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Preface 

The revolt against the ancient world view of a universe centred upon the earth, 
which was initiated by Copernicus and further developed by Kepler, Galileo and 
Newton, reached its natural termination in Einstein's theories of relativity. 
Starting from the concept that there exists a unique privileged observer of the 
cosmos, namely man himself, natural philosophy has journeyed to the opposite 
pole and now accepts as a fundamental principle that all observers are equivalent, 
in the sense that each can explain the behaviour of the cosmos by application of 
the same set of natural laws. Another line of thought whose complete 
development takes place within the context of special relativity is that pioneered 
by Maxwell, electromagnetic field theory. Indeed, since the Lorentz transform­
ation equations upon which the special theory is based constitute none other than 
the transformation group under which Maxwell's equations remain of invariant 
form, the relativistic expression of these equations discovered by Minkowski is 
more natural than Maxwell's. In the history of natural philosophy, therefore, 
relativity theory represents the culmination of three centuries of mathematical 
modelling of the macroscopic physical world; it stands at the end of an era and is a 
magnificent and fitting memorial to the golden age of mathematical physics which 
came to an end at the time of the First World War. Einstein's triumph was also his 
tragedy; although he was inspired to create a masterpiece, this proved to be a 
monument to the past and its very perfection a barrier to future development. 
Thus, although all the implications of the general theory have not yet been 
uncovered, the barrenness of Einstein's later explorations indicates that the 
growth areas of mathematical physics lie elsewhere, presumably in the fecund soil 
of quantum and elementary-particle theory. 

Nevertheless, relativity theory, especially the special form, provides a found­
ation upon which all later developments have been constructed and it seems 
destined to continue in this role for a long time yet. A thorough knowledge of its 
elements is accordingly a prerequisite for all students who wish to understand 
contemporary theories of the physical world and possibly to contribute to their 
expansion. This being universally recognized, university courses in applied 
mathematics and mathematical physics commonly include an introductory 
course in the subject at the undergraduate level, usually in the second and third 
years, but occasionally even in the first year. This book has been written to 
provide a suitable supporting text for such courses. The author has taught this 
type of class for the past twenty-five years and has become very familiar with the 
difficulties regularly experienced by students when they first study this subject; 
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the identification of these perplexities and their careful resolution has therefore 
been one of my main aims when preparing this account. To assist the student 
further in mastering the subject, I have collected together a large number of 
exercises and these will be found at the end of each chapter; most have been set as 
course work or in examinations for my own classes and, I think, cover almost all 
aspects normally treated at this level. It is hoped, therefore, that the book will also 
prove helpful to lecturers as a source of problems for setting in exercise classes. 

When preparing my plan for the development of the subject, I decided to 
disregard completely the historical order of evolution of the ideas and to present 
these in the most natural logical and didactic manner possible. In the case of a 
fully established (and, indeed, venerable) theory, any other arrangement for an 
introductory text is unjustifiable. As a consequence. many facets of the subject 
which were at the centre of attention during the early years of its evolution have 
been relegated to the exercises or omitted entirely. For example, details of the 
seminal Michelson- Morley experiment and its associated calculations have not 
been included. Although this event was the spark which ignited the relativistic 
tinder, it is now apparent that this was an historical accident and that, being 
implicit in Maxwetrs principles of electromagnetism. it was inevitable that the 
special theory would be formulated near the turn of the century. Neither is the 
experiment any longer to be regarded as a crucial test of the theory. since the 
theory's manifold implications for all branches of physics have provided 
countless other checks, all of which have told in its favour. The early controversies 
attending the birth of relativity theory are, however, of great human interest and 
students who wish to follow these are referred to the books by Clark, HolTmann 
and Lanczos listed in the Bibliography at the end of this book. 

A curious feature of the history of the special theory is the persistence of certain 
paradoxes which arose shortly after it was first propounded by Einstein and 
which were largely disposed of at that time. In spite of this, they are rediscovered 
every decade or so and editors of popular scientific periodicals (and occasionally, 
and more reprehensibly, serious research journals) seem happy to provide space 
in which these old battles can be refought, thus generating a good deal of 
acrimony on all sides (and, presumably, improving circulation). The source of the 
paradoxes is invariably a failure to appreciate that the special theory is restricted 
in its validity to inertial frames of reference or an inability to jettison the 
Newtonian concept of a unique ordering of events in time. Complete books based 
on these misconceptions have been published by authors who should know 
better, thus giving students the unfortunate impression that the consistency of 
this system of ideas is still in doubt. I have therefore felt it necessary to mention 
some of these 'paradoxes' at appropriate points in the text and to indicate how 
they are resolved; others have been used as a basis for exercises, providing 
excellent practice for the student to train himself to think relativistically. 

Much of the text was originally published in 1962 under the title An 
Introduction to Tensor Calculus and Relativity. All these sections have been 
thoroughly revised in the light of my teaching experience, one or two sections 
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have been discarded as containing material which has proved to be of little 
importance for an understanding of the basics (e.g. relative tensors) and a number 
of new sections have been added (e.g. equations of motion of an elastic fluid, black 
holes. gravitational waves, and a more detailed account of the relationship 
between the metric and affine connections). But the main improvement is the 
addition of a chapter covering the application of the general theory to cosmology. 
As a result of the great strides made in the development of optical and, 
particularly, radio astronomy during the last twenty years, cosmological science 
has moved towards the centre of interest for physics and very few university 
courses in the general theory now fail to include lectures in this area. 

It is a common (and desirable) practice to provide separate courses in the special 
and general theories, the special being covered in the second or third under­
graduate year and the general in the final year of the undergraduate course or the 
first year of a postgraduate course. The book has been arranged with this in mind 
and the first four chapters form a complete unit, suitable for reading by students 
who may not progress to the general theory. Such students need not be burdened 
with the general theory of tensors and Riemannian spaces, but can acquire a 
mastery of the principles of the special theory using only the unsophisticated tool 
of Cartesian tensors in Euclidean (or quasi-Euclidean) space. In my experience, 
even students who intend to take a course in the general theory also benefit from 
exposure to the special theory in this form, since it enables them to concentrate 
upon the difficulties of the relativity principles and not to be distracted by 
avoidable complexities of notation. I have no sympathy with the teacher who, 
encouraged by the shallow values of the times, regards it as a virtue that his 
lectures exhibit his own present mastery of the subject rather than his 
appreciation of his students' bewilderment on being led into unfamiliar territory. 
All students should, in any case, be aware of the simpler form the theory of tensors 
assumes when the transformation group is restricted to be orthogonal. 

As a consequence of my decision to develop the special theory within the 
context of Cartesian tensors. it was necessary to reduce the special relativistic 
metric to Pythagorean form by the introduction of either purely imaginary 
spatial coordinates or a purely imaginary time coordinate for an event. I have 
followed Minkowski and put x4 = ict; thus, the metric has necessarily been taken 
in the form 

ds 2 = dx 1
2 +dx 2

2 +dx/ +dx4
2 = dx 2 +di +dz2 -c2 dt 2 

and ds has the dimension of length. I have retained this definition of the interval 
between two events observed from a freely falling frame in the general theory; this 
not only avoids confusion but, in the weak-field approximation, permits the 
distinction between covariant and contravariant components of a tensor to be 
eliminated by the introduction of an imaginary time. A disadvantage is that ds is 
imaginary for timelike intervals and the interval parameter s accordingly takes 
imaginary values along the world-line of any material body. Thus, when writing 
down the equations for the geodesic world-line of a freely falling body, it is 
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usually convenient to replaces by r, defined by the equations = icr, r being called 
the proper time and dr the proper time interval. However, it is understood 
throughout the exposition of the general theory that the metric tensor for space­
time g,i is such that ds 2 = Yii dx' dxi; a consequence is that the cosmical constant 
term in Einstein's equation of gravitation has a sign opposite to that taken by 
some authors. 

References in the text are made by author and year and have been collected 
together at the end of the book. 

Department of Mathematics, 
The University of Aston in Birmingham. 
May, 1981. 

D. F. LAWDEI\ 
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CHAPTER l 

Special Principle of Relativity. Lorentz 
Transformations 

I. Newton's laws of motion 

A proper appreciation of the physical content of Newton's three Ia ws of motion is 
an essential prerequisite for any study of the special theory of relativity. It will be 
shown that these laws are in accordance with the fundamental principle upon 
which the theory is based and thus they will also serve as a convenient 
introduction to this principle. 

The first law states that any particle which is not subjected to forces moves along 
a straight line at constant speed. Since the motion of a particle can only be specified 
relative to some coordinate frame of reference, this statement has meaning only 
when the reference frame to be employed when observing the particle's motion 
has been indicated. Also, since the concept of force has not, at this point, received 
a definition, it will be necessary to explain how we are to judge when a particle is 
'not subjected to forces'. It will be taken as an observed fact that if rectangular 
axes are taken with their origin at the centre of the sun and these axes do not 
rotate relative to the most distant objects known to astronomy, viz. the 
extragalactic nebulae, then the motions of the neighbouring stars relative to this 
frame are very nearly uniform. The departure from uniformity can reasonably be 
accounted for as due to the influence of the stars upon one another and the 
evidence available suggests very strongly that if the motion of a body in a region 
infinitely remote from all other bodies could be observed, then its motion would 
always prove to be uniform relative to our reference frame irrespective of the 
manner in which the motion was initiated. 

We shall accordingly regard the first law as asserting that, in a region of space 
remote from all other matter and empty save for a single test particle, a reference 
frame can be defined relative to which the particle will always have a uniform 
motion. Such a frame will be referred to as an inertia/frame. An example of such 
an inertial frame which is conveniently employed when discussing the motions of 
bodies within the solar system has been described above. However, if S is any 
inertial frame and Sis another frame whose axes are always parallel to those of S 
but whose origin moves with a constant velocity u relative to S, then S also is 



2 

inertial. For. ih,li are the velocities of the test particle relative to S, S respectively, 
then 

li = "-u ( 1.1 J 

and, since v is always constant, so is v. It follows, therefore, that a frame whose 
origin is at the earth's centre and whose axes do not rotate relative to the stars can, 
for most practical purposes, be looked upon as an inertial frame, for the motion of 
the earth relative to the sun is very nearly uniform over periods of time which are 
normally the subject of dynamical calculations. In fact, since the earth's rotation 
is slow by ordinary standards, a frame which is fixed in this body can also be 
treated as approximately inertial and this assumption will only lead to 
appreciable errors when motions over relatively long periods of time are being 
investigated, e.g. Foucault's pendulum, long-range gunnery calculations. A frame 
attached to a non-rotating spaceship, whose rocket motor is inoperative and 
which is moving in a negligible gravitational field (e.g. in interstellar space), 
provides another example of an inertial frame. Since the stars of our galaxy move 
uniformly relative to one another over very long periods of time, the frames 
attached to them will all be inertial provided they do not rotate relative to the 
other galaxies. 

Having established an inertial frame, if it is found by observation that a particle 
does not have a uniform motion relative to the frame, the lack of uniformity is 
attributed to the action of ajorce which is exerted upon the particle by some 
agency. For example, the orbits of the planets are considered to be curved on 
account of the force of gravitational attraction exerted upon these bodies by the 
sun and when a beam of charged particles is observed to be deflected when a bar 
magnet is brought into the vicinity, this phenomenon is understood to be due to 
the magnetic forces which are supposed to act upon the particles. If " is the 
particle's velocity relative to the frame at any instant t, its acceleration a = d" /d t 
will be non-zero if the particle's motion is not uniform and this quantity is 
accordingly a convenient measure of the applied force f. We take, therefore, 

f ex: a 

or f = ma ( 1.2) 

where m is a constant of proportionality which depends upon the particle and is 
termed its mass. The definition of the mass of a particle will be given almost 
immediately when it arises quite naturally out of the third law of motion. 
Equation (1.2) is essentially a definition of force relative to an inertial frame and is 
referred to as the second law of motion. It is sometimes convenient to employ a 
non-inertial frame in dynamical calculations, in which case a body which is in 
uniform motion relative to an inertial frame and is therefore subject to no forces, 
will nonetheless have an acceleration in the non-inertial frame. By equation ( 1.2), 
to this acceleration there corresponds a force, but this will not be attributable to 
any obvious agency and is therefore usually referred to as a 'fictitious' force. Well-
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known examples of such forces are the centrifugal and Corio lis forces associated 
with frames which are in uniform rotation relative to an inertial frame, e.g. a 
frame rotating with the earth. By introducing such 'fictitious' forces, the second 
law of motion becomes applicable in all reference frames. Such forces are called 
inertial j(Jrces (see Section 44). 

According to the third law of motion, when two particles P and Q interact so as 

to influenl'e one another's motion, the forl'e exerted by P on Q is equal to that 
exerted hy Q on P but is in the opposite sense. Defining the momentum of a particle 
relative to a reference frame as the product of its mass and its velocity, it is proved 
in elementary textbooks that the second and third laws taken together imply that 
the sum of the momenta of any two particles involved in a collision is conserved. 
Thus, if m 1, m2 are the masses of two such particles and u1, u2 are their respective 
velocities immediately before the collision and" 1, " 2 are their respective velocities 
immediately afterwards. then 

I. C. 

m1 u1 +m2 u2 = m1 l' 1 +m 2 v2 

m2 
·-·(u2 -v 2 ) = v1 -u 1 
m. 

( 1.3) 

(1.4) 

This last equation implies that the vectors u2 - v2 , " 1 - u 1 are parallel, a result 
which has been checked experimentally and which constitutes the physical 
content or the third law. However, equation ( 1.4) shows that the third law is also, 
in part, a specification of how the mass of a particle is to be measured and hence 
provides a definition for this quantity. For 

m2 I"• -u.l 
m1 \~2 - v2 j 

( 1.5) 

and hence the ratio of the masses of two particles can be found from the results of 
a collision experiment. If, then, one particular particle is chosen to have unit mass 
(e.g. the standard kilogramme), the masses of all other particles can, in principle, 
be determined by permitting them to collide with this standard and then 
employing equation ( 1.5). 

2. Covariance of the laws of motion 

It has been shown in the previous section that the second and third laws are 
essentially definitions of the physical quantities force and mass relative to a given 
reference frame. In this section, we shall examine whether these definitions lead to 
different results when different inertial frames are employed. 

Consider first the definition of mass. If the collision between the particles m., 
m2 is observed from the inertial frameS, let ii 1, ii2 be the particle velocities before 
the collision and ~ •• v2 the corresponding velocities after the collision. By 
equation (1.1), 

etc. (2.1) 
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and hence 

(2.2) 

It follows that if the vectors" 1 - u1, u2 - v2 are parallel, so arc the vectors v1 - ii 1, 

ii 2 - ~ 2 and consequently that, in so far as the third law is experimentally 
verifiable, it is valid in all inertial frames if it is valid in one. Now let m1 , m2 be the 
particle masses as measured inS: Then, by equation (1.5), 

(2.3) 

But, if the first particle is the unit standard, then m1 = m1 = I and hence 

(2.4) 

i.e. the mass of a particle has the same value in all inertial frames. We can express 
this by saying that mass is an invariant relative to transformations between 
inertial frames. 

By differentiating equation (1.1) with respect to the time 1, since u is 
constant it is found that 

ii=a (2.5) 

where a. a are the accelerations of a particle relative to S, S respectively. Hence, by 
the second law ( 1.2). since ni = m, it follows that 

f= f (2.6) 

i.e. the force acting upon a particle is independent of the inertial frame in which it 
is measured. 

It has therefore been shown that equations (1.2), (1.4) take precisely the same 
form in the two frames, S, S, it being understood that mass, acceleration and force 
are independent of the frame and that velocity is transformed in accordance with 
equation ( 1.1 ). When equations preserve their form upon transformation from 
one reference frame to another, they are said to be covariant with respect to such a 
transformation. Newton's laws of motion are covariant with respect to a 
transformation between inertial frames. 

3. Special principle of relativity 

The special principle of relativity asserts that all physical laws are covariant with 
respect to a transformation between inertia/frames. This implies that all observers 
moving uniformly relative to one another and employing inertial frames will be in 
agreement concerning the statement of physical laws. No such observer, 
therefore, can regard himself as being in a special relationship to the universe not 
shared by any other observer employing an inertial frame; there are no privileged 
observers. When man believed himself to be at the centre of creation both 
physically and spiritually. a principle such as that we have just enunciated would 
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have been rejected as absurd. However, the revolution in attitude to our physical 
environment initiated by Copernicus has proceeded so far that today the 
principle is accepted as eminently reasonable and very strong evidence contradict­
ing the principle would have to be discovered to disturb it as the foundation upon 
which theoretical physics is based. It is this principle which guarantees that 
observers inhabiting distant planets, belonging to stars whose motions may be 
very different from that of our own sun, will nevertheless be able to explain their 
local physical phenomena by application of the same physical laws we use 
ourselves. 

It has been shown already that Newton's laws of motion obey the principle. Let 
us now transfer our attention to another set of fundamental laws governing non­
mechanical phenomena, viz. Maxwell's laws of electrodynamics. These are more 
mmplex than the laws of Newton and are most conveniently expressed by the 
equations 

curl E = -c8jtr 

l:url H == j + i'D I i:r 
div D = p 

div 8 = 0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where E, H are the electric and magnetic mtens1t1es respectively, D is the 
displacement, 8 is the magnetic induction, j is the current density and p is the 
charge density (SI units arc being used). Experiment confirms that these 
equations are valid when any inertial frame is employed. The most famous such 
experiment was that carried out by Michelson and Morley, who verified that the 
velocity of propagation of light waves in any direction is always measured to be 
c ( = 3 x 108 m s- 1) relative to an apparatus stationary on the earth. As is well 
known, light has an electromagnetic character and this result is predicted by 
equations (3.1H3.4). However, the velocity of the earth in its orbit at any time 
differs from its velocity six months later by twice the orbital velocity, viz. 60 kmjs 
and thus, by taking measurements of the velocity of light relative to the earth on 
two days separated by this period of time and showing them to be equal, it is 
possible to confirm that Maxwell's equations conform to the special principle of 
relativity. This is effectively what Michcbon and Morley did. However, this 
interpretation of the results of their experiment was not accepted immediately, 
since it was thought that electromagnetic phenomena were supported by a 
medium called the aether and that Maxwell's equations would prove to be valid 
only in an inertial frame stationary in this medium, i.e. the special principle of 
relativity was denied for electromagnetic phenomena. It was supposed that an 
'aether wind' would blow through an inertial frame not at rest in the aether and 
that this would have a disturbing effect on the propagation of electromagnetic 
disturbances through the medium, in the same way that a wind in the atmosphere 
affects the spread of sound waves. In such a frame, Maxwell's equations would (it 
was surmised) need correction by the inclusion of terms involving the wind 
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velocity. That this would imply that terrestrial electrical machin_ery would behave 
differently in winter and summer does not appear to have ra1sed any doubts! 

After Michelson and Morley's experiment, a long controversy ensued and, 
though this is of great historical interest, it will not be recounted in this book. The 
special principle is now firmly established and is accepted on the grounds that the 
conclusions which may be deduced from it are everywhere found to be in 
conformity with experiment and also because it is felt to possess a priori a high 
degree of plausibility. A description of the steps by which it ultimately came to be 
appreciated that the principle was of quite general application would therefore be 
superfluous in an introductory text. It is, however, essential for our future 
development of the theory to understand the prime difficulty preventing an early 
acceptance of the idea that the electromagnetic laws are in conformity with the 
special principle. 

Consider the two inertial frames S, S. Suppose that an observer employing S 
measures the velocity of a light pulse and finds it to be c.lfthe velocity of the same 
light pulse is measured by an observer employing the frame S: let this be c. Then, 
by equation ( 1.1 ), 

c = c -u (3.5) 

and it is clear that, in general, the magnitudes of the vectors c, c will be different. It 
appears to follow, therefore, that either Maxwell's equations (3.1}-(3.4) must be 
modified, or the special principle of relativity abandoned for electromagnetic 
phenomena. Attempts were made (e.g. by Ritz) to modify Maxwell's equations, 
but certain consequences of the modified equations could not be confirmed 
experimentally. Since the special principle was always found to be valid, the only 
remaining alternative was to reject equation (1.1) and to replace it by another in 
conformity with the experimental result that the speed of light is the same in all 
inertial frames. As will be shown in the next section, this can only be done at the 
expense of a radical revision of our intuitive ideas concerning the nature of space 
and time and this was very understandably strongly resisted. 

4. Lorentz transformations. Minkowski space-time 

The argument of this section will be founded on the following three postulates: 
Postulate /. A particle free to move under no forces has constant velocity in 

any inertial frame. 
Postulate 2. The speed of light relative to any inertial frame is c in all 

directions. 
Postulate 3. The geometry of space is Euclidean in any inertial frame. 
Let the reference frameS comprise rectangular Cartesian axes Oxyz. We shall 

assume that the coordinates of a point relative to this frame are measured by the 
usual procedure and employing a measuring scale which is stationary in S (it is 
necessary to state this precaution, since it will be shown later that the length of a 
bar is not independent of its motion). It will also be supposed that standard 
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atomic clocks, stationary relative to S, are distributed throughout space and are 

all synchronized with a master-clock at 0. A satisfactory synchronization 

procedure would be as follows: Warn observers at all clocks that a light source at 

0 will commence radiating at c = c0 . When an observer at a point P first receives 

light from this source, he is to set the clock at P to read c0 + OP/c, i.e. it is assumed 

that light travels with a speed c relative to S,as found by experiment. The position 

and time of an event can now be specified relative to S by four coordinates 
(x, _r, z, c), c being the time shown on the clock which is contiguous to the event. 

We shall often refer to the four numbers (x, y, z, c) as an erent. 
Let Oxyz be rectangular Cartesian axes determining the frame S(to be precise, 

these are rectangular as seen by an observer stationary in S) and suppose that 

clocks at rest relative to this frame are synchronized with a master at 0. Any event 

can now be fixed relative to Sby four coordinates (x, y, z, T), the space coordinates 

being measured by scales which are at rest in Sand the time coordinate by the 

contiguous clock at rest inS. If (x, y, z, 1), (x, }·, z, i) relate to the same event, in 

this section we are concerned to find the equations relating these corresponding 

coordinates. It is helpful to think of these transformation equations as a 

dictionary which enables us to translate a statement relating to any set of events 

from the $-language to the S-language (or vice versa). 
The possibility that the length of a scale and the rate of a clock might be affected 

by uniform motion relative to a reference frame was ignored in early physical 

theories. Velocity measurements were agreed to be dependent upon the reference 

frame, but lengths and time measurements were thought to be absolute. In 
relativity theory, as will appear, very few quantities are absolute, i.e. are 

independent of the frame in which the measuring instruments are at rest. 
To comply with Postulate I, we shall assume that each of the coordinates 

(x, y, z, f) is a linear function of the coordinates (x, y, z, 1). The inverse relation­

ship is then of the same type. A particle moving uniformly in S with velocity 

(v,, ry, v,) will have space coordinates (x, y, z) such that 

(4.1) 

If linear expressions in the coordinates (x, y, z, T) are now substituted for 
(x, y, z, t ), it will be found on solving for (x, y, z,) that these quantities are linear in 
c and hence that the particle's motion is uniform relative to S. In fact, it may be 

proved that only a linear transformation can satisfy the Postulate I. 
Now suppose that at the instant c = c0 a light source situated at the point P 0 

(x0 , y0 , z0 ) in S radiates a pulse of short duration. At any later instant c, the 

wavefront will occupy the sphere whose centre is P 0 and radius c(t- c0 ). This has 
equation 

(4.2) 

Let (x0 , y0 , z0 ) be the coordinates of the light source as observed from Sat the 
instant T = 70 the short pulse is radiated. At any later instant T, in accordance with 
Postulate 2, the wavefront must also appear from Sto occupy a sphere of radius 
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c(i"- 10 ) and centre (x0 , y0 , z0 ). This has equation 

(.x -.Xo)2 + (y- Yol2 + (i -:Zo)2 = c2(c -lol2 (4.3) 

Equations (4.2), (4.3) describe the same set of events in languages appropriate to S, 
S respectively. It follows that the equations relating the coordinates (x, y, z, t), 

(.X, y, z, T) must be so chosen that, upon substitution for the 'barred' quantities 
appearing in equation (4.3) the appropriate linear expressions in the 'unbarred' 
quantities, equation (4.2) results. 

A mathematical device due to Minkowski will now be employed. We shall 
replace the time coordinate c of any event observed in S by a purely imaginary 
coordinate x 4 = kt (i = J - 1 ). The space coordinates (x, y, z) of the event will 
be replaced by (x., x 2, x3 ) so that 

(4.4) 

and any event is then determined by four coordinates x1(i = I, 2, 3, 4). A similar 
transformation to coordinates x1 will be carried out inS. Equations (4.2), (4.3) can 
then be written 

4 

L (X; - xiO )2 = 0 (4.5) 
i:;; I 

4 

L (x -xi0)2 = o (4.6) 
i =I 

The X; are to be linear functions of the x 1 and such as to transform equation (4.6) 
into equation (4.5) and hence such that 

4 4 

L (x,- .X;0 )
2 

--+ k L (x1 - xi0)2 (4.7) 
i = t i = t 

k can only depend upon the relative velocity of SandS. It is reasonable to assume 
that the relationship between the two frames is a reciprocal one, so that, when the 
inverse transformation is made from S to S, then 

4 4 

L (x;- xi0) 2 
.... k L (x,- .X10 )

2 (4.8) 
I= I i =I 

But the transformation followed by its inverse must leave any function of the 
coordinates X; unaltered and hence k 2 = I. In the limit, as the relative motion of S 
and Sis reduced to zero, it is clear that k .... + I. Hence k # - I and we conclude 
that k is identically unity. 

The x 1 will now be interpreted as rectangular Cartesian coordinates in a four­
dimensional Euclidean space which we shall refer to as ~4 . This space is termed 
Minkowski space-time. The left-hand member of equation (4.5) is then the square 
of the 'distance' between two points having coordinates x,, x,0 . It is now clear that 
the x, can be interpreted as the coordinates of the point x, referred to some other 
rectangular Cartesian axes in 8 4 . For such an interpretation will certainly enable 
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us to satisfy the requirement (4.7) (with k = I). Also, the x;, .x; will then be related 
by equations of the form 

4 

X;= I aiix1+b; 
j = I 

(4.9) 

where i = I, 2, 3, 4 and the aiJ, b, are constants and this relationship is linear. The 
h; are the coordinates of the origin of the first set of rectangular axes relative to the 
second set. The a;1 will be shown to sati~fy l:ertain idcntitics in Chapter 2 
(equations (8.14), (8.15)). It is proved in algebra texts that the relationship 
between the x; and X; must be of the form we are assuming, if it is (i) linear and (ii) 
such as to satisfy the requirement (4. 7). 

Changing back from the x;. X; to the original coordinates of an event by 
equations (4.4), the equations (4.9) provide a means of relating space and time 
measurements inS with the corresponding measurements inS. Subject to certain 
provisos (e.g. an event which has real coordinates inS. must have real coordinates 
inS), this transformation will be referred to as the general Lorentz transj(Jrmation. 

5. The special Lorentz transformation 

We shall now investigate the special Lorentz transformation obtained by 
supposing that the x;-axes in Iff 4 are obtained from the X;·axes by a rotation 
through an angle (1 parallel to the x 1 x4 -plane. The origin and the x 2, x3-axes are 
unaffected by the rotation and it will be clear after consideration of Fig. I 
therefore that 

x1 = x 1 COS(J. +x4 sin~ 
x4 = - x. sin ex+ x4 cos ex 

fiG. I 

(5.1) 
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Employing equations (4.4), these transformation equations may be written 

x = xcoscx + ict sin:x 
id= -xsin:x+ictcoscx 

~ = y} 
z = z (5.2) 

To interpret the equations (5.2), consider a plane which is stationary relative to 
the f frame and has equation 

ax+by+cz+{T = o 
for all f. Its equation relative to the S frame will be 

(iicoscx)x+by+ez+d+icciisincx = 0 

(5.3) 

(5.4) 

at any fixed instant c. In particular, if ii = b = d = 0, this is the coordinate plane 
Oxy and its equation relative to Sis z = 0, i.e. it is the plane Oxy. Again, if b = c 
= d = 0, the plane is Oyz and its equation inS is 

x = -icttan:x (5.5) 

i.e. it is a plane parallel to Oyz displaced a distance -icc tan :x along Ox. Finally, if 
ii = (· = d = 0, the plane is Ozx and its equation with respect to Sis y = 0, i.e. it is 
the plane Ozx. We conclude, therefore, that the Lorentz transformation 
equations (5.2) correspond to the particular case when the coordinate planes 
comprising S are obtained from those comprising S at any instant t by a 
translation along Ox a distance - ict tan ex (Fig. 2). Thus, if u is the speed of 
translation of S relative to S, 

u = -ictancx (5.6) 

It should also be noted that the events 

x=y=z=t=~ x=y=i=l=O 

y y 

FIG. 2 
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correspond and hence that, at the instant 0 and 0 coincide, the SandS clocks at 
these points are supposed set to have zero readings; all other clocks are then 
synchronized with these. 

Equation (5.6) indicates that IX is imaginary and is directly related to the speed 
of translation. We have tan IX = iu/c and hence 

(5.7) 

Substituting in the equations (5.2), the special Lorentz transformation is obtained 
in its final form, viz. 

x = P(x -ut) 
T = P(t - ux/c 2

) 

~ = y} 
z=z (5.8) 

where P = (l-u 2jc2
)- 112 . 

If u is small by comparison with c, as is generally the case, these equations may 
evidently be approximated by the equations 

x = x -ut 

t=l 
~ = y} 
z = z 

(5.9) 

This set of equations, called the special Galilean transformation equations, is, of 
course, the set which was assumed to relate space and time measurements in the 
two frames in classical physical theory. However, the equation T = 1 was rarely 
stated explicitly, since it was taken as self-evident that time measurements were 
absolute, i.e. quite independent of the observer. It appears from equations (5.8) 
that this view of the nature of time can no longer be maintained and that, in fact, 
time and space measurements are related, as is shown by the dependence ofT upon 
both 1 and x. This revolutionary idea is also suggested by the manner in which the 
special Lorentz transformation has been derived, viz. by a rotation of axes in a 
manifold which has both spacelike and timelike characteristics. However, this 
does not imply that space and time are now to be regarded as basically similar 
physical quantities, for it has only been possible to place the time coordinate on 
the same footing as the space coordinates in tf 4 by multiplying the former by i. 
Since x4 must always be imaginary, whereas x 1, x 2 , x 3 are real, the fundamentally 
different nature of space and time measurements is still maintained in the new 
theory. 

If u > c, both x and cas given by equations (5.8) are imaginary. We conclude 
that no observer can possess a velocity greater than that of light relative to any 
other observer. 

If equations (5.8) are solved for (x, y, z, c) in terms of (x, y, z, T), it will be found 
that the inverse transformation is identical with the original transformation, 
except that the sign ofu is reversed. This also follows from the fact that the inverse 
transformation corresponds to a rotation of axes through an angle -IX in 
space-·time. Thus, the frame S has velocity - u when observed from S. 
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6. Fitzgerald contraction. Time dilation 

In the next two sections, we shall explore some of the more elementary physical 
consequences of the transformation equations (5.8). 

Consider first a rigid rod stationary in Sand lying along the x-axis. Let x 
== x 1 , x = x2 at the two ends of the bar so that its length as measured in Sis given 
by 

(6.1) 

In the frame S, the bar is moving with speed u and, to measure its length, it is 
necessary to observe the positions of its two ends at the same instant t. Suppose 
chalk marks are made on the x-axis at x = x 1, x = x2 , opposite the two ends, at 
the instant t. The making of these marks constitutes a pair of events with 
space-time coordinates (x 1, t), (x 2,t) inS. InS, this pair of events must have 
coordinates (x 1, T.), (x 2 , 12 ). Equations (5.8) now require that 

(6.2) 

But x 2 - x 1 = I is the length of the bar as measured m S and it follows by 
subtraction of equations (6.2) that 

(6.3) 

The length of a bar accordingly suffers contraction when it is moved longitudin­
ally relative to an inertial frame. This is the Fitzgerald contraction. 

This contraction is not to be thought of as the physical reaction of the rod to its 
motion and as belonging to the same category of physical effects as the 
contraction of a metal rod when it is cooled. It is due to a changed relationship 
between the rod and the instruments measuring its length. lis a measurement 
carried out by scales which are stationary relative to the bar, whereas I is the result 
of a measuring operation with scales which are moving with respect to the bar. 
Also, the first operation can be carried out without the assistance of a clock, but 
the second operation involves simultaneous observation of the two ends of the 
bar and hence clocks must be employed. In classical physics, it was assumed that 
these two measurement procedures would yield the same result, since it was 
supposed that a rigid bar possessed intrinsically an attribute called its length and 
that this could in no way be affected by the procedure employed to measure it. It is 
now understood that length, like every other physical quantity, is defined by the 
procedure employed for its measurement and that it possesses no meaning apart 
from being the result of this procedure. From this point of view, it is not 
surprising that, when the procedure must be altered to suit the circumstances, the 
result will also be changed. It may assist the reader to adopt the modern view of 
the Fitzgerald contraction if we remark that the length of the rod considered 
above can be altered at any instant by simply changing our minds and 
commencing to employ the S frame rather than the S frame. Clearly, such a 
change of mathematical description can have no physical consequences. 
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Consider again the two events when chalk marks are made on the x-axis. 
Applying equations (5.8) to the space-time coordinates of the events in the two 
frames, the following equations are obtained: 

(6.4) 

These equations show that 11 f T2 ; i.e. although the events are simultaneous inS, 
they are not simultaneous in S: The concept of simultaneity is accordingly also a 
relative one and has no absolute meaning as was previously thought. 

The registration by the clock moving with 0 of the times / 1,1 2 constitutes two 
events having coordinates (0, 0, 0, / 1 ), (0, 0, 0, T2 ) respectively inS: Employing the 
inverse transformation to (5.8), it follows that the times 11, t 2 of these events as 
measured in S are given by 

(6.5) 

and hence that 
(6.6) 

This equation shows that the clock moving with 0 will appear from S to have its 
rate reduced by a factor J (I - u2 jc 2

). This is the rime dilation effect. 
Since any physical process can be employed as a clock, the result just obtained 

implies that all physical processes will evolve more slowly when observed from a 
frame relative to which they are moving. Thus, the rate of decay of radioactive 
particles present in cosmic rays and moving with high velocities relative to the 
earth has been observed to be reduced by exactly the factor predicted by equation 
(6.6). 

It may also be deduced that, if a human passenger were to be launched from the 
earth in a rocket which attained a speed approaching that of light and after 
proceeding to a great distance returned to the earth with the same high speed, 
suitable observations made from the earth would indicate that all physical 
processes occurring within the rocket, including the metabolic and physiological 
processes taking place inside the passenger's body, would sutTer a retardation. 
Since all physical processes would be affected equally, the passenger would be 
unaware of this effect. Nonetheless, upon return to the .earth he would find that 
his estimate of the duration of the flight was less than the terrestrial estimate. It 
may be obJected that the passenger is entitled to regard himself as having been at 
rest and the earth as having suffered the displacement and therefore that the 
terrestrial estimate should be less than his own. This is the dock paradox. The 
paradox is resolved by observing that a frame moving with the rocket is subject to 
an acceleration relative to an inertial frame and consequently cannot be treated as 
inertial. The results of special relativity only apply to inertial frames and the 
rocket passenger is accordingly not entitled to make use of them in his own frame. 
As will be shown later, the methods of general relativity theory are applicable in 
any frame and it may be proved that, if the passenger employs these methods, his 
calculations will yield results in agreement with those obtained by the terrestrial 
observer. 
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Another clock paradox which requires more thought to resolve, can be stated 
thus: The clock at 0 runs slow when compared with 0. But the frame S may be 
taken as the rest frame and then a similar argument proves that the moving clock 
0 goes slow when compared with 0. This is a contradiction. Only inertial frames 
are involved, so that the paradox cannot be disposed of by rejecting one of the two 
calculations. Instead, it must be appreciated that a direct comparison of two 
clocks at different points in space cannot be made; the statement '0 runs slow by 
comparison with 0' needs amplification. The meaning special relativity theory 
gives to this sentence is: 0 is found to run slow when it is compared with the 
successive synchronized clocks, belonging to the frameS, with which it coincides 
during its motion. Similarly, '0 runs slow compared with 0' must be expanded to 
'0 runs slow when compared with the successive synchronized clocks belonging 
to S with which it coincides during its motion'. There is no contradiction between 
these expanded statements (see Exercise 19 at the end of this chapter). 

7. Spacelike and timelike intervals. Light cone 

We have proved in section 4 that if xi, Xm are the coordinates in Minkowski 
space-time of two events, then 

4 

L (xi- Xiol
2 (7.1) 

i = I 

is invariant, i.e. has the same value for all observers employing inertial frames and 
thus rectangular axes in space-time. Reverting by equations (4.4) to the ordinary 
space and time coordinates employed in an inertial frame, it follows that 

(x- Xo)z + (y- Yolz + (z- Zo)z- cz (I- lo)z (7.2) 

is invariant for all inertial observers. 
Thus, if (x, y, z, 1), (x0 , y0 , z0 , 10 ) are the coordinates of two events relative to 

any inertial frameS and we define the proper time inten·a/ r between the events by 
the equation 

(7.3) 

then r is an invariant for the two events. Two observers employing different 
inertial frames may attribute different coordinates to the events, but they will be 
in agreement concerning the value of r. 

Denoting the time interval between the events by .1t and the distance between 
them by M, both relative to the same frame S and positive, it follows from 
equation (7.3) that 

(7.4) 

Suppose that a new inertial frame Sis now defined, moving in the direction of the 
line joining the events with speed M I dl. This will only be possible if M jdt < c. 
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Relative to this frame the events will occur at the same point and hence M = 0. 
By equation (7.4), therefore, 

(7.5) 

i.e. the proper time interval between two events is the ordinary time interval 
measured in a frame (if such exists) in which the events occur at the same space 
point. In this case, it is clear that r 2 > 0 and the proper time interval between the 
events is said to be time/ike. 

Suppose, if possible, that a frame Scan be chosen relative to which the events 

are simultaneous. In this frame ~~ = 0 and 

(7.6) 

Thus r 2 < 0, and, in any frame, ~dj~t >c. r is then purely imaginary and the 
interval between the events is said to be space/ike. 

If the interval is timelike, ~dj~t < c and it is possible ror a material body to 
be present at both events. On the other hand, if the interval is spacelike, M/ ~t > c 
and it is not possible for such a body to be present at both events. The 
intermediate case is when M j ~~ = c and then r = 0. Only a light pulse can be 
present at both events. It also follows that the proper time interval between the 
transmission and reception of a light signal is zero. 

We shall now represent the event (x, y, z, c) by a point having these coordinates 
in a four-dimensional space. This space is also often referred to as Minkowski 
space- time but, unlike the space-time continuum introduced in section 4, it is not 
Euclidean. However, this representation has the advantage that the coordinates 
all take real values and it is therefore more satisfactory when diagrams are to be 
drawn. Suppose a particle is at the origin 0 of Sat 1 = 0 and commences to move 
along Ox with constant speed u. Its y- and z-coordinates will always be zero and 
the representation of its motion in space-time will be confined to the xt-plane. In 
this plane, its motion will appear as the straight line QP, Q being the point x = y 

= z = 1 = 0 (Fig. 3). QP is called the world-line of the particle. If L PQ1 = 0, 
tan() = u. But I u I ~ c and hence the world-line of the particle must lie in the 
sector AQB, where L AQB = 2:x and tan IX = c. Similarly, the world-line of a 
particle which arrives at 0 at t = 0 after moving along Ox, must lie in the sector 
A'QB'. It follows that any event in either of these sectors must be separated from 
the event Q by a timelike interval, since a particle can be present at both events. 
Events in the sectors AQB', A'QB are separated from Q by spacelike intervals, 
since it is impossible for a particle to be present at such an event and also at Q. 
A' A, B'B are the world-lines of light signals passing through 0 at t = 0 and being 
propagated in the directions of the positive and negative x-axis respectively. 

For any event in AQB, t > 0, i.e. it is in the future with respect to the event Q 
when the frame S is being employed. However, by no choice of frame can it be 
made simultaneous with Q, for this would imply a space! ike interval. A fortiori, in 
no frame can it occur prior to Q. The sector AQB accordingly contains events 
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which are in the absolutejuture with respect to the event Q. Similarly, all events in 
the sector A' Q B' are in the absolute past with respect to Q. On the other hand, 
events lying in the sectors AQB', A'QB are separated from Q by spacelike 
intervals and can all be made simultaneous with Q by proper choice of inertial 
frame. These events may occur before or after Q depending upon the frame being 
used. These two sectors defme a region of space-time which will be termed the 
conditional present. 

Since no physical signal can have a speed greater than c, the world-line of any 
such signal emanating from Q must lie in the sector AQB. It follows that the event 
Q can be the physical cause of only those events which are in the absolute future 
with respect to Q. Similarly, Q can be the effect of only those events in its absolute 
past. Q cannot be casually related to events in its conditional present. 

This state of affairs should be contrasted with the essentially simpler situation 
of classical physics where there is no upper limit to the signal velocity and AA', 
BB' coincide along the x-axis. Past and future are then separated by a perfectly 
precise present in which events all have the time coordinate t = 0 for all observers. 

In the four-dimensional space Qxyzt, the three regions of absolute past, 
absolute future and conditional present are separated from one another by the 
hyper-cone 

(7.7) 

A light pulse transmitted from Q will have its world-line on this surface, which is 
accordingly called the light cone at Q. Since any arbitrary event can be selected to 
be Q, any event is the apex of a light cone which separates the space-time 
continuum in an absolute manner into three distinct regions relative to the event. 
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Exercises I 

I. A particle of mass m is moving in the plane of axes 0 xy under the action of a 
force f. 0 xy is an inertial frame. 0 x' y' is rotating relative to the inertial frame so 
that L x'Ox = 1/1 and~ = w. (r, O)are polar coordinates of the particle relative to 
the rotating frame. If (f,,f6 ) are the polar components off, (a,, a6 ) are the polar 
components of the particle's acceleration relative to Ox' y', vis the particle's speed 
relative to this frame and cjJ is the angle its direction of motion makes with the 
radius vector in this frame, obtain the equations of motion in the form 

rna,= f, + 2mwvsin cjJ + mrw2 

mao = !o- 2mwvcos cjJ- mrw 

Deduce that the motion relative to the rotating frame is in accordance with the 
second law if, in addition to f, the following forces are also taken to act on the 
particle: (i) mw 2 r radially outwards (the centrifugal force), (ii) 2mwv at right 
angles to the direction of motion (the Corio lis force), (iii) mniJ transversely. (The 
latter force vanishes if the rotation is uniform.) 

2. A bar lies along Ox and is stationary in S. Show that if the positions of its 
ends are observed in S at instants which are simultaneous in S, its length 
deduced from these observations will be greater than its length in Sby a factor 
(l-uz;cz)-1:2. 

3. Suppose that the bar referred to in Exercise 2 takes a timeT to pass a fixed 
point on the x-axis, T being measured by a clock stationary at the fixed point. 
Defining the length of the har in the S-frame to be uT, deduce the Fitzgerald 
contraction. 

4. The measuring rod employed by Swill appear from S to be shortened by a 
factor (I - u2 jc 2 

) 112
. Hence, when S measures the length of the bar fixed in She 

might be expected to obtain the result 

1 = 77(l-uz/c2)lt2 

This contradicts equation (6.3). Resolve the contradiction. (Hinc: It will be 
observed from Sthat S fixes the position of the forward end of the bar first and the 
position of the rear end a time u17c 2 later.) 

5. A bar lies stationary along the x-axis of S. Show that the world-lines of the 
particles of the bar occupy a certain 'band' in the x 1 x4 -plane. By measuring the 
width of this 'band' parallel to the x 1-axis, deduce the Fitzgerald contraction. 

6. Verify that the Lorentz transformation equations (5.8) can be expressed in 
the form 

x = xcosh IX - ct sinh IX y = y 

cT = ctcosh IX- xsinh IX z= Z 

where tanh IX = ujc. Deduce that 

x- cT = (x -ct)ea, x+cT= (x+ct)e-a 
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Hence show that x 2
- c2 

1
2 is invariant under this transformation. The clocks 

moving with the S-frame are observed from the S-frame at the time 1. Certain of 
them are seen to indicate the same time 1. Show that these will lie in a plane relative 
to Sand that this plane moves in S with velocity ctanh !(X. 

7. Two light pulses are moving in the positive direction along the x-axis of the 
frame S, the distance between them being d. Show that, as measured in S: the 
distance between the pulses is 

8. A and Bare two points of an inertial frameS a distanced apart. An event 
occurs at B a time T (relative to clocks in S) after another event occurs at A. 
Relative to another inertial frame S: the events are simultaneous. If AP is a 
displacement vector inS representing the velocity of S relative to S, prove that P 
lies in a plane perpendicular to AB, distance c2T/d from A. 

9. S, S are the inertial frames considered in section 5. The length of a moving 
rod, which remains parallel to the x and x axes, is measured as a in the frameS and 
a in the frame S: By consideration of a Minkowski diagram for the rod, or 
otherwise, show that the rest length of the rod is 

aiiPufc 

J(2Paa -a2 -a2
) 

10. If the position vectors r = (x, y, z), r = (x, y, z) of an event as determined by 
the observers in the parallel inertial frames S, S respectively are mapped in the 
same independent tff 3 , prove that 

{
u·r } r=r+u -;r-W-Il+Pr 

f= P(l+u·r/c2
) 

where u is the velocity of S as measured from S: 
II. A car 5 m long is to be placed in a garage only 3m long. It is driven into the 

garage at four-fifths the speed of light c m/s by the owner; just before the bumpers 
strike the wall (which withstands the impact), show that the owner's wife can slam 
the doors. Calculate the length of the garage as seen by the driver and prove that 
he estimates that the car strikes the wall 4/c seconds before the doors are closed. 
Hence explain how the car fits into the garage from his point of view. 

12. S, Sare the two inertial frames related by the special Lorentz equations and 
u is the velocity of S relative to S. At 1 = 0 inS, particles A and Bare at the points 
(0, 0, 0) and (d, 0, 0) respectively. Thereafter, both particles move along the x-axis 
with speed v a constant distance d apart. Write down equations describing the 
motion of the particles and, by transforming these to the frame Sshow that, in this 
frame, the particles are observed to move with a speed 

v-u 

I - uv/c2 
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a distance 

apart. 
13. S and S are the usual inertial frames having relative velocity u. A point 

moves along the x-axis with constant acceleration c/r starting from rest at 0 at 
f = 0. Write down its equation of motion in the frame Oxyz. If u = c/ J2, show 
that its motion in the frame Oxyz is determined by the equation 

x
2 -2 J2c(r + r)x + 2c 2 t(l + r) = 0 

Deduce that, if t is small compared with r, then 

Cl 
x = J:i(l +t/4r) 

14. Two men are stationary in the S-frame at points on the x-axis separated by 
a distance d. They fire light pulses at one another simultaneously. In the S-frame, 
show that one man A fires a time flud /c 2 before the other man Band that, at the 
instant B fires, A's missile is still approaching B and is distant 

(
c- u ) 1

'2 d -- --
f+u 

from him. 
I 5. Sand S are the usual pair of inertial frames having relative velocity u. The 

xz-plane of Sis the surface of a lake. Waves are being propagated over this surface 
in the direction of the x-axis and are described by the equation y =a sin 2nf(t 
- xjw),fbeing the frequency and w the wave velocity. Obtain the equation which 
describes this wave motion in Sand deduce that the frequency and wave velocity 
in this frame are given by 

f' = JfJ(l- u/w), 
w-u 

w' = ·------. 
l-uwjc 2 · 

16. S, S are int:rtial frames. When observed from S, two events are simul­
taneous and at a distance D apart. When observed from S, the time interval 
between the events is T. Calculate the distance between the events when observed 
from s· and if, when viewed from S, the direction of motion of S relative to S 
makes an angle 0 with the line joining the events, show that the relative speed of 
the frames is 

D2 
c(l +--cos2 e,-1'2_ 

c2T2 

17. Observed from a frameS, events A and B lie on the x-axis and B occurs a 
time Tafter A; the distance between the events is D. Calculate the velocity u of the 
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frame S relative to S if, observed from S, the event B occurs a timeT before A. 
What is the distance between the events as observed from S? (Assume D > cT.) 
(Ans. u = 2c 2 DT/(D 2 + c2T 2 

), i5 =D.) 
18. In the frame S, a particle is projected from 0 at 1 = 0 with the velocity 

components de, !c, 0) and thereafter moves so that its acceleration is constant of 
magnitude g and is directed along they-axis in the negative sense. Write down the 
x andy coordinates of the particle a timet later. The particle's motion is observed 
from the S frame. If u = -}c, using the transformation equations (5.8), obtain 
equations for its coordinates (x, y) at timeT in this frame. Deduce that the angle 
made by the velocity of projection with the x-axis is 60o and that the particle's 
acceleration is 48g/25. 

19. The clocks at the origins of the frames S, S are synchronized to read zero 
when they pass one another and the clocks stationary in either frame are 
synchronized with the clock at the origin of the frame. At time 1 inS. the clock at 0 
passes a clock C fixed to the x-axis of S. Show that C registers t and 0 registers 
J(l-u 2,'c2 )t at this instant. Observed from S: clock Cis slowed by a factor 
.J (I - u2 jc 2 

); in this frame, therefore, it might be expected that when C registers 1, 

0 would register t/ J(l - u2 /c 2
). Resolve the paradox by showing that, in the S 

frame, the clock Cis not synchronized with 0, but that Cis always u2 t jc2 ahead of 
0. 

20. In the frame S, at t = I, a particle leaves the origin 0 and moves with 
constant velocity in the xy-plane having components vx = Sc/6, vY = cj3. What 
are the coordinates (x, y) of the particle at any later time t? If the velocity of S 
relative to Sis u = 3cj5, calculate the coordinates (x, y)ofthe particle at time finS 
and deduce that the particle makes its closest approach to 0 at time f = 220/113. 

21. S, S are the usual parallel frames with the origin 0 of S moving along the x­
axis of S with velocity u. An observer A is stationed on the x-axis at x = a and an 
observer A is stationed on the x-axis at x =a. Show that, in both the frames, the 
events (i) 0 passes 0 and (ii) A passes A, are separated by a timeT, but that the 
order of occurrence of these events is dilferenL Calculate the value ofT. If T 
= a/3c, show that u = 3c/5. 



CHAPTER 2 

Orthogonal Transformations. Cartesian 
Tensors 

8. Orthogonal transformations 

In section 4 events have been represented by points in a space ~4• The resulting 
distribution of points was described in terms of their coordinates relative to a set 
of rectangular Cartesian axes. Each such set of axes was shown to correspond to 
an observer employing a rectangular Cartesian inertial frame in ordinary ~ 3-

space and clocks which are stationary in this frame. In this representation, the 
descriptions of physical phenomena given by two such inertial observers are 
related by a transformation in ~ 4 from one set of rectangular axes to another. 
Such a transformation has been given at equation (4.9) and is called an orthogonal 
transformation. In general, if X;, x;(i = 1, 2, ... , N) are two sets of N quantities 
which are related by a linear transformation 

N 

X; = L aux i + b; 
j = I 

and, if the coefficients au of this transformation are such that 

N N 

L (X; - :YY = L (X; - YY 
I= I i = t 

(8.1) 

(8.2) 

is an identity for all corresponding sets x;, x; and}';, y;, then the transformation is 
said to be orthogonal. It is clear that the x;, x; may be thought of as the 
coordinates of a point in~ N referred to two different sets of rectangular Cartesian 
axes and then equation (8.2) states that the square of the distance between two 
points is an invariant, independent of the Cartesian frame. 

Writing Z; =X;-}';, Z; = x;- }\,it follows from equation (8.1) that 

N 

Z; = L auzi (8.3) 
j = I 

Let z denote the column matrix with elements z;, z the column matrix with 
elements Z; and A the N x N matrix with elements aii. Then the set of equations 

21 
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(8.3) is equivalent to the matrix equation 

Also, if z' is the transpose of z. 

z = Az 

z'z = 
/li 
~ ,2 
L... "i 
i; I 

and thus the identity (8.2) may be written 

Z'z = z':: 

But, from equation (8.4), 

Z' = z' A' 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

Substituting in the left-hand member of equation (8.6) from equations (8.4), (8. 7), 
it will be found that 

z'A'Az = z'z (8.8) 

This can only be true for all z if 

A' A= I (8.9) 

where I is the unit N x N matrix. 
Taking determinants of both members of the matrix equation (8.9), we find that 

I A 1
2 = I and hence 

lA I=± I (8.10) 

A is accordingly regular. Let A- 1 be its inverse. Multiplication on the right by 
A- 1 of both members of equation (8.9) then yields 

It now follows that 

AA' = AA -I= I 

Let b,i be the ijth element of I, so that 

=I 
b,)- o' 

- ' 

i = j} 
i=/=j 

(8.11) 

(8.12) 

(8.13) 

The symbols b,i are referred to as the Kronecker dele a:.. Equations (8.9), (8.12) are 
now seen to be equivalent to 

/li 

L a,iaik = (j ik 
i = t 

/li 

L ai,ak,=bik 
i = I 

(!!.14) 

(8.15) 
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respectively. These conditions are necessarily satisfied by the coefficients a,i of the 
transformation (8.1) if it is orthogonal. Conversely, if either of these conditions is 
satisfied, it is easy to prove that equation (8.6) follows and hence that the 
transformation is orthogonal. 

9. Repeated-index summation comention 

At this point it is convenient to introduce a notation which will greatly abbreviate 
future manipulative work. It will be understood that, wherever in any term of an 
expression a literal index occurs twice, this term is to be summed over all possible 
values of the index. For example, we shall abbreviate by writing 

N 

L a,b, = a,b, 
r =I 

(9.1) 

The index must be a literal one and we shall further stipulate that it must be a 
small letter. Thus a 2 h2• a,..bN are individual terms of the expression a,h,, and no 
summation is intended in these cases. 

Employing this convention, equations (8.14) and (8.15) can be written 

(9.2) 

respectively. Again, with ;:1 = x,- r 1• equation (8.2) may be written 

(9.3) 

More than one index may be repeated in the same term, in which case more 
than one summation is intended. Thus 

N -" 
a1ibikck = L L a 1ib ikck 

j: I k: I 

(9.4) 

It is permissible to replace a repeated index by any other small letter, provided the 
replacement index does not occur elsewhere in the same term. Thus 

(9.5) 
but 

(9.6) 

irrespective of whether the right-hand member is summed with respect toj or not. 
A repeated index shares this property with the variable of integration in a definite 
integral. Thus 

b b 

Jf(x)dx = Jf(y)dy (9.7) 

A repeated index is accordingly referred to as a dummy index. Any other index will 
be called a free index. The same free index must appear in every term of an 
equation, but a dummy index may only appear in a single term. 
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The reader should note carefully the identity 

(9.8) 

for it will be of frequent application. c5;i is often called a substitution operator, 
since when it multiplies a symbol such as ai, its effect is to replace the index} by i. 

10. Rectangular Cartesian tensors 

Let X;, Y; be rectangular Cartesian coordinates of two points Q, P respectively in 
~ N· Writing Z; = X;- y;, the z1 are termed the components of the displacement 
vector PQ relative to the axes being used. If X;, Y; are the coordinates of Q, P with 
respect to another set of rectangular axes, the new coordinates will be related to 
the old by the transformation equations (8.1 ). Then, if z1 are the components of 
PQ in the new frame, it follows (equation (8.3)) that 

(10.1) 

Any physical or geometrical quantity A having N components A1 defined in the 
x-frame and N components A; similarly defined in the x-frame, the two sets of 
components being related in the same manner as the components z1, 21 of a 
displacement vector, i.e. such that 

(10.2) 

is said to be a vector in~ N relative to rectangular Cartesian reference frames. We 
shall frequently abbreviate 'the vector whose components are A1' to 'the vector 
A,'. 

If A,, B; are two vectors, consider the N 2 quantities A; Bi. Upon transformation 
of axes, these quantities transform thus: 

(10.3) 

Any quantity having N 2 components C;i defined in the x-frame and N 2 

components C,i defined similarly in the x-frame, the two sets of components 
being related by a transformation equation 

(10.4) 

is said to be a tensor of the second rank. We shall speak of 'the tensor C1/- Such a 
tensor is not, necessarily, representable as the product of two vectors. 

A set of N 3 quantities D1i• which transform in the same manner as the product 
of three vectors A;BiCk, form a tensor of the third rank. The transformation law is 

(10.5) 

The generalization to a tensor of any rank should now be obvious. Vectors are, 
of course, tensors of the first rank. 

If A;i• Bii are tensors, the sums A;i + Bii are N 2 quantities which transform 
according to the same law as the Aiiand B;i· The sum of two tensors oft he second 



25 

rank is accordingly also a tensor of this rank. This result can be generalized 
immediately to the sum of any two tensors of identical rank. Similarly, the 
difference of two tensors of the same rank is also a tensor. 

Our method ofintroducinga tensor implies that the product of any number of 
vectors is a tensor. Quite generally, if A;i ___ , B;i _ .. are tensors of any ranks 
(which may be different), then the product A;i ... Bu . _is a tensor whose rank is 
the sum of the ranks of the two factors. The reader should prove this formally for 
a product such as A;i B.,,. by writing down the transformation equations. (N.B. 
the indices in the two factors must be kept distinct, for otherwise a summation is 
implied and this complicates matters; see section 12.) 

The components of a tensor may be chosen arbitrarily relative to any one set of 
axes. The components of the tensor relative to any other set are then fixed by the 
transformation equations. Consider the tensor of the second rank whose 
components relative to the x;-axes are the Kronecker deltas c5;i· In the xi-frame, 
the components are 

(10.6) 

by equations (9.2). Thus this tensor has the same components relative to all sets of 
axes. It is termed the fundamental tensor of the second rank. 

If, to take the particular case of a third rank tensor as an example, 

(10. 7) 

for all values of i, j, k, A;i• is said to be symmetric with respect to its indices i,J­
Symmetry may be with respect to any pair of indices. If A;i• is a tensor, its 
property of symmetry with respect to two indices is preserved upon transform­
ation, for 

Aiik = a i 1a;,a•• A1,. 

= ai,ai1a •• A,1• 

= A;jk (10.8) 

where, in the second line, we have rearranged and put A1,. = A,, •. Unless a 
property is preserved upon transformation, it will be oflittle importance to us, for 
we shall later employ tensors to express relationships which are valid for all 
observers and a chance relationship, true in one frame alone, will be of no 
fundamental significance. 

Similarly, if 

(10.9) 

for all values of i, j, k, Au• is said to be skew-symmetric or anti-symmetric with 
respect to its first two indices. This property also is preserved upon transform­
ation. Since A 1u = -A 11 ., A 11 • = 0. All components of Aii• with the first two 
indices the same are clearly zero. 

A tensor whose components are all zero in one frame, has zero components in 
every frame. A corollary to this result is that if Aii ... , Bii ... are two tensors of 
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the same rank whose corresponding components are equal in one frame, then 
they arc equal in every frame. This follows because A,, . - B,1 . is a tensor 
whose components are all zero in the first frame and hence in every frame. Thus, a 
tenwr equation 

(10.10) 

is valid for all choices of axes. 
This explains the importance of tensors for our purpose. By expressing a 

physical law as a tensor equation in ~ 4 • we shall guarantee its covariance with 
respect to a change of inertial frame. A further advantage is that such an 
expression of the law also implies that it is covariant under a rotation and a 
translation of axes in tt 3, thus ensuring that the law conforms to the principles of 
isotropy and homogeneity of space. 

The first principle states that all directions in space are equivalent in regard to 
the formulation of fundamental physical laws. Examples arc that the inertia of a 
body in classical mechanics is independent of its direction of motion and that the 
power of attraction of an electric charge is the same in all directions. In the vicinity 
of the earth, the presence of the gravitational f1cld tends to cloud our perception 
of the validity of this principle and the vertical direction at any point on the 
surface is sharply distinguished from any horizontal direction. But this is a purely 
local feature and the crew of a spaceship have no difficulty in accepting the 
principle. Mathematically, the principle requires that the equation expressing a 
basic physical law must not change its form when the reference frame is rotated. 
Laplace's equation V 2 v = 0 is well known to possess this property, whereas the 
equation c" Vjtx + t v;t y + t V/t'z = 0 does not; this explains why Laplace's 
equation occurs so frequently in mathematical physics. whereas the other 
equation does not. 

The second principle affirms that all regions in space arc also equivalent, i.e. 
that physical laws are the same in all parts of the cosmos. Covariance under a 
translation of axes is the mathematical expression of this requirement. 

Both principles are almost certainly a consequence of the uniformity with 
which matter and radiation are distributed over the universe. It is doubtful 
whether either would be valid in a cosmos not possessing this property. 

A less well-established third principle is that of spatial parity. This requires that 
physical laws should be impartial as between left- and right-handedness. The 
mathematical formulation of a law obeying this principle will be covariant under 
a transformation from a right-handed to a left-handed Cartesian frame or vice 
versa. Another way of expressing this principle is that, if the universe were 
observed in a mirror, the laws which would appear to govern its behaviour would 
be identical with the actual laws. For example, observation of the planetary 
motions in a mirror would alter their senses of rotation about the sun, but the law 
of gravitation would be unaffected. Although the more familiar laws are in 
conformity with this principle, those governing the behaviour of some funda­
mental particles do not appear to have this simple symmetry. Provided that the 



27 

orthogonal transformations upon which our tensor calculus is being built are not 
restricted to be such that I A I = + I (i.e. transformations between frames of 
opposite handedness are permitted), all tensor (and pseudotensor) equations will 
be in conformity with the principle of spatial parity. 

From what has just been said, it is evident that the calculus of tensors is the 
natural language of mathematical physics, relativistic or non-relativistic. It 
guarantees that the equations being considered are of the type which can 
represent physical laws. However, in classical physics, a three-dimensional theory 
was adequate to ensure conformity with the principles of isotropy, homogeneity 
and parity of space. In relativistic physics, a four-dimensional theory is needed to 
incorporate the additional special principle of relativity. 

I I. lnl'ariants. Gradients. Deril'atil'es of tensors 

Suppose that Vis a quantity which is unaffected by any change of axes. Then Vis 
called a scalar im:arianr or simply an invariant. Its transformation equation is 
simply 

V= v (11.1) 

As will be proved later (section 24), the charge of an electron is independent of the 
inertial frame from which it is measured and is, therefore, the type of quantity we 
are considering. 

If a value of Vis associated with each point of a region of~"'' an invariant field 
is defined over this region. In this case V will be a function of the coordinates x;. 
Upon transformation to new axes, V will be expressed in terms of the new 
coordinates x;; when so expressed, it is denoted by V. Thus 

(11.2) 

is an identity. The reader should, perhaps, be warned that Vis not, necessarily, the 
same function of the X; that Vis of the X;. 

If A;i is a tensor, it is obvious that V A;i is also a tensor of the second rank. It is 
therefore convenient to regard an invariant as a tensor of zero rank. 

Consider the N partial derivatives c Vjcx;. These transform as a vector. To 
prove this it will be necessary to examine the transformation inverse to (8.1). In 
the matrix notation of section 8, this may be written 

x =A -I (x -b)= A'(x-b) 

having made use of equation (8.11). Equation (11.3) is equivalent to 

X; = a;j(Xj- bi) 

where a;i is the ijth element of A'. But a;i = aii and hence 

X;= aj;(X1 -bi) 

(11.3) 

(11.4) 

(11.5) 
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It now follows that 

(11.6) 

and hence that 

(11.7) 

proving that cVjox; is a vector. It is called the gradient of Vand is denoted by 
grad V or V V. 

I fa tensor A;1 ... is defined at every point of some region of If tv, the result is a 
tensor field. The partial derivatives iJ A;1 .. jox, can now be formed and constitute 
a tensor whose rank is one greater than that of A;1 . .· We shall prove this for a 
second rank tensor field A;1• The argument is easily made general. We have 

DA a 
-~~ = ~(a;,a1,A.,) cxk (JXk 

iJ ox, 
= -:1-(a;,ajsA,,)~ 

ex, cxk 

iJA,. 
= ai,ajsakr_"_ 

e-x, 
( 11.8) 

by equation (11.6). 

12. Contraction. Scalar product. Divergeuce 

If two indices are made identical, a summation is implied. Thus, consider AiJk· 

Then 

(12.1) 

There are N 3 quantities A,ik· However, of the indices in A;11, only i remains free to 

range over the integers I, 2, ... , N, and hence there are but N quantities A;11 and 

we could put Bi = AiJJ· The rank has been reduced by two and the process is 
accordingly referred to as contraction. 

Contraction of a tensor yields another tensor. For example, if Bi = A,11 then, 
employing equations (9.2), 

B; = .4';11 = a;qa1,a1,Aqrs = a;qbrsAqrs = a;qAqrr = a;qBq (12.2) 

Thus Bi is a vector. The argument is easily generalized. 
In the special case of a tensor of rank two, e.g. Aii• it follows that Aii = Aii• i.e. 

A,, is an invariant. Now, if Aj, B, are vectors, AiBi is a tensor. Hence, AiBi is an 
invariant. This contracted product is called the inner product or the scalar product 
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of the two vectors. We shall write 

AiB, = A·8 (12.3) 

In particular, the scalar product of a vector with itself is an invariant. The positive 
square root of this invariant will be called the maqnitude of the vector. Thus, if A is 
the magnitude of A1, then 

A2 =A,Ai=A·A=A 2 

In ~ 3 , if 0 is the angle between two vectors A and 8, then 

ABcos8 = A·8 

In tfN, this equation is used to define 8. Hence, if 

A·B = 0 

then 8 = fn and the vectors A, 8 are said to be orthoqona/. 

(12.4) 

(12.5) 

(12.6) 

If Ai is a vector field, cA.fcxi is a tensor. By contraction it follows that i3A.fcx1 is 
an invariant. This invariant is called the divergence of A and is denoted by div A. 
Thus 

cA. 
divA=-' 

oxi 
(12. 7) 

More generally, if Aii . .. is a tensor field, oAii .. jcx, is a tensor. This tensor 
derivative can now be contracted with respect to the index rand any other index 
to yield anothertensor, e.g. cAii . jcxi. This contraction is also referred to as the 
divergence of Aii .. with respect to the index j and we shall write 

I 3. Pseudotensors 

i'AiJ. d. --:--·-· = IVjAij ... 
oxj 

(12.8) 

~ii is a pseudotensor if, when the coordinates are subjected to the transformation 
(8.1 ), its components transform according to the law 

(13.1) 

I A I being the determinant of the transformation matrix A. Since for orthogonal 
transformations I A I = ± 1 (equation (8.10) ), relative to rectangular Cartesian 
frames, tensors and pseudotensors are identical except that, for certain changes of 
axes, all the components of a pseudo tensor will be reversed in sign. For example, 
if inC 3 a change is made from the right-handed system of axes to a left-handed 
system, the determinant of the transformation will be -I and the components of 
a pseudotensor will then be subject to this additional sign change. 

Let eii . . "be a pscudotensor of the Nth rank which is skt:w-symmetric with 
respect to every pair of indices. Then all its components are zero, except those for 
which the indices i, j, ... , n are all different and form a permutation of the 
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numbers I, 2, ... , N. The effect of transposing any pair of indices in eii . • is to 
change its sign. It follows that if the arrangement i,j, ... , n can be obtained from 
I, 2, ... , N by an even number of transpositions, then eii • = + e 12. N• 

whereas if it can be obtained by an odd number eii ...• = - e 12 . N· Relative to 
the X;-axes let e12 N = I. Then, in this frame, e,i . . • is 0 if i,j, ... , n is not a 
permutation of I, 2, ... , N, is +I if it is an even permutation and is - I if it is an 
odd permutation. Transforming to the xcaxes, we find that 

(13.2) 

But e,i ...• is also skew-symmetric with respect to all its indices, since this is a 
property preserved by the transformation. Its components are also 0, ± 1 
therefore and e,i ..• is a pseudotensor with the same components in all frames. 
It is called the Levi-Civita pseudotensor. 

It may be shown without difficulty that: 
(i) the sum or difference of two pseudotensors of the same rank is a 

pseudotensor. 
(ii) the product of a tensor and a pseudotensor is a pseudotensor. 

(iii) the product of two pseudotensors is a tensor. 
(iv) the partial derivative of a pseudotensor with respect to x, is a pseudotensor. 
(v) a contracted pseudotensor is a pseudotensor. 

Thus, to prove (iii), let '11;, !8, be two pseudovectors. Then 

ID;!Bi = IAI 2
a,kai1 'll,.!B, = a;kai, ~ !B, (13.3) 

The method is clearly quite general. The remaining results will be left as exercises 
for the reader. 

14. Vector products. Curl 

Throughout this section we shall be assuming that N = 3, i.e. the space will be 
ordinary Euclidean space. 

Let A;, B; be two vectors. Then eiil A, B. is a pseudotensor of rank 5. 
Contracting twice, we get the pseudovector 

whose components are 

<i1 = A 2 B 3 - A3 B2 } 

l.t2 = A 3 B 1 - A 1 8 3 

<i3 = A 1 8 2 - AzB1 

(14.1) 

(14.2) 

Provided we employ only right-handed systems of axes or only left-handed 
systems in tf 3 , l.t1 is indistinguishable from a vector. If, however, a change is made 
from a left-handed system to a right-handed system, or vice versa, the 
components of <i; are multiplied by - 1 in addition to the usual vector 
transformation. Since it is usual to employ only right-handed frames, <t, is often 



31 

referred to as a vector (or an axial vector) and treated as such. It is then called the 
vector product of A and 8 and we write 

<t=AxB (14.3) 

Vector multiplication is non-i:ommutative, for 

(14.4) 

having made use of eiki = - ciik· However, vector multiplication obeys the 
distributive law, for 

Ax (8 +C)= eiikAi(Bk + Cd = eiikAiBk + eiikAiCk 

= A X 8 +A X c (14.5) 

We now introduce the abbreviated notation cAdcxi =A;. i· Any index after a 
comma will hereafter indicate a partial differentiation with respect to the 
corresponding coordinate; thus, A;. Jk is a second derivative. 

Now suppose A; is a vector field. We can first construct a pseudo tensor of rank 
5 eiikAr. s· Contracting twice, we get the pseudovector 

(14.6) 

This has components 

91 = cA3 _ 8Az1 
I ~ ~ 

CXz CX 3 

912 =cAl -~A3 ~ 
cx3 cx 1 1 

(14.7) 

913 = cA 2 _cA 1 1 

ax. CXz ) 

and is denoted by curl A. It, also, is an axial vector. 
Equation (14.1) can still be employed to define a vector product when either or 

both of the vectors A, Bare replaced by pseudo tensors. If only one is replaced by a 
pseudovector the right-hand member of equation (14.1) will involve the product 
of two pseudovectors and a vector. The resulting vector product will then be a 
vector. Similarly, by replacing A in equation (14.6) by a pseudovector, the curl of a 
pseudovector is defined as an ordinary vector. 

Exercises 2 

I. Show that, in two dimensions, the general orthogonal transformation has 
matrix A given by 

( 
cos () sin ()) 

A= 
-sin() cos e 
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Verify that I A I = I and that A 1 = A'. 7;i is a tensor in this space. Write down in 
full the transformation equations for all its components and deduce that 7;; is an 
invariant. 

2. x =Ax, x = Bx are two successive orthogonal transformations relative to 
each of which Tii transforms as a tensor. Show that the resultant transformation x 
= BAx is orthogonal and that 7;i transforms as a tensor with respect to it. 

3. If A;, B; are vectors and X;iA;Bi is an invariant, prove that X;i is a tensor. 
4. Verify that the transformation 

1 
x3 = is(IOx 1 +2x2 -llx3 ) 

is orthogonal. A vector field is defined in the x-frame by the equations A 1 = x~, 
A2 = xL A3 = x~. Calculate the field in the x-frame and verify that divA is an 
invariant. 

5. A;ik is a tensor, all of whose components are zero, except for the following: 
A111 = A222 = I,A 212 = -2.CalculatethecomponentsofthevectorAwShow 
that the transformation 

x 1 =~(-3x 1 -6x2 -2x3 ) 

x2 = ~( -2x1 + 3x2 -6x3 ) 

X3 = t( 6xl -2Xz -Jx3) 

is orthogonal and calculate the component A123 of the tensor in .X-frame. Write 
down the equations of the inverse transformation. If B;i is a tensor whose 
components in the x-frame all vanish except that Bn = I, calculate 8 12 . 

(Ans. (-I, I, 0); 120/343; 6/49.) 
6. If A = (I -B) (I + Br 1, where B is a skew-symmetric matrix, show that A is 

orthogonal. Taking 

0 2 2 
B = -2 0 0 

-2 0 0 

calculate A and write down the rectangular Cartesian coordinate transformation 
equations x = Ax. In the x-frame, the tensor C;i is skew-symmetric and C 12 
= C 13 = I, C23 = 0. Calculate the component C12 in the x-frame. In the x-frame, 
all the components of the tensor D;ik vanish except the following 15121 = - 1, 
0 122 ~ 2, D123 = 5. Calculate the component D111 in the x-frame. Calculate the 
components of the vectors D;iiand C;jDiik in the x-frame. (Ans. C12 = I; D111 = 

- 980/729; (- 14/9. -8/9, -8/9); (35/9, - 32;9, -7/9).) 
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7. A; 1 is a tensor field defined in the x-frame by the equation A;i = x;x1. 

Calculate its components at the point P where x 1 = 0, x 2 = x3 = I. The 
coordinates x; of a point in the x-frame are related to the coordinates x; of the 
same point in the x-frame by the equations 

.x 1 = ~(-3x 1 -6x 2 -2x3 ) 

x2 = -~· (- 2xl + 3x2- 6x3) 

x3 = ~(6xl -2x2 -3x3) 

Calculate the component A"11 of the tensor field at P. In the x-framc, prove that 
A;i'i = 4x;. A;J•ii = 12. (Ans. A11 = 64/49.) 

8. xis the position vector of a point P with respect to an origin 0. OP is rotated 
through an angle(} about an axis whose direction is determined by the unit vector 
u. If the new position vector of P is x, prove that 

x = xcos0+(1 -cos(})(x·u)u+u x xsinO 

Deduce that the coordinate transformation generated when a rectangular 
Cartesian frame Ox 1 x2 x3 is rotated through an acute angle sin -• (4/5) about an 
axis through 0 having direction ratios (I, 2, 2) to give a new frame Ox 1 x2 x3 is 

45x 1 = 29x 1 + 28x 2 - 20x3 
45x2 = -20x 1 +35x2 +20x3 

45x 3 = 28x 1 -4x2 + 35x3 

9. Verify that the transformation 

x1 = ~(x 1 -8x2 +4x 3) 

x2 = ~(4x. +4x2 + 7x3) 

x3 = !(8x 1 -x2 -4x3) 

is orthogonal. In the x-frame, the tensor A;1 is skew-symmetric and A 12 = A 1 3 
= I, A 23 = 0. Calculate the component .412 in the x-frame. In the x-frame, all the 
components oft he tensor B;ik vanish except the following: B12 1 = - l, B12 2 = 2, 
B-123 = 5. Calculate the component B111 in the x-frame. Calculate the com­
ponents of the vectors B;ii and A;1B;Jk in the x-frame. (Ans. A12 = 1/3; B111 

= 188/729; 2/9, -16/9, 8/9; 47/27, 11/27, -10/27.) 
10. In the x-frame in If 3 a tensor field is defined by the equation A;ik = x~ 

+ 2xJ + x~. Calculate the divergence of the vector field A;J;· Also, calculate the 
curl of the vector field A;ii· (Ans. 16 (x 1 + x 2 + x 3 ); 6 (x 2 - x3 ), etc.) 

II. A pair of rectangular Cartesian frames are related by the equations 

x1 = fs(5x 1 -14x2 + 2x 3 ) 

x2 = -!(2x 1 +x 2 +2x3) 

x3 = ts (lOx. + 2x2 -llx3) 
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A;ik is a tensor, all of whose components vanish in the x-frame except the 
following: A111 = A 222 = 2, A 122 = 4, A233 = 13. Calculate (a) the components 
of the vector A, 11 in the .x-frame. and (b) A123 . If 8, 1 is a tensor whose components 
in the x-frame all vanish except 812 , B2 .1. which are both unity, calculate 8 11 • 

If Vis an invariant tield given in the x-frame by V = xi, calculate the field in the x­
frame and the components of grad Vin this frame, where x 1 = x2 = :X 3 = 9. (Ans. 
(a)(-12. -9,6);(b) -1396!225;8 11 = -2j3;VV=(2, -4,4).) 

12. lntheframe0x 1x 2 x3 ,allcomponentsof A;iarezeroexcept A12 = -A 21 

= l. If the transformation equations to the x-frame are 

prove that A12 = l. 

x 1 = x 1 cos :x + x 2 sm :x 

x2 = -x 1 sin:x+x 2 cos:x 

.x 3 = x 3 

13. If A, 1 = x~ +x7 (i.j = 1,2, 3), prove that (a) A;ri = 2(x 1 +x2 +x 3 +:X;) 
(b) A;1.,i = 12. 

14. Verify that the coordinate transformation 

25.x 1 = 9x 1 +20x 2 + 12x 3 

25x 2 = 12x 1 -!5x 2 + 16x 3 

S.x 3 = -4x 1 +3x 3 

is orthogonal and calculate the component A311 of the tensor A,il in the x-frame 
if all its components in the x-frame vanish except for the following: A 123 = 25, 
A222 = -6. All components of the tensor 8;1 in the x-frame are zero, except for 
the components 8..1 (i = I, 2, 3 ). Show that, in the x-frame, all the components 
8, 2 (i = I. 2, 3) vanish. (Ans. - 192/25.) 

I 5. (i) xis a column matrix such that x' x = 1. If A = I - 2xx', where I is a unit 
matrix, prove that A is orthogonal. If x' = :x(l, -2, 3) where :x is a scalar 
multiplier, calculate :x and hence find A. Written in matrix form, the coordinate 
transformation between two rectangular Cartesian frames is x = Ax (A is the 
matrix just calculated). In the x-frame, all the components of the tensor 8iikl are 
zero. except that 8 1133 = -20, 8 1232 = 29. Calculate the component 82221 in 
the x-frame. What is the value of B.iii? If(£; is a pseudotensor with components 
(2. 3, 6) in the x-frame, find its components in the :X-frame. (Ans. 82221 = 72/49; 
8;;u = - 20; tO, -7, 0).) 

(ii) A;i(x 1, x 2 , x3 ) is a tensor field. If Aii = b;ixL where c5;i is the Kronecker 
delta, list the non-zero components of (cA;i/cxk. Deduce the value of cA1 Jicx 1 at 
the point where x1 =I, x2 = 2, x 3 = l. (Take the frames to be related as in (i).) 
(Ans. cA11 jcx 1 =4,'7.) 

16. Verify that the transformation 

7:X 1 = 3x 1 +6x 2 -2x3 

1x2 = 2x 1 - 3x 2 -6x 3 

7x3 = 6x 1 -2x2 + 3x 3 
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is orthogonal and calculate the component A32 of the tensor Aii in the x-frame 
if all its components in the x-frame are zero except for the following: A11 = 10, 
A22 = 29. If the only non-zero component of the tensor 8 11k in the x-frame is 
8232 = 343, calculate the component B111 in the x-frame. If l.t;1 is a pseudotensor 
and l.t 33 = 98, all other components being zero, calculate [ 12 . (Ans. A32 = 6; 
B111 = 24; <t"12 = -24.) 

17. If A is a square skew-symmetric matrix, show that A2 is symmetric. If, also, 
A3 = -A, show that the matrix H given by B = I+ 2A 2 is orthogonal. If 

A= ( -~ 
-b 

a b) 
0 c 

-c 0 

prove that A 3 = - A provided a2 + b2 + c2 = I. Taking a = I j3, b = c = 2/3, 
calculate the orthogonal matrix B. Written in matrix form, the coordinate 
transformation between two rectangular cartesian frames is x = Bx. In the x­
frame. the tensor Cii has all its components equal to I. Calculate the component 
C23 in the x-frame.ln the x-frame, a vector field A; has components A 1 = x~ + x~ 
+ x~, A2 = A3 = 0. Obtain formulae for the field's components in the x-frame. 
Calculate the divergence of the field in both frames and show that the results are 
equal. (Ans. 8~ 3 = 91/81.) 

18. (i) The equations 

.X1 = !tax1 + 8x 2 + 4x 3) 

x2 = ~(4x. + bx2 + 7x3) 

x3 = ~(8x 1 + x 2 + cx 3) 

represent a transformation between rectangular Cartesian axes. Calculate the 
values of a, b, c. In the x-frame, all the components of the tensor Aii are zero 
except A23 = 9. Calculate the component A31 in the x-frame. 
(Ans. a= I, b = -4, c = -4; A31 = 4/9.) 

(ii) If Aiikl is a tensor, prove that AiJki is also a tensor. In the x-frame referred to 
in (i), all the components of the tensor A;1u vanish except for the following: A 1131 
= 4. A3133 = 5, A 2222 = 18. Calculate all the components of the tensor A111 , in 
the x-frame and the (I, I )-component in the x-frame. (Ans. 44/3). 

19. Verify that the transformation 

x1 = :/5 (9x 1 +20x2 + 12x3) 

x2 = ts(l2x. -!5x2 + 16x3) 

x3 = i(4x. -3x3) 

is orthogonal and write down the inverse transformation. In the x-frame, all the 
:<?mponcnts of the tensor Aiik vanish except A 111 = I. Calculate the component 
A 123 in the .X-frame. In the .X-frame, all the components of the tensor B;11 vanish 
except that 8212 =I, 8313 = B222 = B121 = 2. Calculate the components of the 
vector BiJi in the x-frame. (Ans. A123 = 432/3125; (3, 0, 4).) 
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20. Show that, for all angles :x, fJ, the transformation 

.\: 1 = X 1 cos:xcosfJ+x 2 cos:xsinfJ-x 3 sin:x 

x2 = -x 1 sinfJ + x 2 cosfJ 

.\: 3 = x 1 sin:xcosfJ+x 2 sin:xsinfJ+x 3 cos:x 

is orthogonal. Obtain the form taken by the transformation when :x = fJ = 1t/4 
and. in this case, calculate the component A112 J of the tensor A;i1 , in the .'i:-frame. 
if the only non-zero components in the x-frame arc A112 _1 = A 2213 =I. {Ans. 0.) 

21. If A. Bare orthogonal matrices of the same order, prove that AB is 
orthogonal. If 

B=! ( ~ ~ ~) 
-4 0 3; 

calculate the orthogonal matrix C = AB. The coordinates x, and x, in two 
rectangular Cartesian frames are related by the transformation x = Cx. All the 
components of the tensor A,i1 vanish in the x-frameexcept A221 =I, A 122 = 25. 
Calculate the component A321 in the .x-frame. In the .x-frame, the only non-zero 
components of the tensor BiJkl are 83211 = - 5, B3212 = I 0, 83213 = I 5. 
Calculate the components of the vector A;Jk B,Jkl in the .X-frame and deduce its 
components in the x-frame. (Ans. A321 = - 48/5; 4464;25, - 96;5, - 48/25.) 

22. If 'll,i is a pseudotensor, ~; is a pseudovector and E; is a vector, prove that 
IH;i~iEJ is an invariant. 

23. A vector field has components in the x-frame given by 

A1 = sin(x 2 x3 ), A2 = cos(x3 xJl, A 3 = tan(x 1 x2 ) 

Calculate curl A at the point x 1 = x 2 = x3 =! v·'n. If the x-frame is obtained 
from the x-frame by reversing the sense of the x2 -axis, what are the components 
of curiA in the x-frame? (Ans. Jn(l + 1;2 .J2), - Jn(l -1/2 J2), -! J(2n); 
- .Jn(l + 1/2 ,j2), - Jn(l -I, 2,/2), 1-J(2n).) 

24. x;. xdi = I, 2, 3) are coordinates of the same point with respect to two 
different rectangular Cartesian frames. If 

x1 = :x(ax 1 +2x2 +5x 3 ) 

x2 = /J(x 1 +hx2 +2x 3 ) 

x3 = {'(2xl -llx2 +cx3) 

where :x, p, i' are all positive, calculate the values of IX, p, ~-.a, b, c. If A;Jkl is a tensor 
whose only non-zero components in the x-frame are A1313 = I, A3223 = 20, 
calculate its component A3121 in the x-frame. In the x-frame, the only non-zero 
components of the tensors A;. B;i are as follows: A1 = 3, A2 = I, 813 = 5, 822 
= 3. Calculate the components oft he tensor A;B;i in the x-frame. (Ans. a ~ - 14, 
b = 2, c = 10, IX= 1/15, P = lj3, y = 1/15; A3121 = 2j5; (3, -9, 12).) 

25. A is an anti-symmetric matrix such that A 3 = -A. Prove that the matrix B 
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=I+ A+ A2 is orthogonal. Show that the matrix 

A = 1 (- ~ 
-2 

1 2) 
0 2 

-2 0 

satisfies the stated conditions and hence calculate the orthogonal matrix B. The 
coordinates of a point relative to a pair of rectangular Cartesian frames are 
related by the matrix transformation x = Bx. A tensor A;i has all its components 
zero in the x-frame except that A32 = 81. Calculate the component A12 in the x­
frame. If the tensor B;i1 has all its components zero in the x-frame except B123 

= 729, calculate the component 8 321 in the x-frame. (Ans. A12 = 32; 
8321 = -128.) 

26. In lf3 , prove that 

curl grad V = 0, div curl A = 0. 

2 7. In tf3 , prove that 

28. In If 3 , show that 

29. In ~3 • prove that 

(i) eikl eimn = bkmbl.- bk.blm 

(ii) eikl eikm = 2b,m 

curl curl A = grad divA- V 2 A 

(Hint: Employ Exercise 27(i).) 
30. In If 3 , prove that 

(i) A x (8 x C) = A· C8- A· 8C 

A• Bl cl 
(ii) A·8xC= Az Bz Cz 

A3 83 c3 
31. In tfN, prove that 

div VA = V div A+ A· grad V 

32. In lf3 , prove that 

(i) curl VA = V curl A -A x grad V 

(ii) div(Ax8)=8·curlA-A·curl8 

(iii) curl(A x B)= B·VA-A·V8+Adiv8-BdivA 

(iv) grad(A· B)= 8·VA + A·VB+ Ax curl 8+ B x curiA 
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where 

33. If A;i is a tensor and B;i = A Jh prove that B;i is a tensor. Deduce that if A;i 
is symmetric in one frame, it is so in all. 

34. Prove that b,ibik = b Jk 

and that eiik e1,. has the value +I if i, j, k are all different and (lmn) is an even 
permutation of (ijk), -I if i,j, k are all different and (lmn) is an odd permutation of 
(ijk), and 0 otherwise. Deduce that 

Hence prove that 

eijk e,,. = b;,bj,bkn + b;,bjnbu + b;.bj,bkm 

-b;nbj,bkl-bilbjnbkm -b;,bjlbkn 

35. In tf3 , prove that 

(i) 

(ii) 

(ax b)·(c x d)= a·cb·d -a·db·c 
(ax b) x (c x d)= [acd]b-[bcd]a 

= [abd]c- [abc]d 

where [abc] =a· b x c. 



CHAPTER 3 

Special Relativity Mechanics 

15. The l'elocity l'ector 

Suppose that a point P is in motion relative to an inertial frame S. Let ds be the 
distance between successive positions of P which it occupies at times t, t +de 
respectively. Then, by equation (7.4), if dr is the proper time interval between 
these two events, 

(I 5.1) 

where v = ds/dt is the speed of Pas measured inS. Now, as shown in section 7, dr 
is the time interval between the two events as measured in a frame for which the 
events occur at the same point. Thus dr is the time interval measured by a clock 
moving with P. dt is the time interval measured by clocks stationary in S. 
Equation (I 5.1) indicates that, as observed from S, the rate of the clock moving 
with Pis slow by a factor (I - t• 2 /c 2 

)
112

• This is the phenomenon of time dilation 
already commented upon in section 6. If P leaves a point A at t = t 1 and arrives at 
a point Batt= 12, the time of transit as registered by a clock moving with P will 
be 

r, 

rz -rl = f (l-z;2jc2)l'2dt (15.2) 

r, 

The successive positions of P together with the times it occupies these positions 
constitute a series of events which will lie on the point's world-line in Minkowski 
space- time. Erecting rectangular axes in space-time corresponding to the 
rectangular Cartesian frame S, let X;, x; + dx; be the coordinates of adjacent 
points on the world-line. These points will represent the events (x, y, z, t), (x + dx, 
y + dy, z + dz, t +de) inS. If (t'x, L"y, v,) are the components of the velocity vector" 
of P relative to S, then 

dx dy dz 
L'x = de' vy = de· ~:. = dt (15.3) 

" does not possess the transformation properties of a vector relative to 
orthogonal transformations (i.e. Lorentz transformations) in space--time. It is a 

39 
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vector relative to rectangular axes stationary inS only. However, we can define a 
4-ve/ocity vector which does possess such properties as follows: dx; is a 
displacement vector relative to rectangular axes in space-time and dr is an 
invariant. It follows that dx;/dr is a vector relative to Lorentz transformations 
expressed as orthogonal transformations in space-time. It is called the 4-velocity 
vector of P and will be denoted by V. 

V can be expressed in terms of" thus: 

dx; = dx; de= (1-.:z;cz)-''zx 
dr de dr ' 

by equation (15.1). Also, from equations (4.4) we obtain 

It now follows from these equations that 

(15.4) 

(15.5) 

V = (l-v2/c 2
)-

1
'
2 (rx,L'r,vz,ic) = (l-v2/c 2

)-
1 2 (l',ic) (15.6) 

where the notation should be clear without further explanation. 
Knowing the manner in which the components of V transform when new axes 

are chosen in space-time, equation (15.6) enables us to calculate how the 
components of v transform when Sis replaced by a new inertial frameS: Thus, 
consider the orthogonal transformation (5.1) which has been interpreted as a 
change from an inertial frameS to another S related to the first as shown in Fig. 2. 
The corresponding transformation equations for V are 

v; = Vl COS IX + V4 sin IX 

V4 = - Vl sin IX+ V4 COS IX 

By equation (15.6), these equations are equivalent to 

(l-v
2fc 2

)-
112 vx = (l-v

2
fc

2
)-

112
(vxcos1X+icsin1X) l 

(l-vz;cz)-''zv, = (1-vz;cz)-''zvY 

(1-vz;cz)-I;zv, = (1-vz;cz)-''zv, 

(l-v2jc 2 )- 112 ic = (l-v2 jc2 )- 112 (-vxsin1X+iccos1X) 

(15.7) 

(15.8) 

where v is the velocity of the point as measured in the frame S: Substituting for 
cos IX, sin IX from equations (5. 7), equations (15.8) can be written 

Vx = Q(vx- u) } 
v, = Q(l-u2/c 2

)
1

'
2vy 

(15.9) 

v, = Q(l -uz;cz)''zv. 

I= Q(l -uvxfc 2
) 

where (I 5.10) 
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Dividing the first three equations (I 5.9) by the fourth, we obtain the special 
Lorentz transformation equations for v in their final form, viz. 

- L'x- U 
r =- ---·· 
' I - ur,fc2 

(I -uz;cz)l;2vY 
L'y = 

I - uv,jc2 

- (I -uz;cz)I'z"'= 
r ---·-----.---
' - I - UV,/£' 2 

(I 5.11) 

If u and L' are small by comparison with c, equations (I 5.11) can be replaced by 
the approximate equations 

(I 5.12) 

These are equivalent to the vector equation (1.1) relating velocity measurements 
in two inertial frames according to Newtonian mechanics. 

Since, by the fourth of equations ( 15.9), Q must be real, equation ( 15.1 0) implies 
that ifv < c then v <c. Thus, if a point is moving with a velocity approachingc in 
Sand Sis moving relative to S with a velocity of the same order, the point's 
velocity relative to Swill still be less than c. Such a result is, of course, completely 
at variance with classical ideas. In particular, if a light pulse is being propagated 
along Ox so that r, = c, ry = L', = 0, then it will be found that I·, = c, vY = v, = 0. 
This confirms that light is propagated with speed c in all inertial frames. 

The transformation inverse to (I 5.11) can be found by exchanging 'barred' and 
'unbarred' velocity components and replacing u by - u. 

Suppose that particles A and 8 move along the x-axis of a frameS with speeds 
3c(4 in opposite directions, both leaving 0 at time 1 = 0. At any later time I, their 
x-coordinates will be xA = - 3ct/4, x 8 = 3ctf4 and their distance apart will be x 8 

-xA = 3ctf2. Clearly, this distance increases at a rate 3cf2. However, this is not 
their relative velocity and the fact that the rate exceeds c does not conflict with the 
result already derived that no material body can be observed from any inertial 
frame to have a speed greater than c. There is no special-relativity prohibition 
against the distance between two bodies increasing at a rate greater than c. To find 
the velocity of B relative to A, it is necessary to introduce a second inertial frameS 
with its origin at A; the velocity of BinS is then the velocity of B relative to A. 
Since the velocity of S relative to Sis u = - 3cj4 and the velocity of Bin Sis rx 
= 3cf4, the first of equations (I 5.11) gives r, = 24c/25 (<c) as the velocity of B 
relative to A. 

16. Mass and momentum 

In section 2 it was shown that Newton's laws of motion conform to the special 
principle of relativity. However, the argument involved classical ideas concerning 
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space-time relationships between two inertial frames and these have since been 
replaced by relationships based upon the Lorentz transformation. The whole 
question must therefore be re-examined and this we shall do in this and the 
following section. 

We shall begin by considering the conservation of momentum, equation (1.3), 
for the impact of two particles by which mass is defined in classical mechanics. 
Since the velocity vectors u 1 , etc. are not vectors relative to orthogonal 
transformations in space--time, and indeed transform between inertial frames in a 
very complex manner, it is at once evident that equation (1.3) is not covariant with 
respect to transformations between inertial frames. It will accordingly be 
replaced, tentatively, by another equation, viz. 

( 16.1) 

where U 1 , etc. are the 4-velocities of the particles and M 1 , M 2 are invariants 
associated with the particles which will correspond to their classical masses. This 
is a vector equation and hence is covariant with respect to orthogonal 
transformations in space-time as we require. Equation ( 16.1) will be abbreviated 
to the statement 

I: M V is conserved (16.2) 

and then. hy equation ( 15.6). this implies that 

I: m (l', ic) is conserved (16.3) 

where 
A;f 

m=--~~-;--;; 
(I -rz;cz)1 2 

( 16.4) 

By consideration of the first three (or space) components of (16.3), it will be clear 
that 

I: m" is conserved 

and. by consideration of the fourth (or time) component that 

I: m is conserved 

(16.5) 

(16.6) 

If, therefore. m is identified as the quantity which will play the role of the 
Newtonian mass in special relativity mechanics, our tentative conservation law 
(16.1) is seen to incorporate both the principles of conservation of momentum 
and of mass from Newtonian mechanics. The principle (16.1) is accordingly 
eminently reasonable. However, our ultimate justification for accepting it is, of 
course, that its consequences are verified experimentally. We shall refer to such 
checks at appropriate points in the later development. 

It appears from equation (16.4) that the mass of a particle must now be 
regarded as being dependent upon its speed r. lfl' = 0, then m = M. Thus M is the 
mass of the particle when measured in an inertial frame in which it is stationary. 
M will be referred to as the rest mass or proper mass and will, in future, be denoted 
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by m0 . To distinguish it from m0 , m is often called the inertial mas.~. Then 

mo 
m=- ----

(I -l'z fez (2 
(16.7) 

Clearly m-+ x.. as r -+ c, implying that inertia effects become increasingly serious 
as the velocity of light is approached and prevent this velocity being attained by 
any material particle. This is in agreement with our earlier observations. Formula 
{ 16. 7) has been veriflt:d by observation of collisions between atomic nuclei and 
cosmic ray particles (e.g., see Exercise 27 at the end of this chapter). 

We shall define the 4-momentum rector P of a particle whose rest mass is m0 and 
whose 4-velocity is V, by the equation 

P = m0 V (16.8) 

Since m0 is an invariant and Vis a vector in space-time, Pis a vector. By equation 
(15.6), 

P- m0 (I - L· 2 jc 2 )- 1 ·Z (v, ic) = (mv,imc) = (p,imc) (16.9) 

where p = mv is the classical momentum. 
Relative to the special orthogonal transformation (5.1 ), the transformation 

equations for the components of Pare 

P1 = P 1 cos~+ P4 sin~ 

P4 =- P 1 sin ex+ P4 cos~ 
(16.10) 

Substitutmg for the components of P from equation (16.9) and similarly for P, 
and employing equations (5.7), it will be found that 

(16.11) 

(16.12) 

Equations ( 16.11) constitute the special Lorentz transformation equations for the 
components of the momentum p and equation (16.12) the corresponding 
transformation equation for mass. Since p, = mr,, this equation can also be 
written 

__ I - uv,jc2 

m -------m 
- (1-uz/c2)1i2 

(16.13) 

This reduces to the classical form of equation (2.4) if u, r, are negligible by 
comparison with c. 
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17. The force vector. Energy 

We have seen that in classical mechanics, when the mass of a particle has been 
determined, the force acting upon it at any instant is specified by Newton's second 
law. Force receives a similar defintion in special relativity mechanics. The mass of 
a particle with a given velocity can be determined by permitting it to collide with a 
standard particle and applying the principle of momentum conservation. 
Equation (16.7) then gives its mass at any velocity. The force f acting upon a 
particle having mass rn and velocity v relative to some inertial frame is then 
defined by the equation 

d dp 
f= -(mv) =-

de dt 
( 17.1) 

where pis the particle's momentum. Clearly f will be dependent upon the inertial 
frame employed, a departure from classical mechanics. 

Definition (17.1) implies that, if equal and opposite forces act upon two 
colliding particles, momentum is conserved. However, although experiment 
confirms that momentum is indeed conserved, Newton's third law cannot be 
incorporated in the new mechanics, for it will appear later that, if the forces are 
equal and opposite for one inertial observer, in general they are not so for all such 
observers. Equation ( 16.1) therefore replaces this law in the new mechanics. 

f is not a vector with respect to Lorentz transformations in space-time. 
However, a 4-force F can be defined which has this property. The natural 
definition is clearly 

dP dV 
F =- = m0 ·-· ·· 

dr dr 
(17.2) 

P being the 4-momentum and r the proper time for the particle. F is immediately 
expressible in terms off for. by equation (16.9), 

d 
F = dr (p, imc) 

d dt 
= --- (p, imc)-

dt dr 

=(I- r2/c2)-l ,2 (p, im,·) 

= (l-v2/c 2 )- 1· 2 (f,imc) (17.3) 

The vectors V, F are orthogonaL This is proved as follows: From equation 
(15.6), 

( 17.4) 

Differentiating with respect to r, 
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i.e. V·F = 0 (17.5) 

as stated. This result has very important consequences. Substituting for V and F 
from equations (I 5.6) and ( 17.3) respectively, it is clear that 

(17.6) 

This is equivalent to 
(17.7) 

But, by definition, v · f is the rate at which f is doing work. It follows that the work 
done by the force acting on the particle during a time interval (1 1 , 12 ) is 

,, 
J c 2ritd1 = m2c 2 - m1c 2 (17.8) 

'• 
The classical equation of work is 

work done = increase in kinetic energy (17.9) 

where T = !mv2 is the kinetic energy (KE). Equation (17.8) indicates that in 
special-relativity mechanics we must define T by a formula of the type 

T = mc2 +constant (17.10) 

When v = 0, T = 0 and this determines the unknown constant to be - m0 c2 . Thus 

(17.11) 

If v 1 c is small (I - v2 1 c 2)- 112 = I + v2 j2c2 approximately and the above equ­
ation reduces io T = !m0 v2

, in agreement with classical theory. 
According to equation ( 17.10), any increase in the kinetic energy of a particle 

will result in a proportional increase in its mass. Thus, if a body is heated so that 
the thermal agitation of its molecules is increased, the masses of these particles, 
and hence the total body mass, will increase in proportion to the heat energy 
which has been communicated. 

Again, suppose two equal elastic particles approach one another along the 
same straight line with equal speeds v. If their rest masses are both rn0 , the net 
mass in the system before collision is 

2mo/(l-v2jc2)J'2 

It has been accepted as a fundamental principle that this mass will be conserved 
during the collision. However, from considerations of symmetry, it is obvious that 
at some instant during the impact both particles will be brought to rest and their 
masses at this instant will be proper masses m0. By our principle, 

2 
, 2m0 rn - ---,-'--.;-:-.,..-, 
o- (I -v2/c2)1i2 

(17.12) 
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It follows, therefore, that, at this instant, the rest mass of each particle has 
increased by 

mo 2 ----- - m0 = T/c 
(I -v2/c2 )u 

(17.13) 

where Tis the original KE of the particle and use has been made of equation 
( 17.11 ). Now, in losing this KE, the particle has had an equal amount of work 
done upon it by the force of interaction and this has resulted in a distortion oft he 
elastic material of which it is made. At the instant each particle is brought to rest, 
this distortion is at a maximum and the elastic potential energy as measured by 
the work done will be exactly T. If we assume that this increase in the internal 
energy of the particle leads to a proportional increase in mass. the increment of 
rest mass ( 17.13) is explained. If the particles are not perfectly elastic. the work 
done in bringing them to rest will not only increase the internal elastic energy, but 
will also generate heat. Both forms of energy will then contribute to increase the 
rest masses. 

Such considerations as these suggest very strongly that mass and energy are 
equivalent, being two different measures oft he same physical quantity. Thus, the 
distinction between mass and energy which was maintained in classical physical 
theories, has now been abandoned. All forms of energy £. mechanical, thermal, 
electromagnetic, are now taken to possess inertia of mass m, according to 
Einstein\ equation, viz. 

(17.14) 

Conversely, any particle whose mass is m, has associated energy E and. by 
equation (17.11), 

(17.1 5) 

m0 c2 is interpreted as the internal energy of the particle when stationary. If the 
particle were converted completely into electromagnetic radiation, m0 c2 would 
be the energy released. This is the source of the energy released in an atomic 
explosion. The mass of the material products of the explosion is slightly less than 
the net mass present before the explosion, the difference being accounted for by 
the mass of the energy released. Even a small mass deficiency implies that 
an immense quantity of energy has been released. Thus. if m = I kg. c = 3 
x 108 ms- 1,then £=9x 10 16 J=2.Sx 1010 kWh. 

The principle of conservation of mass, which has been incorporated into the 
new mechanics, is now seen to be identical with the principle of conservation of 
energy, which is accordingly also regarded as valid in the new mechanics. 
However, the distinction between the two principles, which was a feature of the 
older mechanics. has disappeared. 

18. Lorentz transformation equations for force 

By equation (17. 7), 
i 

imc = -- f·v 
c 

(18.1) 
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Referring to equation (17.3), Fcan now be completely expressed in terms off; thus 

F=(l-v2 jc 2 )- 1 ' 2 (f.~h) (18.2) 

Relative to the special Lorentz transformation, the transformation equations 
for the components of Fare 

_!. = f 1 cos .':1. + f 4 sin ex 1!:_2 = f 2} 
f 4 = -f1 sm':l.+f4 cos:x f 3 =f3 (18.3) 

Substituting from equation (18.2) into the first three of these equations and 
employing equations (5.7), it follows that 

fx=Q(fx-?f·v) l 
h = Q(l -u2;c2)l:2fy r (18.4) 

T. = Q(J-u2/c2)1i2J,J 

where Q is given by equation (15.10). Substituting for Q from the fourth of 
equations (15.9), it will be found that 

Tx = fx - ~ · (fyvy + fz v,) I 
c2 I -uvxlc2 

J 

(I -u2;c2)t;2 ! 
J; = I -uvx/c2 fY I 

(I -uz;cz)t z i 
J.= 1 1 zf: I - uvx c / 

(18.5) 

These are the special Lorentz transformation equations for f. If u, v are negligible 
by comparison with c, these equations reduce to the classical form of equation 
(2.6). 

It is clear from equations (18.5) that, if equal and opposite forces are observed 
from S to act upon two particles, the forces observed from Swill not be so related 
unless the particles' velocities are the same. 

19. Fundamental particles. Photon and neutrino 

By eliminating m and v between equations (16.7), (17.14) and the equation p = mt 

giving the linear momentum of a particle, it will be found that 

(19.1) 

This useful equation relates the total energy E of a particle (including its internal 
energy) with its momentum p. A special case of great importance is when m0 = 0, 
and then 

E = cp (19.2) 
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For such a particle, m = Ejc 2 = pjc; i.e. its rest mass vanishes, but its inertial mass 
is non-zero. This result is inconsistent with equation (16.7), unless v = c (in which 
case the right-hand member becomes indeterminate). We conclude that any 
particle having zero rest mass must always move with the speed of light. 

Two such particles are known, the photon and the neutrino. The former is a 
quantum of electromagnetic energy and the latter is a particle which is generated 
in some interactions between fundamental particles governed by the weak 
interaction force (e.g. the decay of a neutron into a proton). Neither particle 
exhibits any electric charge. If either particle is absorbed by other matter, it loses 
its identity and delivers its energy and momentum to the absorbing body- the 
heating of a metal plate placed in sunlight is an example of the absorption of 
photons. Neutrinos are exceptionally difficult to absorb and hence to 
detect- there is a high probability that a neutrino from the sun will pass right 
through the earth without interaction with a single one of its atoms. 

As an example of a particle interaction in which a neutrino is involved, consider 
the decay of a negative pion (a meson) into a muon (heavy electron) and a neutrino. 
Assuming that the pion is at rest in the laboratory frame, the momenta of the muon 
and neutrino will have equal magnitudes p, but will be in opposite senses. Ifm., mP 
are the proper masses of the pion and muon respectively, the principle of 
conservation of energy leads to the equation 

m,c2 = cp + c J (p 2 + m;c 2
) 

having used equations (19.1) and (19.2). Solving for p, we find 

p = c(m;- m;)/2m, 

The energy of the muon is now found to be 

Ep = m,c 2 
- cp = c2 (m; + m;)j2m. 

and the KE of this particle is accordingly 

(19.3) 

(19.4) 

(19.5) 

TP = EP- mPc2 = c2 (m. - mj j2m. ( 19.6) 

From tables, we find that the rest masses in atomic energy units are m,c2 = 140 
MeV, mpc 2 = 106 MeV (mega-electron volts). Hence, TP = 4.1 MeV. This value 
has been checked experimentally by observing the length of the path of the muon 
in the resistive medium in which it is generated (usually liquid hydrogen). 

20. Lagrange's and Hamilton's equations 

Suppose that a particle having constant rest mass m0 is in motion relative to an 
inertial frame under the action of a force derivable from a potential V. Then its 
equations of motion are 

etc. (20.1) 



Expressed in Lagrange form, these equations must be 

_d_ (2_);) = <~!:_, etc. 
de ex ex 

and hence L must be a function of x, y, z, x, j·, z, such that 

cL m0 x 
ex (I -v2fc2)1;2 

CL ?V 
ex = -ex' etc. 

Since v2 = x2 + / + i 2 , these equations can be validated by taking 

L = -moc2(1-v2/c2)I'2- V 

which is accordingly the Lagrangian for the particle. 
Now 

oL 
etc. 
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(20.2) 

(20.3) 

(20.4) 

(20.5) 

and it follows exactly as in classical theory that, if the Hamiltonian His defined by 
the equation 

(20.6) 

and is then expressed as a function of the quantities x, y, z, Px• pY, p, alone, the 
Lagrange equations (20.2) are equivalent to Hamilton's equations 

(:H 
Px = ex' etc. (20.7) 

Now 

(20.8) 

and hence 

(20.9) 

the total energy, precisely as for classical theory. 

But 

(20.10) 
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and it follows that 

E2 = c2 (p; + p: + p; + m~c2) 

Substituting in equation (20.9), 

(20.11) 

H = c(p; + p; + p; + m~c 2 )1 2 + V (20.12) 

expressing Has a function of x, .r. z, p., p)., P=· The reader is now left to verify that 
Hamilton's equations are equivalent to the equations of motion (20.1). 

21. Energy--momentum tensor 

Suppose that there is a continuous distribution of mass over some region of space. 
In this section, we shall suppose this to take any physical form whatsoever. For 
example, the distribution may be in the form of the molecules of an elastic body 
and, in this case, the mass must include a component corresponding to the mass of 
the potential energy of the field of stress, in addition to the inertia of the particles 
themselves. Such a field will be electromagnetic in nature, the electric charges 
present in the molecules being ultimately responsible for its presence; we shall 
not, therefore, exclude a further contribution to the mass-energy distribution 
from any other electromagnetic field which may happen to be present. Any 
random motion of particles exhibiting itself as heat energy will also make a 
contribution. Equations governing this combined mass flow will now be derived. 

Let S be an inertial frame Ox 1 x 2 x 3 and let 11', 11'', etc .. be the densities of 
inertial mass at a point of the frame due to the various contributors. Then, if v', v", 
etc., arc the respective velocities of flow of these components. the net density of 
linear momentum g will be given by 

(21.1) 

where 

J1 = !1' + !1" + ... (21.2) 

is the net density of inertial mass. Equation (21.1) defines the mean velocity of 
mass flow v. In time dt, the mass flowing across an area dA having unit normal n is 

(21.3) 

thus, the rate of mass flow across unit area is JlV • n = g · n, implying that g is also 
the current density vector for the mass flow. The components of g will be written 
g, (Greek indices will range over values I, 2, 3). 

Let g1'
1 be the current density vector for the flow of the x,-componcnt of 

momentum, i.e. the rate of flow of this component of momentum across unit area 
with unit normal n is g'''· n. The xp-component of g''' will be denoted by g,p. In the 
special case of a cloud of non-interacting particles (no stress field), whose velocity 
of flow is v, since the density of the x,-component of momentum is g,, the quantity 
of this component passing over the unit area in unit time is g, v · n. It follows that 
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g'' 1 = f!, v and hence, 

(j,p = (j,L'p (21.4) 

A simple distribution of this type will be referred to as an incoherent cloud. 
For any distribution which includes material particles, in addition to the 

internal forces of interaction between the particles, there may be other forces 
acting upon them due to agents which are regarded as external to the system; such 
forces will be termed externalj(Jrces. Let dw be the volume occupied by a small 
element of the fluid or solid which is formed from these particles; if v is the flow 
velocity of the element and dw0 is its proper volume (i.e. volume measured in a 
frame in which the element is momentarily stationary), then 

(21.5) 

since all lengths parallel to the flow will be subject to a Fitzgerald contraction. If 
df is the resultant external 3-force acting on the element, we shall define the 3-
force density d at the element to be such that df = d dw. Similarly, if dF is the 
external4-force on the element, the 4-force density will beD, where dF = D dw0 ; 

since dw0 is a 4-invariant, this defines D as a 4-vector. Reference to equation (18.2) 
shows that we can write 

dF= (l-r2 ,ic2
)-

12 (df,idf·vjc) 

and this is equivalent to the equation 

Ddw0 = (l-v2;c 2 )- 1 2 (d,id·vjc)dw 

It now follows from equation (21.5) that 

D =(d. id·vjc) 

which relates 3- and 4-force densities. 

(21.6) 

(21. 7) 

(21.8) 

Now suppose I: is a closed surface which is stationary relative to the frame S 
and let da be the area of a surface element whose outwardly directed unit normal 
is n. Then the rate of increase of the total mass inside I: must equal the rate of 
inflow of mass across I:, plus the rate at which external forces acting on any 
particles inside I: generate energy (and hence mass) by performing work. Let r 
denote the interior of I: and dw a volume element of r. Then conservation of 
inertial mass is expressed by the equation. 

~ r J1dW =- r g·nda+~ r d·vdw 
dt J, l c )r 

(21.9) 

Converting the surface integral into a volume integral over r by the divergence 
theorem, this equation is seen to be equivalent to 

f {til . I } ·;;- +d1vg--d·v dw = 0 
r ct C

2 (21.10) 
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Since r is arbitrary, this implies that 

CJJ I 
~+g •.• = 2 d,v,. 
ct c 

(21.11) 

where the summation convention is being applied to the Greek indices. 
Since the x.-i:omponent of the linear momentum of the particles within the 

volume element dw will be increased at a rate d. dw by the external forces and g1" 1 

is the current density vector for the flow of this component of momentum, the 
equation corresponding to (21.9) expressing the conservation of linear momen-
tum is 

~ I g,dw = - I g'''· nda + I d,dw 
de Jr Jl Jr (21.12) 

Again, by application of the divergence theorem, we can show that this implies 
that 

cg. ac- +(J.p.~ = d, (21.13) 

These equations (21.11), (21.13), of conservation of inertial mass (or energy) 
and linear momentum can be expressed in four-dimensional form by the 
introduction of Minkowski coordinates xi and by the definition of a 4-tensor Tii 
according to the equations 

(21.14) 

It may be verified that, with this notation, the equations reduce to the form 

(21.1 5) 

where the 4-force density D, is given by equation (21.8). T,i is called the 
energy-momentum tensor for the mass-energy distribution. By assuming Tii 
behaves like a 4-tensor on transformation between inertial frames, equation 
(21.15) is guaranteed to be valid in all such frames and the special principle of 
relativity is satisfied. 

In the special case of an incoherent cloud of particles flowing with velocity v, we 
have g, = JJV. and g.~= g.vp = JJV,L'p· Equations (21.14) now yield 

Tii = JJoo V, Vi 

where V = (I - v2 jc 2 )- 112 (v, ic) is the 4- velocity of flow and 

/Joo = (I - L'z fez) JJ 

(21.16) 

(21.17) 

Since the density of rest mass of the cloud observed from Sis JJ .j (I - v2 jc 2 
), the 

rest mass of the particles in the volume element dw is JJ J (I - v2 jc 2 )dw. 
Observed from a frame S0 in which the particles in this element are momentarily 
stationary, the volume of the element will be dw0 ; hence, the density of proper 
mass in S0 is JJ .j(l- v2 jc2 )dw/dw0 = JJ(I -v2 jc 2

) = JJ00 , having used equation 
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(21.5). J.loo is accordingly referred to as the proper density of proper mass of the 
cloud; it is a 4-invariant and equation (21.16) clearly expresses T,1 as a 4-tcnsor. 

In many circumstances, the 4-force density D, of the external force field can be 
expressed as the divergence of a second rank tensor, i.e. we can write 

(21.18) 

Equation (21.15) then reduces to 

(T,1 + si,l., = o (21.19) 

This shows that the external force field can be treated as an additional component 
of the original mass-energy distribution, contributing its own energy­
momentum tensor Sii. The field is then regarded as possessing energy of density 
c2 J1 = - s44> x.-component of momentum of density g.= s .• /ic, and the 
momentum flow within the field is described byg,0 = S,0. There being no external 
forces operating on the enlarged system, it is said to be isolated, and ifTii is taken 
to denote the combined energy-momentum tensor, the equations of conservation 
of energy and momentum for the overall distribution take the form 

T .. =0 
l).j 

(21.20) 

i.e. TiJ has a vanishing divergence. 

22. Energy-momentum tensor for a fluid 

In this section we will calculate the equations of motion for an elastic fluid moving 
under the action of an external force field of density d,. From these, the 
energy-momentum tensor for the fluid, including its internal stress field, can be 
derived. 

Let r 0• be the stress tensor, i.e. (r 1,, r 2., r 3.) are the components of the force 
exerted across unit area, whose normal is parallel to the x.-axis, by the particles on 
the side for which x. takes lesser values upon the particles on the side for which x. 
takes greater values. Consider a fluid element in the shape of a small tetrahedron, 
three of whose faces are normal to the axes and whose fourth face has unit normal 
n. (Fig. 4). If bx., bx 2, bx 3 are the respective lengths of the edges parallel to the 
axes, the stress force acting on the face parallel to the coordinate plane Ox2 x 3 will 
have components !(r 11 , r 21 , r 3 .Jbx 2 bx 3; the forces acting on the two faces 
parallel to the other two coordinate planes can be calculated similarly. Let sbA be 
the force applied to the sloping face, bA being its area. Then the x,-component of 
the equation of motion of the element is 

·h,1 bx2bx 3 + !r,2h 3 bx 1 + !r,3 bx 1 bx2 + s,bA + tbx 1 bx2bx3d, = ~· 
(22.1) 

where p, is the momentum of the element. Since the face of area !bx 2bx 3 is the 
projection of the area bA on to the coordinate plane Ox 2 x 3, n 1bA = !bx2bx 3; 



54 

... , 

FIG. 4 

similarly, n2 bA = !bx 3 bx~> n 3 bA = !bx 1bx 2 • Thus, 

s, = - (r, 1 n 1 + r, 2 n 2 + r. 3 n 3 ) +(terms of third order in bx.)jbA. (22.2) 

In the limit as bx.-+ 0, this gives 

(22.3) 

Now consider the motion of a small element of fluid, of any shape, bounded by 
a surface I: (I: moves with the fluid). If dais an element of I: (Fig. 5) whose unit 
normal is n., the force exerted on it by the neighbouring fluid is - r,0n0da and the 
resultant stress force on the complete element is therefore 

f f i'r.p 
- r.~n0da = - T;~ dw (22.4) 

J: r 

~ n 

x, 

FIG. 5 
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where r is the interior of I: and we have used the divergence theorem. Thus, the 
force density for the stress field is - r,11 . 11 . 

Let g. be the total momentum density for the fluid, including the elastic 
potential energy generated by the stress field. If bw now represents the volume of 
the fluid element inside I:, the momentum of the element is g,bw and the rate of 
change of momentum is 

d dg. d 
-(g flm) = .---flw + g -(bw) 
de · • de 'de 

where the derivatives are calculated following the fluid motion. Thus, 

dg. ag. 
dl = ae +roY •. 11 

(22.5) 

(22.6) 

where t·. is the velocity of flow. During a short time bt, the surface element da 
traces out a volume"" n da be and the increase in the volume of bw is accordingly 

Thus, 

bt f "' n da = bt f div v dw = be bw v11 • 11 
I: r 

d 
-(bw) = bwv •• de P• p 

Equations (22.5), (22.6) now give for the rate of momentum change 

or 

(a9• ) (cg. c ) -,- + J;11 g._ 11 + g.t·11 • 11 dw = -,- + ~ (g,r11 ) dw ce ce t,Xp 

We can now write down the equation of motion of the element, viz. 

ilg. d -;;- + (g.v 11 + r,11 ) 11 = 2 01 . 

(22.7) 

(22.8) 

(22.9) 

(22.10) 

(22.11) 

At this stage it should be noted that we are disregarding any flow of heat which 
may take place by conduction within the fluid. Such a flow of energy would 
contribute its own momentum and further terms would need to be included in 
equation (22.11) to allow for this. 

We next calculate the equation of energy for the fluid element. The rate at 
which the stress force acting upon dadoes work is - r. 11 n11 v.da and the total rate 
of doing work by these forces on the element is therefore 

-f v.r. 11 n11 da = - f /-(v.r.11 )dw 
I: r OXp 

(22.12) 
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by the divergence theorem. The rate of doing work by the external forces on the 
element is d,r,dw. If 11 is the density of the total inertial mass of the fluid 
(including the elastic potential energy and any heat generated by compression), 
the energy of the element is c2 JldW. Thus, the equation of energy is 

d 
dt (c 2 }.ldw) = { d,v.- (r, r,p)_ 0} dw (22.13) 

Using equation (22.8) and 

dJ1 VJl 
--- = -- + VpJl p 
dt ct · (22.14) 

equation (22.13) gives 

OJl I 1 I 
-+ {JlL'p+ -·L' r PIp= --d L' 01 c2 • • . c2 • a 

(22.15) 

We now compare the equations (22.11), (22.15) with the equations (21.13), 
(21.11 ), for a general mass energy flow. It is seen that, for the fluid, we must take 

I 
g, = JlVa + c2 ,;pr~. (22.16) 

(22.17) 

Substituting for g. from equation (22.16) into (22.17), we get the alternative 
formula 

(22.18) 

Equations (21.14) now yield the components of the energy-momentum tensor, 
viz. 

T.p = Jll:aVp + r •P + !2 r yaZ:yVp } c 

I 
T.4 = T4, = ic(Jlr:, + 2 L'prp.) 

c 

T44= -C
2 J1 

(22.19) 

Alternative forms for these components involving the 4-velocity of flow V, can 
also be found (see Exercise 68 at the end of this chapter). 

Two special cases of these results are of great importance. The first is that of an 
incoherent cloud for which we have r,0 = 0. Then T.~ = Jlv,v~, T,4 = icJlr:,, 
T44 = - c2 Jl, and using equation (21.17), we derive equation (21.16) again. It 
should, however, be noted that equation (21.17) is not valid in the general case of 
an elastic fluid, since the inertial mass density J1 includes a component due to the 
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elastic energy and the value of this component in the rest frame cannot be found 
by simple multiplication by (I -v 2 jc 2 ). 

The second special case is that of a perfect fluid. This is defined to be a fluid in 
which there are no shearing stresses in a frame S0 relative to which it is at rest. 
Thus. in S 0

, r~p = pb,0 where pis the pressure. Equations (22.19) now give for the 
components of the energy momentum tensor in S0 the values 

(T~) = l
p 0 0 
0 p 0 
0 0 p 

0 0 0 

(22.20) 

If V; is the 4-velocity of flow of the fluid, it is now easy to verify that the tensor 
equation 

(22.21) 

is valid in the frame S0 (Jloo. p being invariants) and, hence, is valid in all frames. 
Thus, if J1 is the density of inertial mass in a frame S, 

2 Jloo + pfc 2 P 11 = -T jc - · · -- --
44 - I - v2 fez cz (22.22) 

or (22.23) 

It now follows that 

. 2 v~ 
g.=T.4jlc=(J1oo+P/C )1-vzfcz 

= (!1 + pjcz)v. (22.24) 

Comparing this last equation with equation (22.16), we deduce that pv, = v0r0• 

identically, which implies that 

(22.25) 

i.e. there is no shearing stress in any frame and the pressure is the same in all 
frames. 

23. Angular momentum 

A particle having momentum p. = mr:. at a point x, relative to a frameS is defined 
to have angular momentum 

(23.1) 

about the fixed point a •. Clearly, this defines the angular momentum as an anti­
symmetric 3-tensor. In elementary mechanics, a more usual definition is by the 
vector product (x -a) x p, i.e. the pseudovector e.0,(xp- a0 )p,; however, the 
components of this pseudovector are found to be (h23 , h31 , h12 ) and these are 



58 

three of the non-vanishing components of h,11 (the other three are h32 = - h23 , 

etc.). so that the definitions are essentially equivalent. 
If j~ is the 3-force acting on the particle, then 

dh, 11 dx. dx 11 dp 11 dp, 
dc- =(!I Po -dip.+ (x. -a.)dl-(xp -ap)dl. 

= (x.- a,)/p- (x 11 - a11 )f. (23.2) 

since p. = mv, = mx, and p. =f.. The right-hand member of the last equation is 
another anti-symmetric 3-tensor called the moment of the forcej~ about the point 
a •. Denoting this moment by m,11 , we have derived the equation of angular 
momentum, viz. 

dh,p 
dt = m.p (23.3) 

If m,11 = 0, then h.11 is constant and the angular momentum is conserved. 
In the case of the continuous distribution of mass-energy considered in 

section 21, the momentum of an element of volume dw is g,dw and the angular 
momentum of the whole system about a. is defined by the equation 

h, 11 = fr {(x,-a.)g 11 -(x 11 -a11 )g.}dw 

= ~ [ { (x. -a,)T114 - (x11 -a11 )T,4 }dw (23.4) 
IC Jr 

where r is the region occupied by the system and T;i is the energy-momentum 
tensor. If the system is imagined to be situated in otherwise empty space, so that 
there is no container exerting forces on its bounding surface, the region r can be 
extended to include the rest of space. In these circumstances, differentiating 
equation (23.4) with respect to 1, we find 

dh, 11 _ r ( } de - Jr \ (x.- a,)T114.4- (x 11 - a11 )T114 •4 dw 

= I { (x, -a,) (D 11 - T11 y_,)- (x 11 - a11 ) (D,- T,y_,) }dw, 

= t{(x.-a,)d11 -(x11 -a11 )d,}dw 

-t { [ (x.- a.)T11yL- [ (x 11 - a11 )TayL- x •. y Tpy + Xp.y T,,} dw (23.5) 

having used equations (21.8) and (21.15). Applying the divergence theorem to the 
first two terms involving the energy-momentum tensor, since T;

1 
vanishes at a 

great distance from the distribution, these terms make zero contribution. Thus, 
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the equation reduces to the form 

(23.6) 

(Note that x •. y = b.y.) The first integral in the right-hand member of equation 
(23.6) is the moment m,~ of the external field forces about a, and it follows that the 
equation of angular momentum (23.3) is valid for the distribution if T.p is 
symmetric. Since T,4 = T4 •• this condition is equivalent to the reqUirement that 
the energy-momentum tensor should be symmetric. 

The assumption that T;i is symmetric. and hence that the angular momentum of 
a continuous distribution not acted upon by external forces is conserved, is 
always made and is, indeed, necessary for the development of the general theory 
of relativity (see section 47). Reference to equations (22.19) indicates that this 
assumption implies that the stress tensor r,0 for an elastic fluid cannot be 
symmetric as was always assumed in the classical theory; it will, however, be very 
nearly symmetric in the case when its components and the flow velocity are 
sufficiently small. 

Exercises 3 

I. Obtain the transformation equations for " by differentiating the Lorentz 
transformation. 

2. Obtain the transformation equations for the acceleration a by differentiat-
ing the transformation equations for " and express them in the form 

·- (l-uz;c2)3t2 
ax = (I - vxu/cz )3 a, 

_ I -u 2/c 2 
( vyu/c 2 

) a = a +-----a 
Y (l- v,u/c 2)2 Y I- v,u/c 2 • 

_ l-u 2jc
2 

( r;.u/c
2 

) a = a+---·- a 
z (I - v,u/c 2 )2 z I - vxu/c 2 

x 

Deduce that a point which has uniform acceleration in one inertial frame has not, 
in general, uniform acceleration in another. 

3. A nucleus is moving along a straight line when it emits an electron. As seen 
from the nucleus, the electron's velocity is 6c/7 making an angle of 60c with its 
direction of motion. A stationary observer measures the angle between the lines of 
motion of nucleus and electron to be 30'. Calculate the speed of the nucleus. 
(Ans. 3c;5.) 

4. A nucleus is moving with velocity 3c/5 when it emits a P-particle with 
velocity 3c/4 relative to itself in a direction perpendicular to its line of motion. 
Calculate the velocity and direction of motion of the P-particle as seen by a 
stationary observer. If the P-particle is emitted with velocity 3c/4 in such a 
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direction that the stationary observer sees its line of motion to be perpendicular to 
that of the nucleus, calculate the direction of emission as seen from that nucleus 
and the velocity of the #-particle as seen by the stationary observer. (Ans. 3cj5 at 
45' to line of motion; rr - ~ to line of motion where cos IX = 4j5; 9c! 16.) 

5. Show that the 4-vclocity V is of constant magnitude ic. 
6. A beam of light is being propagated in the xy-plane of Sat an angle IX to the 

x-axis. Relative to Sit is observed to make an angle 3i with O.x. Prove the 
aberration of light formula, viz. 

_ cotiX-(ujc)cosec~ 

COtiX= I 2/ 2)1•2 ( -u c 

Deduce that, if u ~ c, then 

approximately. 

~~ = iX - IX = ~ sin IX 
c 

7. A particle of rest mass m0 is moving under the action of a force f with 
velocity "· Show that 

f- m0 dl' m0 vi•/c 2 

-(I -r 2 jc 2 )u de+ (I -z}jc 2 ) 3 ' 2 " 

Hence, if the acceleration d "/dt is parallel to "' show that 

m0 dl' 
f= (l-r2/c2)3r2(il' 

and if the acceleration is perpendicular to "' then 

m0 dv 
f = - ·--· 

(I -t• 2 /c 2 ) 1 ' 2 de 

8. Two particles are moving along the x-axis of a frameS with velocities v1, v2 . 

Calculate the velocity u with which a parallel frameS must move parallel to the x­
axis of S, if the particles have equal and opposite velocities relative to S. Show that 
the magnitude of these velocities is 

cz- r, Vz- (c2- dl' JZ(cz- dlt •2 

assuming v1 > v2 > 0. 
9. A bullet of length dis moving with velocity z:. The line of sight from a camera 

makes an angle IX with the bullet's velocity. Behind the bullet and parallel to its 
axis is a stationary measuring scale. If the camera takes a photograph of the bullet 
against the background provided by the scale, show that the bullet's length as it 
appears on the scale is 

(I -vz;cz)tlzd 

1 + V COS IX/C • 
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10. A cart rolls on a table with velocity kc. A smaller cart rolls on the first in 
the same direction with velocity kc relative to the first cart. A third cart rolls on 
the second with relative velocity kc, and so on upton carts. If cv, is the velocity of 
the rth cart relative to the table, prove that 

Deduce that 

v, .... t 
v, +k 

I +kv, 

(I + k )" - (I - k )" 
v = ----·-· ---
" ( I + k )" + (I - k )" 

What is the limit of v. as n-+ oo? (Ans. c.) 
II. A nucleus disintegrates into two parts, A and B which move with equal and 

opposite velocities of magnitude V. A then ejects an electron whose velocity 
observed from A has magnitude Vand direction perpendicular to the direction of 
A's motion. Show that, as observed from B, the electron's velocity makes an angle 
:x with the direction of A"s motion, where tan IX =~(I - V 2 jc 2) and calculate the 
magnitude of the velocity of the electron relative to B. (Ans. V { 4 + 
(1- V2/c2)2}li2/(l- v2;c2).) 

12. A rocket moves along the x-axis inS, commencing its motion with velocity 
r;0 and ending it with velocity vi. If w is the jet velocity as measured by the crew 
(assumed constant), show that the mass ratio of the manoeuvre (i.e. initial 
mass/final mass) as measured by the crew is 

[
(c +VI )(c- Vo)Jc:2w 

(c -v 1)(c + v0 ) 

What does this reduce to as c-+ oo? Deduce that, if the rocket starts from rest inS 
and its jet is a stream of photons, the mass ratio to velocity v is 

JG~~) 
Show that, with a mass ratio of 6, the rocket can attain 35/37 of the velocity of 
light in S. _ _ 

13. S, S, S are inertial frames with their axes parallel. S has a velocity u relative 
to Sand Shas a velocity v relative to S, both velocities being parallel to the x-axes. 
If transformation from Sto Sinvolves a rotation through an angle IX of the axes in 
spa~-time and transformation from S to Sa rotation p, a transformation from S 
to S involves a rotation y where y = IX+ p. Deduce from this equation the 
relativistic law for the composition of velocities, viz. 

u+v 
w= 

l + uvjc 2 
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14. A force facts upon a particle of mass m whose velocity is v. Show that 

dv f· v 
f= m-+-v 

dt c 2 

I 5. An electrified particle having chargee and rest mass m0 moves in a uniform 
electric field of intensity E parallel to the x-axis. If it is initially at rest at the origin, 
show that it moves along the x-axis so that at time t 

where k = e£fm0 . Show that this motion approaches that predicted by classical 
mechanics as c -+ oc. (It may be assumed that the force acting upon the particle is 
e E in the direction of the field at all times.) 

16. A tachyon transmitter always emits a tachyon at a speed r; > c relative to 
itself. Observers A, Bare equipped with such transmitters and B is moving away 
from A with velocity u < c. A transmits a tachyon towards B, who is at a distance 
d as measured from A when he receives it. B immediately transmits a tachyon back 
towards A. Show that A receives this tachyon a time 

d 
---(2u- r; -u 2 r/c 2) 
r:(r-u) 

after transmitting his own. Deduce that A receives the reply before (!)his act of 
transmission if 

17. v, V are the 3- and 4-velocities of a point. If a = d v ;de is the 3-acceleration 
and A = d V /dr is the 4-acceleration, prove that 

A2 = (l-r2/c 2
)- 3 {(c 2 -v2 )a 2 +2vi·a·v-v2 i· 2 }/c2 

18. A mirror moves perpendicular to its plane with velocity r: and away from a 
source of light. A ray from the source is reflected by the mirror. If f) is the ray's 
angle of incidence, show that the angle of reflection is 4>. where 

(r; 2 +c 2)cos0 -2cv 
cos 4> = ------- ... 

r 2 + c2 
- 2vccos0 

19. Two trains, each having the same rest length L, are moving in opposite 
directions with equal speeds U on parallel tracks. State the time Tthey take to pass 
one another according to a classical, non-relativistic, calculation. Show that the 
time taken, as measured by a driver of one of the trains and using a relativistic 
calculation, is also T. 

20. v, li are the velocities of a point relative to the inertial frames S, S 
respectively. Representing these vectors as position vectors in an independent~ 3 , 



show that 

/1 ~ = Q l ~ + u { ~; (p - I ) + p} J 
where P = (l-u 2jc2)- 1 2 and Q = 1/(1 +u·~jc 2 ). 
Show further that 

u2P'f = Q[(I-P)u x (~ x u)+Pu 2 (u+~)J 

and hence verify that 
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21. A luminous disc of radius a has its centre fixed at the point (x, 0, 0) of the S~ 
frame and its plane is perpendicular to the x-axis. It is observed from the origin in 
the S-frame at the instant the origins of the two frames coincide and is measured 
to subtend an angle 21X. Prove that, if a~ x, then 

aJ(c+u) tan IX=~-- --x c-u 
(Hint: employ the aberration of light formula, exercise 6 above.) 

22. A particle moves along the x-axis of the frame S with velocity L' and 
acceleration a. Show that the particle's acceleration in Sis 

_ (I _ 14 2/c2)3/2 
a= a 

(I - uv/c 2
)
3 

If the particle always has constant acceleration IX relative to an inertial frame in 
which it is instantaneously at rest, prove that 

d 
-(pv) =IX 
de 

where p =(I- r: 2ic 2 )-
1

;2 and tis time inS. 
Assuming that the particle is at rest at the origin of Sat 1 = 0, show that its x­

coordinate at time c is given by 

lXX = c2 [(1 + IX 2 t 2/c 2
)
1 2 -I] 

23. Three rectangular Cartesian inertial frames S, S, S are initially coincident. 
As seen from S, S moves with velocity u parallel to Ox and, as seen from S, "'S 
moves with velocity v parallel to Oy.lfthe direction of S's motion as seen from S 
makes an angle f) ~ith Ox and the direction of S's motion as seen from S makes 
an angle cJ> with Ox, prove that 

L"( 14 2)1:2 li( vz)-t'z tan(} = - I -- , tan cJ> = - I --
u c2 u c2 
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Deduce that, if u, v ~ c, then 

approximately. 
24. The inertial frames S, Shave their axes parallel and the origin of S moves 

along the x-axis of S with velocity u. A rigid rod lies along the x-axis of Sand is 
attached to it. If11s the rod's length as measured inS and I is its length measured in 
S, show that I = 7(1 - u2 fc 2

) 1 12 • S' is a third parallel inertial frame whose origin 
also moves along the x-axis of S. Observed from S', the origins of Sand Shave 
equal and opposite velocities. Show that the velocity of S' observed from S is 

A rod, identical to the one already referred to, lies along the x' -axis of S' and 
moves with this frame. Its length observed from S is L. Show that 

( 
21 )1/2 

L= -- T 
I+ I 

25. Two particles, each having rest mass rn0 , are moving in perpendicular 
directions with the same speed fc. They collide and cohere to form a single 
particle. Show that its rest mass is J ( 14/3)rn0• (Assume there is no radiation of 
energy.) 

26. A particle of rest mass rn 1 and speed v collides with a particle of rest mass 
rn 2 which is stationary. After collision the two particles coalesce. Assuming that 
there is no radiation of energy, show that the rest mass of the combined particle is 
M, where 

and find its speed. 
27. A particle is moving with velocity u when it collides with a stationary 

particle having the same rest mass. After the collision the particles are moving at 
angles 8, cJ> with the direction of motion of the first particle before collision. Show 
that 

2 
tan8tancj> = --

y+l 

where y = (I - u2 jc2)- 112 . (If c-+ oo, y .... 1 and()+ cJ> = !x. This is the prediction 
of classical mechanics. However, if the particles are electrons and u is near to c in 
value, () + cJ> < !n. This effect has been observed in a Wilson cloud chamber.) 
(Hint: Refer the collision to an inertial frame in which both particles have equal 
and opposite velocities prior to collision.) 
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28. A body of mass M disintegrates while at rest into two parts of rest masses 
M 1 and M 2 . Show that the energies E., E2 of the parts are given by 

M2+M2 -M2 
E _ ,2 I 2 

1 -c 2M--, 

29. Two particles having rest masses m1, m2 are moving with velocities u1, u 2 

respectively, when they collide and cohere. If IX is the angle between their lines of 
motion before collision, show that the rest mass of the combined particle is m, 
where 

Show that, for all values of IX, m ~ m1 + m2 and explain the increase in rest mass. 
30. A photon having energy E collides with a stationary electron whose rest 

mass is m0 . As a result of the collision the direction of the photon's motion is 
deflected through an angle 8 and its energy is reduced to E'. Prove that 

m0c 2 (~. -~) = I - cos8 

Deduce that the wavelength A of the photon is increased by 

. 2h . 2 I(} 
~A.= --Stn 2 , 

m0 c 

where h is Planck's constant. (This is the Compton effect. For a photon, take 
i. =he/E.) 

31. A particle P having rest mass 2m0 collides with a stationary particle Q 
having rest mass m0 . After the collision, the rest mass of Q is unchanged, but the 
rest mass of P has been reduced to m0 . If the lines of motion of the two particles 
after the collision both make an angle of 30° with the original line of motion P, 
calculate the original velocity of P and the momentum acquired by Q. (Ans. 
3 J5cj7; J I Sm0 c.) 

32. A particle is moving with velocity v when it disintegrates into two photons 
having energies E 1, E2 , moving in directions making angles IX, fJ with the original 
direction of motion and on opposite sides of this direction. Show that 

I I C -V 
tan2 1Xtan-,;/J = -­

c+v 
Deduce that, if a photon disintegrates into two photons, they must both move in 
the same direction as the original photon. 

33. A stationary particle having rest mass 3m0 disintegrates into a pair of 
particles, each of rest mass m0 , and a neutrino. The directions of motion of the 
particle pair are at an angle 28, where cos8 = 1/3. Calculate the energy of the 
neutrino and show that the speed of each of the other two particles is 3c/5. (Ans. 
imoc2

.) 
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34. A cosmic ray particle has rest mass m0 and is moving with velocity 3c/5 
relative to a stationary observer. It is seen by this observer to emit a gamma ray 
photon with energy m0 c2/4 in a direction making an angle of 60~ with its original 
line of motion. Show that the rest mass of the particle is reduced by a quarter and 
calculate the angle through which its velocity is deflected and its new speed. (Ans. 
tan -I ( J3/S); J7cf4.) 

35. A neutron having rest mass mN is stationary when it disintegrates into a 
proton (rest mass mp), an electron (rest mass md and a neutrino. The proton 
moves in the opposite direction to the other two particles, which move along the 
same straight line. If Tis the kinetic energy of the proton, prove that the kinetic 
energy of the electron is c(mEc- k) 2/2k, where 

T 2 2 k = (mN - mp)c -- - J (2mpT + T /C ) 
c 

36. A particle having rest mass m0 is at rest when it emits two photons, each of 
energy im0 c2

. The particle recoils with rest mass ~rn0 along a line bisecting the 
angle between the tracks of the photons. Calculate the angle between these tracks 
and the particle's velocity of recoil. If the photons are observed by an observer 
moving with the particle, show that the angle between their tracks is seen to be 2:x, 
where sin:x = 1/7. (Ans. 30°; J3cj2.) 

37. A nucleus has rest mass M. Whilst at rest, it emits a photon. If the internal 
energy of the nucleus is reduced by E0 in the process, show that the energy of the 
photon is E, where E = E0 (l - E0 /2Mc 2

). 

38. The lines of motion of a particle having rest mass m0 and a photon are 
perpendicular to one another. The total energies of the particle and photon are E, 
E respectively. If the particle absorbs the photon, show that its rest mass is 
increased to M0 , where M~ = m~ + 2EE/c.4. 

39. A photon having energy E is moving along the x-axis when it encounters a 
stationary particle having rest mass m0 . The particle absorbs the photon and then 
emits another photon having the same energy in a direction parallel to they-axis. 
Calculate the direction and magnitude of the final momentum of the particle and 
show that its rest mass is reduced to the value .J (m~ - 2E2 jc4

). 

40. A mass 3;.m(A. > 1) at rest disintegrates into three fragments (each of rest 
mass m) which move apart in directions making equal angles with each other. 
Show that, in a frame of reference in which one of the fragments is at rest, the 
angle between the directions of motion of the other two fragments is 
2 cot- 1 

( J3;.). 
41. A positron travelling with velocity 3cf5 is annihilated in a collision with a 

stationary electron, yielding two photons which emerge in opposite directions 
along the track of the incoming particle. If m is the rest mass of the electron and 
positron, show that the photons have energies 3mc2 /4 and 3mc2 ;2. 

42. A positron having momentum p collides with a stationary electron. Both 
particles are annihilated and two photons are generated whose lines of motion 
make equal angles IX on opposite sides of the line of motion of the positron. Prove 
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that p sin IX tan IX = 2mc where m is the rest mass of both the positron and electron. 
If IX= 60'·, calculate the velocity of the positron. (Ans. 4c/5.) 

43. A particle of rest mass m0 collides elastically with an identical stationary 
particle and, as a result, its motion is deflected through an angle 0. If Tis its KE 
before the collision and T' is its KE afterwards, show that 

44. A particle of rest mass m1 collides elastically with a stationary particle of 
rest mass m2 ( < m 1) and, as a result, is deflected through an angle 0. If E, £'are the 
total energies of the particle m 1 before and after collision respectively, prove that 

45. A pion having rest mass m0 is moving along the x-axis of an inertial frame 
Oxyz with speed 4cj5, when it disintegrates into a muon having rest mass 2m0 /3 
and a neutrino. The neutrino moves parallel to the y-axis. Prove that the angle 
made by the muon's velocity with the x-axis is tan- 1 

( 1/8) and calculate the energy 
of the neutrino. (Ans. m0 c2 /6.) 

46. A nucleus having rest mass rn0 disintegrates when at rest into a pair of 
identical fragments of rest mass f;.rn 0 (i. < I). Show that the speed of one particle 
relative to the other is 2 J (I - i 2)c/(2- i. 2 ). If i. is small, show that this speed is 
less than c by a fraction A. 4 /8. 

47. A positron collides with a stationary electron and the two particles are 
annihilated. Two photons are generated, the lines of motion of which make angles 
of 30' and 90c with the original line of motion of the positron. Calculate the 
original velocity of the positron and show that the energy of one of the photons is 
equal to the internal energy of the electron. (The rest masses of an electron and a 
positron are equal.) (Ans. J3c/2.) 

48. A moving positron collides with a stationary electron. Both particles are 
annihilated and two photons are generated, the lines of motion of which both 
make angles of 60" with the original line of motion of the positron. Prove that the 
total energy of each photon is 4m0 c2 /3, where m0 is the rest mass of the positron 
and of the electron. 

49. A nucleus having rest mass m0 is moving with velocity 4cj5 when it emits a 
photon having energy rn0 c2 /3 in a direction making an angle of60c with the line of 
motion of the nucleus. Show that the subsequent direction of motion of the 
nucleus makes an angle tan- 1 

( J3/7) with its initial direction of motion and 
calculate the new rest mass of the nucleus. Show that, relative to an inertial frame 
in which the nucleus was initially at rest, the line of motion of the photon makes 
an angle of 120c with the original direction of motion of the nucleus. (Ans. 
J13m0 /6.) 
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SO. A pion has rest mass rn0 and momentum p when it disintegrates into a pair 
of photons having energies E and£'. The directions of motion of the photons are 
perpendicular and that of the photon having energy E makes an angle~ with the 
original direction of motion of the pion. Prove that 

p = m0c(sin 2:x)- 1 
'
2

, E = m0 c2 J (!cot~). 
E' = m0 c2 J (!tan~). 

5 I. A particle having rest mass m0 is moving with an unknown velocity when it 
absorbs a neutrino whose energy is 3m0 c2 /2. The angle between the paths of the 
particle and neutrino is~. where cos:x = 1/3. After absorption, the rest mass of the 
particle is 2rn0 • Calculate the original velocity of the particle and show that its 
path is deflected through an angle p, where tanp = 4 J2j5, as a result of the 
encounter. (Ans. 3c/5.) 

52. A particle whose rest mass is rn0 moves along the x-axis of an inertial frame 
under the action of a force 

At time t = 0, the particle is at rest at the origin 0. Show that the time taken for 
the particle to move from 0 to a point x ( < a) is given by 

J [X]t/2 
1 = Jc ~ (x + 3a) 

53. Oxy are rectangular axes of an inertial frame. A particle having rest mass 
m0 is projected from the origin with momentum p0 along Ox. It is acted upon by a 
constant force f parallel to Oy. Show that its path is the catenary 

y = wo cosh ( fx - I ) 
f CPo 

where w~ = m~c4 + p5c 2
• 

54. A particle having rest mass m0 moves along a straight line under the action 
of a frictional force of magnitude m0 v/k opposing its motion; vis the speed of the 
particle and k is a constant. Show that the time which elapses whilst the particle's 
velocity is reduced from 4c/S to 3cj5 is [log (3/2) + 5!12]k. 

55. A particle having rest mass m0 moves on the x-axis under an attractive force 
to the origin of magnitude 2rn0c2 jx 2• Initially it is at rest at x = 2. Show that its 
motion is simple harmonic with period 4njc. 

56. A space ship, with its motors closed down, is moving at high velocity v 
through stationary interstellar gas which causes a retardation as measured by the 
crew of magnitude ow 2• Show that the distance it moves through the gas whilst its 
velocity is reduced from V to U is 

Ill l+x/V - --!log--
IX X 1-X U 
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57. A particle has rest mass m0 and 4-momentum P. An observer has 4-velocity 
V in the same frame. Show that, for this observer, the particle's: 

(i) energy is - P· V; 
(ii) momentum is of magnitude J[P2 + (P· V)2 jc 2

]; 

(iii) velocity is of magnitude J[l +c2P 2/(P·V)2
]. 

(Him: All these expressions are invariant.) 
58. A particle has rest mass m0 and moves along the x-axis under the action of a 

force given at any point having coordinate x by 

!= 
m0 c3 w 2 x 

wand a being constants. It is projected from the origin with velocity wa. Show 
that its velocity at any later time is given by v2 = w2 (a 2 

- x2). What does this 
imply for the particle's motion? 

59. A particle of rest mass rn0 moves along the x-axis of an inertial frame under 
the action of a force 

f = 2(1 + 2xt12)3t2 

At time 1 = 0, the particle is at rest at the origin. Show that, at any later time t, its 
coordinate is given by 

X = 2 + Cl -2 J (I + Cl) 

60. A particle of rest mass m0 moves under the action of a central force. (r, 8) 
are its polar coordinates in its plane of motion relative to the force centre as pole. 
V(r) is its potential energy when at a distance r from the centre. Obtain Lagrange's 
equations for the motion in the form 

~(yr)-yr02 +__!__V' = 0, ~(yr2 0) = 0 
dr rn0 de 

where y = [l-(r2 +r202)/c2r 112 . Write down the energy equation for the 
motion and obtain the differential equation for the orbit in the form 

where u = 1/r and h, Care constants. In the inverse square law case when V = 
-11/r, deduce that the polar equation of the orbit can be written 

lu = I + e cos 'I 8 

where '1 2 = l-112/m~h 2 c 2 • If J1/rn0 hc is small, show that the orbit is ap­
proximately an ellipse whose major axis rotates through an angle n11 2 /m~h2 c 2 per 
revolution. 

61. A particle, having rest mass m0 , is at rest at the origin of the x-axis at time 
t = 0. It is acted upon by a force J, directed along the positive x-axis, whose 
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magnitude when the particle's velocity is L' is given by f = m0 kc2 /L'. Show that at 
timet( > 0), v = c sinO, where 8 is positive acute and sec8 = I + kl. Deduce that, 
at the same time, the coordinate of the particle is given by x = c(tan8 -8)/k. 

62. If" is the 3-velocity of a particle and p = (1- v2 jc 2)-u, prove that"·~ 
= vi• and 

If m0 is the particle's rest mass, define the 3-force f acting upon it and deduce from 
the above result that "·f = mc 2

, where m is the inertial mass. 
63. A particle having rest mass rn0 moves along the x-axis under a force of 

attraction towards the origin - m0 w 2 x. It is initially at rest at the point x =a. 
Show that the velocity with which it passes through the origin is 

64. If the force f always acts along a normal to a particle's path. show that the 
speed v of the particle is constant. Write down the equation of motion of the 
particle and deduce that the curvature of the path is given by K = fjmt• 2

. If the 
particle moves in a circle of radius a under a constant radial force f. show that its 
speed v is given by 

L.2 = 2c 2;,[ J(;_z +I) -;,J 

where A. = faj2m 0 c2 and m0 is the particle's rest mass. 
65. A nucleus is moving along a straight line when it ejects an electron. As 

measured by a stationary observer, the speed of the electron is fc and the angle 
between the lines of motion of the nucleus and electron is 60". If the speed of the 
electron relative to the nucleus is also !c. calculate the speed of the nucleus. (Ans. 
8c/17.) 

66. A particle having rest mass m0 , initially at rest at the origin of an inertial 
frame, moves along its x-axis under the action of a variable forcefdirected along 
the axis and given by the formula!= m0 c2 ;2 ,_/(I + x). Show that the particle's 
velocity r is given by L' = x 1 

i
2cj( I + x) 1 

!Z. Putting x = sinh 2 0, if 1 is the time and 1 

= 0 at 0, prove that <1 = 0 + sinhOcoshO. 
67. A particle having rest mass m0 is moving with speed ·k when it is subjected 

to a retarding force. When the particle's inertial mass is m, the magnitude of the 
retarding force is Ct.m 2 (Ct. is constant). Show that the time needed by the force to 
bring the particle to rest is nc/6m0 CI.. 

68. If T,i is the energy--momentum tensor for an elastic fluid and V, is its 4-
velocity of flow, by verifying the equation T,i Vi = - c2 J.loo V, in a frame in which 
the fluid is momentarily at rest, prove it in any frame. Deduce the equations 

g.= (J100 v. + r.11 v11/c
2 )/(l - v2jc 2

), J1 = J.loo + g.v.fc 2 



Hence derive the following formulae for the elements ofT;/ 

T,p = J.Aoo V« Vp + '•tJ + r«y Vy V0jc2 

T,4 = T4• = J.Aoo V« V4 + r.11 V0 V4 jc 2 

T44 = JJoo v4 v4- '•P v. Vp/c2 
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69. A perfect fluid is streaming radially outwards across the surface of a sphere 
with radius Rand centre 0. If the motion is steady and there is no external force 
field, show that equation (21.20) leads to the equations 

d J 2dp d). 3 0 

- (r vA.) + r - = 0, r- + 1, = 0 
dr dr dr 

where r is radial distance from 0, p is the pressure, r: is the speed of flow and ). 
= (J.Aoo + pfc2)v/r(l - v2 fc 2). If p vanishes over the sphere r = R and p = Pat 
great distances, and if JJoo is constant outside the sphere, show that in this region 

p = (P + c2 J.Aool J (I - ~-2 /c2)- c2 J.Aoo 

r2v(l- v2/c 2)- 1'2 = R 2 J(P2 + 2Pc2JJ00 )/CJJ00 

70. A straight rod has cross-sectional area A and mass rn per unit length. It lies 
along the x-axis of an inertial frame in a state of tension F. Show that the 
energy---momentum tensor has components which are the elements of a 4 x 4 
diagonal matrix. with diagonal elements (- F I A, 0, 0, - mc 2 1 A). Deduce that an 
observer moving along the x-axis with speed u, sees the inertial mass per unit 
length of the rod to be 

rn-Fu 2/c 4 

Tu 2 fc 2 -

Deduce that F cannot exceed mc 2
• 

71. Assuming that the energy-momentum tensor T;i is a tensor with respect to 
a general Lorentz transformation :X; = a;ixi + b;. write down the transformation 
equations for T;i in the special case where a4 • = a,4 = 0, a44 = I. Deduce that 
J.A, g., g.0 are 3-tensors with respect to a simple rotation of the frame Ox 1 x 2 x 3 

without relative motion. 
72. Relative to a frameS, a fluid has flow velocity (u, 0, 0) at a certain point. In 

the frame S0 relative to which the fluid is stationary at the point, the stress tensor 
has components r~p and the fluid density is J.Aoo· Show that the energy-momentum 
tensor in the frame S has components 

2 0 ° T _ c J.Aoo + r 1 1 _ ~ 
14- l-uz;cz c' 

T22 = t~z. T23 = rh 
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T32 = r~2• T33 = '~3• 
Czlloo + •? I u2 fc2 

I- u2 fc 2 

T31 =(I -uz;cz)-1'2-r~., 

T34 =(I -u 2/c 2)- 112 <? 3iufc, 

and deduce that 

Tit= r?l• rl2 = (l-u2fcz)-t'zr?2• ri3 =(I -u2jc2)-t'2r~3• 

r 21 =(I -u 2 jc 2 ) 112 r~ 1 , <22 = <~ 2 • r23 = <~ 3 • 

r 31 =(I -u 2/c 2 ) 112 r~ 1 , !32 = <~2• Tn = '~3• 

J1 = (Jloo + r?lu2/c4)j(l- U2/c2). 



CHAPTER 4 

Special Relativity Electrodynamics 

24. 4-Current density 

In this chapter we shall study the electromagnetic field due to a flow of charge 
which will be assumed known. Relative to an inertial frameS, let p be the charge 
density and v its velocity of flow. Then, if j is the current density, 

j = pv (24.1) 

Assuming that charge can neither be created nor destroyed, the equation of 
continuity 

d. . cp o 
IVJ+~ = 

Ct 
(24.2) 

will be valid for the charge flow inS. This equation must be valid in every inertial 
frame and hence must be expressible in a form which is covariant with respect to 
orthogonal transformations in space-time. Introducing the coordinates xi by 
equations (4.4) and employing equation (24.1 ), equation (24.2) is seen to be 
equivalent to 

a a 2 c 
-(pvx)+~·(pvy)+--(pv,)+-~-(icp) = 0 
CXt OX2 CX3 UX4 

(24.3) 

This equation is covariant as required if (prx, prY, pv,, icp) are the four 
components of a vector in space-time. For, if J is this vector, equation (24.3) can 
be written 

Ji.i = 0 (24.4) 

and this is covariant with respect to orthogonal transformations. Now, by 
equation (I 5.6), 

(24.5) 

where Vis the 4-velocity of flow and hence J is a vector if p(l - z.:
2 jc 2 

)
1 2 is an 

invariant. Denoting the invariant by p0 , we have 

(24.6) 

73 
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It follows that p = p0 if v = 0 and hence that p0 is the charge density as measured 
from an inertial frame relative to which the charge being considered IS 

instantaneously at rest. p0 is called the proper charge density. 
J is called the 4-current density and it is clear from equation (24.5) that 

J = Po V = (j, icp) (24.7) 

It is now clear that, when J has been specified throughout space--time, the charge 
flow is completely determmed, for the space components of J f1x the current 
density and the time component fixes the charge density. Hence, given J, the 
electromagnetic field must be calculable. The equations which form the basis for 
this calculation will be derived in the next two sections. 

Let dw0 be the volume of a small element of charge as measured from an 
inertial frame S0 relative to which the charge is instantaneously at rest. The total 
charge within the element is p0 dw0 . Due to the Fitzgerald contraction, the volume 
of this element as measured from S will be dw, where 

dw =(I- r 2/c 2
)

1 2 dw0 

The total charge within the clement as measured from S is therefore 

pdw = p(l - r 2 jc2 )L2 dw0 = p0 dw0 

(24.8) 

(24.9) 

by equation (24.6). It follows that the electric charge on a body is invariant for all 
inertial observers. 

25. 4-Vector potential 

In classical theory, the equations determining the electromagnetic field due to a 
given charge flow are Maxwell's equations (3.1) (3.4). To ensure covariance of the 
laws of mechanics with respect to Lorentz transformations, it proved necessary to 
modify classical Newtonian theory slightly. However, it will be shown that 
Maxwell's equations are covariant without any adjustment being necessary. 
Indeed, the Lorentz transformation equations were first noticed as the transform­
ation equations which leave Maxwell's equations unaltered in form. 

To prove this, it will be convenient to introduce the scalar and vector potentials, 
cJ> and A respectively, of the field. It is proved in textbooks devoted to the classical 
theory (Coulson and Boyd, 1979) that A satisfies the equations 

and cJ> satisfies the equation 

. I E·cp 
dJV A +-2-· = 0 

c ct (25.1) 

(25.2) 

(25.3) 
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"'here c2 
= I! J.A 0 f: 0 . We now define a 4-vector potential 0 in any inertial frame S 

by the equation 
0 = (A,ir/Jic) (25.4) 

It is easily \erified that equations (25.2), (25.3) are together equivalent to the 
equation 

ozn = -J.AoJ 

where the operator 0 2 is delined by 

(25.5) 

(25.6) 

The space components of equation (25.5) yield equation (25.2) and the time 
component, equation (25.3).lf Q., J; are the components of!l and J respectively, 
equation (25.5) can be written 

(25.7) 

in which form it is clearly covariant with respect to Lorentz transformations 
provided n is a vector. This confirms that equation (25.4) does, in fact, define a 
quantity with the transformation properties of a vector in space-time. 

Next, it is necessary to show that equation (25.1) is also covariant with respect 
to orthogonal transformations in space-time. It is clearly equivalent to the 
equation 

div n = Qj_ i = 0 (25.8) 

which is in the required form. 
J being given, n is now determined by equations (25.7) and (25.8). 

26. The field tensor 

When A and r/J are known in an inertial frame, the electric and magnetic intensities 
E and 8 respectively at any point in the electromagnetic field follow from the 
equations 

cA 
E = -grad r/J --::;-· 

Cl 

8 =curl A 

(26.1) 

(26.2) 

Making use of equations (4.4) and (25.4), these equations are easily shown to be 
equivalent to the set 

; cQ4 cQ. 
- ·E, = -,-----

c cx 1 cx4 

; cQ4 cQz 
--Ey=-,---

c CXz CX4 
(26.3) 

i oQ4 cQ3 
--£_ = -, ---,-

c - cx 3 cx 4 
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()Q3 C:Qz 
B = -- --··--

X ' ?x3 CXz 

B = 
?Q. (jQ3 

(26.4) --y tx 3 tx 1 

B, 
('Qz ('Q• 

= --·-- ---·--
CXI Dx2 

Equations (26.3) and (26.4) indicate that the six components of the vectors iE}c, 
8 with respect to the rectangular Cartesian inertial frame S arc the six distinct 
non-zero components in space--time of the skew-symmetric tensor n,,;- ni. j· 

We have proved, therefore, that equations (26.1), (26.2) are valid in all inertial 
frames if 

(F,,J = ( -:: 

B, -8}' -iE,/c) 
0 Bx -iEr!c 

(26.5) 
-B, 0 -iE,;c 

iExfc iEy/c iE,/c 0 

is assumed to transform as a tensor with respect to orthogonal transformations in 
space- time. The equations (26.3) and (26.4) can then be summarized in the tensor 
equation 

(26.6) 

F;1 is called the electromagnetic field tensor. The close relationship between the 
electric and magnetic aspects of an electromagnetic field is now revt:ah:d as being 
due to their both contributing as components to the field tensor which serves to 
unite them. 

Consider now equations (3.2) and (3.3). Employing the field tensor defined by 
equation (26.5) and the current density given by equation (24. 7), and recalling that 
8 = llo H, D = 1:0 E, these equations are seen to be equivalent to 

oF 12 cF 13 i3Ft4 
-,- +---;:1- +-~- = JtoJt 
CXz CX 3 OX4 

c!Fzt cF23 cFz4 
-,-· +- --- + --:~-- = J.loJ 2 
cx 1 cx 3 c-x4 (26.7) 

~t31+ a:-32_+ a:-34 = J.loJ3 
cx 1 cx 2 cx4 

DF4t iJF4z cF43 
·-,-- + -~- + ·-- = J.lo J 4 
cx 1 cx 2 i!x 3 

or, in short, 

(26.8) 



77 

an equation which is covariant with respect to Lorentz transformations. 
Finally, consider equations (3.1) and (3.4). These can be written 

2FJ4 2F42 cF23 0 
--+--+-- = 
CX2 ex] CX4 

cF4_~ + cF 13 + cF34 = 0 
cx 3 2x4 c"x 1 (26.9) 

~~+cF24+cF4. =O 
cx4 ex. cx2 

~F23 + 8F31 + iJF12 = O 
CXI OX2 ex] 

These equations are summarized thus: 

F;i, k + Fik.; + Fki. i = 0 (26.10) 

If any pair from i,j, k are equal, since F;i is skew-symmetric, the left-hand member 
of this equation is identically zero and the equation is trivial. The four possible 
cases when i,j, k are distinct are the equations (26.9). Equation (26.10) is a tensor 
equation and is therefore also covariant with respect to Lorentz transformations. 

To sum up, Maxwell's equations in 4-dimensional covariant form are: 

F;i, i = lioJ;} 
F,i. k + Fik.; + Fki. i = 0 

(26.11) 

Given 1; at all points in space-time, these equations determine the field tensor F;i· 
The solution can be found in terms of a vector potential Q; which satisfies the 
following equations: 

!:l; being determined, F;i follows from the equation 

F;i = Oi. ; - Q;, i 

27. Lorentz transformations of electric and magnetic l'ectors 

(26.12) 

(26.13) 

Since Fii is a tensor, relative to the special Lorentz transformation (5.1) its non­
zero components transform thus: 

F23 = F23 1 
~31 = F31 cosex+F34 s~nex 
F 12 = F 12 cos a~: + F 42 sm ex 
- I Ft4=Ft4 · 

~2 4 = -F21 s~nex+F24 COSat: ~ 
F 34 = - F 31 sm ex + F 34 cos ex J 

(27.1) 

(27.2) 
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Substituting for the components of F1i from equation (26.5) and for sin~. cos IX 

from equations (5. 7), the above equations (27.1) yield the special Lorentz 
transformation equations for 8, viz. 

Bx = Bx, By= fJ(By + (u/c 2)£,), B, = {J(B,- (u/c 2 )£}.) (27.3) 

Similarly, equations (27.2) yield the transformation equations for E, viz. 

Ex= Ex, Ey = {J(Ey- uB,), E, = {J(E, + uBy) (27.4) 

The inverse equations can be written down by exchanging 'barred' and 'unbarred' 
symbols and replacing u by - u. 

As an example of the use to which these transformation formulae may be put, 
consider the electromagnetic field due to an infinitely long, uniformly charged 
wire lying at rest along the x-axis of the inertial frameS: If q is the charge per unit 
length, it is well known that the electric intensity is everywhere perpendicular to 
the wire and is of magnitude q/(2rr~:0 r), where r is the perpendicular distance from 
the wire. Thus, at the point (x, y, z), the components of E are given by 

(27.5) 

The magnetic induction vanishes. 
The electromagnetic field observed from the parallel inertial frameS (relative 

to which Shas velocity (u, 0, 0)) is given by the inverses of equations (27.3) and 
(27.4) to have components 

(27.6) 

at the point (x, y, z) (having used the transformation equations y = y, z = z). A 
segment of the wire having unit length in Swill appear in S to have length 
J (I - u 2 jc 2

); however, the charge on the segment must be the same in both 
frames, viz. q. It follows that the charge per unit length as observed inS is q = pq. 
Thus, the charge which flows past a fixed point on the x-axis of Sin unit time will 
be fJuq = i; i therefore measures the current flowing along this axis. Since c 2 

= I/J1 0 &0 , equations (27.6) can now be written 

B = y 

qy 
E = 0 E ~-----------

x ' Y 2rrt0 (y2 +z 2 )' 

B = __ !1_0__.} 
z 2rr(y2 + zz) 

qz 
E, = 2rrt0 (y2 + z2 ) 

(27.7) 

These equations imply that the magnetic induction is of magnitude J1oi/2nr and 
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that the 8-lines are circles with centres on Ox and planes parallel to Oyz. This 
result for a long straight current is a well-known one in the classical theory. The 
electric intensity is of magnitude q/2rrr-or and is directed radially from the wire; 
however, in the case of a current due to the flow of negatively charged electrons in 
a stationary wire, this field is cancelled by the contrary field due to the positive 
charges on the atomic nuclei. 

28. The Lorentz force 

We shall now calculate the force exerted upon a point chargee in motion in an 
electromagnetic field. 

At any instant, we can choose an inertial frame relative to which the point 
charge is instantaneously at rest. Let E0 be the electric intensity at the point 
charge relative to this frame. Then, by the physical definition of electric intensity 
as the force exerted upon unit stationary charge, the force exerted upon e will be 
eE0 • It follows from equation (18.2) that the 4-force acting upon the charge in this 
frame is given by 

F = (eE0 ,0) (28.1) 

The 4-velocity of the charge in this frame is also given by 

v = (0, ic) (28.2) 

and hence, by equation (26.5), 

eFij vi= e(ExO• EyO• E,o, 0) = (eEo. 0) (28.3) 

It has accordingly been shown that, in an inertial frame relative to which the 
charge is instantaneously stationary, 

(28.4) 

But this is an equation between tensors and is therefore true for all inertial frames. 
Substituting in equation (28.4) for the components Fj, Fii• Vi from equations 

( 18.2), (26.5) and ( 15.6) respectively, the following equations are obtained: 

fx : e(B,L:- Byv_' +E.) l 
/y - e(Bxtz- B,r. + Ey) 

fz = e(Byvx - Bxliy + £,) 

These equations are equivalent to the 3-vector equation 

f = e(E +" x B) 

r is called the Lorentz force acting upon the charged particle. 

29. The energy-momentum tensor for an electromagnetic field 

(28.5) 

(28.6) 

Suppose that a charge distribution is specified by a 4-current density vector J. If 
dw0 is the proper volume of any small element of the distribution and Po is the 
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proper density of the charge, the charge within the element will be p0 dw0 • It 
follows from equation (28.4) that the 4-force exerted upon the element by the 
electromagnetic field is given by 

(29.1) 

V being the 4-velocity of flow for the element. Employing equation (24. 7), this last 
equation can be written 

(29.2) 

and it follows from the definition given in section 21 that the 4-force density for 
the electromagnetic field is given by 

(29.3) 

Substituting for J i from the first of equations (26.11), we can express D; in terms 
of the field tensor thus: 

I . 
D; = -f;iFik.k 

J.Ao 
(29.4) 

We will now prove that the right-hand member of this equation is, apart from 
sign, the divergence of a certain symmetric tensor S;i given by the equation 

J.AoSii = F;kFik -!c5iJF.1Fu (29.5) 

and called the energy-momentum tensor of the electromagnetic field. 
Taking the divergence of S;1, we have 

J.AoS;i. i = F;k.i Fik + f.;k Fik.i- !c5;iFk,F~«.i (29.6) 

Now 

(29.7) 

since FiJ is skew-symmetric. Thus 

F;k.iFi• = !(Fik.J + Fi; .• )fj• (29.8) 

Also 

(29.9) 

and it follows from these results that the first and last terms of the right-hand 
member of equation (29.6) can be combined to yield 

!(F;k.i + Fii.k + Fki.;)Fi• 

and this is zero by the second of equations (26.11). 
Hence 

(29.10) 

(29.11) 
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Substituting for the components of the field tensor from equation (26.5), the 
components of Sii are calculable from equation (29.5) as follows: If IX, p take any 
of the values I, 2, 3, then writing £ 1 for £,, £ 2 for EY, etc., 

1XfP (29.12) 

If i =j =I, 
(29.13) 

s22, s33 may be expressed similarly and therefore, in general, if IX, p, = I, 2, 3, 

S2p = - (i:oE«EP + lloH«Hp) + H.p(i:o£2 + J.AoH 2
) (29.14) 

Apart from sign, this is Maxwelfs stress tensor tii" tii is only a tensor with respect 
to rectangular frames stationary in the inertial frame being employed. 

Also, if IX= I, 2, 3, 

i 
S.4 = S4• = -(E2H3 -£3H2. £3Ht -£tH3, £1H2 -E2H.J 

c 

i 
=-ExH= S 

c c 

where S is Poynting's vecwr. 
Finally, 

where U is the energy density in the electromagnetic field. 

(29.15) 

(29.16) 

These results may be summarized conveniently by exhibiting the components 
of sij in a matrix thus: 

(Sii) = - ( ~f;c I S~c) (29.17) 

We can now write down the equation of motion for a charge cloud moving 
under the action of the electromagnetic field it generates. If Tii is the kinetic 
energy-momentum tensor for the cloud, equations (21.15) and (29.11) show that 
the equation of motion can be written 

(29.18) 

or 

(29.19) 

i.e. the divergence of the total energy-momentum tensor vanishes. If the charged 
particles forming the cloud do not interact except via the electromagnetic field, i.e. 
the cloud is incoherent, Tii is given by equation (21.16). If, however, the particles 
constitute an ionized fluid, equations (22.19) or (22.21) must be used to calculate 
Tii. 

It was shown in section 21 that T. 4 fic equals the density of the x.-component of 
the linear momentum of a system. Since S.4 /ic = SJc 2

, the density of the linear 
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momentum of an electromagnetic field is g = Sjc2, where Sis Poynting's vector. 
Alternatively, as explained in section 21, g can be interpreted as the current 
density vector for the inertial mass flow and thus, c2g = S gives the rate of energy 
flow across unit area placed perpendicular to the direction of this flow; this is the 
usual significance attached to Poynting's vector. 

According to the theory in section 21, - S44/c 2 should equal the density of 
inertial mass for the field. We have found that - S44/c 2 = U jc 2 and, since U is the 
energy density, our result is in conformity with expectations. 

The results which have been obtained may be summarized as fo!lows: If 
momentum of density Sjc 2 and energy of density U are ascribed to the 
electromagnetic field, equation (29.19) shows that the net momentum and energy 
of the field and charge will be conserved. 

Exercises 4 

I. Write down the special Lorentz transformation equations for J and deduce 
the transformation equations for j, p, viz. 

J.=(l-u2jc2)-lZ(jx-pu), }y=jy 

p =(I -u2/c2)-t 2(p-jxu/cz), Tz =), 

2. Deduce from the Maxwell equation F;i.i = JJoJ; that div J = 0. 
3. Verify that the field tensor defined in terms of the 4-potential Q; by equation 

(26.13) satisfies Maxwell's equations (26.11) provided Q; satisfies the equations 
(26.12). 

4. (i) Prove that 

F;iFii = 2JJo(JJoH2 -Eo£2) 

and deduce that JJoH 2 -~:0 £2 is invariant with respect to Lorentz 
transformations. 

(ii) Prove that 

eiiktF;1Fu = -8iE· 8/c 

and deduce that E · 8 is an invariant density with respect to Lorentz 
transformations. 

5. If U is the energy density and Sis the Poynting vector for an electromagnetic 
field, prove that U 2 

- S 2 is invariant. 
6. An observer 0 at rest in an inertial frame Oxyzt finds himself to be in an 

electric field E = (0, £, 0), with no magnetic field. Show that an observer (j 
moving according to 0 with uniform velocity Vat right angles toE, finds electric 
and magnetic fields E, 8 connected by the relation 

c2B+ V x E = 0 

7. If SiJ is the energy-momentum tensor for an electromagnetic field, prove 
that its trace, viz. S;;, is zero. 
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8. A plane monochromatic electromagnetic wave is being propagated in a 
direction parallel to the x-axis in the inertial frame S. Its electric and magnetic 
field components are given by 

E = [0, asinw(t- xjc), 0] 

8 = [0, 0, ~sinw(t -x/c)] 
c 

Show that, when observed from the inertial frame S, it appears as the plane 
monochromatic wave 

where 

E = [0, ).asin).w(t- X./c), 0] 

8 = [0, 0, A.~sin).(l)(l-- xjc)] 
c 

. J(l -ujc) 
). = l.+ ujc 

u being the velocity of S relative to S (i.e. both the amplitude and frequency are 
reduced by a factor A.. The reduction in frequency is the Doppler effect.) 

9. Show that the Hamiltonian for the motion of a particle with chargee and 
mass m in an electromagnetic field (A, cj>) is 

H = {(p-eA J +m
2
c

2J12 

+ecj> 

(Hint: Show that Hamilton's equations yield the equation 

d 
--(ml') = e(E +" x 8).) 
dt 

10. Verify that, in a region devoid of charge, equations (26.12) are satisfied by 

provided A,, kP are constants such that 

A,k, = 0, k)P = 0 

By considering the 4-vector property of Q,, deduce that A, must transform as a 4-
vector under Lorentz transformations. Deduce also that kpXp is a scalar under 
such transformations and hence that kP is a 4-vector. 

A plane electromagnetic wave, whose direction of propagation is parallel to the 
plane Oxy and makes an angle (1 with Ox, is given by 

Qi = A ie2rrav(xcosa + ysmCJ:- ctl/(: 

where v is the frequency. The same wave observed from a parallel frame Oxyz 
moving with velocity u along Ox. has frequency v and direction of propagation 
making an angle j with Ox. By writing down the transformation equations for the 



84 

vector kP, prove that 

u 
COSO!:-­

c 
cos31 =----

u 
I --coscx 

c 

II. Oxyz is an inertial frame S. A particle having rest mass m0 and electric 
charge q moves in the xy-plane under the action of a uniform magnetic field B 
directed along the z-axis. Show that the particle's speed v is constant and that, 
with a suitable choice of coordinates, its trajectory is the circle 

x = Rsinwr, y = Rcoswc 

where 

S"is an inertial frame Oxyz parallel to Sand 0 moves along Ox with speed u. 
Calculate u and B so that uniform fields E = (0, E0 , 0), 8 = (0, 0, B0 ) are observed 
in S: Hence describe the motion of a charged particle released in these fields and 
show that its average velocity is E0 / B0 along the x-axis. 

12. The frame S"is parallel to the frameS and is moving along the x-axis with 
speed u. In the frame S, there is a uniform electric field (0, E, 0) and a uniform 
magnetic field (0, 0, B). Show that it is possible to choose the value of u so that 
the field in the frame S" is entirely magnetic and that its magnitude is then 
J (B 2 

- E2 jc 2 ). What is the direction of this field? (Ans. Parallel to z-axis.) 
13. A charge q has rest mass m0 and is moving in the positive sense along a 

negative x-axis with speed u, when it enters a magnetic field, having components 
B, = By = 0, B. = B (constant), confined to the region 0 ~ x ~ a. There is no 
field in the regions x < 0, x > a. Explain why the inertial mass of the charge 
remains constant during its motion through the field and show that its path is the 
circle 

x2 + y2 + 2ky = 0, z = 0 

where k = m0 ujqB(I- u2jc2
)

112
. What is the condition that the charge will be 

turned back by the field? (Ans. k < a.) 
14. A plane electromagnetic wave of frequency f is being propagated in a 

direction making an angle () with the x-axis. Its electric and magnetic field 
components are given by 

where 

E = (-AX sinO, AX cosO, 0) 

B = (0, 0, AX/c) 

. 2 !( x cos()+ y sin()) X= sm n , ____ ....:..._ __ 
c 
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Show that, when observed from a frame S which is parallel to Oxyz and moves 
with a velocity (ccosH, 0, 0) relative to Oxyz, the wave has components 

E = (-AX sinH, 0, 01 

8 = (0, 0, A X sinO/c) 

where 

X= sin[2rrjsinl1(1-- }'jc)] 

and (x, }'. z, t ) are space- time coordinates in S. What is the direction of 
propagation in Sand what is the observed frequency? (Ans. Parallel to y-axis at 
frequency fsinO.) 

I 5. Vi is the 4-velocity of flow of a conducting medium and J, is the 4-current 
density of a charge flow in the medium. Ohm's law is valid for the medium, a being 
its conductivity. Prove that 

(Hint: Verify this equation in a frame for which the medium is at rest using Ohm's 
law j =a[.) 

16. A uniform magnetic field of induction 8 is directed along tbe z-axis of an 
inertial frame. Show that the energy momentum tensor for the field has 
components which are the elements of a 4 x 4 diagonal matrix, with diagonal 
elements B2i2JJ0 (1, I, -I, - 1). 

17. A point chargee moves along the :-axis of an inertial frameS with constant 
velocity v. Calculate the electromagnetic field in a parallel inertial frame whose 
origin moves with the charge and deduce the field in S. Hence show that, at the 
instant t = 0, when the charge passes through the origin 0 of S, the electric field is 
directed radially from 0 and its magnitude at the point having spherical polar 
coordinates (r, 0, cj>) is given by 

E = _e_ 2 (1 -v2jc2)(1 -v2 sin20jc 2r 312 

4rrr.0 r 

Show, also, that the magnetic field inS at this instant is given by 8 = (v x E)/c 2. 



CHAPTER 5 

General Tensor Calculus. Riemannian Space 

30. Generalized N -dimensional spaces 

In Chapter 2 the theory of tensors was developed in an N -dimensional Euclidean 
space on the understanding that the coordinate frame being employed was always 
rectangular Cartesian. If x,, x, + dx; are the coordinates of two neighbouring 
points relative to such a frame, the 'distance· ds between them is given by the 
equation 

(30.1) 

If x1, x, + dx1 are the coordinates of the same points with respect to another 
rectangular Cartesian frame, then 

(30.2) 

and it follows that the expression dx1dx1 is invariant with respect to a 
transformation of coordinates from one rectangular Cartesian frame to anotht:r. 
Such a transformation was termed orthogonal. 

Now, even in tf 3 , it is very often convenient to employ a coordinate frame which 
is not Cartesian. For example, spherical polar coordinates (r, 0, cj>) are frequently 
introduced, these being related to rectangular Cartesian coordinates (x, y, z) by 
the equations 

x = rsinOcoscj>, y = rsinO sincj>, z = rcosO 

In such coordinates, the expression for ds2 will be found to be 

ds2 = dx 2 + dy 2 + dz 2 

= dr 2 +r2 d0 2 +r2 sin 2 0dcj> 2 

(30.3) 

(30.4) 

and this is no longer of the simple form of equation (30.1). The coordinate 
transformation (30.3) is accordingly not orthogonal. In fact, it is not even linear, 
as was the most general coordinate transformation (8.1) considered in Chapter 2. 

The spherical polar coordinate system is an example of a curvilinear coordinate 
frame in~ 3 . Let (u, v, w) be quantities related to rectangular Cartesian coordinates 
(x, y, z) by equations 

u = u(x, y, z), r = v(x, y, z), w = w(x, y, z) (30.5) 

86 
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such that, to each point there corresponds a unique triad of values of (u, r, w)and 
to each such triad there corresponds a unique point. Then a set of values of 
(u, r:, w·) will serve to identify a point in If 3 and (u, r:, w) can be employed as 
coordinates. Such generalized coordinates are called cur,;i/wear coordinates. 

The equation 

u(x, J', ::) = u0 (30.6) 

where u0 is some constant, defines a surface in If 3 over which u takes the constant 
value u0 . Similarly, the equations 

t' = r 0 , w = w0 (30.7) 

define a pair of surfaces on which r takes the value ~0 and w the value w0 

respectively. These three surfaces will all pass through the point P 0 having 
coordinates (u0 , z:·0 , w0 ) as shown in Fig. 6. They are called the coordinate surfaces 
through P0 • The surfaces r = r0 , w = w0 will intersect in a curve P0 U along which 
rand w will be constant in value and only u will vary. P0 U is a coordinate line 
through P0 • Altogether, three coordinate lines pass through P0 . The equations u 
= constant, r = constant, w = constant define three families of coordinate sur­
faces corresponding to the three families of planes parallel to the coordinate 
planes x = 0, y = 0, z = 0 of a rectangular Cartesian frame. Pairs of these 
surfaces intersect in coordinate lines which correspond to the parallels to the 
coordinate axes in a Cartesian frame. 

w 

v 

FIG. 6 

Solving equations (30.5) for (x, y, z) in terms of (u, r:, w), we obtain the inverse 
transformation 

x = x(u, r, w), y = y(u, r:, w), z = z(u, z:, w) (30.8) 

Let~. y, z), (x + dx, y + dy, z + dz) be the rectangular Cartesian coordinates of 
two neighbouring points and let (u, v, w), (u + du, L• + dz:·, w + dw) be their 
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respecti\e curvilinear coordinates. Differentiating equations (30.8), we obtain 

CX CX L
0

X 
dx = -;;-du +-;;-dr +-;;-dw, 

c u cr cw 

Thus, if ds is the distance between these points, 

d.1 2 = dx 2 + dy 2 + d.: 2 

etc. 

= Adu 2 + Bdt·2 + Cdw 2 + 2Fdrdw + 2Gdwdu + 2Hdudr 

(30.9) 

(30.10) 

giving the appropriate expression for ds 2 in curvilinear coordinates. It will be 
noted that the coefficients A, 8, etc., are, in general, functions of (u, r, w). 

If, therefore, curvilinear coordinate frames are to be permitted, the theory of 
tensors developed in Chapter 2 must be modified to make it independent of the 
special orthogonal transformations for which ds2 is always expressible in the 
simple form of equation (30.1 ). The necessary modifications will be described in 
the later sections of this chapter. However, these modifications prove to be of such 
a nature that the amended theory makes no appeal to the special metrical 
properties of Euclidean space, i.e. the theory proves to be applicable in more 
general spaces for which Euclidean space is a particular case. This we shall now 
explain further. 

Let (x 1
, x 2

, . .• , xN) be curvilinear coordinates in ctN.* Then, by analogy with 
equation (30.10), if ds is the distance between two neighbouring points. it can be 
shown that 

(30.11) 

where the coeflicients g,1 of the quadratic form in the xi will, in general, be 
functions of these coordinates. Since the space is Euclidean, it is possible to 
transform from the curvilinear coordinates xi to Cartesian coordinates y' so that 

(30.12) 

Clearly, the reduction of ds 2 to this simple form is only possible because the 
functions g,i satisfy certain conditions. Conversely, the satisfaction of these 
conditions by the Yii will guarantee that coordinates r' exist for which ds 2 takes 
the simple form (30.12) and hence that the space is Euclidean. Howe\er, in 
extending the theory of tensors to be applicable to curvilinear coordinate frames, 
we shall, at a certain stage. make use of the fact that ds 2 is expressible in the form 
(30.11 ), but no use will be made of the conditions satisfied by the coefficients giJ 

which are a consequence of the space being Euclidean. It follows that the 
extended theory will be applicable in a hypothetical N-dimensional space for 
which the 'distance' ds between neighbouring points xi, x' + dxi is given by an 
equation (30.11) in which the g,i are arhitruryfunctions of the x'.t Such a space is 

• The coordina1es are here d1s1inguished by supcrscripls ins lead of subscripls for a reason which will 
be given laler. 
t Except I hat panial derivallves of !hey,, will he aS'umed to exist and 10 be cominuous 10 any order 
required by 1he Iheory. 
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said to be Riemannian and will be denoted by rJt N· ~ N is a particular 9tN for which 
the gii satisfy certain conditions. The right-hand member of equation (30.11) is 
termed the metric of the Riemannian space. 

The surface of the Earth provides an example of an rJI2. If8 is the co-latitude 
and cJ> is the longitude of any point on the Earth's surface, the distance ds between 
the points (0, cj>), (0 +dO, cJ> + dcj>) is given by 

(30.13) 

where R is the earth's radius. For this space and coordinate frame, the Bii take the 
form 

Ytt=R 2
, Yt2=Y21=0, g22=R2 sin 2 8 

It is not possible to define other coordinates (x, y) in terms of which 

ds 2 = dx 2 + dy2 

(30.14) 

(30.15) 

over the whole surface, i.e. this 9t 2 is not Euclidean. However, the surfaces of a 
right circular cylinder and cone are Euclidean; the proof is left as an cxen:ise for 
the reader. 

It will be proved in Chapter 6 that, in the presence of a gravitational field, 
space-time ceases to be Euclidean in Minkowski's sense and becomes an 9t4 • This 
is our chief reason for considering such spaces. However, we can generalize the 
concept of the space in which our tensors are to be defined yet further. Until 
section 37 is reached, we shall make no further reference to the metric. This 
implies that the theory of tensors, as developed thus far, is applicable in a very 
general N-dimensional space in which it is assumed it is possible to set up a 
coordinate frame but which is not assumed to possess a metric. In such a 
hypothetical space, the distance between two points is not even defined. It will be 
referred to as .'/' N· 9t N is a particular Y' N for which a metric is specified. 

31. Contral'ariant and co"ariant tensors 

Let xi be the coordinates of a point Pin.'/' N relative to a coordinate frame which is 
specified in some manner which does not concern us here. Let xi be the 
coordinates of the same point with respect to another reference frame and let 
these two systems of coordinates be related by equations 

(31.1) 

Consider the neighbouring point P' having coordinates xi+ dx; in the first frame. 
Its coordinates in the second frame will be _xi+ dx;, where 

. a:xi . 
dx' = oxidx1 (31.2) 

and summation with respect to the index} is understood. TheN quantitiesdx; are 
taken to be the components of the displacement vector PP' referred to the first 
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frame. The components of this vector referred to the second frame are, 
correspondingly, the dxi and these are related to the components in the first frame 
by the transformation equation (31.2). Such a displacement vector is taken to be 
the prototype for all comraz:ariant rectors. 

Thus, A' are said to be the components of a contravariant vector located at the 
point xi, if the components of the vector in the 'barred' frame are given by the 
equation 

.... _i 
- ex . 
A'=-A1 

cx1 
(31.3) 

It is important to observe that, whereas in Chapter 2 the coefficients a;i occurring 
in the transformation equation (10.2) were not functions of the Cartesian 
coordinates X; so that the vector A was not, necessarily, located at a definite point 
in rff_,.., the coefficients cxi;cxi in the corresponding equation (31.3) are functions 
of the xi and the precise location of the vector Ai must be known before its 
transformation equations are determinate. This can be expressed by saying that 
there are no free rectors in .'/'_.... 

The form of the transformation equation (31.3) should be studied carefully. It 
will be observed that the dummy index j occurs once as a superscript and once as a 
subscript (i.e. in the denominator of the partial derivative). Dummy indices will 
invariably occupy such positions in all expressions with which we shall be 
concerned. Again, the free index i occurs as a superscript on both sides of the 
equation. This rule will be followed in all later developments, i.e. a free index will 
always occur in the same position (upper or lower) in each term of an equation. 
Finally, it will assist the reader to memorize this transformation if he notes that 
the free index is associated with the 'barred" symbol on both sides oft he equation. 

A contravariant vector A; may be defined at one point of!/'_.., only. However, if it 
is defined at every point of a certain region. so that the A; are functions of the xi, a 
contrarariant rector field is said to exist in the region. 

If V is a quantity which is unaltered in value when the reference frame is 
changed, it is said to be a .~calar or an inrariant in.'!·_,... Its transformation equation 
is simply 

V= v (31.4) 

Since this equation involves no coefficients dependent upon the x', the possibility 
that V may be a free invariant exists. However, Vis more often associated with a 
specific point in.'/ sand may be defined at all points of a region of .'1' ,.., in which 
case it defines an inrariant field. In the latter case 

(31.5) 

V will then, in general, be a quite distinct function of the x'. If, however, in this 
function we substitute for the xi in terms of the x' from equation (31.1). by 
equation (31.4) the:: right-hand member of equation (31.5) must result. Thus 

(31.6) 



91 

V being an invariant field, consider the N derivatives 2 Vjtxi. In the xi-frame, 
the corresponding quantities are cVjc"xi and we have 

cV DV cxj (,Xj (cv 
(31.7) 

since, by equation (31.6), when Vis expressed as a function of the xi it reduces to 
V. As in Chapter 2, the iJ V/cxi are taken to be the components of a vector called 
the gradiem of Vand denoted by grad V. However, its transformation law (31.7) is 
not the same as that for a contravariant vector, viz. (31.3), and it is taken to be the 
prototype for another species of vectors called covariant vecwrs. 

Thus, Bi is a covariant vector if 
- cx1 
Bi = ~-i 81 (31.8) 

(,X 

Covariant vectors will be distinguished from contravariant vectors by writing 
their components with subscripts instead of superscripts. This notation is 
appropriate, for c Vjcxi is a covariant vector and the index i occurs in the 
denominator of this partial derivative. The vector dxi, on the other hand, has been 
shown to be contravariant in its transformation properties and this is correctly 
indicated by the upper position of the index. This is the reason for denoting the 
coordinates by xi instead of xi, although it must be clearly understood that the xi 
alone are not the components of a vector at all. 

The reader should check that the three rules formulated above in relation to the 
transformation equation (31.3), apply equally to the equation (31.8). 

The generalization from vectors to tensors now proceeds along the same lines 
as in section 10. Thus, if Ai, 8 1 are two contravariant vectors, the N 2 quantities 
A i 8 1 are taken as the components of a contravariant tensor of the second rank. Its 
transformation equation is found to be 

"'-i ..,_j 
-i- 1 _ox ex k 1 A B ---;;--;; :;-;A B 

ex L'X 
(31.9) 

Any set of N 2 quantities CiJ transforming in this way is a comrarariant tensor. 
Again, if Ai, 8

1 
are vectors, the first contravariant and the second covariant, 

then the N 2 quantities Ai 8 1 transform thus: 

"'-i ... l -,-- ex ex k 
A B =--·-A 81 1 Dxk 8x1 

(31.10) 

Any set of N 2 quantities C~ transforming in this fashion is a mixed tensor, i.e. it 
possesses both contravariant and covariant properties as is indicated by the two 
positions of its indices. 

Similarly, the transformation law for a covariant tensor of rank 2 can be 
assembled from the law for covariant vectors. 

The further generalization to tensors of higher rank should now be an obvious 
step. It will be sufficient to give one example. A)k is a mixed tensor of rank 3, 
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having both the covariant and contravariant properties indicated by the positions 
of its indices, if it transforms according to the equation 

-. exj ex• ex' 
A'· =---A' 

;k ex' CXj CXk Sl 
(31.11) 

The components of a tensor can be given arbitrary values in any one frame and 
their values in any other frame are then uniquely determined by the transform­
ation law. Consider the mixed second rank tensor whose components in the 
xi-frame are b~, the Kronecker deltas (b~ = 0, i + j and bj = I, i = j). The 
components in the xi-frame are F~. where 

'!!i - oxi ex' "k 

oi-~ ·-/>, ex ex 

oxi cxk 

= cxk exi 
Dxj 
exi 

= bj (31.12) 

Thus this tensor has the same components in all frames and is called the 
fundamental mixed censor. However, a second rank covariant tensor whose 
components in the xi-frame are the Kronecker deltas (in this case denoted by 8;). 
has different components in other frames and is accordingly of no special interest. 

It is reasonable to enquire at this stage why the distinction between covariant 
and contravariant tensors did not arise when the coordinate transformations 
were restricted to be orthogonal. Thus, suppose that A;' B; are contravariant and 
covariant vectors with respect to the orthogonal transformation (8.1 ). The inverse 
transformation has been shown to be equation (11.5) and it follows from these 
two equations that 

(31.13) 

For the particular case of orthogonal transformations, therefore, equations (31.3) 
and (31.8) take the form 

(31.14) 

It is clear that both types of vector transform in an identical manner and the 
distinction between them cannot, therefore, be maintained. 

As in the case of the Cartesian tensors of Chapter 2, new tensors may be formed 
from known tensors by addition (or subtraction) and multiplication. Only 
tensors of the same rank and type may be added to yield new tensors. Thus, if A jk, 
Bik are components of tensors and we define the quantities Cjk by the equation 

(31.15) 
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then Cjk are the components of a tensor having the covariant and contravariant 
properties indicated by the position of its indices. However, Aj, BiJ cannot be 
added in this way to yield a tensor. Any two tensors may be multiplied to yield a 
new tensor. Thus, if Aj. B~ are tensors and we define N 5 quantities C~~ .. by the 
equation 

(31.16) 

these are the components of a fifth rank tensor having the covariant and 
contravariant properties indicated by its indices. The proofs of these statements 
are left for the reader to provide. 

If a tensor is symmetric (or skew-symmetric) with respect to two of its 
superscripts or to two of its subscripts in any one frame, then it possesses this 
property in every frame. The method of proof is identical with that of the 
corresponding statement for Cartesian tensors given in section 10. However, if 
Aj = A/ is true for all i,j when one reference frame is being employed, this 
equation will not, in general, be valid in any other frame. Thus, symmetry (or 
skew-symmetry) of a tensor with respect to a superscript and a subscript is not, in 
general, a covariant property. The tensor 8~ is exceptional in this respect. 

Another result of great importance which may be established by the same 
argument we employed in the particular case of Cartesian tensors, is that an 
equation between tensors of the same type and rank is valid in all frames if it is 
valid in one. This implies that such tensor equations are covariant (i.e. are of in­
variable form) with respect to transformations between reference frames. The useful­
ness of tensors for our later work will be found to depend chiefly upon this property. 

A symbol such as A ~k can be contracted by setting a superscript and a subscript 
to be the same letter. Thus Ajj, A;k are the possible contractions of A ~k and each, by 
the repeated index summation convention, represents a sum. Since in the symbol 
Ajj,j alone is a free index, this entity has only N components. Similarly A;k has N 
components. It will now be proved that, if A~k is a tensor, its contractions are also 
tensors. Specifically, we shall prove that 81 = Ajj is a covariant vector. For 

- -· cxj ex' ex' 
8- =A'··=--.-. A' 

} )I CX' CX} ex' Sl 

= (~~ cx~Vx~A' 
("x' ex' } cxJ ,, 

ex' ex' 
=--·A' r:x' CXj Sl 

' s .,ex r 

= o,-...=·Asr ex; 

- CX
5 

I 

- ~-J A,, ex 

i'x' 
= ,_)8, 

ox 
(31.17) 
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establishing the result. This argument can obviously be generalized to yield the 
result that any contracted tensor is itself a tensor of rank two less than the tensor 
from which it has been derived and of the type indicated by the positions of its 
remaining free indices. In this connection it should be noted that, if A~k is a tensor, 
A~i is not, in general, a tensor; it is essential that the contraction be with respect to 
a superscript and a subscript and not with respect to two indices of the same kind. 

If A~k, B; are tensors, the tensor A~k 8~ is called the outer product of these two 
tensors. If this product is now contracted with respect to a superscript of one 
factor and a subscript of the other, e.g. Ajk 8~, the result is a tensor called an inner 
product. 

32. The quotient theorem. Conjugate tensors 

It has been remarked in the previous section that both the outer and inner 
products of two tensors are themselves tensors. Suppose, however, that it is 
known that a product of two factors is a tensor and that one of the factors is a 
tensor, can it be concluded that the other factor is also a tensor? We shall prove 
the following quotient theorem: 

If the result of taking the product (outer or inner) of a giuen .~et of elements with a 
tensor of any specified type and arbitrary components is known to be a tensor, then 
the given elements are the components of a tensor. 

It will be sufficient to prove the theorem true for a particular case, since the 
argument will easily be seen to be of general application. Thus, suppose the Ajk are 
N 3 quantities and it is to be established that these are the components of a tensor 
of the type indicated by the positions of the indices. Let 8~ be a mixed tensor of 
rank 2 whose components can be chosen arbitrarily (in any one frame only of 
course) and suppose it is given that the inner product 

(32.1) 

is a tensor for all such 8~. All components have been assumed calculated with 
respect to the x-frame. Transforming to the x-frame, the inner product is given to 
transform as a tensor and hence we have 

(32.2) 

where A)t are the actual components replacing the A~k when the reference frame is 
changed. Let Ajk be a set of elements defined in the x-frame by equation (31.11). 
Since this is a tensor transformation equation, we know that the elements so 
defined will satisfy 

(32.3) 

Subtracting equation (32.3) from (32.2), we obtain 

(Ajt- Ajk)B~ = 0 (32.4) 

Since B; has arbitrary components in the x-frame, its components in the x-frame 
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are also arbitrary and the components 8~ can assume any convenient values. 
Thus, taking 8~ = I when k = K and 8~ = 0 otherwise, equation (32.4) yields 

A;t; -A;K = 0 

or (32.5) 

This being true for K = I, 2 ..... N, we have quite generally 

This implies that Ajk does transform as a tensor. 
We will first give a very simple example of the application of this theorem. Let 

A' be an arbitrary contravariant vector. Then 

(32.7) 

and since the right-hand member of this equation is certainly a vector, by the 
quotient theorem J; is a tensor (as we have proved earlier). 

As a second example, let g,i he a symmetric covariant tensor and let g = [y,i[ be 
the determinant whose elements are the tensor's components. We shall denote"by 
G'1 the co-factor in this determinant oft he element g;i" Then. although U 1 is not a 
tensor, if g 'f 0, G'i/g = qii is a symmetric contravariant tensor. To prove this, we 
first observe that 

(32.8) 

and hence, dividing by g. 

02.9) 

Now let A' be an arbitrary contravariant vector and define the covariant vector B, 
by the equation 

(32.10) 

Since g 'f 0, when the components of B, are chosen arbitrarily, the corresponding 
components of A; can always be calculated from this last equation. i.e. B, is 
arbitrary with A'. But 

(32.11) 

having employed the second identity (32.9). It now follows by the quotient 
theorem that g'i is a contravariant tensor. That it is symmetric follows from the 
circumstance that G'i possesses this property. g,r g'1 are said to be conjuqate to 
one another. 

33. Covariant derivatives. Parallel displacement. Affine connection 

In the earlier sections of this chapter, the algebra of tensors was established and it 
is now time to explain how the concepts of analysis can be introduced into the 
theory. Our space Y:v has N dimensions, but is otherwise almost devoid of special 
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characteristics. Nonetheless, it has so far been able to provide all the facilities 
required of a stage upon which the tensors are to play their roles. It will now be 
demonstrated, however, that additional features must be built into the structure 
of Y' N• before it can function as a suitable environment for the operations of 
tensor analysis. 

It has been proved that, if 4> is an invariant field, £'1/>/iJxi is a covariant vector. 
But, if a covariant vector is differentiated, the result is not a tensor. For, let Ai be 
such a vector, so that 

(33.1) 

Differentiating both sides of this equation with respect to .xi, we obtain 

(33.2) 

The presence of the second term of the right-hand member of this equation 
reveals that iJAjiJxi does not transform as a tensor. However, this fact can be 
arrived at in a more revealing manner as follows: 

Let P, P' be the neighbouring points xi, x' + dxi and let Ai, Aj + d Ai be the 
vectors of a covariant vector field associated with these points respectively. The 
transformation laws for these two vectors will be different, since the coefficients of 
a tensor transformation law vary from point to point in Y' N· It follows that the 
difference of these two vectors, namely dAi, is not a vector. However, 

cA, . 
dA, = ~ dx1 

ox 
(33.3) 

and, since dxi is a vector, if Ai, i were a tensor, dAi would be a vector. Ai. i cannot 
be a tensor, therefore. The source of the difficulty is now apparent. To define Ai, i 
it is necessary to compare the values assumed by the vector field A; at two 
neighbouring, but distinct, points and such a comparison cannot lead to a tensor. 
If, however, this procedure could be replaced by another, involving the 
comparison of two vectors defined at the same point, the modified equation (33.3) 
would be expected to be a tensor equation featuring a new form of derivative 
which is a tensor. This leads us quite naturally to the concept of parallel 
disp/acemenr. 

Suppose that the vector A, is displaced from the point P, at which it is defined, 
to the neighbouring point P', without change in magnitude or direction, so that it 
may be thought of as being the same vector now defined at the neighbouring 
point. The phrase in italics has no precise meaning in Y' N as yet, for we have not 
defined the magnitude or the direction of a vector in this space. However, in the 
particular case when Y' N is Euclidean and rectangular axes are being employed, 
this phrase is, of course, interpreted as requiring that the displaced vector shall 
possess the same components as the original vector. But even in 8 N• if curvilinear 
coordinates are being used, the directions of the curvilinear axes at the point P' 
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will, in general, be different from their directions at P and. as a consequence, the 
components of the displaced vector will not be identical with its components 
before the displacement. In .".I\. therefore, components of the displaced vector 
will be denoted by A,+ JA,. This vector can now be compared with the field vector 
A,+ dA, at the same point P'. Since the two vectors are defined at the same point, 
their difference is a vector at this point, i.e. d A;- JA,, is a vector. The modified 
equation (33.3) is accordingly expected to be of the form 

(33.4) 

where A,;1 is the appropriate replacement for A,.;· Since dxi is an arbitrary vector 
and the left-hand member of equation (33.4) is known to be a vector, A,;

1 
will, by 

the quotient theorem, be a covariant tensor. It will be termed the cor;ariant 
deriratire of A;. Thus, the problem of defining a tensor derivative has been re­
expressed as the problem of defining parallel displacement (infinitesimal) of a 
vector. 

We are at liberty to define the parallel displacement of A; from P to P' in any 
way we shall find convenient. However, to avoid confusion, it is necessary that the 
definition we accept shall be in conformity with that adopted in lffN, which is a 
special case of Y ~.Suppose, therefore, that our .'/'.-.;is Euclidean and that y' are 
rectangular Cartesian coordinates in this space. Let 8; be the components of the 
vector field A; with respect to these rectangular axes. Then 

(33.5) 

If the parallel displacement of the vector A, to the point P' is now carried out, its 
Cartesian components B; will not change, i.e. bB; = 0. Hence, from the first of 
equations (33.5), we obtain 

bA = c) --8 = o -- B (
fyi ) ··((ri) 

' i'x' J ex' J 

(33.6) 

Substituting for Hi into this equation from the second of equations (33.5), we find 
that 

where 

hA; = r:k A1dx• 

r2 rJ ?x' r'=----=----
•k r~x'?x• c'yi 

(33.7) 

(33.8) 

This shows that, in t&"_;;, the bA, are bilinear forms in the A1 and dx•. In .'fv, we shall 
accordingly define the bA, by the equation (33.7). determining the N 3 quantities 
r~. arbitrarily at every point ofY ...... This set of quantities r:. is called an affinity 

• Subject to the requirement that the r:, arc continuous funct1ons of the x' and possess continuous 
partial den\atives to the order necessary to validate all later arguments. 
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and specifies an affine connection between the points of ·'~':v· A space which is 
affinely connected possesses sufficient structure to permit the operations of tensor 
analysis to be carried out within it. 

For we can now write 

dA ~A - rA;d j rk d j 
i- (} i- ~- · X - i;Ak X 

r:xJ 

(c~A; k ) · = -.- r A. dx1 
"' J lj " ox 

(33.9) 

But, as we have already explained, the left-hand member of this equation is a 
vector for arbitrary dxi and hence it follows that 

(33.10) 

is a covariant tensor, the covariant derivative of A;. 
It will be observed from equation (33.10) that, if the components of the affinity 

all vanish over some region of .'1' N• the covariant and partial derivatives are 
identical over this region. However, this will only be the case in the particular 
reference frame being employed. In any other frame the components of the 
affinity will, in general, be non-zero and the distinction between the two 
derivatives will be maintained. In tensor equations which are to be valid in every 
frame, therefore, only covariant derivatives may appear, even if it is possible to 
find a frame relative to which the affinity vanishes. 

We have stated earlier that, when defining an affine connection, the com­
ponents of an affinity may be chosen arbitrarily. To be precise, a coordinate frame 
must first be selected in /.1' Nand the choice of the components of the affinity is then 
arbitrary within this frame. However, when these have been determined, the 
components of the affinity with respect to any other frame are, as for tensors, 
completely fixed by a transformation law. We now proceed to obtain this 
transformation law for affinities. 

34. Transformation of an affinity 

The manner in which each of the quant1t1es occurring in equation (33.10) 
transforms is known, with the exception of the affinity r~J· The transformation 
law for this affinity can accordingly be deduced by transformation of this 
equation. Relative to the x-frame, the equation is written 

Since A;, A;;1 are tensors, 

- a.4; -k­
A; 1 = -:;-::-. - r ;JAk 

· ox1 

- ox• 
A;= ax; A. 

(34.1) 

(34.2) 
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(34.3) 

Substituting in equation (34.1), we obtain 

(34.4) 

Employing equation (33.10) to substitute for A and cancelling a pair of identical 
terms from the two members of equation (34~·4), this equation reduces to 

(34.5) 

Since A, is an arbitrary vector, we can equate coefficients of A, from the two 
members of this equation to obtain 

-k Cx' Cx:s Cx' 02 x' r ,·1· -.. = -~ -.r.', + -.- , ex· ex' cx1 Dx'cx1 

Multiplying both sides of this equation by cx1/cix' and using the result 

yields finally 

ex' (~x' 

?x' txk 
?x' 
- - 8' rxk - k 

which is the transformation law for an affinity. 

(34.6) 

(34.7) 

(34.8) 

It should be noted that, were it not for the presence of the second term in the 
right-hand member of equation (34.8), r~ would transform as a tensor of the 
third rank having the covariant and contravariant characteristics suggested 
by the positions of its indices. Thus, the transformation law is linear in the 
componems of an affinity but is not homogeneous like a tensor transformation 
law. This has the consequence that, if all the components of an affinity are zero 
relative to one frame, they are not necessarily zero relative to another frame. 
However, in general, there will be no frame in which the components of an affinity 
vanish over a region of.'l',...., though it will be proved that, provided the affinity is 
symmetric, it is always possible to find a frame in which the components all vanish 
at some particular point (see section 39). 

Suppose r~. nr are two affinities defined over a region of .'f' N· Writing down 
their transformation laws and subtracting one from the other, it is immediate that 

(34.9) 

i.e. the difference of two affinities is a tensor. However, the sum of two affinities is 
neither a tensor nor an affinity. It is left as an exercise for the reader to show, 
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similarly, that the sum of an affinity r~ and a tensor A~1 is an affinity. 
If rt is symmetric with respect to its subscripts in one frame, it is symmetric in 

every frame. For, from equation (34.8), 

-k oxk axs ox' • iJxk 22 x' r--=---.---r +--. -~ 
)I CX' QXJ 0X1 

Sl ex' ex/ox' 
oxk ox' CXS cxk 22 x' 

=- ---r· +--
ax· 0X1 0X1 IS OX' 0Xi0Xj 

=11 (34.10) 

where, at the first step, we have put r~s = r~.-

35. Covariant derivatives of tensors 

In this section, we shall extend the process of covariant differentiation to tensors 
of all ranks and types. 

Consider first an invariant field V. When Vsulfers parallel displacement from P 
to P', its value will be taken to be unaltered, i.e. liV = 0 in all frames. Hence 

av . 
dV-liV= ~dx' 

ax' 

is the counterpart for an invariant of equation (33.4). It follows that 

V., = V,; 

(35.1) 

(35.2) 

i.e. the covariant derivative of an invariant is identical with its partial derivative or 
gradient. 

Now let B; be a contravariant vector field and A; an arbitrary covariant vector. 
Then A;B; is an invariant and, when parallel displaced from P to P', remains 
unchanged in value. Thus 

or 

and hence, by equation (33.7). 

b(A;B;) = 0 

liA;Bi + A;bB; = 0 

Ak(iBk = - rt Akdxi B; (35.3) 

But, since the Ak are arbitrary, their coefficients in the two members of this 
equation can be equated to yield 

8Bk = - q B;dxi (35.4) 

This equation defines the parallel displacement of a contravariant vector. The 
covariant derivative of the vector is now deduced as before: thus 

dB -liB = --~ + r B dx 1 k k (a~ k i) -
OX) I) 

(35.5) 
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and since dx 1 IS an arbitrary vector and dH•- 68• is then known to be a vector. 

iB• 
8 1

, = ~ ·; + r.~ B' 
r X 

(35.6) 

is a tensor called the covariant derivative of Bk. 
Similarly, if A~ is a tensor field. we consider the parallel displacement of the 

invariant A~B;C. where B,.C 1 arc arbitrary vectors. Then. from 

b(A~BiC1 ) = 0 

and equations (33.7) and (35.4), we deduce that 

bA; = r 1tA;dxk- r,~ A~dx• 

It now follows that 

is the covariant derivative required. 

(35.7) 

(35.8) 

(35.9) 

The rule for finding the covariant derivative of any tensor will now be plain 
from examination of equation (35.9), \il., the appropriate partial derivative is first 
w-ritten down and this is then followed by 'affinity terms'; the 'affinity terms' are 
obtained by writing down an inner product of the affinity and the tensor with 
respect to each of its indices in turn, prefixing a positive sign when the index is 
contravariant and a negative sign when it is covariant. 

Applying this rule to the tensor field whose components at every point are 1hose 
of the fundamental tensor 6;, 11 will be found that 

(35.10) 

Thus. the fundamental tensor behaves like a constant in covariant differentiation. 
Finally. in this section, we shall demonstrate that the ordinary rules for the 

differentiation of sums and products apply to the process of covariant 
differentiation. 

The right-hand member of equation (35.9) being linear in the tensor A;. it 
follows immediately that if 

then 

Now suppose that 

Then 

C~ =A:+ Bj 

c; 1 = A; 1 + B; , 

(35.11) 

(35.12) 

(35.13) 
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= (~A:+ r:k A)- rjk A;)Bi + ((:B: + r;kB')Aj 
ex ( x 

= A;_,BJ+BJ1 A~ (35.14) 

which is the ordinary rule for the differentiation of a product. 

36. The Riemann-Christoffel curvature tensor 

If a rectangular Cartesian coordinate frame is chosen in a Euclidean space$ Nand 
if A; are the components of a vector defined at a point Q with respect to this frame, 
then bA; = 0 for an arbitrary small parallel displacement of the vector from Q. 
This being true for arbitrary A;, it follows from equation (35.4) that r~k = 0 with 
respect to this frame at every point of 8 N· Suppose C is a closed curve passing 
through Q and that A; makes one complete circuit of C, being parallel displaced 
over each element of the path. Then its components remain unchanged 
throughout the motion and hence, if A;+ l\A; denotes the vector upon its return 
to Q, 

l\A; = 0 (36.1) 

Since l\A; is the difference between two vectors both defined at Q, it is itself a 
vector and equation (36.1) will therefore be a vector equation true in all frames. 
Thus, inC N• parallel displacement of a vector through one circuit of a closed curve 
leaves the vector unchanged. 

If, however, A; is defined at a point Q in an affinely connected space.'/' N• not 
necessarily Euclidean, it will no longer be possible, in general, to choose a 
coordinate frame for which the components of the affinity vanish at every point. 
As a consequence, if A; is parallel displaced around C, its components will vary 
and it is no longer permissible to suppose that upon its return to Q it will be 
unchanged, i.e . .:\A; + 0. We shall now calculate .:\A; when A; is parallel displaced 
around a small circuit C enclosing the point P having coordinates x' (Fig. 7) at 
which it is initially defined. 

v 

p 
• 

c 

fiG. 7 
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Let U be any point on this curve and let xi+ ~i be its coordinates, the~· being 
small quantities. Vis a point on C near to U and having coordinates xi+ ~i + d~i. 
When Ai is displaced from U to V, its components undergo a change 

(36.2) 

where rJk and A1 are to be computed at U. Considering the small displacement 
from P to U and employing Taylor's theorem, the value of r;k at U is seen to be 

ri + ar;k ~~ 
Jk C.x' (36.3) 

to the first order in the ~ 1 • In this expression, the affinity and its derivative are to be 
computed at P. A 1 in equation (36.2) represents the vector after its parallel 
displacement from P to u, i.e. it is 

(36.4) 

where A i, A' and r j, are all to he calculated at the point P. To the first order in~~ 
therefore, equation (36.2) may be written 

liAi = -[r; Ai+(AicTjk -ri riA')~'Jd~k 
- a~ - rl 

(36.5) 

Integrating around C, it will be found that 

.:\A'= - r]kAi td~k + ( r~krj,- ~~k )A 1 t~'d~k (36.6) 

c c 

where the dummy indices}, r have been interchanged in the final term of the right­
hand member of equation (36.5). 

Now (36.7) 

Also (36.~) 

so that (36.9) 

( 

implying that the left-hand member of this equation is skew-symmetric in I and k. 
Since~~. de are vectors, it is also a tensor. Denoting it by a:k

1
, we have 

!Xkl = -if ( ~~d~k- ~kd~') (36.10) 

c 
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and equation (36.6) then reduces to the form 

(36.11) 

Apart from its property of skew-symmetry, :xk
1 is arbitrary. Nonetheless, since it 

is not completely arbitrary, the quotient theorem (section 32) cannot be applied 
directly to deduce that the contents of the bracket in equation (36.11) constitute a 
tensor. In fact, this expression is not a tensor. However, it is easy to prove that, if 
Xj.1 is skew-symmetric with respect to k, I and if Y', defined by the equation 

(36.12) 

is a vector for arbitrary skew-symmetric tensors (i1
, then X~, is also a tensor. 

To prove this, let fik' be an arbitrary symmetric tensor. Then the components of 
the tensor 

l' = a.kl + [Jkl 

are completely arbitrary, for, assuming k < I, 

"/' = (J,kl + (3kl' y'k = - :J.kl + {3" 

(36.13) 

(36.14) 

and it follows that the values of / 1
, y1

k can be chosen arbitrarily and then 

(36.15) 

i.e., it is only necessary to fix the values of a.kl, {Jk' in the cases k < I in order that the 
yk' shall assume any specified values over the complete range of its superscripts, 
with the exception of the cases when two superscripts are equal. If the superscripts 
are equal, rxk' = 0 and "/1 = f3k1. But these {Jkl are also arbitrary lind hence so again 
are the yk' with equal superscripts. 

Since (Jk' is symmetric and X~, is skew-symmetric, 

Xi, {Jkl = 0 (36.16) 

Adding equations (36.12) and (36.16), we obtain therefore 

(36.17) 

But ,,kl is an arbitrary tensor and hence, by the quotient theorem, Xi1 is a tensor. 
The multiplier of :xkl in equation (36.11) is not skew-symmetric ink, I. However, 

it can be made so as follows: Interchange the dummy indices k, I in this equation 
to obtain 

(36.18) 

Adding equations (36.11) and (36.18) and noting that :xkl = - 'X.1k, it will be found 
that 

(36.19) 



The bracketed expression is now skew-symmetric in k, I and hence 

( 
. . (Tj, tr~k) . 

r~kr],-r~,r]k +-:;----;:- ,--,- AJ 
ex ex 

is a tensor. Ai being arbitrary, it follows that 

is a tensor. It is the Riemann-Christoffel curvature tensor. 
Equation (36.19) can now be written 
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(36.20) 

(36.21) 

(36.22) 

If Bjk1 is contracted with respect to the indices i and I, the resulting tensor is 
called the Ricci tensor and is denoted by R;k· Thus 

(36.23) 

This tensor has an important role to play in Einstein's theory of gravitation. Since 
Bju is skew-symmetric with respect to the indices k and I, its contraction with 
respect to i and k yields only the Ricci tensor again in the form - R11 . However, 
contraction with respect to the indices i and j yields another second rank tensor, 
viz. 

(36.24) 

37. Metrical connection. Raising and lowering indices 

In this section we shall further particularize our space .'/'.'11 by supposing it to be 
Riemannian. That is, we shall suppose that a 'distance' or interval ds between two 
neighbouring points xi, x' + dx; is defined by the equation 

ds 2 = g;1dx'dx1 (37.1) 

where the N 2 coefficients Yu are specified in some coordinate frame at every point 
of YN· It will be assumed, without loss of generality, that the g;1 are symmetric. 
Such a relationship between all pairs of adjacent points is called a metrical 
connection and the expression (37.1) for ds 2 is termed the metric. 

For any two neighbouring points, ds will be regarded as an invariant associated 
with them and the g;1 must accordingly transform so that this shall be so. Since 
dx;dx1 is an arbitrary symmetric tensor, g;1 is symmetric and ds 2 is an invariant, it 
follows by a modified quotient theorem similar to the one proved in section 36 
that g;i is a tensor. It is called the fundamental covariant tensor. The contravariant 
tensor which is conjugate to gii (see section 32), viz. yii, is termed thefundamelltal 
contravariant tensor. This exists only if y = I giJI t- 0, which we accordingly 
assume to be the case. 
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In the case when .lis is Euclidean, rectangular Cartesian coordinates)'; can be 
defined and, in such a frame. 9;; = b,i. Consider a contravariant vector having 
components A' in a general curvilinear x-frame and components 8' in the y­
frame. In the Cartesian frame, covariant and contravariant vectors are indis­
tinguishable, so that it is natural to define covariant components for the vector by 
the equation 

(37.2) 

In the x-frame, let A; be the components of the covariant vector 8;. Then 

(37.3) 

This follows since (i) it is a tensor equation and (ii) it is valid in the y-frame in 
which it takes the form 

(37.4) 

If .CJf,,. is not Euclidean, equation (37.3) is taken to define the covariant 
components of a vector whose contravariant components are A;. This process of 
converting the contravariant components of a vector into covariant components 
is termed lowering the index. 

If B; is a covariant vector, its contravariant expression is determined by raising 
the index with the aid of the fundamental contravariant vector. Thus 

(37.5) 

For the notation to be consistent, it is necessary that if an index is first lowered 
and then raised, the original vector should again be obtained. This is seen to be the 
case for, if A, is formed from A' (equation (37.3)), the result of raising its subscript 
is (equation (37.5)) 

(37.6) 

where equations (32.9) have been used in the reduction. Similarly. if an index is 
first raised and then lowered, the original covariant vector is reproduced. 

Any index of a tensor can now be raised or lowered in the obvious way. Thus, if 
A;L is a tensor, we define 

(37.7) 

To allow for the possibility that indices may be raised or lowered during a 
calculation, it will be convenient to displace the subscripts to the right of the 
superscripts. It is also often helpful to keep a record of these operations by placing 
a dot in the gap resulting from the raising or lowering of an index. These 
conventions are illustrated in equation (37. 7). 

Suppose an index of the fundamental tensor Yii is raised. The result is 

(37.8) 

i.e. the mixed fundamental tensor. The same tensor results when an index of gii is 
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lowered. If both subscripts of q,; are raised, the result is 

(37.9) 

Our notation is entirely consistent, therefore, and q,i, g•i, (i~ are taken to be the 
covariant, contravariant and mixed components respectively of a single funda­
mental tensor. 

Consider the inner product of two vectors A', B,. We have 

A' B, = g'i A1B, 

= Aig'iB, 

= AiBi 

= A,B' (37.10) 

It is clear that the dummy index occurring in the expression for an inner product 
can be raised in one factor and lowered in the other without affecting the result. 
This is obviously valid for the inner product of any pair of tensors. 

38. Scalar prodncts. Magnitudes of vectors 

In 3t:v the magnitude of the displacement vector dx; is taken to beds as given by 
equation (37.1). If A; is any other contravariant vector, it may be represented as a 
displacement vector and then its magnitude is the invariant A, where 

(38.1) 

This equation is accordingly taken to define the magnitude of A'. 
Raising and lowering the dummy indices in equation (38.1), we obtain the 

equivalent result 

(38.2) 

It is natural to assume that the associated vectors A,, A' have equal magnitudes 
and hence A is also taken to be the magnitude of A,. Equation (38.2) indicates how 
this can be calculated directly from A,. 

Since g,iAi = A, and yii A; = A', equations (38.1 ), (3K2) are also both seen to be 
equivalent to the equation 

A 2 = A,A' 

The scalar produce of two vectors A, 8 is defined to be the invariant 

A· 8 = A;B; =A; B, = YiJA' Bi = gii A,B1 

It will be noted that 

(38.3) 

(38.4) 

(38.5) 

By analogy with tt ]• we now define the angle 0 between two vectors A, 8 to be 
such that 

ABcosO =A· 8 (38.6) 
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i.e. 
A;B 

cosO=--· ·.--' -· --
J[(AJ A 1) (Bk Bkl] 

If 0 = in, the vectors are said to be urrhogonal and 

39. Geodesic frame. Christoffel symbols 

(38.7) 

(38.8) 

It is always possible to choose a coordinate frame in which the components of the 
metric tensor are stationary at an assigned point, i.e. cgij!'cxk all vanish at the 
point. Such a frame is said to be geodesic at the point. 

For, if xi = aj are the coordinates of a point A in an x-frame, suppose we 
transform to a new frame by the quadratic transformation 

(39.1) 

where _xi = 0 at A and the constant coefficients ajk are symmetric in the indices}, k 
(no loss of generality). Differentiation yields the equations 

In particular, at the point A 

Cxi - i 
~-j- bj. 
ox 

The transformation equation for the metric tensor is 

Differentiating with respect to xk, we find that 

Substituting from equations (39.3), it follows that at the point A, 

(39.2) 

(39.3) 

(39.4) 

(39.5) 

(39.6) 

Suppose, if possible, the coefficients ajk are chosen so that og;Jfcxk = 0. Then, 
writing aikYri = aikJ• it is necessary that 

(39.7) 

Cyclically permuting the indices i, j, k, two further equations are obtained, viz. 

aiik + akii = - iJg1Jtxi 

akii + aiik = - iJgk;/iJxi 

(39.8) 

(39.9) 
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Since a,1k is symmetric in the indices i,j, by adding the last pair of equations and 
subtracting equation (39.7), we get 

(39.10) 

[ ij, k] is called the Christoffel~ rmbol of r he first kind. It is now easily verified that 
the condition (39. 7) is satisfied provided a,1k is defined by equation (39.1 0) and, 
hence, that Dgiiji}xk = 0 at A. 

(ij, k] is not a tensor, but its indices invariably behave like subscripts in any 
formula in which it occurs. It is symmetric in the indices i, j. 

We now deduce that 

k kr kr [" ] f k 1 a,1 = g a,1, = - g IJ, r = - 1; il (39.11) 

where V1l is Chriswffel's symbol of the second kind. It is clearly obtained from the 
symbol of the first kind [ij, k] by raising the final index k. It, also, is not a tensor, 
but i,j always behave as subscripts and k behaves as a superscript; it is symmetric 
in i and j. 

Suppose we next transform from the x-frame to a y-frame by a linear 
transformation 

(39.12) 

where the b} are constants. Then dxi = b~ dri and it is a well known result from 
algebra that the quadratic form giJdx'dx1 can be reduced to the diagonal form 

(dyl)2 + (dr2l2 + ... + (dy!Vf (39.13) 

at the point A by proper choice of the b) (some of these coefficients may have to be 
given imaginary values). Let h,1 be the metric tensor in the y-frame. Then 

(39.14) 

and, in particular, hii = 8,1 at A. Differentiating the last equation, we obtain 

ahij = b' ,. b' cg,. 
Dl , I k Dx' (39.15) 

showing that ohij(o/ vanishes at A. Thus, in they-frame, h,1 is stationary with 
value 8,1 at A. The implication is that, in a small neighbourhood of A, the 
coordinates y' will behave like rectangular Cartesian coordinates. They-frame is 
the closest approximation to a rectangular Cartesian frame that can be fitted to 
the !JtN in the neighbourhood of A. 

If the y-frame were exactly rectangular Cartesian (i.e. the space were 
Euclidean), in order that the law for parallel displacement of a vector, equation 
(33.7), should agree with the one usually adopted, it would be necessary to take all 
the components of the affinity to be zero in this frame. It is natural, therefore, to 
define the affinity at the point A of fJt N so that, in they-frame, its components are 
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zero. With this choice of affinity, in they-frame covariant derivatives will reduce 
to ordinary partial derivatives at the point A; in particular, 

h = c'h,; = 0 
''·' c~/ 

(39.16) 

at A. But this equation is a tensor equation and, being valid in one frame, is 
accordingly valid in all frames. Thus, with this choice of affinity 

g,,:k = 0 (39.17) 

Assuming that the affinity is defined at all points of 9P_... in this manner, the last 
equation will be valid throughout the space and in all frames. Since this affinity is 
clearly symmetric in the y-frame, it will be symmetric in all frames. 

Writing equation (39.17) out at length, we have 

(39.18) 

Cyclically permuting the indices i, j, k to obtain two further equations, it now 
follows as from equations (39.7)--(39.9) that 

[iJ, k J = rlk.r;j (39.19) 

Raising the index k, this gives 

(39.20) 

The affinity determined by this equation in any frame will be called the metric 
u/fillit y and will invariably be assumed in all later developments. 

Since equation (39.17) is valid using the metric affinity, the metric tensor 
behaves like a constant with respect to covariant differentiation. Further, since 

(39.21) 

by taking the covariant derivative of both members of this equation, we obtain 

qiJm!h; = 0 (39.22) 

Multiplying by qk• and summing with respect to k. we then find that 

g ,. = 0 
.m (39.23) 

Thus, all forms of the metric tensor behave like constants under covariant 
differemiation. 

It is now clear that 

(g;JAJ) l = q,}Ai I (]9.24) 

This shows that the lowering of an index followed by a covariant differentiation 
yields the same result as when these two processes are reversed. Similarly, it can be 
shown that the raising of an index and covariant differentiation are two processes 
which commute. 
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40. Bianchi identity 

If we choose a frame which is geodesic at a point xi, ("Y;j/?xk will vanish at the 
point and the two Christoffel symbols will therefore also vanish at the point. 
Thus, all the components of the affinity will vanish at the point and covariant 
derivatives will reduce to partial derivatives there. It then follows from equation 
(39.23) that the partial derivatives c?giij?xk all vanish at the point, also. 

In such a geodesic frame, therefore, 

i _ () ( i r i r C PI cT~k ) B ,1 - -;;--;;;- r,k r 1-1- r,1 r 1-k + -"- i - ". ,.-)' ·'" ox (!X ex 

(40.1) 

since the nk (but not their derivatives necessarily) all vanish at this point. 
Cyclically permuting the indices k, I, min equation (40.1), we obtain 

(40.2) 

(40.3) 

Addition of equations (40.1), (40.2), (40.3), yields the following identity 

(40.4) 

But this is a tensor equation and, having been proved true in the geodesic frame, 
must be true in all frames. Also, since the chosen point can be any point of :?f -~·it is 
valid at all points of the space. It is the Bianchi identity. 

41. The covariant curvature tensor 

The components of Bj11 are not all independent since the tensor is skew­
symmetric in the indices k, I. In addition, however, if the affinitr is srmmetric, it is 
easily veri tied from equation (36.21) that 

(41.1) 

If the affinity is metrical, by lowering the contravariant index of the 
Riemann-Christoffel tensor, a completely covariant curvature tensor Biikl is 
derived. This has a number of symmetry properties, one of which is obtained from 
our last equation immediately by lowering the index i throughout to give 

(41.2) 

Further such properties can be established by first calculating an expression for 
the tensor in a geodesic frame. Thus, in such a frame 
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(41.3) 

since tq''/i':xk = 0 in a geodesic frame. Using the result q;,g" = bf and substitut­
ing for the Christoffel symbols, we now find from equation (41.3) that 

lhe following equations are now easily verified: 

B;ikl = - Biikl 

B,ikl = - B;Jlk 

B;jkl = Bklii 

(41.4) 

(41.5) 

(41.6) 

(41.7) 

Being true in the geodesic frame, these tensor equations must be valid in all 
frames. Note that the tensor is skew-symmetric with respect to its first pair of 
indices and its last pair. 

Also lowering the superscript i throughout the Bianchi identity (40.4), we 
obtain 

(41.8) 

42. Divergence. The Laplacian. Einstein's tensor 

If the covariant derivative of a tensor field is found and then contracted with 
respect to the index of differentiation and any superscript, the result is called a 
dirergence of the tensor. With respect to orthogonal coordinate transformations 
in 6,, the partial and covariant derivatives are identical and then this definition of 
divergence agrees with that given in section 12. 

From the tensor A~, two divergences can be formed, viz. 

(42.1) 

A contravariant vector possesses one divergence only, which is an invariant. If the 
aflinity is the metrical one, such a divergence is simply expressed in terms of 
ordinary partial derivatives thus: since a derivative of a determinant can be found 
hy differentiating each row separately and summing the results, we deduce that 

in cg cq _,., __ = c·k_____!!:_ = ggik_'-.!k 
{xJ c'xJ ex 1 

(42.2) 
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Since i)gik [ .. k] [k' '] -. = 1], + ],1 
(!xJ 

(42.3) 

equation (42.2) reduces to 

iJg _ ik([ ·· k] [k' '] _ I i} oxi-gg 1], + J,l )-2glii (42.4) 

Hence 
. I D 

{;'il = Jg axi( Jg) (42.5) 

Now let A; be a vector field. Its divergence is 

=_I_[ J/A' +Ail..._,( Jg)J 
Jg ox' cix 1 

1 a J . 
= Jgox;( gA') (42.6) 

which is the expression required. 
In particular, if the vector field is obtained from an invariant V by taking its 

gradient, we have 
av 

A·=--
' tJxi 

(42.7) 

and hence (42.8) 

From equation (42.6), it now follows that the divergence of this vector is 

div grad V = V2 V =_I_!_,( Jggiii!.~,) J g ox' VX 1 
(42.9) 

The right-hand member of this equation represents the form taken by the 
Laplacian of Vin a general Riemannian space. In 8 N• employing rectangular axes, 
g;1 = bii, g = I and thus 

(42.10) 

which is its familiar form. 
We shall now calculate the divergence of the Ricci tensor Ridequation (36.23) ). 
If the metric affinity is being employed, this tensor is symmetric, for 

Rkj = BL; = gj'Brkji = gi'Bjirk = g''Bijkr 

= B]kr = Rik (42.11) 
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having employed equations (41.5)- (41.7). Raising either index accordingly yields 
the same mixed tensor R (. If this is contracted, an invariant 

R = Rj (42.12) 

is obtained. R is called the curracure scalar of Yl.,. 
The skew-symmetry of B,Jkl with respect to its first two and its last two indices 

means that equation (41.8) can be writen 

Multiplying through by g 11 gik, we then get 

and this is equivalent to 

or 

Thus 

gik R)k.m- gjk R 1m;k- 9 11 
Rim./ = 0 

R.m-2R~,=O 

is the divergence of the Ricci tensor. 
Consider now the mixed tensor 

Its divergence is 

, lcR 
= R -!-__, ).' cx 1 

=0 

(42.13) 

(42.14) 

(42.15) 

(42.16) 

(42.17) 

(42.18) 

(42.19) 

This is Einstein's Tensor. Its covariant and contravariant components are 

(42.20) 

respectively. 

43. Geodesics 

Let C be any curve constructed in a space jf·" having metric (37.1) and lets be a 
parameter defined on C such that, if s, s + ds are its values at the respective 
neighbouring points P, P' on C, then ds is the interval between these two points. If 
x 1 arc the coordinates of any point P on C, then the curve will be defined by 
parametric equations 

(43.1) 

Since dx' are the components of a vector and ds is an invariant, dx 1jds is a 
contravariant vector at P. Its magnitude is, by e4uatiun (38.1 ), 

( 
dxi dxi)l;2 

g,1 ds ds (43.2) 
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and this is unity by equation (37.1). dx'jd.~ is termed the unirranqenr to the curve 
at P, its direction being that of the displacement dx• along the curve from P. 

Suppose C possesses the property that the tangents at all its points arc parallel, 
i.e. the curve's direction is constant over its whole length. This property is clearly 
quite independent of the coordinate frame being employed. In t 3 , such a curve 
would, of course, be a straight line. In .II,, the curve will be called a gevde.~ic. A 
geodesic is accordingly the counterpart of the Euclidean straight line in a 
Riemannian space. Suppose P, P' are neighbouring points on a geodesic having 
coordinates x',x' + dx• respectively. I fthe unit tangent at Pis parallel displaced to 
P', it will then be identical with the actual unit tangent at this point. Now, by 
equation (35.4). after parallel displacement from P to P'. the unit tangent has 
components 

dx• ·(dx') dx' ; d:<i d k -+o - = -rk-· x 
ds d.~ ds 1 d.~ 

(43.3) 

Rut the actual unit tangent for the point P' has components 

··- = ··- + . d.~ 
(
dx') dx' d

2
x' . 

d.\ , ·d• ds ds 2 
(4.14) 

The vectors (43.3) and (43.4) are identical provided 

(43.5) 

If these equations arc satisfied at every point of the curve (43.1 ). it is a geodesic. 
The N equations (43.5) arc second-order differential equations for the 

functions x'(s) and their solution will involve 2N arbitrary constants. If A. Bare 
two giv~n points having coordinates xi= a', x' = n• respectively, the 2N 
conditions that the geodesic must contain these points will, in general, determine 
the arbitrary constants. Hence there is, in general, a unique geodesic connecting 
every pair of points. However, in some cases, this will not be so. For example, the 
geodesics on the surface of a sphere ( Jt 2 ) are great circles and, in general, there arc 
two great circle arcs joining two given points, a major arc and a minor arc. Also, if 
these points are diamterically opposed to one another, there is an infmity of great­
circle arcs connecting them. 

Since dx'/ds is everywhere a unit vector, on a geodesic 

dx' dxi 
q- ·--=I 
· '

1 d.s ds 
(43.6) 

This must, accordingly, be a first integral of the equations (43.5). To show that this 
is the case. multiply equations (43.5) through by 2q;,d x' jds and sum with respect 
to i to obtain 

(43.7) 
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Now 

Also 
dx 1 dxk dx' dx 1 dxk dx' 

2g r• · ·- ---·- = 2[jk r] ----·· 
• " 

1
k ds d.~ ds ' ds ds d.~ 

dx 1 dxk dx' 
= ([jk,r]+[rk,J])~~ d; 

r"g1, dx' dxi dx' 

t.\k~~d5 

dqi, ~~~ dx' 
ds ds ds 

(43.8) 

(43.9) 

By addition of equations (43.8) and (43.9), it will be seen that equation (43.7) can 
be expressed in the form 

d ( dx;dxJ) 
d~ Yii(i~~ = 0 (43.10) 

Upon integration, there results the first integral 

dx' dxi 
9u ds' d.~- = constant (43.11) 

The constant of integration must, of course, be taken to be unity. 
The definition of a geodesic which has been given at the beginning of this 

section cannot be applied 10 the class of curves for which the interval ds between 
adjacent points vanishes. For such a curve, the parametric representation (43.1) is 
not appropriate and a unit tangent cannot be defined. Instead, suppose that a 
(I -1) correspondence is set up between the points of the curve and the values of an 
invariant i. in some interval i. 0 ,;; i. ,;; i. 1 , so that parametric equations for the 
curve can be written 

x' = x;(i.) (43.12) 

It will be assumed that the derivatives dx;:di. all exist at each point of the curve. 
These derivatives constitute a contravariant vector and this has zero magnitude 
for, since ds = 0 along the curve, 

dx' dxi 
!/ij d- . -d. = () 

I. I. 
(43.13) 

This vector will be in the direction of the displacement vector along the curve dx; 
and will be called a zero tangent to the curve. The curve will be termed a null 
geodesic if the zero tangents at all points of the curve are parallel. This implies 
that, when the zero tangent at Pis parallel displaced to the adjacent point P', it 
must be parallel to the zero tangent at this latter point, and since the magnitudes 
of these two vectors at P' are the same, they will be taken to be identical. The 
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condition for this to be so is found, as before, to be 

d 2 xi dxi dxk 
-d.2 +rjk-d, -d. =O 

I. A. I. 
(43.14) 

These are, therefore, the equations of the null geodesics. It may now be shown, by 
an argument similar to that culminating in equation (43.11), that a first integral of 
these equations is 

dxi dxi 
g;i-d. -d. =constant 

I. I. 

In this case the constant must be zero. 

(43.15) 

Equation (43.5) may be put in an alternative form which is more convenient for 
particular calculations, as follows: Multiply through by 2g,; and sum with respect 
to i; the resulting equation is equivalent to 

d ( dxi) dq dxi . dxidxk 
ds 29';ds - 2 d;·ds + Zg,;rjkdsdS = 0 (43.16) 

Now 

(43.17) 

and 

(43.18) 

Equation (43.16) accordingly reduces to 

~- (zg. dx;) _ ~'!!_;~ dx~ ~~~ = 0 
ds " ds ex' ds ds 

(43.19) 

Equation (43.14) for a null geod~:sic may be expressed similarly. 

Exercises 5 

I. A ii is a covariant tensor. If Bii = A ii• prove that B;i is a covariant tensor. 
Deduce that, if Aii is symmetric (or skew-symmetric) in one frame, it is symmetric 
(or skew-symmetric) in all. (Hint: The equations A;i = A ii• Aii = - Ai; are tensor 
equations.) 

2. (x. y, z) are rectangular Cartesian coordinates of a point Pin 8 3 and (r, 0, <P) 
are the corresponding spherical polars related to the Cartesians by equations 
(30.3). A is a contravariant vector defined at P having components (A X, A r, A') in 
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the Cartesian frame and components (A', A6
, A"') in the spherical polar frame. 

Express the polar components in terms of the Cartesian components. 01, 02,03 
are rectangular Cartesian axes such that Plies on 0 I and 031ies in the plane Oxy. 
If (A 1

, A 2 • A 3 ) are the components of A in this Cartesian frame, show that 

A 1 =A', A 2 =rA 6
, A 3 =rsinOA"' 

(Note: Assume the Cartesian axes are right-handed.) 
3. If A; is a covariant vector, verify that B;1 = A; .1 A 1.; transforms like a 

covariant tensor. (This is curl A.) If A is the gradient of a scalar, verify that its curl 
vanishes. 

4. If A ;1 is a skew-symmetric covariant tensor, verify that 

transforms as a tensor. 
5. Assuming the transformation inverse to (31.1) exists, prove that each 

determinant ic~x;/c,x 1 l.li:x;jc>xll, is the reciprocal of the other. Aj is a mixed 
tensor with respect 10 this transformation. Show that the determinant I A j I is an 
invariant. 

6. If rt is an affinity, show that the torsion defined by 

n1 = -Hq1 - r~d 

is a tensor. g;
1 

is a symmetric tensor. Write down an expression for its covariant 
derivative q,

1
_,. By considering this equation and two similar equations obtained 

by cyclic permutation of the indices i,j, k, show that if the covariant derivative of 
q;

1 
is to vanish identically, the affinity must be given by 

r]. = { / k l + T\k + gj'(Tj,q,k + Ti,q,l l 
7. Show that 

A -A =A -A 
1;) );1 I,J ),1 

provided the affinity is symmetric. 
8. Show that 

A"''- A,_,,= Bi1kA, + (r;;1 - r]k)A,, 

and deduce that Bi1k is a tensor and that covariant differentiations are 
commutative in a space for which Bi1k = 0 and the affinity is symmetric. Obtain 
the corresponding result for a contravariant vector A;. 

9. A; is defined at the point x; and is parallel displaced around a small contour 
enclosing the point. Prove that the increment in A; resulting from one circuit is 
given by 

l\A; = -iBbA,:xlk 

where rx lk is defined by equation (36.10). 
10. The parametric equations of a curve in !:I'N are 

xi= x;(r) 
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1 is an invariant parameter. A tensor A j is defined over a region containing the 
curve. P, P' are neighbouring points 1, 1 +Ill on the curve and llA j is defined to be 
the difference between the actual value of the tensor at P' and the value of the 
tensor at P after it has been parallel displaced to P'. Prove that 

DAj . llAj i dxk 
-= hm-=A k-
Dt A•-0 Ill ,: dt 

(DA j/DI is called the intrinsic derivative of the tensor along the curve.) 
II. Verify that { iU transforms as an affinity. 
12. If A;i is symmetric, prove that A;i k is symmetric in i and j. 
13. Show that the number of the components of 8~kl which may be assigned 

values arbitrarily is, in general, t N 3 (N- I). If the affinity is symmetric, show that 
this number is !N 2 (N 2 -I). (Hint: Use equation (4l.l).) 

14. Show that the number of the components of 8iikl which may be assigned 
values arbitrarily is N 2 (N 2 -1)/12. (Hint: Use equations (41.2), (41.5), (41.6), 
(41.7).) 

15. By differentiating the equation 

with respect to x 1
, show that 

and hence that 

Deduce that gii = 0. 
,k 

cgim k .. cg}·k 
-gm g'J-~-

i!X1 ox 1 

16. If the affinity is the metric one, prove that 

(Hint: Employ equation (42.5).) Deduce that R Jk is symmetric. 
17. If 0, <Pare co-latitude and longitude respectively on the surface of a sphere 

of unit radius, obtain the metric 

ds 2 = dfJ 2 + sin 2 Od¢ 2 

for the surface. Show that the only non-vanishing three index symbols for this :Jf 2 

are 

Show also that the only non-vanishing components of 8;1k1 are 

81212 = -81221 = 82121 = -82112 = sin 2 0 
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and that the components of the Ricci tensor are given by 

R,2 = R21 = 0, R 11 = -I, R 22 = -sin 2 0. 

Prove that the curvature scalar is given by R = -2. 
18. Employing equation (42.9), obtain expressions for V 2 V in cylindrical and 

spherical polars. 
19. In a certain coordinate system 

where 4>. 1/t are functions of position. Prove that B~kl is a function of 1/t only. If 
1/t = -log (a1x

1
) prove that 

Rik = B~ki = 0 

20. In the fJt 2 whose metric is 

(r >a) 

prove that the differential equation of the geodesics may be written 

a2(~~r +a2r2 = k2r4 

where k 2 is a constant such that k 2 = I if, and only if, the geodesic is null. By 
putting r dlljdr = tan lj>, show that if the space is mapped on a Euclidean plane in 
which r, 0 are taken as polar coordinates, the geodesics are mapped as straight 
lines, the null geodesics being tangents to the circle r = a. 

21. A 2-space has metric 

ds 2 =g 11 (dx 1
)

2 +g 22 (dx 2
) 2 

where g 11 , g22 are functions of x 1 and x 2
• B1i 11 is its covariant curvature tensor 

and Rii is its Ricci tensor. Prove that 

R 12 = 0, R11922 = R22g,, = 81221 

[f R = g'iR,i, show that R = 2B 1221 /(g 11 g22 ). Deduce that R,i = iRg,i. 

22. Prove that 

(i) A'i.. = _1 _ _!_, ( JgA'i) + A'k{ i } 
.. Jgi!x' , k 

(ii) X'i,,; = 0 

provided X 'i is skew-symmetric. Hence prove that, for any tensor A 'i 



23. A curve C has parametric equations 

x; = x'(r) 

and joins two points A and B. The length of the curve is defined to be 

f
8 f8 J( dx;dxi) L= ds= g.-- dr 

'
1 dr de 

A A 
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Write down the Euler conditions that L should be stationary with respect to all 
small variations from C and by changing the independent variable in these 
conditions from r to s, show that they are identical with equations (43.19). (This 
provides an alternative definition for a geodesic.) 

24. If r~k is a symmetric affinity, show that 

qz= f~k+b~Ak+b~Ai 
is also a symmetric affinity. 

If B~kl• B~Z, are the Riemann-Christoffel curvature tensors relative to the 
affinities r~k· r~z respectively, prove that 

B~:, = B~kl + b~A i'- b: A ik + li~(Ak,- A,d 

where A;i = A;A i- A,.r 
Hence show that if A; is the gradient of a scalar, then 

25. Prove that the affinity transformations form a group. 
26. Prove that 

27. Two metrics are defined in .'Y/., .• viz. 

ds 2 = f/;idx;dxi, d:S 2 = e"g;idx;dxi 

where a is a function of the x;. If f}t- Fjk are metric affinities constructed from 
these metrics, prove that 

where 

Curvature tensors Bjk, B~kl are constructed from these affinities. Prove that 

Bjk, = B]kl + Ajl.k - Aju +A ~k A Jl - A~~ A Jk 
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Deduce that 

i:f1k = R 1k + A :, k - A;~_, + A ~k A ;1 - A j, A ~k 

and show also that Ai1 = !Na_1. 
28. Oblique Cartesian axes are taken in a plane. Show that the contravariant 

components of a vector A can be obtained by projecting a certain displacement 
vector on to the axes by parallels to the axes and the covariant components by 
projecting by perpendiculars to the axes. 

29. Define coordinates (r, <Pl on a right circular cone having semi-vertical angle 
1. so that the metric for the surface is 

ds 2 = dr 2 + r 2 sin 2 
1. d<jJ 2

. 

Show that the family of geodesics is given by 

r "" a sec ( rP sin 1. - fl) 

where a, (3 are arbitrary constants. Explain this result by developing the cone into 
a plane. 

30. An -~, has metric 

ds 2 = e' dx' dx' 

where I. is a function of the x'. Show that the only non-vanishing Christoffel 
symbols of the second kind are 

where i., = (;),(<"x'. Deduce that 

{i}{r} 1 - 2 1 --r p pi = 4(N + 2)1-p --zi.,A, 

and that the scalar curvature of this space is given by 

R = (N-l)e .;_[i ... +!(I'V-2)A.,i.,J 

where i . ., = t 2 l.j<"x' [:x'. 

31. IJ is the co-latitude and rP is the longitude on a unit sphere, so that the metric 
for the surface is 

The covariant vector A; is taken with initial components (X, Y) and is carried, by 
parallel displacement, along an arc of length rP sin :x of the circle IJ = rx. Show that 
the components of A, attain the final values 

A 1 =X cos (rj)cosrx) + Y cosec:x sin (rj)cos1.) 

A 2 = -Xsinlsin(rj)cos:x)+Ycos(rj)cosrx) 
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Verify that the magnitude of the vector A, is unaltered by the displacement. 
32.· An .:11 3 has metric 

ds 2 = i.dr 2 + r 2 (dfJ 2 + sin 2 fJd¢ 2
) 

where i. is a function of r alone. Show that, along the geodesic for which fJ = in. 
dfJ.'ds = 0 at s = 0, 

where r = h sec t/J. Interpret this result geometrically when i. = I. 
33. r; (i = I, 2, 3, 4) are rectangular Cartesian coordinates in 8 4 . Show that 

r 1 = R coso 

r2 = R sin fJ cos </J 

y 3 = R sin fJ sin </J cos t/1 
y4 = R sin 0 sin <P sin t/1 

are parametric equations of a hypersphere of radius R. If (II, <P. t/1) are taken as 
coordinates on the hypersphere, show that the metric for this .1/ 3 is 

ds 2 = R 2 [d0 2 +sin 2 0(d<fJ 2 +sin 2 <fJdt/J 2
)] 

Deduce that in this !Jf 3 , 

81 2 1 2 = R 2 sin 2 0, 8 2323 = R 2 sin4 Osin 2 <P. 

8 3131 = R 2 sin 2 Osin 2 </J, 

all other distinct components being zero. Hence show that 

8;Jkl = K (!J;kY;l- Yil9Jkl 

where K = !;R 2
• (This is the condition for the space to be of constant 

Riemannian curvature K .) 
34. An :!i 2 has metric 

d.s 2 = sech 2 r(dx 2 + dr 2
) 

Find the equation of the family of geodesics. 
e. <Pare co-latitude and longitude respectively on the surface of a sphere of unit 

radius. Mercator's projection is obtained by plotting x, y as rectangular Cartesian 
coordinates in a plane, taking 

x = r/J, r = log cot }e 

Calculate the metric for the spherical surface in terms of x and rand deduce that 
the great circles are represented by the curves 

sinh r = xsin (x +Ill. 
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where a, fJ are parameters, in Mercator's projection. 
35. Obtain the formula 

I ( ci
2

g;, c
12

gik D
2
g;k c2

gi, ) { r } { s } 
Bijkl = 2 [xi('xk + Dxic1 x1 - i:xi?~- c~x;c;k + Ysr i I j k 

36. An 9i2 has metric ds 2 = 2cpdxdy, where cp = cp(x, y). Calculate the 
component B 1212 of the curvature tensor and state the values of the remaining IS 
components. Deduce that the space is flat provided 

c2 cp ccp rep 
cp -;;--;;- = 

cxcy Dx c1 y 

Putting cp =ell-, obtain the general form for cp satisfying this condition. Deduce 
that coordinates e. '1 can be found such that the metric takes the form 
ds 2 = 2d~ dl'f. 

37. If A; is such that A,,,+ A
1

_, = 0, by cyclically permuting the indices i,j, kin 
A,_1,- A.:k1 = A,Biik to give two further equations, prove that A,"k = - A,Bkii· 

38. cp(u, v) and if/(u, v) are the real and imaginary parts of an analytic function 
f(w) of the complex variable w = u + iv. Show that the equations x = cp(u, v), 
y = if! (u, r) transform the Pythagorean metric ds 2 = dx 2 + dy 2 into the metric 

By takingf(w) = I fw, explain how it is possible to write down the equation of the 
family of geodesics in a space whose metric is 

du 2 + dr.: 2 

ds 2 = ---·-
. (u2+r.:2)2 

Also obtain this equation by transforming the metric using the equations 
u = r cos 0, r = r sin 0, and writing down the differential equations for the 
geodesics in terms of r and 0. 

39. (x, r)are rectangular Cartesian coordinates and (r, l:l) are polar coordinates 
in a Euclidean plane. A ii is a symmetric tensor field defined in the plane by its 
components Axx = A,,= 0, Ax,= A,x = xfy + yjx. Calculate the contravariant 
polar components of the field in terms ofr and IJ, and deduce that A"+ r 2 A 69 = 0. 
(Ans. A"= 2, A'6 = 2cot20jr, A96 = -2/r 2

.) 

40. x, r. z are rectangular Cartesian coordinates inC 3 . Parametric equations 
for a hyperbolic paraboloid are taken in the form x = u + r;, }' = u - r, z = ur.:. A 
covariant tensor field on the surface is defined by the equations A •• = u2 , A •• 
= A •• = - uv, A •• = v2 Show that the contravariant components are one­
quarter the covariant components. 
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41. x, yare rectangular Cartesian coordinates in a Euclidean plane and u, v are 
curvilinear coordinates defined by x = a cosh u cos v, y = a sinh u sin v. A covari­
ant vector has components Ax, A, at the point (x, y) and curvilinear components 
Au, A0 • Show that 

Ax = ~ (Au sinh u cosr- A. cosh u sin z.:)/(cosh 2u -cos 2L') 
a 

42. x, y are rectangular Cartesian coordiantes in a plane. Curvilinear 
coordinates u, v are defined by the transformation equations u = !(x 2

- y 2 ), 

v = xy. Sketch the families of coordinate lines u = const., z.: = const. and show 
that the metric in the uL·-frame is 

A covariant vector has Cartesian components (Ax, A,) and curvilinear com­
ponents (A •. A"). Show that 

Au= (XAx- yA 1 )/(x 2 + }' 2
) 

and derive the corresponding formula for Av. 
43. (x, rl are rectangular Cartesian coordinates in a Euclidean plane and (u, v) 

are curvilinear coordinates defined by the equations x = !(u 2 + z.: 2
), y = uv. A 

covariant vector field A; is defined over the plane in the uv-frame by the equations 
Au= A,.= (u 2 -v 2

)
2

• Show that its divergence is equal to 2(u-t:)2 j(u+t:). 
Calculate the contravariant vector at the point u = 0, v = 1 and use the law of 
parallel displacement along the curve u = 0 to calculate the parallel displaced 
vector at the point u = 0, r = 2. (Ans. A"= A"=!.) 

44. An 9f 2 has metric ds 2 = dx 2 + x 2dy 2• Calculate the components of its 
metric affinity. Deduce that the divergence of the vector field whose covariant 
components are given by Ax= xcos2y, A,= -x 2 sin2r. vanishes. 

45. If the x-frame is geodesic at the point xi, prove that 

o
2 

{ r } cxicxi s l = !g'P(gsp,ijr + Yrp.ijs- 9sr.ijp) 

• "k [ 0 
2 

{ s } () 
2 

{ s : } J 
Rj_; = g' cxiiJxk j s - ox;cx• j k 

[ 
iJ2 { s } (;

2 

{ s } J 
R.J = gik ex iiJxk i s - vxicx• i k 

and deduce that R;:, =!R.i. 
46. An :?i 2 has metric ds 2 = y 2 dx 2 + dr 2 Deduce the parallel transfer 

equations 
1 1 

liAx =- Axdy- yA,dx, liA =-A dx y y y X 
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Using these equations, parallel transfer the vector along the curve y = sec x from 
the point x = 0, y = I at which its components are Ax = 0, AY = I, to the point x 
= n/3, y = 2. 

47. If e, <Pare latitude and longitude respectively on the surface of a globe of 
unit radius, show that the geodesics on the globe have equations tan(} 
= tan :x sin (</J + {3), where :x, {3 are constants. 

48. A space fJt 2 has metric ds 2 = sech 2 y(dx 2 +dy 2
). A vector Ai is parallel 

displaced from the point x = 0, y = b to the point x = a, y = b along the line 
y =b. Its initial components are (X, Y). Show that its final components are given 
by 

A 1 = Xcos(atanhb)+Ysin(a tanhb) 

A 2 = -Xsin(atanhb)+Ycos(atanhb) 

49. Replacing A; in the argument of section 34 by A', obtain the transform­
ation law for an affinity in the form 

- ax. i ax• ox' iJ 2 
xi iJx' i)x' r·. = ---r' --------

jk 0X'0Xj0Xk Sf 0X'0XS0Xj0Xk 

Prove that this is equivalent to equation (34.8). (Hint: Differentiate 
iJX.i ex' . 
?:x---;Oxi = bj.) 

50. Using the transformation law for an affinity in the form given in the last 
exercise, if ri = g 1kr~k show that an x-frame can always be found such that 
fi = 0 everywhere. Show that this frame is determined by the equations 

o2 xj axj . 
gik __ .- = -.rl 

ox 1oxk ox 1 

and that these equations can be written V 2 xi = 0. (The coordinates xi are said to 
be harmonic.) 



CHAPTER 6 

General Theory of Relativity 

44. Principle of equivalence 

The special theory of relativity rejects the Newtonian concept of a privileged 
observer, at rest in absolute space, and for whom physical laws assume their 
simplest form. and assumes instead that these laws will be identical for all 
members of a cla~s of inertial observers in uniform translatory mot ion relative to 
one another. Thus, although the existence of a single privileged observer is denied, 
the existence of a class of such observers is accepted. This seems to imply that, if 
all matter in the universe were annihilated except for a single experimenter and his 
laboratory, this observer would, nonetheless, be able to distinguish inertial frames 
from non-inertial frames by the special simplicity which the descriptions of 
physical phenomena take with respect to the former. The further implication is, 
therefore, that physical space is not simply a mathematical abstraction which it is 
convenient to employ when considering distance relationships between material 
bodies, but exists in its own right as a separate entity with sufficient internal 
structure to permit the definition of inertial frames. However, all the available 
evidence suggests that physical space cannot be defined except in terms of 
distance measurements between physical bodies. For example, such a space can be 
constructed by setting up a rectangular Cartesian coordinate frame comprising 
three mutually perpendicular rigid rods and then defining the coordinates of the 
point occupied by a material particle by distance measurements from these rods in 
the usual way. Physical space is, then, nothing more than the aggregate of all 
possible coordinate frames. A claim that physical space exists independently of 
distance measurements between material bodies, can only be substantiated if a 
precise statement is given of the manner in which its existence can be detected 
without carrying out such measurements. This has never been done and we shall 
assume, therefore, that the special properties possessed by inertial frames must be 
related in some way to the distribution of matter within the universe and that they 
are not an indication of an inherent structure possessed by physical space when it 
is considered apart from the matter it contains. This line of argument encourages 
us to expect, therefore, that, ultimately, all physical laws will be expressible in 
forms which are quite independent of any coordinate frame by which physical 
space is defined, i.e. that physical laws are identical for all observers. This is the 
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general principle of relatirity. This does not mean that, when account is taken of 
the actual distribution of matter within the universe, certain frames will not prove 
to be more convenient than others. When calculating the field due to a 
distribution of electric charge, it simplifies the calculations enormously if a 
reference frame can be employed relative to which the charge is wholly at rest. 
However, this does not mean that the laws of electromagnetism are expressible 
more simply in this frame, but only that this particular charge distribution is then 
described more simply. Similarly, we shall attribute the simpler forms taken by 
some calculations when carried out in inertial frames, to the special relationship 
these frames bear to the matter present in the universe. Fundamentally, therefore, 
all observers will be regarded as equivalent and, by employing the same physical 
laws, will arrive at identical conclusions concerning the development of any 
physical system. 

The main difficulty which arises when we try to express physical laws so that they 
are valid for all observers is that, if test particles are released and their motions 
studied from a frame which is being accelerated with respect to an inertial frame, 
these motions will not be uniform and this fact appears to set such frames apart 
from inertial frames as a special class for which the ordinary laws of motion do 
not apply. However. by a well-known device of Newtonian mechanics, viz. the 
introduction of inertial forces, accelerated frames can be treated as though they 
were inertial and this suggests a way out of our difficulty. Thus suppose a space 
rocket, moving in vacuo, is being accelerated uniformly by the action of its 
motors. An observer inside the rocket will note that unsupported particles 
experience an acceleration parallel to the axis of the rocket. Knowing that the 
motors are operating, he will attribute this acceleration to the fact that his natural 
reference frame is being accelerated relative to an inertial frame. However he may, 
if he prefers, treat his reference frame as inertial and suppose that all bodies within 
the rocket are being subjected to inertial forces acting parallel to the rocket's axis. 
If a is the acceleration of the rocket, the appropriate inertial force to be applied to 
a particle of mass m is-· rna. Similarly, if the rocket's motors are shut down but the 
rocket is spinning about its axis, an observer within the rocket will again note that 
free particles do not move uniformly relative to his surroundings and he may 
again avoid attributing this phenomenon to the fact that his frame is not inertial, 
by supposing certain inertial forces (viz. centrifugal and Coriolis forces) to act 
upon the particles. Now it is an obvious property of each such inertial force that it 
must cause an acceleration which is independent of the mass of the body upon 
which it acts, for the force is always obtained by multiplying the body's mass by an 
acceleration independent of the mass. This property it shares with a gravitational 
force, for this also is proportional to the mass of the particle being attracted and 
hence induces an acceleration which is independent of this mass. This indepen­
dence of the gravitational acceleration of a particle and its mass has been checked 
experimentally with great accuracy by EOtvos. If, therefore, we regard the 
equivalence of inertial and gravitational forces as having been established, inertial 
forces can be thought of as arising from the presence of gravitational fields. This is 
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the principle of equivalence. By this principle, in the case of the uniformly 
accelerated rocket, the observer is entitled to neglect his acceleration relative to an 
inertial frame, provided he accepts the existence of a uniform gravitational field of 
intensity-- a parallel to the axis of the rocket. Similarly, the observer in the 
rotating rocket may disregard his motion and accept, instead, the existence of a 
gravitational field having such a nature as to account for the centrifugal and 
Coriolis forces. 

By appeal to the principle of equivalence, therefore, an observer employing a 
reference frame in arbitrary motion with respect to an inertial frame, may 
disregard this motion and assume, instead, the existence of a gravitational field. 
The intensity of this field at any point within the frame will be equal to the inertial 
force per unit mass at the point. By this device, every observer becomes entitled to 
treat his reference frame as being at rest and all observers accordingly become 
equivalent. However, the reader is probably still not convinced that the 
distinction between accelerated and inertial frames has been effectively elim­
inated, but only that it has been concealed by means of a mathematical device 
having no physical significance. Thus, he may point out that the gravitational 
fields which have been introduced to account for the inertial forces are 'fictitious' 
fields, which may be completely removed by choosing an inertial frame for 
reference purposes, whereas 'real' fields, such as those due to the earth and sun, 
cannot be so removed. He may further object that no physical agency can be held 
responsible for the presence of a 'fictitious' field, whereas a 'real' field is caused by 
the presence of a massive body. These objections may be met by attributing such 
'fictitious' fields to the motions of distant masses within the universe. Thus, if an 
observer within the uniformly accelerated rocket takes himself to be at rest, he 
must accept as an observable fact that all bodies within the universe, including the 
galaxies, possess an additional acceleration of -a relative to him and to this 
motion he will be able to attribute the presence of the uniform gravitational field 
which is affecting his test particles. Again, the whole universe will be in rotation 
about the observer who regards himself and his space-ship as stationary when it is 
in rotation relative to an inertial frame. It is this rotation of the masses of the 
universe which we shall hold responsible for the Coriolis and centrifugal 
gravitational fields within the rocket. But, in addition, these 'inertial' gravitational 
fields will account for the motions of the galaxies as observed from the non­
inertial frame. Thus, for the observer within the uniformly accelerated rocket a 
uniform gravitational field of intensity- a extends over the whole of space and is 
the cause of the acceleration of the galaxies; for the observer within the rotating 
rocket, the resultant of the centrifugal and Coriolis fields acting upon the galaxies 
is just sufficient to account for their accelerations in their circular orbits about 
himself as centre (the reader should verify this, employing the results of Exercises 
I, No. I). On this view, therefore, inertial frames possess particularly simple 
properties only because of their special relationship to the distribution of mass 
within the universe. In much the same way, the electromagnetic field due to a 
distribution of electric charge takes an especially simple form when described 
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relative to a frame in which all the charges are at rest (assuming such exists). If any 
other frame is employed, the field will be complicated by the presence of a 
magnetic component arising from the motions of the charges. However, this 
magnetic field is not considered imaginary because a frame can be found in which 
it vanishes. whereas for certain magnetic fields such a frame cannot be found. The 
laws of electromagnetism are taken to be valid in all frames, though it is conceded 
that, for solving particular problems, a certain frame may prove to be pre­
eminently more convenient than any other. Neither. therefore. should the 
centrifugal and Coriolis fields be dismissed as imaginary solely because they can 
be removed by proper choice of a reference frame. although it may be convenient 
to make such a choice of frame when carrying out particular computations. In 
short, the general principle of relativity can be accepted as valid and, at the same 
time, the existence of the inertial frames accounted for by the simplicity of the 
motions of the galactic masses with respect to these particular frames. 

The notion that the existence of inertial frames is bound up with the large-scale 
distribution of matter within the universe is referred to as Mach's principle. 
Although Einstein was powerfully influenced by the principle when developing 
his general theory, he was disappointed to discover that it still permits the 
existence of universes in which local inertial frames are not in uniform non­
rotatory motion relative to the overall matter distribution. The complete 
integration of Mach's principle into the theory is yet to be accomplished. 

The previously unexplained identity of inertial and gravitational masses is 
easily deduced as a consequence of the principle of equivalence. For, consider a 
particle of mass m which is being observed from a non-inertial frame. A 
gravitational force equal to the inertial force will be observed to act upon this 
body. This force is directly proportional to the inertial mass m. But, by the 
principle of equivalence, all gravitational forces are of the same nature as this 
particular force and will, accordingly, be directly proportional to the inertial 
masses of the bodies upon which they act. Thus the gravitational 'charge' of a 
particle, measuring its susceptibility to the influences of gravitational fields, is 
identical with its inertial mass and the identity of inertial and gravitational masses 
has been explained in a straightforward and convincing manner. 

45. Metric in a gravitational field 

Suppose that a space-station in the shape of a wheel has been constructed in a 
region of space far from other attracting bodies and that it is set rotating in its 
plane about its centre with angular velocity w. An observer 0, wearing a space­
suit, is located outside the station and does not participate in the rotary motion; 
his frame of reference is therefore inertial. 0 watches C, a member of the station's 
crew, measuring the dimensions of the station using a metre rule. C first measures 
the radius of the station from its centre to its outer wall by laying his rule along 
one of the corridors forming a spoke of the wheel. 0 notes that the rule is moving 
laterally throughout the measuring process, but this motion does not affect its 
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length in his frame and he will accordingly agree with the radius r recorded by C. 
C next lays his rule around the outer wall of the station and records a perimeter p. 

During this process, however, 0 sees the rule moving longitudinally with velocity 
wr and its length will be reduced by a factor J (I - w 2 r 2 fc 2 

). He will accordingly 
correct the length of the perimeter found by C to the value p J( I - w 2 r 2 jc 2 

). 

Since O's frame is inertial, Euclidean geometry is valid for all space measurements 
referred to the frame and he must find that 

Thus 

p.j(1-w2r2/c2) = 2nr 
P = 2nr(1-w2r2/c2r·l'2 

(45.1) 

(45.2) 

This last equation indicates that C will discover that the Euclidean formula 
p = 2nr is not valid for measurements made in the rotating frame of the space­
station. But C is entitled to regard the station frame as being at rest, provided he 
accepts the existence of a gravitational field which will account for the centrifugal 
and Coriolis forces he experiences. We conclude that, relative to a frame at rest in 
such a gravitational field, spatial measurements will not be in conformity with 
Euclidean geometry. 

By the principle of equivalence, the conclusion which has just been reached 
concerning the non-Euclidean nature of space in which there is present a 
gravitational field of the centrifugal-Coriolis type, must be extended to all 
gravitational fields. However, in the case of a field such as that which surrounds 
the earth, it will not be possible (as it is for the centrifugal-·Coriolis field) to find an 
inertial frame of reference relative to which the field vanishes and for which the 
spatial geometry is Euclidean. Such a field will be termed irreducible. Even in an 
irreducible field, however, a frame can always be found which is inertial for a 
sufficiently small region of space and a sufficiently small time duration. Thus, 
within a space-ship which is not rotating relative to the extragalactic nebulae and 
which is falling freely in the earth's gravitational field, free particles will follow 
straight-line paths at constant speed for considerable periods of time and the 
conditions will be inertial. A coordinate frame fixed in the ship will accordingly 
simulate an inertial frame over a restricted region of space and time and its 
geometry will be approximately Euclidean. 

Since a rectangular Cartesian coordinate frame can be set up only in a space 
possessing a Euclidean metric, this method of specifying the relative positions of 
events must be abandoned in an irreducible gravitational field (except over small 
regions as has just been explained). Instead, the positions and times of all events 
will be specified by reference to a very general type of frame which we can suppose 
constructed as follows: Imagine the whole of the cosmos is filled by a fluid whose 
motion is arbitrary but non-turbulent (i.e. particles of the fluid which are initially 
close together, remain in proximity to one another). Let each molecule of the fluid 
be a clock which runs smoothly, but not necessarily at a constant rate as judged by 
a standard atomic clock. No attempt will be made to synchronize clocks which are 
separated by a finite distance, but it will be assumed that, as this distance tends to 
zero, the readings of the clocks will always approach one another. Each clock will 
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be allocated three spatial coordinates ~ l, ~ 2 , e according to any scheme which 
ensures that the coordinates of adjacent clocks only differ infinitesimally. The 
coordinates~· of a clock will be supposed never to change. Any event taking place 
anywhere in the cosmos can now be allocated unique space-time coordinates 
~i (i = 1, 2, 3, 4) as follows:(~ 1, ~ 2 • ~ 3 ) are the spatial coordinates belonging to the 
clock which happens to be adjacent to the event when it occurs, and ~4 is the time 
shown on this clock at this instant. 

we shall now further generalize the coordinates allocated to an event. Let 
xi (i = I, 2, 3, 4) be any functions of the ~i such that, to each set of values of the ~i 
there corresponds one set of values of the xi, and conversely. We shall write 

xi= xi(~~. ~2. ~3. ~4) (45.3) 

Then the xi, also, will be accepted as coordinates, with respect to a new frame of 
reference, of the event whose coordinates were previously taken to be the ~i. It 
should be noted that, in general, each of the new coordinates xi will depend upon 
both the time and the position of the event, i.e., it will not necessarily be the case 
that three of the coordinates xi are spatial in nature and one is temporal. All 
possible events will now be mapped upon a space Y' 4 , so that each event is 
represented by a point of the space and the xi will be the coordinates of this point 
with respect to a coordinate frame. Y' 4 will be referred to as the space-time 
continuum. 

It has been remarked that, in any gravitational field, it is always possible to 
define a frame relative to which the field vanishes over a restricted region and 
which behaves as an inertial frame for events occurring in this region and 
extending over a small interval of time. Such a frame will be falling freely in the 
gravitational field and will accordingly be referred to as a local free1all frame. 
Suppose, then, that such an inertial frame Sis found for two contiguous events. 
Any other frame in uniform motion relative to S will also be inertial for these 
events. Observers at rest in all such frames will be able to construct rectangular 
Cartesian axes and synchronize their standard atomic clocks in the manner 
described in Chapter I and hence measure the proper time interval dr between the 
events. If, for one such observer, the events at the points having rectangular 
Cartesian coordinates (x, y, z), (x + dx, y + dy, z + dz) occur at the times t, t + dt 
respectively, then 

(45.4) 

The interval between the events ds will be defined by 

ds2 = -c2 dr2 = dx2 +di +dz2 -c2 dt2 (45.5) 

The coordinates (x, y, z, 1) of an event in this quasi-inertial frame will be related to 
the coordinates xi defined earlier, by equations 

etc. (45.6) 



and hence 
ax 

dx = ···· -.- dx' ax• , etc. 

Substituting for dx, d_v, dz, d1 in equation (45.5), we obtain the result 

ds2 = 9iidxi dxi 
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(45.7) 

(45.8) 

determining the interval ds between two events contiguous in space-- time, relative 
to a general coordinate frame valid for the whole of space--time. The space- time 
continuum can accordingly be treated as a Riemannian space with metric given by 
equation (45.8). 

As explained in section 7, dr can be time like or spacelike according as it is real 
or imaginary respectively. I fit is real, it will be possible for a standard clock to be 
present at both the events xi, xi+ dxi and the time which elapses between them as 
measured by this clock will be dr. Alternatively, if ds is imaginary, dsjic can be 
interpreted as the time between two contiguous events as measured by a standard 
clock present at both. 

46. Motion of a free particle in a gravitational field 

In a region of space which is at a great distance from material bodies, rectangular 
Cartesian axes Oxyz can be found constituting an inertial frame. If time is 
measured by clocks synchronized within this frame and moving with it, the 
motion of a freely moving test particle relative to the frame will be uniform. Thus, 
if (x, y, z) is the position of such a particle at timet, its equations of motion can be 
written 

(46.1) 

Let ds be the interval between the event of the particle arriving at the point (x, y, z) 
at time 1 and the contiguous event of the particle arriving at (x + dx, y + dy, z + dz) 
at 1 + dt. Then ds is given by equation (45.5) and, if vis the speed of the particle, it 
follows from this equation that 

(46.2) 

Since v is constant, it now follows that equations (46.1) can be expressed in the 
form 

Also, from equation (46.2) it may be deduced that 

d21 
-d 2 =0 

s 

(46.3) 

(46.4) 

Equations (46.3) and (46.4) determine the family of world-lines of free particles in 
space-time relative to an inertial frame. 
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Now suppose that any other reference frame and procedure for measuring time 
is adopted in this region of space, e.g. a frame which is in uniform rotation with 
respect to an inertial frame might be employed. Let (x 1, x2

, x 3
, x4

) be the 
coordinates of an event in this frame. The interval between two contiguous events 
will then be given by equation (45.8). If an observer using this frame releases a test 
particle and observes its motion relative to the frame, he will note that it is not 
uniform or even rectilinear and will be able to account for this fact by assuming 
the presence of a gravitational field. He will find that the particle's equations of 
motion are 

(46.5) 

This must be the case for, as shown in section 43, this is a tensor equation defining 
a geodesic and valid in every frame if it is valid in one. But, in the xyzr-frame, the 
gii are all constant and the three index symbols vanish. Hence, in this frame, the 
equations (46.5) reduce to the equations (46.3) and (46.4) and these are known to 
be true for the particle's motion. We have shown, therefore, that the effect of a 
gravitational field of the reducible variety upon the motion of a test particle can be 
allowed for when the form taken by the metric tensor gii of the space-time 
manifold is known relative to the frame being employed. This means that the 9ii 

determine, and are determined by, the gravitational field. 
The ideas of the previous paragraph will now be extended to regions of space 

where irreducible gravitational fields are present. It has been pointed out that, for 
any sufficiently small region of such space and interval of time, an inertial frame 
can be found and consequently the paths of freely moving particles will be 
governed in such a small region by equations (46.5). It will now be assumt:d that 
these are the equations of motion of free particles without any restriction, i.e. that 
the world-line of a free particle is a geodesic for the space-time manifold or that 
the world-line of a free particle has constant direction. This appears to be the 
natural generalization of the Galilean law of inertia whereby, even in an 
irreducible gravitational field, a particle's trajectory through space-time is the 
straightest possible after consideration has been given to the intrinsic curvature of 
the continuum. It will then follow that the motions of particles falling freely in 
any gravitational field can be determined relative to any frame when the 
components gii of the metric tensor for this frame are known. Thus the gii will 
always specify the gravitational field observed to be present in a frame and the 
only distinction between irreducible and reducible fields will be that, for the latter 
it will be possible to find a coordinate frame in space-time for which the metric 
tensor has all its components zero except 

(46.6) 

whereas for the former this will not be possible. 
It will be proved in section 50 that the assumption we are making can be derived 

from Einstein's law of gravitation and hence does not constitute an additional 
basic hypothesis of the theory. 
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Since the Christoffel symbols vanish in a frame which is geodesic at some point 
of space-time, in such a frame equations (46.5) reduce to d 2xi/ds 2 = 0 over a 
small neighbourhood of the point. If, in addition, the frame is chosen to be quasi­
Euclidean with metric (45.5), equations (46.1) will be valid over the neighbour­
hood and a freely falling body will have very nearly uniform motion. Such a frame 
can therefore be identified with a local freely falling frame. 

47. Einstein's law of gravitation 

According to Newtonian ideas, the gravitational field which exists in any region of 
space is determined by the distribution of matter. This suggests that the metric 
tensor of the space-time manifold, which has been shown to be closely related to 
the observed gravitational field, should be calculable when the matter distribution 
throughout space-time is known. We first look, therefore, for a tensor quantity 
describing this matter distribution with respect to any frame in space-time and 
then attempt to relate this to the metric tensor. The energy-momentum tensor Tii• 
defined in section 21 with respect to an inertial frame, immediately suggests itself. 
Both matter and electromagnetic energy contribute to the components of this 
tensor but since, according to the special theory, mass and energy are basically 
identical, it is to be expected that all forms of energy, including the elec­
tromagnetic variety, will contribute to the gravitational field. 

Since the energy-momentum tensor has been defined in inertial frames only, 
this definition must now be extended to apply to a general coordinate frame in 
space-time. This can be carried out thus: In the neighbourhood of a point P of 
space- time, a frame with coordinates yi can be defined which is geodesic at P and 
whose metric reduces to the Euclidean form (39.13) at P. As explained in the last 
section, this frame will correspond to a local freely falling quasi-inertial frame in 
which the / will behave like Minkowski coordinates; we shall assume that the 
equations of the special theory are valid in this frame at P. The transformation 
equations relating the coordinates l of an event to its coordinates xi with respect 
to any other coordinate frame can now be found. Then, ifTij01 are the components 
of the energy-momentum tensor in they-frame at the point P, its components in 
the x-frame at this point can be determined from the appropriate tensor 
uansformation equations. Thus, the covariant energy-momentum tensor will 
have components Tii in the x-frame given by 

_ Dy' cy' ,0 , 

Tii - oxj cJxi T,, (47.1) 

Since covariant and contravariant tensors are indistinguishable with respect to 
rectangular Cartesian axes, T,~01 can also be taken to be the components of a 
contravariant tensor in the y-frame and the components of this tensor in the x­
frame will then be given by the equation 

(47.2) 
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Similarly, the components of the mixed energy-momentum tensor are given by 

; - ('Xi t':y' 101 
T

1 
- -, - -:;-

1
. T, 

cy' ex 
(47.3) 

These transformations can be carried out at every point of space-time, thus 
generating for the x-frame an energy-momentum tensor field throughout the 
continuum. It is left as an exercise for the reader to show that the last three 
equations are consistent, i.e. raising the indices ofT,1 as given by equation (47.1) 
leads toT iJ as given by equation (4 7.2) (see Exercise I at the end of this chapter). 

Consider the tensor equation 

T;1 = 0 
.J 

(47.4) 

Expressed in terms of the coordinates y; at any point of space-time, this simplifies 
to 

(47.5) 

which is equation (21.20). Being valid in one frame, therefore, equation (47.4) is 
true for all frames. Thus, the divergence of the energy-momentum tensor 
vanishes. If, therefore, this tensor is to be related to the metric tensor g;1, the 
relationship should be of such a form that it implies equation (47.4). Now 

gij = 0 
.I 

by equation (39.23) and hence, a fortiori, 

g'i = 0 
·I 

The law 

(47.6) 

(47.7) 

(47.8) 

where A. is a universal constant, would accordingly be satisfactory in this respect. 
However, over a region in which matter and energy were absent so that Tii = 0, 
this would imply that 

(47.9) 

which is clearly incorrect. Further, according to Newtonian theory, if J1 is the 
density of matter, the gravitational field can be derived from a potential function 
U sati~fying the t:quation 

(47.10) 

where G is the gravitational constant. The new law of gravitation which is being 
sought must include equation (47.10) as an approximation. But, as appears from 
equation (21.14), T44 involves f.-1 and it seems reasonable, therefore, to expect that 
the other member of the equation expressing the new law of gravitation will 
provide terms which can receive an approximate interpretation as V2U. This 
implies that second-order derivatives of the metric tensor components will 
probably be present. We therefore have a requirement for a second rank 
contravariant symmetric tensor involving second-order derivatives of the g11 and 
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of vanishing divergence to which T ii can be assumed proportional. Einstein's 
tensor (42.20) possesses these characteristics and consequently we shall put 

(47.11) 

where K is a constant of proportionality which must be related toG and which we 
shall later prove to be positive. Equation (47.11) expresses Einstein's law of 
gravitation; by lowering the indices successively, it may be expressed in the two 
alternative forms 

R~-tbjR = -KT) 
Rii- tgiiR = - KTu 

If equation (47.12) is contracted, it is found that 

R = KT 

(47.12) 

(47.13) 

(47.14) 

where T = T/. It now follows that Einstein's law of gravitation can also be 
expressed in the form 

(47.15) 

with two other forms obtained by raising subscripts. 
Since the divergence of gii vanishes, a possible alternative to the law (47.11) is 

(47.16) 

where A is a constant. The law (47.11) gives results which agree with observation 
over regions of space of galactic dimensions, so that it is certain that, even if A is 
not zero, it is exceedingly small. However, the extra term has entered into some 
cosmological investigations (see Chapter 7). 

48. Acceleration of a particle in a weak gravitational field 

In a gravitational field, such as the one due to the earth, the geometry of space is 
not Euclidean and no truly inertial frame exists. In spite of this, we experience no 
practical difficulty in establishing rectangular Cartesian axes Oxyz at the earth's 
surface relative to which for all practical purposes the geometry is Euclidean and 
the behaviour of electromagnetic systems is indistinguishable from their 
behaviour in an inertial frame. It must be concluded, therefore, that such a 
gravitational field is comparatively weak and hence that, with respect to such axes 
and their associated clocks, the space-time metric will not differ greatly from that 
given by equation (45.5). Putting 

x 1 = x, x2 = y, x3 = z, x4 = icr, 

in terms of the xi the metric will be given by 

ds 2 = dxidxi 

(48.1) 

(48.2) 
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approximately. With respect to the xi-frame, it will accordingly be assumed that 

(48.3) 

where the liiJ are Kronecker deltas and the hii are small by comparison. 
Consider a particle moving in a weak gravitational field whose metric tensor is 

given by equation (48.3). The contravariant metric tensor will be given by an 
equation of the form 

(48.4) 

where the kii are of the same order of smallness as the hii. Then, since 

[ . . ) I ( i!h Jk tihik i!hii) 
ljk =-- -+-.--
' 2 ?xi ox 1 iJxk 

(48.5) 

it follows that, to a first approximation, 

fk\_l:kr[•· ]-~(ohjk ohik_chij) 
\ i J J - u IJ, r - 2 ~ i + ' J "' k 

(X OX uX 
(48.6) 

The equations of motion of the particle can now be written down as at (46.5). 
By equation (46.2), 

(48.7) 

where vis the particle's velocity in the quasi-inertial frame. Hence, if the particle is 
stationary in the frame at the instant under consideration, 

dx; 
ds= (0, I) (48.8) 

and the equations of motion (46.5) reduce to the form 

d2xi . 
ds2 + {4'4} = 0 (48.9) 

correct to the first order in the h;J· Substituting from equation (48.6), this is seen to 
be equivalent to 

d 2xi liJh44 ch4i 
d.? = 2 oxi - ox 4 (48.10) 

Differentiating equation (48.7) with respect to sand making use of equation 
(46.2), we obtain 

and, when v = 0, this reduces to 

d2xi 

ds 2 
-~(dv,o) 

c2 dt 

(48.11) 

(48.12) 
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From equations (48.10) and (48.12), we deduce that the components of the 
acceleration of the stationary particle in the directions of the rectangular axes are 

_ c2 (~ ch44 _ ch4;) 
2 ex' cx 4 

(48.13) 

for i = I, 2, 3. Reverting to the original coordinates (x, y, z, 1 ), these components 
are written 

-c2 (~ ch4~ + ~ ch41) 
2 ex c ct ' etc (48.14) 

Hence, if the field does not vary with the time, the acceleration vector is 

(48.15) 

But, if U is the Newtonian potential function for the field, this acceleration will be 
- gradU. It follows that, for a weak field, a Newtonian scalar potential U exists 
and is related to the space-time metric by the equation 

Alternatively, we can write 

2U 
Y44 =I +-2 

c 

49. Newton's law of gravitation 

(48.16) 

(48.17) 

In this section it will be shown that Newton's law of gravitation may be deduced 
from Einstein's law in the normal case when the gravitational field's intensity is 
weak and the matter distribution is static. 

First consider the form taken by the Riemann-Christoffel tensor in the 
space-time of a weak field. In the xi-frame, the metric tensor is given by equation 
(48.3) and the Christoffel three-index symbols by equation (48.6). If products of 
the h;i are to be neglected, equation (36.21) shows that 

c ( . c . 
I -- .I ---I I \ 

Bikl-- k 1,} - t\Jk) ex ex 
(49.1) 

approximately. Hence the Ricci tensor is given by 

c . 2 . 
Rjk = -(~ k U;}- -(., ; L'd 

X ·X 

I c { c""h ii ch;; ch;i} 
= -·-·- - +- --· 

2cxk ex; cxi ex' 
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(49.2) 

In particular, putting j = k = 4, we find that 

R = ~{--o2 h;; + o
2
h44 _ 2 2

2

~!...4_} 44 2 CX4 OX 4 OX' OX' (~X?X 4 
(49.3) 

If the matter distribution is static in the quasi-inertial frame being employed, the 
h;i will be independent of 1 and equation (49.3) reduces to 

(49.4) 

where V2 = c2fox 2 +o 2for 2 +o2 foz 2
. If U is the Newtonian potential for the 

field, equation (48.16) now shows that 

(49.5) 

Assuming that no electromagnetic field is present and that the contribution to 
the energy-momentum tensor of any stress forces within the matter distribution 
responsible for the gravitational field is negligible, T;

1 
will be determined by 

equation (21.16). But, since the distribution is static, its 4-velocity of flow Vat 
every point is (0, ic) and hence all components ofT;i' with the exception ofT44 , are 
zero. In this case, 

(49.6) 

where p00 , for zero velocity of matter, is the ordinary mass density. Also 

(49.7) 

The 44-component of Einstein's gravitation law in the form of equation (4 7.1 5) 

can now be expressed approximately 

or 

I 2 I 2 
2 V U = 2Kc p00 c 

(49.8) 

This is the Poisson equation (47.10) of classical Newtonian theory, provided we 
accept 

8nG 
K=-· 

("4 

This specifies Kin terms of the gravitational constant. 

50. Freely falling dust cloud 

(49.9) 

Consider the case of a cloud of particles falling freely in the field of the cloud itself, 
there being no other forces present in the system. The energy-momentum tensor 
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for such an incoherent cloud has been calculated relative to an inertial frame as 
equation (21.16). This equation will be taken to provide a definition ofTiJ in the 
freely falling frame at any point of the cloud. 

In an arbitrary x-frame, let xi = xi(<) be parametric equations of the world-line 
of some particle of the cloud, r being the proper time measured by a standard 
clock moving with the particle. Then the 4-velocity of flow of the particle at timer 
is defined by the equation 

. dxi dxi 
V'=-- = ic-

dr ds 
(50.1) 

where sis the interval parameter measured along the world-line. The square of the 
magnitude of the 4-velocity of flow is 

This equation can also be written 

vi vi= -c2 

Now consider the tensor equation 

TiJ = Jloo Vi vJ 

(50.2) 

(50.3) 

(50.4) 

where Jloo is the mass density as measured in a freely falling frame moving with 
the cloud; lloo is clearly a 4-invariant. In any freely falling frame, this equation 
reduces to equation (21.16) and is accordingly valid; this establishes its validity in 
all frames. 

Equation (47.4) is known to follow from Einstein's equation of gravitation and, 
in this case, takes the form 

(Jloo Vi V1),J = (/loo VJ);J Vi+ lloo VJ v:J = 0 

Multiplication by Vi now gives 

(/loo VJ).J Vi V; + Jloo Vi) Vi VJ = 0 

Differentiating equation (50.3) with respect to x1, we find 

V ~+ V.V' = 0 
l,j I .J 

(50.5) 

(50.6) 

(50.7) 

Raising and lowering the index i in the two factors of the first term, this equation 
is seen to be equivalent to 

vi v = o 
.) I 

(50.8) 

Equation (50.6) accordingly reduces to 

(/loo VJ).; = 0 (50.9) 

Equation (50.5) now gives 
(50.10) 
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or 

(50.11) 

Hence 

(50.12) 

or 

(50.13) 

This can also be written 

d 2x1 dxk dx 1 

-- + r~.- = o 
ds 2 1 d.s ds 

(50.14) 

a result which proves that the world-lines of the particles of the cloud arc 
geodesics. 

That the world-lines of freely falling particles in general circumstances are 
geodesics can be derived from equation (47.4), proving that Einstein's law 
includes its own law of motion for a particle in a gravitational field. 

51. Metrics with spherical symmetry 

When a change is made in the space--time coordinate frame from coordinates x' to 
coordinates .X 1

, the metric tensor g;1 will change to giJ by the law of transformation 
of a covariant tensor. In general, the gii will be functions of the x' and the {i;

1 
will 

be functions of the x ;, but it will not usually be the case that the giJ are the .\arne 

functions of the 'barred' coordinates that the g;i are of the ·unbarred' coordinates, 
i.e., the functions q11 (xk) are not form invariant under general coordinate 
transformations. However, in some special cases, it is possible for these functions 
to be form invariant under a whole group of transformations, and we shall study 
such a case in this section. 

In a gravitational field, the geometry can only be quasi-Euclidean and 
consequently rectangular Cartesian axes do not exist. Nevertheless, no difficulty 
is experienced in practice in defining such axes approximately and we shall 
suppose, therefore, that the coordinates x, y, z, r of an event in the gravitational 
field about to be considered are interpreted physically as rectangular Cartesian 
coordinates and time. We shall now search for a metric which, when expressed in 
those coordinates, is form invariant with respect to the group of coordinate 
transformations which will be interpreted physically as rotations of the 
rectangular axes Oxrz (r is to remain unaltered). To be precise, it will be supposed 
that spatial coordinates (x, y, z) can be defined such that the metric y,i(x, _).', z, t) is 
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form invariant under the group of orthogonal transformations x = Ax, where 
x = (x, y, zf, x = (X:, y, z)T and AAr = I. Such a metric will be said to be 
spherically symmetric about 0. 

Invariants for this group of coordinate transformations, which are of degree no 
higher than the second in the coordinate differentials dx, dy, dz, are 

x 2 +y2 +z 2
, xdx+_rdy+zdz, dx 2 +dy 2 +dz 2 (51.1) 

Introducing spherical polar coordinates (r, 0, </J), which will be defined by the 
equations (30.3), these invariants may be written 

It follows that 

r2
, r dr, dr 2 + r 2 dfJ 2 + r2 sin 2 0 d<fJ 2

. 

r, dr, dfJ 2 +sin 20d¢ 2 

(51.2) 

(51.3) 

are invariants. The most general metric with spherical symmetry can now be built 
up in the form 

ds 2 = A(r,l)dr2 + B(r, t) (dfJ2 + sin 2 0d¢ 2
) 

+C(r,t)drdl +D(r,t)dt 2 (51.4) 

We now replace r by a new coordinate r' according to the transformation 
equation 

Then 

r' 2 = B(r, t) 

ds2 = E(r', t)dr' 2 + r' 2 (d82 + sin 20d</J 2 ) 

+ F(r', l)dr' dt + G(r', t)dt 2 

(51.5) 

(51.6) 

In a truly inertial frame, spherical polar coordinates can be defined exactly and the 
metric will, by equation (45.5), be expressed in the form 

(51.7) 

Comparing equations (51.6) and (51.7), it is clear that in a region for which (51.6) 
is the metric, r' will behave approximately like a true spherical polar coordinate r. 
We shall accordingly drop the primes and write 

ds 2 = E(r, t) dr 2 + r 2 (d8 2 + sin 2fJd¢ 2
) 

+F(r,t)drdt+G(r,t)dt 2 (51.8) 

If our frame is quasi-inertial, equation (51.7) must be an approximation for 
equation (51.8) and the following equations must therefore be true 
approximately: 

E(r,t)= I, f(r,I)=O, G(r,t)= -c2 (51.9) 

Consider now the special case when the gravitational field is static in the quasi­
inertial frame for which (r, 0, </J )are approximate spherical polar coordinates and 1 

is the time. The functions E, F, G will then be independent of 1. Also, space-time 
will be symmetric as regards past and future senses of the time variable and this 
implies that ds 2 is unaltered when dt is replaced by - dt. Thus F = 0 and we have 

ds 2 = a dr 2 + r2 (dfJ2 + sin 2 0 d</J 2
)- bc2 dt 2 (51.10) 
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where a, b are functions of r both approximating unity in a weak field. 
At any fixed instant 1, the metric of space in the presence of this gravitational 

field can be obtained from the last equation by putting de = 0. Thus, it is 

(51.11) 

Consider the 'circle' r = r0 in the 'plane'(} = !n. The length of the element of the 
circle with end points (r0 , <P ), (r0 , <P + d</J ), has length ds = r0 d<fJ. Thus the total 
length of the circle is 2nr0 . However, r0 will not be the length of a radius <P = <Po of 
this circle for, if an element of such a radius has end points (r, <Po), (r + dr, <Po), the 
length of the element is ds = a 1 

"
2 dr and the total length of the radius is 

accordingly 

L al'2dr (51.12) 

Clearly, the Euclidean formula for the circumference of a circle of given radius 
does not apply. 

For the metric (5 l.l 0), taking 

(51.13) 

we have 

(51.14) 

all other gii being zero. Thus 

(51.15) 

and hence 

(51.16) 

all other gii being zero. The three-index symbols can now be calculated and, 
putting a = e", b = eP, those which do not vanish are listed below: 

(51.17) 



{ 2 3 3 } = { 3 3 2 } = cot 0 

{ 
1

} -re-•sin 2 ll 3 3 = 

{ 
2 

} - - sin 0 cos e 3 3 -

primes denoting differentiations with respect to r. 
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The non-zero components of the Ricci tensor are now calculated to be: 

R -1n"+ln•2 1 •n• I , 
ll- 21' 41' -4(X f' --(X 

r 

R22 = e-"(irf3'- !r:x' +I)- I 

R33 = R22 sin 20 

I 
R 44 = c 2 ell - • ( - i fJ" - ~ (3, 2 + ! a., (3, - - (3') 

r 

52. Schwarzschild's solution 

(51.18) 

The static, spherically symmetrical metric (51.1 0) will determine the gravitational 
field of a static distribution of matter also having spherical symmetry, provided it 
satisfies Einstein's equations (47.15). We shall consider the special case when the 
whole of space is devoid of matter, apart from a spherical body with its centre at 
the centre of symmetry 0. Then Tii = 0, T = 0 at all points outside the body and 
Einstein's equations reduce in this region to 

R;i = 0 

By equations (5l.l8), these are satisfied by the metric (5l.l0), provided 

(J " + 1 n· 2 1 , n· 2 , _ 0 JY --zC1. f' --OC -
r 

!rf3'- }r:x' +I = e• 

fJ" +ifJ' 2
- t(X'P' + ~(3' = o 

r 

Subtracting equation (52.2) from (52.4), it follows that 

ex+ (3 = constant 

(52.1) 

(52.2) 

(52.3) 

(52.4) 

(52.5) 

But, as r-+ rxc, we shall assume that our metric approaches that given by equation 
(51.7), valid in the absence of a gravitational field. Thus, at infinity, a. = fJ = 0 and 
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hence 
'J-+(3=0 (52.6) 

Eliminating (3 from equation (52.3). it will be found that 

r'X' = I - e' (52.7) 

The variables are separable and this equation is easily integrated to yield 

a= e' =(I -2mir)- 1 

where m is a constant of integration. Then 

b = eP = I - 2m/r 

(52.8) 

(52.9) 

and it may be verified that each of the equations (52.2)-(52.4) is satisfied by these 
expressions for :x and (3. 

We have accordingly arrived at a metric 

(52.10) 

which is spherically symmetrical and can represent the gravitational field outside 
a spherical body with its centre at the pole of spherical polar coordinates (r, fJ, r/J). 
This was first obtained by Schwarzschild.lt will be proved in the next section that 
the constant m is proportional to the mass of the body. This may also be deduced 
from equation (48.17), for the potential U at a distance r from a spherical body of 
mass M is given by 

and hence 

l..i= 
GM 

r 

2GM 
g = 1---
• 44 c2 r 

Now g44 is the coefficient of (dx4
)2 = - c2 dr 2 in the metric and hence 

Comparing equations (52.9) and (52.13), it will be seen that 

GM 
m = -;T 

(52.11) 

(52.12) 

(52.13) 

(52.14) 

It is clear from equation (52.10) that the metric is not valid for r = 2m 
= 2GM/c2 This is the Schwarzschild radius. In SI units, c = 3 x 108 and for the 
earth GM = 3.991 x 1014

• so that the radius for this body is about 9 mm: since the 
metric is only applicable in the region outside the earth, no difficulty is 
encountered in this case. However, for an exceptionally dense body. the radius 
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may extend into the surrounding space and, for values ofr less than the radius, the 
metric needs special consideration (see section 57). 

53. Planetary orbits 

The attractions of the planets upon the sun cause this body to have a small 
acceleration relative to an inertial frame. If, therefore, a coordinate frame moving 
with the sun is constructed, relative to this frame there will be a gravitational field 
corresponding to this acceleration in addition to that of the sun and planets. 
However, for the purpose of the following analysis. this field and the fields of the 
planets will be neglected. Thus, relative to spherical polar coordinates having 
their pole at the centre of the sun, the gravitational field will be assumed 
determined by the Schwarzschild metric (52.1 0). The planets will be treated as 
particles possessing negligible gravitational fields, whose world-lines are 
geodesics in space-time. We proceed to calculate these geodesics. 

Since the intervals between adjacent points on the world-line of a particle arc 
necessarily timelike, s will be purely imaginary along such a curve. When 
calculating geodesics it is usually more convenient, therefore, to replaces by rand 
to work from the metric expression for d r2. Thus, in this section, the 
Schwarzschild metric will be taken in the form 

dr 2 
= -~(~-- +r2(d02 +sin 2 0drjJ 2 ))+(1-2mjr)dt 2 

c I- 2m/r 

and equations (43.19) for the geodesics become 

(53.1) 

-~ (-~-~)+ --~ -(d~)2 -r(~())2 -rsin2o(drP)2 + mc2(~)2 = 0 
dr r- 2m dr (r- 2m)2 dr dr dr r 2 dr 

(53.2) 

- r - - r sm (} cos 0 --- = 0 d ( 2 dO) 2 . (drP )2 

dr dr dr 
(53.3) 

- r sm (}- · = 0 d ( 2 . 2 drj)) 
dr dr 

(53.4) 

~(' -2"! dt) = 0 
dr r dr 

(53.5) 

The first of this set of equations will be replaced by the first integral (43.6), viz. 

--- --- +r2 - +sin 2 (} - --(r-2m) -r (dr)
2 

{(d0)
2 

(drP)2} c
2 

(dr)
2 

r- 2m dr dr dr r dr 
(53.6) 
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We now choose the spherical polar coordinates so that the planet is moving 
initially in the plane f) = !n. Then dO/dr = 0 initially and hence, by equation 
(53.3), d 2 0/dr 2 = Oat this instant. By repeated differentiation of this equation and 
substitution of initial values, it is found that all derivatives of fJ vanish initially. 
Hence, by Maclaurin's theorem, 0 = !n for all values of r, proving that the planet 
continues to move in the 'plane' 0 = !n indefinitely. 

Integrating equations (53.4) and (53.5), and putting 0 = !n. we get 

d¢ h 
(53.7) 

dr ;:i 
dt kr 

(53.8) -·=--
dr r-2m 

where h and k are constants of integration. 
Substituting for d¢/dr, dt/dr from the last two equations and putting fJ = ~n in 

equation (53.6), it follows that 

(
dr)

2 
h

2 
2mc

2 

- +- (r -2m)= c2 (k 2 -1)+--
dr r3 r 

(53.9) 

Then, eliminating dr between this equation and equation (53.7), we obtain the 
equation for the orbit, viz. 

( 
h dr ) 2 h2 2mc 2 2mh 2 

-- +- = c2 (k 2 -1)+--+--
,2 d¢ r 2 r r3 

With u = 1/r, this reduces to the form 

- +u 2 = -(k 2 -I)+-- u+2mu 3 
(

du ) 2 c2 
2mc2 

d¢ h2 h2 

(53.10) 

(53.11) 

Differentiating through with respect to ¢, this equation takes a form which is 
familiar in the theory of orbits, viz. 

d 2 u mc 2 

-·-- +u = -+3mu2 

d¢2 h2 
(53.12) 

The corresponding equation governing the orbit according to classical 
mechanics is 

d2 u GM 
--· +u=·-
d¢2 h2 

(53.13) 

where M is the mass of the attracting body and his the constant velocity moment 
of the planet about the centre of attraction, i.e. 

(53.14) 
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If we identify the time variable r of classical theory with the proper timer in the 
relativistic theory, equations (53. 7) and (53.14) become identical and our choice of 
h for the constant in equation (53.7) is justified. Also, provided we take 

GM 
m = -~2 (53.1 5) 

(confirming equation (52.14) ), equation (53.12) corresponds to the classical 
equation (53.13), although there is now an additional term 3mu 2

. The ratio of the 
additional term 3mu 2 to the 'inverse square law' term mc 2 /h 2 is 

~h2 u~ = ~-r2 rJ>2 
c2 c2 

(53.16) 

by equation (53.14). rr/> is the transverse component of the planet's velocity and, 
for the planets of the solar system, takes its largest value in the case of Mercury, 
viz. 4.8 x I 04 mjs. Since c = 3 x 108 mjs, the ratio of the terms is in this case 7 · 7 
x I 0 8

, which is very small. However, the effect of the additional term proves to 
be cumulative, as will now be proved, and for this reason an observational check 
can be made. 

The solution of the classiC'al equation (53.13), viz. 

u = p· { I + e cos ( <P - (V) } (53.17) 

where f.-1 = G M = mc2
, e is the eccentricity of the orbit and w is the longitude of 

perihelion, will be an approximate, though highly accurate. solution of equation 
(53.12). Hence the error involved in taking 

3mp 2 

3mu 2 =~{I+ e cos(¢- w) } 2 (53.18) 

will be absolutely inappreciable, since this term is very small in any case. Equation 
(53.12) can accordingly be replaced by 

d2 u _ f.-1 3mp 2 
_ 

2 d¢2 +u-p+~ {I +ecos(¢ -w)} (53.19) 

This equation will possess a solution of the form (53.17) with additional 
'particular integral' terms corresponding to the new term (53.18). These prove to 
be as follows: 

(53.20) 

The constant term cannot be observationally separated from that already 
occurring in equation (53.17). The term in cos 2 ( <P- w) has amplitude too small 
for detection. However, the remaining term has an amplitude which increases 
with <P and its effect is accordingly cumulative. Adding this to the solution (53.17), 
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we obtain 

u = f2 {I +e cos(</J -w)+ 
3:~~</J sin(</J -w)} 

= : 2 { I + e cos ( <P - w - bw) } 

where bw = 3mpr/Jjh 2 and we have neglected terms O(bd.l2). 

(53.21) 

Equation (53.21) indicates that the longitude of perihelion should steadily 
increase according to the equation 

3mp 3Jl2 3p 
bw = h2 r/J = c2 h2 <P = c21 r/J (53.22) 

where I= h2/Jl is the semi-latus rectum of the orbit. Taking f.-1 = I· 33 x 1020 SI 
units for the sun, c = 3 x 108 and I= 5 · 79 x 1010 for Mercury, it will be found 
that the predicted angular advance of perihelion per century for this planet's orbit 
is 43". This is in agreement with the observed value. The advances predicted for 
the other planets are too small to be observable at the present time. 

54. Gravitational deflection of a light ray 

In section 7 it was shown that the proper time interval between the transmission 
of a light signal and its reception at a distant point is zero. It was there assumed 
that the signal was being propagated in an inertial frame and hence that no 
gravitational field was present. This result can be expressed by saying that 

ds = 0 (54.1) 

for any two neighbouring points on the world-line of a light signal. Now, null 
geodesics in the space-time having metric (45.5) are defined by equation (54.1) 
and the equations 

d 2 x d 2 r d 2 z d 2 t 
dA. 2 = d)J = dii = d)2 (54.2) 

for the three index symbols are all zero. Equations (54.2) imply that along a null 
geodesic x, y, z are linearly dependent upon 1. But this is certainly true for the 
coordinates of a light signal being propagated in an inertial frame. We conclude 
that the world-lines of light signals are null geodesics in space-time, in this case. 

Since an inertial frame can always be found for a sufficiently small space-time 
region even in the presence of a gravitational field, it follows that the world-line of 
a light signal in any such region is a null geodesic. We shall accept the obvious 
generalization of this result, viz. that the world-lines of light signals over an 
unlimited region of space-time are null geodesics. 

We shall now employ this principle to calculate the path of a light ray in the 
gravitational field of a spherical body. Taking the space-time metric in the 
Schwarzschild form (equation (52.10)), the equations governing a null geodesic are 
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identical with the equations (53.2)-(53.5) after r has been replaced by A.. The first 
integral (43.13) takes the form 

··-. ---,- +r2 
---,- +sin2 fJ --:· ---(r-2m) -;- = 0 r (dr)

2 
{(dfJ)

2 
(drfJ)

2
} c2 (dl )2 

r-2m d;, d;. dA. r dt. 
(54.3) 

Without loss of generality, we shall again put fJ = !n. so that a ray in the 
equatorial plane is being considered and then proceed exactly as in the last section 
to derive the equation 

d2 u 
dr/1 2 + u = 3mu

2 (54.4) 

where u = 1/r. This equation determines the family of light rays in the equatorial 
plane. 

As a first approximation to the solution of equation (54.4 ), we shall neglect the 
right-hand memher. Then 

I 
u = Rcos(r/J+a) (54.5) 

where R, :xare constants of integration. This is the polar equation of a straight line 
whose perpendicular distance from the centre of attraction is R. As might have 
been expected, therefore, provided the gravitational field is not too intense, the 
light rays will be straight lines. This deduction is, of course, confirmed by 
observation. Thus, as the moon's motion causes its disc to approach the position 
of a star on the celestial sphere and ultimately to occult this body, no appreciable 
deflection of the position of the star on the celestial sphere can be detected. 

Again, without loss of generality, we shall put a= 0 so that the light ray, 
as given by equation (54.5), is parallel to they-axis (r/J = ± ~n). Then, putting 
u = cos r/J/ R in the right-hand member of equation (54.4), this becomes 

d 2 u 3m 2 
d r/12 + u = R2 cos r/J (54.6) 

The additional 'particular integral' term is now found to be 

m 2 
R2"(2-cos r/J) (54.7) 

and hence the second approximation to the polar equation of the light ray is 

I m 
u = -cosr/J +- (2 -cos2 r/J) 

R R 2 (54.8) 

At each end of the ray u = 0 and hence 

m 2 2m 
R cos r/J -cos r/J -If = o (54.9) 
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Assuming m/R to be small, this quadratic equation has a small root and a large 
root. The small root is approximately 

cos <P = 
2m 

(54.10) 

and hence (54.11) 

at the two ends of the ray. The angular deflection in the ray caused by its passage 
through the gravitational field is accordingly 

approximately. 

4m 

R 

For a light ray grazing the sun's surface, 

R = sun's radius = 6·95 x 108 m and m = 1·5 x 103 m 

(54.12) 

Thus the predicted deflection is 8·62 X 10- 6 radians, or about 1·77". This 
prediction has been checked by observing a star close to the sun's disc during a 
total eclipse. The experimental findings are in accord with the theoretical result. 

55. Gravitational displacement of spectral lines 

A standard clock will be taken to be any device which experiences a periodic 
motion, each cycle of which is indistinguishable from every other cycle. The 
passage of time between two events which occur in the neighbourhood of the 
clock is then measured by the number of cycles and fraction of a cycle which the 
device completes between these two instants. The clocks employed to determine 
the time coordinate ' 4 of an event in section 45 were not, necessarily, standard 
clocks. Such coordinate clocks can have arbitrary variable rates, the only 
requirement being that, if A, Bare two events in the vicinity of a coordinate clock 
and B occurs after A, then the coordinate-time for B must be greater than the 
coordinate-time for A. 

The successive oscillations of atoms governing the motion of a modern atomic 
clock are indistinguishable from one another and it has been assumed that such a 
clock is being used whenever standard time is measured. The constancy of the rate 
of this fundamental physical process is not susceptible to experimental check, 
since it is the standard against which all other rates (e.g. the rate of rotation of the 
earth) are measured. By international agreement, one second is the time which 
elapses when a specific type of atomic system performs a specific number of 
oscillations and this definition applies in all regions of the cosmos and at all 
epochs; this fact should be borne in mind when phrases such as 'the first second 
after the big bang' occur in cosmological studies. 
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As explained in section 45, if x', xi+ dxi are the space- time coordinates of two 
adjacent events, then dr = dsjic is the time separating the events as measured by a 
standard clock which is present at both events. It is assumed that the interval 
between the events is timelike (i.e. dr real) and that the clock is in a state of free fall 
during its passage from one event to the other; alternatively, if the clock is not 
freely falling, it is assumed that any effect on its rate of the gravitational field it 
experiences is corrected for. 

Let xi (i = I, 2, 3, 4) be the coordinates of an event with respect to some 
space-time reference frame, x 1, x 2

, x3 being interpreted physically as spatial 
coordinates relative to a static frame and x4 /ic as time. !fa standard clock is at rest 
relative to this frame, for adjacent points on its world-line dx 1 = dx 2 = dx 3 = 0 
and hence 

(55.1) 

where we have put x4 = ict. The time r measured by the standard clock is 
therefore related to the time 1 shown on the coordinate clock at (x 1, x2

, x3
) by the 

equation 

(55.2) 

In the special case of the coordinate frame employed in section 48 which was 
stationary in a relatively weak static gravitational field, it was proved that g44 is 
given in terms of the Newtonian scalar potential U for the field by the 
approximate equation (48.17). Thus 

( 
2U )1,2 

dr= 1+?' dt (55.3) 

relates time intervals measured by a stationary standard clock and a coordinate 
clock at a point in a gravitational field where the potential is U. Now, when it is 
emitting its characteristic spectrum, an atom is operating as a standard clock. 
Consider, therefore, an atom for which the period (from standard tables) of one 
complete cycle of radiation corresponding to a certain spectral line is r. If such an 
atom is stationary in the frame at a point P where the potential is U 1, the time for 
one complete cycle of the radiation as measured by a standard clock at the point 
will be rand the coordinate-time for the cycle will be 1, where 

(55.4) 

Suppose this radiation is received at another fixed point Q where the potential is 
U 2 . Let Tbe the difference between the coordinate-time of emission of light from 
P and the coordinate-time of its reception at Q; since the gravitational field is 
being assumed static and P, Q are fixed, T will be a fixed constant. Thus, if 
successive crests of the light wave are emitted from P at coordinate-times t 0 , 

10 +I, these crests will be received at Q at coordinate-times t0 + T, t0 + T + t. It 
follows that the period of the radiation as measured by the coordinate clock at Q 
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will also be t. However, a standard clock at Q will measure the period to be r', 
where 

(55.5) 

Hence, if vis the standard frequency of the spectral line being observed and v' is 
the observed frequency of the line at Q, then 

~·=~=(I+ 2UJ1c2 )t:2 
v r' 1+2V2/c 2 (55.6) 

In particular, if U 1 < U 2 , the observed light will have its frequency shifted 
towards the red. 

In the case of an atom on the surface of the sun observed from a point on the 
earth's surface, it will be found that, in SI units, 

V 1 = -1.914xl0 11
, U 2 = -9.512xl08 

and thus v' = 0.9999979v (55.7) 

This cflcct is so small that it is very difficult to measure. However, in the case of the 
companion of Sirius, the predicted effect is 30 times larger and has been 
confirmed by observation. 

56. Maxwell's eqnations in a gravitational field 

Over any sufficiently small region of space and restricted interval of time it is 
possible to define a rectangular Cartesian inertial frame, i.e. the frame in 'free fall' 
in the gravitational field. If the electric and magnetic compom:nts of the 
electromagnetic field are measured in this frame, the field tensor Fii defined by 
equation (26.5) can be found. Employing the appropriate transformation 
equations, the components of this tensor relative to general coordinates xi in the 
gravitational field can be computed. No distinction is made between covariant 
and contravariant properties relative to the original inertial frame so that, when 
transforming, FiJ may be treated as a covariant, contravariant or mixed tensor. If 
it is treated as a covariant tensor, the covariant components Fii in the general xi­
frame will be generated. If it is treated as a contravariant or as a mixed tensor, the 
contravariant or mixed components ri, F~ respectively will be generated. In this 
way, the field tensor is defined at every point of space-time. Similarly, a current­
density vector with covariant components Ji and contravariant components Ji is 
defined relative to the x;-frame. 

Consider the equations 

(56.1) 

F,;.> + F;k.• + F1,., = 0 (56.2) 

These are tensor equations and hence are valid in every space-time frame if they 
are valid in any one. But, relative to the inertial coordinate frame (x, y, z, icl) 
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which can be found for any sufficiently small space- time region, these equations 
reduce to equations (26.11) and hence are valid over such a region. Regarding the 
whole of space--time as an aggregate of such small elements, it follows that 
equations (56.1 ), (56.2) are universally true. 

Since Fii is skew-symmetric, 

.. iF0 . . . . 
F'l = -·~ + { I ·l F'} + I 1.} F" 

.J c xl r } lr } 

cF0 I c . 
=-. +----, { J(-g)jF" 

cx1 J(-g)cx' 

I 2 . .. 
=-J( )~{.J(-g)F'1 } (56.3) 

-g ox 

by equation (42.5) (g has been replaced by - g, since g is always negative for a real 
gravitational field). Equation (56.1) is accordingly equivalent to 

I c J .. . 
--- -;;- { ( -g)F'1) = /lol' J( -g) cxl 

(56.4) 

Also, in view of the skew-symmetry of the field tensor, it follows that equation 
(56.2) is equivalent to 

(56.5) 

The energy- momentum tensor for the field is found from equation (29.5) to be 
given by 

Jlo S~ = Fik Fik -! li~ Fk' F kl 

It now follows from Maxwell's equations that 

Si = - F .Ji = - D 
I.} IJ I 

where Di is the 4-force density acting upon the charge distribution. 

57. Black holes 

(56.6) 

(56.7) 

The Schwarzschild metric is only valid in the region outside a spherically 
symmetric attracting body. Thus, if the radius of this body exceeds 2m, the 
circumstance that the component g11 of the metric tensor becomes infinite at 
r = 2m creates no difficulty. If, however, the body's radius is less than 2m, the 
sphere r = 2m lies in empty space and the nature of the field in the vicinity of this 
sphere needs careful study. 

Although the metric is clearly invalid over the sphere r = 2m, it is an acceptable 
solution of the Einstein equation in the region 0 < r < 2m. Consider a body 
moving radially in this region, not necessarily in a state of free fall. Then (}and <P 
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will both be constant and the metric equation reduces to 

c2 dr 2 = rx- 1 (dr2 -c2 rx 2 dt 2
) (57.1) 

where :x = 2m/r- I > 0, along the body's world-line. Given the equation of 
motion r = r(t), this equation determines the proper time r shown on a standard 
clock moving with the body. But dr must be real and it follows that either (i) dr/dt 
> t.·:x or (ii) drjdt < - c:x. These inequalities show that it is impossible for a body 
to be stationary relative to our coordinate frame in this region. This implies that 
our picture of the frame as a set of coordinate clocks measuring the time t and 
stationary at the points (r, 0, <P) ceases to be applicable. Evidently, the static 
conditions we have been envisaging in the neighbourhood of the attracting body 
are not present in this region. 

Next, consider a body falling freely along a radius towards the centre of 
attraction in the region r > 2m. Taking as initial conditions t = 0, r = R, 
dr/dt = 0, equations (53.5) and (53.6) lead to the equation of motion 

Thus ( 
R ) 1 

12 fR r3'2 dr 
ct= 2m-! ,(r-2m)(R-r)1 ' 2 (57.3) 

and it is clear that this integral diverges to + x as r--> 2m. This means that, in the 
Schwarzschild frame, the body will need an infinite coordinate time to reach the 
sphere r = 2m. If the body is observed optically by an observer stationed at a 
considerable distance from the centre of attraction, since allowance must be made 
for the coordinate time needed for photons leaving the body to reach his 
telescope, the observed motion of the body, as measured by his coordinate clock, 
will be further retarded. But his coordinate clock will be almost indistinguishable 
from a standard clock and it follows that the apparent time of fall of the body to 
the Schwarzschild radius according to an external observer using an atomic clock 
will also be infinite. 

If, however, instead of eliminating the proper timer between equations (53.5) 
and (53.6), the coordinate time 1 is eliminated, the resulting equation is 

(57.4) 

After integration with r = 0 at r = R, this gives 

cr = J(R 3/2m)[J(p-p2 )+!-cos- 1 (2p-l)] (57.5) 

where p = r/ Rand the inverse cosine is taken in the first or second quadrants. r 
will be the time recorded by a clock moving with the body and equation (57.5) 
shows that this remains finite for values of r through the value 2m to zero. 

It is now evident that the reference frame we have been using is unacceptable if 
motions across the Schwarzschild sphere are to be studied and that, in particular, 
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the coordinate timet becomes infinite at r = 2m for some events which can occur 
in the experience of certain observers. It appears, therefore, that it is a deficiency in 
the reference frame which is responsible for the anomaly in the metric and our 
expectation is that the infinity can be removed by transformation to a new frame. 
This view of the matter is supported by the fact that g is finite at r = 2m, indicating 
that there is no singularity of space-time in this region. 

The suggestion arising from our calculations is that t should be replaced by a 
new coordinate time u defined by a transformation equation 

u = t + j(r) (57.6) 

where j(r) becomes negatively infinite at r = 2m in such a way as to cancel the 
infinity which we have seen to arise in t for certain events taking place on r = 2m. 
Substituting 

de= du -j'(r)dr 

in the Schwarzschild metric, this transforms to 

(57.7) 

ds 2 = Fdr 2 + r2 (dl:l 2 + sin 2 Odr/1 2
) + c 2 (I - 2m/r) (2/' drdu- du 2

) (57.8) 

where 

r c2 ·•2 
F = -- -- (r- 2m)j 

r -2m r 

We can now remove the infinity by choosingf(r) such that 

cf' = r/(r- 2m) 

Thus, we take 

cf(r) = r +2m log (r- 2m) 

and the metric then assumes the form 

di = r2 (dl:l2 + sin2 Odr/12 ) + 2cdrdu - c2 
( l - 2m/r) du2 

(57.9) 

(57.10) 

(57.11) 

(57.12) 

This metric must clearly satisfy Einstein's equation in vacuo. However, the field 
in the new frame is no longer static in the sense assumed in section 51; the presence 
of a term involving the first power of du shows that the field is not symmetric with 
respect to the past and future, i.e. the sense of description of its trajectory by a 
freely falling particle cannot be reversed with impunity. 

Let us study, once again, a body moving radially, but not necessarily falling 
freely. Along its world-line, we have 

ds2 = 2cdrdu - c2 (I - 2m/r) du 2 (57.13) 

Since ds2 must be negative for any possible motion, 

dr 1 - < 1c(l-2m/r) 
du 

(57.14) 
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Ifr < 2m, this implies that dr/du is negative and that the body must move towards 
0; in particular, it cannot remain stationary. Thus, this is a region of irresistible 
collapse towards the centre of attraction for all physical bodies. It will be noted 
that the transformation has eliminated the possibility of outwards radial motion 
which existed when the Schwarzschild form of the metric was taken; this 
possibility can be recovered by changing the sign of u. 

Now consider the motion of a body falling freely along a radius from an initial 
state of rest drjdu = 0 at r = R >2m. Since y41 = c,g44 = -c2 (i-2mjr), 
equation (53.5) must be replaced by 

_d(~ -c(l-2m/r)du)=o 
dr dr dr 

(57.15) 

Together with the first integral 

2cdr~u -c2(1-2m/r)(du)2 
drdr dr 

(57.16) 

this leads to the following quadratic for dr/du: 

( dr)
2 

+4mc(l _ _!_)dr +2mc2(1-
2m)(~ -

1 )= 0 
du r R du r R r 

(57.17) 

The roots are 

(57.18) 

If r > 2m, one root is positive and one is negative. However, r must decrease 
initially (otherwise the square root in (57.18) becomes imaginary) and so the 
negative root is taken. r then decreases steadily tor = 0, its passage through the 
Schwarzschild radius being unremarkable. Once inside the Schwarzschild sphere, 
as already proved, the possibility of escape from the attraction no longer exists. 

The world-lines of photons moving radially are null geodesics governed by the 
equation 

2cdrdu- c2 (I- 2m/r)du2 = 0 

There are two families of such geodesics, viz. 

du = 0 
dr ' 

and 
du 2r 

c-=--
dr r -2m 

For the first family, equation (57.7) gives 

dt r 
cdr = - -;:-~ 2m 

(57.19) 

(57.20) 

(57.21) 

provided r > 2m. This corresponds to a photon moving towards the centre of 
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attraction. For the second family, we find 

dl r 
cdr= r -2m 

(57.22) 

in the same region; i.e. a photon moving away from the centre of attraction. A 
photon belonging to the first family crosses the Schwarzschild sphere and then 
falls into 0. Inside this sphere, the photons can be separated into two classes: 
(i) those for which u is constant along a world-line- these photons could have 
their source outside the sphere; (ii) those for which the second of equations (57.20) 
is valid and, hence, 

cu = 2r + 4m log (2m- r) +constant (57.23) 

As r-+ 2m, u -+ - x and these photons cannot have had an external source. Since 
du;dr < 0, these photons also fall into 0. 

It is now clear that, in the field described by the metric (57.12), no photon or 
particle can cross the Schwarzschild sphere in the sense r increasing. On the other 
hand, any photon or particle which crosses the sphere in the reverse sense is 
absorbed and cannot return to the external world. The conditions inside the 
sphere are accordingly referred to as a black hole. It is thought possible by 
astrophysicists that some stars may have collapsed under their own gravitational 
attraction to a radius less than their Schwarzschild radius. In such a case, as 
explained above, further contraction would become irresistible and the star 
would collapse to a singular point having infinite density. Such a collapse would 
require an infinite time by terrestrial clocks so that, assuming the age of the 
cosmos to be finite, it might be objected that no such objects can yet have come 
into existence. However, the idea of a cosmos of present events, all happening 
simultaneously relative to some universal time scale, is quite foreign to relativity 
theory, so that the objection is meaningless. The hard fact is that the possibility of 
a spaceship falling into the black hole created by such an object, in a time which is 
finite measured by an on-board clock, is a real one. A few cases of objects which 
appear to be in the early stages of gravitational collapse have already been 
detected. 

If the metric (57.12) is transformed by changing the sign of u, another metric 
satisfying Einstein's equation is generated. A similar analysis shows that this 
governs the field in the vicinity of a while hole, where matter and photons can only 
cross the Schwarzschild sphere in an outgoing sense. Thus, a white hole behaves 
as an irresistible source and a black hole as an irresistible sink. Being invariant 
under a sign reversal of 1, the Schwarzschild metric permits a black and a white 
hole to exist together. 

58. Gravitational waves 

Throughout this section it is assumed that the gravitational field is weak and that 
the coordinates xi are quasi-Minkowskian, as explained in section 48. Thus, the 
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metric tensor is given by equation (48.3) and terms of second or higher degree in 
the h11 or their derivatives will be neglected. We shall further suppose that the 
coordinate frame is harmonic (see Exercises S, No. SO), so that the metric tensor 
satisfies the condition 

(58.1) 

It can be proved that a transformation of the form x' = x' + ~~ (x), where the 
functions ~~ are small with the h11 , can always be made so that the x-frame is 
harmonic (see Exercises 6, No. 37); this means that the harmonic coordinates will 
also be quasi-Minkowskian. 

To the first order, equation (58.1) reduces to 

(58.2) 

Differentiation leads to 

hik. ij- ih,,_ jk = 0 (58.3) 

Exchanging indices j, k and adding the new equation to (58.3), we get 

hij. ik + h;k, ij - h, .. jk = 0 (58.4) 

The Ricci tensor has already been calculated to the first order of approximation 
at equation (49.2). Using the last result, this gives 

Also 

Thus, Einstein's tensor is given by 

where 

R ik - ig ik R = !h Jk, ;; - i 8 ik h ... ;; = !h}k. ;; 

hjk = hjk -ibjkhrr 

Einstein's equation of gravitation is now expressible in the form 

0 2 hjk = h)k. ;; = - 2KTik 

The harmonic condition (58.2) can also be written 

h;k.; = 0 

In empty space, equation (58.9) reduces to 

0 2 h'k = ·- + -- +.-- ---. h'k = 0 
( 

82 22 22 I 22 ) 

1 ox 2 o.r2 iJz 2 c2 cr 2 1 

(58.5) 

(58.6) 

(58.7) 

(58.8) 

(58.9) 

(58.10) 

(58.11) 

which is the wave equation, showing that gravitational waves are propagated in 
vacuo with the velocity of light. 
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In the case of a plane wave, we can write 

hjk = Aikexp(ik;x;) (58.12) 

where it is understood that the real part of the complex exponential is to be taken. 
Equation (58.11) is satisfied provided 

k;k; = 0 

and the condition (58.10) also requires that 

k;A;k = 0 

(58.13) 

(58.14) 

Since A;k is symmetric, the last equation shows that the A;4 can be expressed in 
terms of the A,p (~. (3 = I, 2, 3). By further transformation of coordinates, it can 
be shown that all amplitudes can be expressed in terms of two parameters only 
and hence that gravitational waves have, essentially, only two modes of 
polarization. 

The solution of the wave equation (58.9) with source term - 2KTik is well 
known to be given by Kirchhoff's formula (Bateman, 1952): 

K f I hjdx0 , 10 ) = -
2
-- - Tik (x, 10 - rjc)d V 
n: vr 

(58.15) 

where x0 = (x~, x~, x~ ), x = (x 1 , x2
, x 3

) are position vectors with respect to the 
origin 0 of the frame in use, and r = I x0 -xI is the distance between these points; 
Vis the region of space over which Tik is non-vanishing. Note that r0 is retarded in 
the integrand by a timer jc, since the effect of the source at x will not be felt at x0 

until the time for its transmission over the distance r has elapsed. In the case of a 
source which is confined to a small region of space including the origin 0, if 
r0 = lxol is large compared with the dimensions of this region, equation (58.15) 
can be approximated by 

(58.16) 

But, as explained above, the components hj4 can be obtained easily once the h~p 
have been found. We shall now show that a further simplification of the last 
formula is possible in these cases. 

First note that 

Since the divergence of T;i vanishes, we have 

T,,_,. + T,4.4 = 0 

and thus 

(58.17) 

(58.18) 

(58.19) 
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Integrating over the region V, the integral of the left-hand member is seen to be 
zero by application of Gauss's divergence theorem (assuming T,, vanishes over 
the bounding surface); we accordingly obtain the result 

f T,pd V = f T.4.4xPd V = - ~ ~ f T,4x 11 d V (58.20) 

Exchanging the indices rx, fJ and adding the new identity to (58.20). we find 

f i d f 11 , T,p d v = - - - (T,4 X + Tp4 X )d v 
2c dt 

(58.21) 

We next integrate the identity 

(T,4x•xPJ.,. = T4 ,.,x•xP + T, 4 xP + T114 x' (58.22) 

over V. By the divergence theorem, the integral of the left-hand member vanishes. 
Hence 

f (T,4 xP + Tp 4 x")d V = - f T4 ,, ,x• xPd V 

Equations (58.21) and (58.23) now yield the result 

f _ _!_~f • p - _ _!_~f • p T.pd V- d T4 .1 ,x x d V- T44 4 x x d V 
2c r · 2c dr · 

(58.23) 

(58.24) 

where we have again made use of the equation T;i.i = 0. But, equation (21.14) 
shows that T44 = - pc 2 and equations (58.16) and (58.24) therefore lead to the 
final result 

. 2G d" f fJ h,p(X0 , 1) = -..- ··, p(x, t- r0 /c)x'x d V 
c r0 dr-

(58.25) 

lt should be noted that it is the second time derivative of the second moment of 
the mass distribution which is responsible for the gravitational wave. In the 
corresponding electromagnetic situation, it is the second time derivative of the 
first moment of the charge distribution which is responsible for the elec­
tromagnetic wave. 

Instruments have been devised to detect the small variations in the gravi­
tational field caused by waves proceeding from possible sources within the galaxy 
(e.g. pulsating neutron stars, binary stars or supernova explosions). but no clearly 
unambiguous results have yet been obtained. Such instruments attempt to 
measure the small strains induced in very large masses of metal by the tidal forces 
caused by the passage through them of gravitational waves. 
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Exercises 6 

I. If they-frame is defined as in section 47, show that the metric tensor in the x­
frame is given by 

Hence lower the index} in r 1 defined by equation (47.2)and show that the result is 
Tj as defined in equation (47.3). 

2. Given that space- time has the metric 

ds 2 = dx 2 + dy 2 + eHd;;; 2 - e 2 <~>dr 2 

where 0, rP are functions of;;; only, prove that the Riemann-Christofld tensor 
vanishes if, and only if, 

where dashes denote differentiations with respect to z. If rP = -0, prove that the 
space-- time is flat provided rP = i log (a+ b:), where a, b are constants. 

l If space time has the metric 

ds 2 = e 4 (dr 2 +d: 2)+r2e-PdrjJ 2 -ePdc 2 

where i., pare functions of rand z only, show that the field equations in empty 
space Rii = 0 require that i. and p should satisfy the equations 

i .• +p, =HPi-P~) 

i.2 + P2 = 'P1P2 

P11 +p22+:P1 = 0 

i .•• +i.22+P•1+P22+!(pr+p~)=O 

where subscripts I and 2 denote partial differentiations with respect to r and z 
respectively. 

4. If space time has the metric 

ds2 = e2kx(dx2 + dyl + dz2 -dr2) 

where /.: is constant, and r 2 = x2 + }' 2 + i 2, dots denoting differentiations with 
respect to t, show that for a freely falling body 

1 -t-2 =(I_ V2)e2b 

where t' = V at x = 0. 
5. If space- time has the metric 

ds 2 = :x 2 (dx 2 + d}· 2 + dz 2)- c2:xdr 2 

where:x = 1;(1- /.:x)and k is constant. and tis as defined in the previous exercise, 
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prove that for a free!~ falling body 

V2
- l' 2 = kc 2 

X 

where r = Vat x = U. 
6. The space- time metric over a certain region of empty space is 

d~ 2 = e'(dx2 + dy2 + d: 2) -e11 dt 2 

where ~- {1 are functions of::: alone. Show that Einstein's equation is satisfied 
provided 

~" +!~·2 + J.:x'/1' = 0 

ry_'' + ~fl" + :w· 2
- ~ry_·p· = o 

(3" +~{3' 2 +h'lf = 0 

Deduce that e' = A(k- ::)4
• eP = B(k- :r 2 • where A, B, k are constants. 

7. Show that the space- time metric 

ds 2 = e'dr 2 + r 2dU2 + ePdz 2- e"dl 2 

where r. II.:: are quasi-cylindrical polar coordinates and 1 is the time and :x. fi, }'are 
functions of r alone. satisfies Emstein's equation in racuo, provided 

rr + /' + J./3' 2 + h·' 2- ~:x· -1~· f3'- !:x'i = o 
r:x' = fJ' +/ 

fJ" + 1 /3' 2- ~:x' {3' + ~{J'y' + ~ {3' = 0 

,.·· + h' 2 -~r:x'i +W'i +~ i = o 
dashes indicating differentiations with respect to r. Deduce that 

where A. B. C. i .. 1-1 are constants and l.p = 2(1. + p). 

8. A certain region of space- time has metric 

d., 2 = dx 2 + dy2 + d: 2- x2dl 2 

A particle is stationary at the point x = I, y = z = 0 at 1 = 0. If the particle is 
released at this instant and falls freely, show that it moves along the x-axis with 
equationofmotionx = sechr.Aphotonisemittedfromthepoint(l,O,O)atl = 0 
in the direction of the positive y-axis. Show that at this instant x = :: = 0, j· = I 
and that the path of the photon is the circle x 2 + .r2 = I. 

9. De Sitter's universe has metric 

ds 2 = A- 1dr 2 +r2 (dll 2 +sin 2 8dtf> 2)-Ac 2 dl 2 

where A = I - r 2,- R 2, R being constant. At 1 = 0, a photon leaves the origin r = 0 
and travels outwards along the straight line 0 = constant, 1> = constant. Find its 
coordinate rat timet and show that r = ~R when 1 = R (log 3); 2c and that r-> R 
as 1-> oc. 
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10. r. V.: are quasi-cylindrical coordinates in a gravitational field determined 
by the metrit: 

ds 2 = r 2(dr2 + dfJ 2
) + r(d.:: 2

- dl 2
) 

A particle is projected from the point r = I. 0 = 0, z = 0 in the field with such 
velocity that r = i = O.IJ = .J 3;2 (dots denote differentiations with respect to 1). 
Prove that, if the particle falls freely, it moves in the plane z = 0 between the 
circles r = I. r = 3. f1rst touching the outer circle where 0 = J3rr. A photon is 
emitted from the point r = I, e = 0, z = 0 and moves initially so that r = i = 0. 
Prove that its path is the spiral r = I + iiJ 2 in the plane z = 0. 

II. The metric for de Sitter's universe can be expressed in the form 

ds 2 = e 2
'' 11 (dx 2 + dy 2 + dz 2

)- c 2d1 2 

where R is a constant and x, y, z can be treated as rectangular Cartesian 
coordinates. Show that the trajectories of freely falling particles and photons are 
straight lines. A particle is projected from the origin at 1 = 0 with a velocity V 
along the positive x-axis. Prove that its x-coordinate at time I is given by 

Vx = R[c- v'(c 2 - V2 + V2e- 2"R)) 

A body at the point x = X on the x-axis emits a photon towards the origin at 
R 

1 = 0. Show that the photon arrives at 0 at time 1 = - log(!- X!R). Discuss 
c 

the case where X > R. 
12. r, 0, rP are quasi-spherical polar coordinates in a gravitational field which is 

spherically symmetric about a centre of attraction r = 0. The space-time metric is 

ds 2 = (-'-)
2 

dr 2 + r 2 dl:l 2 + r2 sin 2 l:ldrj) 2
- -'-d12 

r+l r+2 

A particle is projected from the point r = l,l:l = ~rr, rP = 0 at 1 = 0 with velocity 
such that r = O.IJ = 0, (f> = 1/J 6 and falls freely. Show that the particle's 
trajectory lies in the plane 0 = ~rr and has polar equation 

5 -cos(ar/J) 
r = 

3 + cos(arj)) 

where a = .J (8/3). Deduce that the particle moves between two circles of radii I 
and 3 and calculate the increment in rP between two successive contacts with one 
of these circles. (Ans. 2rr/a.) 

13. Taking the metric for de Sitter's universe in the form stated in exercise 9, 
lind equations of motion for a particle projected from the point r = ~R. 

. J3c 0 = !rr. rP = 0 with such velocity that ; = 0 = 0, rP = l Rand thereafter falls 

under gravity. Show that its trajectory lies in the plane 0 = -!rr and that its polar 
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equation is 

r = R. ( S cos 2 cp - I ) 1 2
. 

14. Ox}'Z is a quasi-rectangular Cartesian coordinate frame constructed in a 
certain gravitational field. If 1 is the time measured by a system or docks 
stationary in the frame, the space-time metric is ds 2 = z(dx 2 + d/ + d.:: 2 

- dt 2 
). A 

particle is projected from the point (0, 0, I) at t = 0 with velocity components 
x = ~·( < I), }" = i = 0 and thereafter falls freely. Show that its trajectory is a 
parabola and lies in the xz-plane and that the particle arrives at the X}'-plane at 
time 1 = 2i~'(l- r 2

). 

15. Show that Einstein's equation (47.16) can be written in the form 

16. Inside a static gravitating homogeneous sphere of liquid. the proper 
density is J.l (a constant) and the pressure is p. The energy-momentum tensor has 
zero components except forT t = T ~ = T ~ = p. T! = - c2 J.l. Assuming that the 
metric of the field inside the sphere is given by equation (51.10) with a=.,, 
and b = ell, show that Einstein's equation (4 7.1 S) can be satisfied by making :x./1 
and p satisfy the equations 

I 
/I' = - ( e' - I ) + K re' p 

r 

dashes denoting differentiations with respect tor. Assuming :x = 0 at r = 0 and 
p = 0 at r = a (the surface), deduce that 

e-' = I- qr 2 

where q = ~<c 2 J.l/3. and that 

, (l-qr2)tl_(l-qa2)t2 
p = c-J.t------------

3(! _ qa2)' 2 _(I_ qr2)1 2 

17. Obtain the equations of motion of pho10ns moving radially inside the 
Schwarzschild sphere and deduce that a photon moving away from the ccmre 0 
takes an infinite coordinate time t to reach the sphere and a photon moving 
towards the centre from r = R ( < 2m) takes a time 1 = 7 given by 

cl = - R- 2mlog(l- R.2m) 

to reach 0. 
18. Obtain equations (57.2) and (57.3) for a body falling freely towards the 
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centre of attraction in the region r > 2m and hence prove that 

( 
R )1:2[ J (1-r) ct= 

2
m-l y'(r(R-r)}+(R+4m)cos- 1(r/R) 1'2 -2mlog l+r' 

where 

}' = [~m(R =-1Jt'z 
r(R- 2m) 

Deduce that t -+ oc as r-> 2m. 
19. Obtain equations (57.4) and (57.5) and deduce that the time recorded on a 

standard clock attached to a freely falling body as it falls from the Schwarzschild 
sphere to the centre of attraction is nmfc. Calculate this time in the case of a black 
hole having solar mass. (Ans. 16 ps.) 

20. Verify that the metric tensor given by equation (57.12) satisfies Einstein's 
equation in empty space. 

21. Show that the Kruskai-Szekeres transformation 

u = (r/2m- 1) 1'2e''4mcosh(ct/4m) 

r = (rj2m- l) 112 e'14msinh(ct/4m) 

converts the Schwarzschild metric to the form 

dsz =32m3 e-ri2m(du2 -dv2)+ r2(d82 + sin28di/J2) 
r 

where r is given in terms of u, v by the equation 

u2 - v2 = (rj2m- I )e'12 m 

Deduce that the world-lines of radially moving photons are u ± v = constant. 
22. Show that the transformation 

2 u = r + ___ ,3!2 
3a 

where a2 = 2m, puts the Schwarzschild metric into the form 

where p 3 = 9a2 /4. 
23. A photon is emitted from the point r = m, (} = tn, 1/J = 0, inside a black 

hole (Schwarzschild coordinates) with angular velocities IJ = 0, (p = 3J3cjm. 
Show that r = ± 2y'7c initially. In the case when the initial value off is negative, 
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show that the photon moves in the plane e =~nand falls into the centre along the 
trajectory 

where a = log!(S + y'21 ). 

6m 21 
- = 3coth 2(~- </J)- I 
r 

24. Show that the only possible circular orbits for a photon in a Schwarzschild 
field all have radius r = 3m and that their period in coordinate time is 6.J3nmjc. 
Show that these orbits are unstable. 

25 A body moves in a circular orbit of radius r in the plane (} = h in a 
Schwarzschild field. Show that r > 3m and that the angular velocity d</J;'dt is 
related to r in the same way as in classical theory. Show that the period of the 
motion as measured by a standard clock attached to the body is 

Show, also, that the period as measured by an observer using a standard clock 
who is stationary at some point on the orbit is 

Show that the orbit is unstable if 3m < r < 6m, but is stable otherwise. 
26. r, 0, <Pare Schwarzschild coordinates. A fixed observer at the point R, 0, <P 

transmits a wireless signal radially towards the attracting body. The signal is 
reflected by a small body at the point r, fJ, <P and returns to the observer. Show that 
the time elapsing between transmission and reception as measured by the 
observer's standard clock is 

-(1 -2m/R)1
'
2 R -r +2m log---2 ( R -2m) 

e r-2m 

Calculate the distance covered by the signal and deduce that, according to 
classical theory, the time for the double journey would be 

Show that, to the first order in m, the difference between these times is 

2m(log~ +~-I) 
c r R 

(Note: This result suggests a method of checking the general theory using the 
Sun's field and Mercury or Venus as the reflector.) 
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27. An atom, which is stationary at a Schwarzschild coordinate distance r from 
the centre of a spherically symmetric body, emits light of frequency v which is 
observed by a stationary observer at a coordinate distance R ( > r) from the 
centre. Show that the observed frequency is v- bv, where 

to the first order in m. 
28. By replacing the spherical polar coordinate r occurring in the 

Schwarzschild metric (52.10) by a new coordinate r' where 

r = r(l +~.Y 
obtain this metric in 'isotropic' form, viz. 

d 2 (I m )4 d •2 •2d(J2 •2 . 2(}dA.2 (I -m/2r')2 2d 2 ~ = + -; ( r + r + r sm 'I' ) - ·· ---·-, c l 
2r I+ mj2r 

29. Employing a certain frame, an event is specified by spatial coordinates 
(x, y, z) and a time r. The corresponding ~pace-time manifold has metric 

ds2 = dx 2 + dy 2 + dz 2 + 2ardxdt- (c 2 -a2 
t
2)dt2 

Show that a particle falling freely in the gravitational field observed in the frame 
has equations of motion 

x = A+Bt-iat 2
, .\' = C+Dt, z = E+Ft, 

where A, B, C, D, £,Fare constants. By transforming to coordinates (x', y, z, r), 
where x' = x + !at 2

, and recalculating the metric, explain this result. 
30. (x 1

, x2, x 3
) are spatial coordinates of an event relative to a frameS and x4 is 

the time of the event measured by a clock in S. A second frame I is falling freely in 
the neighbourhood of the event and may be regarded as inertial. Oy 1ly 3 are 
rectangular Cartesian axes in I and ;.4/ic represents the time within I as measured 
by synchronized clocks attached to the frame. Show that Yu· the metric tensor in S, 
is given by 

Pis a point, fixed in S, having coordinates (x 1
, x 2

, x 3
). At the instant x4

, I is 
chosen so that P is instantaneously at rest in I. Deduce that 

oy4 
Yi4 

oxi = J(g44) 
at x;. dl is the distance between P and a neighbouring point 

P'(x 1 + dx 1
, x 2 + dx2, x 3 + dx 3

) 



170 

as measured by a standard rod in I at the instant x4
. Prove that 

d/ 2 = dy'dy' = ·/,,,dx 1dx'' 

where :x, i., 11 range over the values I, 2, 3, and 

g,,q". 
"/,.~ = gii.Jl- ---­

g •• 

(·;,"is the metric tensor for the .~ 3 which isS at the instant x4 .) 

31. Oxyz is a rectangular Cartesian inertial frame 1. A rigid disc rotates in the 
xy-plane about its centre 0 with angular velocity w. Polar coordinates (r, 8) in a 
frame R rotating with the disc are defined hy the equations 

x = rcos(O +WI), y = rsin(8 +we) 

where 1 is the time measured by synchronized clocks in the inertial frame. If the 
time of an event in R is taken to be the time shown by an adjacent clock in I, show 
that the space·· time metric associated with R is 

ds 2 = dr 2 + r 2 d0 2 + 2wr2 d8dl- (c 2 -r2
(J)

2 )dt 2 

Deduce that the metric for geometry in R is given by 

r2 d0 2 

d/ 2 = dr 2 + -----· 
I - ulr2ic2 

(Him: employ the result of the previous exercise.) Hence show that the family of 
geodesics on the disc is determined by the equation 

tJ=const.-sm 1
- --..;(r2 -a2

) . (a) a 
r r 2 

where r 1 = cjw and lal < r 1 • Sketch this family. What is the physical significance 
of r 1? 

32. x'(i = I, 2, 3, 4) are three space coordinates and time relative to a reference 
frame S. A test particle is momentarily at rest in Sat the point (x 1, x 2

, x 3
) at the 

time x4
• If gii is the metric tensor for the gravitational field inS, write down the 

conditions that the world-line of the particle is a geodesic and deduce that 

at the point x'. Hence show that the covariant components of the particle's 
acceleration in S are given by 

d2 xll £~U Co(, 
.. --- = --· -(c2+2U)' 2_ 
1>/1 (dx4 )2 ox• CX 4 

where {, 11 is defined in exercise 30 and 

944 = - (c 2 + 2U), /'• = 9.41 .J ( - 944) 
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(U, i'• are the gravitational scalar and vector potentials respectively.) 
Show that, in the case of the space time metric appropriate to the rotating 

frame of exercise 31, the gravitational vector potential vanishes and the scalar 
potential is given by U = !w2 r2

. Interpret this result in terms of the centrifugal 
force. 

33. De Sitter's universe has metric 

ds 2 
= A 1 dr 2 + r 2 d0 2 + r2 sin 2adt/>2

- Ac 2dt 2 

where A = I - r 2 j R2, R being constant. Obtain the differential equations satis­
fied by the null geodesics and show that along null geodesics in the plane a = ! rr, 

dr 
a·- = r(rl- a2)' 2 

dtf> 

where a is a constant. Deduce that, if r, 1> are taken to be polar coordinates in this 
plane, the paths of light rays in this universe arc straight lines. 

34. Einstein's universe has the metric 

where (r, IJ, t/>) are spherical polar coordinates. Obtain the equations governing 
the null geodesics and show that, in the plane IJ = irr, these curves satisfy the 
equation 

( 
dr )

2 
2 . 2 2 d-;j; = r (I - 1.r )(w - I) 

where f.-1 is a constant. Putting r2 = I ;r, integrate this equation and hence deduce 
that the paths of light rays in the plane a = ! rr are the ellipses 

i.x 2 + py2 = I 

where (x, y) are rectangular Cartesian coordinates. Show, also, that the time taken 
by a photon to make one complete circuit of an ellipse is 2rr;(ci_~ 2

). 

35. If the metrit: of space time is 

ds2 = :x 2 (dx 2 + d/ + d: 2
)- bdt 2 

where :x is a function of x alone and k is a constant. obtain the difl'crential 
equations governing the world-lines of freely falling particles. If x, y,: are 
interpreted as rectangular Cartesian coordinates by an observer and t is his time 
variable, show that there is an energy equation for the particles in the form 

k 
lr 2 -- =constant 
2 2:x 

36. (r, 0.1>. t) arc interpreted as spherical polar coordinates and time. A 
gravitational field is caused by a point electric charge at the pole. Assuming that 
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the space-time metric is given by equation (51.10) and that the 4-vector potential 
for the electromagnetic field of the charge is given by Q; = (0, 0, 0, /.). where 
X = x(r), calculate the covariant components of the field tensor F;i from equation 
(26.6) and deduce the contravariant components Fii. Assuming that J; = 0, prove 
that Maxwell's equations (56.4) and (56.5) are all satisfied if 

d;: q . 
dr = 4nt:

0
r 2 .J (ab) 

where q is a constant. 
Calculate the elements of the mixed energy-momentum tensor from equation 

(56.6) and write down Einstein's equations (47.15) for the gravitational field. 
Show that these are satisfied provided 

I 2m q2 G I 
= b = 1--+--·-· 

a r 4nt:0 c4 r 2 

where m is a constant. 
37. If the coordinates xi are quasi-Minkowskian so that the metric tensor is 

given by equation (48.3), show that the transformation _xi= x; + ¢i(x) makes the 
:X-frame harmonic provided the ~; satisfy the conditions 

(Neglect second order terms in the h;i and usc the condition given in Exercises 5, 
No. 50.) Show also that 11;; = 0 provided the functions ¢; satisfy the additional 
condition ¢~; = ih;;· If the x-frame is harmonic before transformation, show that 
the x-frame is also harmonic provided ¢~ jj = 0. 

38. A sphere of mass M is expanding in such a manner that its density remains 
uniform. If a(t) is its radius at timet, show that, at a large distance r from its centre, 
the gravitational wave generated has components 

, , , 4GM .2 .. 
h 11 = h22 = h33 = --4 (a +aa) 

5rc 

the components h'12 , h~ 3 , h'31 being zero. (The bracketed expression is to be 
calculated at the appropriate retarded time.) 

39. A uniform rod of mass M and length 2a is pivoted with its centre at the 
origin of the x-frame and rotates in the x 2 x 3 -plane with angular velocity w. Show 
that, at a large distance r from the rod, the gravitational wave generated has non­
zero components 

h~ 2 = - h~ 3 = A cos2wt, h~ 3 = Asin2wr 

where A= 4GMa 2w 2;3rc4 and the instant r = 0 has been chosen appropriately. 
40. Show that, if the cosmical constant term is retained in Einstein's equation, 

it reduces in empty space to R;i + l\g;1 = 0. Deduce that the spherically symmetric 



Schwarzschild solution (cf. equation (52.9)) is given by 

2m I , 
h = I-- ---1\.r­

r 3 
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Using the approximate equation (48.17), show that this implies the existence of an 
additional force of repulsion from the centre proportional to the radius r. 



CHAPTER 7 

Cosmology 

59. Cosmological principle. Cosmical time 

Cosmology is the study of the large-scale features of the universe, such as the 
distribution and motions of the galaxies and the density of radiation and dust 
through intergalactic space. It is also concerned with the manner in which these 
features can be expected to change over very long periods of time measured in 
billions ( 109

) of years, i.e. with the evolution of the cosmos. Such calculations also 
throw light on the stages through which the cosmos has passed to arrive at its 
present state, and attempt to answer the question, did the universe have a 
beginning in time or has it always existed? If the universe had a beginning, as the 
evidence now strongly suggests, the study of its state during the very early stages 
of its evolution is called cosmogony. 

Since the galaxies are electrically uncharged, the only force influencing their 
motion is gravity. Thus, cosmology is necessarily founded on a theory of 
gravitation. It has been shown (see, e.g., Bondi, 1960) that the Newtonian theory is 
quite capable of generating models for the cosmos which provide explanation• 
for many of its observed features. However, these models necessarily assume that 
space is Euclidean, whereas Einstein's theory indicates that, in the presence of a 
gravitational field, space becomes curved and its geometry is then Riemannian. 
The curvature generated by the gravitational attraction of a galaxy is inap­
preciable and may be disregarded so long as we confine our attention to regions of 
space whose dimensions are comparable with those of a galaxy, but this eiTect has 
major consequences when the spatial extension of the whole cosmos is 
considered; in particular, as we shall see, a possible consequence is that the total 
volume of space is finite and, therefore, that the universe is not potentially infinite 
in extent as a Newtonian cosmology must assume. Only cosmic models which are 
in accord with general relativity theory will accordingly be studied. 

The reader will be presumed familiar with the basic facts relating to the 
distribution of matter and radiation over the cosmos as it is observed in the 
present epoch (Rowan-Robinson, 1979). The mass of the radiation is roughly 
one-thousandth of the mass of the galactic malter and its gravitational effect is 
therefore negligible by comparison with the attraction of the galaxies. However, 
at earlier epochs, the contribution to the gravitational field of the radiation was 

174 
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probably much more considerable and, during the first million years after the 'big 
bang', it is thought that the cosmos was dominated by its radiation; this radiation 
is assumed to have been in equilibrium with the matter and hence to have 
acquired a black-body frequency distribution. The remnant of this black-body 
radiation in the present epoch was detected by Penzias and Wilson in 1965 and 
this still forms the major part of the total cosmic radiation. It is not known what 
proportion of the matter in the universe has been attracted into the galaxies; the 
density of matter in intergalactic space is certainly so small as to have no 
observable effect on the light transmitted through these regions from the most 
distant sources, but the volume of space is so large that this observation is not 
inconsistent with the hypothesis that the net mass of intergalactic matter is many 
times that of the matter present in the galaxies. As will be seen, our ignorance in 
regard to this datum prevents our reaching a firm conclusion whether the cosmos 
is finite or infinite in extent. Although the galaxies often occur in clusters, from 
our viewpoint their overall distribution appears to be isotropic and homoge­
neous. At very great distances, the galactic density is observed to increase, but it 
must be remembered that such observations are carried out by light which was 
emitted at a much earlier epoch when all the galaxies are thought to have been 
closer together; it is assumed that, at the 'present cosmical time' (precise definition 
follows later), the density of galactic mass is uniform throughout the cosmos. 

That the galactic density is decreasing as the universe evolves is in accordance 
with the observed recession of the galaxies. To be more precise, what is observed is 
that the spectrum of the light from a distant galaxy is shifted towards the red end 
of the spectrum by an amount which is approximately proportional to its 
distance. This is Hubhle":s law. The reduction in frequency is interpreted as a 
Doppler effect caused by the motion of the galaxy away from the observer along 
the line of sight. Since it is supposed that the whole universe is in a state of 
expansion, each galactic observer will experience a recession of all the other 
galaxies in accordance with Hubble's law. Clearly, if matter is conserved during 
this expansion, a steady reduction in its density is inevitable and there is now an 
accumulation of evidence that the matter density was indeed greater in the distant 
past than it is today. However, a steady-state cosmology (Bondi and Gold. 1948, 
Hoyle, 1948) has been proposed in which the galactic density remams constant 
due to the continuous creation of matter in intergalactic space; this matter 
condenses into new galaxies and so maintains a steady-state distribution. 

As a first step towards the construction of a mathematical model of the cosmos, 
we shall treat the galaxies as point masses or molecules forming a galactic gas and 
further assume that this gas behaves like the perfect fluid studied in section 22. In 
particular, its energy--momentum tensor will be supposed given by equation 
(22.21 ). At the present epoch, this gas is exceedingly rarefied and, since the random 
motions of the galaxies relative to the background black-body radiation (which 
provides a natural frame of reference) are of relatively small magnitude, the 
pressure associated with the gas is very low; thus, at this and later epochs, it will be 
permissible to neglect the pressure and to treat the gas as an incoherent dust 
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cloud. However, during the early phases of cosmic evolution, the temperature and 
pressure are believed to have been very high indeed and the pressure terms cannot 
then be neglected; further, during these phases the contribution of the 
background radiation becomes significant and terms representing this contri­
bution must also be included in the energy-momentum tensor. 

We next assume that there are no privileged galactic observers, i.e. all observers 
moving with the galactic gas will be assumed to see the same large-scale process of 
evolution of the cosmos. This is the cosmological principle. The steady-state 
theory is based upon an extension called the perfect cosmological principle; this 
asserts that all galactic observers see the same large-scale state of the cosmos a1 all 
limes. Observation supports the first principle but not the second. 

If the cosmological principle is accepted and the perfect principle rejected, it is 
possible to define an absolute cosmicaltime, i.e. a way of assigning times to cosmic 
events which is independent of the observer. For all galactic observers will 
experience the same process of cosmic evolution and the various characteristic 
stages of this process can be allocated times according to some agreed scale. It is 
not necessary at this point in the argument to tie the scale to time measured by 
standard clocks; we only require that the later stages of an observer's experience 
be allocated times which are greater than the times allocated to earlier stages. 
Then, the cosmical time of any event can be defined unambiguously as the time 
recorded for the event by an adjacent galactic observer using the agreed time 
scale. Thus, the state of the cosmos at any epoch is now defined to be the set of 
events whose cosmical times are all equal to the cosmical time of the epoch. Since, 
at a given epoch, all galactic observers will be experiencing similar processes, the 
large-scale state of the cosmos at a given epoch must be homogeneous and 
isotropic for each such observer. 

60. Spaces of constant curvature 

At a given epoch, as we have just seen, the state of our cosmological model must 
be homogeneous and isotropic. In particular, the three-dimensional space in 
which the model is constructed must have these properties. The surface of a 
sphere is a two-dimensional space of this type embedded in~ 3 and it is obvious 
that a three-dimensional hypersphere embedded in 8 4 will have all the 
characteristics we need for our purpose. Also, just as the ordinary sphere includes 
the 8 2 plane as a special case when its radius becomes infinite, a hypersphere of 
infinite radius will correspond to 8 3 , which is an especially simple case of a 
homogeneous and isotropic space. In addition, we shall be led quite naturally to 
consider a third class of such spaces which, like ~3 • but unlike the hypcrsphere, 
have infinite volume. These three types of space all have constant curvature 
scalars R and are therefore called spaces of constant curvature. All these spaces 
have positive-definite metrics, as they must have if their geometry is to be 
Euclidean over sufficiently small regions. It may be proved that there are no other 
Riemannian spaces having such metrics which are homogeneous and isotropic. 
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Let (x, .r. z, u) be rectangular Cartesian coordinates in~ 4 . Then, a hypersphere 
of radius S has equation 

(60.1) 

Since u is determined in terms of x, y, z by this equation. a coordinate frame for 
points on this hypersurface can be constructed by first allocating coordinates 
(x, y, z) to the point having coordinates (x. r. z, u) in the Cartesian frame. Provided 
x, y, z are small by comparison with S, they wJII behave approximately like 
rectangular Cartesian coordinates in 8 3 and we shall therefore define quasi­
spherical polar coordinates (r, fJ, r/J) by the usual transformation equations 

x = rsinOcoscf>, y = r sin 0 sin r/J. z = rcosO (60.2) 

Equations (60.1) and (60.2) give 

(60.3) 

from which we find by differentiation that 

(60.4) 

Hence, the distance ds between the points (x, _r, z, u) and (x + dx, .r + dr, z + dz, 
u + du) on the hypersphere is given by 

ds 2 = dx 2 + dr2 + dz 2 + du 2 

= dr 2 +r2 (d02 +sin 2 0dcf> 2 )+r2 dr2 /(S2 -r2
) 

sl 
= -- dr2 + r2 (dll 2 + sin2 fJdcf> 2 ) 

S2- rl 
(60.5) 

This is a metric for the hyperspherical :?J 3 Clearly, by taking I I S 2 = 0, the metric 
reduces to that for g 3 in ordinary spherical polars. 

If the curvature scalar is calculated from this metric. it will be found that it 
equals - 6; S 2

, i.e. is constant. It is now evident that if S2 is replaced by - S2
, the 

curvature scalar will still be constant with value 6.S2 and the space will remain 
homogeneous and isotropic. This is the third type of such a space; its metric is 

sl 
ds 2 = ------ dr 2 + r2 (dfJ 2 + sin 2 Odcf> 2

) 
Sl + rl (60.6) 

Since these spaces are homogeneous and isotropic, the pole r = 0 can be taken 
to be any point and the axes from which 0 and cf> are measured can be taken in any 
pair of perpendicular directions. If r is small compared with S, both metrics (60.5) 
and (60.6) approximate to the spherical polar metric for Iff 3 , implying that the 
spaces are Euclidean over small regions. 

Consider the circler =constant, 0 = !rr, in the space with metric (60.5). The 
distance between neighbouring points cf>, cf> + dcf> on the circle is given by the 
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metric to be ds = rdtf> and the circumference of the circle is accordingly 2nr. 
Along a radius of this circle dO = dtf> = 0 and the distance between points r.r -r dr 
is given to be 

Integrating from r = 0 tor, the length of the radius is found to be 

p = S sin 1 (r S) 

(60.7) 

(60.8) 

Thus, r = S sin (p, S) and the circumference cis given in terms of the radius p by 

c = 2nS sin (p S) (60.9) 

Since sin (p/S) < pjS, cis smaller than 2np, which is the Euclidean result. 
The formula (60.9) receives a simple interpretation in the allied case of the .11 2 

which is the surface of an ordinary sphere of radius S. The quantities S. r, pare 
indicated in Fig. 8, from which the relationships just found are readily seen to be 
valid. Clearly. asp increases, r first increases until it achieves a maximum valueS, 
and thereafter decreases until p = nS, when r becomes zero. It now appears that 
our coordinate system is ambiguous, in that two different points can have the 
same coordinates; this deficiency can be rectified by replacing r by p using the 
transformation equation (60.8), giving a new metric 

(60.10) 

This transformation has also eliminated the singularity in the metric (60.5) at 
r = S. Like the Schwarzschild singularity, this is a property of the coordinate 
frame and evidently docs not correspond to a singularity in the space itself. 

Putting pjS = t/1. the metric (60.10) can also be expressed in the convenient 
form 

ds 2 = S2 [dt/1 2 +sin 2 t/J(d0 2 +sin 2 Vdt/> 2 ll 
(See Exercises S, No. 33.) 

fiG. 8 

(60.11) 
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In the case of the space with metric (60.6), r can assume all positive values and is 
not ambiguous. By putting r = S sinh t/1. this metric can be transformed to 

(60.12) 

Another form for these metrics which will be specially important later is 
obtained by putting r = Sa. The metrics (60.5) and (60.6) can then both be 
expressed by 

ds2 = S2[ dl1
2 
·-+a2(dfJl +sin2l:ld¢2)] (60.13) 

I -ka2 

where k = I in the case (60.5) and k = - I in the case (60.6). The special Euclidean 
case can also be accommodated by permitting k to be zero. The new coordinate a 
is dimensionless and, if k = I, is restricted to values satisfying 0 ~ a ~ I. For the 
other values of k, a takes all positive values. 

To calculate the volume of some region of an rit 3, let y• (~ = I, 2, 3) be geodesic 
rectangular Cartesian coordinates in the neighbourhood of some point P (section 
39). Assuming that the metric is positive definite (as in the present case), the y• will 
all be real. Then, if x• are coordinates with respect to any other frame, the metric 
tensor in the x-frame will be given by 

(60.14) 

Hence, if the Jacobian determinant c(y 1
, /, y3 )/8(x I, x2

' x3
) is squared by 

multiplying its rows by its columns, it follows that 

[
ctrl • .r2,y3)]2 _ _ 
'( l 2 3) - lg.pl - g 
C X , X , X 

(60.15) 

But, the volume 8 V of a small region A in the neighbourhood of P is given by 

bV = fff dy 1dy 2 dy 3 = ffi c(r;. y:, <) dx 1dx 2dx 3 (60.16) 
A AO(X , X , X ) 

Thus, the volume enclosed by the coordinate surfaces x 1
, x 2

, x 3
, x 1 +dx 1

, 

x 2 +dx 2
, x 3 +dx 3 is 

(60.17) 

The formula for the volume V of a finite region F of rit 3 now follows, viz. 

V= fft Jgdx
1

dx
2

dx
3 (60.18) 

In the case of the space with metric (60.5), g = S 2r4 sin 2 fJ/(S 2 -r 2
) and the 

whole space has volume 

f R f" f2
" Sr

2 
sine 2 dr dO J 

52 2 d¢ 
o o o ( -r) 

(60.19) 
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where the factor 2 is needed since the range 0 < r < S covers only half the sphere 
(see above). Performing the integrations, this volume is found to be 2n 2 S 3

. 

It will be found that the total volume of the space with metric (60.6) is infinite, 
as in the Euclidean case. 

61. The Robertson-Walker metric 

In this section, we shall calculate a space-time metric for the cosmos in a frame 
formed by clocks moving with the galactic gas, all reading cosmical time x 4. As 
explained in section 45, the spatial coordinates x• of each clock never change and 
the frame is therefore said to be co-moving with the gas. 

Viewed from any one of the clocks, the cosmos is isotropic, i.e. it is impossible 
to specify any direction having special properties. Let g;1 be the metric tensor in 
this x-frame. Suppose we carry out a spatial coordinate transformation by 
relabelling the clocks, leaving their readings unchanged; such a transformation 
will take the form 

x• =f'(xl, x2, x3), x4 = x4 

The transformed metric tensor is gli and we shall have 

(61.1) 

(61.2) 

This equation shows that y ,4 behaves as a covariant 3-vcctor with respect to 
spatial coordinate transformations and hence determines a special direction at 
every point of 3-space. This is contrary to our assumption of isotropy for galactic 
observers and we conclude that g ,4 = 0 throughout space-time. Thus, 

(61.3) 

Now consider the events of a coordinate clock indicating the times x4, 
x4 + dx4. Let dr be the proper time interval between these events. Since the 
spatial coordinates of the clock never change, the metric (61.3) shows that 

(61.4) 

This equation determines the relationship between the cosmical time x4 and the 
standard timer shown on an atomic clock moving with the galactic observer. But 
this relationship must be independent of the galactic observer, since all are 
equivalent, and it follows that g44 can only depend on x4. We can accordingly 
transform from x4 to a new cosmical standard time t by a transformation 

ct = J .J( -y44)dx4 

so that the metric (61.3) reduces to 

(61.5) 

ds 2 = g.pdx•dx11 - c 2 dr 2 (61.6) 

Taking a section r = constant of space-time at a particular cosmical time, an 
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.11 3 with metric 

(61.7) 

is obtained. This is our model for the cosmos at this cosmical instant. By the 
cosmological principle, any galactic observer will find this .Jf 3 to be homogeneous 
and isotropic. Choosing himself as pole, he will therefore be able to detine 
coordinates (a, 0, ¢)for which the metric (61.7) takes the form (60.13). Using this 
frame and the new cosmieal time 1, the metric (61.6) finally assumes the 
Robertson-Walker form 

ds 2 = S2 
[ ·· ~a

2

- + a 2 (dV 2 + sin 2 Od¢ 2 
)] - c2 dt 2 

I - ka 2 
(61.8) 

Sis a constant for the cosmos at any given timer, but will in general vary with r; it 
will be referred to as the cosmic scale facror; only when k = I can cosmic space be 
pictured as a hypersphere of radius S in t 4 . 

It remains to check that the frame of reference is co-moving, as assumed at the 
outset. The galaxies will be falling freely in the gravitational field associated with 
the metric (61.8) and their world-lines must therefore be geodesics. Since we are 
supposing the spatial coordinates of a galaxy remain constant, x' = constant 
along a galactic world-line. Substituting in the geodesic equations (43.5), the 
condition they are satisfied is found to be f~4 = 0. For the metric (61.8), this 
condition reduces to the requirement ?-g44;rx• = 0, which is clearly true. 

62. Hubble's constant and the deceleration parameter 

The behaviour of the cosmic model derived from the Robertson-Walker metric 
will be determined when the value or k and the dependence of the cosmic scale 
factorS on the cosmical timet are known. From the physical data available today 
( 1981 ), neither of these pieces of information can be derived with any degree of 
accuracy. It seems likely (see section 65) that k = + I and that the universe is 
closed, i.e. of finite volume. In regard to S (I), the value of its first derivative is 
known roughly, but even the sign of its second derivative is in doubt, although the 
general consensus of opinion is that it is negati\oe, i.e. the cosmic expansion is 
slowing down. Instead of quoting values of these two derivatives. it is more 
convenient to work with the parameters 

H = $,s 
4 = -ss·$2 

(62.1) 

(62.2) 

H is called Hubble's constant and has reciprocal time dimension; q is called the 
deceleration parameter and is dimensionless. In the present epoch, the value of 
I /His often quoted 10 be about 1.8 X I 0 10 years, whereas the value of q is thought 
by some cosmologists to be about unity, although others would not exclude 
negative values. 
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At a fixed cosmicaltime r, the Robertson-Walker metric requires that ordinary 
space should have the metric (60.13). Any galaxy can be thought of as being placed 
at the pole a = 0 and then the radial (or proper) distance of any other galaxy 
(a, e, r/J) is given by 

d = S f a J da k 2 = a.S 
o (1-a) 

(62.3) 

where :x = sin· t 11 if k = I. rx = a if k = 0, and a. = sinh t a if k = - I. Thus, the 
rate of recession of this galaxy from the galaxy at the origin is given by 

d = a.S = Hd (62.4) 

This is Hubble's law that, at a given cosmical time, the rate of recession of any 
galaxy is proportional to its distance. H has the same value for all galactic 
observers at the time t, but will, in general, itself vary with 1. Clearly, this law 
cannot be verified directly, since neither the distanced nor its rate of change are 
directly observable; in the next two sections, we shall derive an alternative 
relationship between associated quantities which can be measured. 

63. Red shift of galaxies 

Suppose that a galaxy G (a 1 , () 1 , r/J 1 ) is being observed through a telescope from 
the pole 0. Successive crests of a light wave emitted by Gat times It, It + dr 1 are 
received at 0 at times 10 , 10 + dt0 respectively. The world-line of each crest is a 
radial null geodesic along which e and r/J remain constant (the reader should check 
that the equations of a null geodesic can be satisfied with ()and r/J constant). The 
Robertson-Walker metric shows that along such a world-line, 

da = -~dr 
JO- ka 2

) S 
(63.1) 

Integration of this equation for the motion of each crest yields the equations 

la, da = f'• dt = f'• + dro dr 
I(J -ka2) c S c S 

0 '\/ l 1 r1 +dt 1 

Since dr0 , dtt will be small, the last equation implies that 

dt 0 

S(lo) 

(63.2) 

(63.3) 

dr 1 is the period of the emitted wave as measured by a standard clock at G, and dr0 

is the period of the received wave as measured by a similar clock at 0. Since 
wavelength is proportional to period, if A. 0 , A. 1 are the wavelengths of the received 
and emitted light respectively, 

A.o/ A.t = SolS t 

where S0 = S(t0 ) and S1 = S(r 1 ). 

(63.4) 
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Thus, if the received light is redder than the emitted light. ).0 = i.t +~i-t, where 
l\i. 1 is positive. The red-shift factor z is defined by the equation 

z = ~i·t = ~~o - I = ~~ - I 
1·t "·t st 

(63.5) 

Clearly z is positive if S0 > S t, i.e. the universe is expanding. 
If the observed galaxy is not too distant, 10 -It will be relatively small and we 

can expand S Ut) in a Taylor expansion thus: 

S(ltl = S(to)- (lo -It )S (1 0 ) + !(1 0 -ltl2 S(t 0 ) + .. . 

=S(lol{l-Ho(lo-ltl-!qoH~(I0 -Itl2 + ... } (63.6) 

where H 0 , q0 are the values of Hubble's constant and the deceleration parameter 
at the instant 10 of observation. Substituting from the last equation in (63.5), we 
derive the result 

(63.7) 

By observing z for a number of galaxies and calculating (1 0 -It) for each, this 
expansion provides a means of estimating the values of H and q at the present 
epoch. The calculation of (1 0 -It) is considered in the next section. 

64. Lnminosity distance 

If all galaxies possessed the same intrinsic luminosity, i.e. emitted light energy at 
the same rate, and if this luminosity were independent of the time, the observed or 
apparent luminosities of galaxies would depend upon their distances according to 
a calculable formula and an observation of the apparent luminosity would then 
provide us with a measure of the distance. Although there is considerable 
variation in the strengths of the galaxies as light sources, by confining 
observations to galaxies of a particular type and stage of evolution, this variation 
can be reduced and thus estimates of their distances can be obtained. Since 
galaxies tend to occur in clusters, once the distance of one member of a cluster has 
been found, the intrinsic luminosity of the other members can be determined, thus 
providing further useful information in regard to the probable intrinsic 
brightness of galaxies of other types; this information can then be utilized as a 
basis for later distance determinations. 

Suppose we take the pole 0 of coordinates (a, fJ, </J) at some distant galaxy G 
whose luminosity is to be observed and let our point of observation A have 
coordinates (a, !n, 0). Photons emitted by G will have null geodesics as world­
lines, along which(} and <P will be constant. Consider a photon which travels along 
the ray fJ = tn, <P = £,where£ is very small. This photon will ultimately arrive at 
the point (a, !n, t:) of closest approach to A when its distance from A will be given 
by equation (60.13) to be 

(64.1) 
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where S0 is calculated at the time of arrivalt0 of the photon in the vicinity of A. It 
now follows that, if the telescope at A has aperture of radius a, the photon will be 
collected by the telescope provided e < a(S0 a. Thus, the telescope will collect all 
photons which left G along paths enclosed within a right circular cone of semi­
vertical angle aj S0 a. This cone embraces a solid angle 

(64.2) 

where a = rra 2 is the telescope's aperture; it follows that the proportion of 
photons leaving G which are collected at A is ex/ (4rr S5 a 2 

). 

According to equation (63.4), if v1 is the frequency of a photon when it leaves G 
at timet~> its frequency v0 on arrival at A at time 10 is given by 1'0 = S 1 v1 /S0 . But 
the energy of a photon is related to its frequency by the formulaE= hv, where his 
Planck's constant. Thus, the energy of the photon is also reduced by a factor 
S 1/ S0 . Further, equation (63.3) indicates that the photons emitted from Gover a 
time interval dt 1 arrive at A over the longer time interval dt 0 = S0 dtdS 1. Hence, 
the rate of reception of light energy is additionally reduced by a factorS 1/ S0 • If, 
therefore, Lis the intrinsic luminosity of G, i.e. the total rate at which it emits 
radiation, the rate at which light energy is collected by the telescope at A is given 
by 

LaS~ 
4rra2 S4 . 

0 

(64.3) 

The apparent luminosity I of a celestial object is defined to be the rate at which 
light energy from the object flows across unit area normal to the line of sight at the 
point of observation. The last result shows that for CJ, 

(64.4) 

If space were Euclidean and G were stationary at a distanced from A, we should 
have 

(64.5) 

Substituting the actual value of I from (64.4) and solving for d, we find 

d = aS~jS 1 (64.6) 

This result is termed the luminosity distance of G. 
Returning to equation (64.4), we shall obtain an expansion for I in powers of 

(1 0 -t Jl. Equation (63.2) shows that 

f a da f'" dt 
o J(l -ka2) = c '• S (64.7) 

Assuming a is relatively small (i.e. G is not too distant), the integrand of the left­
hand member of this equation can be expanded in powers of a to give 

fa da l 
o J(l-ka2) = a+6ka3+ ... (64.8) 
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Also, equation (63.6) leads to the result 

I I 
-S =-S( {l+Ho(to-t)+ ... } 

(r) 10 ) 
(64.9) 

Hence, the right-hand member of equation (64.7) can be expanded in the form 

f'• dr c 
c ~-=-s {(to-rtl+!H0 (t0 -td2 + ... } (64.10) 

'• s 0 

Equating the expansions (64.8) and (64.10), we see that, to the first order of small 
quantities, a= c(r0 -td/S0 • It follows that, to the second order in (1 0 -ttl, 

c { l 2 } a= So (1o-ltl+JH0 (1 0 -td + ... (64.11) 

Substitution from equations (63.6) and (64.11) in equation (64.4) now yields the 
expansion 

L 
1=

4 2 2·{1-3H0 (1 0 -ttJ+ ... } 
nc (r 0 -ttl 

(64.12) 

Finally, equation (63.7) shows that to the first order (r0 - t 1) = z/ H 0 . It follows 
from the same equation, therefore, that 

(64.13) 

Substituting for (r0 -r 1) from this equation into equation (64.12) accordingly 
leads to the expansion 

1- LH~ rl } --4 22l +(qo-l)z+ ... 
nc z 

(64.14) 

The importance of this last equation is that it relates two observable quantities I 
and z. By fitting it as closely as possible to the available data, estimates of H 0 and 
q0 have been obtained. A more precise relationship follows from dynamical 
considerations (see Exercises 7, No. 5). 

65. Cosmic dynamics 

To gain further information in regard to the probable values of the functions H (r) 
and q(1) at cosmical times in the remote past and future, it is necessary to 
determine the equations of motion of the cosmos. These will be provided by 
Einstein's equations of gravitation. It is therefore necessary first to calculate the 
energy- momentum tensor for the galactic gas. 

The 4-velocity of a particle whose world-line in the x-frame has equations 
xi= xi(r) (r = sjic being proper time measured by a standard clock moving with 
the particle) has been defined (section 50) to be the contravariant vector vi given 
by 

. dxi 
V'=-

dt 
(65.1) 
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If the frame is inertial and Minkowski coordinates are used, this definition is in 
agreement with that adopted in the special theory (section 15). 

Now consider a perfect fluid. At any point in the fluid, we can construct a freely 
falling frame which is locally inertial and in which Minkowski coordinates can be 
defined. The special theory is valid in any such frame and the fluid's proper 
density of proper mass lloo and pressure p can be defined as 4-invariants (section 
22). The energy-momentum tensor in the frame then follows from equation 
(22.21 ). In the general x-frame, this tensor must therefore be given by the equation 

(65.2) 

for this is a tensor equation and reduces to the valid equation (22.21) in the freely 
falling Minkowski frame. 

Along a world-line of a particle of the galactic gas, the coordinates (a, 0, r/J) 
remain constant and hence, from the metric equation (61.8), we deduce that r = t. 
Thus, the 4-velocity of this particle has components ( V;) = (0, 0, 0, I) in the 
Robertson- Walker frame. The non-zero contravariant components of the metric 
tensor are 

9 11 = (l-ka2)/S2, 922 = l/S2a2, 933 = cosec2fJ;S2a2, 944 = -l;c2 
(65.3) 

We can now calculate the non-zero components of the energy-momentum tensor 
for the galactic gas from equation (65.2); they are 

T
11 

= p(l-ka
2

)/S
2 

) 
r22= pJS2a2 

T 33 = p cosec2fJjS2a2 

T44 = 11 

(65.4) 

where we have deleted the subscripts in llo 0 for convenience. The covariant 
components now follow immediately, viz. 

T11 = pS2 /(1 - ka 2
) 

T22 = pS2a2 

T33 = pS2a2 sin 20 (65.5) 

The non-zero components of the Ricci tensor for the Robertson-Walker 
metric may be verified to be 

R 11 = -P/(1-ka2 ~ R22 = -Pa2
, R33 = -Pa2 sin 2 0, R44 = 3S;S 

(65.6) 

where P = 2k + (SS + 2S2 )jc2 (65.7) 

dots denoting differentiations with respect to 1. 



The reader may also verify that the curvature scalar is given by 

R = R:= -6(SS+S2 +kc2)fc2S2 
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(65.8) 

We can now construct Einstein's equations (47.16) (covariant form); only two 
distinct equations emerge, viz. 

2SS+S2 +kc2 -c2AS2 = -Kc2pS2 

3 (S2 + kc 2
)- c2 AS 2 = Kc4 pS2 

(65.9) 

(65.10) 

Together with an equation of state p = p(Jl), these equations are sufficient to 
determine the unknown functions S, p and Jl. 

Before attempting to integrate these equations, certain important conclusions 
can be reached by a direct study. 

Equation (65.10) can be written in the form 

3c2 

Sl k = KC
4Jl- (3H2

- c2 A) (65.11) 

from which it follows that k = + I if 

(65.12) 

and k = -I if the reverse inequality is true. Jl, is therefore a critical density (the 
closure density) for the galactic gas, determining whether the universe is of finite 
or infinite volume. Assuming A= 0 and taking H = 1.8 X 10-IS (at the present 
epoch), Kc4 = 8nG = 1.67 x 10- 9 (all SI units), we calculate that 

Jlc = 6 X 10- 2 7 kg m- 3 (65.13) 

If the matter in the galaxies were spread uniformly over the whole of space at the 
present epoch, it iS estimated that itS density WOUld be Jl = 3 X 10- 28 kg m- 3

. 

Thus Jl < Jlc and this datum suggests that the universe is open. However, the 
presence of a very tenuous intergalactic dust or gas, far below the limit of possible 
observation, could easily reverse this conclusion. We accordingly seek further 
information from equation (65.9). 

This equation can be written 

(65.14) 

Again taking A = 0 and assuming p to be negligible, we conclude that k = + I if 
q > !-Unfortunately, the red shift-luminosity relationship, from which the value 
of q is derivable (see section 64~ has not been established with sufficient certainty 
to decide for or against this inequality. However, the data available tends to 
support it. 
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66. Model universes of Einstein and de Sitter 

The first solution of the dynamical equations (65.9) and (65.10) was suggested by 
Einstein himself. His proposal was made some years before Hubble published his 
observations relating to the recession of the galaxies, and the possibility that the 
universe was in a state of expansion was not considered by astronomers at that 
time. Einstein's universe was therefore static and the equations were satisfied by 
taking S to be constant. Pressure and density had then to satisfy the equations 

k 
Kp = A- s2 

3k 
KC2f.-1= 2 -I\ s 

(66.1) 

(66.2) 

Clearly, if 1\ = 0, since p and f.-1 cannot be negative, the only possible solution is 
for p, f.-1 and k all to be zero, i.e. an empty, infinite, Euclidean cosmos. It was in 
order to be able to reject this solution that Einstein introduced the cosmical 
constant term into his equation of gravitation. 

Adding equations (66.1) and (66.2), we find 

(66.3) 

proving that k must be positive, i.e. k = + I and the universe is closed. Equations 
(66.1) and (66.2) now show that 1\ must satisfy the inequalities 

I 3 
s2 ~A~ s2 (66.4) 

Sis the radius of the universe, which is certainly very large, indicating that 1\ will 
be quite inappreciable except for phenomena on the cosmic scale. Following upon 
Hubble's discovery, Einstein abandoned his model and with it, the cosmical 
constant. Since then, 1\ has been put to zero in most cosmological investigations 
and we shall follow this practice in the remaining sections of this chapter (except 
in certain exercises at the end). 

The necessity for including the cosmical constant term if the universe is to be 
static, follows from very elementary considerations. Without it, an initially static 
cosmos will collapse under the gravitational attractions of its constituent galaxies. 
If 1\ is positive, the term implies the existence of a counterbalancing long-range 
repulsive force between the galaxies, which increases with their distance of 
separation (Exercises 6, No. 40). However. although these two opposing 
gravitational forces can result in equilibrium, putting p = 0 to match the present 
state of the cosmos and hence 1\ = I/S2

, it may be proved that the equilibrium is 
unstable (Exercises 7, No. 8). 

Following upon Einstein's proposed model, de Sitter derived another which is 
of some historical interest. In this context, his model is most conveniently 
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constructed by adopting as our basic assumption that Hubble's constant does not 
change with time, i.e. 

S/S = H =constant (66.5) 

Integrating, we get 

S =A exp Hr (66.6) 

where A is the value of S at some arbitrarily chosen origin of cosmical time. 
Substituting in equations (65.9) and (65.10), we find that 

As t--> "Y_, 

Neither of these limits can be negative. so we must require that 

11.=3H2 jc 2 

Thus, equations (66.7) and (66.8) lead to the result 

3p+c 2p = 0 

from which we conclude that 

p = 0, f..!= 0 

and, therefore, that k = 0. 

(66.7) 

(66.8) 

(66.9) 

(66.10) 

(66.11) 

(66.12) 

Thus, de Sitter's universe is Euclidean, but being empty is only of academic 
interest. Although the model appears to be in a state of expansion, since no matter 
is present, this phenomenon has no physical basis; indeed, it is possible to derive a 
static metric for the model by carrying out certain tranformations on a and r (see 
Exercises 7, No. 3).lfthe galaxies are represented by freely falling particles having 
negligible mass and constant spatial coordinates, an expanding infinite cosmos is 
obtained; however, each galactic observer is limited to a finite universe, since he 
cannot penetrate beyond a certain distance called his event horizon (see Exercises 
7, No.4). 

67. Friedmann universes 

These models are constructed from equations (65.9) and (65.10) by putting p = 0, 
i.e. by treating the galactic gas as an incoherent dust cloud. We shall also put/\ to 
zero. 
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We first note that equations (65.11) and (65.14) reduce to the forms 

Kc4 p = 3H2 +3kc2 (S 2 

(2q - 1) H2 = kc 2 1 S2 

It follows that 

KC
4 p = 6qH 2 

and hence that q can never be negative. 

Equation (65.9) gives 

Writing this equation in the form 

we can integrate and obtain 

D being constant. 
Substitution in equation (65.10) now yields 

pS 3 = 3D/Kc2 =constant 

(67.1) 

(67.2) 

(67.3) 

(67.4) 

(67.5) 

(67.6) 

(67.7) 

showing that the constant D must be positive. This is the equation of conservation 
of mass (see Exercises 7, No.2). In the case of a finite cosmos, the total volume is 
known to be 2n 2S3 and the total proper mass is accordingly 2n2S3 p, which is 
conserved. This is to be expected, since there is no interaction between the 
particles of the dust cloud and their proper masses therefore never change. 

We shall next integrate equation (67.6), with k taking its three possible values, 
separately. 

(i) If k = I, the equation is 

SS2 = c2 (D- S) (67.8) 

Changing the dependent variable from S to u by the transformation 

S=j-D(1-cosu) (67.9) 

we have S = i Du sinu and equation (67.8) leads to the equation 

i D ( I - cos u) u = c 

This integrates immediately to the form 

ct = iD(u -sinu) 

(67.10) 

(67.11) 

choosing 1 to be zero when u = 0 (i.e. the origin of cosmical time is taken to be the 
instant when S = 0). Equations (67.9) and (67.11) determineS as a function oft; 
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5 

k =0 

0 TT012c 

FIG. 9 

since these equations are the well-known parametric equations for a cycloid, the 
plot of S against ct must take this form (see Fig. 9). 

Our conclusion is that the finite universe will expand from a singularity at t = 0 
to a maximum radius D when u =nand t = nD/2c,and will then contract back to 
the singular state at u = 2n, t = nDjc. The actual behaviour in the vicinity of the 
singularity is, of course, not predicted by our analysis, since p has been neglected 
and the contribution of the radiation ignored. 
(ii) If k = 0, equation (67.6) gives 

The variables separate and integration yields 

S3 = 9c 2 Dt 2 /4 

(67.12) 

(67.13) 

again taking t = 0 at S = 0. This universe expands from a singularity and 
continues to do so indefinitely (Fig. 9). Space is Euclidean and the cosmos is open. 
(iii) If k = -1, equation (67.6) takes the form 

SS2 = c2 (D + S) (67.14) 

As in the case k = I, we change the variable to u, this time by the transformation 

S = !D(coshu- I) (67.15) 

and integrate to find that 

ct = !D(sinhu- u) (67.16) 

taking u and t to be zero at S = 0. As in the previous case, the initial expansion is 
never reversed and the universe is open (Fig. 9). 
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It remains to calculate two constants of integration, viz. D and the value t0 oft 
in the present epoch. in terms of H0 and q0 . 

Putting present values into equation (67.2), if k =1= 0 we get 

kc 1 

sl- ----­
o- (2q

0 
-I)H~ 

Equation (67.6) can be wntten in the form 

H 1 = c 2 (D -kS)/S 3 

Thus. 

If k 'f. 0, equation (67.17) now shows that 

D = - - q0 (2q0 -1) , q0 > 2, k = I 
Ho 

(67.17) 

(67.18) 

(67.19) 

2c .. 3 2 
1 1 

2c _ 
3 2 1 

(67.20) 
=- qo(l - 2qo) ,0 < qo < '1• k = -I. 

Ho 

If k = 0, equation (67.2) requires that q =!and equation (67.19) gives 

(67.21) 

S0 , H0 are independent parameters for this model. However, S0 is superfluous and 
may be eliminated by transformation of the coordinate a to a' = S0 a; S0 then 
disappt:ars from the metric. Equivalently, we may take S 0 = I and write equation 
(67.13) in the final form 

(67.22) 

The present age 10 of the universe is now calculable for the three types of model. 

(i) If k = I, q0 >!,equation (67.9) shows that 

I 
cos u0 = I - 2S0 / D = -- - I 

L/o 
(67.23) 

having used equations (67.17) and (67.20). Equation (67.11) now yields the result 

lo = ~- [q0 (2q0 - I) 3 2 cos- 1 (q0 1 -I)- (2q 0 - I) -I J 
Ho 

(67.24) 

the inverse cosine being taken in the first or second quadrant. If \alues L/o = I. 
1jH0 = 1.8 x 10 10 years are substituted, we find 10 = 10 10 years very nearly, i.e. 
ten billion years. 
(ii) If k = - I, 0 < q0 < ~, a similar calculation leads to the result 

I 
to = - [ (I - 2q0 ) - 1 - q0 ( 1 - 2q0 )- 3 ·l cosh - 1 ( q0 1 - I ) J 

Ho 
(67.25) 
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Suppose we calculate q0 from equation (67.3), taking ll = 3 x 10- 28 kg m- 1 (i.e. 
assuming all the matter has been attracted into the galaxies) and H 0 = 1.8 
x 10- 18 s- 1

• Then q0 = 0.025 and the formula (67.24) gives t0 = 1.6 x 1010 years 
( 16 billion years). 

(iii) Finally, if k = 0, q = i, putting S = l into equation (67.22) gives 

t 0 = 2/(3Ho) (67.26) 

With ljH 0 = 1.8 x 10 10 years, this makes the present age of the cosmos to be 
12 billion years. 

For the early stage of cosmic expansion, the model's failure to include the 
contribution of the radiation renders it invalid. However, since this stage is 
expected to be short (about 106 years), the corrections which need to be made to 
the values of t0 calculated above to allow for this failure are negligible. 

The stage of radiation dominance is studied in the next section. 

68. Radiation model 

During the early stages of cosmic expansion, it is believed that the dominating 
factor was the electromagnetic radiation. In this section, we shall study a 
simplified cosmological model, containing radiation alone, which will provide a 
first approximation to this early state of the universe. 

We shall assume that the radiation is isotropic for each galactic observer and 
has energy density U (the same for all observers at a cosmical timet). Such an 
observer is in a state of free fall and can be equipped with rectangular axes and 
associated standard clocks, which behave locally like an inertial frame. 
Minkowski coordinates yi can be defined in this frame and, with respect to these, 
the observer's 4-velocity is V = (0, ic) (section 15). 

In this y-frame, the results of the special theory are applicable and, in particular, 
equation (29.5) defines the energy-momentum tensor Sj1 for the radiation. We 
shall assume that the time variations of the field components E., H. of this 
radiation are quite random and that there is no correlation between these 
components. Thus, if ex* /1, 

m(H.H11 ) = 0 (68.1) 

where m(O) denotes the mean value. Also, since the radiation is isotropic, m(£;) 
and m(H;) will be independent of a.. Hence, taking mean values in equation 
(29.16), we find 

(68.2) 

U being the mean energy density of the radiation. 
We can now calculate the mean values of the components of Sii. If a.* /1, it 

follows from equations (29.14) and (68.1) that m(S.11 ) = 0. Also, since the 
radiation is in a steady state, the rate of energy flow in any direction is zero and, 
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hence, the mean values of the components or the Poynting vector all vanish; i.e. 
m(S,4 ) = 0. It is clear, therefore, that only the means of the diagonal components 
S 1 1, 52 2, S 33• S44 are non-Lero and. for these, equations (29.(3) and (29.(6) give 

m(S 11 ) = m(S22 ) = m(S.n) = !r.0 m(£;) + !J10 m(H;) = ~ U (68.3) 

m(S44 )= -L' (68.4) 

A tensor equation for Si1• valid in any frame, can now be written down, viz. 

S'i=
4 _!! V'V 1 + 1

y'1 U 
3 c2 3. 

(68.5) 

where V' is the 4-velocity of the local galactic observer. U is uniquely defined and 
is thus a 4-invariant. Hence, this equation certainly defines a contravariant tensor. 
The equation is easily verified to give the mean components just calculated in 
the y-frame. It is therefore valid in all frames. If the equation is compared with 
equation (65.2) for a perfect fluid, it will be seen that the radiation behaves like a 
perfect fluid of density Uic 2 and pressure U ;3. 

In the Robertson Walker frame, ( V') = (0, 0, 0, I). Hence, the non-zero 
components of the energy-momentum tensor in this frame are: 

S
11 

= U(l-ka
2

)j3S
2 

) 

S 22 = U/(3S 2 a 2
) 

S 33 = U cosec 2 0/(S 2 a 2
) 

s44 = l! /c2 

(68.6) 

Using the components of the Ricci tensor already calculated in section 65, the 
Einstein equations for the model can now be calculated. They prove to be 

2SS+S 2 +kc 2 -c2t\S 2 = -!Kc 2 US 2 (68.7) 

3(S 2 +kc 2 )-c 2t\S 2 = Kc 2 US 2 (68.8) 

Since S will be comparatively small during this phase, even if t\ is non-zero, the 
terms containing this constant will be negligible. We accordingly putt\ = 0. Also, 
if k -=/= 0, the term kc 2 will be negligible by comparison with the terms 2SS and S 2 • 

For. during the matter-dominated phase, equation (67.6) shows that 

52=c 2 (~-k) (68.9) 

and kc 2 is small by comparison with S2 provided D/S ~ I. But 

D D S0 --
s S0 S 

2qo So 
j2q

0
-lj.S (68.10) 

having used equations (67.17) and (67.20). At the beginning of this phase, S0 /S is 
large and it follows that DiS is large. Thus, kc 2 is negligible by comparison with 
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S 2 and, since Stakes even larger values during the earlier radiation dominated 
phase, we shall neglect k.c 2 during this phase. We have proved, therefore, that in 
this early stage of the cosmic expansion, the behaviour of the cosmos ts 
independent of the values of I\ and k.. 

Eliminating U between equations (68.7) and (68.8), it is now found that 

Two integrations now yield the results 

S = A/S, 

where A is constant. Substituting in equation (68.8), we find 

~..:c 2 U = 3S 2 JS 2 
= 3j(4c 2

) 

(68.11) 

(68.12) 

(68.13) 

If we assume that during this phase the radiation is in thermal equilibrium with 
the matter present, then it will possess a black-body spectrum and the 
temperature Twill be given in terms of the energy density U by Stefan's law, viz. 

(68.14) 

where a = 7.5 x 10 -to J m- 3 K · 4 is the Stefan-· Boltzmann constant. Thus, 
equation (68.13) leads to the following formula forT: 

(68.15) 

One second after the inception of the expansion, this formula indicates a 
temperature of 1.52 x 10 10 K for the cosmos. 

69. Particle and event horizons 

Equation (64.7) determines the coordinate a of an object which is observed in our 
telescopes at the present epoch t0 , by light which was emitted by the object at time 
t 1 . Since t 1 cannot be less than the time 1 = 0 at which the cosmic expansion 
commenced (accepting the big-bang hypothesis), the most distant object which 
we can observe today has coordinate a given by 

r· da ['" dt 
Jo J(t -k.a2) = c Jo s 

The proper distance of such an object is therefore 

r· da ['" dt 
d, = S0 Jo J(l -k.ai) = cSo Jo S 

d, is said to be the proper distance of the particle horizon. 

(69.1) 

(69.2) 

In the case of the Friedmann model with k = + I, equations (67.9) and (67.11) 
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d1 ~ D(l -cos u)du 
c-- = ---·---··- = du 

S ! D ( I - cos u) 
(69.3) 

and, thus, 

c -1-1 .-1( 1 ) dH = S0 u0 = -(2q0 -I) cos ----I 
Hu L/o 

(69.4) 

by equations (67.17) and (67.23). 

The reader is left to obtain the results 

(69.5) 

(" - I ·2 - I ( I I ) du=-(l-2q0 ) cosh --, 
Ho qo 

if k = - 1 (69.6) 

for the other values of k, in a similar manner. 
In particular, if k = +I, q0 =I, I/H0 = 1.8 x 10 10 years, we calculate that 

d11 = 2.8 x 10 10 light years. 
Equation (64.7) can be utilized in an alternative manner. If an event occurs at 

the point with coordinate a at the present epoch 10 , we shall observe it at time 11 

provided 

f• da f'' d1 
0 

J(l-ka1)=C 
10 

S (69.7) 

In the case of the Friedmann model with k = +I, we must have 11 < nDjc, since 
the cosmos collapses to a point at time n D jc; fork = 0 or - 1, 11 can be arbitrarily 
large. Thus, the proper distance in the present epoch of the most distant event we 
can ever hope to see is given by 

(69.8) 

where lmax = nDjc if k = +I, and lmu =X if k = 0 or -1. If d1. = x.., then all 
events happening in the present epoch will ultimately be observed m our 
telescopes. d ~ is termed the proper distance of the er.:ent horizon. 

In the case k = + I, we calculate that 

d~ = S0 (um., -u0 ) = So(2n- u0 ) 

= _!' -(2q
0 

-1)- 1· 2 cos-t ( _!__- 1) 
Ho L/o 

(69.9) 

provided the inverse cosine is taken in the range (n, 2n). With q0 =I, 1/Ho = 1.8 
x 10 10 years, it will be found that d r = 8.4 x 10 10 light years. Light from events 
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occurring at a greater proper distance will not have reached us before the cosmos 
collapses to a singularity. 

The cases k = 0 and - 1 both give an infinite value of d ~ and all events 
happening today will, in these models, ultimately be observable on the earth. 

Exercises 7 

1. Transforming to a new radialcoordinater by the equation a= r((l +1kr 2
), 

obtain the Robertson-Walker metric in the form 

ds 2 =( S )
2

{dr 2+r 2 (d8 2+sin 1 8d¢> 2)\-c2dt 2 
1 + !kr 2 1 

2. From the conservation equation 7' 4
;, = 0, obtain the equation 

d 3 3 2 . 
dt (pS ) + ~.2 S Sp = 0 

Deduce that, if p = 0, then p ~ 1(S 3
. 

3. Show that the de Sitter metric 

ds 2 = A 1 exp(2HT)(da 2+a 1 d8 2 +a 2sin 2 8d¢> 2)-c 2dt 2 

can be transformed to the static form 

dr 2 

ds 2 =----- --+r2(d0 2+sin 2 0d¢> 2)-c 2 (1-H 2r2.'c 2 )dT 2 
I-H2r2/c2 . 

by the transformation equations 

r exp( -HT) 
a=-------

A .. _./(1 -H 2 r 2Jc 2
)' 

4. A photon is emitted from the point (a, 0, ¢>)along the radius to the origin at 
timet in the de Sitter universe whose metric is given in the previous exercise. Show 
that the time taken to reach the origin is 

_ _.!._log[ I- HA aexp(Hc)J. 
H c 

Hence show that if the proper distance of the point from the origin at the timet is 
greater than c/ H. the photon will never arrive at 0. 

5. Show that, for all the Friedmann models with I\ = 0, p = 0. the luminosity 
distance d L of a galaxy whose red shift is ;; is given by 

dL=_c_· 2 (q0 z+(q0 -1)[ "'(2lJ0 :+1)-I}]. 
Hoqo 

If z is small, verify the expansion (64.14). 
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6. Show that if I\ is not assumed to vanish in the Friedmann model, then S(t) 
satisfies 

S.~ 2 =c 2 (D-kS+!/\.S 3
) 

where Dis a matter density parameter defined by the equation Kc
2pS 3 =3D. 

Show that the special case k = 0, D = 0 yields the de Sitter universe. 
7. Sketch the graph of SS 2 against S for the Friedmann model with cosmical 

constant (previous exercise) and deduce that (i) S increases from zero to a 
maximum value and then decreases back to zero in the cases: (a) k = + I, I\ 

< 4/(9D 2
), (b) k = 0, I\ < 0, (c) k = -I, I\ < 0; (ii) S increases steadily from 

zero and tends to infinity in the cases: (a) k = +I, 
I\> 4/(9D 2

), (b) k = 0, I\ ~ 0, (c) k = -I, I\ ~ 0. In case (i)(a), if I\ is positive, 
show that there is also a solution in which S decreases to a non-zero minimum and 
thereafter steadily increases towards infinity. 

8. If k = + I and I\ = 4/(9D 2
), show that the radius S of the Friedmann model 

can first increase from zero to a value 1/) /\.,when the cosmos attains the static 
Einstein state (section 66) and then, if slightly disturbed from this state, S may 
either decrease back to zero or continue to increase indefinitely. (This shows that 
the static Einstein universe is unstable.) 

9. A cosmos containing radiation. but no matter, is governed by the equations 
(68.7) and (68.8). Show that 

S 2S2 = c 2 (D -kS2 + !/\.S4
) 

where Dis an energy density parameter defined by the equation 3D= KUS4
. 

10. Sketch the graph of S 2S2 against S for the universe described in the 
previous exercise and deduce that all the conclusions listed in exercise 7 arc valid if 
4/(9D 2

) is replaced by 3/(4D). 
11. Fortheuniversedescribedinexercise9,ifk = 1,/\. = 3j(4D),andS = Oatc 

= 0, prove that at any later time t, 

S 2 = 2D{ 1-exp( -ct/ JD)} 

If S = J (2D) at t = 0, prove that the universe is static but unstable. 
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