet is brought into the vicinity, this phenomenon is understood to be due to
the magnetic forces which are supposed to act upon the particles. If v is the
particle’s velocity relative to the frame at any instant ¢, its acceleration a = dv/d«
will be non-zero if the particle’s motion is not uniform and this quantity is
accordingly a convenient measure of the applied force f. We take, therefore,

foa
or f=ma (1.2)

where m is a constant of proportionality which depends upon the particle and is
termed its mass. The definition of the mass of a particle will be given almost
immediately when it arises quite naturally out of the third law of motion.
Equation (1.2)is essentially a definition of force relative to an inertial frame and is
referred to as the second law of motion. It is sometimes convenient to employ a
non-inertial frame in dynamical calculations, in which case a body which is in
uniform motion relative to an inertial frame and is therefore subject to no forces,
will nonetheless have an acceleration in the non-inertial frame. By equation (1.2),
10 this acceleration there corresponds a force, but this will not be attributable to
any obvious agency and is therefore usually referred to as a ‘fictitious’ force. Well-
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known examples of such forces are the centrifugal and Coriolis forces associated
with frames which are in uniform rotation relative to an inertial frame, e.g. a
frame rotating with the earth. By introducing such ‘fictitious’ forces, the second
law of motion becomes applicable in all reference frames. Such forces are called
inertial forces (see Section 44).

According to the third law of motion, when two particles P and Q interact so as
to influence one another’s motion, the force exerted by P on Q is equal to that
exerted by Q on P but is in the opposite sense. Defining the momentum of a particle
relative to a reference frame as the product of its mass and its velocity, it is proved
in elementary textbooks that the second and third laws taken together imply that
the sum of the momenta of any two particles involved in a collision is conserved.
Thus, if m,, m, are the masses of two such particles and u,, u, are their respective
velocities immediately before the collision and v,, v, are their respective velocities
immediately afterwards. then

mpu, +myu, = mv, +m,v, (1.3)

ie. M2 (wy —v,) = v, —uy (14)
m

1
This last equation implies that the vectors u, —v,, v, —u, are parallel, a result
which has been checked experimentally and which constitutes the physical
content ol the third law. However, equation (1.4) shows that the third law is also,
in part, a specification of how the mass of a particle is to be measured and hence
provides a definition for this quantity. For

my _ v, —u
m, |“z ‘Vz|

(1.5)

and hence the ratio of the masses of two particles can be found from the results of
a collision experiment. If, then, one particular particle is chosen to have unit mass
(e.g. the standard kilogramme), the masses of all other particles can, in principle,
be determined by permitting them 1o collide with this standard and then
employing equation (1.5).

2. Covariance of the laws of motion

It has been shown in the previous section that the second and third laws are
essentially definitions of the physical quantities force and mass relative to a given
reference frame. In this section, we shall examine whether these definitions lead to
different results when different inertial frames are employed.

Consider first the definition of mass. If the collision between the particles m,,
m, is observed from the inertial frame S, let @, @, be the particle velocities before
the collision and ¥,, v, the corresponding velocities after the collision. By
equation (1.1),

i, =u —u elc. (2.1)
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and hence
Vi—u, =v,—n, 5, -V, =0 -V, (2.2)

It follows that if the vectors v, —u,, u, — v, are parallel, so are the vectors v, —uy,
u, —¥, and consequently that, in so far as the third law is experimentally
verifiable, it is valid in all inertial frames if it 1s valid in one. Now let m,, m, be the
particle masses as measured in S. Then, by equation (1.5),

m [ v -w| _m 2
m, |“2_Vz| luy —vy|  my
But, if the first particle is the unit standard, then m, = m, = | and hence
'712 =m, (2.4)

i.e. the mass of a particle has the same value in all inertial frames. We can express
this by saying that mass is an invariant relative 1o transformations between
inertial frames.

By differentiating equation (1.1) with respect to the time 1, since u is
constant it is found that

=a (2.5)

where a, @ are the accelerations of a particle relative to S, S respectively. Hence, by
the second law (1.2), since mi = m, it follows that

=1 (2.6)

i.e. the force acting upon a particle is independent of the inertial frame in which it
1s measured.

It has therefore been shown that equations (1.2), (1.4) take precisely the same
form in the two frames, S, S, it being understood that mass, acceleration and force
are independent of the frame and that velocity is transformed in accordance with
equation (1.1). When equations preserve their form upon transformation from
onereference frame to another, they are said to be covariant with respect to such a
transformation. Newton’s laws of motion are covariant with respect 10 a
transformation between inertial frames.

3. Special principle of relativity

The special principle of relativity asserts that all physical laws are covariant with
respect to a transformation between inertial frames. This implies that all observers
moving uniformly relative to one another and employing inertial frames will be in
agreement concerning the statement of physical laws. No such observer,
therefore, can regard himself as being in a special relationship to the universe not
shared by any other observer employing an inertial frame; there are no privileged
observers. When man belicved himself to be at the centre of creation both
physically and spiritually, a principle such as that we have just enunciated would
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have been rejected as absurd. However, the revolution in attitude 1o our physical
environment initiated by Copernicus has proceeded so far that today the
principle is acccpted as eminently reasonable and very strong evidence contradict-
ing the principle would have to be discovered to disturb it as the foundation upon
which theoretical physics is based. It is this principle which guarantees that
observers inhabiting distant planets, belonging to stars whose motions may be
very different from that of our own sun, will nevertheless be able to explain their
local physical phenomena by application of the same physical laws we use
ourselves.

It has been shown already that Newton'’s laws of motion obey the principle. Let
us now transfer our attention 1o another set of fundamental laws governing non-
mechanical phenomena, viz. Maxwell's laws of electrodynamics. These are more
complex than the laws of Newton and are most conveniently expressed by the
equations

curl E= —¢B/é 3.1
curl H=j+¢D/¢t (3.2)
divD=yp (3.3)
divB=0 (3.4)

where E, H are the electric and magnetic intensities respectively, D is the
displacement, B is the magnetic induction, j is the current density and p is the
charge density (SI units arc being used). Experiment confirms that thesc
equations are valid when any inertial frame is employed. The most famous such
experiment was that carried out by Michelson and Morley, who verified that the
velocity of propagation of light waves in any direction is always measured to be
¢ (=3x10*ms™!)relative to an apparatus stationary on the carth. As is well
known, light has an clectromagnetic character and this result 1s predicted by
equations (3.1}-(3.4). However, the velocity of the earth in its orbit at any time
differs from its velocity six months later by twice the orbital velocity, viz. 60 km/s
and thus, by taking measurements of the velocity of light relative 10 the earth on
two days separated by this period of time and showing them to be equal, it is
possible 1o confirm that Maxwell's equations conform to the special principle of
relativity. This is effectively what Michelson and Morley did. However, this
interpretation of the results of their experiment was not accepted immediately,
since it was thought that electromagnetic phenomena were supported by a
medium called the aether and that Maxwell’s equations would prove to be valid
only in an inertial frame stationary in this medium, i.e. the special principle of
relativity was denied for electromagnetic phenomena. It was supposed that an
‘acther wind’ would blow through an inertial frame not at rest in the aether and
that this would have a disturbing effect on the propagation of electromagnetic
disturbances through the medium, in the same way that a wind in the atmosphere
affects the spread of sound waves. In such a frame, Maxwell’s equations would (it
was surmised) need correction by the inclusion of terms involving the wind
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velocity. That this would imply that terrestrial electrical machin.ery would behave
differently in winter and summer does not appear to have raised any doubts!

After Michelson and Morley's experiment, a long controversy ensued and,
though this is of great historical interest, it will not be recounted in this book. The
special principle is now firmly established and is accepted on the grounds that the
conclusions which may be deduced from it are everywhere found to be in
conformity with experiment and also because it is felt 10 possess a priori a high
degree of plausibility. A description of the steps by which it ultimately came to be
appreciated that the principle was of quite general application would therefore be
superfluous in an introductory text. It is, however, essential for our future
development of the theory to understand the prime difficulty preventing an early
acceptance of the idea that the electromagnetic laws are in conformity with the
special principle.

Consider the 1wo inertial frames S, S Suppose that an observer employing S
measures the velocity of a light pulse and finds it 10 be c. If the velocity of the same
light pulse is measured by an observer employing the frame S, let this be €. Then,
by equation (1.1),

c=c—u (3.5)

and itis clear that, in general, the magnitudes of the vectors ¢, ¢ will be different. It
appears to follow, therefore, that either Maxwell’s equations (3.1}-(3.4) must be
modified, or the special principle of relativity abandoned for electromagnetic
phenomena. Attempts were made (e.g. by Ritz) to modify Maxwell’s equations,
but certain consequences of the modified equations could not be confirmed
experimentally. Since the special principle was always found to be valid, the only
remaining alternative was to reject equation (1.1) and to replace it by another in
conformity with the experimental result that the speed of light is the same in all
inertial frames. As will be shown in the next section, this can only be done at the
expense of a radical revision of our intuitive ideas concerning the nature of space
and time and this was very understandably strongly resisted.

4. Lorentz transformations. Minkowski space-time

The argument of this section will be founded on the following three postulates:

Postulate 1. A particle free 10 move under no forces has constant velocity in
any inertial frame.

Postulate 2. The speed of light relative to any inertial frame is ¢ in all
directions.

Postulate 3. The geometry of space is Euclidean in any inertial frame.

Let the reference frame S comprise rectangular Cartesian axes Oxyz. We shall
assume that the coordinates of a point relative to this frame are measured by the
usual procedure and employing a measuring scale which is stationary in S (it is
necessary to state this precaution, since it will be shown later that the length of a
bar is not independent of its motion). It will also be supposed that standard



atomic clocks, stationary relative to S, are distributed throughout space and are
all synchronized with a masterclock at O. A satisfactory synchronization
procedure would be as follows: Warn observers at all clocks that a light source at
O will commence radiating at ¢ = 1,. When an observer at a point P first receives
light from this source, he is 10 set the clock at Ptoread t, + OP/c, i.e. itisassumed
that light travels with a speed c relative to S, as found by experiment. The position
and time of an event can now be specified relative to S by four coordinates
(x, ¥, z, t), t being the time shown on the clock which is contiguous to the event.
We shall often refer to the four numbers (x, y, z, {) as an etent.

Let O%y 7 be rectangular Cartesian axes determining the frame S (to be precise,
these are rectangular as seen by an observer stationary in §) and suppose that
clocks at rest relative to this frame are synchronized witha master at O. Any event
can now be fixed relative to Sby four coordinates (X, ¥, Z, T), the space coordinates
being measured by scales which are at rest in S and the time coordinate by the
contiguous clock at rest in S. If (x, y, z, 1), (X, ¥, z, ) relate to the same event, in
this section we are concerned to find the equations relating these corresponding
coordinates. It is helptul to think of these transformation equations as a
dictionary which enables us to translate a statement relating to any set of events
from the S-language to the S-language (or vice versa).

The possibility that the length of a scale and the rate of a clock might be affected
by uniform motion relative 1o a reference frame was ignored in early physical
theories.Velocity measurements were agreed 10 be dependent upon the reference
frame, but lcngths and time measurements were thought to be absolute. In
relativity theory, as will appear, very few quantities are absolute, i.e. are
independent of the frame in which the measuring instruments are at rest.

To comply with Postulate 1, we shall assume that each of the coordinates
(X, ¥, z,7)is a linear function of the coordinates (x, y, z, 1). The inverse relation-
ship is then of the same type. A particle moving uniformly in S with velocity
(v4 ) t,) Will have space coordinates (x, y, z) such that

X=Xo+U, L, y=yo+r,t, z=2zp+0,1 4.1)

If linear expressions in the coordinates (x,3,Z,T) are now substituted for
(x, y, 2, 1), it will be found on solving for (X, ¥, z.) that these quantities are linear in
t and hence that the particle’s motion is uniform relative to S. In fact, it may be
proved that only a linear transformation can satisfy the Postulate 1.

Now suppose that at the instant t = ¢, a light source situated at the point P,
(X0 Yo» 20) in S radiates a pulse of short duration. At any later instant ¢, the
wavefront will occupy the sphere whose centre is P, and radius ¢(r — to). This has
equation

(x — xo)z +(y - )'0)2 +(z - 20)2 = - ‘0)2 4.2)

Let (%, Yo Zp) be the coordinates of the light source as observed from Sat the
instant T = 7, the short pulse is radiated. At any later instant I, in accordance with
Postulate 2, the wavefront must also appear from S to occupy a sphere of radius
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¢(f — ) and centre (X,. ¥o. Zo). This has equation
(X=X +(F=Jo + (2 =2,) = 2t — D)’ (4.3)

Equations (4.2), (4.3) describe the same set of events in languages appropriate to S,
S respectively. It follows that the equations relating the coordinates (x, y, z, 1),
(X, ¥. 2, 1) must be so chosen that, upon substitution for the ‘barred’ quantities
appearing in equation (4.3) the appropriate linear expressions in the ‘unbarred’
quantities, equation (4.2) results.

A mathematical device due 10 Minkowski will now be employed. We shall
replace the time coordinate 1 of any event observed in S by a purely imaginary
coordinate x, = ict (i = \/ — 1). The space coordinates (x, y, z) of the event wili
be replaced by (x,, x,, x3) so that

X=X, Yy=X3 2=X5 ICI=X, (4.4)

and any event is then determined by four coordinalcs_x,v(i =1, 2,3, 4). A similar
transformation to coordinates x; will be carried out in S. Equations (4.2), (4.3)can
then be written

4
Z (xi = X0 2 =0 (4.5)
i=1

4
Z (x —)_‘io )2 =0 (4-6)
i=1
The X; are 10 be linear functions of the x; and such as to transform equation (4.6)
into equation (4.5) and hence such that

4 a4

Z (x; — f.‘o)z —k Z (x;— "io)2 4.7)
i=1 i=1

k can only depend upon the relative velocity of S and S. It is reasonable to assume

that the relationship between the two frames is a reciprocal one, so that, when the

inverse transformation is made from S to S, then

||Mg

(x; _x.‘o)z -k Z (x; = X.‘o)z (4.8)
1

[ i=1

But the transformation foliowed by its inverse must leave any function of the
coordinates X; unaltered and hence k? = 1. In the limit. as the relative motion of §
and Sis reduced to zero, it is clear that k — + 1. Hence k # — 1 and we conclude
that k is identically unity.

The x; will now be interpreted as rectangular Cartesian coordinates in a four-
dimensional Euclidean space which we shall refer 10 as &,. This space is termed
Minkowski space—time. The left-hand member of equation (4.5)is then the square
of the ‘distance’ between two points having coordinates x,, x,,. It is now clear that
the x; can be interpreted as the coordinates of the point x; referred to some other
rectangular Cartesian axes in &,. For such an interpretation will certainly enable
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us to satisfy the requirement (4.7) (with k = 1). Also, the x;, X; will then be related
by cquations of the form

4

Xi= Y a;x;+b, (4.9)

j=1
wherei = 1,2, 3,4and the g;;, b, are constants and this relationship is linear. The
bh;are the coordinates of the origin of the first set of rectangular axes relative to the
sccond set. The a;; will be shown to satisfy certain identities in Chapter 2
(equations (8.14), (8.15)). It is proved in algebra texts that the relationship
between the x; and x; must be of the form'we are assuming, if it is (i) linear and (i1)

such as to satisfy the requirement (4.7).

Changing back from the x, X; to the original coordinates of an event by
equations (4.4), the equations (4.9) provide a means of relating space and time
measurements in S with the corresponding measurements in S. Subject to certain
provisos (e.g. an event which has real coordinates in S, must have real coordinates
in §), this transformation will be referred to as the general Lorent: transformation.

5. The special Lorentz transformation

We shall now investigate the special Lorentz transformation obtained by
supposing that the x-axes in &, are obtained from the x;-axes by a rotation
through an angle « parallel 10 the x, x,-plane. The origin and the x,, x;-axes are
unaffected by the rotation and it will be clear after consideration of Fig. |
therefore that

X
X4

— X, sina + X, COSA X3 = X3

X, COSX + X4 8iNA X, = X,
(5.1)

%

|

Fi16. 1
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Employing equations (4.4), these transformation equations may be written

} (5.2)

To interpret the equations (5.2), consider a plane which is stationary relative to
the S frame and has equation

A

X = xcosa +ictsinx y =
il = —xsina + ic1cosa z

I
]

ax+by+ci+d=0 (5.3)
for all 7. Its equation relative 10 the S frame will be
(@cosa)x + by +¢z +d +ictasina = 0 (5.4)

atany fixed instant 1. In particular, if @ = b = d = 0, this is the coordinate plane
OXjy and its equation relative to Sis z = 0, i.e. it is the plane Oxy. Again, ifb=¢
=d =0, the plane is Oyz and its equation in § is

x = —icttanx (5.5)

1e.itisa plane parallel to Oyz displaced a distance —ict tanxalong Ox. Finally, if
a = ¢ =d = 0, the plane is Ozx and its equation with respect to Sis y = 0, i.e.itis
the plane O:zx. We conclude, therefore, that the Lorentz transformation
equations (5.2) correspond to the particular case when the coordinate planes
comprising § are obtained from those comprising S at any instant 1 by a
translation along Ox a distance —ict1ana (Fig. 2). Thus, if u is the speed of
translation of § relative to S,

u = —ictana (5.6)

It should also be noted that the events

Fe——=(Cl tan a —=

FiG. 2
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correspond and hence that, at the instant O and O coincide, the S and S clocks at
these points are supposed set to have zero readings; all other clocks are then
synchronized with these.

Equation (5.6) indicates that a is imaginary and is directly related to the speed
of translation. We have tana = iu/c and hence

cosa ———1 sina _—_(iu/c) (5.7)
= -y 1 = .
VI —u?/eh) J=u/e?)

Substituting in the equations (5.2), the special Lorentz transformation is obtained
in its final form, viz.

X = P(x —ut) y=y
T

B
=Bt —ux/c?) ZI=z (5.8)

where f = (1 —u?/c?)™ "2
If u is small by comparison with ¢, as is generally the case, these equations may
evidently be approximated by the equations

= x —ut j'=y}

: (5.9)
=1 zZ=12

==t

This set of equations, called the special Galilean transformation equations, is, of
course, the set which was assumed to relate space and time measurements in the
two frames in classical physical theory. However, the equation = t was rarely
stated explicitly, since it was taken as self-evident that time measurements were
absolute, i.e. quite independent of the observer. It appears from equations (5.8)
that this view of the nature of time can no longer be maintained and that, in fact,
time and space measurements are related, as is shown by the dependence of Tupon
both 1 and x. This revolutionary idea is also suggested by the manner in which the
special Lorentz transformation has been derived, viz. by a rotation of axes in a
manifold which has both spacelike and timelike characteristics. However, this
does not imply that space and time are now to be regarded as basically similar
physical quantities, for it has only been possible to place the time coordinate on
the same footing as the space coordinates in &, by muhiplying the former by i.
Since x, must always be imaginary, whereas x,, x,, x; are real, the fundamentally
different nature of space and time measurements is still maintained in the new
theory.

I u > c, both x and ¢ as given by equations (5.8) are imaginary. We conclude
that no observer can possess a velocity greater than that of light relative to any
other observer.

If equations (5.8)are solved for (x, y, 2, t)in terms of (X, ¥, z, T), it will be found
that the inverse transformation is identical with the original transformation,
except that the sign of u is reversed. This also follows from the fact that the inverse
transformation corresponds to a rotation of axes through an angle —a in
space--time. Thus, the frame S has velocity —u when observed from §S.
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6. Fitzgerald contraction. Time dilation

In the next two sections, we shail explore some of the more elementary physical
consequences of the transformation equations (5.8).

Consider first a rigid rod stationary in § and lying along the X-axis. Let x
= ¥,, X = X, at the two ends of the bar so that its length as measured in Sis given
by

l=X2' Xl (61)

In the frame S, the bar is moving with speed u and, to measure its length, it is
necessary to observe the positions of its two cnds at the same instant 1. Suppose
chalk marks are made on the x-axis at x = x,, X = x,, opposite the two ends, at
the instant 1. The making of these marks constitutes a pair of events with
space- time coordinates (x;,t), (x,, 1) in §. In S, this pair of cvents must have
coordinates (X,,I;), (X;, t;). Equations (5.8) now require that

E‘ = B(X‘ —ul), ,Ez = B(Xz —ul) (62)

But x, —x, =/ is the length of the bar as measured in S and it follows by
subtraction of equations (6.2) that

[=TJ0 —u?jc?) (6.3)

The length of a bar accordingly suffers contraction when it is moved longitudin-
ally relative to an inertial frame. This is the Fitzgerald contraction.

This contraction is not to be thought of as the physical reaction of the rod to its
motion and as belonging to the same category of physical effects as the
contraction of a metal rod when it is cooled. It is due to a changed relationship
between the rod and the instruments measuring its length. I is a measurement
carried out by scales which are stationary relative to the bar, whereas / is the result
of a measuring operation with scales which are moving with respect to the bar.
Also, the first operation can be carried out without the assistance of a clock, but
the second operation involves simultaneous observation of the two ends of the
bar and hence clocks must be employed. In classical physics, it was assumed that
these two measurement procedures would yield the same result, since it was
supposed that a rigid bar possessed intrinsically an attribute called its length and
that this could in no way be affected by the procedure employed 1o measure it. It is
now understood that length, like every other physical quantity, is defined by the
procedure employed for its measurement and that it possesses no meaning apart
from being the result of this procedure. From this point of view, it is not
surprising that, when the procedure must be altered to suit the circumstances, the
result will also be changed. It may assist the reader to adopt the modern view of
the Fitzgerald contraction if we remark that the length of the rod considered
above can be altered at any instant by simply changing our minds and
commencing to employ the S frame rather than the S frame. Clearly, such a
change of mathematical description can have no physical consequences.
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Consider again the two events when chalk marks are madc on the x-axis.
Applying equations (5.8) 1o the space-time coordinates of the events in the two
trames, the following equations are obtained:

T, = Bt —ux,/?), T = Blt —ux,/c?) (6.4)

These equations show that 7, # 1,;i.e. although the events are simultaneous in S,
they are not simultaneous in S. The concept of simultaneity is accordingly also a
relative one and has no absolute mcaning as was previously thought.

The registration by the clock moving with O of the times 7,, , constitutes two
events having coordinates (0, 0,0, 7, ), (0,0, 0,7, ) respectively in S. Employing the
inverse transformation to (5.8), it foliows that the times 1,, 1, of these events as
measured in S are given by

t, = BT, 1, = BT, (6.5)

and hence that
I =T = (1, —13) /(1 —u?/e?) (6.6)

This equation shows that the clock moving with O will appear from § to have its
rate reduced by a factor /(1 —u?/c?). This is the time dilation effect.

Sincc any physical process can be employed as a clock, the result just obtained
implies that all physical processes will evolve more slowly when observed from a
frame relative to which they are moving. Thus, the rate of decay of radioactive
particles prescnt in cosmic rays and moving with high velocities relative to the
carth has been observed to be reduced by exactly the factor predicied by equation
(6.6).

It may also be deduced that, if a human passenger were to be launched from the
carth in a rocket which attained a speed approaching that of light and after
proceeding to a great distance returned to the earth with the same high speed,
suitable observations made from the earth would indicate that all physical
processes occurring within the rocket, including the metabolic and physiological
processes taking place inside the passenger’s body, would suffer a retardation.
Since all physical processes would be affected equally, the passenger would be
unaware of this effect. Nonetheless, upon return 1o the earth he would find that
his estimate of the duration of the flight was less than the terrestrial estimate. It
may be objected that the passenger is entitled to regard himself as having been at
rest and the earth as having suffered the displacement and therefore that the
terrestrial estimate should be less than his own. This is the c¢lock paradox. The
paradox is resolved by observing that a frame moving with the rocket is subject to
anacceleration relative to an inertial frame and consequently cannot be treated as
inertial. The results of special relativity only apply 1o inertial frames and the
rocket passenger is accordingly not entitled to make use of them in his own frame.
As will be shown later, the methods of general relativity theory are applicable in
any frame and it may be proved that, if the passenger employs these methods, his
calculations will yield results in agreement with those obtained by the terrestrial
observer.
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Another clock paradox which requires more thought 10 resoive, can be stated
thus: The clock at O runs slow when compared with O. But the frame § may be
taken as the rest frame and then a similar argument proves that the moving clock
O goes slow when compared with O. This is a contradiction. Only inertial frames
areinvolved, so that the paradox cannot be disposed of by rejecting one of the two
calculations. Instead, it must be appreciated that a direct comparison of two
clocks at different points in space cannot be made; the statement ‘O runs slow by
comparison with O’ needs amplification. The meaning special relativity theory
gives to this sentence is: O is found to run slow when it is compared with the
successive synchronized clocks, belonging to the frame S, with which it coincides
during its motion. Similarly, ‘O runs slow compared with O’ must be expanded 10
‘O runs slow when compared with the successive synchronized clocks belonging
to S with which it coincides during its motion”. There is no contradiction between
these expanded statements (see Exercise 19 at the end of this chapter),

7. Spacelike and timelike intervals. Light cone
We have proved in section 4 that if x,, x,, are the coordinates in Minkowski
space-time of two events, then

(X.'_x.'o)z (7.1
1

[Nag XS

i
isinvariant, i.e. has the same value for all observers employing inertial frames and

thus rectangular axes in space—time. Reverting by equations (4.4) 10 the ordinary
space and time coordinates employed in an inertial frame, it follows that

(x —xo)2 + (¥ —yo)? + (2 —20) —¢2(t — 1)} (1.2)

is invariant for all inertial observers.

Thus, if (x, y, 2, t), (xo, yo. Zo, Io) are the coordinates of two events relative to
any inertial frame S and we define the proper time interval © between the events by
the equation

1
= ( —fo)z —'cjz'{ (x ‘Xo)z + ()'—)'0)2 +(z —20)2 | (7.3)

then 7 is an invariant for the two events. Two observers employing different
inertial frames may attribute different coordinates to the events, but they will be
in agreement concerning the value of .

Denoting the time interval between the events by At and the distance between
them by Ad, both relative to the same frame S and positive, it follows from
equation (7.3) that

1
12 = A? —.(—ZMZ (7.4)
Suppose that a new inertial frame Sis now defined, moving in the direction of the
line joining the events with speed Ad/A:. This will only be possible if Ad/At < c.
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Relative to this frame the events will occur at the same point and hence Ad = 0.
By equation (7.4), therefore,

2 = Ar? (1.5)

i.e. the proper time interval between two events is the ordinary time interval
measured in a frame (if such exists) in which the events occur at the same space
point. In this case, it is clear that t> > O and the proper time interval between the
events is said to be timelike.

Suppose, if possible, that a frame S can be chosen relative to which the events
are simultaneous. In this frame At = 0 and

1 -
= — 5 Ad? (7.6)
¢

.[2

Thus t2 < 0, and, in any frame, Ad/At > ¢. t is then purely imaginary and the
interval between the events is said to be spacelike.

If the interval is timelike, Ad/A1 < ¢ and it is possible lor a material body to
be present at both events. On the other hand, if the interval is spacelike, Ad/At > ¢
and it is not possible for such a body to be present at both events. The
intermediate case is when Ad/At = ¢ and then © = 0. Only a light pulse can be
present at both events. It also follows that the proper time interval between the
transmission and reception of a light signal is zero.

We shall now represent the event (x, y, z, t) by a point having these coordinates
in a four-dimensional space. This space is also often referred to as Minkowski
space- time but, unlike the space-time continuum introduced in section 4, it is not
Euclidean. However, this representation has the advantage that the coordinates
all take real values and it is therefore more satisfactory when diagrams are to be
drawn. Suppose a particle is at the origin O of § at 1 = 0 and commences to move
along Ox with constant speed u. Its y- and z-coordinates will always be zero and
the representation of its motion in space—time will be confined to the xt-plane. In
this plane, its motion will appear as the straight line QP, Q being the point x = y
=z =1=0 (Fig. 3). QP is called the world-line of the particle. If L PQt =0,
tan 6 = u. But |u} < ¢ and hence the world-line of the particle must lie in the
sector AQB, where £ AQB = 2a and tan a = ¢. Similarly, the world-line of a
particle which arrives at O at ¢ = 0 after moving along Ox, must lie in the sector
A'QB’. It follows that any event in either of these sectors must be separated from
the event Q by a timelike interval, since a particle can be present at both events.
Events in the sectors AQB’, A’‘QB are separated from Q by spacelike intervals,
since it is impossible for a particle to be present at such an event and also at Q.
A’A, B'B are the world-lines of light signals passing through O at ¢ = 0 and being
propagated in the directions of the positive and negative x-axis respectively.

For any event in AQB, ¢ > 0, i.e. it is in the future with respect to the event Q
when the frame S is being employed. However, by no choice of frame can it be
made simultaneous with Q, for this would imply a spacelike interval. A fortiori, in
no frame can it occur prior to Q. The sector AQB accordingly contains events
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which are in the absolute future with respect to the event Q. Similarly, ali events in
the sector A’ QB’ are in the absolute past with respect to Q. On the other hand,
events lying in the sectors AQB’, A'QB are separated from Q by spacelike
intervals and can all be made simultaneous with Q by proper choice of inertial
frame. These events may occur before or after Q depending upon the frame being
used. These two sectors define a region of space-time which will be termed the
conditional present.

Since no physical signal can have a speed greater than ¢, the world-line of any
such signal emanating from Q must lie in the sector AQB. It follows that the event
Q can be the physical cause of only those events which are in the absolute future
with respect 1o Q. Similarly, Q can be the effect of only those events in its absolute
past. Q cannot be casually related to events in its conditional present.

This state of affairs should be contrasted with the essentially simpler situation
of classical physics where there is no upper limit to the signal velocity and AA’,
BB’ coincide along the x-axis. Past and future are then separated by a perfectly
precise present in which events all have the time coordinate t = 0 for all observers.

In the four-dimensional space Qxyzt, the three regions of absolute past,
absolute future and conditional present are separated from one another by the
hyper-cone

x2+y2 42 —c*2 =0 (7.7

A light pulse transmitted from Q will have its world-line on this surface, which is
accordingly calied the light cone a1 Q. Since any arbitrary event can be selected to
be Q, any event is the apex of a light cone which separates the space-time
continuum in an absolute manner into three distinct regions relative to the event.



Exercises 1

1. A particle of mass m is moving in the plane of axes O xy under the action of a
force f. O xy is an inertial frame. O x'y’ is rotating relative to the inertial frame so
that L x'Ox = yand § = w. (r, f)are polar coordinates of the particle relative to
the rotating frame. If (f,, f,) are the polar components of {, (q,, a,) are the polar
components of the particle’s acceleration relative to Ox’y’, vis the particle’s speed
relative to this frame and ¢ is the angle its direction of motion makes with the
radius vector in this frame, obtain the equations of motion in the form

ma, = f, 4+ 2mwvsin ¢ + mrw?

ma, = fo — 2mwvcos ¢ —mrw

Deduce that the motion relative 1o the rotating frame is in accordance with the
second law if, in addition to f, the following forces are also taken to act on the
particle: (i) mw?r radially outwards (the centrifugal force), (i) 2mwr at right
angles 1o the direction of motion (the Coriolis force), (ii1) mr transversely. (The
latter force vanishes if the rotation is uniform.)

2. A bar lies along Ox and is stationary in S. Show that if the positions of its
ends are observed in S at instants which are simultaneous in S, its length
deduced from these observations will be greater than its length in S by a factor
(1 _MZ/‘.2)~ l,'Z‘

3. Suppose that the bar referred to in Exercise 2 takes a time 7 to pass a fixcd
point on the x-axis, T being measured by a clock stationary at the fixed point.
Defining the length of the bar in the S-frame to be uT, deduce the Fitzgerald
contraction.

4. The measuring rod employed by S will appear from § to be shortened by a
factor (1 —u?/c?)!'2. Hence, when S measures the length of the bar fixed in S he
might be expected to obtain the result

I=1/(1 —u?/c?)'7

This contradicts equation (6.3). Resolve the contradiction. (Hin:: It will be
observed from Sthat S fixes the position of the forward end of the bar first and the
position of the rear end a time ul/c? later.)

5. A bar lies stationary along the x-axis of S. Show that the world-lines of the
particles of the bar occupy a certain ‘band’ in the x, x,-plane. By measuring the
width of this ‘band’ parallel to the x,-axis, deduce the Fitzgerald contraction.

6. Verify that the Lorentz transformation equations (5.8) can be expressed in
the form

X = xcosh a —ctsinha y=y
¢f = ctcosha — xsinha =2z
where tanh x = u/c. Dcduce that

X —cf = (x —ct)e’, X+cT=(x+ct)e™®
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Hence show that x2 —c?¢? is invariant under this transformation. The clocks
moving with the S-frame are observed from the S-frame at the time t. Certain of
them are seen to indicate the same time t. Show that these will lie ina plane relative
to S and that this plane moves in S with velocity ctanh ja.

7. Two light pulses are moving in the positive direction along the x-axis of the
frame S, the distance between them being d. Show that, as measured in S, the
distance between the pulses is

8. A and B are two points of an inertial frame S a distance d apart. An event
occurs at B a time T (relative to clocks in §) after another event occurs at A.
Relative to another inertial frame S, the events are simultaneous. If AP is a
displacement vector in § representing the velocity of S relative to S, prove that P
lies in a plane perpendicular to AB, distance ¢*7/d from A.

9. S, S are the inertial frames considered in section S. The length of a moving
rod, which remains parallel to the x and X axes, is measured as ain the frame Sand
a in the frame S. By consideration of a Minkowski diagram for the rod, or
otherwise, show that the rest length of the rod is

aafu/c

\/(ZBaE—az —a?)

10. If the position vectorsr = (x, y,2),F = (%,y,z)ofaneventas determined by
the observers in the parallel inertial frames S, S respectively are mapped in the
same independent &,, prove that

F= r+u{"—'2'(3—1)+m}
w
T=p@+ur/c?)

where u is the velocity of S as measured from S.

11. A car 5m longis to be placed in a garage only 3m long. It is driven into the
garage at four-fifths the speed of light ¢ m/s by the owner; just before the bumpers
strike the wall (which withstands the impact), show that the owner’s wife can slam
the doors. Calculate the length of the garage as seen by the driver and prove that
he estimates that the car strikes the wall 4/c seconds before the doors are closed.
Hence explain how the car fits into the garage from his point of view.

12. S, Sare the two inertial frames related by the special Lorentz equations and
u is the velocity of Srelative to S. At t = 0in S, particles A and B are at the points
(0,0,0)and (4, 0, 0) respectively. Thereafter, both particles move along the x-axis
with speed v a constant distance d apart. Write down equations describing the
motion of the particles and, by transforming these to the frame Sshow that, in this
frame, the particles are observed to move with a speed

v—u
1 —uv/c?
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a distance
d(l —u?/c?)'?
1 —ur/c?
apart.
13. S and S are the usual inertial frames having relative velocity u. A point
moves along the x-axis with constant acceleration ¢/t starting from rest at O at

i = 0. Write down its equation of motion in the frame O%yz. If u = ¢/ \/2, show
that its motion in the frame Oxyz is determined by the equation

x2 =22t +T)x+ 21 +1)=0
Deduce that, if ¢ is small compared with 1, then
ct
V2
14. Two men are stationary in the S-frame at points on the x-axis separated by
a distance 4. They fire light pulses at one another simultaneously. In the S-frame,

show that one man A fires a time Bud /c? before the other man Band that, at the
instant B fires, A’s missile is still approaching B and is distant

d( E'_‘_"_)l’z
¢€+u
from him.

15. Sand S are the usual pair of inertial frames having relative velocity u. The
xz-plane of S is the surface of a lake. Waves are being propagated over this surface
in the direction of the x-axis and are described by the equation y = asin2nf (1
— x/w),fbeing the frequency and w the wave velocity. Obtain the equation which
describes this wave motion in S and deduce that the frequency and wave velocity
in this frame are given by

x =

(1+1/47)

, ] , w—u
I =80 —uw), w = [ uw/ct

16. S, S are inertial frames. When observed from S, two events are simul-
taneous and at a distance D apart. When observed from S, the time interval
between the events is T. Calculate the distance between the events when observed
from S and if, when viewed from S, the direction of motion of S relative to S
makes an angle § with the line joining the events, show that the relative speed of
the frames is

2
c(l +C2Tcos2 g~ ',

17. Observed from a frame S, events A and B lie on the x-axis and B occurs a
time T after A; the distance between the events is D. Calculate the velocity u of the
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frame S relative to S if, observed from S, the event B occurs a time T before A.
What is the distance between the events as observed from S? (Assume D > ¢T.)
(Ans. u = 2¢*DT/(D* +¢*T?), D = D))

18. In the frame S, a particle is projected from O at 1 = 0 with the velocity
components (3c, 3¢, 0) and thereafter moves so that its acceleration is constant of
magnitude g and is directed along the y-axis in the negative sense. Write down the
x and y coordinates of the particle a time ¢ later. The particle’s motion is observed
from the S frame. If u = ¢, using the transformation equations (5.8), obtain
equations for its coordinates (X, y) at time 7 in this frame. Deduce that the angle
made by the velocity of projection with the x-axis is 60° and that the particle’s
acceleration 1s 48¢/25.

19. The clocks at the origins of the frames S, S are synchronized 1o read zero
when they pass one another and the clocks stationary in either frame are
synchronized with the clock at the origin of the frame. At time t in S. the clock at O
passes a clock C fixed to the x-axis of S. Show that C registers t and O registers
J (1 =u?/c?)t at this instant. Observed from S, clock C is slowed by a factor
J (I —u?/c?);in this frame, therefore, it might be expected that when C registers 1,
O would register ¢/ /(1 — u?/c?). Resolve the paradox by showing that, in the §'
frame, the clock C is not synchronized with O, but that C is always u?¢/c? ahead of
0.

20. In the frame S, at t = 1, a particle leaves the origin O and moves with
constant velocity in the xy-plane having components v, = 5¢/6, v, = ¢/3. What
are the coordinates (x, y) of the particle at any later time ¢? If the velocity of §
relative to Sisu = 3¢/5, calculate the coordinates (%, ) of the particle at timeTin §
and deduce that the particle makes its closest approach to O at time T = 220/113,

21. S, Sare the usual parallel frames with the origin O of § moving along the x-
axis of S with velocity u. An observer A is stationed on the x-axis at x = aand an
observer 4 is stationed on the 3-axis at X = a. Show that, in both the frames, the
events (i) O passes O and (ii) 4 passes A, are separated by a time T, but that the
order of occurrence of these events is different. Calculate the value of 7. If T
= a/3c, show that u = 3¢/5.



CHAPTER 2

Orthogonal Transformations. Cartesian
Tensors

8. Orthogonal transformations

In section 4 events have been represented by points in a space &,. The resulting
distribution of points was described in terms of their coordinates relative to a set
of rectangular Cartesian axes. Each such set of axes was shown 1o correspond to
an observer employing a rectangular Cartesian inertial frame in ordinary & -
space and clocks which are stationary in this frame. In this representation, the
descriptions of physical phenomena given by two such inertial observers are
related by a transformation in &, from one set of rectangular axes 1o another.
Such a transformation has been given at equation (4.9) and is called an orthogonal
transformation. In general, if x;, X;(i = 1,2, ..., N)are two sets of N quantities
which are related by a linear transformation

N
X = Z a;x;+ b, (8.1)
j=1

and, if the coefficients a;; of this transformation are such that

N

Z ()_‘i_Pi)z = .

uMz

(x;— ) (8.2)

ts an identity for all corresponding sets x;, X; and y;, y;, then the transformation is
said to be orthogonal. It is clear that the x;, X; may be thought of as the
coordinates of a point in & referred to two different sets of rectangular Cartesian
axes and then equation (8.2) states that the square of the distance between two
points is an invariani, independent of the Cartesian frame.

writing z; = x; —y;, Z; = X, — J,, it follows from equation (8.1) that

N
7= ) ayz; (8.3)
=1

Let z denote the column matrix with elements z,Z the column matrix with
elements Z;and 4 the N x N matrix with elements a;;. Then the set of equations

2]
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(8.3) is equivalent to the matrix equation
Z= Az (8.4)

Also, if 2’ is the transpose of :z,

N
Zz= Y 2} (8.5)

7’z=12z2 (8.6)
But, from equation (8.4),
=74 (8.7)

Substituting in the left-hand member of equation (8.6) from equations (8.4), (8.7),
it will be found that

A Az =2z (8.8)
This can only be true for all z if
AA=1 8.9

where [ is the unit N x N matrix.
Taking determinants of both members of the matrix equation (8.9), we find that
|A|* = 1 and hence

|A] = +1 (8.10)

A is accordingly regular. Let 4! be its inverse. Multiplication on the right by
A~ of both members of equation (8.9) then yields

A=A4"" 8.11)
It now foilows that
AA = AA ' =1 (8.12)
Let §;; be the ijth element of 1, so that
d; 8.13
i 0’ i #_[} ( )

The symbols ,; are referred to as the Kronecker deltas. Equations (8.9), (8.12) are
now seen to be equivalent to

aay =0, (8.14)

i@ = O (8.15)

1] M?- “MZ
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respectively. These conditions are necessarily satisfied by the coefficients g;; of the
transformation (8.1) if it is orthogonal. Conversely, if either of these conditions is
satisfied, it is easy to prove that equation (8.6) follows and hence that the
transformation is orthogonal.

9. Repeated-index summation convention

At this point it is convenient 1o introduce a notation which will greatly abbreviate
future manipulative work. It will be understood that, wherever in any term of an
expression a literal index occurs twice, this term is to be summed over all possible
values of the index. For example, we shall abbreviate by writing

N

Z ab, = a,b, 9.1)

r=1
The index must be a literal one and we shall further stipulate that it must be a
small letter. Thus a, h,, ax by are individual terms of the expression a,hb,, and no
summation is intended in these cases.
Employing this convention, equations (8.14) and (8.15) can be written

aijay = Oj, a;,ay, = 0y (9.2)

respectively. Again, with z; = x; — y,, equation (8.2) may be written

Ny

iZi = I 9.3)
More than one index may be repeated in the same term, in which case more
than one summation is intended. Thus

N N

a;;bjc, = Z Z a;;b e, (9.4)

Jj=1 k=1
It is permissible to replace a repeated index by any other small letter, provided the
replacement index does not occur elsewhere in the same term. Thus
a:b; = a;b; = a,b, 9.5)
but
a;;a;, # a;;a; (9.6)
irrespective of whether the right-hand member is summed with respect to j or not.

A repeated index shares this property with the variable of integration in a definite
integral. Thus

b b
§readx = ff(dy 9.7
a a

Arepeated index is accordingly referred 1o as a dummy index. Any other index will

be called a free index. The same free index must appear in every term of an
equation, but a dummy index may only appear in a single term.
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The reader should note carefully the identity
,a, = a, (9.8)

for it will be of frequent application. §;; is often called a substitution operator,
since when it multiplies a symbol such as a;, its effect is 10 replace the index j by i.

10. Rectangular Cartesian tensors

Let x,, y; be rectangular Cartesian coordinates of two points Q, P respectively in
&y. Writing z; = x; — y;, the 2, are termed the components of the displacement
vector PQ relative to the axes being used. If X, y; are the coordinates of Q, P with
respect 1o another set of rectangular axes, the new coordinates will be related to
the old by the transformation equations (8.1). Then, if Z; are the components of
PQ in the new frame, it follows (equation (8.3)) that

7 = a,z (10.1)

Any physical or geometrical quantity A having N components 4, defined in the
x-frame and N components A, similarly defined in the X-frame, the two sets of
components being related in the same manner as the components z;, Z; of a
displacement vector, i.e. such that

A =a;A; (10.2)

is said 1o be a vector in & relative to rectangular Cartesian reference frames. We
shall frequently abbreviate ‘the vector whose components are A, to ‘the vector
A

If A,, B;are two vectors, consider the N2 quantities 4; B,. Upon transformation
of axes, these quantities transform thus:

EE=aikaj,AkB, (103)

Any quantity having N? components C;; defined in the x-frame and N?
components C;; defined similarly in the x-frame, the two sets of components
being related by a transformation equation

C,' =a,a;Cy (10.4)
1s said to be a tensor of the second rank. We shall speak of ‘the tensor C;;’. Sucha
tensor is not, necessarily, representable as the product of two vectors.

A set of N'* quantities D, which transform in the same manner as the product
of three vectors A;B;C,, form a tensor of the third rank. The transformation law is

Dijy = 4amaynDimn (10.5)

The generalization 10 a tensor of any rank should now be obvious. Vectors are,
of course, tensors of the first rank.

I A,;, B;; are tensors, the sums A4;;+ B;; are N? quantities which transform
according to the same law as the A;;and B;;. The sum of two tensors of the second
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rank is accordingly also a tensor of this rank. This result can be generalized
immediately to the sum of any two tensors of identical rank. Similarly, the
difference of two tensors of the same rank is also a tensor.

Our method of introducing a tensor implies that the product of any number of
vectors is a tensor. Quite generally, if 4;;  , B;; are tensors of any ranks
(which may be different), then the product A;; . B, . . isatensor whose rank is
the sum of the ranks of the two factors. The reader should prove this formally for
a product such as A4;; B,,,,, by writing down the transformation equations. (N.B.
the indices in the two factors must be kept distinct, for otherwise a summation is
implied and this complicates matters; see section 12.)

The components of a tensor may be chosen arbitrarily relative to any one set of
axes. The components of the tensor relative to any other set are then fixed by the
transformation equations. Consider the tensor of the second rank whose
components relative to the x;-axes are the Kronecker deitas J,;. In the X;-frame,
the components are

8 = ayapd, = aza; =&; (10.6)
by equations (9.2). Thus this tensor has the same components relative to all sets of
axes. It is termed the fundamental tensor of the second rank.

If, to take the particular case of a third rank tensor as an example,

Aij = Ajix (10.7)

for all values of i, j, k, A;;, is said to be symmetric with respect to its indices i, j.
Symmetry may be with respect to any pair of indices. If 4;; is a tensor, its
property of symmetry with respect to two indices is preserved upon transform-
ation, for

’Tjik = ajlaimaknAlmn
= Q@B Amin
= A (10.8)
where, in the second line, we have rearranged and put A,,, = A, Unless a
property is preserved upon transformation, it will be of little importance to us, for
we shall later employ tensors to express relationships which are vahd for all
observers and a chance relationship, true in one frame alone, will be of no
fundamental significance.
Similarly, if

Ay = —Ajl-,( (10.9)

for all values of i, j, k, A,; is said to be skew-symmetric ot anti-symmetric with
respect to its first two indices. This property also is preserved upon transform-
ation. Since A, ,, = — A4y, Ay, = 0. All components of A;; with the first two
indices the same are clearly zero.

A tensor whose components are all zero in one frame, has zero components in
every frame. A corollary to this result is that if A;; , B;; . are two tensors of
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the same rank whose corresponding components are equal in one frame, then
they are equal in cvery frame. This follows because 4,  —B,; _isa tensor
whose components are all zero in the first frame and hence in every frame. Thus,a
tensor equation

is valid for all choices of axes.

This explains the importance of tensors for our purpose. By expressing a
physical law as a tensor equation in &,, we shall guarantee its covariance with
respect to a change of inertial frame. A further advantage is that such an
expression of the law also implies that it is covariant under a rotation and a
translation of axes in & ;, thus ensuring that the Jaw conforms to the principlics of
isotropy and homogeneity of space.

The first principle states that all directions in space are equivalent in regard to
the formulation of fundamental physical laws. Examples are that the inertia of a
body in classical mechanics is independent of its direction of motion and that the
power of attraction of an electric charge is the same in all directions. In the vicinity
of the earth, the presence of the gravitational ficld tends 1o cloud our perception
of the validity of this principle and the vertical direction at any point on the
surface is sharply distinguished from any horizontal direction. But this is a purely
local feature and the crew of a spaceship have no difficulty in accepting the
principle. Mathematically, the principle requires that the equation expressing a
basic physical law must not change its form when the reference frame is rotated.
Laplace’s equation V2V = 0 is well known to possess this property, whereas the
equation ¢V/éx+{CV/idy+CVicz =0 does not; this explains why Laplace’s
equation occurs so frequently in mathematical physics, whereas the other
equation does not.

The second principle aftirms that all regions in space are also cquivalent, i.e.
that physical laws are the same in all parts of the cosmos. Covariance under a
translation of axes is the mathematical expression of this requirement.

Both principles are almost certainly a consequence of the uniformity with
which matter and radiation are distributed over the universe. It is doubtful
whether either would be valid in a cosmos not possessing this property.

A less well-established third principle is that of spatial parity. This requires that
physical laws should be impartial as between left- and right-handedness. The
mathematical formulation of a law obeying this principle will be covariant under
a transformation from a right-handed to a left-handed Cartesian frame or vice
versa. Another way of expressing this principle is that, if the universe were
observed in a mirror, the laws which would appear to govern its behaviour would
be identical with the actual laws. For example, observation of the planetary
motions in a mirror would alter their senses of rotation about the sun, but the law
of gravitation would be unaffected. Although the more familiar laws are in
conformity with this principle, those governing the behaviour of some funda-
mental particles do not appear to have this simple symmetry. Provided that the
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orthogonal transformations upon which our tensor calculus is being built are not
restricted to be such that [A| = +1 (ie. transformations between frames of
opposite handedness are permitied), all tensor (and pseudotensor) equations will
be in conformity with the principle of spatial parity.

From what has just been said, it is evident that the calculus of tensors is the
natural language of mathematical physics, relativistic or non-relativistic. It
guarantees that the equations being considered are of the type which can
represent physical laws. However, in classical physics, a three-dimensional theory
was adequate to ensure conformity with the principles of isotropy, homogeneity
and parity of space. In relativistic physics, a four-dimensional theory is needed to
incorporate the additional special principle of relativity.

11. lnvariants. Gradients. Derivatives of tensors

Suppose that Vis a quantity which is unaffected by any change of axes. Then V'is
called a scalar invariant or simply an invariant. lts transformation equation is
simply

V=V (11.1)

As will be proved later (section 24), the charge of an electron is independent of the
inertial frame from which it is measured and is, therefore, the type of quantity we
are considering.

If a value of Vis associated with each point of a region of &x, an invariant field
is defined over this region. In this case V will be a function of the coordinates x;.
Upon transformation to new axes, V will be expressed in terms of the new
coordinates ¥; when so expressed, it is denoted by V. Thus

V(%X o oo Xn)= V(X1 X0 - . Xn) (11.2)

is an identity. The reader should, perhaps, be warned that Vis not, necessarily, the
same function of the X; that V is of the x,.
If A;;is a tensor, it is obvious that V A;;is also a tensor of the second rank. Itis
therefore convenient to regard an invanant as a tensor of zero rank.
Consider the N partial derivatives ¢V/¢x;. These transform as a vector. To
prove this it will be necessary to examine the transformation inverse to (8.1). In
the matrix notation of section 8, this may be written

x=A"1(X-b)=A(X—-b) (11.3)
having made use of equation (8.11). Equation (11.3) is equivalent to
x; = a;;(x;—b;) (11.4)

where a;; is the ijth element of A4'. But 4j; = a;; and hence

x; = a;(X,—b;) (11.5)



28

It now follows that

pp)

=

(11.6)

|

Ji

1
bl
<

and hence that

N
<

_6V6xj %

- —_ - = al
¥ =1 v )
X, Ox;CX; Ox;

(11.7)

[o3)

proving that é¥/dx, is a vector. It is called the gradient of V and is denoted by
grad Vor VV.

Ifatensor A;; _is defined at every point of some region of &, the resultisa
tensor field. The partial derivatives dA;; . /0x,cannow be formed and constitute
a tensor whose rank is one greater than that of A;; . We shall prove this for a
second rank tensor field 4;; The argument is easily made general. We have

0A,; ¢

ij
Tt = ao(a,a54,)
Xy OXy

é ox,
= ——(aga;A) 5
ax' rldjsirs ka

aA'I
= 8,850, (11.8)
!

ir)s

by equation (11.6).

12. Contraction. Scalar product. Divergeuce

If two indices are made identical, a summation is implied. Thus, consider A,
Then

A A+ A+ oo+ A (12.1)

0=
There are N * quantities 4,;,. However, of the indices in A,;;, only i remains free 1o
range over the integers 1,2, . . ., N,and hence there are but N quantities 4, ;and
we could put B; = A,;;. The rank has been reduced by two and the process is
accordingly referred to as contraction.

Contraction of a tensor yields another tensor. For example, if B; = A,; then,
employing equations (9.2),

B; = Ajj; = ;04,05 Agrs

= 0,40, Ags = @gAg, = a;,B, (12.2)
Thus B; is a vector. The argument is easily generalized.

In the special case of a tensor of rank two, e.g. 4;;, it follows that A= Ay, ie.
A; is an invariant. Now, if A,, B; are vectors, A;B; is a tensor. Hence, A;B; is an
invariant. This contracted product is called the inner product or the scalar product
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of the two vectors. We shall write
AB,=A'B (12.3)

In particular, the scalar product of a vector with itself is an invariant. The positive
square root of this invariant will be called the magnitude of the vector. Thus, if A is
the magnitude of A,, then

A = A A=A A=A’ (12.4)
In &,, if 0 is the angle between two vectors A and B, then
ABcosf = A-B (12.5)
In &€, this equation is used to define 6. Hence, if
A-B=0 (12.6)

then 6 = $m and the vectors A, B are said 1o be orthogonal.

If A;isa vector field, éA,/0x;is a tensor. By contraction it follows that 4,/¢x; is
an invariant. This invariant is called the divergence of A and is denoted by div A.
Thus

-

. CA;
divA = — (12.7)
Gx;
More generally, if 4;;  is a tensor field, 64;; = /Cx, is a tensor. This tensor

derivative can now be contracted with respect to the index r and any other index
to yield another tensor,e.g. 84,;  /x,. This contraction is also referred to as the
divergence of A4;;  with respect to the index j and we shall write

CA;

S = div,Ay (12.8)
oxj

13. Pseudotensors

U, is a pseudotensor if, when the coordinates are subjected to the transformation
(8.1), its components transform according to the law

Q_Iij= IA|aikajl A, (13.1)

| 4| being the determinant of the transformation matrix A. Since for orthogonal
transformations ]A[ = + 1 (equation (8.10)), relative to rectangular Cartesian
frames, tensors and pseudotensors are identical except that, for certain changes of
axes, all the components of a pseudotensor will be reversed in sign. For example,
if in &, a change is made from the right-handed system of axes to a left-handed
system, the determinant of the transformation will be — 1 and the components of
a pseudotensor will then be subject to this additional sign change.

Let ¢;; ,bca pscudotensor of the Nth rank which is skew-symmetric with
respect to every pair of indices. Then all its components are zero, except those for
which the indices i, j, . .., n are all different and form a permutation of the
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numbers 1,2, .. ., N. Theeflect of transposing any pairof indicesin ¢;;  ,isto
change its sign. It follows that if the arrangement i, j,. . ., n can be obtained from
1,2,..., N by an even number of transpositions, then ¢; ., = +¢, ,,
whereas if it can be obtained byanodd number ¢;;  , = — ¢, 4. Relativeto
the x;-axes let ¢;, , = 1. Then, in this frame, ¢; ~ ,is0ifi,j,...,nisnota
permutationof 1,2, . .., N,is +1ifitisaneven permutationandis — 1 ifitisan
odd permutation. Transforming to the x;-axes, we find that

8, nv=IlAlayay ... axae; . . =]AP =1 (13.2)

But €; ,isalso skew-symmetric with respect to all its indices, since this is a
property preserved by the transformation. Its components are also 0, +1
thereforeand ¢;; ,is a pseudotensor with the same components in all frames.
It is called the Levi—Civita pseudotensor.
It may be shown without difficulty that:
(i) the sum or difference of two pseudotensors of the same rank is a
pseudotensor.

(i) the product of a tensor and a pseudotensor is a pseudotensor.
(iii) the product of two pseudotensors is a tensor.

(iv) the partial derivative of a pseudotensor with respect to x; is a pseudotensor.
(v) a contracted pseudotensor is a pseudotensor.
Thus, to prove (iii), let U, B, be two pseudovectors. Then

(ni‘Bj = |A|zaikajx‘uk531 = a,a; A, B, (13.3)

The method is clearly quite general. The remaining results will be left as exercises
for the reader.

14, Vector products. Curl

Throughout this section we shall be assuming that N = 3, i.e. the space will be
ordinary Euclidean space.
Let A, B, be two vectors. Then e;A4,B; is a pseudotensor of rank 5.
Contracting twice, we get the pseudovector
(‘:l-= eijkAjBk (14.1)

whose components are

G2 = AJBI —A,B;
(‘:3 = AIBZ _AZBI

(sl = AzB3 —A3Bz
} (14.2)

Provided we employ only right-handed systems of axes or only left-handed
systems in &€, €, is indistinguishable from a vector. If, however, a change is made
from a left-handed system to a right-handed system, or vice versa, the
components of €, are multiplied by —1 in addition to the usual vector
transformation. Since it is usual to employ only right-handed frames, §, is often
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referred to as a vector (or an axial vector) and treated as such. It is then called the
vector product of A and B and we write

C=AxB (14.3)

Vector multiplication is non-commutative, for
BxA=¢,BA =-¢,;4B,=-AxB (14.4)

having made use of e,; = —¢;,. However, vector multiplication obeys the
distributive law, for

Ax(B+C)=¢,A4;(B,+C,) = ¢;A;B, +¢,AC,
=AxB+AxC (14.5)

We now introduce the abbreviated notation CA,/Cx; = A; ;. Any index after a
comma will hereafter indicate a partial differentiation with respect to the
corresponding coordinate; thus, A, , is a second derivative.

Now suppose A; is a vector field. We can first construct a pseudotensor of rank
5 ¢34, ;. Contracting twice, we get the pseudovector

9‘,- = eijkAk,j (146)
This has components
®, = _iﬁi]
Ox; €x,
R, =Cﬂ_fﬁr (14.7)
Cxy  Cx,
R, =2 AL
3 5xl 6X2 /

and is denoted by curl A. It, also, is an axial vector.

Equation (14.1) can still be employed to define a vector product when either or
bothof the vectors A, Bare replaced by pseudotensors. If only one is replaced by a
pseudovector the right-hand member of equation (14.1) wiil involve the product
of two pseudovectors and a vector. The resulting vector product will then be a
vector. Similarly, by replacing A in equation (14.6) by a pseudovector, the curl of a
pseudovector is defined as an ordinary vector.

Exercises 2

1. Show that, in two dimensions, the general orthogonal transformation has

matrix A given by
A ( cos @ sin 0)
"\ —sinf cosb
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Verify that 4] = land that 4 ' = A'".T;;is a tensor in this space. Write down in
full the transformation equations for all its components and deduce that 7; is an
invariant.

2. X=Ax, X = BX are two successive orthogonal transformations relative to
each of which T, transforms as a tensor. Show that the resultant transformation x
= BAx is orthogonal and that T;; transforms as a tensor with respect 1o it.

3. If A, B;are vectors and X;;4;B; is an invariant, prove that X ; is a tensor.

4. Verify that the transformation

1
X, = 1_5(5x' —14x; +2x3)

=|

1
2 —5(2X1+X2+2X3)

1
%y = 15 (10x, +2x, ~ 1x;)

is orthogonal. A vector field is defined in the x-frame by the equations 4, = x?,
A, = x}, A, = x3. Calculate the field in the X-frame and verify that divA is an
invariant.

5. A, 1s a tensor, all of whose components are zero, except for the following:
Ay, = Aya; = 1,A;,, = — 2. Calculate the components of the vector A4, ;. Show
that the transformation

jir

X, =34(=3x, —6x; —2x;)
Xy =4H(=2x, +3x, —6x3)
Xy =73( 6x, —2x;—3x;)

is orthogonal and calculate the component A4, of the tensor in x-frame. Write
down the equations of the inverse transformation. If B;; is a tensor whose
components in the x-frame all vanish except that B,, = 1, calculate B,,.
(Ans, (—1, 1, 0); 120/343; 6/49.)

6. If A= (I-B)(I +B) ' where Bis askew-symmetric matrix, show that A4 is
orthogonal. Taking

02 2
B=-2 00
-2 00

calculate A and write down the rectangular Cartesian coordinate transformation
equations X = Ax. In the x-frame, the tensor C;; is skew-symmetric and C,,
=C,3 = 1,C,; = 0. Calculate the component C,, in the X-frame. In the x-frame,
all the components of the tensor D, , vanish except the following Dy, = —1,
Dy;; = 2, D53 = 5. Calculate the component D, , in the x-frame. Calculate the
components of the vectors D, ;;and C;; D, in the x-frame. (Ans.C,, = 1;D,,, =
—980/729; (— 14/9, —8/9, —8/9); (35/9, —32/9, —7/9).)
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7. A;; is a tensor field defined in the x-frame by the equation A4;; = x;x;.
Caiculate its components at the point P where x, =0, x, = x; = 1. The
coordinates x; of a point in the x-frame are related to the coordinates x; of the
same point in the x-frame by the equations

3(=3x; —6x, —2x;)
1(—2x; +3x, — 6x,)
3= 5(6x; —2x, = 3x;)

1

X
X3
x

Calculate the component A4,, of the tensor field at P. In the x-frame, prove that
A= 4x,, A= 12 (Ans. 4,, = 64/49.)

8. xis the position vector of a point P with respect to an origin O. OP is rotated
throughan angle 6 about an axis whose direction is determined by the unit vector
u. If the new position vector of P is X, prove that

X =xcos+ (1 —cos8) (x-u)u+ux xsinf

Deduce that the coordinate transformation generated when a rectangular
Cartesian frame O x, x, x, is rotated through an acute angle sin ™' (4/5) about an
axis through O having direction ratios (1, 2, 2) to give a new frame OX, X, X, is

45%, = 29x, +28x, — 20x,

45%, = —20x, +35x, +20x,

45%; = 28x, —4x;, +35x,

9. Verify that the transformation

%, = 5(x, —8x, +4x;)
Xy =§(4x, +4x; +7x3)
X3 =%(8x, —x; —4x;)

is orthogonal. In the x-frame, the tensor A;jis skew-symmetricand A,, = 4,3
=1, A, = 0. Calculate the component 4, in the X-frame. In the X-frame, all the
components of the tensor B, , vanish except the following: By, = —1,By;, = 2,
B,,, = 5. Calculate the component B,,, in the x-frame. Calculate the com-
ponents of the vectors B,;; and A;;B,, in the x-frame. (Ans. A, =1/3; By,
= 188/729; 2/9, —16/9, 8/9: 47/27, 11/27, —10/27))

10. In the x-frame in &, a tensor field is defined by the equation A4, = x2
+ 2x2 + x2. Calculate the divergence of the vector field A, ;. Also, calculate the
curl of the vector field A4;;;. (Ans. 16(x; + x, + x3); 6(x, —x3), etc.)

11. A pair of rectangular Cartesian frames are related by the equations

15 (5%, —14x; + 2x;)
X, = —3Q2x; +x, +2x3)
Xy = 15 (10x, +2x, —11x;)

X,
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A is a tensor, all of whose components vanish in the x-frame except the
following: 4,,, = A,,, = 2, A;;, = 4, A,,, = 13. Calculate (a) the components
of the vector A4, in the x-frame.and (b) 4, ,,. If B, is a tensor whose components
in the x-frame all vanish except B,,, B,;, which are both unity, caiculate B,,.
If Visan invariant field given in the x-frame by ¥ = xZ,calculate the field in the x-
frame and the components of grad Vin this frame, where X, = X, = X3 = 9. (Ans.
(a) (=12, =9, 6). (b) —1396,225. B,, = —2/3: VV = (2, —4.4))

12. Inthe frame O x, x, x5, all components of 4;;are zeroexcept A,, = — A4,
= |. I the transformation equattons to the x-frame are

X, = X, COS %+ X, SInX
X, = —Xx,SIN%x+ X,COS%
X3 = X;
prove that 4,, = 1.
13. If 4, = x2+x2 (i.j = 1.2,3), prove that (a) 4,,.; = 2(x, + X; + X3 + X))

(b) A = 12.

14. Verify that the coordinate transformation
25.?1 = 9x, +20X2 + 12X3
25x, = 12x; —15x, + 16x;

5.?3 = —‘4X| +3x!

is orthogonal and calculate the component A5, , of the tensor 4, in the x-frame
if all its components in the x-frame vanish except for the following: 4,,, = 25,

Az2; = —6. All components of the tensor B;, in the %-frame are zero, except for
the components B,, (i = 1,2, 3). Show that, in the x-frame, all the components
B, (i = 1.2, 3) vanish. {Ans. —192/25.)

15. (1) xisacolumn matrix such that x'x = 1.1If 4 = I —2xx’, where [ isa unit
matrix, prove that A is orthogonal. If x' = «(l, —2,3) where « is a scalar
muitiplier, calculate x and hence find 4. Written in matrix form, the coordinate
transformation between two rectangular Cartesian frames is X = Ax (A4 is the
matrix just caiculated). In the x-frame, all the components of the tensor B, are
zero. except that By, = — 20, B,,,, = 29. Calculate the component B,,,, in
the X-frame. What is the value of B;;;;? If €, is a pseudotensor with components
(2.3, 6) in the x-frame, find its components in the X-frame. (Ans. B,,,, = 72/49;
B;,= —20:(0. -7,0))

(i) A;(x,, x5, x3) is a tensor field. If 4,; = 6,;x3, where §,; is the Kronecker
delta, list the non-zero components of ¢ 4,;/¢x,. Deduce the value of ¢4, , /¢X, at
the point where X, = 1, X, = 2, X, = |. (Take the frames to be related as in (i).)
(Ans. ¢4,,/¢x, =4:7)

16. Verify that the transformation
7%, = 3x, +6x5 —2x;
7X; = 2x, —3x, —6x,
7%y = 6x, —2x, + 3x,
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is orthogonal and calculate the component 43, of the tensor 4;; in the x-frame
if all 1ts components in the x-frame are zero except for the followmg. Ay =10,
Ay, = 29. If the only non-zero component of the tensor B, in the X-frame is
B,3; = 343, calculate the component By, in the x-frame. If §;; isa pseudotensor
and &,; = 98, all other components being zero, calculate @,2 (Ans. A5, = 6;
B =24C, = -24)

17. If Aisa square skew-symmetric matrix, show that A2 is symmetric. If, also,

A? = — A, show that the matrix B given by B = I +2A4? is orthogonal. If
0 a b
A= | -a 0 ¢
—b -c O
prove that A* = — A provided a® + b? +¢? = 1. Taking a = 1/3, b =c = 2/3,

calculate the orthogonal matrix B. Written in matrix form, the coordinate
transformation between two rectangular cartesian frames is X = Bx. In the x-
frame, the tensor C;; has all its components equal to 1. Calculate the componenl
C,, inthe x-frame. ln the x-frame, a vector field A, has components 4, = x? + x}
+x2, A, = A, = 0. Obtain formulae for the field’s components in the x-frame.
Calculate the divergence of the field in both frames and show that the results are
equal. (Ans. By, = 91/81))
18. (i) The equations

XI
I
O

1 +8x2 +4XJ)
1+ bxy +7x3)
X, + X3 +Cx3)

X
X

(a
(4
(8

XI ><I
I

O Dj=

represent a transformation between rectangular Cartesian axes. Calculate the
values of a, b, ¢. In the x-frame, all the components of the tensor A;; are zero
except A,; = 9. Calculate the component Ay, in the x-frame.
(Ans.a=1,b= —4,c= —4, A,, = 4/9)

(i) If A, isatensor, prove that A, isalso a tensor. In the x-frame referred to
in (i), all the components of the tensor A, vanish except for the following: 4, 3,
=4, Ay,33 = 5, Ay2,, = 18. Calculate all the components of the tensor 4, in
the x-frame and the (1, 1)-component in the X-frame. (Ans. 44/3).

19. Verify that the transformation

X, = 35 (9x, +20x; + 12x;)
Xy = 75 (12x; — 15x; + 16x3)

X3 = $(4x, —3x;)

1s orthogonal and write down the inverse transformation. In the x-frame, all the
componcnts of the tensor A, vanish except A,,, = 1. Calculate the component
A\, in the x-frame. In the %-frame, all the components of the tensor B,;, vanish
except that B,,, = 1, By,; = B;,, = B,,, = 2. Calculate the components of the
vector By; in the x-frame. (Ans. 4,,; = 432/3125; (3,0, 4).)
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20. Show that, for ali angles «, f, the transformation

X, = X,;c082c0S8 f+ Xx,C0828inff—x,sinx
X, = —x,sinf+x,cos f8
X; = x;8inxcos f+ x,sinasin f + x5 cos %

is orthogonal. Obtain the form taken by the transformation when 2 = f§ = n/4
and. in this case, calculate the component 4, ,, of the tensor 4, in the ¥-frame,
if the only non-zero components in the x-frame are 4;,,3 = 455,53 = 1. {Ans. 0)

21. If A. B are orthogonal matrices of the same order, prove that AB is
orthogonal. If

3 4 0 30 4
A=) (—430).3:%(050
0 0 5 '—4 0 3/

calculate the orthogonal matrix C = AB. The coordinates x, and X, in two
rectangular Cartesian frames are related by the transformation x = Cx. All the
components of the tensor A4,;, vanish in the x-frame except A4,,, = 1, 4;,, = 25.
Calculate the component A,,, in the X-frame. In the X-frame, the only non-zero
components of the tensor B, are By, = —5, By, =10, Byyy; =15
Calculate the components of the vector A, B, in the x-frame and deduce its
components in the x-frame. (Ans. A;;, = —48/5; 4464,25, —96/5, —48/25)

22. i U, is a pseudotensor, B, is a pseudovector and E; is a vector, prove that
U;B,E; is an invariant.

23. A vector field has components in the x-frame given by

A, =sin(x;x3), Ay = cos(xyx,), A3 = tan(x, x,)

Calculate curl A at the point x, = x, = x3 = /7. If the x-frame is obtained
from the x-frame by reversing the sense of the x,-axis, what are the components
of curlA in the x-frame? (Ans. /m(1+1/2/2), — Jn(l =1/2/2), =3/ (2n),
- VR +1/242), - yr(1-1,2{/2).$/2n))

24. x;, X;(i =1, 2, 3) are coordinates of the same point with respect to two
different rectangular Cartesian frames. If

X; = alax; +2x, + 5x3)
X, = B(x; +bx; +2x3)

Xy =7(2x; —11x; +¢x,)

where x, 8, ;-are all positive, calculate the valuesof a, 8,7, a, b, c. If 4, is a tensor
whose only non-zero components in the x-frame are A,4,5 = 1, 4355 = 20,
calculate its component A;,,, in the %-frame. In the X-frame, the only non-zero
components of the tensors A;, B;; are as follows: 4, = 3, 4, =1, By, = 5, By,
= 3. Calculate the components of the tensor 4, B;; in the x-frame. (Ans.a = — 14,
b=2c¢=10,0=1/15 8 =1/3, 7 = 1/15; 45,2, = 2/5; (3, =9, 12))

25. Aisananti-symmetric matrix such that A* = — 4. Prove that the matrix B
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= I+ A+ A? is orthogonal. Show that the matrix

0 1 2
e 41 )
-2 =20
satisfies the stated conditions and hence caiculate the orthogonal matrix B. The
coordinates of a point relative to a pair of rectangular Cartesian frames are
related by the matrix transformation x = Bx. A tensor A;; has all its components
zero in the x-frame except that A,, = 81. Calculate the component 4, in the -
frame. If the tensor B;;, has all its components zero in the X-frame except B, ;3
=729, calculate the component B,,, in the x-frame. (Ans. A4,, = 32;
By, = —128)
26. In &,, prove that

curl grad ¥ =0, divcurl A=0.
27. In &,, prove that
(1) €1 Cimm = OmOtn — 01nOtm
(1) ey € = 20,
28. In &5, show that

avoetv etv v
ViV =divgrad V=% 7 4+~ v 4 v =
vera éxt + ox3 + éxi  @x;6x,
29. In &,, prove that
curlcurl A = graddivA —V? A

(Hini: Employ Exercise 27(i).)
30. In &,, prove that

(1) Ax(BxC)=A-CB-A-BC
A, B, C,

(i1) A‘BxC=|4, B, C,
A3 B3 C3

31. In &y, prove that
diviA=VdivA+ A-grad V
32. In é&,, prove that
(1) curl VA = Vcurl A—A xgrad V
(i) div(AxB)=B-curlA-A-curlB
(i) curl(AxB)=B-VA—-A-VB+AdivB-BdivA
(iv) grad(A-B)=B-VA+A-VB+ AxcurlB+BxcurlA
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where A'VB=A;B, ;.

33. If A;;isatensor and B;; = A4;, prove that B;; is a tensor. Deduce that if 4,
is symmetric in one frame, it is so in all.
34. Prove that 8,i0u = 0j

and that ¢, e, has the value + 1 if i, j, k are all different and (/mn) is an even
permutation of (ijk), — 1 if i, j, k are all different and (/mn) is an odd permutation of
(ijk), and 0 otherwise. Deduce that
€k Cimn = 010 ;mOyp + Oim0jn 01y + 600,04
- 51n51m5k1 - 5i15jn5km - 5.‘»-5,151("
Hence prove that
€iik Cimn = OjmOun — 0,04
35. In &;, prove that
i) (@axb)-(cxd)=a-ch-d-a-db-c
(i1) (@axb)x(cxd)=[acd]b—[bed]a
= [abd]c —[abc]d
where [abc] =a-bxec.



CHAPTER 3

Special Relativity Mechanics

15. The velocity vector

Suppose that a point P is in motion relative to an inertial frame S. Let ds be the
distance between successive positions of P which it occupies at times t, ¢ + dt

respectively. Then, by equation (7.4), if dt is the proper time interval between
these two events,

1 12
dr = (dr2 - dsz> = (1 —v¥c?)'2d (15.1)

where v = ds/dt¢ is the speed of P as measured in S. Now, as shown in section 7, dt
is the time interval between the two events as measured in a frame for which the
cvents occur at the same point. Thus dr is the time interval measured by a clock
moving with P. dr is the time interval measured by clocks stationary in S.
Equation (15.1) indicates that, as observed from S, the rate of the clock moving
with P is slow by a factor (1 —¢?/c?)!2. This is the phenomenon of time dilation
already commented upon in section 6. If P leaves a point A att = ¢, and arrives at

a point Bat t = 1,, the time of transit as registered by a clock moving with P will
be

L,
-1, = J (1 —2*/c?) 2 ds (15.2)
41

The successive positions of P together with the times it occupies these positions
constitute a series of events which will lie on the point’s world-line in Minkowski
space- time. Erecting rectangular axes in space-time corresponding to the
rectangular Cartesian frame S, let x;, x; + dx; be the coordinates of adjacent
points on the world-line. These points will represent the events (x, y, z, 1), (x + dx,
y+dy.z+dz, 1 +do)in §.If (v,, v, v,) are the components of the velocity vector v
of P relative to §, then

dx  dy = dz

= - = = 15.3
"Ta YT T @ (15.3)

v does not possess the transformation properties of a vector relative to
orthogonal transformations (i.e. Lorentz transformations) in space-time. It is a

39
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vector relative to rectangular axes stationary in S only. However, we can define a
4-velocity vector which does possess such properties as follows: dx; is a
displacement vector relative to rectangular axes in space-time and dr is an
invariant. It follows that dx;/dt is a vector relative to Lorentz transformations
expressed as orthogonal transformations in space—time. It is called the 4-velocity
vector of P and will be denoted by V.

V can be expressed in terms of v thus:

Siﬁ_dx,-dt_
dr  dr dt

by equation (15.1). Also, from equations (4.4) we obtain

(1 —2/c?)~112%, (15.4)

Xy =0, Xy=1U, X3=1U, X =Ic (15.5)

It now follows from these equations that

V=(-v¥ct) ", vy,

v, ic) = (1 —e2/c?) ™' (v, ic) (15.6)
where the notation should be clear without further explanation.

Knowing the manner in which the components of V transform when new axes
are chosen in space—time, equation (15.6) enables us to calculate how the
components of v transform when § is replaced by a new inertial frame §. Thus,
consider the orthogonal transformation (5.1) which has been interpreted as a
change from an inertial frame S 1o another Srelated to the first as shown in Fig. 2.
The corresponding transformation equations for V are

?‘ =V cos.a+ V,sina Ez= Vz} 15.7)
Vo= —Visina+ V,cosa V=V,
By equation (15.6), these equations are equivalent to
(1 =3%c?)™ "5, = (1 —v*/c?)” *(v, cosa + ic sin %)
(1 —5%/c*)" 125, = (1 —v? /)™ 2, (15.8)

(1 _52/6.2)— l/‘2§z — (l - L.Z/CZ)- llsz
(1 —8*/c?)™Y2ic = (1 —v¥/c?)" V2 (—v, sin 2 + ic cos )
where ¥ is the velocity of the point as measured in the frame S. Substituting for
cos a, sin a from equations (5.7), equations (15.8) can be written
Ex = Q(Ux - u)

7, = QU —u?/c?) P,

(15.9)
Bz = Q(l __MZ/CZ)IIZUZ
1 =Q( —uv,/c?)
1 —52/(‘2 12
h =
where Q [(l o —uz/cz)] (15.10)
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Dividing the first three equations (15.9) by the fourth, we obtain the special
Lorentz transformation equations for v in their final form, viz.

e —u
Tl —ur et
ul/(.Z)l,‘lvy
r,= ————— 15.11
by 1 —uu,(/t'2 ( )
u?/c?)! 2y,
T Syl

If uand v are small by comparison with c, equations (15.11) can be replaced by
the approximate equations

ty,=t,~u, F,=v, D,=u, (15.12)

These are equivalent to the vector equation (1.1) relating velocity measurements
in two inertial frames according to Newtonian mechanics.

Since, by the fourth of equations (15.9), @ must be real, equation (15.10) implies
that if 7 < ¢ then v < ¢. Thus, if a point is moving with a velocity approaching ¢ in
S and S is moving relative to S with a velocity of the same order, the point’s
velocity relative to S will still be less than ¢. Such a result is, of course, completely
at variance with classical ideas. In particular, if a light pulse is being propagated
along Oxsothatr, = ¢,v, = ¢, = 0, then it will be found thatt, = ¢,5, = 7, = 0.
This confirms that light i lS propagaled with speed ¢ in all merlml frames

The transformation inverse to (15.11) can be found by exchanging ‘barred’ and
‘unbarred” velocity components and replacing u by —u.

Suppose that particles A and B move along the x-axis of a frame S with speeds
3¢/4 in opposite directions, both leaving O at time ¢t = 0. At any later time t, their
x-coordinates will be x , = —3ct/4, xg = 3ct/4 and their distance apart will be x
—x 4, = 3ct/2. Clearly, this distance increases at a rate 3¢/2. However, this is not
their relative velocity and the fact that the rate exceeds ¢ does not conflict with the
result already derived that no material body can be observed from any inertial
frame to have a speed greater than c. There is no special-relativity prohibition
against the distance between two bodies increasing at a rate greater than ¢. To find
the velocity of Brelative to A, it is necessary to introduce a second inertial frame §
with its origin at 4; the velocity of Bin § is then the velocity of B relative to A.
Since the velocity of S relative to S is u = — 3¢/4 and the velocity of Bin S is v,
= 3¢/4, the first of equations (15.11) gives T, = 24¢/25 (< c) as the velocity of B
relative 1o 4.

16. Mass and momentum

In section 2 i1t was shown that Newton's laws of motion conform to the special
principle of relativity. However, the argument involved classical ideas concerning
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space-time relationships between two inertial frames and these have since been
replaced by relationships based upon the Lorentz transformation. The whole
question must therefore be re-examined and this we shall do in this and the
following section.

We shall begin by considering the conservation of momentum, equation (1.3),
for the impact of two particles by which mass is defined in classical mechanics.
Since the velocity vectors u,, etc. are not vectors relative to orthogonal
transformations in space-time, and indeed transform between inertial frames in a
very complex manner, it is at once evident that equation (1.3)is not covariant with
respect to transformations between inertial frames. It wiil accordingly be
replaced, tentatively, by another equation, viz.

M|U1+M2U2:M|VI+M2V2 (161)

where U, etc. are the 4-velocities of the particles and M, M, are invariants
associated with the particles which will correspond 1o their classical masses. This
is a vector equation and hence is covariant with respect to orthogonal
transformations in space-time as we require. Equation (16.1) will be abbreviated
to the statement

¥ M V is conserved (16.2)
and then, by equation (15.6). this implics that
X mi(v, ic) 18 conserved (16.3)
where m= +12 (16.4)
(I —t%c%)

By consideration of the first three (or space) components of (16.3), it will be clear
that

2 mv is conserved (16.5)
and. by consideration of the fourth (or time) component that
2 m is conserved (16.6)

If, therefore. m is identified as the quantity which will play the role of the
Newtonian mass in special relativity mechanics, our tentative conservation law
(16.1) is seen to incorporate both the principles of conservation of momentum
and of mass from Newitonian mechanics. The principle (16.1) is accordingly
eminently reasonable. However, our ultimate justification for accepting it is, of
course, that its consequences are verified experimentally. We shall refer to such
checks at appropriate points in the later development.

It appears from equation (16.4) that the mass of a particle must now be
regarded as being dependent uponits speed v. If v = 0,thenm = M. Thus M isthe
mass of the particle when measured in an inertial frame in which it is stationary.
M will be referred 10 as the rest mass or proper mass and will, in future, be denoted
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by my. To distinguish it from m,, m is often called the inertial mass. Then

mo

m = (0 TiZer) (16.7)
Clearly m — o as v — ¢, implying that inertia effects become increasingly serious
as the velocity of light is approached and prevent this velocity being attained by
any material particle. This is in agreement with our earlier observations. Formula
{16.7) has been verified by observation of collisions between atomic nucle: and
cosmic ray particles (e.g., see Exercise 27 at the end of this chapter).

We shall define the 4-momentum vector P of a particle whose rest mass is mp and
whose 4-velocity is V, by the equation

P=myV (16.8)

Since my is an invariant and V is a vector in space-time, P is a vector. By equation
(15.6),

P m,(1 —v2/c2)" V2 (v,ic) = (mv,imc) = (p,imc) (16.9)

where p = mv 1s the classical momentum.
Relative 1o the special orthogonal transformation (5.1), the transformation
cquations for the components of P are

= P, cos x + P, sin x P,=P,
} (16.10)

P,
P,=-P sina+P,cosx Py=P,
Substituting for the components of P from equation (16.9) and similarly for P,
and employing equations (5.7), it will be found that

 pe—mu
by = 1 _uz/‘,z)l-‘zl

p, =p, (16.11)
i’.z=pz J

_ 2
Pl LT (16.12)

(i =ue)

Equations (16.11) constitute the special Lorentz transformation equations for the
components of the momentum p and equation (16.12) the corresponding
transformation equation for mass. Since p, = mu,, this equation can also be
written
1 —ur,/c?

@ uiety "
This reduces 1o the classical form of equation (2.4) if u, v, are negligible by
comparison with ¢.

(16.13)

m=
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17. The force vector. Energy

We have seen that in classical mechanics, when the mass of a particle has been
determined, the force acting upon it at any instant is specified by Newton's second
law. Force receives a similar defintion in special relativity mechanics. The mass of
a particle with a given velocity can be determined by permitting it to collide witha
standard particle and applying the principle of momentum conservation.
Equation (16.7) then gives its mass at any velocity. The force f acting upon a
particle having mass m and velocity v relative 10 some inertial frame is then
defined by the equation
d dp

f-—a(m\’)—dl (171)
where pis the particle’s momentum. Clearly f wili be dependent upon the inertial
frame employed, a departure from classical mechanics.

Definition (17.1) implies that, if equal and opposite forces act upon two
colliding particles, momentum is conserved. However, although experiment
confirms that momentum is indeed conserved, Newton’s third law cannot be
incorporated in the new mechanics, for it will appear later that, if the forces are
equal and opposite for one inertial observer, in general they are not so for all such
observers. Equation (16.1) therefore replaces this law in the new mechanics.

f is not a vector with respect 1o Lorentz transformations in space-time.
However, a 4-force F can be defined which has this property. The natural
definition is clearly

dP dv

Foa ="

(17.2)

P being the 4-momentum and 7 the proper time for the particle. F is immediately
expressible in terms of f for, by equation (16.9),

d -
F=a—r(p,tm()

d o de
=4 (Mg
= (1 =t?/c2)™ 2 (p, imc)
= (1 =¢¥/c?) 12 (f, irc) (17.3)

The vectors V, F are orthogonal. This is proved as follows: From equation
(15.6),

Vi= —¢2 (17.4)
Differentiating with respect to t,
dv
V-
dr
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ie. V-F=0 (17.5)

as stated. This result has very important consequences. Substituting for V and F
from equations (15.6) and (17.3) respectively, it is clear that

(1 —v2/c?)~ (v, ic) (£, imc) = 0. (17.6)

This is equivalent 10
v-f—ctm=0. (17.7)

But, by definition, v - fis the rate at which f is doing work. It follows that the work
done by the force acting on the particle during a time interval (¢,, ¢;) is
]

fc2mdt = myc? —m, c? (17.8)

n

The classical equation of work is
work done = increase in kinetic energy (17.9)

where T = $mv? is the kinetic energy (KE). Equation (17.8) indicates that in
special-relativity mechanics we must define T by a formula of the type

T = mc? + constant (17.10)

When v = 0,T = 0and this determines the unknown constant to be —myc?. Thus

2
mgc¢
T=a—_—u2/?)—l/—2-—mocz (1711)

I v/cis small (1 —2%/c?)" "2 = | +v?/2c* approximately and the above equ-
ation reduces io T = $m,v?, in agreement with classical theory.

According to equation (17.10), any increase in the kinetic energy of a particle
will result in a proportional increase in its mass. Thus, if a body is heated so that
the thermal agitation of its molecules is increased, the masses of these particles,
and hence the total body mass, will increase in proportion to the heat energy
which has been communicated.

Again, suppose two equal elastic particles approach one another along the
same straight line with equal speeds v. If their rest masses are both my, the net
mass in the system before collision is

2my /(1 — 0% /c?)' 1

It has been accepted as a fundamental principle that this mass will be conserved
during the collision. However, from considerations of symmetry, it is obvious that
at some instant during the impact both particles will be brought to rest and their
masses at this instant will be proper masses my. By our principle,

’

2
2my, Mo

= Toey (17.12)
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It follows, therefore, that, at this instant, the rest mass of each particle has
increased by
mo

- ., =T/t 7.1
EEnE: my =T/c (17.13)

where T 1s the original KE of the particle and use has been made of equation
(17.11). Now, in losing this KE, the particle has had an equal amount of work
done upon it by the force of interaction and this has resulted in a distortion of the
elastic material of which it is made. At the instant each particle is brought to rest,
this distortion is at a maximum and the elastic potential energy as measured by
the work done will be exactly T. If we assume that this increase in the internal
energy of the particle leads to a proportional increase in mass, the increment of
rest mass (17.13) is explained. If the particles are not perfectly elastic, the work
done in bringing them to rest will not only increase the internai elastic energy, but
will also generate heat. Both forms of energy will then contribute to increase the
rest masses.

Such considerations as these suggest very strongly that mass and energy are
equivalent, being two different measures of the same physical quantity. Thus, the
distinction between mass and energy which was maintained in classical physical
theories, has now been abandoned. All forms of energy E, mechanical, thermal,
electromagnetic, are now taken 1o possess inertia of mass m, according to
Einstein’s equation, viz.

E = mc? (17.14)

Conversely, any particle whose mass is m, has associated energy E and. by
equation (17.11),
E =T+myc? (17.15)

myc? is interpreted as the internal energy of the particle when stationary. If the
particle were converted completely into electromagnetic radiation, myc? would
be the energy released. This is the source of the energy released in an atomic
explosion. The mass of the material products of the explosion is slightly less than
the net mass present before the explosion, the difference being accounted for by
the mass of the energy released. Even a small mass deficiency implies that
an immense quantity of energy has been released. Thus, if m = 1 kg. ¢ =3
x 108 ms™!, then E=9x 10'°J = 2.5 x 10'® kWh.

The principle of conservation of mass, which has been incorporated into the
new mechanics, is now seen to te identical with the principle of conservation of
energy, which is accordingly also regarded as valid in the new mechanics.
However, the distinction between the two principles, which was a feature of the
older mechanics. has disappeared.

18. Lorentz transformation equations for force

By equation (17.7), i
irhc:z'-f-v (18.1)
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Referring to equation (17.3), F can now be completely expressed in terms of f; thus
F=1(l —uz/cz)“”(f,%f-v) (18.2)

Relative to the special Lorentz transformation, the transformation equations
for the components of F are

F,=F,cosx+ F sina FZ—F}

F,= —F,sina+F,cosa Fy=F (18.3)

Substituting from equation (18.2) into the first three of these equations and
employing equations (5.7), it follows that

—Q(f,—§r-v) |
=00 —u?/c?) 2, (18.4)
=00 —u?/c)if, ]

where Q is given by equation (15.10). Substituting for Q from the fourth of
equations (15.9), it will be found that

ct 1 —ub,/c

f=f u (f,v, +le/)]

x X 3
1— !

7, = "u,fc/c)z 5, f (18.5)
(1 —u?/c?)' 2 |

J.= —uv /c? ¢ |

These are the special Lorentz transformation equations for f. If u, v are negligible
by comparison with c, these equations reduce to the classical form of equation
(2.6).

Itis clear from equations (18.5) that, if equal and opposite forces are observed
from S to act upon two particles, the forces observed from S will not be so related
unless the particles’ velocities are the same.

19. Fundamental particles. Photon and neutrino

By eliminating m and v between equations (16.7), (17.14) and the equation p = mt
giving the linear momentum of a particle, it will be found that

E=c/(p* + mic?) (19.1)

This useful equation relates the total energy E of a particle (including its internal
energy) with its momentum p. A special case of great importance is when m, = 0,
and then

E=cp (19.2)
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Forsucha particle,m = E/c? = p/c;i.e.its rest mass vanishes, but its inertial mass
is non-zero. This result is inconsistent with equation (16.7), unless ¢ = ¢ (in which
case the right-hand member becomes indeterminate). We conclude that any
particle having zero rest mass must always move with the speed of light.

Two such particles are known, the photon and the neutrino. The former is a
quantum of electromagnetic energy and the latter is a particle which is generated
in some interactions between fundamental particles governed by the weak
interaction force (e.g. the decay of a neutron into a proton). Neither particle
exhibits any electric charge. If either particle is absorbed by other matter, it loses
its identity and delivers its energy and momentum 1o the absorbing body - the
heating of a metal plate placed in sunlight is an example of the absorption of
photons. Neutrinos are exceptionally difficult to absorb and hence to
detect -there is a high probability that a neutrino from the sun will pass right
through the earth without interaction with a single one of its atoms.

As an example of a particle interaction in which a neutrino is involved, consider
the decay of a negative pion (a meson) into a muon (heavy electron)and a neutrino.
Assuming that the pion is at rest in the laboratory frame, the momenta of the muon
and neutrino will have equal magnitudes p, but will be in opposite senses. If m,,m,
are the proper masses of the pion and muon respectively, the principle of
conservation of energy leads to the equation

m.c? =cp+c/(p? +mic?) (19.3)
having used equations (19.1) and (19.2). Solving for p, we find
p = c(m; —m})/2m, (19.4)
The energy of the muon is now found to be
E, = m,c? —cp = (m?:+ m2)2m, (19.5)
and the KE of this particle is accordingly
T,=E,-mc*=c*(m,—m,)/2m, (19.6)

From tables, we find that the rest masses in atomic energy units are m,c? = 140
MeV, m,c? = 106 MeV (mega-clectron volts). Hence, T, = 4.1 MeV. This value
has been checked experimentally by observing the length of the path of the muon
in the resistive medium in which it is generated (usually liquid hydrogen).

20. Lagrange’s and Hamilton’s equations

Suppose that a particle having constant rest mass m,, is in motion relative to an
inertial frame under the action of a force derivable from a potential V. Then its
equations of motion are

d my X v
a{(l _UZO/CZ)”Z } = -3 etc. (20.1)
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Expressed in Lagrange form, these equations must be

E(;ﬁ),‘;é, ete. (202)
de \ ¢x Cx

and hence L must be a function of x, ), z, X, y, 2, such that

L _ mgyx L cv

=2 — = -, tc. 203
éx (1 —v?/ct)t? ox Cx et (293)

Since v? = X2 + 37 + 72, these equations can be validated by taking

L= —mycr(1 —v¥/c?) 2=V (20.4)
which is accordingly the Lagrangian for the particle.
Now
6L
07.— = Py etc. (20.5)
ox

and it follows exactly as in classical theory that, if the Hamiltonian H is defined by
the equation
H=pue,+puv,+pv,—L (20.6)

and is then expressed as a function of the quantities x, y, z, p,, p,, p, alone, the
Lagrange equations (20.2) are equivalent to Hamilton’s equations

. CH . ¢H
X == g Px= ——=_, etc. (207)
Cpx cXxX
Now
2
myv
PxUx + P,.L‘y + p.t, = (—f—_—DEF)Tz (208)
and hence
2
Mot 202312
H=(—l—:v2/7—)m'+m0€2(l—l.2/(‘ )l +V
2
myc
=+ V
(1 _02/:(.2)112 +
=E4+V (20.9)
the total energy, precisely as for classical theory.
But
2,2
2 2 2 Mmpt
px+py +pz - 1 —UZ/CZ
2.2
mgc
= - m(z)cz + T;—L—ZF

—mic+ E?/c? (20.10)
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and it follows that
E? =2 (p2 +p} +pl+mic?) (20.11)
Substituting in equation (20.9),
H=c(pl+pl+pl+mic?)*+V (20.12)

expressing Hasa functionof x, v, z, p,, p,. p.. The reader is now left to verify that
Hamilton’s equations are equivalent to the equations of motion (20.1).

21. Energy-momentum tensor

Suppose that there is a continuous distribution of mass over some region of space.
In this section, we shall suppose this to take any physical form whatsoever. For
example, the distribution may be in the form of the molecules of an elastic body
and, in this case, the mass must include a component corresponding to the mass of
the potential energy of the field of stress, in addition to the inertia of the particles
themselves. Such a field will be electromagnetic in nature, the electric charges
present in the molecules being ultimately responsible for its presence; we shall
not, therefore, exclude a further contribution to the mass—energy distribution
from any other electromagnetic field which may happen to be present. Any
random motion of particles exhibiting itself as heat energy will also make a
contribution. Equations governing this combined mass flow will now be derived.

Let S be an inertial frame Ox, x, x, and let y', p”, etc., be the densities of
inertial mass at a point of the frame due to the various contributors. Then, ifv', v”,
clc., are the respective velocitics of flow of these components. the net density of
linear momentum g will be given by

"o

g=uv+pu'v+ .=y, (21.1)
where

u=p +u+ ... (21.2)

is the net density of inertial mass. Equation (21.1) defines the mcan velocity of
mass flow v. In time d1, the mass flowing across an area d 4 having unit normal nis

#v-ndAdt + v -ndAde + ... = uv-ndAd: (21.3)

thus, the rate of mass flow across unit area is uv-n = g- n,implying that gis also
the current density vector for the mass flow. The components of g will be written
g, (Greek indices will range over values 1, 2, 3).

Let g™ be the current density vector for the flow of the x,-component of
momentum, i.e. the rate of flow of this component of momentum across unit area
with unit normal nis g - n. The x;-component of g will be denoted by g,4. In the
special case of a cloud of non-interacting particles (no stress field), whose velocity
of flow is v, since the density of the x,-component of momentumis g, the quantity
of this component passing over the unit area in unit time is g, v - n. It follows that
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g = ¢,v and hence,

Gap = Uy (21.4)

A simple distribution of this type will be referred to as an incoherent cloud.

For any distribution which includes material particles, in addition to the
internal forces of interaction between the particles, there may be other forces
acting upon them due to agents which are regarded as external to the system; such
forces will be termed external forces. Let dw be the volume occupied by a small
element of the fluid or solid which is formed from these particles; if v is the flow
velocity of the element and dw, is its proper volume (i.e. volume measured in a
frame in which the element is momentarily stationary), then

do = /(1 -t}/c?)dw, (21.5)

since all lengths parallel 1o the flow will be subject to a Fitzgerald contraction. If
df is the resultant external 3-force acting on the element, we shall define the 3-
force density d at the element to be such that df = d dw. Similarly, if dF is the
external 4-force on the element, the 4-force density will be D, where dF = D dw;
since dw, is a 4-invariant, this defines D as a 4-vector. Reference to equation (18.2)
shows that we can write

dF = (1 —¢2/c)" ' 2(df, idf - v/c) (21.6)
and this is equivalent to the equation
Ddw, = (1 —v?/c?)" "2 (d,id" v/c)dw (2L
It now follows from equation (21.5) that
D= (d.id v/c) (21.8)

which relates 3- and 4-force densities.

Now suppose I is a closed surface which is stationary relative to the frame S
and let do be the area of a surface element whose outwardly directed unit normal
1s n. Then the rate of increase of the total mass inside £ must equal the rate of
inflow of mass across X, plus the rate at which external forces acting on any
particles inside Z generate energy (and hence mass) by performing work. Let T’
denote the interior of £ and dw a volume element of I'. Then conservation of
inertial mass is expressed by the equation.

d 1
— = - . = . 21.9
ar r;Jdou Lg ndo+C2J;d vdw ( )

Converting the surface integral into a volume integral over I" by the divergence
theorem, this equation is seen to be equivalent 1o

3 1
f{fﬁ +divg——2d-v}dw=0 (21.10)
r L€t ¢
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Since I is arbitrary, this implies that
cu 1
T'+ga,:=_2dzuv (2|11)
ét ¢
where the summation convention is being applied to the Greek indices.
Since the x,-component of the linear momentum of the particles within the
volume element dw will be increased at a rate d, dw by the external forces and g

is the current density vector for the flow of this component of momentum, the
equation corresponding to (21.9) expressing the conservation of linear momen-

tum s
ij g,dw = — J g™-ndo + J d,dw (21.12)
de Jr b3 r

Again, by application of the divergence theorem, we can show that this implies
that

9.
2y Gy =d, 21.13
ot Gap.p ( )
These equations (21.11), (21.13), of conservation of inertial mass (or energy)
and linear momentum can be expressed in four-dimensional form by the
introduction of Minkowski coordinates x; and by the definition of a 4-tensor 7;
according to the equations

Tﬁﬁ = Gap» Tad = TG: = iCQ,. T44 = —Czl.l (2114)

It may be verified that, with this notation, the equations reduce to the form
T, . =D, (21.15)

where the 4-force density D, is given by equation (21.8). T;; is called the
energy-momentum tensor for the mass—energy distribution. By assuming T;;
behaves like a 4-tensor on transformation between inertial frames, equation
(21.15) is guaranteed to be valid in all such frames and the special principle of
relativity is satisfied.

In the special case of an incoherent cloud of particles lowing with velocity v, we

have g, = v, and g, = g,v53 = uv,v5. Equations (21.14) now yield

i

Ty = to ViV, (21.16)
where V = (1 —v?/c?)" 13 (v, ic) is the 4- velocity of fiow and
Hoo = (1 =2/ )p (21.17)

Since the density of rest mass of the cloud observed from S is u /(1 —v%/c?), the
rest mass of the particles in the volume element dw is u /(1 -v?/c?)dw.
Observed from a frame S, in which the particles in this element are momentarily
stationary, the volume of the element will be dw,; hence, the density of proper
mass in Sy is u \/ (1 —v?/c?)dw/dw, = u(1 —v?/c?) = py,, having used equation
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(21.5). poo is accordingly referred 1o as the proper density of proper mass of the

cloud; it is a 4-invariant and equation (21.16) clearly expresses T;; as a 4-tensor.
In many circumstances, the 4-force density D, of the external force field can be

expressed as the divergence of a second rank tensor, i.e. we can write

D;= -5, (21.18)
Equation (21.15) then reduces to

This shows that the external force field can be treated as an additional component
of the oniginal mass—energy distribution, contributing its own energy-
momentum tensor S;;. The field is then regarded as possessing energy of density
¢2u= —8,,, x,component of momentum of density g, = S../ic, and the
momentum flow within the field is described byg,; = S,;. There being no external
forces operating on the enlarged system, it is said 10 be isolated, and if T}; is taken
1o denote the combined energy-momentum tensor, the equations of conservation
of energy and momentum for the overall distribution take the form

T;;=0 (21.20)

i.e. T;; has a vanishing divergence.

22. Energy—-momentum tensor for a fluid

In this section we will calculate the equations of motion for an elastic fluid moving
under the action of an external force field of density d,. From these, the
energy-momentum tensor for the fluid, including its internal stress field, can be
derived.

Let 14, be the stress tensor, i.e. (T,,, T34, T3,) ate the components of the force
exerted across unit area, whose normal is parallel to the x,-axis, by the particles on
the side for which x, takes lesser values upon the particles on the side for which x,
takes greater values. Consider a fluid element in the shape of a small tetrahedron,
three of whose faces are normal to the axes and whose fourth face has unit normal
n, (Fig. 4). If dx,, 0x,, dx, are the respective lengths of the edges parallel to the
axes, the stress force acting on the face parallel to the coordinate plane Ox; x5 will
have components (t,,, 75, T3;)8x,0x,; the forces acting on the two faces
parallel to the other two coordinate planes can be calculated similarly. Let s6A4 be
the force applied to the sloping face, 84 being its area. Then the x,-component of
the equation of motion of the element is

dp,
dt
(22.1)

where p, is the momentum of the element. Since the face of area $6x,dx5 is the
projection of the area 4 on to the coordinate plane Ox;x3, 1,64 = $6x;0x4;

31,00%20% 3 + $1,20%30%, +47430%,0x, + 5,04 + $6x,8x,0%3d, =
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Fi1G6. 4

Similarly, nzéA = %5X35X[, n;(SA = %5X|5X2. Thus,

S, = — Tz ) + T3N3 + T,3n;3) + (terms of third order in 6x,)/8A4. (22.2)

In the limit as dx, — 0, this gives

Sy = — T,pNy

(22.3)

Now consider the motion of a small element of fluid, of any shape, bounded by
a surface Z (X moves with the fluid). If do is an element of Z (Fig. 5) whose unit
normal is n,, the force exerted on it by the neighbouring fluid is — 1,5n,do and the

resultant stress force on the complete element is therefore

ot
——J‘ Tpnpdo = —J‘ CT)—:-'-’ dw
B
c

FIG. §

(22.4)
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where I is the interior of £ and we have used the divergence theorem. Thus, the
force density for the stress field is — 1,y 4.

Let g, be the total momentum density for the fluid, including the elastic
potential energy generated by the stress field. If dw now represents the volume of
the fluid element inside Z, the momentum of the element is g, 6w and the rate of
change of momentum is

d dg, d
a(g,ﬁm) = --a-t—(s(n + g,d—t(éw) (22.5)
where the derivatives are calculated following the fluid motion. Thus,
dg, _ 0g,
- : 226
di 6[ + l’Bgz. 8 ( )

where ¢, is the velocity of flow. During a short time 41, the surface element do
traces outa volume v-n do 6t and the increase in the volume of dw is accordingly

6:J‘ v-ndo = 51J. divvdw = dtdw vy (22.7)
z r
Thus,
d
—(dw) = dwuy 4 (22.8)
dt
Equations (22.5), (22.6) now give for the rate of momentum change
€9, cg, ¢
(F + Vgga 5+ Guls, ﬁ>dw = (ﬁ + —a}é(g,vﬂ)>dw (22.9)
We can now write down the equation of motion of the element, viz.
09,
i +(g20p), 5 Jdw = (d, = 1,5 p)dw (22.10)
or
gq
o TGttt =ds (22.11)

At this stage it should be noted that we are disregarding any flow of heat which
may take place by conduction within the fluid. Such a flow of energy would
contribute its own momentum and further terms would need to be included in
equation (22.11) to allow for this.

We next calculate the equation of energy for the fluid element. The rate at
which the stress force acting upon do does work is — 7,4n50,do and the total rate
of doing work by these forces on the element is therefore

¢
—J VyTapngdo = ——j —(v,T,p)dw (22.12)
b r OXB
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by the divergence theorem. The rate of doing work by the external forces on the
element is d,r,dw. If p is the density of the total inertial mass of the fluid
{including the elastic potential energy and any heat generated by compression),
the energy of the element is c2udw. Thus, the equation of energy is

d
a(('zudw) = {d, v, — (UaTap) p}dw (22.13)
Using equation (22.8) and
duy
i = a +Upl g (22.14)
equation (22.13) gives
ou 1 1
E-F {[JL‘B+E'2'L‘aTaB}.B = (—jdal}, (2215)

We now compare the equations (22.11), (22.15) with the equations (21.13),
(21.11), for a general mass - energy flow. It is seen that, for the fluid, we must take

1
g, = ’w“+c2 UgTga (22.16)
gaB = gavﬂ + Tap (2217)

Substituting for g, from equation (22.16) into (22.17), we get the alternative
formula

1
Gap = MVgg + Top + 53 T,alylp (22.18)

Equations (21.14) now yield the components of the energy-momentum tensor,
viz.

1
T = prvavp+ 1,5+ oz Tyalylp

1
Tu=Ts, = ic(pu,+c—2v,,r,,,) (22.19)
To = —¢p

Alternative forms for these components involving the 4-velocity of flow V; can
also be found (see Exercise 68 at the end of this chapter).

Two special cases of these results are of great importance. The first is that of an
incoherent cloud for which we have 1,5 = 0. Then T,5 = pt,uy, T, = icut,,
T,, = —c?u, and using equation (21.17), we derive equation (21.16) again. It
should, however, be noted that equation (21.17) is not valid in the general case of
an elastic fluid, since the inertial mass density p includes a component due to the
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elastic energy and the value of this component in the rest frame cannot be found
by simple multiplication by (I —v?/c?).

The second special case is that of a perfect fluid. This is defined (o be a fluid in
which there are no shearing stresses in a frame S° relative 1o which it is at rest.
Thus,in S° 1% = pd,,; where p is the pressure. Equations (22.19) now give for the
components of the energy  momentum tensor in S° the values

p 0 0
0 p O
0 0 p
0 0 0 —c*ugo

If V; is the 4-velocity of flow of the fluid, it is now easy 1o verify that the tensor
equation

(T%) = (22.20)

o o0 0O

[

T = (poo + p/c*)V;V;+ pd,; (22.21)

is valid in the frame S°(p . p being invariants) and, hence, is valid in all frames.
Thus, if y is the density of inertial mass in a frame S,

Hoo + p/c* p

p= —Tyfc? = 1 —v.i./c_z 2 (22.22)
or H+p/et = (oo +p/c?)/(1 —v?/c?) (22.23)
It now follows that
9a = Taa/ic = (oo +p/fz)Taz/cz
= (1 +p/c?), (22.24)

Comparing this last equation with equation (22.16), we deduce that pv, = 157,
identically, which implies that

Tga = péﬁa (2225)

i.c. there is no shearing stress in any frame and the pressure is the same in all
frames.

23. Angular momentum

A particle having momentum p, = mu, at a point x, relative toa frame Sis defined
to have angular momentum

haB = (xa - aa)pﬂ - (XB - aﬂ)pa (231)

about the fixed point a,. Clearly, this defines the angular momentum as an anti-
symmetric 3-tensor. In elementary mechanics, a more usual definition is by the
vector product (x —a) x p, i.e. the pseudovector e, (x; —ag)p,; however, the
components of this pseudovector are found to be (h,3, hyy, hy,) and these are
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three of the non-vanishing components of h,4(the other three are hy; = —hj,,
etc.), so that the definitions are essentially equivalent.
If £, is the 3-force acting on the particle, then

dh, _dx,  dx, B )d . dp,
Pl Tal Sy p.t+(x,—a (xp a,,)
—a,)fp— (x5 —ag)f (23.2)

since p, = mv, = mx, and p, = f,. The right-hand member of the last equation is
another anti-symmetric 3-tensor called the moment of the force f, about the point
a,. Denoting this moment by m,;, we have derived the equation of angular
momentum, viz.

dh,g
de

= my (23.3)

H m,; = 0, then h,; is constant and the angular momentum is conserved.

In the case of the continuous distribution of mass—energy considered in
section 21, the momentum of an element of volume dw is g,dw and the angular
momentum of the whole system about a, is defined by the equation

hyy = J‘ {(xs —a,)gp ~ (x5 — ag)g, }dw
r

ic

1
=T J‘ {(xz —aa)Tﬂd - (xﬂ _aﬂ)Ta4}dw (234)
r

where I is the region occupied by the system and 7;; is the energy-momentum
tensor. If the system is imagined to be situated in otherw1se empty space, so that
there is no container exerting forces on its bounding surface, the region I can be
extended 1o include the rest of space. In these circumstances, differentiating
equation (23.4) with respect 1o t, we find

dh,g

d = J {(xa - az)Tﬂd,A - (xy - ao)T,94_4}dw
t r

= J {(xa—a,) (Dy—Tg, ) = (x5 —a5) (D, — T, ,) }dw
r

= J {(x:_aa)dﬂ_(xg_ao)di}dw
.

- J‘ {[(xa _aa)TBy].v - [(X,, _aB)Tav]vv — Xa,y TBV +xﬁ.vTav}dw (23.5)
r

having used equations (21.8) and (21.15). Applying the divergence theorem to the
first two terms involving the energy-momentum tensor, since T;, vanishes at a
great distance from the distribution, these terms make zero contribution. Thus,
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the cquation reduces to the form

dhyg
5= {(x,—a,)dg — (xg—ag)d,}dw+ | (Ty,—Top)dw  (23.6)
r r

(Note that x, , = J,,.) The first integral in the right-hand member of equation
{23.6)is the moment m,, of the external field forces about a, and it follows that the
equation of angular momentum (23.3) is valid for the distribution if T4 is
symmetric. Since T,, = T,,, this condition is equivalent to the requirement that
the energy-momentum tensor should be symmetric.

The assumption that T}, is symmetric, and hence that the angular momentum of
a continuous distribution not acted upon by external forces is conserved, is
always made and is, indeed, necessary for the development of the general theory
of relativity (see section 47). Reference 1o equations (22.19) indicates that this
assumption implies that the stress tensor 1,; for an elastic fluid cannot be
symmetric as was always assumed in the classical theory; it will, however, be very
nearly symmetric in the case when its components and the flow velocity are
sufficiently small.

Exercises 3

1. Obtain the transformation equations for v by differentiating the Lorentz
transformation.

2. Obtain the transformation equations for the acceleration a by differentiat-
ing the transformation equations for v and express them in the form

B (1 _MZ/C2)3!2
T U —vuc?y ™

_ 1 —u?/c? l;yu/c2
a = 5| a, + > 4,
Yol =wufe?) U 1 —vufc

_ 1 —u?/c? v,u/c’

=1 —vufct)? (az *1 —vu/c? a,>
Deduce that a point which has uniform acceleration in one inertial frame has not,
in general, uniform acceleration in another.

3. A nucleus is moving along a straight line when it emits an electron. As seen
from the nucleus, the electron’s velocity is 6¢/7 making an angle of 60° with its
direction of motion. A stationary observer measures the angle between the lines of
motion of nucleus and electron to be 30°. Calculate the speed of the nucleus.
(Ans. 3¢/5.)

4. A nucleus is moving with velocity 3¢/5 when it emits a f-particle with
velocity 3¢/4 relative to itself in a direction perpendicular to its line of motion.
Calculate the velocity and direction of motion of the B-particle as seen by a
stationary observer. If the f-particle is emitted with velocity 3c/4 in such a
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direction that the stationary observer sees its line of motion 10 be perpendicular to
that of the nucleus, calculate the direction of emission as seen from that nucleus
and the velocity of the f-particle as seen by the stationary observer. (Ans. 3¢/S at
45 to line of motion; n — x 1o line of motion where cos a = 4/5; 9¢/16.)

5. Show that the 4-velocity V is of constant magnitude ic.

6. A beam of light 1s being propagated in the xy-plane of S at an angle a to the
x-axis. Relative 10 S it is observed 10 make an angle % with OX. Prove the
aberration of light formula, viz.

(& cot o — (u/c)cosec x
cota = :
(1 _u2/02)l-2

Deduce that, if u < ¢, then

— u .
Ax =a—a=-sina
¢
approximately.
7. A particle of rest mass m, is moving under the action of a force f with
velocity v. Show that
m dv myvi/c?
= T, i, 7, 532 Y
(F=c%/c)“de (1 —2#/c?)?

Hence, if the acceleration dv/d1 is parallel to v, show that
f - mg dv
T =viehde
and if the acceleration is perpendicular to v, then
m dv
(1 =v?/c?)' 2 de

8. Two particles are movingalong the x-axis of a frame S with velocities ¢y, v,.
Calculate the velocity v with which a parallel frame § must move paraliel to the x-
axis of S, if the particles have equal and opposite velocities relative to S. Show that
the magnitude of these velocities is

e —tyv, —(¢? — o) (e —1})"?

vy =0

assuming v, > v, > 0.

9. A bullet of length d is moving with velocity ¢. The line of sight from a camera
makes an angle « with the bullet’s velocity. Behind the bullet and parallel to its
axis is a stationary measuring scale. If the camera takes a photograph of the bullet
against the background provided by the scale, show that the bullet's length as it
appears on the scale is

(1 __UZ/CZ)I/Z{I
l+vcosajc
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10. A cart rolls on a table with velocity kc. A smaller cart rolls on the first in
the same direction with velocity k¢ relative to the first cart. A third cart rolls on
the second with relative velocity k¢, and so on up to ncarts. If ¢, is the velocity of
the rth cart relative to the 1able, prove that

_ _y,+k
14k,

vr&l

Deduce that

p = 4R =0 Zk)"
"k (L —k)

What is the limit of v, as n —» oc? (Ans. ¢.)

11. A nucleus disintegrates into two parts, A and B which move with equal and
opposite velocities of magnitude V. A then ejects an electron whose velocity
observed from A4 has magnitude  and direction perpendicular 10 the direction of
A’s motion. Show that, as observed from B, the electron’s velocity makes an angle
2 with the direction of 4’s motion, where tana = $(1 — ¥'2/c?)and calculate the
magnitude of the velocity of the electron relative to B. (Ans. V{4 +
(1= V2?20 - Vct))

12. A rocket moves along the x-axis in S, commencing its motion with velocity
to and ending it with velocity v,. If w is the jet velocity as measured by the crew
(assumed constant), show that the mass ratio of the manoeuvre (i.e. initial
mass/final mass) as measured by the crew is

[(c' +0,)(c — UO):l"'z“’

(¢ —ov1)(c +vp)

What does this reduce to as ¢ = oc? Deduce that, if the rocket starts from restin S
and its jet is a stream of photons, the mass ratio to velocity v is

\/(c +v

c- v)

Show that, with a mass ratio of 6, the rocket can atiain 35/37 of the velocity of
lightin S. _ _

13. 8, §, Sare inertial frames with their axes parallel. $ has a velocity u relative
to Sand S has a velocity ¢ relative to S, both velocities being parallel to the x-axes.
If transformation from Sto S involves a rotation through an angle a of the axes in
space-time and transformation from S to S a rotation f, a transformation from S
to § involves a rotation y where y = a + . Deduce from this equation the
relativistic law for the composition of velocities, viz.

u+v
W= ———
14 uv/c?
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14. A force f acts upon a particle of mass m whose velocity is v. Show that
dv f-v
f =m—+ —3 v
c
15. An electrified particle having charge e and rest mass m, moves ina uniform
electric field of intensity E parallel 1o the x-axis. If it is initially at rest at the origin,
show that it moves along the x-axis so that at time ¢

()]

where k = eE/m,. Show that this motion approaches that predicted by classical
mechanics as ¢ — oc, (It may be assumed that the force acting upon the particle is
¢E in the direction of the field at all times.)

16. A tachyon transmitter always emits a tachyon at a speed v > c relative to
itself. Observers A, B are equipped with such transmitters and B is moving away
from A with velocity u < c¢. A transmits a tachyon towards B, who is at a distance
d as measured from A when he receives it, Bimmediately transmits a tachyon back
towards A. Show that A receives this tachyon a time

20 /02
v(v—u)(zu v —u‘t/c?)

after transmitting his own. Deduce that A receives the reply before () his act of
transmission if

t oo+ Jle? —u?
L N )
c u

17. v, V are the 3- and 4-velocities of a point. If a = dv/dt is the 3-acceleration
and A = dV/dt is the 4-acceleration, prove that

A% = (1 =v2/e®y 3 {(c? —vP)a? + 2uba-v — 1?32}/ ¢?

18. A mirror moves perpendicular 1o its plane with velocity ¢ and away from a
source of light. A ray from the source is reflected by the mirror. If 6 is the ray’s
angle of incidence, show that the anglc of reflection is ¢, where

A (t* + ¢?)cosO — 2cv
COS = 5
v? +¢? —2uccosd

19. Two trains, each having the same rest length L, are moving in opposite
directions with equal speeds U on parallel tracks. State the time T they take to pass
one another according 1o a classical, non-relativistic, calculation. Show that the
time taken, as measured by a driver of one of the trains and using a relativistic
calculation, is also 7.

20. v, ¥ are the velocities of a point relative 1o the inertial frames S, S
respectively. Representing these vectors as position vectors in an independent &,
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show that

ﬁv=Q[v+u{-";'}w—n+ﬂ}J

where 8 = (1 —u?/c¢*)" "2 and Q0 = 1/(1 +u-v/c?).
Show further that
w?Bv =Q[(1 —Bux (vxu)+ pul(u+v)]

and hence verify that

i? = Q?[(u+v)? —(vxu)/c?]

21. A luminous disc of radius a has its centre fixed at the point (x, 0, 0) of the S-
frame and its plane is perpendicular to the x-axis. It is observed from the origin in
the S-frame at the instant the origins of the two frames coincide and is measured
to subtend an angle 2a. Prove that, if a < X, then

a c+u
tanx = -
X\/(c—u>

(Hint: employ the aberration of light formula, exercise 6 above.)
22. A particle moves along the x-axis of the frame S with velocity v and
acceleration a. Show that the particle’s acceleration in § is

(l _u2/(.2)3/2

a= (1 —uv/c?)?

If the particle always has constant acceleration x relative to an inertial frame in
which it is instantaneously at rest, prove that

d
a(ﬂv)= o

where 8 = (1 —t%/c?)~ ' and ¢ is time in S.
Assuming that the particle is at rest at the origin of S at 7 = 0, show that its x-
coordinate at time ¢ is given by

ax = c2[(1 +2%1%/c})' 2 1]

23. Three rectangular Cartesian inertial frames S, S, § are initially coincident.
As seen from S, S moves with velocity u parallel 10 Ox and, as seen from S, §
moves with velocity v parallei to Oy. If the direction of S's motion as seen from S
makes an angle 6 with Ox and the direction of $’s motion as seen from S makes
an angle ¢ with O, prove that

v u2 1:2 v L._Z -1:2
tanf = {1 -— , =—{1-=
u( c2> an¢ u( cz)
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Deduce that, if u, v < c, then
¢ —0 = uv/2c?

approximately.

24, The inertial frames S, S have their axes parallel and the origin of § moves
along the x-axis of S with velocity u. A rigid rod lies along the X-axis of Sand is
attached toit. If Tis the rod’s length as measured in Sand /is its length measured in
S, show that [ = T(1 —u?/c?)!/2. §' is a third parallel inertial frame whose origin
also moves along the x-axis of S. Observed from §', the origins of S and § have
equal and opposite velocities. Show that the velocity of S’ observed from S is

c—z[l -1 —uz/cz)”z]
u

A rod, identical to the one already referred to, lies along the x’-axis of S’ and
moves with this frame. Its length observed from S is L. Show that

2 112
L‘(FT) T

25. Two particles, each having rest mass m,, are moving in perpendicular
directions with the same speed 1c. They collide and cohere to form a single
particle. Show that its rest mass is /(14/3)m,. (Assume there is no radiation of
energy.)

26. A particle of rest mass m, and speed v collides with a particle of rest mass
m, which is stationary. After collision the two particles coalesce. Assuming that
there is no radiation of energy, show that the rest mass of the combined particle is
M, where

2mlm2

M? =mf+m§+zm2/7)lT

and find its speed.

27. A particle is moving with velocity u when it collides with a stationary
particle having the same rest mass. After the collision the particles are moving at
angles 6, ¢ with the direction of motion of the first particle before collision. Show
that

tanftan¢ 2
anftang = ——

y+1
wherey = (1 —u?/c?)" 2. (If c » oc, 7 - 1and @ + ¢ = 4n. This is the prediction
of classical mechanics. However, if the particles are electrons and u is near to ¢ in
value, 0 + ¢ < in. This effect has been observed in a Wilson cloud chamber.)
(Hine: Refer the collision to an inertial frame in which both particles have equal
and opposite velocities prior to collision.)
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28. A body of mass M disintegrates while at rest into two parts of rest masses
M, and M,. Show that the energies E,, E, of the parts are given by

M2+ M- M) M? - M+ M)

E, = . E, =
! M 2 =¢ M

29. Two particles having rest masses m,, m, are moving with velocities u,, u,
respectively, when they collide and cohere. If a is the angle between their lines of
motion before collision, show that the rest mass of the combined particle is m,
where

,  2mymy(c* —u ujycosa)
+mz + PR I B T
Vi —ui)(c? —u3)}

Show that, for all values of @, m = m, + m, and explain the increase in rest mass.
30. A photon having energy E collides with a stationary electron whose rest

mass is m,. As a result of the collision the direction of the photon’s motion is

deflected through an angle 6 and its energy is reduced to E'. Prove that

1 1
mocz(E _E> =1—cosf

Deduce that the wavelength 4 of the photon is increased by

mzsz

Al = ih—sin’{;@,
myc
where h is Planck’s constant. (This is the Compton effect. For a photon, take
4= hc/E.)

31. A particle P having rest mass 2m, collides with a stationary particle Q
having rest mass mq. After the collision, the rest mass of Q is unchanged, but the
rest mass of P has been reduced to m,. If the lines of motion of the two particles
after the collision both make an angle of 30° with the original line of motion P,
calculate the original velocity of P and the momentum acquired by Q. (Ans.
3./5¢/7; J15mqc.)

32. A particle is moving with velocity v when it disintegrates into two photons
having energies E,, E,, moving in directions making angles a, f with the original
direction of motion and on opposite sides of this direction. Show that

Lytanif = <7
tanjatanzf = .
Deduce that, if a photon disintegrates into two photons, they must both move in
the same direction as the original photon.

33. A stationary particle having rest mass 3m, disintegrates into a pair of
particles, each of rest mass m,, and a neutrino. The directions of motion of the
particle pair are at an angle 26, where cos@ = 1/3. Calculate the energy of the
neutrino and show that the speed of each of the other two particles is 3¢/5. (Ans.
myc?)



66

34. A cosmic ray particle has rest mass m, and is moving with velocity 3c¢/5
relative to a stationary observer. I is seen by this observer 1o emit a gamma ray
photon with energy myc?/4 in a direction making an angle of 60° with its original
line of motion. Show that the rest mass of the particle is reduced by a quarter and
calculate the angle through which its velocity is deflected and its new speed. (Ans.
tan "' ((/3/5) /7c/4)

35. A neutron having rest mass muy, is stationary when it disintegrates into a
proton (rest mass mp), an electron (rest mass mg) and a neutrino. The proton
moves in the opposite direction to the other two particles, which move along the
same straight line. If T is the kinetic energy of the proton, prove that the kinetic
energy of the electron is c(mgc —k)?/2k, where

T
k = (mN —mp)c —; - \/(szT-FTZ/Cz)

36. A particle having rest mass m, is at rest when it emits two photons, each of
energy 2moc?. The particle recoils with rest mass 1m, along a line bisecting the
angle between the tracks of the photons. Calculate the angle between these tracks
and the particle’s velocity of recoil. If the photons are observed by an observer
moving with the particle, show that the angle between their tracks is seen to be 21,
where sinx = 1/7. (Ans. 30%; /3¢/2))

37. A nucleus has rest mass M. Whilst at rest, it emits a photon. If the internal
energy of the nucleus is reduced by E, in the process, show that the energy of the
photon is E, where E = E, (1 — Eg/2Mc?).

38. The lines of motion of a particle having rest mass m, and a photon are
perpendicular to one another. The total energies of the particle and photon are E,
E respectively. If the particle absorbs the photon, show that its rest mass is
increased to M, where M2 = m2 + 2EE/c*.

39. A photon having energy E is moving along the x-axis when it encounters a
stationary particle having rest mass m,. The particle absorbs the photonand then
emits another photon having the same energy in a direction parallel to the y-axis.
Calculate the direction and magnitude of the final momentum of the particle and
show that its rest mass is reduced to the value \/(mé —2E%)c%).

40. A mass 34m(4 > 1) at rest disintegrates into three fragments (each of rest
mass m) which move apart in directions making equal angles with each other.
Show that, in a frame of reference in which one of the fragments is at rest, the
angle between the directions of motion of the other two fragments is
2cot™! (/34).

41. A positron travelling with velocity 3¢/S is annihilated in a collision with a
stationary electron, yielding two photons which emerge in opposite directions
along the track of the incoming particle. If m is the rest mass of the electron and
positron, show that the photons have energies 3mc?/4 and 3mc?/2.

42. A positron having momentum p collides with a stationary electron. Both
particles are annihilated and two photons are generated whose lines of motion
make equal angles a on opposite sides of the line of motion of the positron. Prove
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that psina tanx = 2mc where m is the rest mass of both the positron and electron.
If x = 60°, calculate the velocity of the positron. (Ans. 4c/S.)

43. A particle of rest mass m, collides elastically with an identical stationary
particle and, as a result, its motion is deflected through an angle 0. If Tis its KE
before the collision and 7" is its KE afterwards, show that

T =~

44. A particle of rest mass m, collides elastically with a stationary particle of
rest mass m, (< m,)and, as a result, is deflected through an angle 6. If E, E’ are the
total energies of the particle m, before and after collision respectively, prove that

(E+myc)E —myc? E—mic*

cosl) = =2 !
o8 [(E* =m2c*) (E? —mic*)]'?

45. A pion having rest mass m, is moving along the x-axis of an inertial frame
Oxyz with speed 4c/5, when it disintegrates into a muon having rest mass 2m,/3
and a neutrino. The neutrino moves parallel to the y-axis. Prove that the angle
made by the muon’s velocity with the x-axis istan ™' (1/8)and calculate the energy
of the neutrino. (Ans. myc?/6.)

46. A nucleus having rest mass m, disintegrates when at rest into a pair of
identical fragments of rest mass £im, (~ < 1). Show that the speed of one particle
relative 1o the other is 2 /(1 —4%)¢/(2 — #%). If 4 is small, show that this speed is
less than ¢ by a fraction 4%/8.

47. A positron collides with a stationary electron and the two particles are
annihilated. Two photonsare generated, the lines of motion of which make angles
of 30° and 90° with the original line of motion of the positron. Calculate the
original velocity of the positron and show that the energy of one of the photons is
equal to the internal energy of the electron. (The rest masses of an electron and a
positron are equal.) (Ans. /3¢/2)

48. A moving positron collides with a stationary electron. Both particles are
annihilated and two photons are generated, the lines of motion of which both
make angles of 60° with the original line of motion of the positron. Prove that the
total energy of each photon is 4myc2/3, where m, is the rest mass of the positron
and of the electron.

49. A nucleus having rest mass m,, is moving with velocity 4c/5 when it emits a
photon having energy m,c?/3 ina direction making an angle of 60° with the line of
motion of the nucleus. Show that the subsequent direction of motion of the
nucleus makes an angle tan ' (,/3/7) with its initial direction of motion and
calculate the new rest mass of the nucleus. Show that, relative to an inertial frame
in which the nucleus was initially at rest, the line of motion of the photon makes
an angle of 120° with the original direction of motion of the nucieus. (Ans.

J 13my/6.)



68

50. A pion has rest mass m, and momentum p when it disintegrates into a pair
of photons having energies E and E'. The directions of motion of the photons are
perpendicular and that of the photon having energy E makes an angle x with the
original direction of motion of the pion. Prove that

p =myc(sin2x)" "%, E = myc? /ot ),
E = myc? |/ (5tana).

51. A particle having rest mass m, is moving with an unknown velocity when it
absorbs a neutrino whose energy is 3m,c2/2. The angle between the paths of the
particle and neutrino is a, where cosa = 1/3. After absorption, the rest mass of the
particle is 2m,. Calculate the original velocity of the particle and show that its
path is deflected through an angle B, where tanf =4 ,/2/5, as a result of the
encounter. (Ans. 3¢/S.)

52. A particle whose rest mass is m, moves along the x-axis of an inertial frame
under the action of a force

2mycla
T a-x)?

s

At time ¢t = 0, the particle is at rest at the origin O. Show that the time taken for
the particle to move from O 1o a point x ( < a) is given by

1 172
1= —I:i] (x + 3a)
3la

53. Oxy are rectangular axes of an inertial frame. A particle having rest mass
my is projected from the origin with momentum p, along Ox. It is acted upon by a
constant force f parallel to Oy. Show that its path is the catenary

y= ‘fgcosh(f—x - 1)
! €Po
where w3 = m3c* + pic?.

54. A particle having rest mass m, moves along a straight line under the action
of a frictional force of magnitude myr/k opposing its motion; v is the speed of the
particle and k is a constant. Show that the time which elapses whilst the particle's
velocity is reduced from 4¢/5 to 3¢/5 is [log (3/2) + 5/12]k.

55. A particle having rest mass m, moves on the x-axis under an attractive force
to the origin of magnitude 2m,c?/x2. Initially it is at rest at x = 2, Show that its
motion is simple harmonic with period 4n/c.

56. A space ship, with its motors closed down, is moving at high velocity v
through stationary interstellar gas which causes a retardation as measured by the
crew of magnitude av?. Show that the distance it moves through the gas whilst its
velocity is reduced from Vto U is
1 1+x |V
x —%logl —-X l U

1
o

where x = (1 —v2/c?)! 2,
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57. A particle has rest mass m, and 4-momentum P. An observer has 4-velocity
V in the same frame. Show that, for this observer, the particle's:
(i) energy is —P-V;
(ii) momentum is of magnitude /[P? + (P-V)/c?};
(iii) velocity is of magnitude /[1 +c*P?/(P-V)*].
(Hint: All these expressions are invariant.)
58. A particle has rest mass my and moves along the x-axis under theaction of a
force given at any point having coordinate x by

moc> w?x

(c* —w?a* + w?x?)3?

f=

w and a being constants. It is projected from the origin with velocity wa. Show
that its velocity at any later time is given by v? = w?(a’ —x?). What does this
imply for the particle’s motion?

59. A particle of rest mass m, moves along the x-axis of an inertial frame under
the action of a force

myc?

/= a2y

Attime 1 = 0, the particle is at rest at the origin. Show that, at any later time ¢, its
coordinate is given by

=24ct=2/(1+ct)

60. A particle of rest mass m, moves under the action of a central force. (r, 0)
are its polar coordinates in its plane of motion relative to the force centre as pole.
V(r)isits potential energy when at a distance r from the centre. Obtain Lagrange’s
equations for the motion in the form

d 1 d .
—() =y +—V' =0, —(yr'6)=0
a - o a0
where y = [1 — (> +r20%)/c*]~'/2. Write down the energy equation for the
motion and obtain the differential equation for the orbit in the form

2 —_—
hzuz(d—u+ u) = E—Z—KV'

de? mic?

where u = 1/r and h, C are constants. In the inverse square law case when V =
—u/r, deduce that the polar equation of the orbit can be written

lu=1+ecosnd

where n? = 1 —u?/mih*c?. If u/mghc is small, show that the orbit is ap-
proximately an ellipse whose major axis rotates through an angle nu?/mh*c? per
revolution.

61. A particle, having rest mass my, is at rest at the origin of the x-axis at time
¢t = 0. It is acted upon by a force f, directed along the positive x-axis, whose
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magnitude when the particle’s velocity is ¢ is given by f = mokc?/r. Show that at
time ¢( > 0), v = ¢ sinf, where 0 is positive acute and sec = 1 + k1. Deduce that,
at the same time, the coordinate of the particle is given by x = c(tan6 —0)/k.

62. If v is the 3-velocity of a particle and g = (1 —v?/c?)™ "2, prove that v-v
= p¢ and

VS = pui

If my is the particle’s rest mass, define the 3-force facting upon itand deduce from
the above result that v-f = nc?, where m is the inertial mass.

63. A particle having rest mass m, moves along the x-axis under a force of
attraction towards the origin — myw?x. It is initially at rest at the point x = a.
Show that the velocity with which it passes through the origin is

wac /(4¢? + w?a?)
2¢? + w?a?

64. If the force f always acts along a normal to a particle’s path. show that the
speed v of the particle is constant. Write down the equation of motion of the
particle and deduce that the curvature of the path is given by x = fymv?. If the
particle moves in a circle of radius a under a constant radial force f, show that its
speed v is given by

vt =2¢%[J (AP + 1) = 4]

where 4 = fa/2myc? and my is the particle’s rest mass.

65. A nucleus is moving along a straight line when it ejects an clectron. As
measured by a stationary observer, the speed of the electron is 3¢ and the angle
between the lines of motion of the nucleus and electron is 60°. If the speed of the
electron relative to the nucleus is also jc, calculate the speed of the nucleus. (Ans.
8¢/17))

66. A particle having rest mass m,, initially at rest at the origin of an inertial
frame, moves along its x-axis under the action of a variable force f directed along
the axis and given by the formula f = myc%/2 /(1 + x). Show that the particle’s
velocity ris given by v = x'"2¢/(1 + x)' ‘2. Putting x = sinh?0, if ¢ is the time and ¢
= 0 at O, prove that ¢t = 0 + sinh0cosh0.

67. A particle having rest mass m, is moving with speed $¢ when it is subjected
to a retarding force. When the particle’s inertial mass is m, the magnitude of the
retarding force is am? (a is constant). Show that the time needed by the force to
bring the particle to rest is nc/6mga.

68. If T,; is the energy-momentum tensor for an elastic fluid and V, is its 4-
velocity of flow, by verifying the equationT,,V; = —c?y, V, in a frame in which

LY )
the fluid is momentarily at rest, prove it in any frame. Deduce the equations

9a = (HooV. + r,ﬁvg/(z)/(l - Uz/'('z), H = Hoo + gavu/('z
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Hence derive the following formulae for the elements of T;;:
T,ﬂ = Hoo Va VB + T,B + Tay V}’ VB/CZ
Tie = Tay = poo VaVa + Tag VaVa/c?
Taa=tooVaVs—1apV, Vﬁ/"z

69. A perfect fluid is streaming radially outwards across the surface of a sphere
with radius R and centre O. If the motion is steady and there is no external force
field, show that equation (21.20) leads 1o the equations

d ,dp d/

d—(r vA)+r? a; =0, ra+3/~ =
where r is radial distance from O, p is the pressure, ¢ is the speed of flow and 4
= (o + p/cH)r/r(1 —v?/c?). If p vanishes over the sphere r = R and p = P at
great distances, and if u,, is constant outside the sphere, show that in this region

p=(P+ctuge) (1 —v?/ct) = cPugo
riu(l —v/c?) ™' = R2 \J(P? + 2Pc? pugo)/c o

70. A straight rod has cross-sectional area A and mass m per unit length. It lies
along the x-axis of an inertial frame in a state of tension F. Show that the
energy-momentum tensor has components which are the elements of a 4 x 4
diagonal matrix, with diagonal elements ( — F/A, 0,0, — mc?/A). Deduce that an
observer moving along the x-axis with speed u, sees the inertial mass per unit
length of the rod to be

m — Fu?jc*
1 —u?/c?
Deduce that F cannot exceed mc?.

71. Assuming that the energy-momentum tensor T;;is a tensor with respect to
a general Lorentz transformation X; = a;;x; +b;, wrne down the transformation
equations for T;; in the special case where a,, = a,s =0, a,, = 1. Deduce that
K, 9o» ap aTE 3- tensors with respect to a simple rotation of the frame Ox; x,x,
without relative motion.

72. Relative to a frame S, a fluid has flow velocity (v, 0, 0) at a certain point. In
the frame S° relative to which the fluid is stationary at the point, the stress tensor
has components tJ; and 1he fluid density is yigo. Show that the energy-momentum
tensor in the frame S has components

01 + Hoott”

Ty, PR T,

I}

(1 —u/c?) 112y,

2 0 :
CiUgp + Ty iu
2y~ 1,2 00 11 .
(] __uZ/(. ) ! 03 T14 = ’

T
' 1-u?/c? ¢

2.2y -172.0 0
Ty = (1 —u’jc®)” 11213, T;; =135 T3 =13,
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Ty = (1 —u?/c?) V2 100u/c, Ty = (1 —u?/c?)" 11248,
T, = ng» Tyy = 19, Tyw=0( —u?/e?)” ”21’?3"“/‘3

2 0 ,27.2
_ oo+ T U e
1 —u?/c? ’

and deduce that

— .0 27,.2y=-1;2_0 _ 2..2y- 1720
Tt = Tpas Ty, = (1 —u?/c?)™ Vi, Ty = (1 —u?/c®)” P2y,
- 2,.2\1/2 0 0
T3 = (1 —u?/c?) %13, T3 = 192 T3 =T33
_ 2, 231,20 0 _ .0
13 = (1 —u®/c%) 18, T3 = T3 T3y = T33,

M= (oo + T?l"z/cd)/“ —u?/c?).



CHAPTER 4

Special Relativity Electrodynamics

24. 4-Current depsity

In this chapter we shall study the electromagnetic field due to a flow of charge
which will be assumed known. Relative to an inertial frame S, let p be the charge
density and v its velocity of flow. Then, if j is the current density,

j=pv (24.1)

Assuming that charge can neither be created nor destroyed, the equation of
continuity

8
divi+ L =0 (242)
ct

will be valid for the charge flow in S. This equation must be valid in every inertial
frame and hence must be expressible in a form which is covariant with respect to
orthogonal transformations in space-time. Introducing the coordinates x; by
equations (4.4) and employing equation (24.1), equation (24.2) is seen to be
equivalent to

a -, - -\

——(pb,)+ (pv,)+ (pv)+ (up) (24.3)

This equation is covariant as required if (pr,, pv, pv,, icp) are the four
components of a vector in space~-time. For, if J is this vector, equation (24.3) can
be written

J. =0 (24.4)

and this is covariant with respect to orthogonal transformations. Now, by
equation (15.6),

J = (pv,icp) = p(1 —v?/c?)'2V (24.5)
where V is the 4-velocity of flow and hence J is a vector if p(1 —v?/c?)! ?isan

invariant. Denoting the invariant by p,, we have

o= (24.6)

T
T, 072
(I —v%/c?)

73
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It follows that p = p, if v = O and hence that p, is the charge density as measured
from an inertial frame relative to which the charge being considered is
instantaneously at rest. p, is calied the proper charge density.

J is called the 4-current density and it is clear from equation (24.5) that

=poV = (. icp) (24.7)

It is now clear that, when J has been specified throughout space-time, the charge
flow is completely determined, for the space components of J fix the current
density and the time component fixes the charge density. Hence, given J, the
electromagnetic field must be calculable. The equations which form the basis for
this calculation will be derived in the next two sections.

Let dw, be the volume of a small element of charge as measured from an
inertial frame S, relative to which the charge is instantaneously at rest. The total
charge within the element is p,dw,. Due 10 the Fitzgerald contraction, the volume
of this element as measured from S will be dw, where

dow = (1 -t?/c*) *dw, (24.8)
The total charge within the clement as measured from S is therefore
pdw = p(1 —t?/c}) 2 dwy = podwy (24.9)

by equation (24.6). It follows that the electric charge on a body is invariant for all
inertial observers.

25. 4-Vector potential

In classical theory, the equations determining the electromagnetic field duc to a
given charge flow are Maxwell’s equations (3.1) (3.4). To ensure covariance of the
laws of mechanics with respect 10 Lorentz transformations, it proved necessary to
modify classical Newtonian theory slightly. However, it will be shown that
Maxwell’s equations are covariant without any adjustment being necessary.
Indeed, the Lorentz transformation equations were first noticed as the transform-
ation equations which leave Maxwell's equations unaltered in form.

To prove this, it will be convenient to introduce the scalar and vector potentials,
¢ and A respectively, of the field. It is proved in textbooks devoted 1o the classical
theory (Coulson and Boyd, 1979) that A satisfies the equations

: 139
divA +aa = (25.1)
1 2’A .
VIA —0 e = - Ui (25.2)
and ¢ satisfies the equation
1 &
Vzd) _ Lj _(_}I_? = — p/f;o (253)
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where ¢ = 1/puyt,. We now define a 4-vector potential Q in any inertial frame S
by the equation

Q= (A ip/0) (25.4)

1t is easily verified that equations (25.2), (25.3) are together equivalent to the
equation

20 = —ppJ (25.5)
where the operator (]2 is defined by
n2 ~2 ~2 (*.2
Dz=; LG (25.6)
Cx{ Cx3 x5 Cx§

The space components of equalion (25.5) yield equation (25.2) and the time
component, equation (25.3). If Q,, J; are the components of Q2 and J respectively,
equation (25.5) can be written

Q..jj = —pod, (25.7)

in which form it is clearly covariant with respect to Lorentz transformations
provided Q is a vector. This confirms that equation (25.4) does, in fact, definec a
quantity with the transformation properties of a vector in space-time.

Next, it is necessary to show that equation (25.1) is also covariant with respect
10 orthogonal transformations in space-time. It is clearly equivalent to the
equation

divQ=Q, ;=0 (25.8)

which is in the required form.
J being given, € is now determined by equations (25.7) and (25.8).

26. The field tensor

When A and ¢ are known in an inertial frame, the electric and magnetic intensities
E and B respectively at any point in the electromagnetic field foliow from the
equations

A
E= _grad¢_il. (26.1)
2

B =curiA (26.2)

Making use of equations (4.4) and (25.4), these equations are easily shown to be
equivalent to the set

—i-E =i(.2_‘1 _%

c ¥ éx, €xg4

i Q. o,
_EE’ =%, n (26.3)
_iE _69‘_@_3

¢ Cxy Cx,
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cQ Q
B, =— _Ye
Cx;  Cx;
R, 0Q
B =122 (26.4)
Cxy  Cxy
cQ, ¢Q
B,=--2 _¢a
6x,  Ox,

Equations (26.3) and (26.4) indicate that the six components of the vectors-iE/c,
B with respect to the rectangular Cartesian inertial frame S arc the six distinct
non-zero components in space-time of the skew-symmetric tensor Q; ; — €, ..
We have proved, therefore, that equations (26.1), (26.2) are valid in all inertial
frames if

0 B, -B, -—iEjc
- B, 0 B, —iEjc
B, -B, 0 —iEc

iE./c iE/c iE,/c 0

(Fij) = (26~5)

is assumed to transform as a tensor with respect to orthogonal transformations in
space- time. The equations (26.3)and (26.4) can then be summarized in the tensor
equation

F,=Q ,-Q (26.6)

L)
F;; is called the electromagnetic field tensor. The close relationship between the
electric and magnetic aspects of an electromagnetic field is now revealed as being
due to their both contributing as components to the field tensor which serves to
unite them.

Consider now equations (3.2) and (3.3). Employing the field tensor defined by
equation (26.5)and the current density given by equation (24.7),and recalling that
B = uoH, D = ¢, E, these equations are seen to be equivalent to

oF ¢F JéF
_‘\_12 +—‘S—l—3_ .’.’\—li = MOJI
Cx, Oxy Ox,
0F,, ¢F,;3 @éF,
At +—5—4'=Fo-lz
éx, Cx, 8xy (26.7)
¢F cF ¢F
_._;._9_‘._,, ,7_3_.2_4. L toJ s
¢x, Cx, Cxg4
CF ¢F aF

LI L A

éx;  Oxy;  Ox,
or, in short,

F, ;i=umJ; (26.8)
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an equation which is covariant with respect to Lorentz transformations.
Finally, consider equations (3.1) and (3.4). These can be written

CF 5,4 +€;I-}; +Ef23 _o
8x,  Cx;  Cxg
CF cF cF
‘“+Cﬂ"+ 3% _9
Cxy  Oxqg  Cx & (26.9)
CF ¢F CF
L«”+ 24+O.“=0
cx, 0x, Cxy
oF A 5
C_! 23 Cf31+‘F12=0
Ox,  0xy  Cxy
These equations are summarized thus:
Fij«+Fy i+F, ;=0 (26.10)

If any pair from i, j, k are equal, since F;is skew-symmetric, the left-hand member

of this equation is identically zero and the equation is trivial. The four possible

cases when i, j, k are distinct are the equations (26.9). Equation (26.10) is a tensor

equation and is therefore also covariant with respect 10 Lorentz transformations.
To sum up, Maxwell’s equations in 4-dimensional covariant form are:

Fi ;= ﬂoJ.}

(26.11)
Fi,v+Fy :+F,; ;=0

Given J; at all points in space-time, these cquations determine the field tensor F;
The solution can be found in terms of a vector potential ©; which satisfies the
following equations:

@.i=0 } (26.12)
Qi= —tod:
Q; being determined, F;; follows from the equation
F;=9, . -Q ; (26.13)

27. Lorentz transformations of electric and magnetic vectors

Since F; is a tensor, relative 10 the special Lorentz transformation (5.1) its non-
zero components transform thus:

1'723=F23

Fy, = Fy,cosa+ Fy sina (27.1)
Fi; = Ficos 2+ Fg,sina

F14=F14

Fie= —Fysina+Fy,cos2 (27.2)
Fys = —Fy,sina+ Fy,cosa
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Substituting for the components of F;; from equation (26.5) and for sin x, cos «
from equations (5.7), the above equations (27.1) yield the special Lorentz
transformation equations for B, viz.

B, = B.. B,=f(B,+(u/c’)E,), B,=B(B,—(u/c*)E,) (27.3)
Similarly, equations (27.2) yield the transformation equations for E, viz.
E.=E, E,=B(E,—uB,), E, =B(E. +uB,) (27.4)

The inverse equations can be written down by exchanging ‘barred’and ‘unbarred’
symbols and replacing u by —u.

As an example of the use to which these transformation formulae may be put,
consider the electromagnetic field due to an infinitely long, uniformly charged
wire lying at rest along the x-axis of the inertial frame §. If 7 is the charge per unit
length, it is well known that the electric intensity is everywhere perpendicuiar to
the wire and is of magnitude g/(2n¢,F), where  is the perpendicular distance from
the wire. Thus, at the point (X, 7, ), the components of E are given by

ot = qy = qy ~
E. =0, E,= — 55—+, E, = —"5— 27.5
x Yo 2meo(3? +2%) 2ne0(3? + 22) (27:3)
The magnetic induction vanishes.
The electromagnetic field observed from the parallel inertial frame S (relative
to which § has velocity (4, 0, 0)) is given by the inverses of equations (27.3) and
(27.4) to have components

Puiz Pugy
B,=0, By= -5 S __ g B
y 2neci(y? + 2%) 2negct(y? + 22)
(27.6)
E. =0, E, bay bz

C 2meo(y? +2%) T 2neg(y? +22)

at the point (x, y, z) (having used the transformation equations y = ¥,z = 7). A
segment of the wire having unit length in S will appear in S to have length
J (1 —u?/c?); however, the charge on the segment must be the same in both
frames, viz. g. It follows that the charge per unit length as observed in S is ¢ = 4.
Thus, the charge which flows past a fixed point on the x-axis of S in unit time will
be pug = i; i therefore measures the current flowing along this axis. Since ¢?
= 1/poto, equations (27.6) can now be written

Moiz Hoiy
B,=0, By=-—-—o - B =_.r 2
T miyt+ Y 2m(y? +2%)
(27.7)
50 W g

YT e 42 T 2meg(3t 4 2Y)

These equations imply that the magnetic induction is of magnitude ugi/2nr and
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that the B-lines are circles with centres on Ox and planes parallel to Oyz. This
result for a long straight current is a well-known one in the classical theory. The
electric intensity is of magnitude ¢/2nre,r and is directed radially from the wire;
however, in the case of a current due to the flow of negatively charged electrons in
a stationary wire, this field is cancelled by the contrary field due to the positive
charges on the atomic nuclei.

28. The Lorentz force

We shall now calculate the force exerted upon a point charge e in motion in an
electromagnetic field.

At any instant, we can choose an inertial frame relative to which the point
charge is instantaneously at rest. Let E; be the electric intensity at the point
charge relative 1o this frame. Then, by the physical definition of electric intensity
as the force exerted upon unit stationary charge, the force exerted upon e will be
¢E,. It follows from equation (18.2) that the 4-force acting upon the charge in this
frame is given by

F = (eE,,0) (28.1)
The 4-velocity of the charge in this frame is also given by
V = (0,ic) (28.2)

and hence, by equation (26.5),
eFij Vj = e(Exoa EyOv EzOv 0) = (eE05 0) (283)

It has accordingly been shown that, in an inertial frame relative to which the
charge is instantaneously stationary,
F,=eF;V; (28.4)
But this is an equation between tensors and is therefore true for all inertial frames.
Substituting in equation (28.4) for the components F, F;;, V; from equations
(18.2), (26.5) and (15.6) respectively, the following equations are obtained:

J<=e(B,yr,—Byp,+E,)
f,=e(B,,~ By, +E) (28.5)
f.=eBy,—By,+E)
These equations are equivalent to the 3-vector equation
f=¢(E+vxB) (28.6)

fis called the Lorentz force acting upon the charged particle.

29. The energy-momentum tensor for an electromagnetic field

Suppose that a charge distribution is specified by a 4-current density vector J. If
daw, is the proper volume of any small element of the distribution and p, is the
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proper density of the charge, the charge within the element will be podw,. It
follows from equation (28.4) that the 4-force exerted upon the element by the
electromagnetic field is given by

F; = poF,;V;dw, (29.1)

V being the 4-velocity of flow for the element. Employing equation (24.7), this last
equation can be written

Fi = Fu.lldwo (29.2)

and it follows from the definition given in section 21 that the 4-force density for
the electromagnetic field is given by

D; = FyJ; (29.3)

Substituting for J; from the first of equations (26.11), we can express D; in terms
of the field tensor thus:

1
D,‘ = —__["iijk.k (29'4)
Ho

We will now prove that the right-hand member of this equation is, apart from
sign, the divergence of a certain symmetric tensor S;; given by the equation
Hosij = Fiijk —%5.'ijle1 (29.5)

and called the energy-momentum tensor of the electromagnetic field.
Taking the divergence of S;;, we have

#oSij;. ;= Fu jFu+FuFp ;j—16;iFuFu; (29.6)
Now
Fo iFu = FijFyj = Fi ik Fp (29.7)
since Fj; is skew-symmetric. Thus
Fi jFa=3(Fy j+ Fi)Fa (29.8)
Also
SijFuFu,j= FuFu: = —FuFy, (29.9)

and it follows from these results that the first and last terms of the right-hand
member of equation (29.6) can be combined to yield

%(Fik,j+Fji,k+ij..')ij (29.10)

and this is zero by the second of equations (26.11).
Hence

1 1
Sij.j='_Fiijk.j= __Fikaj.j= - D, (29.11)
Ho Ho
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Substituting for the components of the field tensor from equation (26.5), the
components of §;; are calculable from equation (29.5) as follows: If «, § take any
of the values 1, 2, 3, then writing E, for E,, E, for E,, etc.,

S.s = —(eoEEg+ poH Hy), a#p (29.12)

Ifi=j=1,
S11 = —(oH? +&E}) + 3(uoH? + £, E?) (29.13)
S32. 533 may be expressed similarly and therefore, in general, if a, 8, =1,2, 3,
Sup = —(e0ELEp+ poH Hp) + 48,5 (€0E* + o H?) (29.14)

Apartt from sign, this is Maxwell's stress tensor t,;. t;; is only a tensor with respect
10 rectangular frames stationary in the inertial frame being employed.
Also, ifa =1,2,3,

i
Saa = S4a =;(£2H3‘E3H2‘ EyH,-E\H, E\H, - E;H,)
-lExH='s (29.15)
4 C

where S is Poynting’s vector.
Finally,

Ses = —¥eE* + uoHY) = -U (29.16)

where U is the energy density in the electromagnetic field.
These results may be summarized conveniently by exhibiting the components

of §;; in a matrix thus:
S/—'C) (29.17)

S)= -4
(S) = (S/ic U

We can now write down the equation of motion for a charge cloud moving
under the action of the electromagnetic field it generates. If T;; is the kinetic
energy—-momentum tensor for the cloud, equations (21.15) and (29.11) show that
the equation of motion can be written

T, S

. (29.18)

ji= -
or

T;+S,,,;=0 (29.19)

i.e. the divergence of the total energy-momentum tensor vanishes. If the charged
particles forming the cloud do not interact except via the electromagnetic field, i.e.
the cloud is incoherent, T;; is given by equation (21.16). I, however, the particles
constitute an ionized fluid, equations (22.19) or (22.21) must be used to calculate
T,

i
It was shown in section 21 that T, /ic equals the density of the x,-component of

the linear momentum of a system. Since S,4/ic = S,/c?, the density of the linear
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momenium of an electromagnetic field is g = S/c?, where S is Poynting’s vector,
Alternatively, as explained in section 21, g can be interpreted as the current
density vector for the inertial mass flow and thus, c>g = S gives the rate of energy
flow across unit area placed perpendicular to the direction of this flow; this is the
usual significance attached to Poynting’s vector.

According to the theory in section 21, — S44/c? should equal the density of
inertial mass for the field. We have found that — S,/ = U/c? and, since U is the
energy density, our result is in conformity with expectations.

The results which have been obtained may be summarized as follows: If
momentum of density S/c? and energy of density U are ascribed to the
electromagnetic field, equation (29.19) shows that the net momentum and energy
of the field and charge will be conserved.

Exercises 4

1. Write down the special Lorentz transformation equations for J and deduce
the transformation equations for j, p, viz.

Jo= =) 2 —pu), =y
f_) = (l _MZ/CZ)—I 2([) _jxu/cz)’ E =j2
2. Deduce from the Maxwell equation F,; ; = uoJ; that divd = 0.
3. Verify that the field tensor defined in terms of the 4-potentiaj Q; by equation
(26.13) satisfies Maxwell’s equations (26.11) provided Q; satisfies the equations

(26.12).
4. (i) Prove that

FFi;= 2po(poH? — &0 E?)

and deduce that poH? —¢ E? is invariant with respect to Lorentz
transformations.
(i) Prove that

e,-,-,dF,ij,(, = —SIEB/C

and deduce that E-B is an invariant density with respect to Lorentz
transformations.

5. If Uistheenergy density and Sis the Poynting vector for an electromagnetic
field, prove that U2 —S? is invariant.

6. An observer O at rest in an inertial frame Oxyz1 finds himself to be in an
electric field E = (0, E, 0), with no magnetic field. Show that an observer O
moving according to O with uniform velocity V at right angles to E, finds electric
and magnetic fields E, B connected by the relation

B+VxE=0

7. If S;; is the energy-momentum tensor for an electromagnetic field, prove
that its trace, viz. S, is zero.
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8. A plane monochromatic electromagnetic wave is being propagated in a
direction parallel to the x-axis in the inertial frame S. Its electric and magnetic
field components are given by

E = [0, asinw(t — x/c), 0]

B =[0,0, gsinou(r —x/c)]
¢

Show that, when observed from the inertial frame S, it appears as the plane
monochromatic wave

E = [0, Zasinlo(f - X/c), 0]

B =[0,0, /ifsin).w(t——— x/c)]
¢

o [(1zwe
where L= \/(l " u/c)

u being the velocity of S relative to S (i.e. both the amplitude and frequency are
reduced by a factor 4. The reduction in frequency is the Doppler effect.)

9. Show that the Hamiltonian for the motion of a particle with charge e and
mass m in an electromagnetic field (A, ¢) is

2 12
H= c[(p—eA) +m2c2] +e¢p

(Hint: Show that Hamilton’s equations yield the equation
d
a;(mv) =e(E+vxB))

10. Verify that, in a region devoid of charge, equations (26.12) are satisfied by
Q= Ao
provided A,, k, are constants such that
Ak, =0, kk,=0

By considering the 4-vector property of Q;, deduce that A; must transform as a 4-
vector under Lorentz transformations. Deduce also that k,x, is a scalar under
such transformations and hence that k,, is a 4-vector,

A plane electromagnetic wave, whose direction of propagation is parallel to the
plane Oxy and makes an angle a with Ox, is given by

Q. = A.e2mvixcosa+ysina ~ciye
1 L}
where v is the frequency. The same wave observed from a parallel frame Oxyz

moving with velocity u along Ox, has frequency v and direction of propagation
makinganangle ¥ with Ox. By writing down the transformation equations for the



84

vector k,, prove that

u u
1 ——cosx cosa — —
c _ c
v, COSX =
u
1 - —cosa
c

11. Oxyz is an inertial frame S. A particle having rest mass m, and electric
charge ¢ moves in the xy-plane under the action of a uniform magnetic field B
directed along the z-axis. Show that the particle’s speed v is constant and that,
with a suitable choice of coordinates, its trajectory is the circle

x = Rsinwt, y = Rcoswt
where

w=gB/fmy, R =v/w, B=(1—-v?c?) 12

S is an inertial frame O%yz parallel to S and O moves along Ox with speed w.
Calculate uand Bso that uniform fields E = (0, E,, 0), B = (0, 0, By) are observed
in §. Hence describe the motion of a charged particle released in these fields and
show that its average velocity is Ey/B, along the x-axis.

12. The frame S is parallel to the frame S and is moving along the x-axis with
speed w. In the frame S, there is a uniform electric field (0, £, 0) and a uniform
magnetic field (0, 0, B). Show that it is possible to choose the value of u so that
the field in the frame S is entirely magnetic and that its magnitude is then
J (B* — E*/c?). What is the direction of this field? (Ans. Parallel to z-axis.)

13. A charge ¢ has rest mass m, and is moving in the positive sense along a
negative x-axis with speed u, when it enters a magnetic field, having components
B, = B, =0, B, = B (constant), confined to the region 0 < x < a. There is no
field in the regions x < 0, x > a. Explain why the inertial mass of the charge
remains constant during its motion through the field and show that its path is the
circle

x2+yi42ky=0,2=0

where k = mou/qB(1 —u?/c?)!'2. What is the condition that the charge will be
turned back by the field? (Ans. k < a.)

14. A plane electromagnetic wave of frequency f is being propagated in a
direction making an angle @ with the x-axis. Its electric and magnetic field
components are given by

E = (- AXsin8, AXcos8, 0)
B=1(0,0,A4X/c)
where
'sinf
X = sin2nf(1 _Xcosg+ysing COSO:’ sin )
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Show that, when observed from a frame S which is parallel to Oxyz and moves
with a velocity (ccosf, 0, 0) relative to Oxyz, the wave has components

E=(-A4Xsinb, 0,0
B = (0.0, AXsinb/c)
where
X = sin[2nfsin6(1 - 3/c)]
and (X, 7,21 ) are space-time coordinates in S. What is the direction of
propagation in § and what is the observed frequency? (Ans. Paraliel to j-axis at
frequency fsin{.)

15. V;is the 4-velocity of flow of a conducting medium and J, is the 4-current
density of a charge flow in the medium. Ohm’s law is valid for the medium, ¢ being
its conductivity. Prove that

1
Ji+ 5 VidV,=aF;V;
P
(Hint: Verify this cquation in a frame for which the medium s at rest using Ohm’s
law j = oE.)

16. A uniform magnetic field of induction B is directed along the z-axis of an
incrtial frame. Show that the energy momentum tensor for the field has
components which are the elements of a 4 x 4 diagonal matrix, with diagonal
elements B?/2u,(1, 1, =1, — ).

17. A point charge ¢ moves along the z-axis of an inertial frame S with constant
velocity v. Calculate the electromagnetic field in a parallel inertial frame whose
origin moves with the charge and deduce the field in S. Hence show that, at the
instant ¢ = 0, when the charge passes through the origin O of S, the electric field is
directed radially from O and its magnitude at the point having spherical polar
coordinates (r, 0, ¢) is given by

= 4n: 31 —e}/e?) (1~ sin?6/c?) 72
-0

E

Show, also, that the magnetic field in S at this instant is given by B = (v x E)/c2.



CHAPTER 5

General Tensor Calculus. Riemannian Space

30. Generalized N-dimensional spaces

In Chapter 2 the theory of tensors was developed in an N-dimensional Euclidean
space on the understanding that the coordinate frame being employed was always
rectangular Cartesian. If x,, x, + dx; are the coordinates of two neighbouring
points relative to such a frame, the ‘distance’ ds between them is given by the
equation

ds? = dx;dx; (30.1)

If X, x;+dXx,; are the coordinates of the same points with respect to another
rectangular Cartesian frame, then

ds? = dx,dx, (30.2)

and it follows that the expression dx;dx; is invariant with respect to a
transformation of coordinates from one rectangular Cartesian frame to another.
Such a transformation was termed orthogonal.

Now, evenin &5, it is very often convenient to employ a coordinate frame which
is not Cartesian. For example, spherical polar coordinates (r, 6, ¢) are frequently
introduced, these being related to rectangular Cartesian coordinates (x, y, z) by
the equations

x = rsinf cos¢, y = rsin@sing, z=rcosf (30.3)
In such coordinates, the expression for ds? will be found to be
ds? = dx? +dy? +dz?
=dr? +r2d6? + r*sin’6 d¢? (30.4)
and this is no longer of the simple form of equation (30.1). The coordinate
transformation (30.3) is accordingly not orthogonal. In fact, it is not even linear,
as was the most general coordinate transformation (8.1) considered in Chapter 2.
The spherical polar coordinate system is an example of a curvilinear coordinate
Jramein & ;. Let (u, v, w) be quantities related 1o rectangular Cartesian coordinates
(x, y, z) by equations
u=ulx,yz, v=uvxy2), w=wlxy2) (30.5)
86
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such that, to each point there corresponds a unique triad of values of (u, v, w)and

to each such triad there corresponds a unique point. Then a set of values of

(u, t, w) will serve to identify a point in &, and (u,r, w) can be employed as

coordinates. Such generalized coordinates are called curvilinear coordinates.
The equation

ulx, y,z) = u, (30.6)

where u,, is some constant, defines a surface in & ; over which u takes the constant
value uy. Similarly, the equations

r=1rp, W=w, (30.7)

definc a pair of surfaces on which ¢ takes the value v, and w the value w,
respectively. These three surfaces will all pass through the point P, having
coordinates (ug, Ly, wy)as shown in Fig. 6. They are called the coordinate surfaces
through P,. The surfaces v = vy, w = wy willintersect in a curve P, U along which
r and w will be constant in value and only u will vary. P,U is a coordinate line
through P,. Altogether, threc coordinate lines pass through P,. The equations u
= constant, v = constant, w = constant define three families of coordinate sur-
faces corresponding to the three families of planes parallel to the coordinate
planes x =0,y =0,z = 0 of a rectangular Cartesian frame. Pairs of these
surfaces intersect in coordinate lines which correspond to the parallels to the
coordinate axes in a Cartesian frame.

w

FI1G. 6

Solving equations (30.5) for (x, y, z) in terms of (u, ¢, w), we obtain the inverse
transformation

x=xtu,t,w), y=ylur,w), z=rzurw (30.8)

Letx, y, z), (x + dx. y +dy, z + dz) be the rectangular Cartesian coordinates of
two neighbouring points and let (u, v, w), (u+du,v+de,w+dw) be their
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respective curvilinear coordinates. Differentiating equations (30.8), we obtain

¢ Cx

Cx X
dx = —du+—dv+
cr

cu

dw, et (30.9)

iw
Thus, if ds is the distance between these points,
ds? = dx? +dy? +d:2
= Adu? + Bdr? + Cdw? + 2Fdedw + 2Gdwdu + 2Hdude  (30.10)

giving the appropriate expression for ds? in curvilinear coordinates. It will be
noted that the coefficients A, B, etc., are, in general, functions of (u, ¢, w).

If, therefore, curvilinear coordinate frames are to be permitted, the theory of
tensors developed in Chapter 2 must be modified to make it independent of the
special orthogonal transformations for which ds? is always expressible in the
simple form of equation (30.1). The necessary modifications wiil be described in
the later sections of this chapter. However, these modifications prove to be of such
a nature that the amended theory makes no appeal to the special metrical
properties of Euclidean space, i.e. the theory proves to be applicable in more
general spaces for which Euclidean space is a particular case. This we shall now
explain further.

Let (x!, x2, ..., x¥) be curvilinear coordinates in & .* Then, by analogy with
equation (30.10), if ds is the distance between two neighbouring points, it can be
shown that

ds? = g,;dx'dx’ (30.11)

where the coefficients g,; of the quadratic form in the x’ will, in general, be
functions of these coordinates. Since the space is Euclidean, it is possible to
transform from the curvilinear coordinates x’ to Cartesian coordinates y* so that

ds? = dy‘dy (30.12)

Clearly, the reduction of ds? to this simple form is only possible because the
functions g,; satisfy certain conditions. Conversely, the satisfaction of these
conditions by the g;; will guarantee that coordinates y' exist for which ds? takes
the simple form (30.12) and hence that the space is Euclidean. However, in
extending the theory of tensors 10 be applicable 1o curvilincar coordinate frames,
we shall, at a certain stage. make use of the fact that ds? is expressible in the form
(30.11), but no use will be made of the conditions satisfied by the coefficients g;;
which are a consequence of the space being Euclidean. It follows that the
extended theory will be applicable in a hypothetical N-dimensional space for
which the ‘distance’ ds between neighbouring points x‘, x' + dx* is given by an
equation (30.11) in which the g,, are arbitrary functions of the x'.+ Such a space is

* The coordinaies are here distinguished by superscripis instead of subscripts for a reason which will
be given laiter.

+ Except 1hat partial derivatives of the g,, will be assumed 10 exist and 10 be continuous 10 any order
required by the theory.
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said to be Riemannian and wiil be denoted by #y. &y is a particular 2~ for which
the g,; satisfy certain conditions. The right-hand member of equation (30.11) is
termed the metric of the Riemannian space.

The surface of the Earth provides an example of an #,. If 8 is the co-latitude
and ¢ is the longitude of any point on the Earth’s surface, the distance ds between
the points (0, ¢), (0 +d0, ¢ +d¢) is given by

ds? = R*(d@?* +sin?0d¢?) (30.13)

where Ris the earth’s radius. For this space and coordinate frame, the g;; take the
form

g1 =R* g,,=g; =0, g,, = Rsin’0 (30.14)
It is not possible to define other coordinates (x, y) in terms of which
ds? = dx? +dy? (30.15)

over the whole surface, i.e. this 4, is not Euclidean. However, the surfaces of a
right circular cylinder and cone are Euclidean; the proof is left as an exercise for
the reader.

It will be proved in Chapter 6 that, in the presence of a gravitational field,
space—time ceases to be Euclidean in Minkowski's sense and becomesan #,. This
is our chief reason for considering such spaces. However, we can generalize the
concept of the space in which our tensors are to bc defined yet further. Until
section 37 is reached, we shall make no further reference to the metric. This
implies that the theory of tensors, as developed thus far, is applicable in a very
general N-dimensional space in which it is assumed it is possible to set up a
coordinate frame but which is not assumed to possess a metric. In such a
hypothetical space, the distance between two points is not even defined. It will be
referred to as ¥y. Ay, is a particular & y for which a metric is specified.

31. Contravariant and covariant tensors

Let x be the coordinates of a point Pin ¥y relative to a coordinate frame which is
specified in some manner which does not concern us here. Let X' be the
coordinates of the samc point with respect to another reference frame and let
these two systems of coordinates be related by equations

¥ =%, x2, ..., xM) (311

Consider the neighbouring point P’ having coordinates x’ + dx' in the first frame.
s coordinates in the second frame will be x*+ dx’, where
. ox
dx' = Egdxl (312)
and summation with respect to the index j is understood. The N quantitiesdx' are
taken to be the components of the displacement vector PP’ teferred to the first
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frame. The components of this vector referred to the second frame are,
correspondingly, the d%'and these are related to the components in the first frame
by the transformation equation (31.2). Such a displacement vector is taken to be
the prototype for all coniravariant vectors.

Thus, A are said to be the components of a contravariant vector located at the
point x', if the components of the vector in the ‘barred’ frame are given by the
equation

A=A (31.3)
Itis important to observe that, whereas in Chapter 2 the coefficients a;; occurring
in the transformation equation (10.2) were not functions of the Cartesian
coordinates x; so that the vector A was not, necessarily, located at a definite point
in €y, the coefficients ¢x'/¢x/ in the corresponding equation (31.3) are functions
of the x' and the precise location of the vector A° must be known before its
transformation equations are determinate. This can be expressed by saying that
there are no free vectors in &y,

The form of the transformation equation (31.3) should be studied carefully. It
will be observed that the dummy index j occurs once as a superscript and once asa
subscript (i.e. in the denominator of the partial derivative). Dummy indices will
invariably occupy such positions in all expressions with which we shall be
concerned. Again, the free index i occurs as a superscript on both sides of the
equation. This rule will be followed in all later developments, i.¢. a free index will
always occur in the same position (upper or lower) in each term of an equation.
Finally, it will assist the reader to memorize this transformation if he notes that
the free index is associated with the *barred” symbol on both sides of the equation.

A contravariant vector 4' may be defined at one point of ¥y only. However, if it
is defined at every point of a certain region. so that the A* are functions of the x',a
contravariant vector field is said 1o exist in the region.

If V is a quantity which is unaltered in value when the reference frame is
changced, it is said to be a scalar or an invariant in . Its transformation equation
is simply

V=V (31.4)

Since this equation involves no coefficients dependent upon the x', the possibility
that ¥ may be a free invariant exists. However, Vis more often associated with a
specific point in.# | and may be defined at all points of a region of &, in which
case it defines an incariant field. In the latter case

V=Vxx%.. . . x% (31.5)

V will then, in general, be a quite distinct function of the X If, however, in this
function we substitute for the ¥' in terms of the x' from equation (31.1), by
equation (31.4) the right-hand member of equation (31.5) must result. Thus

Vixh, 2 .. . xM = Vix! x3 .., xN) (31.6)
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V being an invariant field, consider the N derivatives ¢ V/¢x'. In the x'-frame,
the corresponding quantities are ¢¥/¢x‘ and we have

6‘7_ oV exd 3 éxd eV

c= ol T SO 31.7
oxt éx! éx'  ax' ox! ( )

since, by equation (31.6), when Vis expressed as a function of the x' it reduces to
V. As in Chapter 2, the ¢ V/éx" are taken to be the components of a vector called
the gradient of Vand denoted by grad V. However, its transformation law (31.7)is
not the same as that for a contravariant vector, viz. (31.3), and it is taken to be the
prototype for another species of vectors called covariant vectors.

Thus, B, is a covariant vector if .

B, = EB- (31.8)

foext '

Covariant vectors will be distinguished from contravariant vectors by writing
their components with subscripts instead of superscripts. This notation is
appropriate, for ¢V/éx' is a covariant vector and the index i occurs in the
denominator of this partial derivative. The vector dx', on the other hand, has been
shown to be contravariant in its transformation properties and this is correctly
indicated by the upper position of the index. This is the reason for denoting the
coordinates by x' instead of x;, although it must be clearly understood that the x'
alone are not the components of a vector at all.

The reader should check that the three rules formulated above in relation to the
transformation equation (31.3), apply equally to the equation (31.8).

The generalization from vectors to tensors now proceeds along the same lines
as in section 10. Thus, if A', B/ are two contravariant vectors, the N2 quantities
A'B’are taken as the components of a contravariant tensor of the second rank. Its
transformation equation is found to be

i}
— Z.A*B (31.9)

Any set of N2 quantities CY transforming in this way is a contravariant tensor.
Again, if A, B, are vectors, the first contravariant and the second covariant,
then the N? quantities A'B; transform thus:

iB= 2 X 4 (31.10)

Any set of N? quantities C} transforming in this fashion is a mixed tensor, i.e. it
possesses both contravariant and covariant properties as is indicated by the two
positions of its indices.

Similarly, the transformation law for a covariant tensor of rank 2 can be
assembled from the law for covariant vectors.

The further generalization to tensors of higher rank should now be an obvious
step. It will be sufficient to give one example. A% is a mixed tensor of rank 3,
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having both the covariant and contravariant properties indicated by the positions
of its indices, if it transforms according to the equation
—. &X' oxt éx'
Al = — — — A" 3L
AT exr oxd ox ( )
The components of a tensor can be given arbitrary values in any one frame and
their values in any other frame are then uniquely determined by the transform-
ation law. Consider the mixed second rank tensor whose components in the
x'-frame are &, the Kronecker deitas (8;=0,i#j and 6, = 1,i=j). The
components in the X'-frame are & ¢, where
5o X
P exk exd !

=0 (31.12)

Thus this tensor has the same components in all frames and is called the
fundamental mixed tensor. However, a second rank covariant tensor whose
components in the x'-frame are the Kronecker deltas (in this case denoted by J,)),
has different components in other frames and is accordingly of no special interest.

It is reasonable to enquire at this stage why the distinction between covariant
and contravariant tensors did not arise when the coordinate transformations
were restricted to be orthogonal. Thus, suppose that 4', B; are contravariant and
covariant vectors with respect to the orthogonal transformatiqn (8.1). The inverse
transformation has been shown to be equation (11.5) and it follows from these
two equations that

_-'=au_, == gy (31.13)

X; €X;

Nyt

For the particular case of orthogonal transformations, therefore, equations (31.3)
and (31.8) take the form

A'=a;A), B, =a,B, (31.14)

It is clear that both types of vector transform in an identical manner and the
distinction between them cannot, therefore, be maintained.

Asin the case of the Cartesian tensors of Chapter 2, new tensors may be formed

from known tensors by addition (or subtraction) and multiplication. Only

tensors of the same rank and type may be added to yield new tensors. Thus, if 4},
Bj, are components of tensors and we define the quantities C’; by the equation

Cix = A%+ By, (31.15)
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then C;k are the components of a tensor having the covariant and contravariant
properlies indicated by the position of its indices. However, A4‘, B;; cannot be
added in this way to yield a tensor. Any two tensors may be multiplied to yield a
new tensor. Thus, if 4}, By, are tensors and we define N* quantities C's, by the
equation ‘ )

Ciim = A'B, (31.16)
these are the components of a fifth rank tensor having the covariant and
contravariant properties indicated by its indices. The proofs of these statements
are left for the reader to provide.

If a tensor is symmetric (or skew-symmetric) with respect to two of its
superscripts or to two of its subscripts in any one frame, then it possesses this
property in every frame. The method of proof is identical with that of the
corresponding statement for Cartesian tensors given in section 10. However, if
A% = Al is true for all i,j when one reference frame is being employed, this
equation will not, in general, be valid in any other frame. Thus, symmetry (or
skew-symmetry) of a tensor with respect to a superscript and a subscript is not, in
general, a covariant property. The tensor &} is exceptional in this respect.

Another result of great importance which may be established by the same
argument we employed in the particular case of Cartesian tensors, is that an
cquation between tensors of the same type and rank is valid in all frames if it is
valid in one. This implies that such tensor equations are covariant (i.e. are of in-
variable form) with respect to transformations between reference frames. The useful-
ness of tensors for our later work will be found to depend chiefly upon this property.

A symbol such as A4}, can be contracted by setting a superscript and a subscript
to be the same letter. Thus A}, 4}, are the possible contractions of A}, and each, by
the repeated index summation convention, represents a sum. Since in the symbol
Al;, jaloneis a free index, this entity has only N components. Similarly A}, has N
components. It will now be proved that, if 4%, is a tensor, its contractions are also
tensors. Specifically, we shall prove that B; = A4}; is a covariant vector. For

(Ex‘ 6?)€'x’
- = —_TArl
éxt ext/exd T

=B, (31.17)
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establishing the result. This argument can obviously be generalized to yield the
result that any contracted tensor is itself a tensor of rank two less than the tensor
from which it has been derived and of the 1ype indicated by the positions of its
remaining free indices. In this connection it should be noted that, if A}, isa tensor,
Aj;is not, in general, a tensor; it is essential that the contraction be with respect to
a superscript and 4 subscript and not with respect to two indices of the same kind.

If A%, B are tensors, the tensor A}, B is called the outer product of these two
tensors. If this product is now contracted with respect to a superscript of one
factor and a subscript of the other, e.g. 4}, B}, the result is a tensor called an inner
product.

32. The quotient theorem. Conjugate tensors

It has been remarked in the previous section that both the outer and inner
products of two tensors are themselves tensors. Suppose, however, that it is
known that a product of two factors is a tensor and that one of the factors is a
tensor, can it be concluded that the other factor is also a tensor? We shall prove
the following quotient theorem:

If the result of taking the product (outer or inner) of a given set of elements with a
tensor of any specified type and arbitrary components is known to be a tensor, then
the given elements are the components of a tensor.

It will be sufficient to prove the theorem true for a particular case, since the
argument will easily be secn to be of general application. Thus, suppose the 47, are
N3 quantities and it is to be established that these are the components of a tensor
of the type indicated by the positions of the indices. Let B; be a mixed tensor of
rank 2 whose components can be chosen arbitrarily (in any one frame only of
course) and suppose it is given that the inner product

i Bk = Ci, (32.1)

is a tensor for all such B.. All components have been assumed calculated with
respect to the x-frame. Transforming to the x-frame, the inner product is given to
transform as a tensor and hence we have

AXBY = C} (32.2)

where A’} are the actual components replacing the A}, when the reference frame is
changed. Let A%, be a set of elements defined in the x-frame by equation (31.11).
Since this is a tensor transformation equation, we know that the elements so
defined will satisfy

AL B*=CY (323)
Subtracting equation (32.3) from (32.2), we obtain
(AF—A%BE=0 (32.4)

Since B; has arbitrary components in the x-frame, its components in the X-frame
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are also arbitrary and the components B* can assume any convenient values.
Thus, taking B% = 1 when k = K and B* = 0 otherwise, equation (32.4) yields

ko __ A i —

1K 1K
or Ak = A (32.5)
This being true for K = 1,2, . ... N. we have quite generally

A¥ =AY (326)

This implies that A}, does transform as a tensor.
We will first give a very simple example of the application of this theorem. Let
A’ be an arbitrary contravariant vector. Then

A=A (32.7)
and since the right-hand member of this equation is certainly a vector, by the
quotient theorem &' is a tensor (as we have proved earlicr).

As a second example, let g;; be a symmetric covariant tensor and let g = If/-‘i| be
the determinant whose elements are the tensor’s components. We shall denote by
G" the co-factor in this determinant of the element g, ;. Then. although G"is nota
tensor, if g = 0, GY/g = ¢" is a symmetric contravariant tensor. To prove this, we
first observe that

9:,GY = g¢of,  g,G* = go! (32.8)
and hence, dividing by g.
gyt = ok gy = (32.9)

Now let A' beanarbitrary contravariant vector and define the covariant vector B,
by the equation

B, = g, A (32.10)

Since g = 0, when the components of B; are chosen arbitrarily, the corresponding
components of A' can always be calculated from this last equation. i.e. B; is
arbitrary with 4’ But

4B, = ¢'g,A* = 6, 4* = 4/ (32.11)

having employed the sccond identity (32.9). It now follows by the quotient
theorem that ¢ is a contravariant tensor. That it is symmetric follows from the
circumstance that G possesscs this property. g, . 4" are said to be conjugate to
one another.

33. Covariant derivatives. Parallel displacement. Affine connection

In the earlicr sections of this chapter, the algebra of tensors was established and it
is now time to explain how the concepts of analysis can be introduced into the
theory. Our space ¥, has N dimensions, but is otherwise almost devoid of special
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characteristics. Nonetheless, it has so far been able to provide all the facilities
required of a stage upon which the tensors are to play their roles. It will now be
demonstrated, however, that additional features must be built into the structure
of &, before it can function as a suitable environment for the operations of
tensor analysis.

It has been proved that, if ¢ is an invariant field, c¢/dx’ is a covariant vector.
But, if a covariant vector is differentiated, the result is not a tensor. For, let 4; be
such a vector, so that

A, ==A, (33.1)

Differentiating both sides of this equation with respect to %/, we obtain
04, ox* ox' 04,  x*

=== —— A
ox)  Oxt ox ax'  ox‘ox

(33.2)

The presence of the second term of the right-hand member of this equation
reveals that dA4,/éx’ does not transform as a tensor. However, this fact can be
arrived at in a more revealing manner as follows:

Let P, P’ be the neighbouring points x', x' +dx’ and let 4, 4,+dA4, be the
vectors of a covariant vector field associated with these points respectively. The
transformation laws for these two vectors will be different, since the coefficients of
a tensor transformation law vary from point to point in & . It follows that the
difference of these two vectors, namely dA4,, is not a vector. However,

.= ‘iA;i dxi (33.3)

ox

dA

and, since dx is a vector, if 4, ; were a tensor, dA, would be a vector. A, ;jcannot
be a tensor, therefore. The source of the difficulty is now apparent. To define 4, ;
it 1s necessary to compare the values assumed by the vector field 4; at two
neighbouring, but distinct, points and such a comparison cannot lead to a tensor.
If, however, this procedure could be replaced by another, involving the
comparison of two vectors defined at the same point, the modified equation (33.3)
would be expected to be a tensor equation featuring a new form of derivative
which is a tensor. This leads us quite naturally to the concept of parallel
displacement.

Suppose that the vector A; is displaced from the point P,at which it is defined,
to the neighbouring point P’, without change in magnitude or direction, so that it
may be thought of as being the same vector now defined at the neighbouring
point. The phrase in italics has no precise meaning in & as yet, for we have not
defined the magnitude or the direction of a vector in this space. However, in the
particular case when & is Euclidean and rectangular axes are being employed,
this phrase is, of course, interpreted as requiring that the displaced vector shall
possess the same components as the original vector. But even in &, if curvilinear
coordinates are being used, the directions of the curvilinear axes at the point P’
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will, in general, be different from their directions at P and, as a consequence, the
components of the displaced vector will not be identical with its components
before the displacement. In &, therefore, components of the displaced vector
will be denoted by 4; + 5 A;. This vector can now be compared with the field vector
A; +dA, at the same point P'. Since the two vectors are defined at the same point,
their difference is a vector at this point, i.e. d4; — dA,, is a vector. The modified
equation (33.3) is accordingly expected to be of the form

d4, -84, = 4,,dx’ (33.4)

where A, is the appropriate replacement for A, ; Since dx’ is an arbitrary vector
and the left-hand member of equation (33.4)is known to be a vector, A, will, by
the quotient theorem, be a covariant tensor. It will be termed the covariant
derivative of A, Thus, the problem of defining a tensor derivative has been re-
expressed as the problem of defining parallel displacement (infinitesimal) of a
vector.

We are at liberty to define the parallel displacement of A; from P to P’ in any
way we shall find convenient. However, to avoid confusion, it is necessary that the
definition we accept shall be in conformity with that adopted in &y, which is a
special case of ¥ ». Suppose, therefore, that our ¥ is Euclidean and that ' are
rectangular Cartesian coordinates in this space. Let B; be the components of the
vector field A; with respect to these rectangular axes. Then

Oy Ax!
A-=c).B- B.=(x

i~ Al iCp Y

(24

Sy (33.5)
cy

If the parallel displacement of the vector A, to the point P’ is now carried out, its

Cartesian components B; will not change, i.e. 6B, = 0. Hence, from the first of
equations (33.5), we obtain

&y fé J
5A, = 5<T’TB,> = o(é"-i->31
X cXxX

= - dx*B, (33.6)

Substituting for B;into this equation from the second of equations (33.5), we find
that
A, = T, A dx* (33.7)

cry oxd

where i = (33.8)

oxext &y
This shows that, in & v, the 44, are bilinear forms in the 4,and dx*. In.¥ s, we shall
accordingly define the 34, by the equation (33.7), determining the N* quantities
I, arbitrarily at every point of & » + This set of quantities I', is called an affiniry

* Subject 1o the requirement that the I, are continuous funcuons ol the x* and possess continuous
partial dernatives to the order necessary 1o validate all later arguments.
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and specifies an affine connection between the points of ¥ . A space which is
affinely connected possesses sufficient structure to permit the operations of tensor
analysis to be carried out within it.

For we can now write

dA; — 64, = fAfdxf - A,dx!
¢x?
PA, )
= <‘, i FfjAk>dx’ (33.9)
cX

But, as we have already explained, the left-hand member of this equation is a
vector for arbitrary dx’ and hence it follows that
_ 84,

=

A, :
CX

y —-TA4, (33.10)
is a covariant tensor, the covariant derivative of A,

1t will be observed from equation (33.10) that, if the components of the affinity
all vanish over some region of ¥y, the covariant and partial derivatives are
identical over this region. However, this will only be the case in the particular
reference frame being employed. In any other frame the components of the
affinity will, in general, be non-zero and the distinction between the two
derivatives will be maintained. In tensor equations which are to be valid in every
frame, therefore, only covariant derivatives may appear, even if it is possible to
find a frame relative to which the affinity vanishes.

We have stated earlier that, when defining an affine connection, the com-
ponents of an affinity may be chosen arbitrarily. To be precise, a coordinate frame
must first be selected in &y, and the choice of the components of the affinity is then
arbitrary within this frame. However, when these have been determined, the
components of the affinity with respect to any other frame are, as for tensors,
completely fixed by a transformation law. We now proceed to obtain this
transformation law for affinities.

34. Transformation of an affinity

The manner in which each of the quantities occurring in equation (33.10)
transforms is known, with the exception of the affinity '}, The transformation
law for this affinity can accordingly be deduced by transformation of this
equation. Relative to the x-frame, the equation is written

A, = ' _TkA, (34.1)

Since A,, A;;, are tensors,

=24 (34.2)
X
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_ cx® ¢xt
A, = 5 (A_—?--JA.,:, (34.3)
Substituting in equation (34.1), we obtain
cx® oxt CxX" Cx* ¢A,  x _. ox
'«- ==; =25 A5 A . :"_'-".:-Ar_rf,‘““_IAr (34-4)
% X cxX' ¢x) oxt o oxiox? X

Employing equation (33.10) to substitute for A and cancelling a pair of identical
terms from the two meinbers of equation (34.4), this equation reduces to

o] N N2 r "
éxt éx! &2 x _. éx

=& r' A =X 4 2 4 345
ox oxl Y oxiexd T Ioxk (34.5)

Since A, is an arbitrary vector, we can equate coefficients of A4, from the two
members of this equation to obtain

2

x'oex’ex' &?

T

.i‘_: (34.6)
'c

Tl A
x¢ oxféxd Y ox

i3]

Muitiplying both sides of this equation by ¢x'/éx” and using the result

=1 Oy’ Aol
~X' CX X
AN e ] (34.7)
o Nk Ak
cx" ¢Xx X
yields finally
i cxt éx®t fx! , oxt o éixt (348)
Yooext &y O Y o exex? '

which is the transformation law for an affinity.

It should be noted that, were it not for the presence of the second term in the
right-hand member of equation (34.8), I''; would transform as a tensor of the
third rank having the covariant and contravariant characteristics suggested
by the positions of its indices. Thus, the transformation law is linear in the
componenis of an affinity but is not homogeneous like a tensor transformation
law. This has the consequence that, if all the components of an affinity are zero
relative to one frame, they are not necessarily zero relative to another frame.
However, in general, there will be no frame in which the components of an affinity
vanish over a region of ¥y, though it will be proved that, provided the affinity is
symmetric, it is always possible to find a frame in which the components all vanish
at some particular point (see section 39).

Suppose X, T'i* are two affinities defined over a region of . Writing down
their transformauon laws and subtracting one from the other, it is immediate that

e -‘—x, o ”‘_ (ro, — I (34.9)

CX (x
i.e. the difference of two affinities is a tensor. However, the sum of two affinities is
neither a tensor nor an affinity. It is left as an exercise for the reader to show,
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similarly, that the sum of an affinity I'}, and a tensor A%, is an affinity.
If T}, is symmetric with respect to its subscripts in one frame, it is symmetric in
every frame. For, from equation (34.8),

. Ox* Ox* Ox +(7)'(" &2x
BT ex ot ot T Ox" &xiox
ox* ax' éx® +0)'<“ o2x"
T oxt a% o éx" ox‘ax!
Tk
=1 (34.10)

where, at the first step, we have put [}, = Iy,

35. Covariant derivatives of tensors

In this section, we shall extend the process of covariant differentiation to tensors
of all ranks and types.

Consider first an invariant field ¥. When ¥V suffers parallel displacement from P
to P, its value will be taken to be unaltered, i.e. 3V = 0 in all frames. Hence

v
dv -V =" dx' (35.1)
ox

is the counterpart for an invariant of equation (33.4). It follows that
V.l = V.i (352)

i.e. the covariant derivative of an invariant is identical with its partial derivative or
gradient.

Now let B’ be a contravariant vector field and A, an arbitrary covariant vector.
Then A;B'is an invariant and, when parallel displaced from P to P’, remains
unchanged in value. Thus

5(A,B)=0
or 3A;B' + A;0B' =0
and hence, by equation (33.7),
AdB* = —TY A, dx/B (35.3)

But, since the A, are arbitrary, their coefficients in the two members of this
equation can be equated to yield

5Bt = —TkBidx/ (35.4)

This equation defines the paraliel displacement of a contravariant vector. The
covariant derivative of the vector is now deduced as before: thus

éB* . .
dB* — 8B = (b? +T} B')dx’ (35.5)
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and since dx’ is an arbitrary vector and d B* — d B* is then known to be a vector,

- gt
B ='Z4+T*B (35.6)
' x’
is a tensor called the covariant derivative of B,
Similarly, if 4! is a tensor field. we consider the parallel displacement of the
invariant A;BiCj. where B,.C’ are arbitrary vectors. Then. from

AB,Ci) =0 (35.7)
and equations (33.7) and (35.4), we deduce that
3AY = CLAidx* =T, Al dx* (35.8)
1t now follows that
cA,
Ja = (:'x"l ~T A+ T, A (35.9)

is the covariant derivative required.

The rule for finding the covariant derivative of any tensor will now be plain
from examination of equation (35.9), viz., the appropriate partial derivative is first
written down and this is then followed by *affinity terms’. the ‘affinity terms’ are
obtained by writing down an inner product of the affinity and the tensor with
respect to each of its indices in turn, prefixing a positive sign when the index is
contravariant and a negative sign when it is covariant.

Applying this rule to the tensor field whose components at every point are those
of the fundamental tensor o), 1t will be tound that

5= —Tho =T, —T5, =0 (35.10)

Thus, the fundamental tensor behaves like a constant in covariant differentiation.
Finally, in this section, we shall demonstrate that the ordinary rules for the
differentiation of sums and products apply to the process of covariant
differentiation.
The night-hand member of equation (35.9) being linear in the tensor 4. it
follows immediately that if

C;= A+ B; (35.11)
then Ci,=A4,+B, (35.12)
Now suppose that C'=AB (35.13)

Then
i (‘\.Ci [ a
C.A = (“T”k + r,k(

¢ )
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6Al i r r i j (ﬂBI | RT i
= (C—x"l+ [ A] —r],(A,>B’+(W +T',kB >A/
= A B’ + Bi Al (35.14)

which is the ordinary rule for the differentiation of a product.

36. The Riemann-Christoffel curvature tensor

If a rectangular Cartesian coordinate frame is chosen in a Euclidean space & and
if A'are the components of a vector defined at a point Q with respect to this frame,
then 84° = 0 for an arbitrary small parallel displacement of the vector from Q.
This being true for arbitrary A', it follows from equation (35.4) that '}, = 0 with
respect to this frame at every point of &. Suppose C is a closed curve passing
through Q and that A‘ makes one complete circuit of C, being parallel displaced
over each element of the path. Then its components remain unchanged
throughout the motion and hence, if A’ + A4’ denotes the vector upon its return
to Q,

AA'=0 (36.1)

Since AA‘ is the difference between two vectors both defined at Q, it is itsell a
vector and equation (36.1) will therefore be a vector equation true in all frames.
Thus, in &y, parallel displacement of a vector through one circuit of a closed curve
leaves the vector unchanged.

If, however, A'is defined at a point Q in an affinely connected space ., not
necessarily Euclidean, it will no longer be possible, in general, to choose a
coordinate frame for which the components of the affinity vanish at every point.
As a consequence, if A'is parallel displaced around C, its components will vary
and it is no longer permissible to suppose that upon its return to Q it will be
unchanged, i.e. AA* # 0. We shall now calculate AA* when A'is parallel displaced
around a small circuit C enclosing the point P having coordinates x' (Fig. 7) at
which it is initially defined.

u

FiG. 7
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Let U be any point on this curve and let x’ + & be its coordinates, the &' being
small quantities. V isa point on C near to U and having coordinates x‘ + &' +d&'.
When A' is displaced from U to V, its components undergo a change

64" = —Ti Alde (36.2)

where '), and A’ are to be computed at U. Considering the small displacement
from P to U and employing Taylor’s theorem, the value of I'; at U is seen to be

]
ri+ Ex'f & (36.3)

to the first order in the &'. In this expression, the affinity and its derivative are to be
computed at P. 4’ in equation (36.2) represents the vector after its parallel
displacement from P to U, i.e. it is

Al -TiaAg (36.4)
where A7, A"and I}, are all to be calculated at the point P. To the first order in &'
therefore, equation (36.2) may be written

re o
= —F},I,’,A')é‘jldé“ (36.5)

¢
éx

dA' = —[rjkAl+(Af
Integrating around C, it will be found that

, ‘ oTe Y
AA' = — r;kAfagdcj* + (r;k b= %;’,* )Aff]gé‘dé‘ (36.6)

¢ ¢
where the dummy indices j, r have been interchanged in the final term of the right-
hand member of equation (36.5).

Now §d“" =AE =0 (36.7)
e
Also §d(é'é“) =A™ =0 (36.8)
(.
o that §é‘dg"‘ = —§g"‘dg" (36.9)
C [4

implying that the left-hand member of this equation is skew-symmetric in /and k.
Since &, d&* are vectors, it is also a tensor. Denoting it by o*, we have

ot = %éﬁ(c”dé‘ - &deh (36.10)

¢
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and equation (36.6) then reduces to the form

AA = ( W J‘Q-‘)Ah“ (36.11)
X

Apart from its property of skew-symmetry, ¥ is arbitrary. Nonetheless, since it

is not completely arbitrary, the quotient theorem (section 32) cannot be applied

directly to deduce that the contents of the bracket in equation (36.11) constitute a

tensor. In fact, this expression is not a tensor. However, it is easy to prove that, if

X, is skew-symmetric with respect to k, [ and if Y, defined by the equation

Yi= Xia¥ (36.12)
is a vector for arbitrary skew-symmctric tensors o, then X}, is also a tensor.

To prove this, let 4 be an arbitrary symmetric tensor. Then the components of
the tensor

v = okt 4 i (36.13)
are completely arbitrary, for, assuming k < /,
=g = Mg e (36.14)
and it follows that the values of ¥*, ¥ can be chosen arbitrarily and then
oM =M -, BE = 36M + M (36.15)

ie. itis only necessary to fix the values of &*, p* in the cases k < [ in order that the
¥ shall assume any specified values over the complete range of its superscripts,
with the exception of the cases when two superscripts are equal. If the superscripts
are equal, ¥ = 0 and y* = . But these f* are also arbitrary and hence so again
are the y* with equal superscripts.

Since B is symmetric and X}, is skew-symmetric,

Xup“=0 (36.16)
Adding equations (36.12) and (36.16), we obtain therefore
M =Y (36.17)

But 7 is an arbitrary tensor and hence, by the quotient theorem, X, is a tensor.

The multiplier of 2 in equation (36.11) is not skew-symmetric in k, . However,
it can be made so as follows: Interchange the dummy indices k, [ in this equation
to obtain

_ . oTEN
AA'=( " h—%x—;‘)ma‘“ (36.18)

Adding equations (36.11) and (36.18) and noting that ¥ = — ' it will be found
that

) . ) 2J I )
AA' = %(r:kr;" - I,I ;k +C_\ f - }:E>Ala“ (3619)
ox*  ax

7
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The bracketed expression is now skew-symmetric in k, / and hence

. : 3 N RN
( L= :,F;A+6Tf—-~»-">,41 (36.20)

éxt
is a tensor. A/ being arbitrary, it follows that
: ; . cry ey
By =Ly T+ in - (\xj, (36.21)
is a tensor. It is the Riemann—Christoffel curvature tensor.
Equation (36.19) can now be written

AA' = '%BijklAJflk‘ (36.22)

If Bi,, is contracted with respect to the indices i and /, the resulting tensor is
called the Ricci tensor and is denoted by R,,. Thus

R, = B (36.23)

This tensor has an important role to play in Einstein’s theory of gravitation. Sincc

L is skew-symmetric with respect to the indices k and [, its contraction with
respect to i and k yields only the Ricci tensor again in the form — R;. However,
contraction with respect to the indices i and j yields another second rank tensor,
viz,

Su =By = —2 " (36.24)
C

37. Metrical connection. Raising and lowering indices

In this section we shall further particularize our space ¥y by supposing it to be
Riemannian. That is, we shall suppose that a ‘distance’ or interval ds between two
neighbouring points x', x' + dx' is defined by the equation

ds® = g;;dx'dx’ (37.1)

where the N2 coeflicients g;; are specified in some coordinate frame at every point
of ¥ . It will be assumed, without loss of generality, that the g;; are symmetric.
Such a relationship between all pairs of adjacent points is called a metrical
connection and the expression (37.1) for ds? is termed the metric.

For any two neighbouring points, ds will be regarded as an invariant associated
with them and the g;; must accordingly transform so that this shall be so. Since
dx'dx’is an arbitrary symmetric tensor, g;; is symmetric and ds’ is an invariant, it
follows by a modified quotient theorem similar to the one proved in section 36
that g;; is a tensor. It is called the fundamental covariant tensor. The contravariant
tensor which is conjugate to g;; (sce scction 32), viz. ¥/, is termed the fundamental
contravariant tensor. This exists only if g = [g;;| # 0, which we accordingly
assume to be the case.
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In the casc when £ is Euclidean, rectangular Cartesian coordinates ' can be
defined and. in such a frame. g;, = J,;. Consider a contravariant vector having
components 4' in a general curvilinear x-frame and components B' in the y-
frame. In the Cartesian frame, covariant and contravariant vectors are indis-
tinguishable, so that it is natural to define covariant components for the vector by
the equation

B,= B (37.2)
In the x-frame, let A; be the components of the covariant vector B;. Then
A, =g,A (37.3)

This follows since (i) it is a tensor equation and (ii) it is vald in the y-frame in
which it takes the form

B, =6, =B (37.4)

If #, is not Euclidean, equation (37.3) is taken to define the covariant
components of a vector whose contravariant components are 4'. This process of
converting the contravariant components of a vector into covariant components
is termed lowering the index.

If B, is a covariant vector, its contravariant expression is determined by raising
the index with the aid of the fundamental contravariant vector. Thus

B = 4'B; (37.5)
For the notation to be consistent, it is necessary that if an index is first lowered
and then raised, the original vector should again be obtained. Thisis seen to be the

case for, if 4, is formed from A' (equation (37.3)), the result of raising its subscript
is {equation (37.5))

giA, = glg At = s A = A (37.6)
where equations (32.9) have been used in the reduction. Similarly. if an index is
first raised and then lowered, the original covariant vector is reproduced.

Any index of a tensor can now be raised or lowered in the obvious way. Thus, if
A% is a tensor, we define

Al =g, A% (37.7)

To allow for the possibility that indices may be raised or lowered during a
calculation, it will be convenient to displace the subscripts to the right of the
superscripts. [t is also often helpful to keep a record of these operations by placing
a dot in the gap resulting from the raising or lowering of an index. These
conventions are illustrated in equation (37.7).

Suppose an index of the fundamental tensor g;; is raised. The resuit is

g4 = ¢*g,; = 8} (37.8)

i.e. the mixed fundamental tensor. The same tensor results when an index of g%/ is
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lowered. I both subscripts of g;, are raised, the result is
99 gi;=¢"d = ¢ (37.9)

Our notation is entirely consistent, therefore, and g, g*, 8, are taken to be the
covariant, contravariant and mixed components respectively of a single funda-
mental tensor.

Consider the inner product of two vectors 4°, B, We have

A'B; = ¢"A;B,
= AjgijBi
= Aij
= AB (37.10)
1t is clear that the dummy index occurring in the expression for an inner product

can be raised in one factor and lowered in the other without affecting the result.
This is obviously valid for the inner product of any pair of tensors.

38. Scalar prodncts. Magnitudes of vectors

In 2, the magnitude of the displacement vector dx' is taken to be ds as given by
equation (37.1). If A'is any other contravariant vector, it may be represented as a
displacement vector and then its magnitude is the invariant A, where

Ar =g A A (38.1)

This equation is accordingly taken to define the magnitude of A"
Raising and lowering the dummy indices in equation (38.1), we obtain the
equivalent result

A = !IiinA; (38.2)

It is natural to assume that the associated vectors A4;, A' have equal magnitudes
and hence 4 is also taken to be the magnitude of 4,. Equation (38.2) indicates how
this can be calculated directly from A,.

Since g,;A/ = A;and ¢ 4, = A',equations (38.1), (38.2) are also both seen to be
equivalent to the equation

A = A A (38.3)

The scalar product of two vectors A, B is defined to be the invariant
A'B= AB = A'B, = 4,,A'B' = 4" A, B; (38.4)
It will be noted that A2 =A-A (38.5)

By analogy with & ;, we now detine the angic 6 between two vectors A, B to be
such that

ABcos6 = A-B (38.6)
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Le cosll = —- A—‘q' 3
- Y LA BBy (87)

If 0 = 4n, the vectors are said to be orthogonal and
A'B,=0 (38.8)
39. Geodesic frame. Christoffel symbols

Itis always possible to choose a coordinate frame in which the components of the
metric tensor are stationary at an assigned point, i.e. ég,;/cx* all vanish at the
point. Such a frame is said to be geodesic at the point.

For, if x' = a' are the coordinates of a point A in an x-frame, suppose we
transform to a new frame by the quadratic transformation

X = '+ % + bl TR (39.1)

where X' = 0 at A and the constant coefficients d’, are symmetric in the indices j, k
(no loss of generality). Differentiation yields the equations

= dj (39.2)

In particular, at the point A

éxt . O2xt .
= =0}, =g = (39.3)
ox! cx/cx

The transformation equation for the metric tensor is

_ 0x éxs
gij = % 6)(" (394)
Differentiating with respect to ¥*, we find that
¢gj &2x" axt éx” o%xt éx" Ox° dg,s CXF (39.5)
oxt  oxax oxi I &% exron 17T 3% 0% ax o% '
Substituting from equations (39.3), it follows that at the point A,
¢g;; 0gi;
sk alkgu + a;kgns - 'i{ (396)
LX cX

Suppose, if possible, the coefficients o), are chosen so that ég;/¢x* = 0. Then,
writing aiyg,; = d;;, it is necessary that

a,vk,-+a,-k,- = —Egi,/("x" (397)
Cyclically permuting the indices i, j, k, two further equations are obtained, viz.
djix + dy; = —ng,‘/(?xi (398)

akj,-+aijk = —8g,“v/3xj (399)
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Since «;; is symmetric in the indices i, j, by adding the last pair of equations and
subtracting equation (39.7), we get

A= — I<( ik (—,:& - (_g,,> —Tij, k] (39.10)
¢x' C

[ij, k] is called the Christoffel symbol of the first kind. It is now easily verified that
the condition (39.7) is satisfied provided a; is defined by equation (39.10) and,
hence, that dg,/0x* = 0 at A.

[ij, k] is not a tensor, but its indices invariably behave like subscripts in any
formula in which it occurs. It is symmetric in the indices i, j.

We now deduce that

af = g¥a;, = — g r] = =45} (39.11)
where {;*;} is Christoffel's symbol of the second kind. Itis clearly obtained from the
symbol of the first kind [ij, k] by raising the final index &. It, also, is not a tensor,
but i, j always behave as subscripts and k behaves as a superscript; it is symmetric
iniandj.

Suppose we next transform from the X-frame to a y-frame by a linear
transformation

Xt = biy (39.12)

where the b} are constants. Then dx' = bi dy“ and it is a well known result from

algebra that the quadratic form g;;dx'd%’ can be reduced to the diagonal form

dy')2+dy)? + ... +(dyM)? (39.13)

at the point A by proper choice of the b} (some of these coefficients may have to be
given imaginary values). Let h;; be lhe metric tensor in the y-frame. Then

ox" éx°

= Grs = bib5g,s (39.14)

iy’ 6 J
and, in particular, h; = §;; at A. Differentiating the last equation, we obtain
oh;

_'I = bbb

oyt

;‘ig_’f (39.15)

showing that ¢h,;/¢y* vanishes at A. Thus, in the y-frame, h;; is stationary with
value §;; at A. The implication is that, in a small neighbourhood of A, the
coordinates y' will behave like rectangular Cartesian coordinates. The y-frame is
the closest approximation to a rectangular Cartesian frame that can be fitted to
the 2, in the neighbourhood of 4.

If the y-frame were exactly rectangular Cartesian (i.e. the space were
Euclidean), in order that the law for parallel displacement of a vector, equation
(33.7), should agree with the one usually adopted, it would be necessary to take all
the components of the affinity to be zero in this frame. It is natural, therefore, to
define the affinity at the point A of &, so that, in the y-frame, its components are
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zero. With this choice of affinity, in the y-frame covariant derivatives will reduce
to ordinary partial derivatives at the point A; in particular,

Ch,,
yh T -

— =0 (39.16)
€y
at A. But this equation is a tensor equation and, being valid in one frame, is
accordingly valid in all frames. Thus, with this choice of affinity

9k = 0 (39.17)

Assuming that the affinity is defined at all points of £ in this manner, the last
equation will be valid throughout the space and in all frames. Since this affinity is
clearly symmetric in the y-frame, it will be symmetric in all frames.
Writing equation (39.17) out at length, we have

49 _ v

E;‘l —T5%gy; = Txgir = 0 (39.18)
Cyclically permuting the indices i, j, k to obtain two further equations, it now
follows as from equations (39.7)}-(39.9) that

[i. k] = o T, (39.19)
Raising the index k, this gives
= {4 {39.20)

The affinity determined by this equation in any frame will be called the metric
affinity and will invariably be assumed in all later developments.

Since equation (39.17) is valid using the metric affinity, the metric tensor
behaves like a constant with respect to covariant differentiation. Further, since

9" g:; = di (39.21)
by taking the covariant derivative of both members of this equation, we obtain
g9 i, =0 (39.22)

Multiplying by g*" and summing with respect to k. we then find that
9" =0 (39.23)

Thus, all forms of the metric tensor bechave like constants under covariant
differeniiation.
It is now clear that

(9,4)) s = g,4", (39.24)

This shows that the lowering of an index followed by a covariant differentiation
yields the same result as when these two processes are reversed. Similarly, it can be

shown that the raising of an index and covariant differentiation are two processes
which commute.
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40. Bianchi identity

If we choose a frame which is geodesic at a point x', g;;/#x* will vanish at the
point and the two Christoffel symbols will therefore also vanish at the point.
Thus, all the components of the affinity will vanish at the point and covariant
derivatives will reduce to partial derivatives there. It then follows from equation
(39.23) that the partial derivatives ¢g'//@x* all vanish at the point, also.

In such a geodesic frame, therefore,

Bl' _ v i r rr C r.' c r:[k
" T oAaLm rk _i oAl
Tkt m X X

. :jk'T (40.1)

since the F'k (but not their derivatives necessanly) all vanish at this point.
Cyclically permuting the indices k, I, m in equation (40.1), we obtain

) 0 I"', arry
! g ——I— 40.2
tmk = aykexd T oxkaxm (40.2)
220 a2 F‘
! Epygu 40.3
B’"" FT o Axtexm T ext fx" ( )
Addition of equations (40.1), (40.2), (40.3), yields the following identity
Bj“.m+ Bflm vt B;mk.l =0 (40.4)

But this is a tensor equation and, having been proved true in the geodesic frame,
must be true in all frames. Also, since the chosen point can be any point of A . itis
valid at all points of the space. It is the Bianchi identity.

41. The covariant curvature tensor

The components of B, are not all independent since the tensor is skew-
symmetric in the indices k, . In addition, however, if the affinity is symmetric, it is
casily verified from equation (36.21) that

If the affinity is metrical, by lowering the contravariant index of the
Riemann-Christoffel tensor, a completely covariant curvature tensor By, is

derived. This has a number of symmetry properties, one of which is obtained from
our last equation immediately by lowering the index i throughout to give

B,‘j“ + Biklj + Bil}'k = 0 (4]2)

Further such properties can be established by first calculating an expression for
the tensor in a geodesic frame. Thus, in such a frame
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. Ty
B.‘,u =g, B = .‘Jn(ﬁ( X!

¢ é
— g (s .1.~ -Gy rs k,
-‘i-r(;xk(-‘l [J 5]) g (_x,(y [j S:l)

YT
= gird ((:x;[ﬂ,s]—g;[/k‘s]> (41.3)

;

since g™ /¢x* = 0 in a geodesic frame. Using the result g,,¢" = 4} and substitut-
ing for the Christoffel symbols, we now find from equation (41.3) that

L g Pgu Cqu gy
Biji= 3 - L 41.4
i 2(axmxk tavex! axiex! | axiext (41.4)
The following equations are now easily verified:
Bijkl = - Bjikl (4|-5)
ankl = - Bijlk (41'6)
Bijkl = Bklij (4L.7)

Being true in the geodesic frame, these tensor equations must be valid in all
frames. Note that the tensor is skew-symmetric with respect to its first pair of
indices and its last pair.

Also lowering the superscript i throughout the Bianchi identity (40.4), we
obtain

B,/ll_m + B,,lm.k + Bumk,l =0 (41~8)

42. Divergence. The Laplacian. Einstein’s tensor

If the covariant derivative of a tensor field is found and then contracted with
respect to the index of differentiation and any superscript, the result is called a
divergence of the tensor. With respect to orthogonal coordinate transformations
in &y, the partial and covariant derivatives are identical and then this definition of
divergence agrees with that given in section 12.

From the tensor AY, two divergences can be formed, viz.

div, A4, = AY, and div,AY, = A", (42.1)

A contravariant vector possesses one divergence only, which is an invariant. If the
affinity is the metrical one, such a divergence is simply expressed in terms of
ordinary partial derivatives thus: since a derivative of a determinant can be found
by differentiating each row separately and summing the results, we deduce that
€9 _ Gl _ a9

ix? ox? 77 Exd

(42.2)
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Since ﬁ = [ij, k] +[kj,i] 42.3)
equation (42.2) reduces to
%9 _ g™ ([ij k]+ [k 2 424
5 = 99 (L k] + [k i]) = 2917} (42.4)
Hence i) = \/g ax, —(9) (42.5)
Now let A' be a vector field. Its divergence is
YL o
Al = . 144
M ﬁx' + {Il}A
1 oA
_%[\/gaxi 1x,(\/y)jl
Al 426
\/g pwe = JIA) (42.6)

which is the expression required.

In particular, if the vector field is obtained from an invariant V by taking its
gradient, we have

_v @2.7)
ox!
and hence Al =gl il (42.8)
ox’

From equation (42.6), it now follows that the divergence of this vector is

1 0 oV
i Vi = — .
divgrad V = V?V Jgox <\/q Ox’) 42.9)
The right-hand member of this equation represents the form taken by the

Laplacian of V in a general Riemannian space. In &, employing rectangular axes,
g' = 6% g =1 and thus

AL, TR vey = 2.10
b ’ axiox (42.10)
which is its familiar form.

Weshall now calculate the divergence of the Ricci tensor R ; (equation (36.23)).

If the metric affinity is being employed, this tensor is symmetric, for

Rkj = Bl,. = yi'Brkji = gi'Bjirk = gi'Bijkr

= By, = R, 42.11)
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having employed equations (41.5)-(41.7). Raising either index accordingly yields
the same mixed tensor R{. If this is contracted, an invariani

R =R} (42.12)

is obtained. R is called the curvature scalar of ..
The skew-symmetry of B,;,, with respect to its first two and its last two indices
means that equation (41.8) can be writen

B B By, =0 (42.13)

yhl.m = Dymlh —

Multiplying through by g"g’*, we then get
gjkBju.m_.‘ljkB/‘mu_.‘IHB,kmk.x =0 (42.14)

and this is equivalent to

9*Rym=9"Rs—9"R, =0 (42.15)
or R,.-2R\: = (42.16)
Thus Rh. = beR/ex 42.17)

is the divergence of the Ricci tensor.
Consider now the mixed tensor

Ri—-185R (42.18)
. . . . CR
Its divergence is R, —46%—,
Cx
_pe (CR
= R,.t - fa_j
= (42.19)
This is Einstein’s Tensor. Its covariant and contravariant components are
R, —1gi,R, Ri-%g"%R (42.20)

respectively.

43. Geodesics

Let C be any curve constructed in a space #, having metric (37.1) and let s be a
parameter defined on C such that, if s, s+ ds are its values at the respective
neighbouring points P, P’ on C, then ds is the interval between these two points. If
x! are the coordinates of any point P on C, then the curve will be defined by
parametric cquations . ,

x' = x'(s) (43.1)

Since dx’ are the components of a vector and ds is an invariant, dx/ds is a
contravariant vector at P. Its magnitude is, by equation (38.1),

dxfdxi\!?
9igs ds (43.2)
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and this is unity by equation (37.1). dx*/ds is tcrmed the unir rangent to the curve
at P, its direction being that of the displacement dx’ along the curve from P.
Supposc C possesses the property that the tangents at all its points arc parallel,
i.e. the curve’s direction is constant over its whole length. This property is clearly
quite independent of the coordinate frame being employed. In &, such a curve
would, of course, be a straight line. In £, , the curve will be called a geodesic. A
geodesic is accordingly the counterpart of the Euclidean straight line in a
Ricmannian space. Suppose P, P’ are neighbouring points on a geodesic having
coordinates x',x* + dx* respectively. If the unit tangent at P is parallel displaced to
P, it will then be identical with the actual unit tangent at this point. Now, by
equation (35.4), after parallel displacement from P to P’, the unit tangent has

components
dx! dx! dx' S dx/
] et e N 2 433
ds ”(d.s) ds  *ds (4>3)

But the actual unit tangent for the point P’ has components
dx! dx' d2x
- = = - ods 434
(ds )u a T ds? @ 434
The vectors (43.3) and (43.4) are identical provided

2. k
S S S S (43.5)
ds? P ds ds
1f these equations are satisfied at ecvery point of the curve (43.1), it is a geodesic.

The N equations (43.5) arc second-order differential ecquations for the
functions x'(s) and their solution will involve 2N arbitrary constants. If A, B are
two given points having coordinates x' = a, x' = b’ respectively, the 2N
conditions that the geodesic must contain these points will, in general, determine
the arbitrary constants. Hence there is, in general, a unique geodesic connecting
every pair of points. However, in somc cases, this will not be so. For example, the
geodesics on the surface of a sphere (£, )are greatcircles and, in general, there are
two greal circle arcs joining two given points,a major arc and a minor arc. Also, if
these points are diamterically opposcd to one another, there is an infinity of great-
circle arcs connecting them.

Since dx‘/ds is everywhere a unit vector, on a geodesic

dx'dx’
This must, accordingly, be a first integral of the equations (43.5). To show that this
is the case, muitiply equations (43.5) through by 2g,,dx"/ds and sum with respect
to i to obtain
dx"d?x! ; dx/dxfdx 0

2gl'r -

S e T = 437
ds ds? + ol ds ds ds (43.7)
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dx'd®x’ d dx'dx"\ dg,dx‘dx"
Now 2, X O, S E) _99r X :
ov Y ds ds? ds(q" ds ds) ds ds ds 438)
dx/ d~< dx’ dx/dx*dx"
Als re - — ik, r
50 20e U v ar o AR T as
dx’dx* dx
= (LK, r]+[rkj])d ds ds
_(g,,dx dx‘g
T oxM ds ds ds
dq,,dx’dx
= - 43,
ds ds ds (439)

By addition of equations (43.8) and (43.9), it will be seen that equation (43.7) can
be ecxpressed in the form

d dxidx’
—g. =2 )=0 43.10
ds ("” ds ds ) @310)
Upon integration, there results the first integral
dx'dx/
g,-jﬁh-);— = constant (43.11)

The constant of integration must, of course. be taken to be unity.

The definition of a geodesic which has been given at the beginning of this
section cannot be applied 10 the class of curves for which the interval ds between
adjacent points vanishes. For such a curve, the parametric representation (43.1) is
not appropriate and a unit tangent cannot be defined. Instead, suppose that a
(1-1)correspondence is set up between the points of the curve and the values of an
invariant /4 in some interval 2, € £ < 4,, so that parametric equations for the
curve can be written

xt=x'(4) 43.12)

It will be assumed that the derivatives dx';d/ all exist at each point of the curve.
These derivatives constitute a contravariant vector and this has zero magnitude
for, since ds = 0 along the curve,

dx'dx’
ididr 0 (13
This vector will be in the direction of the displacement vector along the curve dx'
and will be called a zero tangent to the curve. The curve will be termed a null
geodesic if the zero tangents at all points of the curve are parallel. This implies
that, when the zero tangent at P is paraliel displaced to the adjacent point P’, it
must be parallel to the zero tangent at this latter point, and since the magnitudes
of these two vectors at P’ are the same, they will be taken to be identical. The
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condition for this to be so is found, as before, to be
d2xf Y dxidx*
d:i2 7 da ds

=0 (43.14)

These are, therefore, the equations of the null geodesics. It may now be shown, by
an argument similar to that culminating in equation (43.11), that a first integral of
these equations is
dx'dx’
,-,-d———— = constant (43.15)
/. /A
In this case the constant must be zero.
Equation (43.5) may be put in an alternative form which is more convenient for
particular calculations, as follows: Multiply through by 2g,;and sum with respect
to i; the resulting equation is equivalent to

d dx! dg,; dx’ - dx/dx*
—(2g, Y228 oy i EXEY 43.16
ds( g"ds> 23 a5 T HaTiegs g (43.16)
Now
dg,;dx‘ 3 Eg,,-dx"dx_‘
ds ds ~ “oxk ds ds
&g,;  Cgu \dx/dx*
- ) Ox7 X 43.17
<(x +Ex’ ds ds ( )
and
{}yrk [gk
—[kr] =9, 99 Can 43.18
2gn k [I r] [Xk + Ex’ 6)(' ( )
Equation (43.16) accordingly reduces to
d dx*\ Cgdx?/dx*
5 _gpdxiaxt 43.19
ds( g ds) éx ds ds ( :

Fquation (43.14) for a null geodesic may be expressed similarly.

Exercises 5

1. A;;1s a covariant tensor. If B;; = A, prove that B;; is a covariant tensor.
Deduce that, if A;;is symmetric (or skew-symmetric) in one frame, it is symmetric
(or skew-symmetric)in all. (Hint: The equations 4,; = A;;, A;; = — Aj; are tensor
equations.)

2. (x, y, z)arerectangular Cartesian coordinates of a point Pin&; and (r, 8, ¢)
are the corresponding spherical polars related to the Cartesians by equatjons
(30.3). A is a contravariant vector defined at P having components (4%, A%, A%)in
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the Cartesian frame and components (A’, A%, A?) in the spherical polar frame.
Express the polar components tn terms of the Cartesian components. 01, 02,03
arerectangular Cartesian axes such that Plies on Ol and O3 lies in the plane Oxy.
If (A", A2, A*) are the components of A in this Cartesian frame, show that

At = A", A =rA®% A3 =rsin0A®

(Note: Assume the Cartesian axes are right-handed.)

3. If A, is a covariant vector, verify that B;; = A; ; A;; transforms like a
covariant tensor. (This is eurl A.) I A is the gradient of a scalar, verify that its curl
vanishes.

4. If A;; is a skew-symmetric covariant tensor, verify that

By = A+ Au+ Aw
transforms as a tensor.

5. Assuming the transformation inverse to (31.1) exists, prove that each
determinant |¢x‘/x’|, |éx'/éx /|, is the reciprocal of the other. 4} is a mixed
tensor with respect 10 this iransformation. Show that the determmanl | A%] is an
invariant.

6. If T}, is an affinity, show that the torsion defined by

T:'(j = %(r:‘j _rﬁi)

is a tensor. g;, is a symmetric tensor. Write down an expression for its covariant
derivative g, ,. By considering this equation and two similar equations obtained
by cyclic permutation of the indices i, j, k, show that if the covariant derivative of
gi, 1s to vanish identically, the afﬁnity must be given by

r;k = l[ kl +le+g"(T1rqsk+Tqus])
7. Show that
—4 =4, -4,

Wy Jt ij T A4
provided the affinity is symmetric.
8. Show that

Al:;k_Al.k; = l]kA +(rkl r;.k)Al.’

and deduce that B, is a tensor and that covariant differentiations are
commutative in a space for which Bf; = 0 and the affinity is symmetric. Obtain
the corresponding result for a contravariant vector A'.

9. A;is defined at the point x' and is parallel displaced around a small contour
enclosing the point. Prove that the increment in 4; resulting from one circuit is
given by

AA; = —;B,IkA,atj“

where a/* is defined by equation (36.10).
10. The parameiric equations of a curve in &y are

xi = x%(t)
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t is an invariant parameter. A tensor A} is defined over a region containing the
curve. P, P’ are neighbouring points ¢, 7 + At on thecurveand A 4} is defined to be
the difference between the actual value of the tensor at P’ and the value of the
tensor at P after it has been parallel displaced to P. Prove that

DA} AAL dx*

= lim— =4, —
Dt .o A dy

(DA%/Dt is called the intrinsic derivative of the tensor along the curve.)

11. Verify that {;}} transforms as an affinity.

12. 1f A;; is symmetric, prove that 4;; , is symmetric in i and j.

13. Show that the number of the components of B}, which may be assigned
values arbitrarily is, in general, § N *(N — 1). I the affinity is symmetric, show that
this number is § N2(N? —1). (Hint: Use equation (41.1).)

14. Show that the number of the components of B}, which may be assigned
values arbitrarily is N2(N? —1)/12. (Hint: Use equations (41.2), (41.5), (41.6),
(41.7))

15. By differentiating the equation

' = d;
with respect to x', show that
cg™m = —g™ 1095
éxt ox!
and hence that ‘
aglm

S g+ gmL 1) =0

Deduce that g/ = 0.

16. If the affinity is the metric one, prove that

. é . &? . , @ :
Ry = Bj; = _'e;}{jlk} +Eﬁ7108 \/g+{rk}{j b= k,-é?log v
Su = B::u =0

(Hint: Employ equation (42.5).) Deduce that R, is symmeltric.

17. 1 8, ¢ are co-latitude and longitude respectively on the surface of a sphere
of unit radius, obtain the metric

ds? = d8? +sin?0d¢?

for the surface. Show that the only non-vanishing three index symbols for this #,

are -
{,'2} = —sinfcos0, {,%}={%}=cotd

Show also that the only non-vanishing components of B, are

2
Byy12 = —Byy; = B3y = — By =sin" 0
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and that the components of the Ricci tensor are given by
R12=R21=0, Rll= —1, R22= —Sinzo.

Prove that the curvature scalar is given by R = —2.

18. Employing equation (42.9), obtain expressions for V2 ¥ in cylindrical and
spherical polars.

19. In a certain coordinate system

i i lp
rlk_‘siak 5—

where @, ¥ are functions of position. Prove that BY, is a function of ¢ only. If
¢ = —log(a;x’) prove that
Rjk = ;ki =0
20. In the &, whose metric is
dr? 4+ r3de? ridr?
PR - (rz _az)z

ds? = (r>a)

r

prove that the differential equation of the geodesics may be written

d 2
a? (d—;> +atr? = k¥t

where k? is a constant such that k? = 1 if, and only if, the geodesic is null. By
putting r d/dr = tan ¢, show that if the space is mapped on a Euclidean plane in
which r, 8 are taken as polar coordinates, the geodesics are mapped as straight
lines, the null geodesics being tangents to the circle r = a.

21. A 2-space has metric

ds? =g, (dx")? + g,,(dx?)?

where g, 1, g,2 are functions of x' and x2. B,j, is its covariant curvature tensor
and R;; is its Ricci tensor. Prove that

Ri» =0, Ry1922 = R22911 = Bians

IfR= gin,'j, show that R = 28!221/(9!1922)- Deduce that R” = %Rgll'
22. Prove that

. ; 1 .
(1) AY, = — T o5 (\/yA")+A'k{.’k}

(if) X¥,=0
provided X ¥ is skew-symmetric. Hence prove that, for any tensor A%

A‘.j.lj = AU:JI
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23. A curve C has parametric equations
xi = x'(t)

and joins two points A and B. The length of the curve is defined to be

B B o
dx'dx’
= {ds = R,
.[ ’ J\/(g" de dr )dt
A A

Write down the Euler conditions that L should be stationary with respect to all
small variations from C and by changing the independent variable in these
conditions from ¢ to s, show that they are identical with equations (43.19). (This
provides an alternative definition for a geodesic.)

24, 1f T'%, is a symmetric affinity, show that

is also a symmetric affinity.
If B, B are the Riemann-Christoffel curvature tensors relative to the
affinities T"%,, '’} respectively, prove that
B}Zz = B;u +61Aﬂ _‘SjAjk+ (A — A
where A;; = A;4;,- 4, ,.
Hence show that if A4, is the gradient of a scalar, then
jll Bllj B]ll B;ij

25. Prove that the affinity transformations form a group.
26. Prove that

¢ 2
— (V¢)? =291 =
6x"( ) g éx'

27. Two metrics arc defined in #, viz.
ds? = g;;dx'dx’, d3¥* = e°g,;dx'dx’

where o is a function of the x*. If ['%, T}, are metric affinities constructed from
these metrics, prove that

,k = F'k + A
where
ik =4(djo +0ia —9yug”a,)
Curvature tensors Bly, By are constructed from these affinities. Prove that

By, —BJ“+A — A+ AnA — AL A,
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Deduce that

R_,k = R]k + A:,_L - A;L_:+ AikA:_,_A::rA;k
and show also that 4}, = {Ng ;.

28. Oblique Cartesian axes are taken in a plane. Show that the contravariant
components of a vector A can be obtained by projecting a certain displacement
vector on to the axes by parallels to the axes and the covariant components by
projecting by perpendiculars to the axes.

29. Define coordinates (r, ¢)ona right circular cone having semi-vertical angle
2 5o that the metric for the surface is

ds? =dr?+rtsin?axdg?.
Show that the family of geodesics is given by
r=ascc(¢psinx—f)

where a, f§ are arbitrary constants. Explain this result by developing the cone into
a plane.

30. An A, has metric
ds? = e¢*dx'dx’

where 4 1s a function of the x'. Show that the only non-vanishing Christoffel
symbols of the second kind are

P 1y P 1;
00 = (85 = $)ip po (= e

where 4, = ¢4/¢éx’. Deduce that

: r =N +2)ii—144
rp{|pif ¢ Pt

and that the scalar curvature of this space is given by
R=(N-1e i, +HN=-2)i,4,]
where 4, = #23/0x"Ex".

31. Gisthe co-latitude and ¢ is the longitude on a unit sphere, so that the metric
for the surface is

ds? = d62 +sin20d¢?

The covariant vector A; is taken with initial components (X, Y) and is carried, by
parallel displacement, along an arc of length ¢ sin « of the circle § = o. Show that
the components of A, attain the final values
A,
A,

X cos (¢pcosa)+Y cosecx sin (¢ cosx)
— X sinxsin(¢cosx)+Ycos(¢cosa)
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Verify that the magnitude of the vector A, is unaltered by the displacement.
32. An #; has metric
ds? = 2dr® +r3(d6?2 + sin®* 6d¢?)

where 4 is a function of r alone. Show that, along the geodesic for which 8 = §x.
dé:ds=0ats=0,

o= i

where r = b sec . Interpret this result geometrically when 2 = 1.
33. y' (i = 1,2, 3, 4) are rectangular Cartesian coordinates in &,. Show that
y!'= Rcos0
y2 = Rsinf cos ¢
y3 = R sin® sin ¢ cos ¥
y* = Rsin0sin¢ sinys
are parametric equations of a hypersphere of radius R. If (6, ¢, /) are taken as
coordinates on the hypersphere, show that the metric for this #; is
ds? = R2[d0? +sin? 0(d¢? +sin’* pdy?)]
Deduce that in this #;,
Biy;; = R¥*sin?0, B,3,; = R%sin®0sin’ é.
B, = R?sin?0sin? ¢,
all other distinct components being zero. Hence show that
Biju = K(gud,y —9ugu)
where K = 1/R2 (This is the condition for the space to be of constant
Riemannian curvature K )
34. An #, has metric
ds? = sech? y(dx? + dy?)
Find the equation of the family of geodesics.

6, ¢ are co-latitude and longitude respectively on the surface of a sphere of unit
radius. Mercator’s projection is obtained by plotting x, y as rectangular Cartesian
coordinates in a plane, taking

x=¢, y=Ilogcotib
Calculate the metric for the spherical surface in terms of x and y and deduce that
the great circles are represented by the curves

sinhy = xsin(x + B),
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where o, § are parameters, in Mercator’s projection.
35. Obtain the formula

1 gy Mg g c2g, r s
Bl - : t ! I a— '_ - i J-_ + sr
= ( xJoxk +(3x'(?x’ aoex! oxiext ) TR0 ik
r s
I i kf1j1

36. An #, has metric ds? = 2¢dxdy, where ¢ = @(x,y). Calculate the
componeni B, ,,, of the curvature tensor and state the values of the remaining 15
components. Deduce that the space is flat provided

¢ 2¢éd

éxéy  Ox @y

Putting ¢ = e¥, obtain the general form for ¢ satisfying this condition. Deduce
that coordinates &, 5 can be found such that the metric takes the form
ds? = 2dé&dn.

37. If A;issuch that A, + 4, , = 0, by cyclically permuting the indices i, j, k in
A, i — A, = A, B to give two further equations, prove that A, , = — A4,By;;.

38. ¢(u,v)and y(u, v)are the real and imaginary parts of an analytic function
J(w) of the complex variable w = u + iv. Show that the equations x = ¢(u, v),
y = (u, v) transform the Pythagorean metric ds> = dx? +dy? into the metric

A 2
d52=[((_¢) +((¢> ](du +de?).
o (&2

By taking f(w) = 1/w, explain how it is possible to write down the equation of the
family of geodesics in a space whose metric is

du +di?
(u +L)

2 _

Also obtain this equation by transforming the metric using the equations
u=rcos, v =rsin0, and writing down the differential equations for the
geodesics in terms of r and 0.

39. (x, y)are rectangular Cartesian coordinates and (r, 8)are polar coordinates
in a Euclidean plane. 4;; is a symmetric tensor field defined in the plane by its
components A, = A,, =0, A,, = A,, = x/y + y/x. Calculate the contravariant
polar components ofthe field in terms of r and 6, and deduce that A” + r? 4% = 0.
(Ans. A" =2, A" = 2cot20/r, A® = —2/r%)

40. x, y, z are rectangular Cartesian coordinates in & 5. Parametric equations
for a hyperbolic paraboloid are taken in the form x = u + L,y=u-—t,z=ut A
covariant tensor field on the surface is defined by the equations 4,, = u?, 4,,
= A, = —uv, A,, =v?2 Show that the contravariant components are one-
quarter the covariant componenls.
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41. x, yare rectangular Cartesian coordinates in a Euclidean plane and u, vare
curvilinear coordinates defined by x = a cosh u cost, y = a sinh u sinv. A covari-
ant vector has components 4,, 4, at the point (x, y) and curvilinear components
A, A, Show that

2 . .
A, = - (A, sinhucost— A, coshusinv)/(cosh 2u —cos 2r)
a

42. x, y are rectangular Cartesian coordiantes in a plane. Curvilinear
coordinates u, ¢ are defined by the transformation equations u = §(x2 —y?),
v = x). Sketch the families of coordinate lines u = const., t = const. and show
that the metric in the ut-frame is

ds? = §(u? +v?) "V (du? +dv?)

A covariant vector has Cartesian components (A,, 4,) and curvilinear com-
ponents (A,, A,). Show that

Ay = (x4, —yA,)/(x* +y?)

and derive the corresponding formula for A4,.

43. (x, y)are rectangular Cartesian coordinates in a Euclidean plane and (u, v)
are curvilinear coordinates defined by the equations x = }(u* +¢?), y = ut. A
covariant vector field 4;is defined over the plane in the uv-frame by the equations
A, = A, = (u? —¢?)%. Show that its divergence is equal to 2(u —v)*/(u +v).
Calculate the contravariant vector at the point u = 0, v = 1 and use the law of
parallel displacement along the curve u = 0 to calculate the parallel displaced
vector at the pointu =0, ¢ = 2. (Ans. A*= A" = 1)

44. An R, has metric ds? = dx? + x2dy?. Calculate the components of its
metric affinity. Deduce that the divergence of the vector field whose covariant
components are given by 4, = x cos 2y, A, = —x?sin 2y, vanishes.

45. 1f the x-frame is geodesic at the point x', prove that

~2
¢ r L rp
m{s l} =139 (gsp,ijl+glp.ijs _gsl.ijp)
. 62 s ik s
éxioxk |j s| oxiéxs)j k
‘ o2 &2 s
R;=9% —== .s -
oxioxk i s oxicxs i k

and deduce that R/, = iR ;.
46. An #, has metric ds? = y2dx2 +dy?. Deduce the parallel transfer
equations

=
1
@

=

1 1
0A, = ;A,dy—yAydx, 84, = ;A,dx
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Using these equations, parallel transfer the vector along the curve y = sec x from
the point x = 0, y = l at which itscomponents are 4, = 0, A, = 1, to the point x
=n/3,y=2

47. If 0, ¢ are latitude and longitude respectively on the surface of a globe of
unit radius, show that the geodesics on the globe have equations tan
= tan x sin (¢ + ), where x, B are constants.

48. A space ®, has metric ds? = sech? y(dx? +dy?). A vector A, is parallel
displaced from the point x = 0, y = b to the point x = a, y = b along the line
= b. Its initial components are (X, Y). Show that its final components are given
by

A, = X cos (a tanh b) +Ysin (¢ tanh b)
A, = — X sin (atanh b) + Y cos (atanh b)

49. Replacing A; in the argument of section 34 by A‘, obtain the transform-
ation law for an affinity in the form

= ox'ox*ax' . 0Px' ox"ox®

W= S amiee " Gvan oxi ont
Prove that this is equivalent to equation (34.8). (Hint: Differentiate
6% Ox" 5
axroxs o)
50. Using the transformation law for an affinity in the form given in the last
exercise, if ' = g/*TY, show that an X-frame can always be found such that
" = 0 everywhere. Show that this frame is determined by the equations

2 =i
0°x 0xX [

ik -
oxiox*  oOxi

g

and that these equations can be written V2x‘ = 0. (The coordinates x' are said to
be harmonic.)



CHAPTER 6

General Theory of Relativity

44. Principle of equivalence

The special theory of relativity rejects the Newtonian concept of a privileged
observer, at rest in absolute space, and for whom physical laws assume their
simplest form, and assumes instead that these laws will be identical for all
members of a class of inertial observers in uniform translatory motion relative to
one another. Thus, although the existence of a single privileged observer isdenied,
the existence of a class of such observers is accepted. This seems to imply that, if
all matter in the universe were annihilated except for a single experimenter and his
laboratory, this observer would, nonetheless, be able to distinguish inertial frames
from non-inertial frames by the special simplicity which the descriptions of
physical phenomena take with respect to the former. The further implication is,
therefore, that physical space is not simply a mathematical abstraction which it is
convenient to employ when considering distance relationships between material
bodies, but exists in its own right as a separate entity with sufficient internal
structure to permit the definition of inertial frames. However, all the available
evidence suggests that physical space cannot be defined except in terms of
distance measurements between physical bodies. For example, sucha space can be
constructed by setting up a rectangular Cartesian coordinate frame comprising
three mutually perpendicular rigid rods and then defining the coordinates of the
point occupied by a material particle by distance measurements from these rods in
the usuval way. Physical space is, then, nothing more than the aggregate of all
possible coordinate frames. A claim that physical space exists independently of
distance measurements between material bodies, can only be substantiated if a
precise statement is given of the manner in which its existence can be detected
without carrying out such measurements. This has never been done and we shall
assume, therefore, that the special properties possessed by inertial frames must be
related in some way to the distribution of matter within the universe and that they
are not an indication of an inherent structure possessed by physical space when it
is considered apart from the matter it contains. This line of argument encourages
us to expect, therefore, that, ultimately, all physical laws will be expressible in
forms which are quite independent of any coordinate frame by which physical
space is defined, i.e. that physical laws are identical for all observers. This is the
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general principle of relativity. This does not mean that, when account is taken of
the actual distribution of matter within the universe, certain frames will not prove
to be more convenient than others. When calculating the field due to a
distribution of electric charge, it simplifies the calculations enormously if a
reference frame can be employed relative to which the charge is wholly at rest.
However, this does not mean that the laws of electromagnetism are expressible
more simply in this frame, but only that this particular charge distribution is then
described more simply. Similarly, we shall attributc the simpler forms taken by
some calculations when carried out in inertial frames, to the special relationship
these frames bear to the matter present in the universe. Fundamentally, therefore,
all observers will be regarded as equivalent and, by employing the same physical
laws, will arrive at identical conclusions concerning the development of any
physical system.

The main difficulty which arises when we try to express physical laws so that they
are valid for all observers is that, if test particles are released and their motions
studied from a frame which is being accelerated with respect to an inertial frame,
these motions will not be uniform and this fact appears to set such frames apart
from inertial frames as a special class for which the ordinary laws of motion do
not apply. However, by a well-known device of Newtonian mechanics, viz. the
introduction of inertial forces, accelerated frames can be treated as though they
were inertial and this suggests a way out of our difficulty. Thus suppose a space
rocket, moving in vacuo, is being accelerated uniformly by the action of its
motors. An observer inside the rocket will note that unsupported particles
experience an acceleration parallel to the axis of the rocket. Knowing that the
motors are operating, he will attribute this acceleration to the fact that his natural
reference frame is being accelerated relative to an inertial frame. However he may,
if he prefers, treat his reference frame as inertial and suppose that all bodies within
the rocket are being subjected to inertial forces acting parallel to the rocket’s axis.
If ais the acceleration of the rocket, the appropriate inertial force to be applied to
a particle of mass mis~ma. Similarly, if the rocket’s motors are shut down but the
rocket is spinning about its axis, an observer within the rocket will again note that
free particles do not move uniformly relative to his surroundings and he may
again avoid attributing this phenomenon to the fact that his frame is not inertial,
by supposing certain inertial forces (viz. centrifugal and Coriolis forces) to act
upon the particles. Now it isan obvious property of each such inertial force that it
must cause an acceleration which is independent of the mass of the body upon
which it acts, for the force isalways obtained by multiplying the body’s mass by an
acceleration independent of the mass. This property it shares with a gravitational
force, for this also is proportional to the mass of the particle being attracted and
hence induces an acceleration which is independent of this mass. This indepen-
dence of the gravitational acceleration of a particle and its mass has been checked
experimentally with great accuracy by Eotvos. If, therefore, we regard the
equivalence of inertial and gravitational forces as having been established, inertial
forces can be thought of as arising from the presence of gravitational fields. This is
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the principle of eguivalence. By this principle, in the case of the uniformly
accelerated rocket, the observer is entitled to neglect his acceleration relative to an
inertial frame, provided he accepts the existence of a uniform gravitational field of
intensity--a parallel to the axis of the rocket. Similarly, the observer in the
rotating rocket may disregard his motion and accept, instead, the existence of a
gravitational field having such a nature as to account for the centrifugal and
Coriolis forces.

By appeal to the principle of equivalence, therefore, an observer employing a
reference frame in arbitrary motion with respect to an inertial frame, may
disregard this motion and assume, instead, the existence of a gravitational field.
The intensity of this field at any point within the frame will be equal to the inertial
force per unit mass at the point. By this device, every observer becomes entitled to
treat his reference frame as being at rest and all observers accordingly become
equivalent. However, the reader is probably still not convinced that the
distinction between accelerated and inertial frames has been effectively elim-
inated, but only that it has been concealed by means of a mathematical device
having no physical significance. Thus, he may point out that the gravitational
fields which have been introduced to account for the inertial forces are ‘fictitious’
fields, which may be completely removed by choosing an inertial frame for
reference purposes, whereas ‘real’ fields, such as those due to the earth and sun,
cannot be so removed. He may further object that no physical agency can be held
responsible for the presence of a ‘fictitious’ field, whereas a ‘real’ field is caused by
the presence of a massive body. These objections may be met by attributing such
‘fictitious’ fields to the motions of distant masses within the universe. Thus, if an
observer within the uniformly accelerated rocket takes himself to be at rest, he
must accept as an observable fact that all bodies within the universe, including the
galaxies, possess an additional acceleration of -a relative to him and to this
motion he will be able to attribute the presence of the uniform gravitational field
which is affecting his test particles. Again, the whole universe will be in rotation
about the observer who regards himselfand his space-ship as stationary when it is
in rotation relative to an inertial frame. It is this rotation of the masses of the
universe which we shall hold responsible for the Coriolis and centrifugal
gravitational fields within the rocket. But, in addition, these ‘inertial’ gravitational
fields will account for the motions of the galaxies as observed from the non-
inertial frame. Thus, for the observer within the uniformly accelerated rocket a
uniform gravitational field of intensity — a extends over the whole of space and is
the cause of the acceleration of the galaxies; for the observer within the rotating
rocket, the resultant of the centrifugal and Coriolis fields acting upon the galaxies
is just sufficient to account for their accelerations in their circular orbits about
himself as centre (the reader should verify this, employing the results of Exercises
1, No. 1). On this view, therefore, inertial frames possess particularly simple
properties only because of their special relationship to the distribution of mass
within the universe. In much the same way, the electromagnetic field due to a
distribution of electric charge takes an especially simple form when described
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relative to a frame in which all the charges are at rest (assuming such exists). If any
other frame is employed, the field will be complicated by the presence of a
magnetic component arising from the motions of the charges. However, this
magnetic field is not considered imaginary because a frame can be found in which
it vanishes, whereas for certain magnetic fields such a frame cannot be found. The
laws of electromagnetism are taken to be valid in all frames, though it is conceded
that, for solving particular problems, a certain frame may prove to be pre-
eminently more convenient than any other. Neither, therefore. should the
centrifugal and Coriolis fields be dismissed as imaginary solely because they can
be removed by proper choice of a reference frame. although it may be convenient
to make such a choice of frame when carrying out particular computations. In
short, the general principle of relativity can be accepted as valid and, at the same
time, the existence of the inertial frames accounted for by the simplicity of the
motions of the galactic masses with respect to these particular frames.

The notion that the existence of inertial frames is bound up with the large-scale
distribution of matter within the universe is referred to as Mach’s principle.
Although Einstein was powerfully influenced by the principle when developing
his general theory, he was disappointed to discover that it still permits the
existence of universes in which local inertial frames are not in uniform non-
rotatory motion relative to the overall matter distribution. The complete
integration of Mach’s principle into the theory is yet to be accomplished.

The previously unexplained identity of inertial and gravitational masses is
easily deduced as a consequence of the principle of equivalence. For, consider a
particle of mass m which is being observed from a non-inertial frame. A
gravitational force equal to the inertial force will be observed to act upon this
body. This force is directly proportional to the inertial mass m. But, by the
principle of equivalence, all gravitational forces are of the same nature as this
particular force and will, accordingly, be directly proportional to the inertial
masses of the bodies upon which they act. Thus the gravitational ‘charge’ of a
particle, measuring its susceptibility to the influences of gravitational fields, is
identical with its inertial mass and the identity of inertial and gravitational masses
has been explained in a straightforward and convincing manner.

45. Metric in a gravitational field

Suppose that a space-station in the shape of a wheel has been constructed in a
region of space far from other attracting bodies and that it is set rotating in its
plane about its centre with angular velocity w. An observer O, wearing a space-
suit, is located outside the station and does not participate in the rotary motion;
his frame of reference is therefore inertial. O watches C, a member of the station’s
crew, measuring the dimensions of the station using a metre rule. C first measures
the radius of the station from its centre 10 its outer wall by laying his rule along
one of the corridors forming a spoke of the wheel. O notes that the rule is moving
laterally throughout the measuring process, but this motion does not affect its
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length in his frame and he will accordingly agree with the radius r recorded by C.
C next lays his rule around the outer wall of the station and records a perimeter p.
During this process, however, O sees the rule moving longitudinally with velocity
or and its length will be reduced by a factor /(1 —w?r?/c?). He will accordingly
correct the length of the perimeter found by C to the value p \/(1 —w?r?/c?).
Since O’s frame is inertial, Euclidean geometry is valid for all space measurements
referred to the frame and he must find that

pJ(l—w?r?/c?)y = 2nar 45.1)
Thus p=2ar(l —w?r?/c¢?) 12 45.2)

This last equation indicates that C will discover that the Euclidean formula
p = 2xr is not valid for measurements made in the rotating frame of the space-
station. But C is entitled to regard the station frame as being at rest, provided he
accepts the existence of a gravitational field which will account for the centrifugal
and Coriolis forces he experiences. We conclude that, relative to a frame at rest in
such a gravitational field, spatial measurements will not be in conformity with
Euclidean geomeltry.

By the principle of equivalence, the conclusion which has just been reached
concerning the non-Euclidean nature of space in which there is present a
gravitational field of the centrifugal-Coriolis type, must be extended to all
gravitational fields. However, in the case of a field such as that which surrounds
the earth, it will not be possible (as it is for the centrifugal-Coriolis field) to find an
inertial frame of reference relative to which the field vanishes and for which the
spatial geometry is Euclidean. Such a field will be termed irreducible. Even in an
irreducible field, however, a frame can always be found which is inertial for a
sufficiently small region of space and a sufficiently small time duration. Thus,
within a space-ship which is not rotating relative to the extragalactic nebulae and
which is falling freely in the earth’s gravitational field, free particles will follow
straight-line paths at constant speed for considerable periods of time and the
conditions will be inertial. A coordinate frame fixed in the ship will accordingly
simulate an inertial frame over a restricted region of space and time and its
geometry will be approximately Euclidean.

Since a rectangular Cartesian coordinate frame can be set up only in a space
possessing a Euclidean metric, this method of specifying the relative positions of
events must be abandoned in an irreducible gravitational field (except over small
regions as has just been explained). Instead, the positions and times of all events
will be specified by reference to a very general type of frame which we can suppose
constructed as follows: Imagine the whole of the cosmos is filled by a fluid whose
motion is arbitrary but non-turbulent (i.e. particles of the fluid which are initially
close together, remain in proximity to one another). Let each molecule of the fluid
bea clock which runs smoothly, but not necessarily at a constant rate as judged by
astandard atomic clock. No attempt will be madc to synchronize clocks which are
separated by a finite distance, but it will be assumed that, as this distance tends to
zero, the readings of the clocks will always approach one another. Each clock will
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be allocated three spatial coordinates &', &2, ¢* according to any scheme which
ensures that the coordinates of adjacent clocks only differ infinitesimally. The
coordinates &* of a clock will be supposed never to change. Any event taking place
anywhere in the cosmos can now be allocated unique space-time coordinates
g =1,234as follows: (¢*, &%, &%) are the spatial coordinates belonging to the
clock which happens to be adjacent to the event when it occurs, and &* is the time
shown on this clock at this instant.

We shall now further generalize the coordinates allocated to an event. Let
x' (i = 1,2, 3,4) be any functions of the ¢' such that, to each set of values of the &t
there corresponds one set of values of the x', and conversely. We shall write

xt=x'(8 8%, 8% 8% (45.3)

Then the x', also, will be accepted as coordinates, with respect to a new frame of
reference, of the event whose coordinates were previously taken to be the &' It
should be noted that, in general, each of the new coordinates x* will depend upon
both the time and the position of the event, i.e., it will not necessarily be the case
that three of the coordinates x' are spatial in nature and one is temporal. All
possible events will now be mapped upon a space &,, so that each event is
represented by a point of the space and the x' will be the coordinates of this point
with respect to a coordinate frame. &, will be referred to as the space-time
continuum.

It has been remarked that, in any gravitational field, it is always possible to
define a frame relative to which the field vanishes over a restricted region and
which behaves as an inertial frame for events occurring in this region and
extending over a small interval of time. Such a frame will be falling freely in the
gravitational field and will accordingly be referred to as a local free-fall frame.
Suppose, then, that such an inertial frame S is found for two contiguous events.
Any other frame in uniform motion relative to S will also be inertial for these
events. Observers at rest in all such frames will be able to construct rectangular
Cartesian axes and synchronize their standard atomic clocks in the manner
described in Chapter 1 and hence measure the proper time interval d between the
events. If, for one such observer, the events at the points having rectangular
Cartesian coordinates (x, y, z), (x + dx, y + dy, z + dz) occur at the times ¢, t 4 dt
respectively, then

1
dt? = di? - (dx? +dy* +dz?) 45.4)
c

The interval between the events ds will be defined by
ds? = —c? dr? = dx? +dy? +dz? —c? dr? (45.5)

The coordinates (x, y, z, 1) of an event in this quasi-inertial frame will be related to
the coordinates x' defined earlier, by equations

x = x(xt, x2, x3, x*), etc. (45.6)
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and hence dx = - dx* etc. (45.7)

Substituting for dx, dy, dz, dt in equation (45.5), we obtain the result
ds? = g;;dx’ dx/ (45.8)

determining the interval ds between two events contiguous in space- time, relative
to a general coordinate frame valid for the whole of space-time. The space--time
continuum can accordingly be treated as a Riemannian space with metric given by
equation (45.8).

As explained in section 7, dt can be timelike or spacelike according as it is real
or imaginary respectively. Ifit is real, it will be possible for a standard clock to be
present at both the events x/, x' + dx‘ and the time which elapses between them as
measured by this clock will be dt. Alternatively, if ds is imaginary, ds/ic can be
interpreted as the time between two contiguous events as measured by a standard
clock present at both.

46. Motion of a free particle in a gravitational field

In a region of space which is at a great distance from material bodies, rectangular
Cartesian axes Oxyz can be found constituting an inertial frame. If time is
measured by clocks synchronized within this frame and moving with it, the
motion of a freely moving test particle relative to the frame will be uniform. Thus,
if (x, y, z) is the position of such a particle at time ¢, its equations of motion can be
written

d’x d?y d*z
di? ~ di? de?

=0 (46.1)

Let ds be the interval between the event of the particle arriving at the point (x, y, z)
at time r and the contiguous event of the particle arrivingat (x + dx,y + dy,z +dz2)
att +dr. Then ds is given by equation (45.5) and, if v is the speed of the particle, it
follows from this equation that

ds = (* =cH)'"? de (46.2)

Since v is constant, it now follows that equations (46.1) can be expressed in the
form
dix d?y d%:
s = L =—— =0 46.3
ds?  ds* ds? (46.3)
Also, from equation (46.2) it may be deduced that
& _
ds?
Equations (46.3)and (46.4) determine the family of world-lines of free particles in
space-time relative to an inertial frame.

(46.4)
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Now suppose that any other reference frame and procedure for measuring time
is adopted in this region of space, e.g. a frame which is in uniform rotation with
respect to an inertial frame might be employed. Let (x', x?, x*, x*) be the
coordinates of an event in this frame. The interval between two contiguous events
will then be given by equation (45.8). If an observer using this frame releases a test
particle and observes its motion relative to the frame, he will note that it is not
uniform or even rectilinear and will be able to account for this fact by assuming
the presence of a gravitational field. He will find that the particle’'s equations of
motion are a2y . dvdet . s

FrCRR LY R (46.5)
This must be the case for, as shown in section 43, this is a tensor equation defining
a geodesic and valid in every frame if it is valid in one. But, in the xyzt-frame, the
gy; are all constant and the three index symbols vanish. Hence, in this frame, the
equations (46.5) reduce to the equations (46.3) and (46.4) and these are known to
be true for the particle’s motion. We have shown, therefore, that the effect of a
gravitational field of the reducible variety upon the motion of a test particle can be
allowed for when the form taken by the metric tensor g,; of the space-time
manifold is known relative to the frame being employed. This means that the g;;
determine, and are determined by, the gravitational field.

The ideas of the previous paragraph will now be extended to regions of space
where irreducible gravitational fields are present. It has been pointed out that, for
any sufficiently small region of such space and interval of time, an inertial frame
can be found and consequently the paths of freely moving particles will be
governed in such a small region by equations (46.5). 1t will now be assumed that
these are the equations of motion of free particles without any restriction, i.e. that
the world-line of a free particle is a geodesic for the space-time manifold or that
the world-line of a free particle has constant direction. This appears to be the
natural generalization of the Galilean law of inertia whereby, even in an
irreducible gravitational field, a particle’s trajectory through space-time is the
straightest possible after consideration has been given to the intrinsic curvature of
the continuum. It will then follow that the motions of particles falling freely in
any gravitational field can be determined relative to any frame when the
components g,; of the metric tensor for this frame are known. Thus the g,; will
always specify the gravitational field observed to be present in a frame and the
only distinction between irreducible and reducible fields will be that, for the latter
it will be possible to find a coordinate frame in space-time for which the metric
tensor has all its components zero except

gii=912=g3=1 gaa= —C’ (46.6)

whereas for the former this will not be possible.

It will be proved in section 50 that the assumption we are making can be derived
from Einstein’s law of gravitation and hence does not constitute an additional
basic hypothesis of the theory.



135

Since the Christoffel symbols vanish in a frame which is geodesic at some point
of space-time, in such a frame equations (46.5) reduce to d?x‘/ds® = 0 over a
small neighbourhood of the point. If, in addition, the frame is chosen to be quasi-
Euclidean with metric (45.5), equations (46.1) will be valid over the neighbour-
hood and a freely falling body will have very nearly uniform motion. Sucha frame
can therefore be identified with a local freely falling frame.

47. Einstein’s law of gravitation

According to Newtonian ideas, the gravitational field which exists in any region of
space is determined by the distribution of matter. This suggests that the metric
tensor of the space-time manifold, which has been shown to be closely related to
the observed gravitational field, should be calculable when the matter distribution
throughout space-time is known. We first look, therefore, for a tensor quantity
describing this matter distribution with respect to any frame in space—time and
then attempt to relate this to the metric tensor. The energy-momentum tensor T;;,
defined in section 21 with respect to an inertial frame, immediately suggests itself.
Both matter and electromagnetic energy contribute to the components of this
tensor but since, according to the special theory, mass and energy are basically
identical, it is to be expected that all forms of energy, including the clec-
tromagnetic variety, will contribute to the gravitational field.

Since the energy- momentum tensor has been defined in inertial frames only,
this definition must now be extended to apply to a general coordinate frame in
space-time. This can be carried out thus: In the neighbourhood of a point P of
space-time, a frame with coordinates y' can be defined which is geodesic at P and
whose metric reduces to the Euclidean form (39.13) at P. As explained in the last
section, this frame will correspond to a local freely falling quasi-inertial frame in
which the j* will behave like Minkowski coordinates; we shall assume that the
equations of the special theory are valid in this frame at P. The transformation
equations relating the coordinates y’ of an event to its coordinates x* with respect
to any other coordinate frame can now be found. Then, if T;"’ are the components
of the energy-momentum tensor in the y-frame at the point P, its components in
the x-frame at this point can be determined from the appropriate tensor
wransformation equations. Thus, the covariant energy-momentum tensor will
have components T;; in the x-frame given by

&y ¢y 0
T, = c"x‘a_)ch" 47.1)
Since covariant and contravariant tensors are indistinguishable with respect to
rectangular Cartesian axes, T\’ can also be taken to be the components of a
contravariant tensor in the y-frame and the components of this tensor in the x-
frame will then be given by the equation

i J
i @12

i




136

Similarly, the components of the mixed energy-momentum tensor are given by

éxt Gy*

T T, (47.3)

T8y éx!

These transformations can be carried out at every point of space-time, thus

generating for the x-frame an energy-momentum tensor field throughout the

continuum. It is left as an exercise for the reader to show that the last three

equations are consistent, i.e. raising the indices of T,, as given by equation (47.1)

leads to T as given by equation (47.2) (see Exercise 1 at the end of this chapter).
Consider the tensor equation

T9=0 (47.4)
Expressed in terms of the coordinates y'at any point of space-time, this simplifies

to
T®, =0 (47.5)

LY

which is equation (21.20). Being valid in one frame, therefore, equation (47.4) is
true for all frames. Thus, the divergence of the energy-momentum tensor
vanishes. If, therefore, this tensor is to be related to the metric tensor g;;, the
relationship should be of such a form that it implies equation (47.4). Now

g1=0 (47.6)
by equation (39.23) and hence, a fortiori,

g,=0 (47.7)
The law TV = 19" 47.8)

where 4 is a universal constant, would accordingly be satisfactory in this respect.
However, over a region in which matter and energy were absent so that TV = 0,
this would imply that

gy =0 47.9)

which is clearly incorrect. Further, according to Newtonian theory, if y is the
density of matter, the gravitational field can be derived from a potential function
U satisfying the equation

V2U = 47Gu (47.10)

where G is the gravitational constant. The new law of gravitation which is being
sought must include equation (47.10) as an approximation. But, as appears from
equation (21.14),T,, involves u and it seems reasonable, therefore, to expect that
the other member of the equation expressing the new law of gravitation will
provide terms which can receive an approximate interpretation as V>U. This
implies that second-order derivatives of the metric tensor components will
probably be present. We therefore have a requirement for a second rank
contravariant symmetric tensor involving second-order derivatives of the g;;and
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of vanishing divergence to which T¥ can be assumed proportional. Einstein's
tensor (42.20) possesses these characteristics and consequently we shall put

RY—1gYR = —kTY 47.11)

where k is a constant of proportionality which must be related to G and which we
shall later prove to be positive. Equation (47.11) expresses Einstein's law of
gratitation; by lowering the indices successively, it may be expressed in the two
alternative forms

Rj—36;R = —«T; (47.12)
R, —1g,R = —kT}; 47.13)

If equation (47.12) is contracted, it is found that
R=«T (47.14)

where T=T/. It now follows that Einstein’s law of gravitation can also be
expressed in the form

R;= K(%gle—Tij) (47.15)

with two other forms obtained by raising subscripts.
Since the divergence of g"/ vanishes, a possible alternative to the law (47.11) is

RY—3g9R -Ag' = —xTY (47.16)
where A is a constant. The law (47.11) gives results which agree with observation
over regions of space of galactic dimensions, so that it is certain that, even if A is

not zero, it is exceedingly small. However, the extra term has entered into some
cosmological investigations (see Chapter 7).

48. Acceleration of a particle in a weak gravitational field

In a gravitational field, such as the one due to the earth, the geometry of space is
not Euclidean and no truly inertial frame exists. In spite of this, we experience no
practical difficulty in establishing rectangular Cartesian axes Oxyz at the earth’s
surface relative to which for all practical purposes the geometry is Euclidean and
the behaviour of electromagnetic systems is indistinguishable from their
behaviour in an inertial frame. It must be concluded, therefore, that such a
gravitational field is comparatively weak and hence that, with respect to such axes
and their associated clocks, the space-time metric will not differ greatly from that
given by equation (45.5). Putting

x!=x, x*=y x*=2z x*=ic, (48.1)
in terms of the x’ the metric will be given by

ds? = dx‘'dx’ (48.2)



138

approximately. With respect to the x'-frame, it will accordingly be assumed that

where the §,; are Kronecker deltas and the h;; are small by comparison.

Consider a particle moving in a weak gravitational field whose metric tensor is
given by equation (48.3). The contravariant metric tensor will be given by an
equation of the form

gl = 8 1 kY (48.9)
where the k¥ are of the same order of smallness as the h;;. Then, since
L{0h, éhy oh;
1] = --| — 4 - - 48.5
Lk ] 2(8x‘ ax!  oxt (48.5)

it follows that, to a first approximation,
ik ke[ o 1
¥ jJ=‘S [Uy"]=§

The equations of motion of the particle can now be written down as at (46.5).
By equation (46.2),
dx' dx'd: 2 2v-1/2 0 s
—_— =~ = - , ic 48.7
4 - drds (v* =) (v, ic) (48.7)

Ohy Ok, 6h,-!-> 486)

oxtoaxd oxt

where v is the particle’s velocity in the quasi-inertial frame. Hence. if the particle is
stationary in the frame at the instant under consideration,

d i
X (48.8)
ds
and the equations of motion (46.5) reduce to the form
d3x
ds?
correct to the first order in the h;;. Substituting from equation (48.6), this is seen to
be equivalent to

+{4ds} =0 (48.9)

dx' 10hy,  Ch,,
ds? ~ 2 ax'  ox?

(48.10)

Differentiating equation (48.7) with respect to s and making use of equation
(46.2), we obtain

2,4 .
ZTJ;=(vz—cz)"(%},0)—v‘;—t(uz—cz)'z(v,ic) (48.11)

and, when v = 0, this reduces to

d2xf 1 (dv
- © 8.12
ds? c? (dt ’0) “8.12)
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From equations (48.10) and (48.12), we deduce that the components of the
acceleration of the stationary particle in the directions of the rectangular axes are

_(.2(1”'& _C"“) (48.13)

2 oxt oxt

fori =1, 2,3, Reverting to the original coordinates (x, , z, t), these components
are written
1¢h i Ch
P Y L LTI TS (48.14)
20x ¢ G

Hence, if the field does not vary with the time, the acceleration vector is
—grad (3¢ hy,) (48.15)

But, if U is the Newtonian potential function for the field, this acceleration will be
—gradU. It follows that, for a weak field, a Newtonian scalar potential U exists
and is related to the space-time metric by the equation

U = )l'('z h44 (48.16)
Alternatively, we can write
2U
Jaa =1+— (48.17)

49. Newton’s law of gravitation

In this section it will be shown that Newton's law of gravitation may be deduced
from Einstein’s law in the normal case when the gravitational field’s intensity is
weak and the matter distribution is static.

First consider the form taken by the Riemann-Christoffel tensor in the
space-time of a weak field. In the x-frame, the metric tensor is given by equation
(48.3) and the Christoffel three-index symbols by equation (48.6). If products of
the h;; are to be neglected, equation (36.21) shows that

e (49.1)

; ¢
Biy ===} — =11
J ka{l} et

approximately. Hence the Ricci tensor is given by

o A
C ¢
R- = — {1 - 1
Jk kaljl} Cx.{;k}
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In particular, putting j = k = 4, we find that

1{ o, &% 02h,
Ry, = { i s _ o ° "4} 49.3)

2| éx®ox® T oxioxt éxiext
If the matter distribution is static in the quasi-inertial frame being employed, the

h;; will be independent of ¢ and equation (49.3) reduces to
R44 = %V2h44 (49.4)

where V2 = ¢2/dx? + 62/0y? + 62/0z2. If U is the Newtonian potential for the
field, equation (48.16) now shows that

Ry = ;Iz vy (49.5)

Assuming that no electromagnetic field is present and that the contribution to

the energy-momentum tensor of any stress forces within the matter distribution

responsible for the gravitational field is negligible, T;, will be determined by

equation (21.16). But, since the distribution is static, its 4-velocity of flow V at

every point is (0, ic)and hence all components of T;;, with the exception of T, 4, are
zero. In this case,

Taa = —*go (49.6)
where g, for zero velocity of matter, is the ordinary mass density. Also
T=T'=T;=Ty = —* oo 49.7)

The 44-component of Einstein’s gravitation law in the form of equation (47.15)
can now be expressed approximately

1
pr2 VU = jxc?pgo

or V2U = $kc* g (49.8)

This is the Poisson equation (47.10) of classical Newtonian theory, provided we
accept
_ 87zG_

K 4

(49.9)

¢

This specifies k in terms of the gravitational constant.

50. Freely falling dust cloud

Consider the case of a cloud of particles falling freely in the field of the cloud itself,
there being no other forces present in the system. The energy-momentum tensor
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for such an incoherent cloud has been calculated relative to an inertial frame as
equation (21.16). This equation will be taken to provide a definition of T;; in the
freely falling frame at any point of the cloud.

Inanarbitrary x-frame, let x‘ = x'(7) be parametric equations of the world-line
of some particle of the cloud, t being the proper time measured by a standard
clock moving with the particle. Then the 4-velocity of flow of the particle at time ©
is defined by the equation _ _

dxt  dx

_dx_ dX 50.1
dr s (50-1)

where sis the interval parameter measured along the world-linc. The square of the
magnitude of the 4-velocity of flow is

Vi=g,Vivi= _ngu%%’;= —-c? (50.2)

This equation can also be written
Vivi= —¢? (50.3)

Now consider the tensor equation
U= pooVivi (50.4)

where pgo is the mass density as measured in a freely falling frame moving with
the cloud; py, is clearly a 4-invariant. In any freely falling frame, this equation
reduces to equation (21.16)and is accordingly valid; this establishes its validity in
all frames.

Equation (47.4) is known to follow from Einstein’s equation of gravitation and,
in this case, takes the form

(oo VI V3) = (oo V), V' + oo VIV, = 0 (50.5)
Multiplication by V; now gives
(oo V), VVit Hoo VI ViVi=0 (50.6)
Differentiating equation (50.3) with respect to xJ, we find
v, Vis v, V_‘l =0 (50.7)

Raising and lowering the index i in the two factors of the first term, this equation
is seen to be equivalent to

Vivi=0 (50.8)
Equation (50.6) accordingly reduces to
(oo V), =0 (50.9)

Equation (50.5) now gives
Vfl Vi=0 (50.10)
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or
“.Vi . )
<'i._7+r;jyk>w=0 (50.11)
¢x
Hence
AVidx’ S dx*dx’
o dr g e =0 (0.2
or
d3x’ ~dx*dx’
il i T = 50.13
d+? Y dt drt ( )
This can also be written
dx! dx*dx?
il [ 50.14
ds? iy ds ds ( )

a result which proves that the world-lines of the particles of the cloud are
geodesics.

That the world-lines of frecly falling particles in general circumstances are
geodesics can be derived from equation (47.4), proving that Einstein's law
includes its own law of motion for a particle in a gravitational field.

51. Metrics with spherical symmetry

Whena change is made in the space--time coordinate frame from coordinates x ' to
coordinates x', the metric tensor g;; will change to g,; by the law of transformation
of a covariant tensor. In general, the g;; will be functions of the x*‘ and the g, will
be functions of the X', but it will not usually be the case that the g;; are the same
functions of the ‘barred’ coordinates that the g;; are of the ‘unbarred’ coordinates,
ie, the functions ¢,(x*) are not form invariant under general coordinate
transformations. However, in some special cases, it is possible for these functions
to be form invariant under a whole group of transformations, and we shall study
such a case in this section.

In a gravitauional field, the geometry can only be quasi-Euclidean and
consequently rectangular Cartesian axes do not exist. Nevertheless, no difficulty
is experienced in practice in defining such axes approximately and we shall
suppose, therefore, that the coordinates x, y, z, t of an event in the gravitational
field about to be considered are interpreted physically as rectangular Cartesian
coordinates and time. We shall now search for a metric which, when expressed in
those coordinates, is form invariant with respect to the group of coordinate
transformations which will be interpreted physically as rotations of the
rectangular axes Ox)z (t is to remain unalitered). To be precise, it will be supposed
that spatial coordinates (x, y, z) can be defined such that the metric g,;(x, y, z, 1) is
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form invariant under the group of orthogonal transformations X = Ax, where
x=1(x, ), 2), X=(X, ¥, Z)T and AA7 = L. Such a metric will be said to be
spherically symmetric about O.

Invariants for this group of coordinate transformations, which are of degree no
higher than the second in the coordinate differentials dx, dy, dz, are

x2+y?+22, xdx+ydy+zdz, dx*+dy?+dz? (51.1)

Introducing spherical polar coordinates (r, 8, ¢), which will be defined by the
equations (30.3), these invariants may be written

r’, rdr, dr?+r*d6?+r?sin?0d¢>. (51.2)

It follows that r, dr, d8*+sin%0d¢? (51.3)

are invariants. The most general metric with spherical symmetry can now be built

up in the form
ds® = A(r,t)dr? + B(r,t) (d6% +sin®0d¢?)
+C(r,t)drdt + D(r,1)ds? (51.4)

We now replace r by a new coordinate r' according to the transformation
equation

r'? = B(r,1) (51.5)
Then ds? = E(,t)dr'? +r'2 (d6° + sin?0d¢?)
+F(r,t)dr' dt + G, 1)de? (51.6)

In a truly inertial frame, spherical polar coordinates can be defined exactly and the
metric will, by equation (45.5), be expressed in the form

ds? = dr? +r?(d6? +sin’0d¢?) — c? di? (51.7)

Comparing equations (51.6)and (51.7), it is clear that in a region for which (51.6)
is the metric, r’ will behave approximately like a true spherical polar coordinate r.
We shall accordingly drop the primes and write

ds? = E(r,t)dr? +r2(d6? +sin?8d¢?)
+ F(r,t)drdt + G(r,1)dt? (51.8)

If our frame is quasi-inertial, equation (51.7) must be an approximation for
equation (51.8) and the following equations must therefore be true
approximately:

Er,)=1, F(r.1)=0, G(r,1)= —c? (51.9)

Consider now the special case when the gravitational field is static in the quasi-
inertial frame for which (r, 0, ¢)are approximate spherical polar coordinates and ¢
is the time. The functions E, F, G will then be independent of ¢. Also, space-time
will be symmetric as regards past and future senses of the time variable and this
implies that ds? is unaltered when dt is replaced by —dt. Thus F = Oand we have

ds? = adr? +r?(d6? +sin®0d¢?) — bel di? (51.10)
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where ¢, b are functions of r both approximating unity in a weak field.
At any fixed instant ¢, the metric of space in the presence of this gravitational
field can be obtained from the last equation by putting dr = 0. Thus, it is

ds? = adr? 4+ r?(d0? +sin?6d¢?) (5L.11)

Consider the circle’ r = r,, in the ‘plane’ 6 = §r. The length of the element of the
circle with end points (ry, @), (ry, ¢ +d¢), has length ds = ro d¢. Thus the total
length of the circle is 2nr,. However, r, will not be the length of a radius ¢ = ¢, of
this circle for, if an element of such a radius has end points (r, @), (r +dr, ¢,), the
length of the element is ds = a'>dr and the total length of the radius is
accordingly

j"a“zdr (51.12)

o

Clearly, the Euclidean formula for the circumference of a circle of given radius
does not apply.
For the metric (51.10), taking

x'=r, x2=0, x}’=¢, x*=1 (51.13)
we have
Gii =4, gap =r> g3 =r2sin?l, g, = —bc? (51.14)
all other g,; being zero. Thus
g = —abc?r®sin?0 (51.15)
and hence

all other g¥ being zero. The three-index symbols can now be calculated and,
putting a = €% b = ¢, those which do not vanish are listed below:

{111}25“' ]

= —re" F (51.17)
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primes denoting differentiations with respect to r.
The non-zero components of the Ricci tensor are now calculated to be:

T

1
R = 4B +4p7 —da'f — o

Ry, =e (3rf —4ra' + 1)1
Rs; = R,,sin?0 (51.18)

PR I
R44—C29”_1( %ﬂ’ %324’%‘13 ;ﬂ)
v,

52. Schwarzschild’s solution

The static, spherically symmetrical metric (51.10) will determine the gravitational
field of a static distribution of matter also having spherical symmetry, provided it
satisfies Einstein’s equations (47.15). We shall consider the special case when the
whole of space is devoid of matter, apart from a spherical body with its centre at
the centre of symmetry O. Then T;; = 0, T = 0 at all points outside the body and
Einstein’s equations reduce in this region to

R;=0 (52.1)
By equations (51.18), these are satisfied by the metric (51.10), provided

2

B +3B? —ja'f —=a' =0 (52.2)
r

B —bra 41 =¢" (52.3)
2

B'+3B7 —da' B+ p =0 (52.4)
r

Subtracting equation (52.2) from (52.4), it follows that
o + B = constant (52.5)

But, as r — oc, we shall assume that our metric approaches that given by equation
(51.7), valid in the absence of a gravitational field. Thus, at infinity, « = 8 = 0and
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hence
2+p=0 (52.6)
Eliminating B from equation (52.3). it will be found that
ra’ =1-¢* (52.7)
The variables are separable and this equation is easily integrated to yield
a=¢=(1=-2mir)"! (52.8)
where m is a constant of integration. Then
b=¢f=1-2m/r (52.9)

and it may be verified that each of the equations (52.2)-(52.4) is satisfied by these
expressions for z and f.

We have accordingly arrived at a metric

dr?

2 _
S

2
+r?(d§? +sin’0d¢2)—c2<l ——m)dt2 (52.10)
r

which is spherically symmetrical and can represent the gravitational field outside
a spherical body with its centre at the pole of spherical polar coordinates (r, 6, ¢).
This was first obtained by Schwarzschild. It will be proved in the next section that
the constant mis proportional to the mass of the body. This may also be deduced
from equation (48.17), for the potential U at a distance r from a spherical body of
mass M is given by

M
U= —-—— (52.11)
r
2GM
and hence Gaa =1 —— (52.12)
’r
Now g,, is the coefficient of (dx*)* = — ¢*dt? in the metric and hence
p=1-26M (52.13)
c*r

Comparing equations (52.9) and (52.13), it will be seen that

m= E}! (52.14)

It is clear from equation (52.10) that the metric is not valid for r =2m
= 2GM/c?. This is the Schwarzschild radius. In SI units, ¢ = 3 x 10® and for the
earth GM = 3.991 x 10'*, so that the radius for this body is about 9 mm:; since the
metric is only applicable in the region outside the earth, no difficulty is
encountered in this case. However, for an exceptionally dense body, the radius
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may extend into the surrounding space and, for values of r less than the radius, the
metric needs special consideration (see section 57).

53. Planetary orbits

The attractions of the planets upon the sun cause this body to have a small
acceleration relative to an inertial frame. If, therefore, a coordinate frame moving
with the sun is constructed, relative to this frame there will be a gravitational field
corresponding to this acceleration in addition to that of the sun and planets.
However, for the purpose of the following analysis. this field and the fields of the
planets will be neglected. Thus, relative to spherical polar coordinates having
their pole at the centre of the sun, the gravitational field will be assumed
determined by the Schwarzschild metric (52.10). The planets will be treated as
particles possessing ncgligible gravitational fields, whose world-lines are
geodesics in space-time. We proceed to calculate these geodesics.

Since the intervals between adjacent points on the world-line of a particle arc
necessarily timelike, s will be purely imaginary along such a curve. When
calculating geodesics it is usually more convenient, therefore, to replace s by rand
to work from the metric expression for dt?. Thus, in this section, the
Schwarzschild metric will be taken in the form

2
de? = ‘i(¥1 d; »/—+r2(d02+sin20d¢2)>+(l—2m/r)d12 (53.1)
—Zm/r

(.2

and equations (43.19) for the geodesics become

d/ r dr Lom dr\? do\? 20 do¢ 2+mc2ﬂ2_0
de\r =2mdr /" (r —2m)*\dz "\ar) "M ar P2 \dt)

(53.2)
d/,do\ . d¢?
(22 =) = 33
dr(r dr> r snnBcosO(dt> 0 (53.3)
d/,  ,. d¢
— )= 4
dr(r sin 6dr> 0 (53.4)
i(’“z"_’ ﬂ): 0 (53.5)
dr r dr

The first of this set of equations will be replaced by the first integral (43.6), viz.

r dr\? L f/deN ., (de\2] ¢? de\? >
r_—27n<a_r) +r {(E) + sin o(d_r> —T(r—2m) ) = ¢

(53.6)
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We now choose the spherical polar coordinates so that the planet is moving
initially in the plane 8 = 7. Then d6/dt = O initially and hence, by equation
(53.3),d?0/dt? = Oat thisinstant. By repcated differentiation of this equation and
substitution of initial values, it is found that all derivatives of 8 vanish initially.
Hence, by Maclaurin’s theorem, 0 = §n for all values of 7, proving that the planet
continues to move in the ‘plane’ 0 = in indefinitely.

Integrating equations (53.4) and (53.5), and putting 0 = §m, we get

dé¢ _ h

il (53.7)
dt kr
dt r—2m (53.8)

where h and k are constants of integration.
Substituting for d¢/dt, dt/dt from the last two equations and putting 6 = inin
equation (53.6), it follows that

2

dr\? 2mc?
(—r> +h—3(r—2m)=c2(k2—l)+ me (53.9)
dr r r

Then, eliminating dt between this equation and equation (53.7), we obtain the
equation for the orbit, viz.

hdr\? R 2mct  2mh?
(?&E) +72-=c2(k2—1)+—r—+ > (53.10)
With u = 1/r, this reduces to the form
du \? ¢? 2mc?
<@> +u2=p(k2—l)+—h§ u+2mu’ (53.11)

Differentiating through with respect to ¢, this equation takes a form which is
familiar in the theory of orbits, viz.
d?u mc?
E¢‘2— +u= h—2+3mu2 (53.12)
The corresponding equation governing the orbit according to classical
mechanics is
d?u GM
d¢? tU= o

where M is the mass of the attracting body and h is the constant velocity moment
of the planet about the centre of attraction, i.e.
2 4¢

Py =h (53.14)

(53.13)
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If we identify the time variable ¢ of classical theory with the proper time t in the
relativistic theory, equations (53.7)and (53.14) become identical and our choice of
h for the constant in equation (53.7) is justified. Also, provided we take

GM

m=—s (53.15)

c
(confirming equation (52.14)), equation (53.12) corresponds to the classical
equation (53.13), although there is now an additional term 3mu?. The ratio of the
additional term 3mu?® to the ‘inverse square law’ term mc?/h? is

2,2
Eh—- = Zdwz (53.16)
c?
by equation (53.14). r¢ is the transverse component of the planet’s velocity and,
for the planets of the solar system, takes its largest value in the case of Mercury,
viz. 4.8 x 10* m/s. Since ¢ = 3 x 10® m/s, the ratio of the terms is in this case 77
x 10 '8, which is very small. However, the cffect of the additional term proves to
be cumulative, as will now be proved, and for this reason an observational check
can be made.
The solution of the classical equation (53.13), viz.
u
u= hz{l+ecos(¢ @)} (53.17)
where u = GM = mc?, ¢ is the eccentricity of the orbit and @ is the longitude of
perihelion, will be an approximate, though highly accurate, solution of equation
(53.12). Hence the error involved in taking

3m
3mu? = h‘ {1 +ecos(¢p —)}? (53.18)
will be absolutely inappreciable, since this term is very small in any case. Equation
(53.12) can accordingly be replaced by
d?u u

2
¢2+u h2+3m {l+ecos(¢p —d)}? (53.19)

h4
This equation will possess a solution of the form (53.17) with additional
‘particular integral’ terms corresponding to the new term (53.18). These prove to
be as follows:

3mp?

o
The constant term cannot be observationally separated from that already
occurring in equation (53.17). The term in cos 2 (¢ — @) has amplitude too small

for detection. However, the remaining term has an amplitude which increases
with ¢ and its effect is accordingly cumulative. Adding this to the solution (53.17),

{1+4e® —Lte?cos2(¢p —@)+edsin(¢p —a)} (53.20)
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we obtain
u= {2{1 +ecos(¢p—@)+ 3%:—??-4) sin (¢ —d))}
=£§m+emq¢—m—5m} (53.21)

where & = 3mu¢g/h* and we have neglected terms O(6w?).
Equation (53.21) indicates that the longitude of perihelion should steadily
increase according to the equation

_ 3mp 3 3u
5w——hz—-¢—CT';E¢—CZI¢ (5322)
where | = h%/u is the semi-latus rectum of the orbit. Taking u = 133 x 10%° SI
units for the sun, ¢ = 3 x 10® and | = 5- 79 % 10'° for Mercury, it will be found
that the predicted angular advance of perihelion per century for this planet’s orbit
is 43”. This is in agreement with the observed value. The advances predicted for
the other planets are too small to be observable at the present time.

54. Gravitational deflection of a light ray

In section 7 it was shown that the proper time interval between the transmission
of a light signal and its reception at a distant point is zero. It was there assumed
that the signal was being propagated in an inertial frame and hence that no
gravitational field was present. This result can be expressed by saying that

ds =0 (54.1)

for any two neighbouring points on the world-line of a light signal. Now, null
geodesics in the space—time having metric (45.5) are defined by equation (54.1)
and the equations

dix d%y d%z d%

di? da?di? di?
for the three index symbols are all zero. Equations (54.2) imply that along a null
geodesic x, y, z are linearly dependent upon . But this is certainly true for the
coordinates of a light signal being propagated in an inertial frame. We conclude
that the world-lines of light signals are null geodesics in space-time, in this case.

Since an inertial frame can always be found for a sufficiently small space—time
region even in the presence of a gravitational field, it follows that the world-line of
a light signal in any such region is a null geodesic. We shall accept the obvious
generalization of this result, viz. that the world-lines of light signals over an
unlimited region of space—time are null geodesics.

We shall now employ this principle to calculate the path of a light ray in the
gravitational field of a spherical body. Taking the space-time metric in the
Schwarzschild form (equation (52.10)), the equations governing a null geodesic are

(54.2)
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identical with the equations (53.2)-(53.5) after t has been replaced by 4. The first
integral (43.13) takes the form

ro(dr\* L f[de\  , (do ] ? dr\*
;_—zm'(&> tr {(a’) sin "(a*z) = r=2m) d—Z> =0
(54.3)

Without loss of generality, we shall again put 6 = i, so that a ray in the
equatorial plane is being considered and then proceed exactly as in the last section
to derive the equation

L (54.4)
— +u=3mu .
d¢?

where u = 1/r. This equation determines the family of light rays in the equatorial
plane.

As a first approximation to the solution of equation (54.4), we shall neglect the
right-hand member. Then

u= -:icos(da +a) (54.5)

where R, xare constants of integration. This is the polar equation of a straight line
whose perpendicular distance from the centre of attraction is R. As might have
been expected, therefore, provided the gravitational field is not too intense, the
light rays will be straight lines. This deduction is, of course, confirmed by
observation. Thus, as the moon’s motion causes its disc to approach the position
of a star on the celestial sphere and ultimately to occult this body, no appreciable
deflection of the position of the star on the celestial sphere can be detected.

Again, without loss of generality, we shall put @ = 0 so that the light ray,
as given by equation (54.5), is parallel to the y-axis (¢ = + in). Then, putting
u = cos ¢/R in the right-hand member of equation (54.4), this becomes

d? 3
d_d:; tu= R_'f cos? ¢ (54.6)

The additional ‘particular integral’ term is now found to be

m
F (2 —cos? ¢) (54.7)
and hence the second approximation to the polar equation of the light ray is
1
u = cos +%’2 (2 —cos? ¢) (54.8)

At each end of the ray u = 0 and hence

2
gcoszda—cosd)—Fm =0 (54.9)
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Assuming m/R to be small, this quadratic equation has a small root and a large
root. The small root is approximately

2
cosp = —— (54.10)
R
and hence o= x + 2—m (54.11)
“~\2 R '

at the two ends of the ray. The angular deflection in the ray caused by its passage
through the gravitational field is accordingly
4
il (54.12)
R
approximately.
For a light ray grazing the sun’s surface,

R = sun’s radius = 695 x 108 mand m=15x 10> m

Thus the predicted deflection is 862 x 10~° radians, or about 1-77". This
prediction has been checked by observing a star close to the sun’s disc during a
total eclipse. The experimental findings are in accord with the theoretical result.

55. Gravitational displacement of spectral lines

A standard clock will be taken to be any device which experiences a periodic
motion, each cycle of which is indistinguishable from every other cycle. The
passage of time between two events which occur in the neighbourhood of the
clock is then measured by the number of cycles and fraction of a cycle which the
device completes between these two instants. The clocks employed to determine
the time coordinate £* of an event in section 45 were not, necessarily, standard
clocks. Such coordinate clocks can have arbitrary variable rates, the only
requirement being that, if 4, Bare two events in the vicinity of a coordinate clock
and B occurs after A, then the coordinate-time for B must be greater than the
coordinate-time for A.

The successive oscillations of atoms governing the motion of a modern atomic
clock are indistinguishable from one another and it has been assumed that such a
clock is being used whenever standard time is measured. The constancy of the rate
of this fundamental physical process is not susceptible to experimental check,
since it is the standard against which all other rates (e.g. the rate of rotation of the
earth) are measured. By international agreement, one second is the time which
elapses when a specific type of atomic system performs a specific number of
oscillations and this definition applies in all regions of the cosmos and at all
epochs; this fact should be borne in mind when phrases such as ‘the first second
after the big bang’ occur in cosmological studies.
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As explained in section 45, if x', x* + dx' are the space- time coordinates of two
adjacent events, then dt = ds/ic is the time separating the events as measured by a
standard clock which is present at both events. It is assumed that the interval
between the events is timelike (i.e. dt real) and that the clock is in a state of free fall
during its passage from one event to the other; alternatively, if the clock is not
freely falling, it is assumed that any effect on its rate of the gravitational field it
experiences is corrected for.

Let x' (i = 1,2, 3,4) be the coordinates of an event with respect to some
space-time reference frame, x', x?, x> being interpreted physically as spatial
coordinates relative to a static frame and x*/ic as time. Ifa standard clock is at rest
relative to this frame, for adjacent points on its world-line dx' = dx? = dx* =0
and hence

di? = —ds?/c? = —g,4 (dx*)?/c? = g,, di? (55.1)

where we have put x* = ict. The time t measured by the standard clock is

therefore related to the time t shown on the coordinate clock at (x', x2, x*) by the
equation

T = fwg“)dz (55.2)

In the special case of the coordinate frame employed in section 48 which was
stationary in a relatively weak static gravitational field, it was proved that g4 is
given in terms of the Newtonian scalar potential U for the field by the
approximate equation (48.17). Thus

2 1.2
dt = (1 +C—sz> d (55.3)

relates time intervals measured by a stationary standard clock and a coordinate
clock at a point in a gravitational field where the potential is U. Now, when it is
emitting its characteristic spectrum, an atom is operating as a standard clock.
Consider, therefore, an atom for which the period (from standard tables) of one
complete cycle of radiation corresponding to a certain spectral line is t. If such an
atom is stationary in the frame at a point P where the potential is U, the time for
one complete cycle of the radiation as measured by a standard clock at the point
will be 7 and the coordinate-time for the cycle will be 1, where

1= J(1+2U,/c)t (55.4)

Suppose this radiation is received at another fixed point Q where the potential is
U,. Let T be the difference between the coordinate-time of emission of light from
P and the coordinate-time of its reception at Q; since the gravitational field is
being assumed static and P, Q are fixed, T will be a fixed constant. Thus, if
successive crests of the light wave are emitted from P at coordinate-times ¢,
1o +t, these crests will be received at Q at coordinate-times t,+ 7, to +T+1¢. It
follows that the period of the radiation as measured by the coordinate clock at Q
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will also be r. However, a standard clock at Q will measure the period to be ',
where

v = J (1 +2U,/cd)1 (55.5)

Hence, if v is the standard frequency of the spectral line being observed and v’ is
the observed frequency of the line at Q, then

Voo 142U,/c*\!'?
v (1 +2U2/c2> (5>8)

In particular, if U, < U,, the observed light will have its frequency shifted
towards the red.

In the case of an atom on the surface of the sun observed from a point on the
earth’s surface, it will be found that, in SI units,

U, = —1914x10', U, = —9.512x 10
and thus v = 09999979y (55.7)

This effect is so small that it is very difficult to measure. However, in the case of the
companion of Sirius, the predicted effect is 30 times larger and has been
confirmed by observation.

56. Maxwell’s eqnations in a gravitational field

Over any sufficiently small region of space and restricted interval of time it is
possible to define a rectangular Cartesian inertial frame, i.e. the frame in ‘free fall’
in the gravitational field. If the electric and magnetic components of the
electromagnetic field are measured in this frame, the field tensor F;; defined by
equation (26.5) can be found. Employing the appropriate transformation
equations, the components of this tensor relative to general coordinates x' in the
gravitational field can be computed. No distinction is made between covariant
and contravariant properties relative to the original inertial frame so that, when
transforming, F,; may be treated as a covariant, contravariant or mixed tensor. If
it is treated as a covariant tensor, the covariant components F;in the general x'-
frame will be generated. If it is treated as a contravariant or as a mixed tensor, the
contravariant or mixed components FY, Fé respectively will be generated. In this
way, the field tensor is defined at every point of space-time. Similarly, a current-
density vector with covariant components J; and contravariant components J' is
defined relative to the x'-frame.
Consider the equations

Fii = po Ji (56.1)

F'J-k + f‘}k.t + Flu./ = 0 (562)
These are tensor equations and hence are valid in every space—time frame if they

are valid in any one. But, relative to the inertial coordinate frame (x, y, z, ict)
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which can be found for any sufficiently small space- time region, these equations
reduce to equations (26.11) and hence are valid over such a region. Regarding the
whole of space-time as an aggregate of such small elements, it follows that
equations (56.1), (56.2) are universally true.

Since F" is skew-symmetric,

i EFU rj I] ir
EF" !
_ Fu'
w—g)f' V(=9
1
—g)F" 56.3)
\/(_g)cx,{\/( gF"} (

by equation (42.5) (g has been replaced by — g, since g is always negative for a real
gravitational field). Equation (56.1) is accordingly equivalent to

1
\/(—g)(X’

Also, in view of the skew-symmetry of the field tensor, it follows that equation
(56.2) is equivalent to

{ J(—g)Fi} = poJ’ (56.4)

OF,, &F, OF,
Py P Pa_ g (56.5)

0x ox ¢éx!

The energy- momentum tensor for the field is found from equation (29.5) to be
given by

Mo S = F*Fy —48,FMFy (56.6)
It now follows from Maxwell’s equations that

where D; is the 4-force density acting upon the charge distribution.

57. Black holes

The Schwarzschild metric is only valid in the region outside a spherically
symmetric attracting body. Thus, if the radius of this body exceeds 2m, the
circumstance that the component g;, of the metric tensor becomes infinite at
r = 2m creates no difficulty. If, however, the body’s radius is less than 2m, the
sphere r = 2m lies in empty space and the nature of the field in the vicinity of this
sphere needs careful study.

Although the metric is clearly invalid over the sphere r = 2m, it is an acceptable
solution of the Einstein equation in the region 0 < r < 2m. Consider a body
moving radially in this region, not necessarily in a state of free fall. Then 6 and ¢
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will both be constant and the metric equation reduces to
2d1? = o L (dr? = 2o dr?) (57.1)

where x = 2m/r — 1 > 0, along the body’s world-line. Given the equation of
motion r = r(t), this equation determines the proper time r shown on a standard
clock moving with the body. But dr must be real and it follows that either (1)dr/dt
> ¢xor (i) dr/dt < —cx These inequalities show that it is impossible for a body
to be stationary relative to our coordinate frame in this region. This implies that
our picture of the frame as a set of coordinate clocks measuring the time ¢ and
stationary at the points (r, 8, ¢) ceases to be applicable. Evidently, the static
conditions we have been envisaging in the neighbourhood of the attracting body
are not present in this region.

Next, consider a body falling freely along a radius towards the centre of
attraction in the region r > 2m. Taking as initial conditions t =0, r = R,
dr/dt = 0, equations (53.5) and (53.6) lead to the equation of motion

dr\2 2m\ ! 2m\2 /1 1
=Y =2me2[ 1 =22 - 57.2
(&) -me(-%) (-2 C-a) o
R 112 (& r32dr
g | — 7.
Thus ct (Zm 1> j’ IR = (57.3)

and it is clear that this integral diverges to + o as r — 2m. This means that, in the
Schwarzschild frame, the body will need an infinite coordinate time to reach the
sphere r = 2m. If the body is observed optically by an observer stationed at a
considerable distance from the centre of attraction, since allowance must be made
for the coordinate time needed for photons leaving the body to reach his
telescope, the observed motion of the body, as measured by his coordinate clock,
will be further retarded. But his coordinate clock will be almost indistinguishable
from a standard clock and it follows that the apparent time of fall of the body to
the Schwarzschild radius according to an external observer using an atomic clock
will also be infinite.

If, however, instead of eliminating the proper time 7 between equations (53.5)
and (53.6), the coordinate time ¢ is eliminated, the resulting equation is

dr\? (1 1

After integration with t = 0 at r = R, this gives

ct= JR2m)[ J(p-p*)+3cos ' (2p - 1)] (57.5)

where p = r/R and the inverse cosine is taken in the first or second quadrants. t
will be the time recorded by a clock moving with the body and equation (57.5)
shows that this remains finite for values of r through the value 2m to zero.

It is now evident that the reference frame we have been using is unacceptable if
motions across the Schwarzschild sphere are 10 be studied and that, in particular,
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the coordinate time  becomes infinite at r = 2m for some events which can occur
in the experience of certain observers. It appears, therefore, that it is a deficiency in
the reference frame which is responsible for the anomaly in the metric and our
expectation is that the infinity can be removed by transformation to a new frame.
This view of the matter is supported by the fact that g is finite at r = 2m, indicating
that there is no singularity of space-time in this region.

The suggestion arising from our calculations is that ¢ should be replaced by a
new coordinate time u defined by a transformation equation

u=t+f(r) (57.6)

where f(r) becomes negatively infinite at r = 2m in such a way as to cancel the
infinity which we have seen to arise in 1 for certain events taking place on r = 2m.
Substituting

di =du —f'(r)dr (57.7)
in the Schwarzschild metric, this transforms to
ds? = Fdr? +r?(d6? +sin? 0d¢?) + c2 (1 — 2m/r) (2f 'drdu — du?) (57.8)
where

r 2
F= -—(r—2m)"? (57.9)
r-2m r

We can now remove the infinity by choosing f(r) such that
of =r/(r—2m) (57.10)
Thus, we take
f (r) =r+2mlog (r —2m) (57.11)
and the metric then assumes the form
ds® = r?(d6? + sin?0d¢?) + 2cdrdu — c2 (1 - 2m/r)du? (57.12)

This metric must clearly satisfy Einstein’s equation in vacuo. However, the field
in the new frame is no longer static in the sense assumed in section 51; the presence
of a term involving the first power of du shows that the field is not symmetric with
respect to the past and future, i.e. the sense of description of its trajectory by a
freely falling particle cannot be reversed with impunity.

Let us study, once again, a body moving radially, but not necessarily falling
freely. Along its world-line, we have

ds? = 2cdrdu — ¢ (1 = 2m/r) du? (57.13)
Since ds? must be negative for any possible motion,

dr

< kc(1=2myr) (57.14)
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If r < 2m, thisimplies that dr/du is negative and that the body must move towards
O; in particular, it cannot remain stationary. Thus, this is a region of irresistible
collapse towards the centre of attraction for all physical bodies. It will be noted
that the transformation has eliminated the possibility of outwards radial motion
which existed when the Schwarzschild form of the metric was taken; this
possibility can be recovered by changing the sign of u.

Now consider the motion of a body falling freely along a radius from an initial

state of rest dr/du =0 at r = R > 2m. Since g4, = ¢, gag = — 2 (1 =2m/r),
equation (53.5) must be replaced by
d /dr du
= —ca1 =2 —|=0 7.15
dr(dr e(l '"/’)dr> (57.15)
Together with the first integral
dr du du\?
2c—— —c*(l - ) = —¢? .
Cdr 4 c’(l 2m/r)(dr> C (57.16)

this leads to the following quadratic for dr/du:

dr\? 1 1\dr 2m\[1 1
— 4 e = +2m 1= == }J=0 17
(du) + mc(r R)du+ me ( r ><R r> (57.17)

The roots are

dr 1 1 2m\ (1 1

If r > 2m, one root is positive and one is negative. However, r must decrease
initially (otherwise the square root in (57.18) becomes imaginary) and so the
negative root is taken. r then decreases steadily to r = 0, its passage through the
Schwarzschild radius being unremarkable. Once inside the Schwarzschild sphere,
as already proved, the possibility of escape from the attraction no longer exists.

The world-lines of photons moving radially are null geodesics governed by the
equation

2cdrdu — ¢ (1 =2m/r)du? =0 (57.19)
There are two families of such geodesics, viz.
du du 2r
== — = 57.20
dr 0. and ‘ar T r—2m ( )
For the first family, equation (57.7) gives
de r

provided r > 2m. This corresponds to a photon moving towards the centre of
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attraction. For the second family, we find

de r
= = 57.22
Cdr r—2m ( )

in the same region; i.e. a photon moving away from the centre of attraction. A
photon belonging to the first family crosses the Schwarzschild sphere and then
falls into O. Inside this sphere, the photons can be separated into two classes:
(1) those for which u is constant along a world-line- these photons could have
their source outside the sphere; (ii) those for which the second of equations (57.20)
is valid and, hence,

cu = 2r + 4mlog (2m —r) + constant (57.23)

Asr — 2m,u —» — oc and these photons cannot have had an external source. Since
du/dr < 0, these photons also fall into O.

It is now clear that, in the field described by the metric (57.12), no photon or
particle can cross the Schwarzschild sphere in the sense r increasing. On the other
hand, any photon or particle which crosses the sphere in the reverse sense is
absorbed and cannot return to the external world. The conditions inside the
sphere are accordingly referred to as a black hole. It is thought possible by
astrophysicists that some stars may have collapsed under their own gravitational
attraction to a radius less than their Schwarzschild radius. In such a case, as
explained above, further contraction would become irresistible and the star
would collapse to a singular point having infinite density. Such a collapse would
require an infinite time by terrestrial clocks so that, assuming the age of the
cosmos to be finite, it might be objected that no such objects can yet have come
into existence. However, the idea of a cosmos of present events, all happening
simultaneously relative to some universal time scale, is quite foreign to relativity
theory, so that the objection is meaningless. The hard fact is that the possibility of
a spaceship falling into the black hole created by such an object, in a time which is
finite measured by an on-board clock, is a real one. A few cases of objects which
appear to be in the early stages of gravitational collapse have already been
detected.

If the metric (57.12) is transformed by changing the sign of u, another metric
satisfying Einstein’s equation is generated. A similar analysis shows that this
governs the field in the vicinity of a white hole, where matter and photons can only
cross the Schwarzschild sphere in an outgoing sense. Thus, a white hole behaves
as an irresistible source and a black hole as an irresistible sink. Being invariant
under a sign reversal of ¢, the Schwarzschild metric permits a black and a white
hole to exist together.

58. Gravitational waves

Throughout this section it is assumed that the gravitational field is weak and that
the coordinates x' are quasi-Minkowskian, as explained in section 48. Thus, the
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metric tensor is given by equation (48.3) and terms of second or higher degree in
the h,, or their derivatives will be neglected. We shall further suppose that the
coordinate frame is harmonic (see Exercises 5, No. 50), so that the metric tensor
satisfies the condition

¢ =0 (58.1)

It can be proved that a transformation of the form X' = x' + & (x), where the
functions &' are small with the k;;, can always be made so that the X-frame is
harmonic (see Exercises 6, No. 37); this means that the harmonic coordinates will
also be quasi-Minkowskian.

To the first order, equation (58.1) reduces to

Lii.k]=hy ,—1hi =0 (58.2)
Differentiation leads to
R ij—3hi 5 =0 (58.3)
Exchanging indices j, k and adding the new equation to (58.3), we get
Mo+ hi i —hi =0 (58.4)

The Ricci tensor has already been calculated to the first order of approximation
at equation (49.2). Using the last result, this gives

Ry =3hy (58.5)
Also
R=Rj;=14h; (58.6)
Thus, Einstein’s tensor is given by
Rjk "%gij = %hjk. i~ %511"". Wi = %h}k. ii (58.7)
where Ry = hy —36,h, (58.8)

Einstein’s equation of gravitation is now expressible in the form
Ok =hjyw = —2xTy (58.9)
The harmonic condition (58.2) can also be written
hu i=0 (58.10)
In empty space, equation (58.9) reduces to
A2 N2 2 2
[:Ph;k=(6%7+5‘F+5?—;7§[2-)h;,‘=0 (58.11)

which is the wave equation, showing that gravitational waves are propagated in
vacuo with the velocity of light.



161

In the case of a plane wave, we can write
hj = Ajcexp (ik;x;) (58.12)

where it is understood that the real part of the complex exponential is to be taken.
Equation (58.11) is satisfied provided

kik;=0 (58.13)
and the condition (58.10) also requires that
kidy,=0 (58.14)

Since A, is symmetric, the last equation shows that the 4,4 can be expressed in
terms of the A, (x, § = 1, 2, 3). By further transformation of coordinates, it can
be shown that all amplitudes can be expressed in terms of two parameters only
and hence that gravitational waves have, essentially, only two modes of
polarization.

The solution of the wave equation (58.9) with source term —2xT is well
known to be given by Kirchhoff’s formula (Bateman, 1952).

K 1
Wiy (xg, tg) = 3 j -rTjk(x.to—r/c-)dV (58.15)
v

where x5 = (x§, x2,x3). x = (x!, x2, x*) are position vectors with respect to the
origin O of the frame in use, and r = |x, — x| is the distance between these points;
Vis the region of space over which T, is non-vanishing. Note that ¢, is retarded in
the integrand by a time r/c, since the effect of thc source at x will not be felt at x,
until the time for its transmission over the distance r has elapsed. In the case of a
source which is confined to a small region of space including the origin O, if
ro = [Xo| is large compared with the dimensions of this region, equation (58.15)
can be approximated by

) K
hjk(xo-fo)=2—n"r—o J‘P,Tjk(x,‘o—’o/f)dV (58.16)

But, as explained above, the components h, can be obtained casily once the h,g
have been found. We shall now show that a further simplification of the last
formula is possible in these cases.

First note that

(T, x¥), = T, . xP+ Ty (58.17)
Since the divergence of T;; vanishes, we have
T, .4+Tu.=0 (58.18)
and thus

(T, x?), = Tog — Toa s X* (58.19)
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Integrating over the region V, the integral of the left-hand member is seen to be
zero by application of Gauss's divergence theorem (assuming 7, vanishes over
the bounding surface), we accordingly obtain the result

i d
JT,ﬂdV = jra4,4xﬂdV= —ia-[ jT,‘,x"dV (58.20)
c
Exchanging the indices «, f and adding the new identity to (58.20), we find
i d s
jT,,,dV: —i(.aj(T,4x"+T,,4x }av (58.21)

We next integrate the identity

(T,ax®x?), =Ty, X*x* + T, x* +Tpex* (58.22)

over V. By the divergence theorem, the integral of the left-hand member vanishes.
Hence

j(T,‘,x” +Tgex)dV = — ~]‘T‘,ﬂl._ﬂ,x’x”d v (58.23)

Equations (58.21) and (58.23) now yield the result

id i d
J\Taﬂd V= EZd_g J\TA.I../X’Xﬂd V=~ 2—ra JT44_4.¥’xﬂd vV

| d? »
= 3237 Taox®x?dV (58.24)

where we have again made use of the equation T}; ; = 0. But, equation (21.14)
shows that Ty, = — uc? and equations (58.16) and (58.24) therefore lead to the
final result

26 d?

- = jy(x, t —rp/0)x'x?dV (58.25)

hglxg, 1) = & ==,
#1170 try di?

It should be noted that it is the second time derivative of the second moment of
the mass distribution which is responsible for the gravitational wave. In the
corresponding electromagnetic situation, it is the second time derivative of the
first moment of the charge distribution which is responsible for the elec-
tromagnetic wave.

Instruments have been devised to detect the small variations in the gravi-
tational field caused by waves proceeding from possible sources within the galaxy
(e.g. pulsating neutron stars, binary stars or supernova explosions), but no clearly
unambiguous results have yet been obtaincd. Such instruments attempt to
measure the small strains induced in very large masses of metal by the tidal forces
caused by the passage through them of gravitational waves.
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Exercises 6

1. Ifthe y-frame is defined as in section 47, show that the metric tensor in the x-
frame is given by

Hence lower the index j in T" defined by equation (47.2)and show that the result is
T; as defined in equation (47.3).
2. Given that space-time has the metric

ds? = dx? +dy? +e?%dz? —e??di?

where 0, ¢ are functions of = only, prove that the Riemann-Christoffel tensor
vanishes if, and only if]

6" —0¢ +¢7 =0

where dashes denote differentiations with respect to z. If ¢ = — 0, prove that the
space-time is flat provided ¢ = {log (a + bz), where a, b are constants.
3. If space time has the metric

ds? = e*(dr? + dz2)+r2e Pd¢? —erde?

where /4, p are functions of r and z only, show that the field equations in empty
space R;; = 0 require that 4 and p should satisfy the equations

it py = (el —pd)

fatpr=rpp;

Prutpatip =0

it tputpntilpi+p3) =0
where subscripts 1 and 2 denote partial differentiations with respect to r and =
respectively.
4. If space time has the metric

ds? = e?**(dx? +dy? 4+ dz? —dt?)
where k is constant, and t2 = X2 + y2 + 72, dots denoting differentiations with
respect to t, show that for a freely falling body
1 —t2=(1 =V2e*

where v = Vat x = 0.
5. If space-time has the metric

ds? = a?(dx? + dy? +dz%) — c?adt®

where 2 = 1/(1 —kx)and k is constant. and ¢ is as defined in 1the previous exercise,
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prove that for a frecly falling body
V:—o? = kelx
where v = Vat x = 0.
6. The space- time metric over a certain region of empty space is
ds? = ¢"(dx? +dy? +d-?) — efdi?
where «. ff are functions of = alone. Show that Einstcin’s equation is satisfied
provided
2+ i+ =0
2"+ 4B+ 4B - da = 0
B +387 b = 0
Deduce that ¢* = Aik —z)°, ¢ = B(k —z)” %, where A, B, k are constants.
7. Show that the space- time metric
ds? = e*dr? 4 r3d0? + e#dz? — e7de?
wherer. {). z are quasi-cylindrical polar coordinates and ¢ is the time and «. §§, yare
functions of r alone, satisfies Einstein’s equation in tacuo, provided
Bty +3B7% + 57—t —jalf — ja'y = 0
o =p+7
B +iB? - B +38 +78 =0
Ve -y + AR 45y =0
dashes indicating differentiations with respect to r. Deduce that
&= Ar e o = Brod et = Cr#
where A. B.C. /. i are constants and +u = 2(4 + p).
8. A certain region of space-time has metric
ds? =dx? +dy? +d:z? — x*de?

A particle is stationary at the point x = 1,y = z = 0 at 1 = Q. If the particle is
released at this instant and falls freely, show that it moves along the x-axis with
equation of motion x = secht. A photon isemitted from the point (1, 0, O)att = 0
in the direction of the positive y-axis. Show that at this instant x = 2 =0,y = 1
and that the path of the photon is the circle x* + 32 = 1.

9. De Sitter’s universe has metric

ds? = A™'dr? + r2(d6? +sin’0d¢?) — Ac*de?

where 4 = 1 —~r?;R?, R being constant. At t = 0,a photon leaves the originr = 0
and travels outwards along the straight line § = constant, ¢ = constant. Find its
coordinate r at time t and show that r = 4R whent = R(log3);2c and thatr - R
as t — oc.
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10. r, 0. = are quasi-cylindrical coordinates in a gravitational field determined
by the metric

ds? = r¥(dr? + dB%) + r(dz? —ds?)

A particle is projected from the point r = 1.0 = 0,z = 0 in the field with such
velocity that ¥ = 2 = 0,0 = /3,2 (dots denote differentiations with respect 1o t).
Prove that, if the particle falls freely, it moves in the plane z = 0 between the
circles r = 1, r = 3_ first touching the outer circle where (0 = \/3n. A photon is
emitted from the point r = 1,6 = 0, z = 0 and moves initially so that 7 = 7 =
Prove that its path is the spiral r = | +10? in the plane z = 0.

11. The metric for de Sitter’s universe can be expressed in the form

ds? = e2' R(dx? + dy? + dz?) — c2dr?

where R is a constant and x, ),z can be treated as rectangular Cartesian
coordinates. Show that the trajectories of freely falling particles and photons are
straight lines. A particle is projected from the origin at t = 0 with a velocity V'
along the positive x-axis. Prove that its x-coordinate at time ¢ is given by

Vx = R[c—  (¢2= V2 4+ Vie-2R)]

A body at the point x = X on the x-axis emits a photon towards the origin at
R

t = 0. Show that the photon arrives at O at time 1 = — -log(1 — X/R). Discuss
c

the case where X > R.
12. r, 0, ¢ are quasi-spherical polar coordinates in a gravitational field which is
spherically symmetric about a centre of attraction » = 0. The space-time metric is

2
ds? = (—— ) dr? +r2d6% + 2 sin20d¢? — —_dr?
r+1 r+2
A particle is projected from the point r = 1,6 = §n, ¢ = 0 at ¢ = 0 with velocity
such that /=0,0=0,¢ = 1/\/6 and falls freely. Show that the particle’s
trajectory lies in the plane 0 = in and has polar equation

_ S —cos(a¢)
~ 3 4+ cos(ag)

where a = \/"(8/'3). Deduce that the particle moves between two circles of radii 1
and 3 and calculate the increment in ¢ between two successive contacts with one
of these circles. (Ans. 27/a.)

13. Taking the metric for de Sitter’s universe in the form stated in exercise 9,
find equations of motion for a particle projected from the point r = iR,

) . 3¢
0 = }n, ¢ = 0 with such velocity that F = (=0, ¢ = i% and thereafter falls
under gravity. Show that its trajectory lies in the plane 0 = }r and that its polar
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equation is
r =R (5cos?¢p— )2

14. Oxyz is a quasi-rectangular Cartesian coordinate frame constructed in a
certain gravitational field. If ¢ is the time measured by a system of clocks
stationary in the frame, the space-time metricisds? = z(dx2 +dy? +d=* —de?). A
particle is projected from the point (0, 0, 1) at t = 0 with velocity components
X=rv(<l),y=2=0and thereafter falls frecly. Show that its trajectory is a
parabola and lies in the xz-plane and that the particle arrives at the xy-plane at
time t = 2,\/(1 —¢?).

15. Show that Einstein’s equation (47.16) can be written in the form

RY+ Agh = k(3T g7 —1Y)

16. Inside a static gravitating homogeneous sphere of liquid. the proper
density is u (a constant) and the pressure is p. The energy-momentum tensor has
zero components except for7 | =73 =73 = p. T = — 2y Assuming that the
metric of the field inside the sphere is given by equation (51.10) with a = ¢*
and b = €%, show that Einstein’'s equation (47.15) can be satisfied by making x. f§
and p satisfy the equations

—r(l —e ?)) = kc?ur?

dr
1
g = ;(e’ — 1)+ kre*p
" 142 L7 2 g 2 2
Bt =S = kep =)
dashes denoting differentiations with respect to r. Assuming x = 0 at r = 0 and
p = 0 at r = a (the surface), deduce that
e =1—gr?
where g = xc?y/3. and that

o (l_qu)lZ_“_q(IZ)lZ
p=r “3(1 ) I (1= gr) 2

17. Obtain the equations of motion of phoions moving radially inside the
Schwarzschild sphere and deduce that a photon moving away from the cenire O
takes an infinite coordinate time t to reach the sphere and a photon moving
towards the centre from r = R( < 2m) takes a time t = 7' given by

¢l = — R —2mlog(l — R.2m)

to reach O.
18. Obtain equations (57.2) and (57.3) for a body falling freely towards the
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centre of attraction in the region r > 2m and hence prove that

R 1:2 ) 1_7
ol = (2—';— I> [\/{r(R — 1)} + (R +4m)cos™ ‘(V/R)”Z]—z'"'os( >

1+
o gm(R—r) 172
'~ AR om) |

Deduce that t —» oc as r — 2m.

19. Obtain equations (57.4) and (57.5) and deduce that the time recorded on a
standard clock attached to a freely falling body as it falls from the Schwarzschild
sphere to the centre of attraction is nm/c. Calculate this time in the case of a black
hole having solar mass. (Ans. 16 us.)

20. Verify that the metric tensor given by equation (57.12) satisfies Einstein’s
equation in empty space.

21. Show that the Kruskal-Szekeres transformation

where

u = (r2m— 1)t2e"*mcosh(ct/4m)
r = (r/2m — 1)!2¢"*"sinh (c1/4m)

converts the Schwarzschild metric to the form

3 32m?

ds? e~ "2 (du? —dv?) + r}(d0? + sin?8d¢?)

where r is given in terms of u, v by the equation

w—v? = (r2m— 1)’

Deduce that the world-lines of radially moving photons are u + v = constant.
22. Show that the transformation

2
u=_r+_-r’?

r'?4a

. — 1/2 _ 52
v =1t+2ar alog———rm_a,

where a? = 2m, puts the Schwarzschild metric into the form

4 .
ds? = 5 12— 1) 23du? + p?(u —)*3(d6? + sin28d p?) — de?
where u* = 9a?/4.
23. A photon is emitted from the point r = m, 8 = in, ¢ = 0, inside a black
hole (Schwarzschild coordinates) with angular velocities § = 0, ¢ = 3\/ 3¢c/m.
Show that 7 = +2./7c initially. In the case when the initial value of # is negative,
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show that the photon moves in the plane § = i zand falls into the centre along the
trajectory

6
Tm = 3coth®s(x — ¢)—1

where a = log$(5+ ,/21).

24. Show that the only possible circular orbits for a photon in a Schwarzschild
field all have radius r = 3m and that their period in coordinate time is 6./3mm/c.
Show that these orbits are unstable.

25 A body moves in a circular orbit of radius r in the plane § = in in a
Schwarzschild field. Show that r > 3m and that the angular velocity d¢/dt is
related to r in the same way as in classical theory. Show that the period of the
motion as measured by a standard clock attached to the body is

21',(1_3)%
C m

Show, also, that the period as measured by an observer using a standard clock
who is stationary at some point on the orbit is

2??5(: _2>%
C m

Show that the orbit is unstable if 3m < r < 6m, but is stable otherwise.

26. r, 8, ¢ are Schwarzschild coordinates. A fixed observer at the point R, 0, ¢
transmits a wireless signal radially towards the attracting body. The signal is
reflected by a small body at the point r, 0, ¢ and returns to the observer. Show that
the time elapsing between transmission and reception as measured by the
observer’s standard clock is

2 R—-2m
(1 =2 1,2 - log———
c( m/R) (R r+2m Ogr—Zm >

Calculate the distance covered by the signal and deduce that, according to
classical theory, the time for the double journey would be

2
E[(Rz =2mR)'? — (r2 = 2mr)' ¥ + 2miog

R'Y2 4+ (R —2m)'?
rl_.-'Z + (r _zm)l,-'Z

Show that, to the first order in m, the difference between these times is

2m o R+r_1
c gr R

(Note: This result suggests a method of checking the general theory using the
Sun’s field and Mercury or Venus as the reflector.)
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27. Anatom, which is stationary at a Schwarzschild coordinate distance r from
the centre of a spherically symmetric body, emits light of frequency v which is
observed by a stationary observer at a coordinate distance R ( > r) from the
centre. Show that the observed frequency is v — v, where

1 1
Sviv=m|--——
v/v m(r R>
to the first order in m.

28. By replacing the spherical polar coordinate r occurring in the
Schwarzschild metric (52.10) by a new coordinate r’ where

(12m)
=r _—
d 2r

obtain this metric in ‘isotropic’ form, viz.

¢ , 1 —m/2r'\2
ds? = (1 + 2":) (dr'? +r2de? +r'2s.nzod¢2)—(l-»+lm";—2:,) cde?
29. Employing a certain frame, an event is specified by spatial coordinates
(x, 3, z) and a time . The corresponding space-time manifold has metric

ds? = dx? +dy? + dz? + 2ardxdt — (c? —a?r?)de?

Show that a particle falling freely in the gravitational field observed in the frame
has equations of motion

x=A+Bt—%ar>, y=C+Dt, z=E+Ft,

where A, B,C, D, E, F are constants. By transforming to coordinates (x’, y, z, t),
where x' = x + jat?, and recalculating the metric, explain this result.

30. (x!, x2, x*)are spatial coordinates of an event relative to a frame S and x* is
the time of the event measured by a clock in S. A second frame [ is falling freely in
the neighbourhood of the event and may be regarded as inertial. Oy'y?y? are
rectangular Cartesian axes in I and y*/ic represents the time within I as measured
by synchronized clocks attached to the frame. Show that g;;, the metric tensor in S,
is given by

éykey
95 = oxicnt
P is a point, fixed in S, having coordinates (x', x?, x3). At the instant x*, I is
chosen so that P is instantaneously at rest in 1. Deduce that

ay* Gia

W - \/(944)
at x‘.dl is the distance between P and a neighbouring point

P! +dx!, x2 +dx?, x® +dx?)
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as measured by a standard rod in I at the instant x*. Prove that
di? =dydy’ =7, dx'dx*

where «, /, ¢t range over the values |, 2, 3, and

7 an

4,44
Haa
(7, 1s the metric tensor for the #, which is $ at the instant x,.)
31. Oxyzis arectangular Cartesian inertial frame /. A rigid disc rotates in the
xy-plane about its centre O with angular velocity w. Polar coordinates (r, f)in a
frame R rotating with the disc are defined by the equations

‘Il/u = gAu -

x =rcos(@+wit), y =rsin(0+ wr)

where ¢ is the time measured by synchronized clocks in the inertial frame. If the
time of anevent in R is taken to be the time shown by an adjacent clock in /, show
that the space- time metric associated with R is

ds? = dr? + r2d0? + 20r?dbdt — (2 —r?w?)ds?

Deduce that the metric for geometry in R is given by

(Hini: employ the result of the previous cxercise.) Hence show that the family of
geodesics on the disc is determined by the equation

. a a
¢ = const. —sin ‘<;>_r_2 v —a?)

where r, = c/wand |a| < r,. Sketch this family. What is the physical significance
of r,?

32. x'(i = 1,2, 3, 4)are three space coordinates and time relative to a reference
frame S. A test particle is momentarily at rest in S at the point (x', x?, x3) at the
time x*. If g;; is the metric tensor for the gravitational field in S, write down the
conditions that the world-line of the particle is a geodesic and deduce that

d*x? 1<€g44 Gia Egﬁ)_eym

gil(—d;‘_)i AN das OX* ox?

at the point x'. Hence show that the covariant components of the particle’s
acceleration in S are given by

d?x? cU 5
T = — I P 2U 1.2
B dxt)? ox® (" +2U)

where 7,5 is defined in exercise 30 and

Gas = — ("2 +2U), V2= Gas/ V(= 944)

127]

]

72
4

o
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(U. 7y, are the gravitational scalar and vector potentials respectively.)

Show that, in the case of the space time metric appropriate to the rotating
frame of exercise 31, the gravitational vector potential vanishes and the scalar
potential is given by U = tw?r?. Interpret this result in terms of the centrifugal
force.

33. De Sitter’s universe has metric

ds? = A4 'dr? +r2d0? +r’sin’0d¢? — Acids?

where 4 = 1 —r2/R?, R being constant. Obtain the differential equations satis-
fied by the null geodcsics and show that along null geodesics in the plane 6 = 3,

a:—; — o —a?)?

where a is a constant. Deduce that, if r, ¢ are taken to be polar coordinates in this
plane, the paths of light rays in this universe are straight lines.
34. Einstein’s universe has the metric

1
d.\'z = l—' _»';i-drz + r2d02 + rZSin20d¢2 ‘('zdlz
- A

where (r, f, ¢) are spherical polar coordinates. Obtain the equations governing
the null geodesics and show that, in the plane 6 = 47, these curves satisfy the

equation
2
(:é) =2l = i) (urt =1)

where pis a constant. Putting r* = 11, integrate this equation and hence deduce
that the paths of light rays in the plane § = }n are the ellipses

x4yt =1
where (x, y)are rectangular Cartesian coordinates. Show, also, that the time taken

by a photon to make one compleie circuit of an ellipse is 2n/(c2" 2).
35. 1f the metric of space -time is

ds? = #*(dx? +dy? + dz?) —kads?

where « is a function of x alone and k is a constant, obtain the differential
equations governing the world-lines of freely falling particles. If x,y,z are
interpreted as rectangular Cartesian coordinates by an observer and ¢ is his time
variable, show that there is an energy equation for the particles in the form

1 k constant
11?2 —— = constan
2 2x

36. (r,0, ¢, 1) are interpreted as spherical polar coordinates and time. A
gravitational field is caused by a point eleciric charge at the pole. Assuming that
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the space-time metric is given by equation (51.10) and that the 4-vector potential
for the electromagnetic field of the charge is given by Q, = (0,0, 0, ). where
X = y(r), calculate the covariant components of the field tensor F,; from equation
{26.6) and deduce the contravariant components F'/. Assuming that J' = 0, prove
that Maxwell’s equations (56.4) and (56.5) are all satisfied if

dy q

SE__ 9 ab
dr 4n50r2\/(a)

where g is a constant.
Calculate the elements of the mixed energy-momentum tensor from equation
(56.6) and write down Einstein’s equations (47.15) for the gravitational field.
Show that these are satisfied provided
2
a r o 4megc” r

where m is a constant.

37. If the coordinates x' are quasi-Minkowskian so that the metric tensor is
given by equation (48.3), show that the transformation X' = x'+ &(x) makes the
X-frame harmonic provided the ¢ satisfy the conditions

&'y =hy i —3hj

(Neglect second order terms in the &;; and use the condition given in Exercises 5,
No. 50.) Show also that h,; = 0 provided the functions & satisfy the addilional
condition &'; = $h,. If the x-frame is harmonic before transformation, show that
the x-frame is also harmonic provided ¢';; = 0.

38. A sphere of mass M is expanding in such a manner that its density remains
uniform. If a(t) is its radius at time ¢, show that, at a large distance r from its centre,
the gravitational wave generated has components

4GM
Sr¢?

Ry = hyy = hyy = (d* + ad)
the components h},, hy;, by, being zero. (The bracketed expression is to be
calculated at the appropriate retarded time.)

39. A uniform rod of mass M and length 2q is pivoted with its centre at the
origin of the x-frame and rotates in the x , x;-plane with angular velocity w. Show
that, at a large distance r from the rod, the gravitational wave generated has non-
zero components

hy, = —h33 = Acos2wt, hy3 = Asin2wt
where 4 = 4GMa’w?/3rc* and the instant = O has been chosen appropriately.

40. Show that, if the cosmical constant term is retained in Einstein’s equation,
it reduces in empty spaceto R,; + Ag;; = 0. Deduce that the spherically symmetric
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Schwarzschild solution (cf. equation (52.9)) is given by

2m 1,
b=1-="—2Ar
r 3 ’
Using the approximate equation (48.17), show that this implics the existence of an
additional force of repulsion from the centre proportional to the radius r.



CHAPTER 7

Cosmology

59. Cosmological principle. Cosmical time

Cosmology is the study of the large-scale features of the universe, such as the
distribution and motions of the galaxies and the density of radiation and dust
through intergalactic space. It is also concerned with the manner in which these
features can be expected to change over very long periods of time measured in
billions (10°) of years, i.e. with the evolution of the cosmos. Such calculations also
throw light on the stages through which the cosmos has passed to arrive at its
present state, and attempt to answer the question, did the universe have a
beginning in time or has it always existed? If the universe had a beginning, as the
evidence now strongly suggests, the study of its state during the very early stages
of its evolution is called cosmaogony.

Since the galaxies are electrically uncharged, the only force influencing their
motion is gravity. Thus, cosmology is necessarily founded on a theory of
gravitation. It has been shown (see, e.g., Bondi, 1960) that the Newtonian theory is
quite capable of generating models for the cosmos which provide explanation
for many of its observed features. However, these models necessarily assume that
space is Euclidean, whereas Einstein’s theory indicates that, in the presence of a
gravitational field, space becomes curved and its geometry is then Riemannian.
The curvature generated by the gravitational attraction of a galaxy is inap-
preciable and may be disregarded so long as we confine our attention to regions of
space whose dimensions are comparable with those of a galaxy, but this effect has
major consequences when the spatial extension of the whole cosmos is
considered; in particular, as we shall see, a possible consequence is that the total
volume of space is finite and, therefore, that the universe is not potentially infinite
in extent as a Newtonian cosmology must assume. Only cosmic models which are
in accord with general relativity theory will accordingly be studied.

The reader will be presumed familiar with the basic facts relating to the
distribution of matter and radiation over the cosmos as it is observed in the
present epoch (Rowan-Robinson, 1979). The mass of the radiation is roughly
one-thousandth of the mass of the galactic matter and its gravitational effect is
therefore negligible by comparison with the attraction of the galaxies. However,
at earlier epochs, the contribution to the gravitational field of the radiation was

174
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probably much more considerable and, during the first million years after the ‘big
bang’, it is thought that the cosmos was dominated by its radiation; this radiation
is assumed to have been in equilibrium with the matter and hence to have
acquired a black-body frequency distribution. The remnant of this black-body
radiation in the present epoch was detected by Penzias and Wilson in 1965 and
this still forms the major part of the total cosmic radiation. It is not known what
proportion of the matter in the universe has been attracted into the galaxies; the
density of matter in intergalactic space is certainly so small as to have no
observable effect on the light transmitted through these regions from the most
distant sources, but the volume of space is so large that this observation is not
inconsistent with the hypothesis that the net mass of intergalactic matter is many
times that of the matter present in the galaxies. As will be seen, our ignorance in
regard to this datum prevents our reaching a firm conclusion whether the cosmos
is finite or infinite in extent. Although the galaxies often occur in clusters, from
our viewpoint their overall distribution appears to be isotropic and homoge-
neous. At very great distances, the galactic density is observed to increase, but it
must be remembered that such observations are carried out by light which was
emitted at a much earlier epoch when all the galaxies are thought to have been
closer together; it is assumed that, at the ‘present cosmical time’ ( precise definition
follows later), the density of galactic mass is uniform throughout the cosmos.

That the galactic density is decreasing as the universe evolves is in accordance
with the observed recession of the galaxies. To be more precise, what is observed is
that the spectrum of the light from a distant galaxy is shifted towards the red end
of the spectrum by an amount which is approximately proportional to its
distance. This is Hubble’s law. The reduction in frequency is interpreted as a
Doppler effect caused by the motion of the galaxy away from the observer along
the line of sight. Since it is supposed that the whole universe is in a state of
expansion, each galactic observer will experience a recession of all the other
galaxies in accordance with Hubble's law. Clearly, if matter is conserved during
this expansion, a steady reduction in its density is inevitable and there is now an
accumulation of evidence that the matter density was indeed greater in the distant
past than it is today. However, a steady-state cosmology (Bondi and Gold. 1948,
Hoyle, 1948) has been proposed in which the galactic density remains constant
due to the continuous creation of matter in intergalactic space; this matter
condenses into new galaxies and so maintains a steady-state distribution.

As a first step towards the construction of a mathematical model of the cosmos,
we shall treat the galaxies as point masses or molecules forming a galactic gas and
further assume that this gas behaves like the perfect fluid studied in section 22. In
particular, its energy-momentum tensor will be supposed given by equation
(22.21). At the present epoch, this gas is exceedingly rarefied and, since the random
motions of the galaxies relative to the background black-body radiation (which
provides a natural frame of reference) are of relatively small magnitude, the
pressure associated with the gas is very low; thus, at this and later epochs, it will be
permissible to neglect the pressure and to treat the gas as an incoherent dust
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cloud. However, during the early phases of cosmic evolution, the temperature and
pressure are believed to have been very high indeed and the pressure terms cannot
then be neglected; further, during these phases the contribution of the
background radiation becomes significant and terms representing this contri-
bution must also be included in the energy-momentum tensor.

We next assume that there are no privileged galactic observers, i.e. all observers
moving with the galactic gas will be assumed to see the same large-scale process of
evolution of the cosmos. This is the cosmological principle. The steady-state
theory is based upon an extension called the perfect cosmological principle; this
asserts that all galactic observers see the same large-scale state of the cosmos at all
times. Observation supports the first principle but not the second.

If the cosmological principle is accepted and the perfect principle rejected, it is
possible to define an absolute cosmical time, i.e. a way of assigning times to cosmic
events which is independent of the observer. For all galactic observers will
experience the same process of cosmic evolution and the various characteristic
stages of this process can be allocated times according to some agreed scale. It is
not necessary at this point in the argument to tie the scale to time measured by
standard clocks; we only require that the later stages of an observer’s experience
be allocated times which are greater than the times allocated to earlier stages.
Then, the cosmical time of any event can be defined unambiguously as the time
recorded for the event by an adjacent galactic observer using the agreed time
scale. Thus, the state of the cosmos at any epoch is now defined to be the set of
events whose cosmical times are all equal to the cosmical time of the epoch. Since,
at a given epoch, all galactic observers will be experiencing similar processes, the
large-scale state of the cosmos at a given epoch must be homogencous and
isotropic for each such observer.

60. Spaces of constant curvature

At a given epoch, as we have just seen, the state of our cosmological model must
be homogeneous and isotropic. In particular, the three-dimensional space in
which the model is constructed must have these properties. The surface of a
sphere is a two-dimensional space of this type embedded in &; and it is obvious
that a three-dimensional hypersphere embedded in &, will have all the
characteristics we need for our purpose. Also, just as the ordinary sphere includes
the &, plane as a special case when its radius becomes infinite, a hypersphere of
infinite radius will correspond to €5, which is an especially simple case of a
homogeneous and isotropic space. In addition, we shall be led quite naturally to
consider a third class of such spaces which, like &5, but unlike the hypersphere,
have infinite volume. These three types of space all have constant curvature
scalars R and are therefore called spaces of constant curvarure. All these spaces
have positive-definite metrics, as they must have if their geometry is to be
Euclidean over sufficiently small regions. It may be proved that there are no other
Riemannian spaces having such metrics which are homogeneous and isotropic.
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Let (x, y, z, u) be rectangular Cartesian coordinates in & 4. Then, a hypersphere
of radius S has equation

x2+y2 422 +u =82 (60.1)

Since u is determined in terms of x, y, = by this equation. a coordinate frame for
points on this hypersurface can be constructed by first allocating coordinates
(x. ), z)to the point having coordinates (x, y. z, u) in the Cartesian frame. Provided
x, ¥, z are small by comparison with S, they will behave approximately like
rectangular Cartesian coordinates in & ; and we shall therefore define quasi-
spherical polar coordinates (r, 8, ¢) by the usual transformation equations

x = rsin0cos ¢, v =rsin0sin @, z=rcos0 (60.2)

Equations (60.1) and (60.2) give

ut =8§2-r? (60.3)
from which we find by differentiation that
2 r’ 2

Hence, the distance ds between the points (x, y, z, u) and (x +dx, y + dy, z +dz,
u + du) on the hypersphere is given by

ds? = dx? +dy? +dz? + du?

=dr? +r2 (d0? +sin*0d¢?) + r2 dr?/ (S - r?)
2

Sz_rz

dr? +r? (d8? + sin? 8d¢?) (60.5)

This is a metric for the hyperspherical # ;- Clearly, by taking 1/S? = 0, the metric
reduces to that for & in ordinary spherical polars.

If the curvature scalar is calculated from this metric, it will be found that it
equals —6/S2, i.e.is constant. It is now evident that if $? is replaced by — §?, the
curvature scalar will still be constant with value 6. S and the space will remain
homogeneous and isotropic. This is the third type of such a space; its metric is

-2
ds? = §2»5;—r-5 dr? + 2 (d9? + sin? 0d¢?) (60.6)

Since these spaces are homogeneous and isotropic, the pole r = O can be taken
to be any point and the axes from which 0 and ¢ are measured can be taken inany
pair of perpendicular directions. If r is small compared with S, both metrics (60.5)
and (60.6) approximate to the spherical polar metric for &5, implying that the
spaces are Euclidean over small regions.

Consider the circle r = constant, 0 = 4, in the space with metric (60.5). The
distance between neighbouring points ¢, ¢ +d¢ on the circle is given by the
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metric to be ds = rd¢ and the circumference of the circle is accordingly 2nar.
Along a radius of this circled0) = d¢ = (and the distance between points r.r + dr
is given to be
ds = Sdr; \/‘(SZ —r?) (60.7)
Integrating from r = 0 to r, the length of the radius is found to be
p=2Ssin '"(r$) (60.8)
Thus, r = Ssin (p, S)and the circumference ¢ is given in terms of the radius p by
¢=2nSsin(p §) (60.9)

Since sin (p/S) < p/S, ¢ 1s smaller than 2np, which is the Euclidean result.

The formula (60.9) receives a simple interpretation in the allied case of the £,
which is the surface of an ordinary sphere of radius S. The quantities S. r, p are
indicated in Fig. 8, from which the relationships just found are readily seen to be
valid. Clearly. as p increases, r first increases until it achieves a maximum value S,
and thercafter decreases until p = nS, when r becomes zero. 1t now appears that
our coordinate system is ambiguous, in that two different points can have the
same coordinates; this deficiency can be rectified by replacing r by p using the
transformation equation (60.8), giving a new metric

ds? = dp? + SZsin?(p/S) (d0? + sin20d ¢?) (60.10)

This transformation has also eliminated the singularity in the metric (60.5) at
r = S. Like the Schwarzschild singularity, this is a property of the coordinate
frame and evidently does not correspond to a singularity in the space itself.
Putting p/§ = . the metric (60.10) can also be expressed in the convenient
form
ds? = S?{dy? +sin’¢(d0? +sin*0de?)! (60.11)

{See Exercises 5, No. 33.)

Fi1G. 8
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In the case of the space with metric (60.6), r can assume all positive values and is
not ambiguous. By putting r = S sinh ., this metric can be transformed to

ds? = S?{dy* +sinh?y(d0? +sin’Ad¢?)} (60.12)

Another form for these metrics which will be specially important later is
obtained by putting r = So. The metrics (60.5) and (60.6) can then both be
expressed by

2
ds? = Sz[l da kel + 02 (df? +sin’0d¢? )] (60.13)
where k = 1 in the case (60.5)and k = — 1 in the case (60.6). The special Euclidean
case can also be accommodated by permitting k to be zero. The new coordinate o
is dimensionless and, if k = 1, is restricted to values satisfying 0 < o < 1. For the
other values of k, g takes all positive values.

To calculate the volume of some region of an &3, let y* (x = 1, 2, 3) be geodesic
rectangular Cartesian coordinates in the neighbourhood of some point P (section
39). Assuming that the metric is positive definite (as in the present case), the y* will
all be real. Then, if x* are coordinates with respect to any other frame, the metric
tensor in the x-frame will be given by

évi ¢yt oy ¢y

A B LI 60.14
ex*axP T axtaxP ( )

gaﬂ =

Hence, if the Jacobian determinant &(3', y2, y3)/é(x", x2, x3) is squared by
multiplying its rows by its columns, it follows that

o' yL ) T
[m =|gap| = ¢ (60.15)

But, the volume §V of a small region 4 in the neighbourhood of P is given by

B 6(x x? )

Thus, the volume enclosed by the coordinate surfaces x!, x?, x3, x! +dx!,
x? +dx?, x? +dx?

dv = Jgdx'dx?dx® (60.17)

The formula for the volume V of a finite region F of #; now follows, viz.

V= ij Jgdx'dx?dx’? (60.18)
F

In the case of the space with metric (60.5). g = S%r*sin?6/(S? —r?) and the
whole space has volume

R n 2n SZ H 6
2L er dl)L 7:5“25”'—27)""’ (60.19)
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where the factor 2 is needed since the range 0 < r < S covers only half the sphere
(see above). Performing the integrations, this volume is found to be 2r?S3,

1t will be found that the total volume of the space with metric (60.6) is infinite,
as in the Euclidean case.

61. The Robertson-Walker metric

In this section, we shall calculate a space-time metric for the cosmos in a frame
formed by clocks moving with the galactic gas, all reading cosmical time x*. As
explained in section 45, the spatial coordinates x* of each clock never change and
the frame is therefore said to be co-moving with the gas.

Viewed from any one of the clocks, the cosmos is isotropic, i.€. it is impossible
to specify any direction having special properties. Let g;, be the metric tensor in
this x-frame. Suppose we carry out a spatial coordinate transformation by
relabelling the clocks, leaving their readings unchanged; such a transformation
will take the form

X =f*(x', x%, %), ¢ = x* (61.1)

The transformed metric tensor is g,; and we shall have

Nyl Ay o
_ ox' ¢x cXx
G = (‘_x 5)(7,%,‘ = 0“7'(“”’“ (61.2)

This equation shows that y,, behaves as a covariant 3-vector with respect to
spatial coordinate transformations and hence determines a special direction at
every point of 3-space. This is contrary to our assumption of isotropy for galactic
observers and we conclude that g,, = 0 throughout space-time. Thus,

ds? = gzﬂdx’dxﬂ + gaa(dx®y (61.3)

Now consider the events of a coordinate clock indicating the times x*,
x* +dx®. Let dt be the proper time interval between these events. Since the
spatial coordinates of the clock never change, the metric (61.3) shows that

—2d1? = g4a(dx?)? (61.4)

This equation determines the relationship between the cosmical time x* and the
standard time t shown on an atomic clock moving with the galactic observer. But
this relationship must be independent of the galactic observer, since all are
equivalent, and it follows that g,, can only depend on x*. We can accordingly
transform from x* to a new cosmical standard time ¢ by a transformation

ct = [ J(—gaa)dx? (61.5)
so that the metric (61.3) reduces to
ds? = g,pdx*dx® — ¢2de? (61.6)

Taking a section 1 = constant of space-time at a particular cosmical time, an
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A3 with metric
ds? = g,pzdx*dx” (61.7)

is obtained. This is our model for the cosmos at this cosmical instant. By the
cosmological principle, any galactic observer will find this #; to be homogeneous
and isotropic. Choosing himsclf as pole, he will therefore be able to define
coordinates (g, 0, ¢) for which the metric (61.7) takes the form (60.13). Using this
frame and thc new cosmical time i, the metric (61.6) finally assumes the
Robertson-Walker form

2
ds? = Sz[i- 4‘26_2 + 0% (do? + sin20d¢2)] —cide? (61.8)
Sis a constant for the cosmos at any given time t, but will in general vary with ¢; it
will be referred to as the cosmic scale factor; only when k = 1 can cosmic space be
pictured as a hypersphere of radius S in &,.

It remains to check that the frame of reference is co-moving, as assumed at the
outset. The galaxies will be falling freely in the gravitational field associated with
the metric (61.8) and their world-lines must therefore be geodesics. Since we are
supposing the spatial coordinates of a galaxy remain constant, x* = constant
along a galactic world-linc. Substituting in the geodesic equations (43.5), the
condition they are satisfied is found to be I'§, = 0. For the metric (61.8), this
condition reduces to the requirement ¢g,q/¢x* = 0, which is clearly true.

62. Hubble’s constant and the deceleration parameter

The behaviour of the cosmic model derived from the Robertson-Walker metric
will be determined when the value of k and the dependence of the cosmic scale
factor S on the cosmical time t are known. From the physical data available today
(1981), neither of these pieces of information can be derived with any degree of
accuracy. It seems likely (see section 65) that k = + 1 and that the universe is
closed, ie. of finite volume. In regard to S(t), the value of its first derivative is
known roughly, but even the sign of its second derivative is in doubt, although the
general consensus of opinion is that it is negative, i.e. the cosmic expansion is
slowing down. Instead of quoting values of these two derivatives. it is more
convenient to work with the parameters

H=3S:8 (62.1)
g = —88§2 (62.2)

H is called Hubble’s constant and has reciprocal time dimension; ¢ is called the
deceleration parameter and is dimensionless. [n the present epoch, the value of
1/H is often quoted 10 be about 1.8 x 10'° years, whereas the value of g is thought
by some cosmologists to be about unity, although others would not exclude
negative values.
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At a fixed cosmical time ¢, the Robertson-Walker metric requires that ordinary
space should have the metric (60.13). Any galaxy can be thought of as being placed
at the pole o = 0 and then the radial (or proper) distance of any other galaxy
(0,0, ¢) is given by

“ do
d= ———s=al 62.3
SL JU—ke?) " © ©23)
wherea =sin 'agifk =10 =cifk =0,and a = sinh 'gifh = — 1. Thus, the
rate of recession of this galaxy from the galaxy at the origin is given by
d=aS=Hd (62.4)

This is Hubble’s law that, at a given cosmical time, the rate of recession of any
galaxy is proportional to its distance. H has the same value for all galactic
observers at the time ¢, but will, in general, itself vary with ¢. Clearly, this law
cannot be verified directly, since neither the distance d nor its rate of change are
directly observable; in the next two sections, we shall derive an alternative
relationship between associated quantities which can be measured.

63. Red shift of galaxies

Suppose that a galaxy G(s,, 8,, ¢,) is being observed through a telescope from
the pole O. Successive crests of a light wave emitted by G at times t,, 1, + dt, are
received at O at times (g, to + dt, respectively. The world-line of each crest is a
radial null geodesic along which 8 and ¢ remain constant (the reader should check
that the equations of a null geodesic can be satisfied with 6 and ¢ constant). The
Robertson-Walker metric shows that along such a world-line,

do c
——— = —=d 63.1
Ja—kot)~ "5 (63.1)
Integration of this equation for the motion of each crest yields the equations
o, da. to dl to +dig dt
e e —_— = -_— 6 -2
L J0—ka?) C.[, s CJ..M,. 5 €2
Since dtg, dt, will be small, the last equation implies that
d,  dyy

= 63.3
Sto) () (635)

dr, is the period of the emitted wave as measured by a standard clock at G,and d¢,
is the period of the received wave as measured by a similar clock at O. Since
wavelength is proportional to period, if 44, 4, are the wavelengths of the received
and emitted light respectively,

Ao/Ay = So/Sy (63.4)
where Sy = S(1,) and S, = S(1,).
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Thus, if the received light is redder than the emitted light, 2, = 4, + A4,, where
A4, is positive. The red-shift factor z is defined by the equation
Al A S
e R N 63.5)
/1y A A\
Clearly z is positive if Sg > S,, i.e. the universe is expanding.
If the observed galaxy is not too distant, t, — ¢, will be relatively small and we
can expand S(t,) in a Taylor expansion thus:

S(t) = S(te) = (to = 1) S (to) + 41to —1,)* S (to) +. . .
= S(fo){l—Ho(lo—h)—%%H(Z)(to—ll)z +.. } 63.6)

where Hy, g, are the values of Hubble’s constant and the deceleration parameter
at the instant ¢, of observation. Substituting from the last equation in (63.5), we
derive the result

z=Ho(to—t)+ (3go + VHE(to —t,)* +. .. 63.7)

By observing z for a number of galaxies and calculating (t5 —t,) for each, this
expansion provides a means of estimating the values of H and g at the present
epoch. The calculation of (zq —t,) is considered in the next section.

64. Lnminosity distance

If all galaxies possessed the same intrinsic luminosity, i.e. emitted light energy at
the same rate, and if this luminosity were independent of the time, the observed or
apparent luminosities of galaxies would depend upon their distances according to
a calculable formula and an observation of the apparent luminosity would then
provide us with a measure of the distance. Although there is considerable
variation in the strengths of the galaxies as light sources, by confining
observations to galaxies of a particular type and stage of evolution, this variation
can be reduced and thus estimates of their distances can be obtained. Since
galaxies tend to occur in clusters, once the distance of one member of a cluster has
been found, the intrinsic luminosity of the other members can be determined, thus
providing further useful information in regard to the probable intrinsic
brightness of galaxies of other types; this information can then be utilized as a
basis for later distance determinations.

Suppose we take the pole O of coordinates (o, 8, ¢) at some distant galaxy G
whose luminosity is to be observed and let our point of observation A have
coordinates (g, }n, 0). Photons emitted by G will have null geodesics as world-
lines, along which 6 and ¢ will be constant. Consider a photon which travels along
the ray @ = 4n, ¢ = ¢, where ¢ is very small. This photon will ultimately arrive at
the point (o, 47, £) of closest approach to A when its distance from A will be given
by equation (60.13) to be

ds = Soo¢ (64.1)
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where S is calculated at the time of arrival t, of the photon in the vicinity of A. Tt
now follows that, if the telescope at A has aperture of radius g, the photon will be
collected by the telescope provided € < a/Sya. Thus, the telescope will collect all
photons which left G along paths enclosed within a right circular cone of semi-
vertical angle a/Sy0. This cone embraces a solid angle

nu’ x

S26? " Siet
where a = na® is the telescope’s aperture; it follows that the proportion of
photons leaving G which are collected at A is o/ (4n53a2).

According to equation (63.4), if v, is the frequency of a photon when it leaves G
at time t,, its frequency v, on arrival at A at time ¢ is given by vq = S, v,/S,. But
the energy of a photoniis related to its frequency by the formula E = hv, where his
Planck’s constant. Thus, the energy of the photon is also reduced by a factor
S,/S,. Further, equation (63.3) indicates that the photons emitted from G over a
time interval dt, arrive at A over the longer time interval dt, = S, dt,/S,. Hence,
the rate of reception of light energy is additionally reduced by a factor S,/S,. If,
therefore, L is the intrinsic luminosity of G, i.e. the total rate at which it emits
radiation, the rate at which light energy is collected by the telescope at A is given
by « S S, LaS?

o X X = e 64.3
>(4ns§,azxsoxso 4na’S§ (64.3)

2n(l — cosg) = ne? = (64.2)

2

The apparent luminosity I of a celestial object is defined to be the rate at which
light energy from the object flows across unit area normal to the line of sight at the
point of observation. The last result shows that for G,

| = LS3/(4na® S) (64.4)

If space were Euclidean and G were stationary at a distance d from A, we should

have | = L/(4nd?) (64.5)
Substituting the actual value of / from (64.4) and solving for d, we find

d=0S2/S, (64.6)

This result is termed the luminosity distance of G.
Returning to equation (64.4), we shall obtain an expanston for ! in powers of
(to —t,). Equation (63.2) shows that

’ do o dt
ol o

Assuming g is relatively small (i.e. G is not too distant), the integrand of the left-
hand member of this equation can be expanded in powers of o to give

¢ do | S
- = - D 64.8
JO 70—k a+6ka + (64.8)
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Also, equation (63.6) leads to the result
1 1

— = 1+ Hy(to=0)+. .. 64.9
S0 S(to){ olto—1) } (64.9)
Hence, the right-hand member of equation (64.7) can be expanded in the form
o dt
C_[ —,-=i{(zo—tl)+§Ho(to—t,)2+...} (64.10)
N S SO

Equating the expansions (64.8) and (64.10), we see thal, to the first order of small
quantities, o = c(tg —1,)/S,. It follows that, to the second order in (tq —1,),

c
azs—{(to—tl)+%Ho(to—tl)2+...} (64.11)

0
Substitution from equations (63.6) and (64.11) in equation (64.4) now yields the

expansion 1

l=—————{1- - .. 1
At (tg—1,) { 3Ho(to—1,) + } (64.12)
Finally, equation (63.7)shows that to the first order (t, —t,) = z/H,. It follows
from the same equation, therefore, that

Holto—t)=z—(go+ 12>+ ... (64.13)

Substituting for (1, —t,) from this equation into equation (64.12) accordingly
leads to the expansion
2

LH
1=4M2‘;-2{1+(q0—1)z+ . (64.14)

The importance of this last equation is that it relates two observable quantities {
and z. By fitting it as closely as possible to the available data, estimates of Hg and
qo have been obtained. A more precise relationship follows from dynamical
considerations (see Exercises 7, No. 5).

65. Cosmic dynamics

To gain further information in regard to the probable values of the functions H (t)
and ¢ (z) at cosmical times in the remote past and future, it is necessary to
determine the equations of motion of the cosmos. These will be provided by
Einstein’s equations of gravitation. It is therefore necessary first to calculate the
energy-momentum tensor for the galactic gas.

The 4-velocity of a particle whose world-line in the x-frame has equations
x* = x%(1) (1 = s/ic being proper time measured by a standard clock moving with
the particle) has been defined (section 50) to be the contravariant vector V' given
by _

dx'

V=5

(65.1)
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If the frame is inertial and Minkowski coordinates are used, this definition is in
agreement with that adopted in the special theory (section 15).

Now consider a perfect fluid. At any point in the fluid, we can construct a freely
falling frame which is locally inertial and in which Minkowski coordinates can be
defined. The special theory is valid in any such frame and the fluid’s proper
density of proper mass iy and pressure p can be defined as 4-invariants (section
22). The energy—-momentum tensor in the frame then follows from equation
(22.21). In the general x-frame, this tensor must therefore be given by thc equation

TY = (uoo+p/c*) V'V +pg" (65.2)
for this is a tensor equation and reduces to the valid equation (22.21) in the freely
falling Minkowski frame.

Along a world-line of a particle of the galactic gas, the coordinates (o, 6, @)
remain constant and hence, from the metric equation (61.8), we deduce that t = t.
Thus, the 4-velocity of this particle has components (V) = (0,0,0, 1) in the

Robertson-Walker frame. The non-zero contravariant components of the metric
tensor are

g'' = (1 —ko?)/S?, g¢** =1/8%0?% ¢ = cosec?8;S%a%, ¢** = —1¢?
(65.3)

We can now calculate the non-zero components of the energy-momentum tensor
for the galactic gas from equation (65.2); they are

T'' = p(l —ka®)/§?

T22___ p/SZUZ
T 33 = p cosec?8/S%o? (65.4)
T44= #

where we have deleted the subscripts in u, o for convenience. The covariant
components now follow immediately, viz.

T, = pS?/(1 — ka?)

T,, = pSia?
T33 = p520'2 Sin29 (65.5)
Toa = puct

The non-zero components of the Ricci tensor for the Robertson—Walker
metric may be verified to be

Ry = —P/(1 —ko®), R;, = —Po? R;;= —Po?sin®g, R,, =35/S
(65.6)
where P =2k + (5§ +28%)/c? (65.7)

dots denoting differentiations with respect to 1.
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The reader may also verify that the curvature scalar is given by
R=R!= —6(S§ + $? + kc?)/c?S? (65.8)

We can now construct Einstein's equations (47.16) (covariant form); only two
distinct equations emerge, viz.

285+ 8% + ke? —c2AS? = —kc2pS? (65.9)
3(8% + kc?) —c2AS? = kc*uS? (65.10)

Together with an equation of state p = p(u), these equations are sufficient to
determine the unknown functions S, p and p.
Before attempting to integrate these equations, certain important conclusions
can be reached by a direct study.
Equation (65.10) can be written in the form
32

SZ

from which it follows that k = + 1 if

k = ke — (3H? — ¢2A) (65.11)

B> pe = BH? —c*A)/xc® (65.12)

and k = —1if the reverse inequality is true. g, is therefore a critical density (the
closure density) for the galactic gas, determining whether the universe is of finite
or infinite volume. Assuming A = 0 and taking H = 1.8 x 1078 (at the present
epoch), kc* = 8nG = 1.67 x 107° (all SI units), we calculate that

= 6x10"*"kgm™?* (65.13)

If the matter in the galaxies were spread uniformly over the whole of space at the
present epoch, it is estimated that its density would be g = 3 x 10" 2%kgm™3.
Thus u < u. and this datum suggests that the universe is open. However, the
presence of a very tenuous intergalactic dust or gas, far below the limit of possible
observation, could easily reverse this conclusion. We accordingly seek further
information from equation (65.9).

This equation can be written

C2

Slk=(2q—l)H2+c2A—Kczp 65.14)
Again taking A = 0 and assuming p to be negligible, we conclude that k = + 1 if
g > §. Unfortunately, the red shift-luminosity relationship, from which the value
of g is derivable (see section 64), has not been established with sufficient certainty
to decide for or against this inequality. However, the data available tends to
support it.
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66. Model universes of Einstein and de Sitter

The first solution of the dynamical equations (65.9) and (65.10) was suggested by
Einstein himself. His proposal was made some years before Hubble published his
observations relating to the recession of the galaxies, and the possibility that the
universe was in a state of expansion was not considered by astronomers at that
time. Einstein’s universe was therefore static and the equations were satisfied by
taking S to be constant. Pressure and density had then to satisfy the equations

k
kp=A -5 (66.1)
3
k2= S—I; -A (66.2)

Clearly, if A = 0, since p and u cannot be negative, the only possible solution is
for p, u and k all to be zero, i.e. an empty, infinite, Euclidean cosmos. It was in
order to be able to reject this solution that Einstein introduced the cosmical
constant term into his equation of gravitation.

Adding equations (66.1) and (66.2), we find

—zsé =k(p+c’py (66.3)
proving that kK must be positive, i.e. k = + 1 and the universe is closed. Equations
{(66.1) and (66.2) now show that A must satisfy the inequalities

2 <AL 3 (66.4)

2T s '
S is the radius of the universe, which is certainly very large, indicating that A will
be quite inappreciable except for phenomena on the cosmic scale. Following upon
Hubble’s discovery, Einstein abandoned his model and with it, the cosmical
constant. Since then, A has been put to zero in most cosmological investigations
and we shall follow this practice in the remaining sections of this chapter (except
in certain exercises at the end).

The necessity for including the cosmical constant term if the universe is to be
static, follows from very elementary considerations. Without it, an initially static
cosmos will collapse under the gravitational attractions of its constituent galaxies.
If A is positive, the term implies the existence of a counterbalancing long-range
repulsive force between the galaxies, which increases with their distance of
separation (Exercises 6, No. 40). However. although these two opposing
gravitational forces can result in equilibrium, putting p = 0 to match the present
state of the cosmos and hence A = 1/52, it may be proved that the equilibrium is
unstable (Exercises 7, No. 8).

Following upon Einstein’s proposed model, de Sitter derived another which is
of some historical interest. In this context, his model is most conveniently
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constructed by adopting as our basic assumption that Hubble's constant does not
change with timc, ie.

S$/S = H = constant (66.5)
Integrating, we get
S = Aexp Ht (66.6)

where A is the value of S at some arbitrarily chosen origin of cosmical time.
Substituting in equations (65.9) and (65.10), we find that

3H* k
kp=A- ", - exp(—2Ht) (66.7)
c
3H? 3k
k= —A+— + 72 &P (—2H1) (66.8)
¢
Ast— o,
kp— A —3H?%/¢?, kelu— — A+ 3H?/? (66.9)

Neither of these limits can be negative. so we must require that

A =3H%/? (66.10)
Thus, equations (66.7) and (66.8) lead to the result

3p+ctu=0 (66.11)
from which we conclude that

p=0,u=0 (66.12)

and, therefore, that kK = 0.

Thus, de Sitter’s universe is Euclidean, but being empty is only of academic
interest. Although the model appears to be in a state of expansion, since no matter
is present, this phenomenon has no physical basis; indeed, it is possible to derive a
static metric for the model by carrying out certain tranformations on o and t (see
Exercises 7, No. 3). If the galaxies are represented by freely falling particles having
negligible mass and constant spatial coordinates, an expanding infinite cosmos is
obtained; however, each galactic observer is limited to a finite universe, since he
cannot penetrate beyond a certain distance called his event horizon (see Exercises
7, No. 4).

67. Friedmann universes

These models are construcied from equations (65.9)and (65.10) by puttingp = 0,

i.e. by treating the galactic gas as an incoherent dust cloud. We shall also put A to
zero.
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We first note that equations (65.11) and (65.14) reduce to the forms

Kkc*y = 3H? + 3kc?/S? (67.1)
(2g—1)H? = k¢?/S? (67.2)

It follows that
kc*p = 6qH? (67.3)

and hence that g can never be negative.

Equation (65.9) gives

25§+ 82 +ke* =0 (67.4)
Writing this equation in the form

:—t(ss'z) = —ke?$ (67.5)
we can integrate and obtain

58 = 2 (D - kS) (67.6)

D being constant.
Substitution in equation (65.10) now yields

uS? = 3D/kc? = constant (67.7)

showing that the constant D must be positive. This is the equation of conservation
of mass (see Exercises 7, No. 2). In the case of a finite cosmos, the total volume is
known to be 2n%S? and the total proper mass is accordingly 22283y, which is
conserved. This is to be expected, since there is no interaction between the
particles of the dust cloud and their proper masses therefore never change.

We shall next integrate equation (67.6), with & taking its three possible values,
separately.

(i) If k = 1, the equation is

$$2=c3(D-9) (67.8)
Changing the dependent variable from S to u by the transformation
S =4D(l —cosu) (67.9)
we have $ = Du sinu and equation (67.8) leads to the equation
$D(1 —cosu)u = ¢ (67.10)

This integrates immediately to the form
ct = $D(u —sinu) (67.11)

choosing ¢ to be zero when u = 0 (i.e. the origin of cosmical time is taken to be the
instant when S = 0). Equations (67.9) and (67.11) determine S as a function of ¢;
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0 nb/2c nD/¢

FiG. 9

since these equations are the well-known parametric equations for a cycloid, the
plot of S against ¢t must take this form (see Fig. 9).

Our conclusion is that the finite universe will expand froma singularityat: = 0
to a maximum radius D whenu = mand t = nD/2c, and will then contract back to
the singular state at u = 2n,t = aD/c. The actual behaviour in the vicinity of the
singularity 1s, of course, not predicted by our analysis, since p has been neglected
and the contribution of the radiation ignored.

(1) If k = 0, equation (67.6) gives

582 =c*D (67.12)
The variables separate and integration yields
S =9¢2Di /4 (67.13)

again taking t =0 at $=0. This universe expands from a singularity and
continues to do so indefinitely (Fig. 9). Space is Euclidean and the cosmos is open.
(i) If k = —1, equation (67.6) takes the form

$$2 =c}(D+9) (67.14)
As in the case k = 1, we change the variable to , this time by the transformation
S = iD(coshu —1) 67.15)

and integrate to find that
¢t = 1D (sinhu —u) (67.16)

taking v and t to be zero at S = 0. As in the previous case, the initial expansion is
never reversed and the universe is open (Fig. 9).
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It remains to calculate two constants of integration, viz. D and the value ¢, of ¢
in the present epoch. in terms of H, and g,.
Putting present values into equation (67.2), if k = 0 we get

2
B ke

S6=——— (67.17)
¢ (290 — ])th)
Equation {67.6) can be written in the form
H? = c*(D-kS)/S? (67.18)
Thus.
l
D=—S3H+kS, (67.19)
c
If k = 0, equation (67.17) now shows that
2
D= qoao =170 gy > dk=1
Hyg
67.20)

2¢ _
=F“lo(l_2qo) 320<go <t k= -1
0

If k = 0, equation {67.2) requires that g = 1 and equation (67.19) gives
D =S3H}/c? (67.21)
So. Ho are independent parameters for this model. However, S, is superfluous and
may be eliminated by transformation of the coordinate ¢ to ¢’ = S,0; S¢ then
disappears rom the metric. Equivalently, we may take S, = 1 and write equation

(67.13) in the final form
45 =9H2? (67.22)

The present age 1, of the universe is now calculable for the three types of model.

(i) If k = 1, go > 1, equation (67.9) shows that

1
cosug =1-28,/D=——1 (67.23)

do
having used equations (67.17) and (67.20). Equation (67.11) now yields the resuit
1 )
to=7-[40240 =1 *cos™Hgo' =D —(2go=7']  (67.24)
0
the inverse cosine being taken in the first or second quadrant. If values g, = 1.
1/Hy = 1.8 x 10'° years are substituted, we find 1, = 10'° years very nearly, i.e.
ten billion years.

(i) If k = —1, 0 < gy < 4, a similar calculation ieads to the result

1
to = H—[“ —2¢o) ' —goll —=2gg) *2cosh " '(gg ' —1)]  (67.25)
(1]
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Suppose we calculate g, from equation (67.3), taking u = 3 x 10" 28kgm ™! (j.e.
assuming all the matter has been attracted into the galaxies) and H, = 1.8
x 107 '85! Then g, = 0.025and the formula (67.24) gives t, = 1.6 x 10'° years
(16 billion years).

(i) Finally, if k = 0, g = 4, putting S = 1 into equation (67.22) gives
to = 2/(3H,) (67.26)

With 1/H, = 1.8 x 10'° years, this makes the present age of the cosmos to be
12 billion years.

For the early stage of cosmic expansion, the model’s failure to include the
contribution of the radiation renders it invalid. However, since this stage is
expected to be short (about 10° years), the corrections which need to be made to
the values of 1 calculated above to allow for this failure are negligible.

The stage of radiation dominance is studied in the next section.

68. Radiation model

During the early stages of cosmic expansion, it is believed that the dominating
factor was the electromagnetic radiation. In this section, we shall study a
simplified cosmological model, containing radiation alone, which will provide a
first approximation to this early state of the universe.

We shall assume that the radiation is isotropic for each galactic observer and
has energy density U (the same for all observers at a cosmical time ¢). Such an
observer is in a state of free fall and can be equipped with rectangular axes and
associated standard clocks, which behave locally like an inertial frame.
Minkowski coordinates y' can be defined in this frame and, with respect to these,
the observer’s 4-velocity is V = (0, ic) (section 15).

In this y-frame, the results of the special theory are applicable and, in particular,
equation (29.5) defines the energy-momentum tensor §;; for the radiation. We
shall assume that the time variations of the field components E,, H, of this
radiation are quite random and that there is no correlation between these
components. Thus, if a # f,

m(E,E))=0, m(H,Hz) =0 (68.1)

where m({] ) denotes the mean value. Also, since the radiation is isotropic, m(E2)
and m(H2) will be independent of a. Hence, taking mean values in equation
(29.16), we find

som(E3)+uom(H3)=§U (68.2)

U being the mean energy density of the radiation.

We can now calculate the mean values of the components of S;;. If a # §, it
follows from equations (29.14) and (68.1) that m(S,z) = 0. Also, since the
radiation is in a steady state, the rate of energy flow in any direction is zero and,
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hence, the mean values of the components ol the Poynting vector all vanish; i.e.
m(S,,) = 0.t is clear, therefore, that only the means of the diagonal components
Si1.82,. 853, 8,4 are non-zero and. for these, equations (29.13) and (29.16) give

1
m{S,,) = m(S,,} = m(Sy;) = seom(E2)+Spom(HY) = 3U (68.3)

m(Ss,) = = U (68.4)
A tensor cquation for S¥, valid in any frame, can now be written down, viz.
R N S B
=~ Yy iy 68.5)
S 352 + 39 {

where V'is the 4-velocity of the local galactic observer. U is uniquely defined and
is thus a 4-invariant. Hence, this equation certainly defines a contravariant tensor.
The equation is easily verified to give the mean components just calculated in
the y-frame. It is therefore valid in all frames. If the equation is compared with
equation (65.2) for a perfect fluid, it will be seen that the radiation behaves like a
perfect fluid of density U/c? and pressure U/3.

In the Robertson Walker frame, (V)= (0,0,0,1). Hence, the non-zero
components of the energy-momentum tensor in this frame are:

S'' = U —ka?)/3S?
§22 = U/(3§%0?)
§3** = U cosec? 0/(S20?)

S = Ut

{68.6)

Using the components of the Ricci tensor already calculated in section 65, the
Einstein equations for the model can now be calculated. They prove to be

2SS+ 5%+ ke2 —¢2AS? = —ikc?US? (68.7)

3($? + ke?y~c2AS? = kc?US? (68.8)

Since S will be comparatively small during this phase, even if A is non-zero, the

terms containing this constant will be negligible. We accordingly put A = 0. Also,

if k # 0, the term k¢-2 will be negligible by comparison with the terms 2SS and $2.
For. during the matter-dominated phase, equation (67.6) shows that

. D
52 = c2<—- - k) (68.9)
S
and kc? is small by comparison with $2 provided D/S > 1. But
D_DSo_ 24 .S
S SeS |21} S

having used equations (67.17) and (67.20). At the beginning of this phase, So/S is
large and it follows that D/S is large. Thus, kc? is negligible by comparison with

(68.10)
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S$? and, since $ takes cven larger values during the earlier radiation dominated
phase, we shall ncglect k¢? during this phase. We have proved, therefore, that in
this early stage of the cosmic expansion, the behaviour of the cosmos is
independent of the values of A and k.

Eliminating U between cquations (68.7) and (68.8), it is now found that
. d .
SS+SZ=(—§(SS)=0 {68.11)

Two integrations now yicld the results
S=4/5, S*=2a (68.12)
where A is constant. Substituting in equation (68.8), we find
Ke?U = 352/8% = 3/(41?) (68.13)

If we assume that during this phase the radiation is in thermal equilibrium with
the matter present, then it will possess a black-body spectrum and the
temperature 7 will be given in terms of the cnergy density U by Stefan’s law, viz.

U=ar* (68.14)

where a=75x10""Jm 3K "* is the Stefan-Boltzmann constant. Thus,
equation (68.13) leads to the following formula for T

3(,2 1.4 -
== — 1= 1527 2 x 10'°K 15
T <32nGa) t 52t x (68.15)

One second after the inception of the expansion, this formula indicates a
temperature of 1.52 x 10!'°K for the cosmos.

69. Particle and event horizons

Equation (64.7) determines the coordinate g of an object which is observed in our
telescopes at the present epoch 1, by light which was emitted by the object at time
t,. Since ¢, cannot be less than the time 1 = 0 at which the cosmic expansion
commenced (accepting the big-bang hypothesis), the most distant object which
we can observe today has coordinate ¢ given by

° do v di
e g = — 69.1
_{0 J(I—ka?) CL s (69D
The proper distance of such an object is therefore
’ do o dt
=S . =c¢S — 69.2
dy 0.[0 \/(l—k0'2) ¢ UJO S { )

dy is said to be the proper distance of the particle horizon.
In the case of the Friedmann model with k = + 1, equations (67.9)and (67.11)
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give
dit  ID(1 —cosu)du
=2 g 69.3
¢ S 1D(1 —cosu) du (69.3)
and, thus,
dy = Spu =L(2q —1)“'2cos“<-!——l) (69.4)
H o%o Hu 0 4o

by equations {67.17) and (67.23).
The reader is left to obtain the results

2c
dy=—- k=0 69.5
T (69.5)
¢ _ 1
dy =-—— (1 =2g¢)" ' 2 cosh '<——1),
H, 9o
ifk=—1 (69.6)

for the other values of k, in a similar manner.

In particular, if k = +1, qo =1, 1/H, = 1.8 x 10'° years, we calculate that
dy = 2.8 x 10'° light years.

Equation (64.7) can be utilized in an alternative manner. If an event occurs at
the point with coordinate o at the present epoch 14, we shall observe it at time 1,

provided
¢ do “di
- = - 69.7
L J{ —ka?) CL s ©>1

In the case of the Friedmann model with k = + 1, we must have t; < nD/c, since
the cosmos collapses toa point at ime nD/c;fork = Oor — 1,1, can be arbitrarily
large. Thus, the proper distance in the present epoch of the most distant event we
can ever hope to see is given by

S

where 1, = nD/cif k= +1,and t,,, = x ifk=00r — 1. Ifd, = x, then all
events happening in the present epoch will ultimately be obscrved in our
telescopes. d, is termed the proper distance of the event horizon.

In the case k = + 1, we calculate that

 max d
dy = ¢S, j X (69.8)

L

dy = Soluma —ty) = So (21 — uy)
c I
= - -(2g, — 1 "-Zcos"(——l> (69.9
H, 9o ) do )

provided the inverse cosine is taken in the range (n, 2n). With gy = 1,1/H, = 1.8
x 10'° years, it will be found that d, = 8.4 x 10'° light years. Light from events
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occurring at a greater proper distance will not have reached us before the cosmos
collapses to a singularity.

The cases k =0 and —1 both give an infinite value of d, and all events
happening today will, in these models, ultimately be observable on the earth.

Exercises 7

1. Translorming to a new radiai coordinate r by the equation ¢ = r/(1 +5kr?),
obtain the Robertson—Walker metric in the form

S 2
ds? = <_l - 'kr2> {dr? +r¥(d6% +sin?6d $?)} —c3dr?
e

2. From the conservation equation 7%, = 0, obtain the equation
d 3 .
—(uS*)+-5S*Sp=0
ar (uS°)+ pe: p

Deduce that, if p = 0, then g 1/S3.
3. Show that the de Sitter metric

ds? = AZexp(2HT)(do? + 02d6? + 6% sin? Bd ¢p?) — ¢*di?
can be transformed to the static form

dr? .
dSZ = T——I—:I—';rfl"—z' + I‘z(d()z + sm2 0d¢2)—<'zll —Hzrz,’('z)de
— /e

by the transformation equations

rexp(—HT) 1
6=- " - =T+ — log(l —Hrc?).
AG(0~Hc?) 7h o8 )
4. A photon is emitted from the point (o, 8, ¢)along the radius to the origin at
time t in the de Sitter universe whose metric is given in the previous exercise. Show
that the time taken to reach the origin is

1Io | HAacx (Ht)
H g P P .

Hence show that if the proper distance of the point from the origin at the time ¢ is
greater than ¢/H, the photon will never arrive at O.

5. Show that, for ali the Friedmann models with A = 0, p = 0. the luminosity
distance d, of a galaxy whose red shift is z is given by

¢

d =
‘ Hogq

5[‘]02+(‘10_1){ v (2q4z + ”_l}]-
0

If z is small, verify the expansion (64.14).
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6. Show that if A is not assumed to vanish in the Friedmann model, then S{1)
satisfies
58% = c*(D —kS+4AS?)

where D is a matter density parameter defined by the equation xc?uS* = 3D.
Show that the special case k = 0, D = 0 yields the de Sitter universe.

7. Sketch the graph of $52 against S for the Friedmann model with cosmical
constant (previous exercise) and deduce that (i) S increases from zero to a
maximum value and then decreases back to zero in the cases: @) k= +1, A
<4/(9D?), (b)k =0, A <0, (c)k = —1, A < 0; (ii) § increases steadily from
zero and tends to infinity in the cases: @k=+1,
A>4/(9D?),(b)k=0,A 20,(c) k= —1, A > 0. In case (i) (a), if A is positive,
show that there is also a solution in which S decreases to a non-zero minimum and
thereafter steadily increases towards infinity.

8. Ifk = + land A = 4/(9D?), show that the radius S of the Friedmann model
can first increase from zero to a value 1/ /A, when the cosmos attains the static
Einstein state (section 66) and then, if slightly disturbed from this state, S may
either decrease back to zero or continue to increase indefinitely. (This shows that
the static Einstein universe is unstable.)

9. A cosmos containing radiation. but no matter, is governed by the equations
(68.7) and (68.8). Show that

§28% = c*(D—kS* +5AS?)

where D is an energy density parameter defined by the equation 3D = xkUS*.
10. Sketch the graph of S?$? against S for the universe described in the
previous exercise and deduce that all the conclusions listed in exercise 7 are valid if
4/(9D?) is replaced by 3/(4D).
I1. Forthe universedescribed in exercise 9,ifk = 1,A = 3/(4D),and S = Oat:
= 0, prove that at any later time 1,

$?=2D{1—exp(—ct/ D)}

If S = \/(2D) at ¢ = 0, prove that the universe is static but unstable.
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