


Quadratic Formula

If , then

Binomial Theorem

. . . (x2 1)

Products of Vectors

Let u be the smaller of the two angles between and .

Then

� � � � axbx � ayby � azbz � ab cos u

Trigonometric Identities

*See Appendix E for a more complete list.

cos a � cos b � 2 cos 12(a � b) cos 12(a � b)

sin a � sin b � 2 sin 12(a � b) cos 12(a � b)
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ax2 � bx � c � 0

Derivatives and Integrals

Cramer’s Rule

Two simultaneous equations in unknowns x and y,

a1x � b1y � c1 and a2x � b2y � c2,

have the solutions

and

.y �
� a1

a2

c1

c2
�

� a1

a2

b1

b2
�

�
a1c2 � a2c1

a1b2 � a2b1

x �
� c1

c2

b1

b2
�

� a1

a2

b1

b2
�

�
c1b2 � c2b1

a1b2 � a2b1

� dx
(x2 � a2)3/2 �

x
a2(x2 � a2)1/2

� x dx
(x2 � a2)3/2 � �

1
(x2 � a2)1/2

� dx

2x2 � a2
� ln(x � 2x2 � a2)

�ex dx � exd
dx

ex � ex

�cos x dx � sin x
d

dx
 cos x � �sin x

�sin x dx � �cos x
d

dx
 sin x � cos x

SI PREFIXES*
Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10–1 deci d
1021 zetta Z 10–2 centi c
1018 exa E 10–3 milli m
1015 peta P 10–6 micro m

1012 tera T 10–9 nano n
109 giga G 10–12 pico p
106 mega M 10–15 femto f
103 kilo k 10–18 atto a
102 hecto h 10–21 zepto z
101 deka da 10–24 yocto y

*In all cases, the first syllable is accented, as in ná-no-mé-ter.

MATHEMATICAL FORMULAS*
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P R E F A C E

WHY I WROTE THIS BOOK
Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the
students in a class I taught as a graduate student, suddenly demanded of me, “What has any of this
got to do with my life?” Of course I immediately responded, “Sharon, this has everything to do with
your life—this is physics.”

She asked me for an example. I thought and thought but could not come up
with a single one.That night I began writing the book The Flying Circus of Physics
(John Wiley & Sons Inc., 1975) for Sharon but also for me because I realized her
complaint was mine. I had spent six years slugging my way through many dozens of
physics textbooks that were carefully written with the best of pedagogical plans, but
there was something missing. Physics is the most interesting subject in the world
because it is about how the world works, and yet the textbooks had been thor-
oughly wrung of any connection with the real world.The fun was missing.

I have packed a lot of real-world physics into Fundamentals of Physics, con-
necting it with the new edition of The Flying Circus of Physics. Much of the mate-
rial comes from the introductory physics classes I teach, where I can judge from the
faces and blunt comments what material and presentations work and what do not.
The notes I make on my successes and failures there help form the basis of this
book. My message here is the same as I had with every student I’ve met since
Sharon so long ago: “Yes, you can reason from basic physics concepts all the way to
valid conclusions about the real world, and that understanding of the real world is
where the fun is.”

I have many goals in writing this book but the overriding one is to provide in-
structors with tools by which they can teach students how to effectively read scientific material, iden-
tify fundamental concepts, reason through scientific questions, and solve quantitative problems. This
process is not easy for either students or instructors. Indeed, the course associated with this book may
be one of the most challenging of all the courses taken by a student. However, it can also be one of
the most rewarding because it reveals the world’s fundamental clockwork from which all scientific
and engineering applications spring.

Many users of the ninth edition (both instructors and students) sent in comments and
suggestions to improve the book. These improvements are now incorporated into the narrative
and problems throughout the book. The publisher John Wiley & Sons and I regard the book as
an ongoing project and encourage more input from users. You can send suggestions, corrections,
and positive or negative comments to John Wiley & Sons or Jearl Walker (mail address:
Physics Department, Cleveland State University, Cleveland, OH 44115 USA; or the blog site at
www.flyingcircusofphysics.com). We may not be able to respond to all suggestions, but we keep
and study each of them.

WHAT’S NEW?
Modules and Learning Objectives “What was I supposed to learn from this section?” Students have
asked me this question for decades, from the weakest student to the strongest. The problem is that
even a thoughtful student may not feel confident that the important points were captured while read-
ing a section. I felt the same way back when I was using the first edition of Halliday and Resnick
while taking first-year physics.

To ease the problem in this edition, I restructured the chapters into concept modules based on a
primary theme and begin each module with a list of the module’s learning objectives. The list is an
explicit statement of the skills and learning points that should be gathered in reading the module.
Each list is following by a brief summary of the key ideas that should also be gathered. For example,
check out the first module in Chapter 16, where a student faces a truck load of concepts and terms.
Rather than depending on the student’s ability to gather and sort those ideas, I now provide an
explicit checklist that functions somewhat like the checklist a pilot works through before taxiing out
to the runway for takeoff.

xvii
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Links Between Homework Problems and Learning Objectives In WileyPLUS, every question and prob-
lem at the end of the chapter is linked to a learning objective, to answer the (usually unspoken) ques-
tions, “Why am I working this problem? What am I supposed to learn from it?” By being explicit
about a problem’s purpose, I believe that a student might better transfer the learning objective to
other problems with a different wording but the same key idea. Such transference would help defeat
the common trouble that a student learns to work a particular problem but cannot then apply its key
idea to a problem in a different setting.

Rewritten Chapters My students have continued to be challenged by several key chapters and by
spots in several other chapters and so, in this edition, I rewrote a lot of the material. For example, I
redesigned the chapters on Gauss’ law and electric potential, which have proved to be tough-going
for my students. The presentations are now smoother and more direct to the key points. In the quan-
tum chapters, I expanded the coverage of the Schrödinger equation, including reflection of matter
waves from a step potential. At the request of several instructors, I decoupled the discussion of the
Bohr atom from the Schrödinger solution for the hydrogen atom so that the historical account of
Bohr’s work can be bypassed. Also, there is now a module on Planck’s blackbody radiation.

New Sample Problems and Homework Questions and Problems Sixteen new sample problems have
been added to the chapters, written so as to spotlight some of the difficult areas for my students.Also,
about 250 problems and 50 questions have been added to the homework sections of the chapters.
Some of these problems come from earlier editions of the
book, as requested by several instructors.

Video Illustrations In the eVersion of the text available in
WileyPLUS, David Maiullo of Rutgers University has
created video versions of approximately 30 of the photo-
graphs and figures from the text. Much of physics is the
study of things that move and video can often provide a
better representation than a static photo or figure.

Online Aid WileyPLUS is not just an online grading pro-
gram. Rather, it is a dynamic learning center stocked with many different learning aids, including
just-in-time problem-solving tutorials, embedded reading quizzes to encourage reading, animated
figures, hundreds of sample problems, loads of simulations and demonstrations, and over 1500 videos
ranging from math reviews to mini-lectures to examples. More of these learning aids are added every
semester. For this 10th edition of HRW, some of the photos involving motion have been converted
into videos so that the motion can be slowed and analyzed.

These thousands of learning aids are available 24/7 and can be repeated as many times as de-
sired. Thus, if a student gets stuck on a homework problem at, say, 2:00 AM (which appears to be a
popular time for doing physics homework), friendly and helpful resources are available at the click of
a mouse.

LEARNINGS TOOLS
When I learned first-year physics in the first edition of
Halliday and Resnick, I caught on by repeatedly reread-
ing a chapter. These days we better understand that
students have a wide range of learning styles. So, I have
produced a wide range of learning tools, both in this new
edition and online in WileyPLUS:

Animations of one of the key figures in each chapter.
Here in the book, those figures are flagged with the
swirling icon. In the online chapter in WileyPLUS, a
mouse click begins the animation. I have chosen the fig-
ures that are rich in information so that a student can see
the physics in action and played out over a minute or two

A
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instead of just being flat on a printed page. Not only does this give life to the physics, but the anima-
tion can be repeated as many times as a student wants.

Videos I have made well over 1500 instructional videos, with more coming each semester. Students
can watch me draw or type on the screen as they hear me talk about a solution, tutorial, sample prob-
lem, or review, very much as they would experience were they sitting next to me in my office while I
worked out something on a notepad. An instructor’s lectures and tutoring will always be the most
valuable learning tools, but my videos are available 24 hours a day, 7 days a
week, and can be repeated indefinitely.

• Video tutorials on subjects in the chapters. I chose the subjects that chal-
lenge the students the most, the ones that my students scratch their heads
about.

• Video reviews of high school math, such as basic algebraic manipulations,
trig functions, and simultaneous equations.

• Video introductions to math, such as vector multiplication, that will be new
to the students.

• Video presentations of every Sample Problem in the textbook chapters . My
intent is to work out the physics, starting with the Key Ideas instead of just
grabbing a formula. However, I also want to demonstrate how to read a sam-
ple problem, that is, how to read technical material to learn problem-solving
procedures that can be transferred to other types of problems.

• Video solutions to 20% of the end-of chapter problems. The availability and
timing of these solutions are controlled by the instructor. For example, they
might be available after a homework deadline or a quiz. Each solution is not
simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to
the first step of reasoning and to a final solution. The student learns not just
how to solve a particular problem but how to tackle any problem, even those
that require physics courage.

• Video examples of how to read data from graphs (more than simply reading
off a number with no comprehension of the physics).

Problem-Solving Help I have written a large number of resources for
WileyPLUS designed to help build the students’ problem-solving skills.

• Every sample problem in the textbook is available online in both reading
and video formats.

• Hundreds of additional sample problems. These are available as stand-
alone resources but (at the discretion of the instructor) they are also linked
out of the homework problems. So, if a homework problem deals with, say,
forces on a block on a ramp, a link to a related sample problem is provided.
However, the sample problem is not just a replica of the homework problem
and thus does not provide a solution that can be merely duplicated without
comprehension.

• GO Tutorials for 15% of the end-of-chapter homework problems. In multi-
ple steps, I lead a student through a homework problem, starting with the Key
Ideas and giving hints when wrong answers are submitted. However, I pur-
posely leave the last step (for the final answer) to the student so that they are
responsible at the end. Some online tutorial systems trap a student when
wrong answers are given, which can generate a lot of frustration. My GO
Tutorials are not traps, because at any step along the way, a student can return
to the main problem.

• Hints on every end-of-chapter homework problem are available (at the
discretion of the instructor). I wrote these as true hints about the main ideas
and the general procedure for a solution, not as recipes that provide an answer without any
comprehension.
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

PREFACE

Evaluation Materials
• Reading questions are available within each online section. I wrote these so that they do not
require analysis or any deep understanding; rather they simply test whether a student has read the
section. When a student opens up a section, a randomly chosen reading question (from a bank of
questions) appears at the end. The instructor can decide whether the question is part of the grading
for that section or whether it is just for the benefit of the student.

• Checkpoints are available within most sections. I wrote these so that they require analysis and deci-
sions about the physics in the section. Answers to all checkpoints are in the back of the book.

VERSIONS OF THE TEXT
To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals
of Physics is available in a number of different versions.

The Regular Edition consists of Chapters 1 through 37 (ISBN 9781118230718).

The Extended Edition contains seven additional chapters on quantum physics and cosmology,
Chapters 1–44 (ISBN 9781118230725).

Volume 1 –– Chapters 1–20 (Mechanics and Thermodynamics), hardcover,
ISBN 9781118233764

Volume 2 –– Chapters 21–44 (E&M, Optics, and Quantum Physics), hardcover,
ISBN 9781118230732

• All end-of-chapter homework Problems in the book (and many more problems) are available in
WileyPLUS. The instructor can construct a homework assignment and control how it is graded when
the answers are submitted online. For example, the instructor controls the deadline for submission
and how many attempts a student is allowed on an answer. The instructor also controls which, if any,
learning aids are available with each homework problem. Such links can include hints, sample prob-
lems, in-chapter reading materials, video tutorials, video math reviews, and even video solutions
(which can be made available to the students after, say, a homework deadline).

• Symbolic notation problems that require algebraic answers are available in every chapter.

• All end-of-chapter homework Questions in the book are available for assignment in WileyPLUS.
These Questions (in a multiple choice format) are designed to evaluate the students’ conceptual un-
derstanding.

Icons for Additional Help When worked-out solutions are provided either in print or electronically
for certain of the odd-numbered problems, the statements for those problems include an icon to alert
both student and instructor as to where the solutions are located. There are also icons indicating
which problems have GO Tutorial, an Interactive LearningWare, or a link to the The Flying Circus
of Physics. An icon guide is provided here and at the beginning of each set of problems.

Checkpoint 1
Here are three pairs of initial and final positions, respectively, along an x axis.Which
pairs give a negative displacement: (a) �3 m, �5 m; (b) �3 m, �7 m; (c) 7 m, �3 m?
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INSTRUCTOR SUPPLEMENTS
Instructor’s Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This man-
ual provides worked-out solutions for all problems found at the end of each chapter. It is available
in both MSWord and PDF.

Instructor Companion Site http://www.wiley.com/college/halliday

• Instructor’s Manual This resource contains lecture notes outlining the most important topics of
each chapter; demonstration experiments; laboratory and computer projects; film and video sources;
answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide to the
Questions, Exercises, and Problems in the previous edition. It also contains a complete list of all
problems for which solutions are available to students (SSM,WWW, and ILW).

• Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors,
outlining key concepts and incorporating figures and equations from the text.

• Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University.
There are two sets of questions available: Reading Quiz questions and Interactive Lecture ques-
tions.The Reading Quiz questions are intended to be relatively straightforward for any student who
reads the assigned material.The Interactive Lecture questions are intended for use in an interactive
lecture setting.

• Wiley Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier
Software. This is a collection of 50 interactive simulations (Java applets) that can be used for class-
room demonstrations.

• Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of digital
videos of 80 standard physics demonstrations. They can be shown in class or accessed from
WileyPLUS.There is an accompanying Instructor’s Guide that includes “clicker” questions.

• Test Bank For the 10th edition, the Test Bank has been completely over-hauled by Suzanne Willis,
Northern Illinois University. The Test Bank includes more than 2200 multiple-choice questions.
These items are also available in the Computerized Test Bank which provides full editing features to
help you customize tests (available in both IBM and Macintosh versions).

• All text illustrations suitable for both classroom projection and printing.

Online Homework and Quizzing. In addition to WileyPLUS, Fundamentals of Physics, tenth edition,
also supports WebAssignPLUS and LON-CAPA, which are other programs that give instructors the
ability to deliver and grade homework and quizzes online. WebAssign PLUS also offers students an
online version of the text.

STUDENT SUPPLEMENTS
Student Companion Site. The web site http://www.wiley.com/college/halliday was developed specifi-
cally for Fundamentals of Physics, tenth edition, and is designed to further assist students in the study
of physics. It includes solutions to selected end-of-chapter problems (which are identified with a
www icon in the text); simulation exercises; tips on how to make best use of a programmable calcu-
lator; and the Interactive LearningWare tutorials that are described below.

Student Study Guide (ISBN 9781118230787) by Thomas Barrett of Ohio State University. The Student
Study Guide consists of an overview of the chapter’s important concepts, problem solving techniques
and detailed examples.

Student Solutions Manual (ISBN 9781118230664) by Sen-Ben Liao, Lawrence Livermore National
Laboratory. This manual provides students with complete worked-out solutions to 15 percent of the
problems found at the end of each chapter within the text. The Student Solutions Manual for the
10th edition is written using an innovative approach called TEAL which stands for Think, Express,
Analyze, and Learn.This learning strategy was originally developed at the Massachusetts Institute of
Technology and has proven to be an effective learning tool for students. These problems with TEAL
solutions are indicated with an SSM icon in the text.
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Interactive Learningware. This software guides students through solutions to 200 of the end-of-chapter
problems. These problems are indicated with an ILW icon in the text. The solutions process is devel-
oped interactively, with appropriate feedback and access to error-specific help for the most common
mistakes.

Introductory Physics with Calculus as a Second Language: (ISBN 9780471739104) Mastering
Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the
student how to approach problems more efficiently and effectively. The student will learn how to
recognize common patterns in physics problems, break problems down into manageable steps, and
apply appropriate techniques. The book takes the student step by step through the solutions to
numerous examples.
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C H A P T E R  1

Measurement

1-1 MEASURING THINGS, INCLUDING LENGTHS
Learning Objectives
After reading this module, you should be able to . . .

1.01 Identify the base quantities in the SI system.
1.02 Name the most frequently used prefixes for

SI units.

1.03 Change units (here for length, area, and volume) by 
using chain-link conversions.

1.04 Explain that the meter is defined in terms of the speed of
light in vacuum.

Key Ideas
● Physics is based on measurement of physical quantities.
Certain physical quantities have been chosen as base quanti-
ties (such as length, time, and mass); each has been defined in
terms of a standard and given a unit of measure (such as meter,
second, and kilogram). Other physical quantities are defined in
terms of the base quantities and their standards and units.

● The unit system emphasized in this book is the International
System of Units (SI). The three physical quantities displayed
in Table 1-1 are used in the early chapters. Standards, which
must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.

These standards are used in all physical measurement, for
both the base quantities and the quantities derived from
them. Scientific notation and the prefixes of Table 1-2 are
used to simplify measurement notation.

● Conversion of units may be performed by using chain-link
conversions in which the original data are multiplied succes-
sively by conversion factors written as unity and the units are
manipulated like algebraic quantities until only the desired
units remain.

● The meter is defined as the distance traveled by light 
during a precisely specified time interval.

What Is Physics?
Science and engineering are based on measurements and comparisons. Thus, we
need rules about how things are measured and compared, and we need
experiments to establish the units for those measurements and comparisons. One
purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any
time or time interval can be precisely determined and compared. You may wonder
whether such accuracy is actually needed or worth the effort. Here is one example of
the worth: Without clocks of extreme accuracy, the Global Positioning System
(GPS) that is now vital to worldwide navigation would be useless.

Measuring Things
We discover physics by learning how to measure the quantities involved in
physics. Among these quantities are length, time, mass, temperature, pressure,
and electric current.

We measure each physical quantity in its own units, by comparison with a
standard. The unit is a unique name we assign to measures of that quantity—for
example, meter (m) for the quantity length. The standard corresponds to exactly
1.0 unit of the quantity. As you will see, the standard for length, which corresponds



to exactly 1.0 m, is the distance traveled by light in a vacuum during a certain
fraction of a second. We can define a unit and its standard in any way we care to.
However, the important thing is to do so in such a way that scientists around the
world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of
the standard. Rulers, which approximate our length standard, give us one such
procedure for measuring length. However, many of our comparisons must be
indirect. You cannot use a ruler, for example, to measure the radius of an atom
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to
organize them. Fortunately, they are not all independent; for example, speed is the
ratio of a length to a time. Thus, what we do is pick out—by international agree-
ment—a small number of physical quantities, such as length and time, and assign
standards to them alone. We then define all other physical quantities in terms of
these base quantities and their standards (called base standards). Speed, for example,
is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the
length standard as the distance between one’s nose and the index finger on an
outstretched arm, we certainly have an accessible standard—but it will, of course,
vary from person to person.The demand for precision in science and engineering
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system.Table 1-1 shows the units for the three base quantities—length,
mass, and time—that we use in the early chapters of this book. These units were
defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the SI unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time.Thus, as you will see in Chapter 7,

1 watt � 1 W � 1 kg � m2/s3, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3 560 000 000 m � 3.56 � 109 m (1-2)

and 0.000 000 492 s � 4.92 � 10�7 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 � 109 watts � 1.27 gigawatts � 1.27 GW (1-4)

2 CHAPTER 1 MEASUREMENT

Table 1-1 Units for Three SI 
Base Quantities

Quantity Unit Name Unit Symbol

Length meter m
Time second s
Mass kilogram kg

Table 1-2 Prefixes for SI Units

Factor Prefixa Symbol

1024 yotta- Y
1021 zetta- Z
1018 exa- E
1015 peta- P
1012 tera- T
109 giga- G
106 mega- M
103 kilo- k
102 hecto- h
101 deka- da
10�1 deci- d
10�2 centi- c
10�3 milli- m
10�6 micro- m
10�9 nano- n
10�12 pico- p
10�15 femto- f
10�18 atto- a
10�21 zepto- z
10�24 yocto- y

aThe most frequently used prefixes are shown in
bold type.



or a particular time interval as

2.35 � 10�9 s � 2.35 nanoseconds � 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Changing Units
We often need to change the units in which a physical quantity is expressed. We
do so by a method called chain-link conversion. In this method, we multiply the
original measurement by a conversion factor (a ratio of units that is equal to
unity). For example, because 1 min and 60 s are identical time intervals, we have

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion
factors. This is not the same as writing or 60 � 1; each number and its unit
must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we
can introduce conversion factors wherever we find them useful. In chain-link
conversion, we use the factors to cancel unwanted units. For example, to convert
2 min to seconds, we have

(1-6)

If you introduce a conversion factor in such a way that unwanted units do not
cancel, invert the factor and try again. In conversions, the units obey the same
algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units,
including non-SI units still used in the United States. However, the conversion
factors are written in the style of “1 min � 60 s” rather than as a ratio. So, you
need to decide on the numerator and denominator in any needed ratio.

Length
In 1792, the newborn Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the north pole to the equator. Later, for practical reasons, this
Earth standard was abandoned and the meter came to be defined as the distance
between two fine lines engraved near the ends of a platinum–iridium bar, the
standard meter bar, which was kept at the International Bureau of Weights and
Measures near Paris. Accurate copies of the bar were sent to standardizing labo-
ratories throughout the world. These secondary standards were used to produce
other, still more accessible standards, so that ultimately every measuring device
derived its authority from the standard meter bar through a complicated chain
of comparisons.

Eventually, a standard more precise than the distance between two fine
scratches on a metal bar was required. In 1960, a new standard for the meter,
based on the wavelength of light, was adopted. Specifically, the standard for the
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in
a gas discharge tube that can be set up anywhere in the world. This awkward
number of wavelengths was chosen so that the new standard would be close to
the old meter-bar standard.

2 min � (2 min)(1) � (2 min)� 60 s
1 min � � 120 s.

1
60 � 1

1 min
60 s

� 1  and  
60 s

1 min
� 1.
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By 1983, however, the demand for higher precision had reached such a point
that even the krypton-86 standard could not meet it, and in that year a bold step was
taken. The meter was redefined as the distance traveled by light in a specified time
interval. In the words of the 17th General Conference on Weights and Measures:

4 CHAPTER 1 MEASUREMENT

The meter is the length of the path traveled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

Table 1-3 Some Approximate Lengths

Measurement Length in Meters

Distance to the first 
galaxies formed 2 � 1026

Distance to the 
Andromeda galaxy 2 � 1022

Distance to the nearby 
star Proxima Centauri 4 � 1016

Distance to Pluto 6 � 1012

Radius of Earth 6 � 106

Height of Mt. Everest 9 � 103

Thickness of this page 1 � 10�4

Length of a typical virus 1 � 10�8

Radius of a hydrogen atom 5 � 10�11

Radius of a proton 1 � 10�15

This time interval was chosen so that the speed of light c is exactly

c � 299 792 458 m/s.

Measurements of the speed of light had become extremely precise, so it made
sense to adopt the speed of light as a defined quantity and to use it to redefine
the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line)
to those of some very small objects.

Significant Figures and Decimal Places
Suppose that you work out a problem in which each value consists of two digits.
Those digits are called significant figures and they set the number of digits that
you can use in reporting your final answer. With data given in two significant 
figures, your final answer should have only two significant figures. However,
depending on the mode setting of your calculator, many more digits might be 
displayed.Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least
number of significant figures in the given data. (However, sometimes an extra
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or
more, the last remaining digit is rounded up; otherwise it is retained as is. For 
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is
rounded to three significant figures as 11.3. (The answers to sample problems in
this book are usually presented with the symbol � instead of � even if rounding
is involved.)

When a number such as 3.15 or 3.15 � 103 is provided in a problem, the number
of significant figures is apparent, but how about the number 3000? Is it known to
only one significant figure (3 � 103)? Or is it known to as many as four significant
figures (3.000 � 103)? In this book, we assume that all the zeros in such given num-
bers as 3000 are significant, but you had better not make that assumption elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they
have one, two, and five decimal places, respectively.

ball’s builder most unhappy. Instead, because we want only
the nearest order of magnitude, we can estimate any quanti-
ties required in the calculation.

Calculations: Let us assume the ball is spherical with radius 
R � 2 m. The string in the ball is not closely packed (there
are uncountable gaps between adjacent sections of string).
To allow for these gaps, let us somewhat overestimate

Sample Problem 1.01 Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To
the nearest order of magnitude, what is the total length L
of the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the to-
tal length L, but that would take great effort and make the
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Additional examples, video, and practice available at WileyPLUS

1-2 TIME
Learning Objectives
After reading this module, you should be able to . . .

1.05 Change units for time by using chain-link conversions.
1.06 Use various measures of time, such as for motion or as

determined on different clocks. 

Key Idea
● The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time

signals are sent worldwide by radio signals keyed to atomic
clocks in standardizing laboratories.

Time
Time has two aspects. For civil and some scientific purposes, we want to know
the time of day so that we can order events in sequence. In much scientific work,
we want to know how long an event lasts. Thus, any time standard must be able
to answer two questions: “When did it happen?” and “What is its duration?”
Table 1-4 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s
rotation, which determines the length of the day, has been used in this way for
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation.
A quartz clock, in which a quartz ring is made to vibrate continuously, can be
calibrated against Earth’s rotation via astronomical observations and used to
measure time intervals in the laboratory. However, the calibration cannot be
carried out with the accuracy called for by modern scientific and engineering
technology.

Table 1-4 Some Approximate Time Intervals

Time Interval 
Measurement in Seconds

Lifetime of the 
proton (predicted) 3 � 1040

Age of the universe 5 � 1017

Age of the pyramid of Cheops 1 � 1011

Human life expectancy 2 � 109

Length of a day 9 � 104

aThis is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Time between human heartbeats 8 � 10�1

Lifetime of the muon 2 � 10�6

Shortest lab light pulse 1 � 10�16

Lifetime of the most 
unstable particle 1 � 10�23

The Planck timea 1 � 10�43

Time Interval 
Measurement in Seconds

the cross-sectional area of the string by assuming the
cross section is square, with an edge length d � 4 mm.
Then, with a cross-sectional area of d2 and a length L, the
string occupies a total volume of

V � (cross-sectional area)(length) � d2L.

This is approximately equal to the volume of the ball, given
by , which is about 4R3 because p is about 3. Thus, we
have the following

4
3
R3

d2L � 4R3,

or

� 2 � 106 m � 106 m � 103 km.
(Answer)

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string!

L �
4R3

d 2 �
4(2 m)3

(4 � 10�3 m)2

Figure 1-1 When the metric system was
proposed in 1792, the hour was redefined
to provide a 10-hour day. The idea did not
catch on. The maker of this 10-hour watch
wisely provided a small dial that kept con-
ventional 12-hour time. Do the two dials
indicate the same time?

Steven Pitkin



Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 part in 1018—that is, 1 s in 1 � 1018 s (which is about 3 � 1010 y).

6 CHAPTER 1 MEASUREMENT

To meet the need for a better time standard, atomic clocks have
been developed. An atomic clock at the National Institute of
Standards and Technology (NIST) in Boulder, Colorado, is the stan-
dard for Coordinated Universal Time (UTC) in the United States. Its
time signals are available by shortwave radio (stations WWV and
WWVH) and by telephone (303-499-7111). Time signals (and related
information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a
clock extremely accurately at your particular location, you would have
to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over
a 4-year period, as determined by comparison with a cesium
(atomic) clock. Because the variation displayed by Fig. 1-2 is sea-
sonal and repetitious, we suspect the rotating Earth when there is a
difference between Earth and atom as timekeepers. The variation is

due to tidal effects caused by the Moon and to large-scale winds.
The 13th General Conference on Weights and Measures in 1967 adopted

a standard second based on the cesium clock:

One second is the time taken by 9 192 631 770 oscillations of the light (of a specified
wavelength) emitted by a cesium-133 atom.

Figure 1-2 Variations in the length of the
day over a 4-year period. Note that the
entire vertical scale amounts to only 
3 ms (� 0.003 s).

1980 1981 1982 1983
+1

+2

+3

+4
D

if
fe

re
n

ce
 b

et
w

ee
n

 le
n

gt
h

 o
f

da
y 

an
d 

ex
ac

tl
y 

24
 h

ou
rs

 (
m

s)

1-3 MASS
Learning Objectives
After reading this module, you should be able to . . .

1.07 Change units for mass by using chain-link 
conversions.

1.08 Relate density to mass and volume when the mass is
uniformly distributed. 

Key Ideas
● The kilogram is defined in terms of a platinum–iridium
standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of 
the atom carbon-12, is usually used. 

● The density of a material is the mass per unit volume:  

� �
m
V

.

�

Figure 1-3 The international 1 kg standard of
mass, a platinum–iridium cylinder 3.9 cm in
height and in diameter.

Mass
The Standard Kilogram
The SI standard of mass is a cylinder of
platinum and iridium (Fig. 1-3) that is kept
at the International Bureau of Weights
and Measures near Paris and assigned, by
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international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate
copies that are used elsewhere. Since 1889, it has been taken to France twice for
recomparison with the primary standard.

A Second Mass Standard
The masses of atoms can be compared with one another more precisely than
they can be compared with the standard kilogram. For this reason, we have 
a second mass standard. It is the carbon-12 atom, which, by international agree-
ment, has been assigned a mass of 12 atomic mass units (u).The relation between
the two units is

1 u � 1.660 538 86 � 10�27 kg, (1-7)

with an uncertainty of �10 in the last two decimal places. Scientists can, with
reasonable precision, experimentally determine the masses of other atoms rela-
tive to the mass of carbon-12. What we presently lack is a reliable means of
extending that precision to more common units of mass, such as a kilogram.

Density
As we shall discuss further in Chapter 14, density r (lowercase Greek letter rho)
is the mass per unit volume:

(1-8)

Densities are typically listed in kilograms per cubic meter or grams per cubic
centimeter.The density of water (1.00 gram per cubic centimeter) is often used as
a comparison. Fresh snow has about 10% of that density; platinum has a density
that is about 21 times that of water.

� �
m
V

.

Table 1-5 Some Approximate Masses

Mass in 
Object Kilograms

Known universe 1 � 1053

Our galaxy 2 � 1041

Sun 2 � 1030

Moon 7 � 1022

Asteroid Eros 5 � 1015

Small mountain 1 � 1012

Ocean liner 7 � 107

Elephant 5 � 103

Grape 3 � 10�3

Speck of dust 7 � 10�10

Penicillin molecule 5 � 10�17

Uranium atom 4 � 10�25

Proton 2 � 10�27

Electron 9 � 10�31

KEY IDEA

The density of the sand rsand in a sample is the mass per unit
volume—that is, the ratio of the total mass msand of the sand
grains to the total volume Vtotal of the sample:

(1-10)

Calculations: The total volume Vtotal of a sample is

Vtotal � Vgrains � Vvoids.

Substituting for Vvoids from Eq. 1-9 and solving for Vgrains

lead to

(1-11)Vgrains �
Vtotal

1 � e
.

�sand �
msand

Vtotal
.

Sample Problem 1.02 Density and liquefaction

A heavy object can sink into the ground during an earthquake
if the shaking causes the ground to undergo liquefaction, in
which the soil grains experience little friction as they slide
over one another. The ground is then effectively quicksand.
The possibility of liquefaction in sandy ground can be pre-
dicted in terms of the void ratio e for a sample of the ground:

(1-9)

Here, Vgrains is the total volume of the sand grains in the sam-
ple and Vvoids is the total volume between the grains (in the
voids). If e exceeds a critical value of 0.80, liquefaction can
occur during an earthquake.What is the corresponding sand
density rsand? Solid silicon dioxide (the primary component
of sand) has a density of � 2.600 � 103 kg/m3.�SiO2

e �
Vvoids

Vgrains
.



Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.
These standards are used in all physical measurement, for both
the base quantities and the quantities derived from them.
Scientific notation and the prefixes of Table 1-2 are used to sim-
plify measurement notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)� �
m
V

.

Review & Summary
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at http://www.wiley.com/college/halliday

Problems

Module 1-1 Measuring Things, Including Lengths
•1 Earth is approximately a sphere of radius 6.37 � 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

•3 The micrometer (1 mm) is often called the micron. (a) How

SSM

many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points � 1 pica, and 6 picas � 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods
and (b) chains? (1 furlong � 201.168 m, 1 rod � 5.0292 m,
and 1 chain � 20.117 m.)

WWWSSM

Additional examples, video, and practice available at WileyPLUS

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)�sand �
�SiO2

Vtotal

Vtotal

1 � e
�

�SiO2

1 � e
.

msand � �SiO2
Vgrains.

Substituting � 2.600 � 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

�sand �
2.600 � 10 3 kg/m3

1.80
� 1.4 � 103 kg/m3.

�
�SiO2
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••6 You can easily convert common units and measures electroni-
cally, but you still should be able to use a conversion table, such as
those in Appendix D. Table 1-6 is part of a conversion table for a
system of volume measures once common in Spain; a volume of 1
fanega is equivalent to 55.501 dm3 (cubic decimeters). To complete
the table, what numbers (to three significant figures) should be en-
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar-
tilla column, and (d) the almude column, starting with the top
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu-
bic centimeters (cm3).

Table 1-6 Problem 6

cahiz fanega cuartilla almude medio

1 cahiz � 1 12 48 144 288
1 fanega � 1 4 12 24
1 cuartilla � 1 3 6
1 almude � 1 2
1 medio � 1

••7 Hydraulic engineers in the United States often use, as a
unit of volume of water, the acre-foot, defined as the volume of wa-
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun-
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26
km2.What volume of water, in acre-feet, fell on the town?

••8 Harvard Bridge, which connects MIT with its fraternities

ILW

Module 1-2 Time
•10 Until 1883, every city and town in the United States kept its
own local time. Today, travelers reset their watches only when the
time change equals 1.0 h. How far, on the average, must you travel
in degrees of longitude between the time-zone boundaries at
which your watch must be reset by 1.0 h? (Hint: Earth rotates 360°
in about 24 h.)

•11 For about 10 years after the French Revolution, the French
government attempted to base measures of time on multiples of
ten: One week consisted of 10 days, one day consisted of 10 hours,
one hour consisted of 100 minutes, and one minute consisted of 100
seconds. What are the ratios of (a) the French decimal week to the
standard week and (b) the French decimal second to the standard
second?

•12 The fastest growing plant on record is a Hesperoyucca whip-
plei that grew 3.7 m in 14 days. What was its growth rate in micro-
meters per second?

•13 Three digital clocks A, B, and C run at different rates and

3000 m
2000 km

Figure 1-5 Problem 9.

across the Charles River, has a length of 364.4 Smoots plus one
ear. The unit of one Smoot is based on the length of Oliver Reed
Smoot, Jr., class of 1962, who was carried or dragged length by
length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint) 
1-Smoot lengths along the bridge.The marks have been repainted
biannually by fraternity pledges since the initial measurement,
usually during times of traffic congestion so that the police can-
not easily interfere. (Presumably, the police were originally up-
set because the Smoot is not an SI base unit, but these days they
seem to have accepted the unit.) Figure 1-4 shows three parallel
paths, measured in Smoots (S), Willies (W), and Zeldas (Z).
What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?

Figure 1-4 Problem 8.

••9 Antarctica is roughly semicircular, with a radius of 2000 km
(Fig. 1-5). The average thickness of its ice cover is 3000 m. How
many cubic centimeters of ice does Antarctica contain? (Ignore
the curvature of Earth.)

S

W

Z

0 32

60

212

258

216

0

do not have simultaneous readings of zero. Figure 1-6 shows si-
multaneous readings on pairs of the clocks for four occasions. (At
the earliest occasion, for example, B reads 25.0 s and C reads 92.0
s.) If two events are 600 s apart on clock A, how far apart are they
on (a) clock B and (b) clock C? (c) When clock A reads 400 s, what
does clock B read? (d) When clock C reads 15.0 s, what does clock B
read? (Assume negative readings for prezero times.)

Figure 1-6 Problem 13.

•14 A lecture period (50 min) is close to 1 microcentury. (a) How
long is a microcentury in minutes? (b) Using 

,

find the percentage difference from the approximation.

•15 A fortnight is a charming English measure of time equal to
2.0 weeks (the word is a contraction of “fourteen nights”).That is a
nice amount of time in pleasant company but perhaps a painful
string of microseconds in unpleasant company. How many mi-
croseconds are in a fortnight?

•16 Time standards are now based on atomic clocks. A promis-
ing second standard is based on pulsars, which are rotating neu-
tron stars (highly compact stars consisting only of neutrons).
Some rotate at a rate that is highly stable, sending out a radio
beacon that sweeps briefly across Earth once with each rotation,
like a lighthouse beacon. Pulsar PSR 1937 � 21 is an example; it
rotates once every 1.557 806 448 872 75 � 3 ms, where the trailing
�3 indicates the uncertainty in the last decimal place (it does not
mean �3 ms). (a) How many rotations does PSR 1937 � 21 make
in 7.00 days? (b) How much time does the pulsar take to rotate ex-
actly one million times and (c) what is the associated uncertainty?

percentage difference � � actual � approximation
actual � 100

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142
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•17 Five clocks are being tested in a laboratory. Exactly at
noon, as determined by the WWV time signal, on successive days
of a week the clocks read as in the following table. Rank the five
clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

••18 Because Earth’s rotation is gradually slowing, the length of
each day increases:The day at the end of 1.0 century is 1.0 ms longer
than the day at the start of the century. In 20 centuries, what is the
total of the daily increases in time?

•••19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H � 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is t � 11.1 s, what is
the radius r of Earth?

Module 1-3 Mass
•20 The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m3.

•21 Earth has a mass of 5.98 � 1024 kg.The average mass of the atoms
that make up Earth is 40 u. How many atoms are there in Earth?

•22 Gold, which has a density of 19.32 g/cm3, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into
a leaf of 1.000 mm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
mm, what is the length of the fiber?

•23 (a) Assuming that water has a density of exactly 1 g/cm3,
find the mass of one cubic meter of water in kilograms.
(b) Suppose that it takes 10.0 h to drain a container of 5700 m3 of
water.What is the “mass flow rate,” in kilograms per second, of wa-
ter from the container?

••24 Grains of fine California beach sand are approximately
spheres with an average radius of 50 m and are made of silicon
dioxide, which has a density of 2600 kg/m3.What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

••25 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide.Assume that the mud ends up
uniformly distributed over a surface area of the valley measuring
0.40 km � 0.40 km and that mud has a density of 1900 kg/m3. What
is the mass of the mud sitting above a 4.0 m2 area of the valley floor?

••26 One cubic centimeter of a typical cumulus cloud contains
50 to 500 water drops, which have a typical radius of 10 mm. For

�

SSM

SSM that range, give the lower value and the higher value, respectively,
for the following. (a) How many cubic meters of water are in a
cylindrical cumulus cloud of height 3.0 km and radius 1.0 km? (b)
How many 1-liter pop bottles would that water fill? (c) Water has
a density of 1000 kg/m3. How much mass does the water in the
cloud have?

••27 Iron has a density of 7.87 g/cm3, and the mass of an iron atom
is 9.27 � 10�26 kg. If the atoms are spherical and tightly packed, (a)
what is the volume of an iron atom and (b) what is the distance be-
tween the centers of adjacent atoms?

••28 A mole of atoms is 6.02 � 1023 atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

••29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul �
100 gins, 1 gin � 16 tahils, 1 tahil � 10 chees, and 1 chee �
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

••30 Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time t by
m � 5.00t0.8 � 3.00t � 20.00, with t 
 0, m in grams, and t in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) t � 2.00 s and (d) t � 5.00 s?

•••31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm3 and a mass of 0.0200 g.Assume that the volume
of the empty spaces between the candies is negligible. If the height
of the candies in the container increases at the rate of 0.250 cm/s, at
what rate (kilograms per minute) does the mass of the candies in
the container increase?

Additional Problems
32 In the United States, a doll house has the scale of 1�12 of a
real house (that is, each length of the doll house is that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1�144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0 m,
and a standard sloped roof (vertical triangular faces on the ends)
of height 3.0 m. In cubic meters, what are the volumes of the corre-
sponding (a) doll house and (b) miniature house?

Figure 1-7 Problem 32.

6.0 m

12 m

20 m

3.0 m

1
12
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33 A ton is a measure of volume frequently used in ship-
ping, but that use requires some care because there are at
least three types of tons: A displacement ton is equal to 7 barrels
bulk, a freight ton is equal to 8 barrels bulk, and a register ton is
equal to 20 barrels bulk. A barrel bulk is another measure of vol-
ume: 1 barrel bulk � 0.1415 m3. Suppose you spot a shipping order
for “73 tons” of M&M candies, and you are certain that the client
who sent the order intended “ton” to refer to volume (instead of
weight or mass, as discussed in Chapter 5). If the client actually
meant displacement tons, how many extra U.S. bushels of the can-
dies will you erroneously ship if you interpret the order as (a) 73
freight tons and (b) 73 register tons? (1 m3 � 28.378 U.S.
bushels.)

34 Two types of barrel units were in use in the 1920s in the
United States.The apple barrel had a legally set volume of 7056 cu-
bic inches; the cranberry barrel, 5826 cubic inches. If a merchant
sells 20 cranberry barrels of goods to a customer who thinks he is
receiving apple barrels, what is the discrepancy in the shipment
volume in liters?

35 An old English children’s rhyme states, “Little Miss Muffet
sat on a tuffet, eating her curds and whey, when along came a spi-
der who sat down beside her. . . .” The spider sat down not because
of the curds and whey but because Miss Muffet had a stash of 11
tuffets of dried flies. The volume measure of a tuffet is given by
1 tuffet � 2 pecks � 0.50 Imperial bushel, where 1 Imperial bushel
� 36.3687 liters (L). What was Miss Muffet’s stash in (a) pecks,
(b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To
complete the table, what numbers (to three significant figures)
should be entered in (a) the wey column, (b) the chaldron column,
(c) the bag column, (d) the pottle column, and (e) the gill column,
starting from the top down? (f) The volume of 1 bag is equal to
0.1091 m3. If an old story has a witch cooking up some vile liquid
in a cauldron of volume 1.5 chaldrons, what is the volume in cubic
meters?

Table 1-7 Problem 36

wey chaldron bag pottle gill

1 wey � 1 10/9 40/3 640 120 240
1 chaldron �
1 bag �
1 pottle �
1 gill �

37 A typical sugar cube has an edge length of 1 cm. If you had a
cubical box that contained a mole of sugar cubes, what would its
edge length be? (One mole � 6.02 � 1023 units.)

38 An old manuscript reveals that a landowner in the time
of King Arthur held 3.00 acres of plowed land plus a live-
stock area of 25.0 perches by 4.00 perches. What was the total
area in (a) the old unit of roods and (b) the more modern unit of
square meters? Here, 1 acre is an area of 40 perches by 4 perches,
1 rood is an area of 40 perches by 1 perch, and 1 perch is the
length 16.5 ft.

39 A tourist purchases a car in England and ships it home to
the United States.The car sticker advertised that the car’s fuel con-
sumption was at the rate of 40 miles per gallon on the open road.

SSM

SSM The tourist does not realize that the U.K. gallon differs from the
U.S. gallon:

1 U.K. gallon � 4.546 090 0 liters
1 U.S. gallon � 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gallons of
fuel does (a) the mistaken tourist believe she needs and (b) the car
actually require?

40 Using conversions and data in the chapter, determine
the number of hydrogen atoms required to obtain 1.0 kg of
hydrogen.A hydrogen atom has a mass of 1.0 u.

41 A cord is a volume of cut wood equal to a stack 8 ft
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42 One molecule of water (H2O) contains two atoms of hydrogen
and one atom of oxygen.A hydrogen atom has a mass of 1.0 u and an
atom of oxygen has a mass of 16 u, approximately. (a) What is the
mass in kilograms of one molecule of water? (b) How many mole-
cules of water are in the world’s oceans, which have an estimated total
mass of 1.4 � 1021 kg?

43 A person on a diet might lose 2.3 kg per week. Express the
mass loss rate in milligrams per second, as if the dieter could sense
the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has
a density of 1.0 � 103 kg/m3.

45 (a) A unit of time sometimes used in microscopic physics is
the shake. One shake equals 10�8 s. Are there more shakes in a
second than there are seconds in a year? (b) Humans have ex-
isted for about 106 years, whereas the universe is about 1010 years
old. If the age of the universe is defined as 1 “universe day,”
where a universe day consists of “universe seconds” as a normal
day consists of normal seconds, how many universe seconds have
humans existed?

46 A unit of area often used in measuring land areas is the hectare,
defined as 104 m2. An open-pit coal mine consumes 75 hectares of
land, down to a depth of 26 m, each year. What volume of earth, in
cubic kilometers, is removed in this time?

47 An astronomical unit (AU) is the average distance
between Earth and the Sun, approximately 1.50 108 km. The
speed of light is about 3.0 � 108 m/s. Express the speed of light in
astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of
75 g, which corresponds to about 7.5 moles of atoms. (A mole of
atoms is 6.02 � 1023 atoms.) In atomic mass units (u), what is the
average mass of the atoms in the common Eastern mole?

49 A traditional unit of length in Japan is the ken (1 ken �
1.97 m). What are the ratios of (a) square kens to square meters
and (b) cubic kens to cubic meters? What is the volume of a cylin-
drical water tank of height 5.50 kens and radius 3.00 kens in (c) cu-
bic kens and (d) cubic meters?

50 You receive orders to sail due east for 24.5 mi to put your sal-
vage ship directly over a sunken pirate ship. However, when your
divers probe the ocean floor at that location and find no evidence of
a ship, you radio back to your source of information, only to discover
that the sailing distance was supposed to be 24.5 nautical miles, not
regular miles. Use the Length table in Appendix D to calculate how
far horizontally you are from the pirate ship in kilometers.

�
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51 The cubit is an ancient unit of length based on the distance
between the elbow and the tip of the middle finger of the mea-
surer. Assume that the distance ranged from 43 to 53 cm, and
suppose that ancient drawings indicate that a cylindrical pillar
was to have a length of 9 cubits and a diameter of 2 cubits. For
the stated range, what are the lower value and the upper value,
respectively, for (a) the cylinder’s length in meters, (b) the cylin-
der’s length in millimeters, and (c) the cylinder’s volume in cubic
meters?

52 As a contrast between the old and the modern and between
the large and the small, consider the following: In old rural
England 1 hide (between 100 and 120 acres) was the area of land
needed to sustain one family with a single plough for one year. (An
area of 1 acre is equal to 4047 m2.) Also, 1 wapentake was the area
of land needed by 100 such families. In quantum physics, the
cross-sectional area of a nucleus (defined in terms of the chance of
a particle hitting and being absorbed by it) is measured in units of
barns, where 1 barn is 1 � 10�28 m2. (In nuclear physics jargon, if a
nucleus is “large,” then shooting a particle at it is like shooting a
bullet at a barn door, which can hardly be missed.) What is the
ratio of 25 wapentakes to 11 barns?

53 An astronomical unit (AU) is equal to the average
distance from Earth to the Sun, about 92.9 106 mi. A parsec
(pc) is the distance at which a length of 1 AU would subtend an
angle of exactly 1 second of
arc (Fig. 1-8). A light-year (ly)
is the distance that light, trav-
eling through a vacuum with a
speed of 186 000 mi/s, would
cover in 1.0 year. Express the
Earth – Sun distance in (a)
parsecs and (b) light-years.

54 The description for a certain brand of house paint claims a cov-
erage of 460 ft2/gal. (a) Express this quantity in square meters per
liter. (b) Express this quantity in an SI unit (see Appendices A and
D). (c) What is the inverse of the original quantity, and (d) what is its
physical significance?

55 Strangely, the wine for a large wedding reception is to be
served in a stunning cut-glass receptacle with the interior dimen-
sions of 40 cm � 40 cm � 30 cm (height). The receptacle is to be
initially filled to the top. The wine can be purchased in bottles of
the sizes given in the following table. Purchasing a larger bottle in-
stead of multiple smaller bottles decreases the overall cost of the
wine. To minimize the cost, (a) which bottle sizes should be pur-
chased and how many of each should be purchased and, once the
receptacle is filled, how much wine is left over in terms of (b) stan-
dard bottles and (c) liters?

1 standard bottle

1 magnum � 2 standard bottles

1 jeroboam � 4 standard bottles

1 rehoboam � 6 standard bottles

1 methuselah � 8 standard bottles

1 salmanazar � 12 standard bottles

1 balthazar � 16 standard bottles � 11.356 L

1 nebuchadnezzar � 20 standard bottles

�
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56 The corn–hog ratio is a financial term used in the pig market
and presumably is related to the cost of feeding a pig until it is
large enough for market. It is defined as the ratio of the market
price of a pig with a mass of 3.108 slugs to the market price of a
U.S. bushel of corn. (The word “slug” is derived from an old
German word that means “to hit”; we have the same meaning for
“slug” as a verb in modern English.) A U.S. bushel is equal to
35.238 L. If the corn–hog ratio is listed as 5.7 on the market ex-
change, what is it in the metric units of

(Hint: See the Mass table in Appendix D.)

57 You are to fix dinners for 400 people at a convention of
Mexican food fans. Your recipe calls for 2 jalapeño peppers per
serving (one serving per person). However, you have only ha-
banero peppers on hand. The spiciness of peppers is measured in
terms of the scoville heat unit (SHU). On average, one jalapeño
pepper has a spiciness of 4000 SHU and one habanero pepper has
a spiciness of 300 000 SHU. To get the desired spiciness, how many
habanero peppers should you substitute for the jalapeño peppers
in the recipe for the 400 dinners?

58 A standard interior staircase has steps each with a rise
(height) of 19 cm and a run (horizontal depth) of 23 cm. Research
suggests that the stairs would be safer for descent if the run were,
instead, 28 cm. For a particular staircase of total height 4.57 m, how
much farther into the room would the staircase extend if this
change in run were made?

59 In purchasing food for a political rally, you erroneously order
shucked medium-size Pacific oysters (which come 8 to 12 per U.S.
pint) instead of shucked medium-size Atlantic oysters (which
come 26 to 38 per U.S. pint). The filled oyster container shipped to
you has the interior measure of 1.0 m � 12 cm � 20 cm, and a U.S.
pint is equivalent to 0.4732 liter. By how many oysters is the order
short of your anticipated count?

60 An old English cookbook carries this recipe for cream of net-
tle soup: “Boil stock of the following amount: 1 breakfastcup plus
1 teacup plus 6 tablespoons plus 1 dessertspoon. Using gloves,
separate nettle tops until you have 0.5 quart; add the tops to the
boiling stock. Add 1 tablespoon of cooked rice and 1 saltspoon of
salt. Simmer for 15 min.” The following table gives some of the
conversions among old (premetric) British measures and among
common (still premetric) U.S. measures. (These measures just
scream for metrication.) For liquid measures, 1 British teaspoon �
1 U.S. teaspoon. For dry measures, 1 British teaspoon � 2 U.S. tea-
spoons and 1 British quart � 1 U.S. quart. In U.S. measures, how
much (a) stock, (b) nettle tops, (c) rice, and (d) salt are required in
the recipe?

Old British Measures U.S. Measures

teaspoon � 2 saltspoons tablespoon � 3 teaspoons
dessertspoon � 2 teaspoons half cup � 8 tablespoons
tablespoon � 2 dessertspoons cup � 2 half cups
teacup � 8 tablespoons
breakfastcup � 2 teacups

price of 1 kilogram of pig
price of 1 liter of corn

 ?

An angle of
exactly 1 second

1 pc

1 AU
1 pc

Figure 1-8 Problem 53.



C H A P T E R  2

Motion Along a Straight Line

2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

After reading this module, you should be able to … 

2.01 Identify that if all parts of an object move in the same di-
rection and at the same rate, we can treat the object as if it
were a (point-like) particle. (This chapter is about the mo-
tion of such objects.)

2.02 Identify that the position of a particle is its location as
read on a scaled axis, such as an x axis.

2.03 Apply the relationship between a particle’s
displacement and its initial and final positions.

2.04 Apply the relationship between a particle’s average
velocity, its displacement, and the time interval for that
displacement.

2.05 Apply the relationship between a particle’s average
speed, the total distance it moves, and the time interval for
the motion.

2.06 Given a graph of a particle’s position versus time,
determine the average velocity between any two particular
times.

● The position x of a particle on an x axis locates the particle
with respect to the origin, or zero point, of the axis.

● The position is either positive or negative, according 
to which side of the origin the particle is on, or zero if 
the particle is at the origin. The positive direction on 
an axis is the direction of increasing positive numbers; 
the opposite direction is the negative direction on 
the axis.    

● The displacement �x of a particle is the change in its
position:

● Displacement is a vector quantity. It is positive if the
particle has moved in the positive direction of the x axis
and negative if the particle has moved in the negative
direction.

�x � x2 � x1.

● When a particle has moved from position x1 to position x2

during a time interval �t � t2 � t1, its average velocity during
that interval is

.

● The algebraic sign of vavg indicates the direction of motion
(vavg is a vector quantity). Average velocity does not depend
on the actual distance a particle moves, but instead depends
on its original and final positions. 

● On a graph of x versus t, the average velocity for a time in-
terval �t is the slope of the straight line connecting the points
on the curve that represent the two ends of the interval. 

● The average speed savg of a particle during a time interval �t
depends on the total distance the particle moves in that time
interval:

savg �
total distance

�t
.

vavg �
�x
�t

�
x2 � x1

t2 � t1

What Is Physics?
One purpose of physics is to study the motion of objects—how fast they move, for
example, and how far they move in a given amount of time. NASCAR engineers
are fanatical about this aspect of physics as they determine the performance of
their cars before and during a race. Geologists use this physics to measure
tectonic-plate motion as they attempt to predict earthquakes. Medical
researchers need this physics to map the blood flow through a patient when
diagnosing a partially closed artery, and motorists use it to determine how they
might slow sufficiently when their radar detector sounds a warning. There are
countless other examples. In this chapter, we study the basic physics of motion
where the object (race car, tectonic plate, blood cell, or any other object) moves
along a single axis. Such motion is called one-dimensional motion.

Key Ideas

Learning Objectives
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Motion
The world, and everything in it, moves. Even seemingly stationary things, such as a
roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s orbit
around the center of the Milky Way galaxy, and that galaxy’s migration relative to
other galaxies.The classification and comparison of motions (called kinematics) is
often challenging.What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of
motion that is restricted in three ways.

1. The motion is along a straight line only.The line may be vertical, horizontal, or
slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until 
Chapter 5. In this chapter we discuss only the motion itself and changes in the
motion. Does the moving object speed up, slow down, stop, or reverse
direction? If the motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point-like object
such as an electron) or an object that moves like a particle (such that every
portion moves in the same direction and at the same rate). A stiff pig slipping
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement
To locate an object means to find its position relative to some reference point, of-
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive
direction of the axis is in the direction of increasing numbers (coordinates), which
is to the right in Fig. 2-1.The opposite is the negative direction.

For example, a particle might be located at x � 5 m, which means it is 5 m in
the positive direction from the origin. If it were at x � �5 m, it would be just as
far from the origin but in the opposite direction. On the axis, a coordinate of
�5 m is less than a coordinate of �1 m, and both coordinates are less than a
coordinate of �5 m. A plus sign for a coordinate need not be shown, but a minus
sign must always be shown.

A change from position x1 to position x2 is called a displacement �x, where

�x � x2 � x1. (2-1)

(The symbol �, the Greek uppercase delta, represents a change in a quantity,
and it means the final value of that quantity minus the initial value.) When
numbers are inserted for the position values x1 and x2 in Eq. 2-1, a displacement
in the positive direction (to the right in Fig. 2-1) always comes out positive, and
a displacement in the opposite direction (left in the figure) always comes out
negative. For example, if the particle moves from x1 � 5 m to x2 � 12 m, then
the displacement is �x � (12 m) � (5 m) � �7 m. The positive result indicates
that the motion is in the positive direction. If, instead, the particle moves from
x1 � 5 m to x2 � 1 m, then �x � (1 m) � (5 m) � �4 m. The negative result in-
dicates that the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement in-
volves only the original and final positions. For example, if the particle moves
from x � 5 m out to x � 200 m and then back to x � 5 m, the displacement from
start to finish is �x � (5 m) � (5 m) � 0.

Signs. A plus sign for a displacement need not be shown, but a minus sign
must always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For
example, a displacement of �x � �4 m has a magnitude of 4 m.

14 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Figure 2-1 Position is determined on an
axis that is marked in units of length (here
meters) and that extends indefinitely in
opposite directions. The axis name, here x,
is always on the positive side of the origin.

–3 0

Origin

–2 –1 1 2 3

Negative direction

Positive direction

x (m)



Displacement is an example of a vector quantity, which is a quantity that has
both a direction and a magnitude.We explore vectors more fully in Chapter 3, but
here all we need is the idea that displacement has two features: (1) Its magnitude
is the distance (such as the number of meters) between the original and final po-
sitions. (2) Its direction, from an original position to a final position, can be repre-
sented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding
with a bit of reasoning. The answers are in the back of the book.

152-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

Checkpoint 1
Here are three pairs of initial and final positions, respectively, along an x axis.Which
pairs give a negative displacement: (a) �3 m, �5 m; (b) �3 m, �7 m; (c) 7 m, �3 m?

Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not
the product x times t.) As a simple example, Fig. 2-2 shows the position function
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val.The animal’s position stays at x � �2 m.

Figure 2-3 is more interesting, because it involves motion. The armadillo is
apparently first noticed at t � 0 when it is at the position x � �5 m. It moves

Figure 2-2 The graph of
x(t) for an armadillo that
is stationary at x � �2 m.
The value of x is �2 m
for all times t.

x (m)

t (s)
1 2 3 4

+1

–1
–1

x(t)

0

This is a graph
of position x
versus time t
for a stationary
object.

Same position
for any time.

Figure 2-3 The graph of x(t) for a moving armadillo. The path associated with the graph is also shown, at three times.
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3
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It is at position x = –5 m
when time t = 0 s.
Those data are plotted here.

This is a graph
of position x
versus time t
for a moving
object.

0–5 2
x (m)

0 s

0–5 2
x (m)

3 s 

At x = 0 m when t = 3 s.
Plotted here.

At x = 2 m when t = 4 s.
Plotted here.
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–4
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Figure 2-4 Calculation of the
average velocity between t � 1 s
and t � 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
The swirling icon indicates that a
figure is available in WileyPLUS
as an animation with voiceover.
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vavg = slope of this line

0

This horizontal distance is how long
it took, start to end:
Δt = 4 s – 1 s = 3 sStart of interval

This vertical distance is how far
it moved, start to end:
Δx = 2 m – (–4 m) = 6 m

End of interval
Δx__
Δt

rise___
run

= =

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

A

toward x � 0, passes through that point at t � 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement �x that
occurs during a particular time interval �t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

Graphs. On a graph of x versus t, vavg is the slope of the straight line that
connects two particular points on the x(t) curve: one is the point that corresponds
to x2 and t2, and the other is the point that corresponds to x1 and t1. Like displace-
ment, vavg has both magnitude and direction (it is another vector quantity). Its
magnitude is the magnitude of the line’s slope. A positive vavg (and slope) tells us
that the line slants upward to the right; a negative vavg (and slope) tells us that the
line slants downward to the right. The average velocity vavg always has the same
sign as the displacement �x because �t in Eq. 2-2 is always positive.

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t � 1 s to t � 4 s.
We draw the straight line that connects the point on the position curve at the begin-
ning of the interval and the point on the curve at the end of the interval.Then we find
the slope �x/�t of the straight line. For the given time interval, the average velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement �x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.

savg �
total distance

�t
.

vavg �
6 m
3 s

� 2 m/s.

vavg �
�x
�t

�
x2 � x1

t2 � t1
.
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Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”Your
average velocity is the slope of the straight line connecting
those points; that is, vavg is the ratio of the rise (�x � 10.4 km)
to the run (�t � 0.62 h), which gives us vavg � 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your
average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km � 2.0 km � 2.0
km � 12.4 km. The total time interval is 0.12 h � 0.50 h �
0.75 h � 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg �
12.4 km
1.37 h

� 9.1 km/h.

� 16.8 km/h � 17 km/h.

vavg �
�x
�t

�
10.4 km
0.62 h

Sample Problem 2.01 Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another
2.0 km farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 � 0 to a second
position of x2 at the station. That second position must be at 
x2 � 8.4 km � 2.0 km � 10.4 km. Then your displacement �x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

�x � x2 � x1 � 10.4 km � 0 � 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval �t from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval �twlk (� 0.50 h),
but we lack the driving time interval �tdr. However, we
know that for the drive the displacement �xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average
velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,

(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time
interval of 0.62 h for the entire trip.

� 0.12 h � 0.50 h � 0.62 h. 

�t � �tdr � �twlk

�tdr �
�xdr

vavg,dr
�

8.4 km
70 km/h

� 0.12 h.

vavg,dr �
�xdr

�tdr
.

Additional examples, video, and practice available at WileyPLUS

Figure 2-5 The lines marked “Driving” and “Walking” are the
position–time plots for the driving and walking stages. (The plot
for the walking stage assumes a constant rate of walking.) The
slope of the straight line joining the origin and the point labeled
“Station” is the average velocity for the trip, from the beginning
to the station.
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Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval �t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval �t closer and closer to 0. As �t dwindles, the average velocity
approaches a limiting value, which is the velocity at that instant:

(2-4)

Note that v is the rate at which  position x is changing with time at a given instant;
that is, v is the derivative of x with respect to t. Also note that v at any instant is
the slope of the position–time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of �5 m/s
and one of �5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

v � lim
� t : 0

�x
�t

�
dx
dt

.

2-2 INSTANTANEOUS VELOCITY AND SPEED 

After reading this module, you should be able to . . .

2.07 Given a particle’s position as a function of time, 
calculate the instantaneous velocity for any particular time.

2.08 Given a graph of a particle’s position versus time, deter-
mine the instantaneous velocity for any particular time. 

2.09 Identify speed as the magnitude of the instantaneous
velocity. 

● The instantaneous velocity (or simply velocity) v of a moving
particle is 

where �x � x2 � x1 and �t � t2 � t1.

v � lim
� t : 0

�x
�t

�
dx
dt

,

● The instantaneous velocity (at a particular time) may be
found as the slope (at that particular time) of the graph of x
versus t.

● Speed is the magnitude of instantaneous velocity.

Checkpoint 2
The following equations give the position x(t) of a particle in four situations (in each
equation, x is in meters, t is in seconds, and t � 0): (1) x � 3t � 2; (2) x � �4t2 � 2;
(3) x � 2/t2; and (4) x � �2. (a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Calculations: The slope of x(t), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant ve-
locity.We calculate the slope of x(t) then as

(2-5)
�x
�t

� v �
24 m � 4.0 m
8.0 s � 3.0 s

� �4.0 m/s.

Sample Problem 2.02 Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(t).

KEY IDEA

We can find the velocity at any time from the slope of the
x(t) curve at that time.

Learning Objectives

Key Ideas
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Figure 2-6 (a) The x(t) curve for an elevator cab
that moves upward along an x axis. (b) The v(t)
curve for the cab. Note that it is the derivative
of the x(t) curve (v � dx/dt). (c) The a(t) curve
for the cab. It is the derivative of the v(t) curve
(a � dv/dt). The stick figures along the bottom
suggest how a passenger’s body might feel dur-
ing the accelerations.

Additional examples, video, and practice available at WileyPLUS

The plus sign indicates that the cab is moving in the posi-
tive x direction. These intervals (where v � 0 and v �
4 m/s) are plotted in Fig. 2-6b. In addition, as the cab ini-
tially begins to move and then later slows to a stop,
v varies as indicated in the intervals 1 s to 3 s and 8 s to 9 s.
Thus, Fig. 2-6b is the required plot. (Figure 2-6c is consid-
ered in Module 2-3.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(t) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(t) graph indicates
only changes in x. To find such a change in x during any in-
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terval, we must, in the language of calculus, calculate the
area “under the curve” on the v(t) graph for that interval.
For example, during the interval 3 s to 8 s in which the cab
has a velocity of 4.0 m/s, the change in x is

�x � (4.0 m/s)(8.0 s � 3.0 s) � �20 m. (2-6)

(This area is positive because the v(t) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by
20 m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.



Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration aavg over a time
interval �t is

(2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The
instantaneous acceleration (or simply acceleration) is

(2-8)

In words, the acceleration of a particle at any instant is the rate at which its velocity
is changing at that instant. Graphically, the acceleration at any point is the slope of
the curve of v(t) at that point.We can combine Eq. 2-8 with Eq. 2-4 to write

(2-9)

In words, the acceleration of a particle at any instant is the second derivative of
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s � s)
or m/s2. Other units are in the form of length/(time � time) or length/time2.
Acceleration has both magnitude and direction (it is yet another vector quan-
tity). Its algebraic sign represents its direction on an axis just as for displacement
and velocity; that is, acceleration with a positive value is in the positive direction
of an axis, and acceleration with a negative value is in the negative direction.

Figure 2-6 gives plots of the position, velocity, and acceleration of an ele-
vator moving up a shaft. Compare the a(t) curve with the v(t) curve — each
point on the a(t) curve shows the derivative (slope) of the v(t) curve at the
corresponding time. When v is constant (at either 0 or 4 m/s), the derivative is
zero and so also is the acceleration. When the cab first begins to move, the v(t)

a �
dv
dt

�
d
dt �

dx
dt � �

d 2x
dt 2 .

a �
dv
dt

.

aavg �
v2 � v1

t2 � t1
�

�v
�t

,
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2-3 ACCELERATION
Learning Objectives

2.12 Given a graph of a particle’s velocity versus time, deter-
mine the instantaneous acceleration for any particular time
and the average acceleration between any two particular
times.

● Average acceleration is the ratio of a change in velocity �v
to the time interval �t in which the change occurs:

The algebraic sign indicates the direction of aavg.

aavg �
�v
�t

.

● Instantaneous acceleration (or simply acceleration) a is the
first time derivative of velocity v(t) and the second time deriv-
ative of position x(t):

.

● On a graph of v versus t, the acceleration a at any time t is
the slope of the curve at the point that represents t.

a �
dv
dt

�
d2x
dt2

After reading this module, you should be able to . . . 

2.10 Apply the relationship between a particle’s average 
acceleration, its change in velocity, and the time interval
for that change.

2.11 Given a particle’s velocity as a function of time, calcu-
late the instantaneous acceleration for any particular time.

Key Ideas



curve has a positive derivative (the slope is positive), which means that a(t) is
positive. When the cab slows to a stop, the derivative and slope of the v(t)
curve are negative; that is, a(t) is negative.

Next compare the slopes of the v(t) curve during the two acceleration peri-
ods. The slope associated with the cab’s slowing down (commonly called “decel-
eration”) is steeper because the cab stops in half the time it took to get up to
speed. The steeper slope means that the magnitude of the deceleration is larger
than that of the acceleration, as indicated in Fig. 2-6c.

Sensations. The sensations you would feel while riding in the cab of 
Fig. 2-6 are indicated by the sketched figures at the bottom. When the cab first
accelerates, you feel as though you are pressed downward; when later the cab is
braked to a stop, you seem to be stretched upward. In between, you feel nothing
special. In other words, your body reacts to accelerations (it is an accelerometer)
but not to velocities (it is not a speedometer). When you are in a car traveling at
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of
the motion. However, if the car or plane quickly changes velocity, you may be-
come keenly aware of the change, perhaps even frightened by it. Part of the thrill
of an amusement park ride is due to the quick changes of velocity that you un-
dergo (you pay for the accelerations, not for the speed).A more extreme example
is shown in the photographs of Fig. 2-7, which were taken while a rocket sled was
rapidly accelerated along a track and then rapidly braked to a stop.

g Units. Large accelerations are sometimes expressed in terms of g units, with

1g � 9.8 m/s2 (g unit). (2-10)

(As we shall discuss in Module 2-5, g is the magnitude of the acceleration of a
falling object near Earth’s surface.) On a roller coaster, you may experience brief
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough
to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific
meaning: positive acceleration means that the speed of an object is increasing, and
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not
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Courtesy U.S. Air Force

Figure 2-7
Colonel J. P. Stapp in
a rocket sled as it is
brought up to high
speed (acceleration
out of the page) and
then very rapidly
braked (acceleration
into the page).



whether an object’s speed is increasing or decreasing. For example, if a car with an
initial velocity v � �25 m/s is braked to a stop in 5.0 s, then aavg � �5.0 m/s2. The
acceleration is positive, but the car’s speed has decreased. The reason is the differ-
ence in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:
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If the signs of the velocity and acceleration of a particle are the same, the speed 
of the particle increases. If the signs are opposite, the speed decreases.

Checkpoint 3
A wombat moves along an x axis.What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with
decreasing speed, (c) in the negative direction with increasing speed, and (d) in the
negative direction with decreasing speed?

Reasoning: We need to examine the expressions for x(t),
v(t), and a(t).

At t � 0, the particle is at x(0) � �4 m and is moving
with a velocity of v(0) � �27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) � 0 because just
then the particle’s velocity is not changing (Fig. 2-8a).

For 0 	 t 	 3 s, the particle still has a negative velocity,
so it continues to move in the negative direction. However,
its acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing (Fig. 2-8b).

Indeed, we already know that it stops momentarily at
t � 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting t � 3 s into the
expression for x(t), we find that the particle’s position just
then is x � �50 m (Fig. 2-8c). Its acceleration is still positive.

For t � 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude (Fig. 2-8d).

Sample Problem 2.03 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x � 4 � 27t � t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must
be moving. Find the particle’s velocity function v(t) and ac-
celeration function a(t).

KEY IDEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(t) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v � �27 � 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a � �6t, (Answer)

with a in meters per second squared.

(b) Is there ever a time when v � 0?

Calculation: Setting v(t) � 0 yields

0 � �27 � 3t2,

which has the solution

t � �3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for t 
 0. Figure 2-8 Four stages of the particle’s motion.

x
−50 m

t = 3 s
v = 0
a pos

reversing
(c)

t = 4 s
v pos
a pos

speeding up

(d)

0  4 m
t = 0
v neg
a = 0

leftward
motion

(a)

t = 1 s
v neg
a pos

slowing
(b)

Additional examples, video, and practice available at WileyPLUS



Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity,
and acceleration would resemble those in Fig. 2-9. (Note that a(t) in Fig. 2-9c is
constant, which requires that v(t) in Fig. 2-9b have a constant slope.) Later when
you brake the car to a stop, the acceleration (or deceleration in common
language) might also be approximately constant.

Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
can approximate the acceleration as being constant).

First Basic Equation. When the acceleration is constant, the average accel-
eration and instantaneous acceleration are equal and we can write Eq. 2-7, with
some changes in notation, as

Here v0 is the velocity at time t � 0 and v is the velocity at any later time t.We can
recast this equation as

v � v0 � at. (2-11)

As a check, note that this equation reduces to v � v0 for t � 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt � a, which is the
definition of a. Figure 2-9b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

Second Basic Equation. In a similar manner, we can rewrite Eq. 2-2 (with a
few changes in notation) as

vavg �
x � x0

t � 0

a � aavg �
v � v0

t � 0
.
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After reading this module, you should be able to . . . 

2.13 For constant acceleration, apply the relationships be-
tween position, displacement, velocity, acceleration, and
elapsed time (Table 2-1). 

2.14 Calculate a particle’s change in velocity by integrating
its acceleration function with respect to time.

2.15 Calculate a particle’s change in position by integrating
its velocity function with respect to time. 

● The following five equations describe the motion of a particle with constant acceleration:

These are not valid when the acceleration is not constant. 

x � x0 � vt �
1
2

at2.x � x0 �
1
2

(v0 � v)t,v2 � v0
2 � 2a(x � x0),

x � x0 � v0t �
1
2

at2,v � v0 � at,

Learning Objectives

Key Ideas

Figure 2-9 (a) The position x(t) of a particle
moving with constant acceleration. (b) Its
velocity v(t), given at each point by the
slope of the curve of x(t). (c) Its (constant)
acceleration, equal to the (constant) slope
of the curve of v(t).
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and then as

x � x0 � vavgt, (2-12)

in which x0 is the position of the particle at t � 0 and vavg is the average velocity
between t � 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t � 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (� v0) and the velocity at the end of the interval (� v). For
the interval from t � 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t � 0 yields x � x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-9a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2-11 and 2-15 are the basic equations for
constant acceleration; they can be used to solve any constant acceleration prob-
lem in this book. However, we can derive other equations that might prove useful
in certain specific situations. First, note that as many as five quantities can possi-
bly be involved in any problem about constant acceleration—namely, x � x0, v, t,
a, and v0. Usually, one of these quantities is not involved in the problem, either as
a given or as an unknown. We are then presented with three of the remaining
quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x � x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15) as
well as the specialized equations that we have derived.To solve a simple constant ac-
celeration problem, you can usually use an equation from this list (if you have the
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Eqs. 2-11 and
2-15, and then solve them as simultaneous equations whenever needed.

x � x0 � vt � 1
2 at 2.

x � x0 � 1
2(v0 � v)t.

v2 � v0
2 � 2a(x � x0).

x � x0 � v0t � 1
2 at 2.

vavg � v0 � 1
2 at.

vavg � 1
2 (v0 � v).
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Table 2-1 Equations for Motion with
Constant Accelerationa

Equation Missing
Number Equation Quantity

2-11 v � v0 � at x � x0

2-15 v

2-16 t

2-17 a

2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x � x0 � vt � 1
2at2

x � x0 � 1
2(v0 � v)t

v2 � v0
2 � 2a(x � x0)

x � x0 � v0t � 1
2at2
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Checkpoint 4
The following equations give the position x(t) of a particle in four situations: (1) x �
3t � 4; (2) x � �5t3 � 4t2 � 6; (3) x � 2/t2 � 4/t; (4) x � 5t2 � 3.To which of these
situations do the equations of Table 2-1 apply?

choose any initial numbers because we are looking for the
elapsed time, not a particular time in, say, the afternoon, but
let’s stick with these easy numbers.) We want the car to pass
the motorcycle, but what does that mean mathematically?

It means that at some time t, the side-by-side vehicles
are at the same coordinate: xc for the car and the sum xm1 �
xm2 for the motorcycle. We can write this statement mathe-
matically as

(2-19)

(Writing this first step is the hardest part of the problem.
That is true of most physics problems. How do you go from
the problem statement (in words) to a mathematical expres-
sion? One purpose of this book is for you to build up that
ability of writing the first step — it takes lots of practice just
as in learning, say, tae-kwon-do.) 

Now let’s fill out both sides of Eq. 2-19, left side first. To
reach the passing point at xc, the car accelerates from rest. From
Eq. 2-15 , with x0 and v0 � 0, we have 

(2-20)

To write an expression for xm1 for the motorcycle, we
first find the time tm it takes to reach its maximum speed vm,
using Eq. 2-11 (v � v0 � at). Substituting v0 � 0, v � vm �
58.8 m/s, and a � am � 8.40 m/s2, that time is

(2-21)

To get the distance xm1 traveled by the motorcycle during
the first stage, we again use Eq. 2-15 with x0 � 0 and v0 � 0,
but we also substitute from Eq. 2-21 for the time.We find

(2-22)

For the remaining time of , the motorcycle travels
at its maximum speed with zero acceleration. To get the
distance, we use Eq. 2-15 for this second stage of the motion,
but now the initial velocity is (the speed at the endv0 � vm

t � tm

xm1 � 1
2amtm

2 � 1
2am� vm

am
�

2

�
1
2

vm
2

am
.

�
58.8 m/s
8.40 m/s2 � 7.00 s.

tm �
vm

am

xc � 1
2act2.

(x � x0 � v0t � 1
2at2)

xc � xm1 � xm2.

Sample Problem 2.04 Drag race of car and motorcycle 

A popular web video shows a jet airplane, a car, and a mo-
torcycle racing from rest along a runway (Fig. 2-10). Initially
the motorcycle takes the lead, but then the jet takes the lead,
and finally the car blows past the motorcycle. Here let’s focus
on the car and motorcycle and assign some reasonable values
to the motion. The motorcycle first takes the lead because its
(constant) acceleration am � 8.40 m/s2 is greater than the car’s
(constant) acceleration ac � 5.60 m/s2, but it soon loses to the
car because it reaches its greatest speed vm � 58.8 m/s before
the car reaches its greatest speed vc � 106 m/s. How long does
the car take to reach the motorcycle?

KEY IDEAS

We can apply the equations of constant acceleration to both
vehicles, but for the motorcycle we must consider the mo-
tion in two stages: (1) First it travels through distance xm1

with zero initial velocity and acceleration am � 8.40 m/s2,
reaching speed vm � 58.8 m/s. (2) Then it travels through dis-
tance xm2 with constant velocity vm � 58.8 m/s and zero ac-
celeration (that, too, is a constant acceleration). (Note that
we symbolized the distances even though we do not know
their values. Symbolizing unknown quantities is often help-
ful in solving physics problems, but introducing such un-
knowns sometimes takes physics courage.)

Calculations: So that we can draw figures and do calcula-
tions, let’s assume that the vehicles race along the positive di-
rection of an x axis, starting from x � 0 at time t � 0. (We can

Figure 2-10 A jet airplane, a car, and a motorcycle just after 
accelerating from rest.

of the first stage) and the acceleration is a � 0. So, the dis-
tance traveled during the second stage is

(2-23)xm2 � vm(t � tm) � vm(t � 7.00 s).
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Another Look at Constant Acceleration*
The first two equations in Table 2-1 are the basic equations from which the others
are derived. Those two can be obtained by integration of the acceleration with
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq. 2-8) as

dv � a dt.

We next write the indefinite integral (or antiderivative) of both sides:

Since acceleration a is a constant, it can be taken outside the integration.We obtain

or v � at � C. (2-25)

To evaluate the constant of integration C, we let t � 0, at which time v � v0.
Substituting these values into Eq. 2-25 (which must hold for all values of t,
including t � 0) yields

v0 � (a)(0) � C � C.

Substituting this into Eq. 2-25 gives us Eq. 2-11.
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as

dx � v dt

and then take the indefinite integral of both sides to obtain

�dx � �v dt.

�dv � a �dt

�dv � �a dt.
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that at t � 7.00 s the plot for the motorcycle switches from
being curved (because the speed had been increasing) to be-
ing straight (because the speed is thereafter constant).

Figure 2-11 Graph of position versus time for car and motorcycle.

*This section is intended for students who have had integral calculus.
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To finish the calculation, we substitute Eqs. 2-20, 2-22, and 
2-23 into Eq. 2-19, obtaining

(2-24)

This is a quadratic equation. Substituting in the given data,
we solve the equation (by using the usual quadratic-equa-
tion formula or a polynomial solver on a calculator), finding
t � 4.44 s and t � 16.6 s.

But what do we do with two answers? Does the car pass
the motorcycle twice? No, of course not, as we can see in the
video. So, one of the answers is mathematically correct but
not physically meaningful. Because we know that the car
passes the motorcycle after the motorcycle reaches its maxi-
mum speed at t � 7.00 s, we discard the solution with t 	
7.00 s as being the unphysical answer and conclude that the
passing occurs at

(Answer)

Figure 2-11 is a graph of the position versus time for
the two vehicles, with the passing point marked. Notice

t � 16.6 s.

1
2act2 �

1
2

vm
2

am
� vm(t � 7.00 s).
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Next, we substitute for v with Eq. 2-11:

Since v0 is a constant, as is the acceleration a, this can be rewritten as

Integration now yields

(2-26)

where C� is another constant of integration. At time t � 0, we have x � x0.
Substituting these values in Eq. 2-26 yields x0 � C�. Replacing C� with x0 in Eq.
2-26 gives us Eq. 2-15.

x � v0t � 1
2 at 2 � C�,

�dx � v0�dt � a�t dt.

�dx � �(v0 � at) dt.
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After reading this module, you should be able to . . .

2.16 Identify that if a particle is in free flight (whether 
upward or downward) and if we can neglect the 
effects of air on its motion, the particle has a constant

downward acceleration with a magnitude g that we take to
be 9.8 m/s2.

2.17 Apply the constant-acceleration equations (Table 2-1) to
free-fall motion. 

● An important example of straight-line motion with constant
acceleration is that of an object rising or falling freely near
Earth’s surface. The constant acceleration equations de-
scribe this motion, but we make two changes in notation:

(1) we refer the motion to the vertical y axis with �y vertically
up; (2) we replace a with �g, where g is the magnitude of the
free-fall acceleration. Near Earth’s surface, 

g � 9.8 m/s2 � 32 ft/s2.

Learning Objectives

Key Ideas

Free-Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the
effects of air on its flight, you would find that the object accelerates downward at
a certain constant rate.That rate is called the free-fall acceleration, and its magni-
tude is represented by g. The acceleration is independent of the object’s charac-
teristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-12, which is a series
of stroboscopic photos of a feather and an apple. As these objects fall, they
accelerate downward—both at the same rate g. Thus, their speeds increase at the
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level
in Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you
should use as an exact number for the problems in this book unless otherwise
noted.

The equations of motion in Table 2-1 for constant acceleration also apply to
free fall near Earth’s surface; that is, they apply to an object in vertical flight,
either up or down, when the effects of the air can be neglected. However, note
that for free fall: (1) The directions of motion are now along a vertical y axis
instead of the x axis, with the positive direction of y upward. (This is important
for later chapters when combined horizontal and vertical motions are examined.)
(2) The free-fall acceleration is negative—that is, downward on the y axis, toward
Earth’s center—and so it has the value �g in the equations.

Figure 2-12 A feather and an apple free
fall in vacuum at the same magnitude of
acceleration g. The acceleration increases
the distance between successive images. In
the absence of air, the feather and apple
fall together.

© Jim Sugar/CORBIS
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Checkpoint 5
(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the ascent,
from the release point to the highest point? (b) What is it for the descent, from the high-
est point back to the release point? (c) What is the ball’s acceleration at its highest point?

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 � 12t � 5.0 � 0.

Solving this quadratic equation for t yields

t � 0.53 s and t � 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y � 5.0 m, once on the
way up and once on the way down.

5.0 m � (12 m/s)t � (1
2)(9.8 m/s2)t2.

Sample Problem 2.05 Time for full up-down flight, baseball toss

In Fig. 2-13, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a � �g.
Because this is constant, Table 2-1 applies to the motion.
(2) The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 � 12 m/s, and seeking t, we solve Eq. 2-11, which contains
those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release point?

Calculation: We can take the ball’s release point to be y0 � 0.
We can then write Eq.2-16 in y notation, set y � y0 � y and v �
0 (at the maximum height),and solve for y.We get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a � �g, and displacement y �
y0 � 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 � 0 give us

y � v0t � 1
2 gt2,

y �
v2 � v0

2

2a
�

0 � (12 m/s)2

2(�9.8 m/s2)
� 7.3 m.

t �
v � v0

a
�

0 � 12 m/s
�9.8 m/s2 � 1.2 s.

Figure 2-13 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Suppose you toss a tomato directly upward with an initial (positive) velocity v0

and then catch it when it returns to the release level. During its free-fall flight (from
just after its release to just before it is caught), the equations of Table 2-1 apply to its
motion. The acceleration is always a � �g � �9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Additional examples, video, and practice available at WileyPLUS

The free-fall acceleration near Earth’s surface is a � �g � �9.8 m/s2, and the
magnitude of the acceleration is g � 9.8 m/s2. Do not substitute �9.8 m/s2 for g.



292-6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS

2-6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS 

After reading this module, you should be able to . . . 

2.18 Determine a particle’s change in velocity by graphical
integration on a graph of acceleration versus time.

2.19 Determine a particle’s change in position by graphical
integration on a graph of velocity versus time. 

● On a graph of acceleration a versus time t, the change in
the velocity is given by 

The integral amounts to finding an area on the graph:

�t1

t0

a dt � �area between acceleration curve
and time axis, from t0 to t1 �.

v1 � v0 � �t1

t0

a dt.

● On a graph of velocity v versus time t, the change in the
position is given by

where the integral can be taken from the graph as 

�t1

t0

v dt � �area between velocity curve
and time axis, from t0 to t1

�.

x1 � x0 � �t1

t0

v dt,

Learning Objectives

Key Ideas

Graphical Integration in Motion Analysis
Integrating Acceleration. When we have a graph of an object’s acceleration a ver-
sus time t, we can integrate on the graph to find the velocity at any given time.
Because a is defined as a � dv/dt, the Fundamental Theorem of Calculus tells us that

(2-27)

The right side of the equation is a definite integral (it gives a numerical result rather
than a function),v0 is the velocity at time t0,and v1 is the velocity at later time t1.The def-
inite integral can be evaluated from an a(t) graph,such as in Fig.2-14a. In particular,

(2-28)

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the correspon-
ding unit of area on the graph is

(1 m/s2)(1 s) � 1 m/s,

which is (properly) a unit of velocity.When the acceleration curve is above the time
axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of the posi-
tion x as v � dx/dt, then

(2-29)

where x0 is the position at time t0 and x1 is the position at time t1. The definite
integral on the right side of Eq. 2-29 can be evaluated from a v(t) graph, like that
shown in Fig. 2-14b. In particular,

(2-30)

If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre-
sponding unit of area on the graph is

(1 m/s)(1 s) � 1 m,

which is (properly) a unit of position and displacement.Whether this area is posi-
tive or negative is determined as described for the a(t) curve of Fig. 2-14a.

�t1

t0

v dt � �area between velocity curve
and time axis, from t0 to t1

�.

x1 � x0 � �t1

t0

v dt,

�t1

t0

a dt � �area between acceleration curve
and time axis, from t0 to t1 �.

v1 � v0 � �t1

t0

a dt.

Figure 2-14 The area between a plotted
curve and the horizontal time axis, from
time t0 to time t1, is indicated for (a) a
graph of acceleration a versus t and (b) a
graph of velocity v versus t.
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tt1

Area

(a)

v

t0
tt1

Area
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This area gives the
change in velocity.

This area gives the
change in position.
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Combining Eqs. 2-27 and 2-28, we can write

(2-31)

For convenience, let us separate the area into three regions
(Fig. 2-15b). From 0 to 40 ms, region A has no area:

areaA � 0.

From 40 ms to 100 ms, region B has the shape of a triangle,with
area

From 100 ms to 110 ms, region C has the shape of a rectan-
gle, with area

areaC � (0.010 s)(50 m/s2) � 0.50 m/s.

Substituting these values and v0 � 0 into Eq. 2-31 gives us

v1 � 0 � 0 � 1.5 m/s � 0.50 m/s,

or v1 � 2.0 m/s � 7.2 km/h. (Answer)

Comments: When the head is just starting to move forward,
the torso already has a speed of 7.2 km/h. Researchers argue
that it is this difference in speeds during the early stage of a
rear-end collision that injures the neck. The backward whip-
ping of the head happens later and could, especially if there is
no head restraint, increase the injury.

areaB � 1
2(0.060 s)(50 m/s2) � 1.5 m/s.

v1 � v0 � �area between acceleration curve
and time axis, from t0 to t1

�.

Sample Problem 2.06 Graphical integration a versus t, whiplash injury

“Whiplash injury” commonly occurs in a rear-end collision
where a front car is hit from behind by a second car. In the
1970s, researchers concluded that the injury was due to the
occupant’s head being whipped back over the top of the seat
as the car was slammed forward. As a result of this finding,
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end collisions,
a volunteer was strapped to a seat that was then moved
abruptly to simulate a collision by a rear car moving at
10.5 km/h. Figure 2-15a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time
t � 0. The torso acceleration was delayed by 40 ms because
during that time interval the seat back had to compress
against the volunteer. The head acceleration was delayed by
an additional 70 ms. What was the torso speed when the head
began to accelerate?

KEY IDEA

We can calculate the torso speed at any time by finding an
area on the torso a(t) graph.

Calculations: We know that the initial torso speed is v0 � 0
at time t0 � 0, at the start of the “collision.” We want the
torso speed v1 at time t1 � 110 ms, which is when the head
begins to accelerate.

Figure 2-15 (a) The a(t) curve of the torso and head of a volunteer
in a simulation of a rear-end collision. (b) Breaking up the region
between the plotted curve and the time axis to calculate the area.

Additional examples, video, and practice available at WileyPLUS

Position The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis.The position
is either positive or negative, according to which side of the origin
the particle is on, or zero if the particle is at the origin. The positive
direction on an axis is the direction of increasing positive numbers;
the opposite direction is the negative direction on the axis.

Displacement The displacement �x of a particle is the change
in its position:

�x � x2 � x1. (2-1)

Displacement is a vector quantity. It is positive if the particle has
moved in the positive direction of the x axis and negative if the
particle has moved in the negative direction.

Review & Summary

Average Velocity When a particle has moved from position x1

to position x2 during a time interval �t � t2 � t1, its average velocity
during that interval is

(2-2)

The algebraic sign of vavg indicates the direction of motion (vavg is a
vector quantity). Average velocity does not depend on the actual
distance a particle moves, but instead depends on its original and
final positions.

On a graph of x versus t, the average velocity for a time interval
�t is the slope of the straight line connecting the points on the curve
that represent the two ends of the interval.

vavg �
�x
�t

�
x2 � x1

t2 � t1
.
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Average Speed The average speed savg of a particle during a
time interval �t depends on the total distance the particle moves in
that time interval:

(2-3)

Instantaneous Velocity The instantaneous velocity (or sim-
ply velocity) v of a moving particle is

(2-4)

where �x and �t are defined by Eq. 2-2.The instantaneous velocity
(at a particular time) may be found as the slope (at that particular
time) of the graph of x versus t. Speed is the magnitude of instanta-
neous velocity.

Average Acceleration Average acceleration is the ratio of a
change in velocity �v to the time interval �t in which the change occurs:

(2-7)

The algebraic sign indicates the direction of aavg.

Instantaneous Acceleration Instantaneous acceleration (or
simply acceleration) a is the first time derivative of velocity v(t)

aavg �
�v
�t

.

v � lim
�t : 0

�x
�t

�
dx
dt

,

savg �
total distance

�t
.

and the second time derivative of position x(t):

(2-8, 2-9)

On a graph of v versus t, the acceleration a at any time t is the slope
of the curve at the point that represents t.

Constant Acceleration The five equations in Table 2-1
describe the motion of a particle with constant acceleration:

v � v0 � at, (2-11)

(2-15)

(2-16)

(2-17)

(2-18)

These are not valid when the acceleration is not constant.

Free-Fall Acceleration An important example of straight-
line motion with constant acceleration is that of an object rising or
falling freely near Earth’s surface. The constant acceleration equa-
tions describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical y axis with �y vertically up;
(2) we replace a with �g, where g is the magnitude of the free-fall
acceleration. Near Earth’s surface, g � 9.8 m/s2 (� 32 ft/s2).

x � x0 � vt � 1
2at2.

x � x0 � 1
2(v0 � v)t,

v2 � v0
2 � 2a(x � x0),

x � x0 � v0t � 1
2at2,

a �
dv
dt

�
d2x
dt2 .

Questions

1 Figure 2-16 gives the velocity of a
particle moving on an x axis. What
are (a) the initial and (b) the final di-
rections of travel? (c) Does the parti-
cle stop momentarily? (d) Is the ac-
celeration positive or negative? (e) Is
it constant or varying?

2 Figure 2-17 gives the accelera-
tion a(t) of a Chihuahua as it  chases
a German shepherd along an axis. In
which of the time periods indicated
does the Chihuahua move at constant  speed?

is the sign of the particle’s position?
Is the particle’s velocity positive,
negative, or 0 at (b) t � 1 s, (c) t � 2
s, and (d) t � 3 s? (e) How many
times does the particle go through
the point x � 0?

5 Figure 2-20 gives the velocity of
a particle moving along an axis.
Point 1 is at the highest point on the
curve; point 4 is at the lowest point;
and points 2 and 6 are at the same
height. What is the direction of
travel at (a) time t � 0 and (b) point
4? (c) At which of the six numbered
points does the particle reverse its
direction of travel? (d) Rank the six
points according to the magnitude
of the acceleration, greatest first.

6 At t � 0, a particle moving along an
x axis is at position x0 � �20 m. The
signs of the particle’s initial velocity v0

(at time t0) and constant acceleration a
are, respectively, for four situations: (1)
�, �; (2) �, �; (3) �, �; (4) �, �. In
which situations will the particle (a)
stop momentarily, (b) pass through the
origin, and (c) never pass through the
origin?

7 Hanging over the railing of a
bridge, you drop an egg (no initial ve-
locity) as you throw a second egg
downward. Which curves in Fig. 2-21

a

A B C D E F G H

t

Figure 2-17 Question 2.

t (s)

x

3 4210

Figure 2-19 Question 4.

t

v

Figure 2-16 Question 1.

v

1

2 6

3 5
4

t

Figure 2-20 Question 5.

3 Figure 2-18 shows four paths along
which objects move from a starting
point to a final point, all in the same
time interval. The paths pass over a
grid of equally spaced straight lines.
Rank the paths according to (a) the av-
erage velocity of the objects and (b)
the average speed of the objects, great-
est first.

4 Figure 2-19 is a graph of a parti-
cle’s position along an x axis versus time. (a) At time t � 0, what

3

2

1

4

Figure 2-18 Question 3.

Figure 2-21 Question 7.
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apple’s release, the balloon is accelerating upward with a magni-
tude of 4.0 m/s2 and has an upward velocity of magnitude 2 m/s.
What are the (a) magnitude and (b) direction of the acceleration of
the apple just after it is released? (c) Just then, is the apple moving
upward or downward, or is it stationary? (d) What is the magni-
tude of its velocity just then? (e) In the next few moments, does the
speed of the apple increase, decrease, or remain constant? 

11 Figure 2-23 shows that a particle moving along an x axis un-
dergoes three periods of acceleration. Without written computa-
tion, rank the acceleration periods according to the increases
they produce in the particle’s velocity, greatest first.

“Cogito ergo zoom!” (I think, therefore I go fast!). In 2001, Sam
Whittingham beat Huber’s record by 19.0 km/h. What was
Whittingham’s time through the 200 m?

••7 Two trains, each having a speed of 30 km/h, are headed at
each other on the same straight track. A bird that can fly 60 km/h
flies off the front of one train when they are 60 km apart and heads
directly for the other train. On reaching the other train, the (crazy)
bird flies directly back to the first train, and so forth.What is the to-
tal distance the bird travels before the trains collide?

••8 Panic escape. Figure 2-24 shows a general situation in
which a stream of people attempt to escape through an exit door
that turns out to be locked. The people move toward the door at
speed vs � 3.50 m/s, are each d � 0.25 m in depth, and are sepa-
rated by L � 1.75 m. The
arrangement in Fig. 2-24
occurs at time t � 0. (a) At
what average rate does the
layer of people at the door
increase? (b) At what time
does the layer’s depth reach
5.0 m? (The answers reveal
how quickly such a situation
becomes dangerous.)

••9 In 1 km races, runner 1 on track 1 (with time 2 min, 27.95 s)
appears to be faster than runner 2 on track 2 (2 min, 28.15 s).
However, length L2 of track 2 might be slightly greater than length
L1 of track 1. How large can L2 � L1 be for us still to conclude that
runner 1 is faster?

ILW

Module 2-1 Position, Displacement, and Average Velocity
•1 While driving a car at 90 km/h, how far do you move while
your eyes shut for 0.50 s during a hard sneeze?

•2 Compute your average velocity in the following two cases:
(a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at a
speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a
straight track. (c) Graph x versus t for both cases and indicate how
the average velocity is found on the graph.

•3 An automobile travels on a straight road for
40 km at 30 km/h. It then continues in the same direction for an-
other 40 km at 60 km/h. (a) What is the average velocity of the car
during the full 80 km trip? (Assume that it moves in the positive x
direction.) (b) What is the average speed? (c) Graph x versus t and
indicate how the average velocity is found on the graph.

•4 A car moves uphill at 40 km/h and then back downhill at 60
km/h.What is the average speed for the round trip?

•5 The position of an object moving along an x axis is given
by x 3t 4t2 t3, where x is in meters and t in seconds. Find the
position of the object at the following values of t: (a) 1 s, (b) 2 s,
(c) 3 s, and (d) 4 s. (e) What is the object’s displacement between t � 0
and t � 4 s? (f) What is its average velocity for the time interval
from t � 2 s to t � 4 s? (g) Graph x versus t for 0 � t � 4 s and indi-
cate how the answer for (f) can be found on the graph.

•6 The 1992 world speed record for a bicycle (human-powered
vehicle) was set by Chris Huber. His time through the measured
200 m stretch was a sizzling 6.509 s, at which he commented,

���
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Locked
door
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d d d

Figure 2-24 Problem 8.
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give the velocity v(t) for (a) the dropped egg
and (b) the thrown egg? (Curves A and B are
parallel; so are C, D, and E; so are F and G.)

8 The following equations give the velocity
v(t) of a particle in four situations: (a) v � 3; (b)
v � 4t2 � 2t � 6; (c) v � 3t � 4; (d) v � 5t2 � 3.
To which of these situations do the equations of
Table 2-1 apply?

9 In Fig. 2-22, a cream tangerine is thrown di-
rectly upward past three evenly spaced windows
of equal heights. Rank the windows according
to (a) the average speed of the cream tangerine
while passing them, (b) the time the cream tan-
gerine takes to pass them, (c) the magnitude of
the acceleration of the cream tangerine while
passing them, and (d) the change �v in the
speed of the cream tangerine during the pas-
sage, greatest first.

10 Suppose that a passenger intent on lunch
during his first ride in a hot-air balloon accidently drops an apple
over the side during the balloon’s liftoff. At the moment of the
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Figure 2-22
Question 9. A

cc
el

er
at

io
n

a

Time t

(1)

(2)

(3)

Figure 2-23 Question 11.
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••10 To set a speed record in a measured (straight-line)
distance d, a race car must be driven first in one direction (in time t1)
and then in the opposite direction (in time t2). (a) To eliminate the ef-
fects of the wind and obtain the car’s speed vc in a windless situation,
should we find the average of d/t1 and d/t2 (method 1) or should we di-
vide d by the average of t1 and t2? (b) What is the fractional difference
in the two methods when a steady wind blows along the car’s route
and the ratio of the wind speed vw to the car’s speed vc is 0.0240?

••11 You are to drive 300 km to an interview. The interview is

Car Buffer 

dL dL L L L

v vs

Figure 2-25 Problem 12.

•••13 You drive on Interstate 10 from San Antonio to Houston,
half the time at 55 km/h and the other half at 90 km/h. On the way
back you travel half the distance at 55 km/h and the other half at 
90 km/h. What is your average speed (a) from San Antonio to
Houston, (b) from Houston back to San Antonio, and (c) for the entire
trip? (d) What is your average velocity for the entire trip? (e) Sketch x
versus t for (a), assuming the motion is all in the positive x direc-
tion.Indicate how the average velocity can be found on the sketch.

Module 2-2 Instantaneous Velocity and Speed
•14 An electron moving along the x axis has a position given
by x 16te�t m, where t is in seconds. How far is the electron from
the origin when it momentarily stops?

•15 (a) If a particle’s position is given by x 4 12t 3t2

(where t is in seconds and x is in meters), what is its velocity at
s? (b) Is it moving in the positive or negative direction of x

just then? (c) What is its speed just then? (d) Is the speed
increasing or decreasing just then? (Try answering the next two
questions without further calculation.) (e) Is there ever an instant
when the velocity is zero? If so, give the time t; if not, answer no.
(f) Is there a time after t � 3 s when the particle is moving in the
negative direction of x? If so, give the time t; if not, answer no.

•16 The position function x(t) of a particle moving along an x axis
is x � 4.0 � 6.0t2, with x in meters and t in seconds. (a) At what
time and (b) where does the particle (momentarily) stop? At what
(c) negative time and (d) positive time does the particle pass
through the origin? (e) Graph x versus t for the range �5 s to �5 s.
(f) To shift the curve rightward on the graph, should we include the

t � 1

���

�

ILW

term �20t or the term �20t in x(t)? (g) Does that inclusion increase
or decrease the value of x at which the particle momentarily stops?

••17 The position of a particle moving along the x axis is given in
centimeters by x � 9.75 � 1.50t3, where t is in seconds. Calculate (a)
the average velocity during the time interval t � 2.00 s to t � 3.00 s;
(b) the instantaneous velocity at t � 2.00 s; (c) the instantaneous ve-
locity at t � 3.00 s; (d) the instantaneous velocity at t � 2.50 s; and
(e) the instantaneous velocity when the particle is midway between
its positions at t � 2.00 s and t � 3.00 s. (f) Graph x versus t and in-
dicate your answers graphically.

Module 2-3 Acceleration
•18 The position of a particle moving along an x axis is given by 
x � 12t2 � 2t3, where x is in meters and t is in seconds. Determine (a)
the position, (b) the velocity, and (c) the acceleration of the particle at
t � 3.0 s. (d) What is the maximum positive coordinate reached by
the particle and (e) at what time is it reached? (f) What is the maxi-
mum positive velocity reached by the particle and (g) at what time is
it reached? (h) What is the acceleration of the particle at the instant
the particle is not moving (other than at t � 0)? (i) Determine the av-
erage velocity of the particle between t � 0 and t � 3 s.

•19 At a certain time a particle had a speed of 18 m/s in
the positive x direction, and 2.4 s later its speed was 30 m/s in the
opposite direction. What is the average acceleration of the particle
during this 2.4 s interval?

•20 (a) If the position of a particle is given by x � 20t � 5t3,
where x is in meters and t is in seconds, when, if ever, is the parti-
cle’s velocity zero? (b) When is its acceleration a zero? (c) For
what time range (positive or negative) is a negative? (d) Positive?
(e) Graph x(t), v(t), and a(t).

••21 From t � 0 to t � 5.00 min, a man stands still, and from 
t � 5.00 min to t � 10.0 min, he walks briskly in a straight line at a
constant speed of 2.20 m/s. What are (a) his average velocity vavg

and (b) his average acceleration aavg in the time interval 2.00 min to
8.00 min? What are (c) vavg and (d) aavg in the time interval 3.00 min
to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how
the answers to (a) through (d) can be obtained from the graphs.

••22 The position of a particle moving along the x axis depends on
the time according to the equation x � ct2 � bt3, where x is in me-
ters and t in seconds.What are the units of (a) constant c and (b) con-
stant b? Let their numerical values be 3.0 and 2.0, respectively. (c) At
what time does the particle reach its maximum positive x position?
From t � 0.0 s to t � 4.0 s, (d) what distance does the particle move
and (e) what is its displacement? Find its velocity at times (f) 1.0 s,
(g) 2.0 s, (h) 3.0 s, and (i) 4.0 s. Find its acceleration at times (j) 1.0 s,
(k) 2.0 s, (l) 3.0 s, and (m) 4.0 s.

Module 2-4 Constant Acceleration
•23 An electron with an initial velocity v0 1.50 � 105 m/s
enters a region of length L 1.00
cm where it is electrically acceler-
ated (Fig. 2-26). It emerges with
v 5.70 � 106 m/s. What is its ac-
celeration, assumed constant?

•24 Catapulting mush-
rooms. Certain mushrooms launch
their spores by a catapult mecha-
nism.As water condenses from the
air onto a spore that is attached to
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Figure 2-26 Problem 23.

at 11�15 A.M. You plan to drive at 100 km/h, so you leave at 8�00
A.M. to allow some extra time. You drive at that speed for the first
100 km, but then construction work forces you to slow to 40 km/h
for 40 km.What would be the least speed needed for the rest of the
trip to arrive in time for the interview?

•••12 Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the
line of cars, either downstream (in the traffic direction) or up-
stream, or it can be stationary. Figure 2-25 shows a uniformly
spaced line of cars moving at speed v � 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed vs � 5.00 m/s.
Assume that each faster car adds length L � 12.0 m (car length
plus buffer zone) to the line of slow cars when it joins the line, and as-
sume it slows abruptly at the last instant. (a) For what separation dis-
tance d between the faster cars does the shock wave remain
stationary? If the separation is twice that amount, what are the (b)
speed and (c) direction (upstream or downstream) of the shock wave?
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Figure 2-27 Problems 34 and 35.

••35 Figure 2-27 shows a red car
and a green car that move toward
each other. Figure 2-28 is a graph of
their motion, showing the positions
xg0 � 270 m and xr0 � �35.0 m at
time t � 0. The green car has a con-
stant speed of 20.0 m/s and the red
car begins from rest. What is the ac-
celeration magnitude of the red car?

••36 A car moves along an x axis through a distance of 900 m,
starting at rest (at x � 0) and ending at rest (at x � 900 m).
Through the first of that distance, its acceleration is �2.25 m/s2.
Through the rest of that distance, its acceleration is �0.750 m/s2.
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x, velocity v, and acceleration a
versus time t for the trip.

••37 Figure 2-29 depicts the motion
of a particle moving along an x axis
with a constant acceleration. The fig-
ure’s vertical scaling is set by xs � 6.0 m.
What are the (a) magnitude and (b) di-
rection of the particle’s acceleration?

••38 (a) If the maximum acceleration
that is tolerable for passengers in a
subway train is 1.34 m/s2 and subway
stations are located 806 m apart, what
is the maximum speed a subway train
can attain between stations? (b) What
is the travel time between stations? (c) If a subway train stops for 20 s
at each station, what is the maximum average speed of the train, from
one start-up to the next? (d) Graph x, v, and a versus t for the interval
from one start-up to the next.

••39 Cars A and B move in
the same direction in adjacent
lanes.The position x of car A is
given in Fig. 2-30, from time
t � 0 to t � 7.0 s. The figure’s
vertical scaling is set by xs �
32.0 m.At t � 0, car B is at x �
0, with a velocity of 12 m/s and
a negative constant accelera-
tion aB. (a) What must aB be
such that the cars are (momen-
tarily) side by side (momentarily at the same value of x) at t � 4.0 s?
(b) For that value of aB, how many times are the cars side by side?
(c) Sketch the position x of car B versus time t on Fig. 2-30. How
many times will the cars be side by side if the magnitude of accelera-
tion aB is (d) more than and (e) less than the answer to part (a)?

••40 You are driving toward a traffic signal when it turns yel-
low. Your speed is the legal speed limit of v0 55 km/h; your best
deceleration rate has the magnitude a � 5.18 m/s2.Your best reaction
time to begin braking is T � 0.75 s.To avoid having the front of your
car enter the intersection after the light turns red, should you
brake to a stop or continue to move at 55 km/h if the distance to

�

1
4

the mushroom, a drop grows on one side of the spore and a film
grows on the other side.The spore is bent over by the drop’s weight,
but when the film reaches the drop, the drop’s water suddenly
spreads into the film and the spore springs upward so rapidly that it
is slung off into the air. Typically, the spore reaches a speed of 1.6
m/s in a 5.0 mm launch; its speed is then reduced to zero in 1.0 mm
by the air. Using those data and assuming constant accelerations,
find the acceleration in terms of g during (a) the launch and (b) the
speed reduction.

•25 An electric vehicle starts from rest and accelerates at a rate
of 2.0 m/s2 in a straight line until it reaches a speed of 20 m/s. The
vehicle then slows at a constant rate of 1.0 m/s2 until it stops. (a)
How much time elapses from start to stop? (b) How far does the
vehicle travel from start to stop?

•26 A muon (an elementary particle) enters a region with a speed
of 5.00 � 106 m/s and then is slowed at the rate of 1.25 � 1014 m/s2.
(a) How far does the muon take to stop? (b) Graph x versus t and v
versus t for the muon.

•27 An electron has a constant acceleration of �3.2 m/s2. At a
certain instant its velocity is �9.6 m/s. What is its velocity (a) 2.5 s
earlier and (b) 2.5 s later?

•28 On a dry road, a car with good tires may be able to brake
with a constant deceleration of 4.92 m/s2. (a) How long does such
a car, initially traveling at 24.6 m/s, take to stop? (b) How far does
it travel in this time? (c) Graph x versus t and v versus t for the
deceleration.

•29 A certain elevator cab has a total run of 190 m and a max-
imum speed of 305 m/min, and it accelerates from rest and then
back to rest at 1.22 m/s2. (a) How far does the cab move while ac-
celerating to full speed from rest? (b) How long does it take to
make the nonstop 190 m run, starting and ending at rest?

•30 The brakes on your car can slow you at a rate of 5.2 m/s2. (a)
If you are going 137 km/h and suddenly see a state trooper, what is
the minimum time in which you can get your car under the 90 km/h
speed limit? (The answer reveals the futility of braking to keep
your high speed from being detected with a radar or laser gun.)
(b) Graph x versus t and v versus t for such a slowing.

•31 Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s2, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will
it take to acquire a speed one-tenth that of light, which travels at
3.0 � 108 m/s? (b) How far will it travel in so doing?

•32 A world’s land speed record was set by Colonel John
P. Stapp when in March 1954 he rode a rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
a stop in 1.4 s. (See Fig. 2-7.) In terms of g, what acceleration did he
experience while stopping?

•33 A car traveling 56.0 km/h is 24.0 m from a barrier
when the driver slams on the brakes. The car hits the barrier 2.00 s
later. (a) What is the magnitude of the car’s constant acceleration
before impact? (b) How fast is the car traveling at impact?

••34 In Fig. 2-27, a red car and a green car, identical except for the
color, move toward each other in adjacent lanes and parallel to an x
axis. At time t � 0, the red car is at xr � 0 and the green car is at xg �
220 m. If the red car has a constant velocity of 20 km/h, the cars pass
each other at x � 44.5 m, and if it has a constant velocity of 40 km/h,
they pass each other at x � 76.6 m. What are (a) the initial velocity
and (b) the constant acceleration of the green car?
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the intersection and the duration of the yellow light are (a) 40 m and
2.8 s, and (b) 32 m and 1.8 s? Give an answer of brake, continue, either
(if either strategy works), or neither (if neither strategy works and the
yellow duration is inappropriate).

••41 As two trains move
along a track, their conductors
suddenly notice that they are
headed toward each other.
Figure 2-31 gives their velocities
v as functions of time t as the
conductors slow the trains. The
figure’s vertical scaling is set by
vs � 40.0 m/s. The slowing
processes begin when the trains are 200 m apart.What is their separa-
tion when both trains have stopped?

•••42 You are arguing over a cell phone while trailing an
unmarked police car by 25 m; both your car and the police car are
traveling at 110 km/h. Your argument diverts your attention from
the police car for 2.0 s (long enough for you to look at the phone
and yell, “I won’t do that!”). At the beginning of that 2.0 s, the po-
lice officer begins braking suddenly at 5.0 m/s2. (a) What is the sep-
aration between the two cars when your attention finally returns?
Suppose that you take another 0.40 s to realize your danger and
begin braking. (b) If you too brake at 5.0 m/s2, what is your speed
when you hit the police car?

•••43 When a high-speed passenger train traveling at
161 km/h rounds a bend, the engineer is shocked to see that a
locomotive has improperly entered onto the track from a siding
and is a distance D � 676 m ahead (Fig. 2-32). The locomotive is
moving at 29.0 km/h. The engineer of the high-speed train imme-
diately applies the brakes. (a) What must be the magnitude of the
resulting constant deceleration if a collision is to be just avoided?
(b) Assume that the engineer is at x � 0 when, at t � 0, he first

•46 Raindrops fall 1700 m from a cloud to the ground. (a) If they
were not slowed by air resistance, how fast would the drops be
moving when they struck the ground? (b) Would it be safe to walk
outside during a rainstorm?

•47 At a construction site a pipe wrench struck the ground
with a speed of 24 m/s. (a) From what height was it inadvertently
dropped? (b) How long was it falling? (c) Sketch graphs of y, v,
and a versus t for the wrench.

•48 A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above the
ground. (a) How long does it take the stone to reach the ground?
(b) What is the speed of the stone at impact?

•49 A hot-air balloon is ascending at the rate of 12 m/s and
is 80 m above the ground when a package is dropped over the side.
(a) How long does the package take to reach the ground? (b) With
what speed does it hit the ground?

••50 At time t � 0, apple 1 is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down
from the same height. Figure 2-33 gives the vertical positions y of
the apples versus t during the falling, until both apples have hit the
roadway. The scaling is set by ts � 2.0 s. With approximately what
speed is apple 2 thrown down?
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••51 As a runaway scientific bal-
loon ascends at 19.6 m/s, one of its
instrument packages breaks free of a
harness and free-falls. Figure 2-34
gives the vertical velocity of the
package versus time, from before it
breaks free to when it reaches the
ground. (a) What maximum height
above the break-free point does it
rise? (b) How high is the break-free
point above the ground?

••52 A bolt is dropped from a bridge under construction,
falling 90 m to the valley below the bridge. (a) In how much
time does it pass through the last 20% of its fall? What is its speed
(b) when it begins that last 20% of its fall and (c) when it reaches
the valley beneath the bridge?

••53 A key falls from a bridge that is 45 m above the
water. It falls directly into a model boat, moving with constant
velocity, that is 12 m from the point of impact when the key is re-
leased.What is the speed of the boat?

••54 A stone is dropped into a river from a bridge 43.9 m
above the water. Another stone is thrown vertically down 1.00 s
after the first is dropped. The stones strike the water at the same
time. (a) What is the initial speed of the second stone? (b) Plot
velocity versus time on a graph for each stone, taking zero time as
the instant the first stone is released.
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Module 2-5 Free-Fall Acceleration
•44 When startled, an armadillo will leap upward. Suppose it
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it
leaves the ground? (b) What is its speed at the height of 0.544 m?
(c) How much higher does it go?

•45 (a) With what speed must a ball be thrown verti-
cally from ground level to rise to a maximum height of 50 m?
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a
versus t for the ball. On the first two graphs, indicate the time at
which 50 m is reached.
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spots the locomotive. Sketch x(t) curves for the locomotive and
high-speed train for the cases in which a collision is just avoided
and is not quite avoided.



time t � 0.At t � 1.5 s it passes the top of a tall tower, and 1.0 s later
it reaches its maximum height.What is the height of the tower?

•••61 A steel ball is dropped from a building’s roof and passes
a window, taking 0.125 s to fall from the top to the bottom of the
window, a distance of 1.20 m. It then falls to a sidewalk and
bounces back past the window, moving from bottom to top in
0.125 s. Assume that the upward flight is an exact reverse of the
fall. The time the ball spends below the bottom of the window is
2.00 s. How tall is the building?

•••62 A basketball player grabbing a rebound jumps
76.0 cm vertically. How much total time (ascent and descent) does
the player spend (a) in the top 15.0 cm of this jump and (b) in the
bottom 15.0 cm? (The player seems to hang in the air at the top.)

•••63 A drowsy cat spots a flowerpot that sails first up and then
down past an open window.The pot is in view for a total of 0.50 s, and
the top-to-bottom height of the window is 2.00 m. How high above the
window top does the  flowerpot go?

•••64 A ball is shot vertically up-
ward from the surface of another
planet. A plot of y versus t for the
ball is shown in Fig. 2-36, where y is
the height of the ball above its start-
ing point and t � 0 at the instant the
ball is shot. The figure’s vertical scal-
ing is set by ys � 30.0 m.What are the
magnitudes of (a) the free-fall accel-
eration on the planet and (b) the ini-
tial velocity of the ball?
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••55 A ball of moist clay falls 15.0 m to the ground. It is
in contact with the ground for 20.0 ms before stopping. (a) What is
the magnitude of the average acceleration of the ball during the time
it is in contact with the ground? (Treat the ball as a particle.) (b) Is the
average acceleration up or down?

••56 Figure 2-35
shows the speed v versus
height y of a ball tossed
directly upward, along a y
axis. Distance d is 0.40 m.
The speed at height yA is
vA.The speed at height yB

is vA. What is speed vA?

••57 To test the quality
of a tennis ball, you drop
it onto the floor from a
height of 4.00 m. It re-
bounds to a height of 2.00 m. If the ball is in contact with the floor
for 12.0 ms, (a) what is the magnitude of its average acceleration
during that contact and (b) is the average acceleration up or down?

••58 An object falls a distance h from rest. If it travels 0.50h in
the last 1.00 s, find (a) the time and (b) the height of its fall. (c)
Explain the physically unacceptable solution of the quadratic
equation in t that you obtain.

••59 Water drips from the nozzle of a shower onto the floor 200
cm below. The drops fall at regular (equal) intervals of time, the
first drop striking the floor at the instant the fourth drop begins to
fall. When the first drop strikes the floor, how far below the nozzle
are the (a) second and (b) third drops?

••60 A rock is thrown vertically upward from ground level at

1
3

SSM Module 2-6 Graphical Integration in Motion Analysis
•65 Figure 2-15a gives the acceleration of a volunteer’s
head and torso during a rear-end collision. At maximum head ac-
celeration, what is the speed of (a) the head and (b) the torso?

••66 In a forward punch in karate, the fist begins at rest at
the waist and is brought rapidly forward until the arm is fully ex-
tended. The speed v(t) of the fist is given in Fig. 2-37 for someone
skilled in karate. The vertical scaling is set by vs � 8.0 m/s. How far
has the fist moved at (a) time t � 50 ms and (b) when the speed of
the fist is maximum?

••67 When a soccer
ball is kicked to-
ward a player and
the player deflects
the ball by “head-
ing” it, the accelera-
tion of the head dur-
ing the collision can
be significant. Figure
2-38 gives the meas-
ured acceleration
a(t) of a soccer player’s head for a bare head and a helmeted head,
starting from rest. The scaling on the vertical axis is set by as � 200
m/s2. At time t � 7.0 ms, what is the difference in the speed acquired
by the bare head and the speed acquired by the helmeted head?

••68 A salamander of the genus Hydromantes captures
prey by launching its tongue
as a projectile: The skeletal
part of the tongue is shot for-
ward, unfolding the rest of
the tongue, until the outer
portion lands on the prey,
sticking to it. Figure 2-39
shows the acceleration mag-
nitude a versus time t for the
acceleration phase of the
launch in a typical situation.
The indicated accelerations are
a2 � 400 m/s2 and a1 � 100 m/s2.
What is the outward speed of the
tongue at the end of the
acceleration phase?

••69 How far does the run-
ner whose velocity–time graph is
shown in Fig. 2-40 travel in 16 s?
The figure’s vertical scaling is set
by vs � 8.0 m/s.
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•••70 Two particles move along an x axis. The position of particle 1
is given by x � 6.00t2 � 3.00t � 2.00 (in meters and seconds); the ac-
celeration of particle 2 is given by a � �8.00t (in meters per second
squared and seconds) and, at t � 0, its velocity is 20 m/s. When the
velocities of the particles match, what is their velocity?

Additional Problems
71 In an arcade video game, a spot is programmed to move
across the screen according to x � 9.00t � 0.750t3, where x is dis-
tance in centimeters measured from the left edge of the screen and
t is time in seconds. When the spot reaches a screen edge, at either 
x � 0 or x � 15.0 cm, t is reset to 0 and the spot starts moving again
according to x(t). (a) At what time after starting is the spot instan-
taneously at rest? (b) At what value of x does this occur? (c) What
is the spot’s acceleration (including sign) when this occurs? (d)
Is it moving right or left just prior to coming to rest? (e) Just after?
(f) At what time t � 0 does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a
tall building. The rock reaches its maximum height above the top of
the building 1.60 s after being shot. Then, after barely missing the
edge of the building as it falls downward, the rock strikes the ground
6.00 s after it is launched. In SI units: (a) with what upward velocity
is the rock shot, (b) what maximum height above the top of the
building is reached by the rock, and (c) how tall is the building?

73 At the instant the traffic light turns green, an automobile
starts with a constant acceleration a of 2.2 m/s2.At the same instant
a truck, traveling with a constant speed of 9.5 m/s, overtakes and
passes the automobile. (a) How far beyond the traffic signal will
the automobile overtake the truck? (b) How fast will the automo-
bile be traveling at that instant?

74 A pilot flies horizontally at 1300 km/h, at height h � 35 m
above initially level ground. However, at time t � 0, the pilot be-
gins to fly over ground sloping upward at angle u � 4.3° (Fig. 2-41).
If the pilot does not change the airplane’s heading, at what time t
does the plane strike the ground?

θ 

h

Figure 2-41 Problem 74.

75 To stop a car, first you require a certain reaction time to be-
gin braking; then the car slows at a constant rate. Suppose that the
total distance moved by your car during these two phases is 56.7 m
when its initial speed is 80.5 km/h, and 24.4 m when its initial speed
is 48.3 km/h. What are (a) your reaction time and (b) the magni-
tude of the acceleration?

76 Figure 2-42 shows part of a street where traffic flow
is to be controlled to allow a platoon of cars to move smoothly
along the street. Suppose that the platoon leaders have just
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Figure 2-42 Problem 76.

reached intersection 2, where the green appeared when they were
distance d from the intersection. They continue to travel at a cer-
tain speed vp (the speed limit) to reach intersection 3, where the
green appears when they are distance d from it. The intersections
are separated by distances D23 and D12. (a) What should be the
time delay of the onset of green at intersection 3 relative to that at
intersection 2 to keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red
light at intersection 1. When the green comes on there, the leaders
require a certain time tr to respond to the change and an additional
time to accelerate at some rate a to the cruising speed vp. (b) If the
green at intersection 2 is to appear when the leaders are distance d
from that intersection, how long after the light at intersection 1
turns green should the light at intersection 2 turn green?

77 A hot rod can accelerate from 0 to 60 km/h in 5.4 s.
(a) What is its average acceleration, in m/s2, during this time? (b)
How far will it travel during the 5.4 s, assuming its acceleration is con-
stant? (c) From rest, how much time would it require to go a distance
of 0.25 km if its acceleration could be maintained at the value in (a)?

78 A red train traveling at 72 km/h and a green train traveling
at 144 km/h are headed toward each other along a straight, level
track. When they are 950 m apart, each engineer sees the other’s
train and applies the brakes. The brakes slow each train at the rate
of 1.0 m/s2. Is there a collision? If so, answer yes and give the speed
of the red train and the speed of the green train at impact, respec-
tively. If not, answer no and give the separation between the trains
when they stop.

79 At time t � 0, a rock
climber accidentally allows a
piton to fall freely from a high
point on the rock wall to the
valley below him.Then, after a
short delay, his climbing part-
ner, who is 10 m higher on the
wall, throws a piton down-
ward. The positions y of the
pitons versus t during the
falling are given in Fig. 2-43.
With what speed is the second piton thrown?

80 A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m farther on it
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time re-
quired to travel the 160 m mentioned, (c) the time required to at-
tain the speed of 30 m/s, and (d) the distance moved from rest to
the time the train had a speed of 30 m/s. (e) Graph x versus t and v
versus t for the train, from rest.

81 A particle’s acceleration along an x axis is a � 5.0t, with t
in seconds and a in meters per
second squared. At t 2.0 s,
its velocity is �17 m/s. What is
its velocity at t � 4.0 s?

82 Figure 2-44 gives the ac-
celeration a versus time t for
a particle moving along an x
axis.The a-axis scale is  set by
as � 12.0 m/s2. At t � �2.0 s,
the particle’s velocity is 7.0
m/s. What is its velocity at t �
6.0 s?
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83 Figure 2-45 shows a simple device for measuring your
reaction time. It consists of a cardboard strip marked with a scale
and two large dots. A friend holds the strip vertically, with thumb
and forefinger at the dot on the right in Fig. 2-45. You then posi-
tion your thumb and forefinger at the other dot (on the left in
Fig. 2-45), being careful not to touch the strip. Your friend re-
leases the strip, and you try to pinch it as soon as possible after
you see it begin to fall. The mark at the place where you pinch the
strip gives your reaction time. (a) How far from the lower dot
should you place the 50.0 ms mark? How much higher should
you place the marks for (b) 100, (c) 150, (d) 200, and (e) 250 ms?
(For example, should the 100 ms marker be 2 times as far from
the dot as the 50 ms marker? If so, give an answer of 2 times. Can
you find any pattern in the answers?)

the acceleration of the particle at t 5.0 s? (d) What is the average ve-
locity of the particle between t 1.0 s and t 5.0 s? (e) What is the
average acceleration of the particle between t 1.0 s and t 5.0 s?

91 A rock is dropped from a 100-m-high cliff. How long does it
take to fall (a) the first 50 m and (b) the second 50 m?

92 Two subway stops are separated by 1100 m. If a subway train
accelerates at �1.2 m/s2 from rest through the first half of the dis-
tance and decelerates at �1.2 m/s2 through the second half, what
are (a) its travel time and (b) its maximum speed? (c) Graph x, v,
and a versus t for the trip.

93 A stone is thrown vertically upward. On its way up it passes
point A with speed v, and point B, 3.00 m higher than A, with speed

Calculate (a) the speed v and (b) the maximum height reached
by the stone above point B.

94 A rock is dropped (from rest) from the top of a 60-m-tall
building. How far above the ground is the rock 1.2 s before it
reaches the ground?

95 An iceboat has a constant velocity toward the east when
a sudden gust of wind causes the iceboat to have a constant accel-
eration toward the east for a period of 3.0 s. A plot of x versus t is
shown in Fig. 2-47, where t 0 is taken to be the instant the wind
starts to blow and the positive x axis is toward the east. (a) What is
the acceleration of the iceboat during the 3.0 s interval? (b) What
is the velocity of the iceboat at the end of the 3.0 s interval? (c) If
the acceleration remains constant for an additional 3.0 s, how far
does the iceboat travel during this second 3.0 s interval?
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Figure 2-45 Problem 83.

84 A rocket-driven sled running on a straight, level track is
used to investigate the effects of large accelerations on humans.
One such sled can attain a speed of 1600 km/h in 1.8 s, starting
from rest. Find (a) the acceleration (assumed constant) in terms of
g and (b) the distance traveled.

85 A mining cart is pulled up a hill at 20 km/h and then pulled
back down the hill at 35 km/h through its original level. (The time
required for the cart’s reversal at the top of its climb is negligible.)
What is the average speed of the cart for its round trip, from its
original level back to its original level?

86 A motorcyclist who is moving along an x axis directed to-
ward the east has an acceleration given by a � (6.1 � 1.2t) m/s2

for 0 t 6.0 s. At t 0, the velocity and position of the cyclist
are 2.7 m/s and 7.3 m. (a) What is the maximum speed achieved
by the cyclist? (b) What total distance does the cyclist travel be-
tween t � 0 and 6.0 s?

87 When the legal speed limit for the New York Thruway
was increased from 55 mi/h to 65 mi/h, how much time was saved
by a motorist who drove the 700 km between the Buffalo entrance
and the New York City exit at the legal speed limit?

88 A car moving with constant acceleration covered the distance
between two points 60.0 m apart in 6.00 s. Its speed as it passed the
second point was 15.0 m/s. (a) What was the speed at the first
point? (b) What was the magnitude of the acceleration? (c) At
what prior distance from the first point was the car at rest? (d) Graph
x versus t and v versus t for the car, from rest (t � 0).

89 A certain juggler usually tosses balls vertically to
a height H. To what height must they be tossed if they are to spend
twice as much time in the air?

90 A particle starts from the ori-
gin at t 0 and moves along the
positive x axis. A graph of the veloc-
ity of the particle as a function of the
time is shown in Fig. 2-46; the v-axis
scale is set by vs 4.0 m/s. (a) What
is the coordinate of the particle at 
t 5.0 s? (b) What is the velocity of
the particle at t 5.0 s? (c) What is�
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96 A lead ball is dropped in a lake from a diving board 5.20 m
above the water. It hits the water with a certain velocity and then
sinks to the bottom with this same constant velocity. It reaches the
bottom 4.80 s after it is dropped. (a) How deep is the lake? What
are the (b) magnitude and (c) direction (up or down) of the aver-
age velocity of the ball for the entire fall? Suppose that all the wa-
ter is drained from the lake.The ball is now thrown from the diving
board so that it again reaches the bottom in 4.80 s. What are the
(d) magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-high
building. (a) With what speed does the elevator strike the ground?
(b) How long is it falling? (c) What is its speed when it passes the
halfway point on the way down? (d) How long has it been falling
when it passes the halfway point?

98 Two diamonds begin a free fall from rest from the same
height, 1.0 s apart. How long after the first diamond begins to fall
will the two diamonds be 10 m apart?

99 A ball is thrown vertically downward from the top of a 36.6-
m-tall building. The ball passes the top of a window that is 12.2 m
above the ground 2.00 s after being thrown. What is the speed of
the ball as it passes the top of the window?



39

100 A parachutist bails out and freely falls 50 m. Then the para-
chute opens, and thereafter she decelerates at 2.0 m/s2. She reaches
the ground with a speed of 3.0 m/s. (a) How long is the parachutist
in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of v0

from a height of h. (a) What is its speed just before it strikes the
ground? (b) How long does the ball take to reach the ground?
What would be the answers to (c) part a and (d) part b if the ball
were thrown upward from the same height and with the same ini-
tial speed? Before solving any equations, decide whether the an-
swers to (c) and (d) should be greater than, less than, or the same
as in (a) and (b).

102 The sport with the fastest moving ball is jai alai, where
measured speeds have reached 303 km/h. If a professional jai alai
player faces a ball at that speed and involuntarily blinks, he
blacks out the scene for 100 ms. How far does the ball move dur-
ing the blackout?

103 If a baseball pitcher throws a fastball at a horizontal speed of
160 km/h, how long does the ball take to reach home plate 18.4 m
away?

104 A proton moves along the x axis according to the equation
, where x is in meters and t is in seconds. Calculate (a)

the average velocity of the proton during the first 3.0 s of its motion,
(b) the instantaneous velocity of the proton at t � 3.0 s, and (c) the
instantaneous acceleration of the proton at t � 3.0 s. (d) Graph x
versus t and indicate how the answer to (a) can be obtained from the
plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus t
and indicate on it the answer to (c).

105 A motorcycle is moving at 30 m/s when the rider applies the
brakes, giving the motorcycle a constant deceleration. During the 3.0 s
interval immediately after braking begins, the speed decreases to
15 m/s. What distance does the motorcycle travel from the instant
braking begins until the motorcycle stops?

106 A shuffleboard disk is accelerated at a constant rate from rest
to a speed of 6.0 m/s over a 1.8 m distance by a player using a cue.At
this point the disk loses contact with the cue and slows at a constant
rate of 2.5 m/s2 until it stops. (a) How much time elapses from when
the disk begins to accelerate until it stops? (b) What total distance
does the disk travel?

107 The head of a rattlesnake can accelerate at 50 m/s2 in striking
a victim. If a car could do as well, how long would it take to reach a
speed of 100 km/h from rest?

108 A jumbo jet must reach a speed of 360 km/h on the runway
for takeoff. What is the lowest constant acceleration needed for
takeoff from a 1.80 km runway?

109 An automobile driver increases the speed at a constant rate
from 25 km/h to 55 km/h in 0.50 min. A bicycle rider speeds up at a
constant rate from rest to 30 km/h in 0.50 min. What are the magni-
tudes of (a) the driver’s acceleration and (b) the rider’s acceleration?

110 On average, an eye blink lasts about 100 ms. How far does a
MiG-25 “Foxbat” fighter travel during a pilot’s blink if the plane’s
average velocity is 3400 km/h?

111 A certain sprinter has a top speed of 11.0 m/s. If the sprinter
starts from rest and accelerates at a constant rate, he is able to
reach his top speed in a distance of 12.0 m. He is then able to main-
tain this top speed for the remainder of a 100 m race. (a) What is
his time for the 100 m race? (b) In order to improve his time, the
sprinter tries to decrease the distance required for him to reach his

x � 50t � 10t2

top speed. What must this distance be if he is to achieve a time of
10.0 s for the race?

112 The speed of a bullet is measured to be 640 m/s as the bullet
emerges from a barrel of length 1.20 m.Assuming constant accelera-
tion, find the time that the bullet spends in the barrel after it is fired.

113 The Zero Gravity Research Facility at the NASA Glenn
Research Center includes a 145 m drop tower.This is an evacuated ver-
tical tower through which, among other possibilities, a 1-m-diameter
sphere containing an experimental package can be dropped. (a)
How long is the sphere in free fall? (b) What is its speed just as it
reaches a catching device at the bottom of the tower? (c) When
caught, the sphere experiences an average deceleration of 25g as its
speed is reduced to zero.Through what distance does it travel during
the deceleration?

114 A car can be braked to a stop from the autobahn-like
speed of 200 km/h in 170 m. Assuming the acceleration is constant,
find its magnitude in (a) SI units and (b) in terms of g. (c) How much
time Tb is required for the braking? Your reaction time Tr is the time
you require to perceive an emergency, move your foot to the brake,
and begin the braking. If Tr � 400 ms, then (d) what is Tb in terms of
Tr, and (e) is most of the full time required to stop spent in reacting
or braking? Dark sunglasses delay the visual signals sent from the
eyes to the visual cortex in the brain, increasing Tr. (f) In the extreme
case in which Tr is increased by 100 ms, how much farther does
the car travel during your reaction time?

115 In 1889, at Jubbulpore, India, a tug-of-war was finally won af-
ter 2 h 41 min, with the winning team displacing the center of the
rope 3.7 m. In centimeters per minute, what was the magnitude of
the average velocity of that center point during the contest?

116 Most important in an investigation of an airplane crash by the
U.S. National Transportation Safety Board is the data stored on the
airplane’s flight-data recorder, commonly called the “black box” in
spite of its orange coloring and reflective tape. The recorder is engi-
neered to withstand a crash with an average deceleration of magni-
tude 3400g during a time interval of 6.50 ms. In such a crash, if the
recorder and airplane have zero speed at the end of that time inter-
val, what is their speed at the beginning of the interval? 

117 From January 26, 1977, to September 18, 1983, George
Meegan of Great Britain walked from Ushuaia, at the southern tip
of South America, to Prudhoe Bay in Alaska, covering 30 600 km. In
meters per second, what was the magnitude of his average velocity
during that time period?

118 The wings on a stonefly do not flap, and thus the insect cannot
fly. However, when the insect is on a water surface, it can sail across
the surface by lifting its wings into a breeze. Suppose that you time
stoneflies as they move at constant speed along a straight path of a
certain length. On average, the trips each take 7.1 s with the wings
set as sails and 25.0 s with the wings tucked in. (a) What is the ratio of
the sailing speed vs to the nonsailing speed vns? (b) In terms of vs,
what is the difference in the times the insects take to travel the first
2.0 m along the path with and without sailing?

119 The position of a particle as it moves along a y axis is given by

y � (2.0 cm) sin (pt/4),

with t in seconds and y in centimeters. (a) What is the average veloc-
ity of the particle between t � 0 and t � 2.0 s? (b) What is the instan-
taneous velocity of the particle at t � 0, 1.0, and 2.0 s? (c) What is the
average acceleration of the particle between t � 0 and t � 2.0 s?
(d) What is the instantaneous acceleration of the particle at t � 0,
1.0, and 2.0 s? 

PROBLEMS
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C H A P T E R  3

Vectors

3-1 VECTORS AND THEIR COMPONENTS

3.01 Add vectors by drawing them in head-to-tail arrange-
ments, applying the commutative and associative laws.

3.02 Subtract a vector from a second one.
3.03 Calculate the components of a vector on a given coordi-

nate system, showing them in a drawing. 

3.04 Given the components of a vector, draw the vector
and determine its magnitude and orientation. 

3.05 Convert angle measures between degrees and radians.

● Scalars, such as temperature, have magnitude only. They
are specified by a number with a unit (10°C) and obey the
rules of arithmetic and ordinary algebra. Vectors, such as dis-
placement, have both magnitude and direction (5 m, north)
and obey the rules of vector algebra.

● Two vectors and may be added geometrically by draw-
ing them to a common scale and placing them head to tail.
The vector connecting the tail of the first to the head of the
second is the vector sum . To subtract from , reverse the
direction of to get � ; then add � to . Vector addition is
commutative and obeys the associative law.

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

● The (scalar) components and of any two-dimensional
vector along the coordinate axes are found by dropping
perpendicular lines from the ends of onto the coordinate
axes. The components are given by

ax � a cos u and ay � a sin u,

where u is the angle between the positive direction of the x
axis and the direction of . The algebraic sign of a component
indicates its direction along the associated axis. Given its
components, we can find the magnitude and orientation of
the vector with

and .tan � �
ay

ax
a � 2a2

x � a2
y

a:

a:

a:
a:

ayax

What Is Physics?
Physics deals with a great many quantities that have both size and direction, and it
needs a special mathematical language—the language of vectors—to describe
those quantities. This language is also used in engineering, the other sciences, and
even in common speech. If you have ever given directions such as “Go five blocks
down this street and then hang a left,” you have used the language of vectors. In
fact, navigation of any sort is based on vectors, but physics and engineering also
need vectors in special ways to explain phenomena involving rotation and mag-
netic forces, which we get to in later chapters. In this chapter, we focus on the basic
language of vectors.

Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

Key Ideas

Learning Objectives
After reading this module, you should be able to . . . 
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A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of �40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle changes
its position by moving from A to B in Fig. 3-1a, we say that it undergoes a displace-
ment from A to B, which we represent with an arrow pointing from A to B.The ar-
row specifies the vector graphically. To distinguish vector symbols from other
kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3-1a, the arrows from A to B, from A� to B�, and from A� to B� have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol � in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Properties. Vector addition, defined in this way, has two important proper-
ties. First, the order of addition does not matter. Adding to gives the sameb

:
a:

b
:

a:
s:a:

b
:

a:
b
:

a:

b
:

a:s:

s: � a: � b
:

,

a:

Figure 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

Figure 3-2 (a) AC is the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.

A
C

B

(a)

Actual
path

Net displacement 
is the vector sum 

(b)

a

s

b

This is the 
resulting vector, 
from tail of a
to head of b.

To add a and b,
draw them 
head to tail.
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result as adding to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)(a: � b
:

) � c: � a: � (b
:

� c:)

a:
c:b

:
c:

b
:

a:c:b
:

a:

a: � b
:

� b
:

� a:

a:b
:

Figure 3-3 The two vectors and can be
added in either order; see Eq. 3-2.

b
:

a:

a + b

b + a
FinishStart

Vector sum 
a

a

b

b

You get the same vector
result for either order of
adding vectors.

Figure 3-4 The three vectors , , and can be grouped in any way as they are added; see
Eq. 3-3.

c:b
:

a:

b
+

c

a + b

aa

c c

b

a + b

(a
+

b) +
c

a
+

b +
c

a
+ (b + c )

b
+

c

You get the same vector result for
 any order of adding the vectors.

Figure 3-5 The vectors and have the�b
:

b
:

b

–b

Figure 3-6 (a) Vectors , , and .
(b) To subtract vector from vector ,
add vector to vector .a:�b

:
a:b

:
�b

:
b
:

a:

d = a – b

(a)

(b)

Note head-to-tail
arrangement for 

addition

a

a

b

–b

–b Checkpoint 1
The magnitudes of displacements and are 3 m and 4 m, respectively, and .
Considering various orientations of and , what are (a) the maximum possible 
magnitude for and (b) the minimum possible magnitude?c:

b
:

a:
c: � a: � b

:
b
:

a:

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield

Thus, adding has the effect of subtracting . We use this property to define
the difference between two vectors: let . Then

(vector subtraction); (3-4)

that is, we find the difference vector by adding the vector to the vector .
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from
one side of a vector equation to the other, but we must change its sign. For example,
if we are given Eq. 3-4 and need to solve for , we can rearrange the equation as

Remember that, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.

d
:

� b
:

� a:  or  a: � d
:

� b
:

.

a:

a:�b
:

d
:

d
:

� a: � b
:

� a: � (�b
:

)

d
:

� a: � b
:

b
:

�b
:

b
:

� (�b
:

) � 0.

b
:

�b
:

Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system.The x and y axes are usually drawn in the plane of the page, as shown

same magnitude and opposite directions.
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in Fig. 3-7a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In
Fig. 3-7a, for example, ax is the component of vector on (or along) the x axis and
ay is the component along the y axis. To find the projection of a vector along an
axis, we draw perpendicular lines from the two ends of the vector to the axis, as
shown.The projection of a vector on an x axis is its x component, and similarly the
projection on the y axis is the y component. The process of finding the
components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-7, ax and ay are both positive because extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector , then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector in
Fig. 3-8 yields a positive component bx and a negative component by.

In general, a vector has three components, although for the case of Fig. 3-7a
the component along the z axis is zero.As Figs. 3-7a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

Finding the Components. We can find the components of in Fig. 3-7a geo-
metrically from the right triangle there:

ax � a cos u and ay � a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-7c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, in
Fig. 3-7a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

and tan (3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

� �
ay

ax
a � 2a2

x � ay
2

a:

a:a:
a:

a:

b
:

a:

a:

a:

Figure 3-8 The component of on the 
x axis is positive, and that on the y axis is
negative.

b
:

O

y (m) 

θ x (m)
bx = 7 m 

b y
=

–5
 m

 

b

This is the x component
of the vector.

This is the y component
of the vector.
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Figure 3-7 (a) The components ax and ay of
vector . (b) The components are unchanged if
the vector is shifted, as long as the magnitude
and orientation are maintained. (c) The com-
ponents form the legs of a right triangle whose
hypotenuse is the magnitude of the vector.

a:

y

x
O ax

ay

θ θ 

(a) (b)

y

x
Oax

ay
a a

θ
(c)

ay

ax

a

This is the y component
of the vector.

This is the x component
of the vector.

The components 
and the vector 
form a right triangle.

Checkpoint 2
In the figure, which of the indicated methods for combining the x and y components of vector are proper to determine that vector?a:

y

x
ax

ay

(a)

a

y

x

ax

ay

(d)

a

y

x
ax

ay

(e)

a

x
ax

ay

y

( f )

a

y

x
ax

ay

(b)

a

y

x
ax

ay

(c)

a
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KEY IDEA

We are given the magnitude (215 km) and the angle (22° east
of due north) of a vector and need to find the components
of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
(We don’t have to do this. We could shift and misalign the
coordinate system but, given a choice, why make the prob-
lem more difficult?) The airplane’s displacement points
from the origin to where the airplane is sighted.

To find the components of , we use Eq. 3-5 with u �
68° (� 90° � 22°):

dx � d cos u � (215 km)(cos 68°)
� 81 km (Answer)

dy � d sin u � (215 km)(sin 68°)

� 199 km � 2.0 � 102 km. (Answer)

Thus, the airplane is 81 km east and 2.0 � 102 km north of
the airport.

d
:

d
:

Sample Problem 3.02 Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. This means that the direction is not
due north (directly toward the north) but is rotated 22° to-
ward the east from due north. How far east and north is the
airplane from the airport when sighted?

Additional examples, video, and practice available at WileyPLUS

Figure 3-10 A plane takes off from an airport at the origin and is
later sighted at P.

21
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x
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0
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θ 

D
is

ta
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) 
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P
d

order, because their vector sum is the same for any order.
(Recall from Eq. 3-2 that vectors commute.) The order
shown in Fig. 3-9b is for the vector sum

Using the scale given in Fig. 3-9a, we measure the length d of
this vector sum, finding

d � 4.8 m. (Answer)

d
:

� b
:

� a: � (�c:).

Sample Problem 3.01 Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by
making three straight-line moves. You may use the follow-
ing displacements in any order: (a) , 2.0 km due east 
(directly toward the east); (b) , 2.0 km 30° north of east
(at an angle of 30° toward the north from due east);
(c) , 1.0 km due west. Alternatively, you may substitute
either for or for . What is the greatest distance
you can be from base camp at the end of the third displace-
ment? (We are not concerned about the direction.)

Reasoning: Using a convenient scale, we draw vectors ,
, , , and as in Fig. 3-9a. We then mentally slide the

vectors over the page, connecting three of them at a time
in head-to-tail arrangements to find their vector sum .
The tail of the first vector represents base camp. The head
of the third vector represents the point at which you stop.
The vector sum extends from the tail of the first vector
to the head of the third vector. Its magnitude d is your dis-
tance from base camp. Our goal here is to maximize that
base-camp distance.

We find that distance d is greatest for a head-to-tail
arrangement of vectors , , and . They can be in any�c:b

:
a:

d
:

d
:

�c:�b
:

c:b
:

a:

c:�c:b
:

�b
:

c:

b
:

a:

Figure 3-9 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo 
displacements , , and , in any order.�c:b

:
a:

30°

0 1 

Scale of km 

2

d = b + a – c

(a) (b)

a

a

c

b b
–b

–c

–c

This is the vector result
for adding those three
vectors in any order.
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the x axis. If it is measured relative to some other direc-
tion, then the trig functions in Eq. 3-5 may have to be in-
terchanged and the ratio in Eq. 3-6 may have to be
inverted. A safer method is to convert the angle to one
measured from the positive direction of the x axis. In
WileyPLUS, the system expects you to report an angle of
direction like this (and positive if counterclockwise and
negative if clockwise).

Problem-Solving Tactics Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are
positive if they are measured in the counterclockwise direc-
tion and negative if measured clockwise. For example, 210°
and �150° are the same angle.

Angles may be measured in degrees or radians (rad).To
relate the two measures, recall that a full circle is 360° and
2p rad.To convert, say, 40° to radians, write

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and
tangent—because they are part of the language of science
and engineering. They are given in Fig. 3-11 in a form that
does not depend on how the triangle is labeled.

You should also be able to sketch how the trig functions
vary with angle, as in Fig. 3-12, in order to be able to judge
whether a calculator result is reasonable. Even knowing
the signs of the functions in the various quadrants can be
of help.

Tactic 3: Inverse Trig Functions When the inverse trig
functions sin�1, cos�1, and tan�1 are taken on a calculator,
you must consider the reasonableness of the answer you
get, because there is usually another possible answer that
the calculator does not give. The range of operation for a
calculator in taking each inverse trig function is indicated
in Fig. 3-12. As an example, sin�1 0.5 has associated angles
of 30° (which is displayed by the calculator, since 30° falls
within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note
where it cuts the sine curve. How do you distinguish a cor-
rect answer? It is the one that seems more reasonable for
the given situation.

Tactic 4: Measuring Vector Angles The equations for 
cos u and sin u in Eq. 3-5 and for tan u in Eq. 3-6 are valid
only if the angle is measured from the positive direction of

40�
2
 rad

360�
� 0.70 rad.

Figure 3-11 A triangle used to define the trigonometric 
functions. See also Appendix E.

θ 

Hypotenuse

Leg adjacent to θ 

Leg
opposite θ 

sin θ 
leg opposite θ 
hypotenuse=

cos θ hypotenuse=
leg adjacent to θ 

tan θ = leg adjacent to θ 
leg opposite θ 
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Additional examples, video, and practice available at WileyPLUS

Figure 3-12 Three useful curves to remember. A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.
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–2
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3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

After reading this module, you should be able to . . .

3.06 Convert a vector between magnitude-angle and unit-
vector notations.

3.07 Add and subtract vectors in magnitude-angle notation
and in unit-vector notation.

3.08 Identify that, for a given vector, rotating the coordinate
system about the origin can change the vector’s compo-
nents but not the vector itself.

● Unit vectors , , and have magnitudes of unity and are 
directed in the positive directions of the x, y, and z axes,
respectively, in a right-handed coordinate system. We can
write a vector in terms of unit vectors as

� axî � ayĵ � azk̂ ,a:
a:

k̂ ĵ î in which , , and are the vector components of and
ax, ay, and az are its scalar components.

● To add vectors in component form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz.

Here and are the vectors to be added, and is the vector
sum. Note that we add components axis by axis.

r:b
:

a:

a:azk̂ayĵaxî

Learning Objectives

Key Ideas

ˆ

ˆ

y

x
O axi

ay j

θ

(a)

a bx î

ˆ

θ O x

y

by j

(b)

b

This is the x vector
component.

This is the y vector component.

Figure 3-14 (a) The vector components
of vector . (b) The vector components
of vector .b

:
a:

Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-7 and 3-8 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).a:

a:
ĵî

b
:

� bxî � by ĵ

a: � axî � ay ĵ

b
:

a:

ˆk̂ĵî

Adding Vectors by Components
We can add vectors geometrically on a sketch or directly on a vector-capable
calculator.A third way is to combine their components axis by axis.

Figure 3.13 Unit vectors î, , and define the
directions of a right-handed coordinate
system.

k̂ĵ

y

x

z

ĵ

îk̂

The unit vectors point
along axes.
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To start, consider the statement

, (3-9)

which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :

rx � ax � bx (3-10)

ry � ay � by (3-11)

rz � az � bz. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get

dx � ax � bx, dy � ay � by, and dz � az � bz,

where . (3-13)d
:

� dxî � dyĵ � dzk̂

�b
:

a:d
:

� a: � (�b
:

)
d
:

� a: � b
:

r:r:r:
r:

b
:

a:

(a: � b
:

)r:
(a: � b

:
)r:

r: � a: � b
:

Checkpoint 3
(a) In the figure here, what are the signs of the x
components of and ? (b) What are the signs of
the y components of and ? (c) What are thed2

:
d1
:
d2
:

d1
:

y

x

d2
d1

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

Vectors and the Laws of Physics
So far, in every figure that includes a coordinate system, the x and y axes are par-
allel to the edges of the book page. Thus, when a vector is included, its compo-
nents ax and ay are also parallel to the edges (as in Fig. 3-15a).The only reason for
that orientation of the axes is that it looks “proper”; there is no deeper reason.
We could, instead, rotate the axes (but not the vector ) through an angle f as ina:

a:

Figure 3-15 (a) The vector and its 
components. (b) The same vector, with the
axes of the coordinate system rotated
through an angle f.

a:

a

y

xax

ay

θ

(a)

O

a

y

x

a'x
x'

(b)

θ
a'y

φ
O

y'

'

Rotating the axes
changes the components
but not the vector.

Fig. 3-15b, in which case the components would have new values, call them a�x and
a�y. Since there are an infinite number of choices of f, there are an infinite num-
ber of different pairs of components for .

Which then is the “right” pair of components? The answer is that they are all
equally valid because each pair (with its axes) just gives us a different way of de-
scribing the same vector ; all produce the same magnitude and direction for the
vector. In Fig. 3-15 we have

(3-14)
and

u � u� � f. (3-15)

The point is that we have great freedom in choosing a coordinate system, be-
cause the relations among vectors do not depend on the location of the origin or
on the orientation of the axes.This is also true of the relations of physics; they are
all independent of the choice of coordinate system.Add to that the simplicity and
richness of the language of vectors and you can see why the laws of physics are 
almost always presented in that language: one equation, like Eq. 3-9, can repre-
sent three (or even more) relations, like Eqs. 3-10, 3-11, and 3-12.

a � 2a2
x � a2

y � 2a�2
x � a�2

y

a:

a:

signs of the x and y components of � ?d2
:

d1
:
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Calculations: To evaluate Eqs. 3-16 and 3-17, we find the x and
y components of each displacement. As an example, the com-
ponents for the first displacement are shown in Fig. 3-16c. We
draw similar diagrams for the other two displacements and
then we apply the x part of Eq. 3-5 to each displacement, using
angles relative to the positive direction of the x axis:

dlx � (6.00 m) cos 40° � 4.60 m 

d2x � (8.00 m) cos (�60°) � 4.00 m 

d3x � (5.00 m) cos 0° � 5.00 m.

Equation 3-16 then gives us

dnet, x � �4.60 m � 4.00 m � 5.00 m

� 13.60 m.

Similarly, to evaluate Eq. 3-17, we apply the y part of Eq. 3-5
to each displacement:

dly � (6.00 m) sin 40° = 3.86 m

d2y � (8.00 m) sin (�60°) = �6.93 m

d3y � (5.00 m) sin 0° � 0 m.

Equation 3-17 then gives us

dnet, y � �3.86 m � 6.93 m � 0 m

� �3.07 m.

Next we use these components of net to construct the vec-
tor as shown in Fig. 3-16d: the components are in a head-to-
tail arrangement and form the legs of a right triangle, and

d
:

Sample Problem 3.03 Searching through a hedge maze

A hedge maze is a maze formed by tall rows of hedge.
After entering, you search for the center point and then
for the exit. Figure 3-16a shows the entrance to such a
maze and the first two choices we make at the junctions
we encounter in moving from point i to point c. We un-
dergo three displacements as indicated in the overhead
view of Fig. 3-16b:

d1 � 6.00 m �1 � 40°

d2 � 8.00 m �2 � 30°

d3 � 5.00 m �3 � 0°,

where the last segment is parallel to the superimposed
x axis. When we reach point c, what are the magnitude and
angle of our net displacement net from point i?

KEY IDEAS

(1) To find the net displacement net, we need to sum the
three individual displacement vectors:

net � 1 � 2 � 3.

(2) To do this, we first evaluate this sum for the x compo-
nents alone,

dnet,x � dlx � d2x � d3x, (3-16)

and then the y components alone,

dnet,y � d1y � d2y � d3y. (3-17)

(3) Finally, we construct net from its x and y components.d
:

d
:

d
:

d
:

d
:

d
:

d
:

Figure 3-16 (a) Three displacements through a hedge maze. (b) The displacement vectors. (c) The first displacement vector and its
components. (d) The net displacement vector and its components.

(a)

y

x

d1y

d1x

(c)

a

b
c

i (b)

y

x

a

b
c

i
u1

u2

y

x
dnet,x

dnet,y

c

(d)

d1 d2

d3

d1

i

dnet

Three
vectors

First
vector

Net
vector
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the vector forms the hypotenuse.We find the magnitude and
angle of net with Eq. 3-6. The magnitude is

dnet � (3-18)

� � 13.9 m. (Answer)

To find the angle (measured from the positive direction of x),
we take an inverse tangent:

� � tan�1 (3-19)

� tan�1 � �12.7°. (Answer)

The angle is negative because it is measured clockwise from
positive x. We must always be alert when we take an inverse

� –3.07 m
13.60 m �

� dnet,y

dnet,x
�

2(13.60 m)2 � (�3.07 m)2

2d2
net,x � d2

net,y

d
:

tangent on a calculator. The answer it displays is mathe-
matically correct but it may not be the correct answer for
the physical situation. In those cases, we have to add 180°
to the displayed answer, to reverse the vector. To check,
we always need to draw the vector and its components as
we did in Fig. 3-16d. In our physical situation, the figure
shows us that � � �12.7° is a reasonable answer, whereas
�12.7° � 180° � 167° is clearly not.

We can see all this on the graph of tangent versus angle
in Fig. 3-12c. In our maze problem, the argument of the in-
verse tangent is �3.07/13.60, or �0.226. On the graph draw
a horizontal line through that value on the vertical axis. The
line cuts through the darker plotted branch at �12.7° and
also through the lighter branch at 167°. The first cut is what
a calculator displays.

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

KEY IDEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx � ax � bx � cx

� 4.2 m � 1.6 m � 0 � 2.6 m.

Similarly, for the y axis,

ry � ay � by � cy

� �1.5 m � 2.9 m � 3.7 m � �2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-17b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the �x direction) is

(Answer)

where the minus sign means clockwise.

� � tan�1 � �2.3 m
2.6 m � � �41�,

r � 2(2.6 m)2 � (�2.3 m)2 � 3.5 m

r:

r:
�

r:

r: � (2.6 m)î � (2.3 m)ĵ,

r:

r:c:,b
:

,
a:,

r:

Sample Problem 3.04 Adding vectors, unit-vector components

Figure 3-17a shows the following three vectors:

and

What is their vector sum which is also shown?r:
c: � (�3.7 m)ĵ.

b
:

� (�1.6 m)î � (2.9 m)ĵ,

a: � (4.2 m)î � (1.5 m)ĵ,

Additional examples, video, and practice available at WileyPLUS

x

y

–1 3 4 –2–3 2 

–3

–2

–1

1

x

y

–1 3 4 –2–3 2 

–3

–2

–1

2

3

1

1

(a)

2.6i

(b)

r

r

a

c

b

ˆ

–2.3ĵ

To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Figure 3-17 Vector is the vector sum of the other three vectors.r:
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Multiplying Vectors*
There are three ways in which vectors can be multiplied, but none is exactly like
the usual algebraic multiplication. As you read this material, keep in mind that a
vector-capable calculator will help you multiply vectors only if you understand
the basic rules of that multiplication.

Multiplying a Vector by a Scalar
If we multiply a vector by a scalar s, we get a new vector. Its magnitude is
the product of the magnitude of and the absolute value of s. Its direction is the
direction of if s is positive but the opposite direction if s is negative.To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

a:
a:a:

a:
a:

Key Ideas
● The vector (or cross) product of two vectors and is 
written � and is a vector whose magnitude c is given by

c � ab sin �,

in which � is the smaller of the angles between the directions
of and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown
in Fig. 3-19. Note that � � �( � ). In unit-vector
notation,

� � �

which we may expand with the distributive law.

● In nested products, where one product is buried inside an-
other, follow the normal algebraic procedure by starting with
the innermost product and working outward.

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:
b
:

a:

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec-
tor products), and so your instructor may wish to postpone it.

● The product of a scalar s and a vector is a new vector
whose magnitude is and whose direction is the same as
that of if s is positive, and opposite that of if s is negative.
To divide by s, multiply by 1/s.

● The scalar (or dot) product of two vectors and is writ-
ten � and is the scalar quantity given by

� � ab cos �,

in which � is the angle between the directions of and .
A scalar product is the product of the magnitude of one vec-
tor and the scalar component of the second vector along the
direction of the first vector. In unit-vector notation,

� � �

which may be expanded according to the distributive law.
Note that � � � .a:b

:
b
:

a:

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

b
:

a:
b
:

a:
b
:

a:
b
:

a:
v:v:

v:v:
sv

v:

3-3 MULTIPLYING VECTORS 
Learning Objectives

3.13 Given two vectors, use a dot product to find how much
of one vector lies along the other vector.

3.14 Find the cross product of two vectors in magnitude-
angle and unit-vector notations.

3.15 Use the right-hand rule to find the direction of the vector
that results from a cross product.

3.16 In nested products, where one product is buried inside
another, follow the normal algebraic procedure by starting
with the innermost product and working outward.

After reading this module, you should be able to . . .

3.09 Multiply vectors by scalars.
3.10 Identify that multiplying a vector by a scalar gives a vec-

tor, taking the dot (or scalar) product of two vectors gives a
scalar, and taking the cross (or vector) product gives a new
vector that is perpendicular to the original two.

3.11 Find the dot product of two vectors in magnitude-angle
notation and in unit-vector notation.

3.12 Find the angle between two vectors by taking their dot prod-
uct in both magnitude-angle notation and unit-vector notation.
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°,
the component of one vector along the other is zero, and so is the dot product.

�
�

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

� ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:�

b
:

b
:

a:
b
:

�
a:

b
:

a: �
b
:

a: ��

� ��
b
:

a:b
:

a:
�b

:
a:

a: � b
:

a: � b
:

b
:

a:
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Figure 3-18 (a) Two vectors 
and , with an angle f between
them. (b) Each vector has a
component along the direction
of the other vector.

b
:

a:

a

a

b

b
φ 

(a)

(b)

Component of b
along direction of 

a is b cos φ 

Component of a

along direction of 

b is a cos φ 

φ 

Multiplying these gives
the dot product.

Or multiplying these
gives the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:

� � (a cos f)(b) � (a)(b cos f). (3-21)

The commutative law applies to a scalar product, so we can write

� � � .

When two vectors are in unit-vector notation, we write their dot product as

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

� � axbx � ayby � azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

b
:

a:
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If and are parallel or antiparallel, � � 0. The magnitude of � , which can
be written as , is maximum when and are perpendicular to each other.b

:
a:�a: � b

:
�

b
:

a:b
:

a:b
:

a:

where f is the smaller of the two angles between and . (You must use theb
:

a:

The direction of is perpendicular to the plane that contains and .b
:

a:c:

Checkpoint 4
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?�

D
:

C
:

�D
:

C
:

D
:

C
:

The Vector Product
The vector product of and , written � , produces a third vector whose
magnitude is

c � ab sin f, (3-24)

c:b
:

a:b
:

a:

them is 90°.) Also, we used the right-hand rule to get the direction of � as
being in the positive direction of the z axis (thus in the direction of ).k̂

ĵî

smaller of the two angles between the vectors because sin f and sin(360° � f)
differ in algebraic sign.) Because of the notation, � is also known as the cross
product, and in speech it is “a cross b.”

b
:

a:

Figure 3-19a shows how to determine the direction of � � with what is
known as a right-hand rule. Place the vectors and tail to tail without altering
their orientations, and imagine a line that is perpendicular to their plane where
they meet. Pretend to place your right hand around that line in such a way that
your fingers would sweep into through the smaller angle between them.Your
outstretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep 
into through the smaller angle. The thumb ends up in the opposite direction
from previously, and so it must be that ; that is,

. (3-25)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-26, we have

ax � bx � axbx( � ) � 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax � by � axby( � ) � axby .

In the last step we used Eq. 3-24 to evaluate the magnitude of � as unity.
(These vectors and each have a magnitude of unity, and the angle betweenĵî

ĵî

k̂ĵîĵî

îî

îîîî

k̂ĵîk̂ĵîb
:

a:

b
:

� a: � �(a: � b
:

)

c�: � �c:
a:

b
:

c�: � b
:

� a:

c:
b
:

a:

b
:

a:
b
:

a:c:
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Continuing to expand Eq. 3-26, you can show that

� � (aybz � byaz) � (azbx � bzax) � (axby � bxay) . (3-27)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product � � with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

ĵî
k̂ĵî

k̂ĵîb
:

a:

Checkpoint 5
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the an-
gle between the directions of  and  if the magnitude of the vector product 
is (a) zero and (b) 12 units?

D
:

C
:

�D
:

C
:

D
:

C
:

Figure 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector into vector with the fingers of your right hand.
Your outstretched thumb shows the direction of vector . (b) Showing that is the reverse of .a: � b

:
b
:

� a:c: � a: � b
:

b
:

a:

a

b b b

c

a

b

a a

(a)

(b)

c �

A
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gives the direction of .Thus, as shown in the figure, lies in
the xy plane. Because its direction is perpendicular to the
direction of (a cross product always gives a perpendicular
vector), it is at an angle of

250° � 90° � 160° (Answer)

from the positive direction of the x axis.

a:

c:c:

Sample Problem 3.06 Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units, and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product � � ?

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-24 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write

c � ab sin f � (18)(12)(sin 90°) � 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of and (the line on which is shown) such that
your fingers sweep into . Your outstretched thumb thenb

:
a:

c:b
:

a:

b
:

a:c:

b
:

a:

Figure 3-20 Vector (in the xy plane) is the vector (or cross) 
product of vectors and .b

:
a:

c:

z

250° 
160° 

yx

a b
c = a b

This is the resulting
vector, perpendicular to
both a and b.

Sweep a into b.

Calculations: Here we write

� (3 � 4 ) � (�2 � 3 )

� 3 � (�2 ) � 3 � 3 � (�4 ) � (�2 )

� (�4 ) � 3 .k̂ĵ

îĵk̂îîî

k̂îĵîc:

Sample Problem 3.07 Cross product, unit-vector notation

If � 3 � 4 and � �2 � 3 , what is � � ?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

b
:

a:c:k̂îb
:

ĵîa:

We can separately evaluate the left side of Eq. 3-28 by
writing the vectors in unit-vector notation and using the
distributive law:

� � (3.0 � 4.0 ) �(�2.0 � 3.0 )

� (3.0 ) �(�2.0 ) � (3.0 ) �(3.0 )

� (�4.0 ) �(�2.0 ) � (�4.0 ) �(3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

� � �(6.0)(1) � (9.0)(0) � (8.0)(0) � (12)(0)
� �6.0.

Substituting this result and the results of Eqs. 3-29 and 3-30
into Eq. 3-28 yields

�6.0 � (5.00)(3.61) cos f,

so (Answer)� � cos�1 �6.0
(5.00)(3.61)

� 109� �110�.

b
:

a:

îî

k̂ĵîĵ

k̂îîî

k̂îĵîb
:

a:

Sample Problem 3.05 Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following

steps can be bypassed with a vector-capable calculator, you
will learn more about scalar products if, at least here, you
use these steps.)

KEY IDEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

� � ab cos f. (3-28)

Calculations: In Eq. 3-28, a is the magnitude of , or

(3-29)

and b is the magnitude of , or

(3-30)b � 2(�2.0)2 �  3.02 � 3.61.

b
:

a �23.02 � (�4.0)2 � 5.00,

a:

b
:

a:

k̂î ��
b
:

�ĵî �a: ��



55REVIEW & SUMMARY

Scalars and Vectors Scalars, such as temperature, have magni-
tude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors and may 
be added geometrically by drawing them to a common scale 
and placing them head to tail. The vector connecting the tail of
the first to the head of the second is the vector sum . To
subtract from , reverse the direction of to get � ; then 
add � to  . Vector addition is commutative

and obeys the associative law

.

Components of a Vector The (scalar) components ax and ay of
any two-dimensional vector along the coordinate axes are found
by dropping perpendicular lines from the ends of onto the coor-
dinate axes.The components are given by

ax � a cos u and ay � a sin u, (3-5)

where u is the angle between the positive direction of the x axis
and the direction of . The algebraic sign of a component indi-
cates its direction along the associated axis. Given its compo-
nents, we can find the magnitude and orientation (direction) of
the vector by using

and      

Unit-Vector Notation Unit vectors , , and have magnitudes of
unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system (as defined
by the vector products of the unit vectors). We can write a vector 
in terms of unit vectors as

� ax � ay � az , (3-7)

in which ax , ay , and az are the vector components of and ax, ay,
and az are its scalar components.

a:k̂ĵî

k̂ĵîa:

a:

k̂ĵî

a � 2a2
x � a2

y

a:

a:

a:
a:

(a: � b
:

) � c: � a: � (b
:

� c:)

a: � b
:

� b
:

� a:

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

Review & Summary

Adding Vectors in Component Form To add vectors in com-
ponent form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz. (3-10 to 3-12)

Here and are the vectors to be added, and is the vector sum.
Note that we add components axis by axis.We can then express the
sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar s and
a vector is a new vector whose magnitude is sv and whose direc-
tion is the same as that of if s is positive, and opposite that of if
s is negative. (The negative sign reverses the vector.) To divide by
s, multiply by 1/s.

The Scalar Product The scalar (or dot) product of two vectors 
and is written � and is the scalar quantity given by

� � ab cos f, (3-20)

in which f is the angle between the directions of and . A scalar
product is the product of the magnitude of one vector and the
scalar component of the second vector along the direction of the
first vector. Note that � � � which means that the scalar
product obeys the commutative law.

In unit-vector notation,

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which may be expanded according to the distributive law.

The Vector Product The vector (or cross) product of two vectors
and is written � and is a vector whose magnitude c is

given by
c � ab sin f, (3-24)

in which f is the smaller of the angles between the directions of 
and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown in
Fig. 3-19. Note that � � �( � ), which means that the vec-
tor product does not obey the commutative law.

In unit-vector notation,

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which we may expand with the distributive law.

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:,b
:

b
:

a:

b
:

a:

b
:

a:

b
:

a:b
:

a:

v:
v:
v:v:

v:

r:b
:

a:

Additional examples, video, and practice available at WileyPLUS

We next evaluate each term with Eq. 3-24, finding the
direction with the right-hand rule. For the first term here,
the angle f between the two vectors being crossed is 0. For
the other terms,f is 90°.We find

� �6(0) � 9(� ) � 8(� ) � 12

� �12 � 9 � 8 . (Answer)k̂ĵî

îk̂ĵc:

This vector is perpendicular to both and , a fact youb
:

a:c:

can check by showing that � = 0 and � = 0; that is, there
is no component of along the direction of either or .

In general: A cross product gives a perpendicular
vector, two perpendicular vectors have a zero dot prod-
uct, and two vectors along the same axis have a zero
cross product.

b
:

a:c:
b
:

c:a:c:

(3-2)

(3-3)

tan � �
ay

ax
(3-6)
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10 Figure 3-25 shows vector and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with ? (b)
Which have a negative dot product
with ?

11 In a game held within a three-
dimensional maze, you must move
your game piece from start, at xyz co-
ordinates (0, 0, 0), to finish, at coordinates (�2 cm, 4 cm, �4 cm).
The game piece can undergo only the displacements (in centime-
ters) given below. If, along the way, the game piece lands at coordi-
nates (�5 cm, �1 cm, �1 cm) or (5 cm, 2 cm, �1 cm), you lose the
game. Which displacements and in what sequence will get your
game piece to finish?

� �7 � 2 � 3 � 2 � 3 � 2

� 2 � � 4 � 3 � 5 � 3 .

12 The x and y components of four vectors , , , and are given
below. For which vectors will your calculator give you the correct an-
gle u when you use it to find u with Eq. 3-6? Answer first by examin-
ing Fig. 3-12, and then check your answers with your calculator.

ax � 3 ay � 3 cx � �3 cy � �3

bx � �3 by � 3 dx � 3 dy � �3.

13 Which of the following are correct (meaningful) vector 
expressions? What is wrong with any incorrect expression?

(a) � ( � ) (f) � ( � )

(b) � ( � ) (g) 5 �

(c) � ( � ) (h) 5 � ( � )

(d) � ( � ) (i) 5 � ( � )

(e) � ( � ) (j) ( � ) � ( � )C
:

B
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

d
:

c:b
:

a:

k̂ĵîs:k̂ĵîq:
k̂ĵîr:k̂ĵîp:

A
:

A
:

A
:

B

A

C
E

D

θ 
θ 

θ 
θ 

Figure 3-25 Question 10.
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xxx
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yyy

(1) (2) (3) 

Figure 3-24 Question 9.

Figure 3-23 Question 5.

Questions

1 Can the sum of the magnitudes
of two vectors ever be equal to the
magnitude of the sum of the same
two vectors? If no, why not? If yes,
when?

2 The two vectors shown in Fig. 3-21
lie in an xy plane. What are the signs
of the x and y components, respec-
tively, of (a) , (b) , and
(c) ?

3 Being part of the “Gators,” the
University of Florida golfing team
must play on a putting green with an
alligator pit. Figure 3-22 shows an
overhead view of one putting chal-
lenge of the team; an xy coordinate
system is superimposed. Team mem-
bers must putt from the origin to the
hole, which is at xy coordinates (8 m,
12 m), but they can putt the golf ball
using only one or more of the fol-
lowing displacements, one or more
times:

, .

The pit is at coordinates (8 m, 6 m). If a team member putts the
ball into or through the pit, the member is automatically trans-
ferred to Florida State University, the arch rival. What sequence
of displacements should a team member use to avoid the pit and
the school transfer?

4 Equation 3-2 shows that the addition of two vectors and is
commutative. Does that mean subtraction is commutative, so that

� � � ?

5 Which of the arrangements of axes in Fig. 3-23 can be labeled
“right-handed coordinate system”? As usual, each axis label indi-
cates the positive side of the axis.

a:b
:

b
:

a:

b
:

a:

d3
:

� (8 m)îd2
:

� (6 m)ĵ,d
1

:
� (8 m)î � (6 m)ĵ

d2
:

� d1
:

d1
:

� d2
:

d1
:

� d2
:

6 Describe two vectors and such that

(a) � � and a � b � c;

(b) � � � ;

(c) � � and a2 � b2 � c2.

7 If � � � (� ), does (a) � (� ) � � (� ), (b) �
(� ) � � , and (c) � (� ) � � ?

8 If � � � , must equal ?

9 If � q( � ) and is perpendicular to , then what is the
direction of in the three situations shown in Fig. 3-24 when con-
stant q is (a) positive and (b) negative?

B
:

B
:

v:B
:

v:F
:

c:b
:

c:a:b
:

a:
b
:

a:d
:

c:c:d
:

b
:

a:b
:

c:d
:

a:c:b
:

a:d
:

c:b
:

a:
b
:

a:b
:

a:
c:b

:
a:

b
:

a:y

x

d2

d1

Figure 3-21 Question 2.
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x

Figure 3-22 Question 3.
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tors and in Fig. 3-28 have equal
magnitudes of 10.0 m and the angles
are 30° and 105°. Find the
(a) x and (b) y components of their
vector sum , (c) the magnitude of ,
and (d) the angle makes with the
positive direction of the x axis.

•16 For the displacement vectors
and

, give in
(a) unit-vector notation, and as (b) a
magnitude and (c) an angle (rela-
tive to ). Now give in (d) unit-vector notation, and as (e) a
magnitude and (f) an angle.

•17 Three vectors , , and each have a magnitude of
50 m and lie in an xy plane. Their directions relative to the positive
direction of the x axis are 30°, 195°, and 315°, respectively.What are
(a) the magnitude and (b) the angle of the vector , and
(c) the magnitude and (d) the angle of ? What are the
(e) magnitude and (f) angle of a fourth vector such that

?

•18 In the sum , vector has a magnitude of 12.0 m
and is angled 40.0° counterclockwise from the direction, and vec-
tor has a magnitude of 15.0 m and is angled 20.0° counterclock-
wise from the direction. What are (a) the magnitude and (b) the
angle (relative to ) of ?

•19 In a game of lawn chess, where pieces are moved between
the centers of squares that are each 1.00 m on edge, a knight is
moved in the following way: (1) two squares forward, one square
rightward; (2) two squares leftward, one square forward; (3) two
squares forward, one square leftward. What are (a) the magnitude
and (b) the angle (relative to “forward”) of the knight’s overall dis-
placement for the series of three moves?

B
:

�x
�x

C
:

�x
A
:

A
:

� B
:

� C
:

(a: � b
:

) � (c: � d
:

) � 0
d
:

a: � b
:

� c:
a: � b

:
� c:

c:b
:

a:ILW

b
:

� a:î

a: � b
:

(5.0 m)î � (�2.0 m)ĵ
b
:

�a: � (3.0 m)î � (4.0 m)ĵ

r:
r:r:

�2 ��1 �

b
:

a:

Module 3-1 Vectors and Their Components
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250°
counterclockwise from the positive direction
of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy plane
is 15 m long and directed at angle u � 30° in
Fig. 3-26. Determine (a) the x component
and (b) the y component of the vector.

•3 The x component of vector is 
25.0 m and the y component is 40.0 m. (a) What is the magni-

tude of ? (b) What is the angle between the direction of and
the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°,
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad,
(e) 2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its 
starting point. (a) How far and (b) in what direction must it now
sail to reach its original destination?

•6 In Fig. 3-27, a heavy piece of 
machinery is raised by sliding it a 
distance d � 12.5 m along a plank
oriented at angle u � 20.0° to the
horizontal. How far is it moved 
(a) vertically and (b) horizontally?

•7 Consider two displacements,
one of magnitude 3 m and another
of magnitude 4 m. Show how the
displacement vectors may be combined to get a resultant displace-
ment of magnitude (a) 7 m, (b) 1 m, and (c) 5 m.

Module 3-2 Unit Vectors, Adding Vectors by Components
•8 A person walks in the following pattern: 3.1 km north, then
2.4 km west, and finally 5.2 km south. (a) Sketch the vector dia-
gram that represents this motion. (b) How far and (c) in what di-
rection would a bird fly in a straight line from the same starting
point to the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.

•11 (a) In unit-vector notation, what is the sum if 
(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What

are the (b) magnitude and (c) direction of ?a: � b
:

ĵ�î��b
:

ĵ�î�a:
a: � b

:
SSM

�� ��� �� ��
d
:

c:
r:

a: � b
:

� c: � 0c:
a: � b

:
a: � b

:

b
:

� (�1.0 m)î � (1.0 m)ĵ � (4.0 m)k̂

a: � (4.0 m)î � (3.0 m)ĵ � (1.0 m)k̂

A
:

A
:

��
A
:

SSM

r:

a:
SSM

57PROBLEMS

θ 

d

Figure 3-27 Problem 6.

•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates (�140 m, 30 m). The x component and y
component of your moves are the following, respectively, in me-
ters: (20 and 60), then (bx and �70), then (�20 and cy), then (�60
and �70). What are (a) component bx and (b) component cy?
What are (c) the magnitude and (d) the angle (relative to the pos-
itive direction of the x axis) of the overall displacement?

•15 The two vec-WWWILWSSM

θ 
x

y

r

Figure 3-26
Problem 2.

θ 

O x

y

2

θ 1
a

b

Figure 3-28 Problem 15.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems



•••32 In Fig. 3-31, a cube of edge
length a sits with one corner at the ori-
gin of an xyz coordinate system. A
body diagonal is a line that extends
from one corner to another through
the center. In unit-vector notation,
what is the body diagonal that extends
from the corner at (a) coordinates (0,
0, 0), (b) coordinates (a, 0, 0), (c) coor-
dinates (0, a, 0), and (d) coordinates (a, a, 0)? (e) Determine the
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••30 Here are two vectors:

What are (a) the magnitude and (b) the angle (relative to ) of ?
What are (c) the magnitude and (d) the angle of ? What are (e)
the magnitude and (f) the angle of (g) the magnitude and
(h) the angle of ; and (i) the magnitude and (j) the angle of

? (k) What is the angle between the directions of 
and ?

••31 In Fig. 3-30, a vector with a magnitude of 17.0 m is
directed at angle 56.0° counterclockwise from the axis.
What are the components (a) ax and (b) ay of the vector? A sec-
ond coordinate system is inclined by angle 18.0° with respect
to the first. What are the components (c) and (d) in this
primed coordinate system?

a�ya�x

�� �

�x� �
a:

a: � b
:

b
:

� a:a: � b
:

b
:

� a:
a: � b

:
;

b
:

a:î

a: � (4.0 m)î � (3.0 m)ĵ and b
:

� (6.0 m)î � (8.0 m)ĵ.

••20 An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that
he actually traveled 7.8 km at 50° north of due east. (a) How far
and (b) in what direction must he now travel to reach base camp?

••21 An ant, crazed by the Sun on a hot Texas afternoon, darts
over an xy plane scratched in the dirt. The x and y components of
four consecutive darts are the following, all in centimeters: (30.0,
40.0), (bx, �70.0), (�20.0, cy), (�80.0, �70.0). The overall displace-
ment of the four darts has the xy components (�140, �20.0). What
are (a) bx and (b) cy? What are the (c) magnitude and (d) angle
(relative to the positive direction of the x axis) of the overall
displacement?

••22 (a) What is the sum of the following four vectors in unit-
vector notation? For that sum, what are (b) the magnitude, (c) the
angle in degrees, and (d) the angle in radians?

••23 If is added to , the result is a vector in the
positive direction of the y axis, with a magnitude equal to that of .
What is the magnitude of ?

••24 Vector , which is directed along an x axis, is to be addedA
:

B
:

C
:

C
:

� 3.0î � 4.0ĵB
:

G
:

: 4.00 m at �1.20 rad    H
:

: 6.00 m at �210�

E
:

: 6.00 m at �0.900 rad    F
:

: 5.00 m at �75.0�
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Figure 3-29 Problem 29.
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Figure 3-31 Problem 32.
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Figure 3-30 Problem 31.

an ant’s displacement from the nest (find it in the figure) if the
ant enters the trail at point A? What are the (c) magnitude and
(d) angle if it enters at point B?

to vector , which has a magnitude of 7.0 m.The sum is a third vec-
tor that is directed along the y axis, with a magnitude that is 3.0
times that of .What is that magnitude of ?

••25 Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction 15° south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

••26 What is the sum of the following four vectors in (a) unit-
vector notation, and as (b) a magnitude and (c) an angle?

••27 If and thend
:

3 � 2î � 4ĵ,d
:

1� d
:

2 � 5d
:

3, d
:

1 � d
:

2 � 3d
:

3,

C
:

� (�4.00 m)î � (�6.00 m)ĵ  D:
:

5.00 m, at �235�

A
:

� (2.00 m)î � (3.00 m)ĵ         B:
:

4.00 m, at �65.0�

A
:

A
:

B
:

what are, in unit-vector notation, (a) and (b) 

••28 Two beetles run across flat sand, starting at the same point.
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east.
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due
north. What must be (a) the magnitude and (b) the direction of its
second run if it is to end up at the new location of beetle 1?

••29 Typical backyard ants often create a network of
chemical trails for guidance. Extending outward from the nest, a
trail branches (bifurcates) repeatedly, with 60° between the
branches. If a roaming ant chances upon a trail, it can tell the
way to the nest at any branch point: If it is moving away from
the nest, it has two choices of path requiring a small turn in
its travel direction, either 30° leftward or 30° rightward. If
it is moving toward the nest, it has only one such choice.
Figure 3-29 shows a typical ant trail, with lettered straight sec-
tions of 2.0 cm length and symmetric bifurcation of 60°. Path v is
parallel to the y axis. What are the (a) magnitude and (b) angle
(relative to the positive direction of the superimposed x axis) of

d
:

2?d
:

1



culate the angle between the two vectors given by 
and .

••42 In a meeting of mimes, mime 1 goes through a displacement
and mime 2 goes through a displacement

. What are (a) , (b) ,
(c) , and (d) the com-
ponent of along the direction of

? (Hint: For (d), see Eq. 3-20 and
Fig. 3-18.)

••43 The three vectors in
Fig. 3-33 have magnitudes a 3.00 m,
b 4.00 m, and c 10.0 m and angle

30.0°. What are (a) the x compo-
nent and (b) the y component of ; (c)
the x component and (d) the y com-

a:
� �

��
�

ILWSSM

d
:

2

d
:

1

(d
:

1 � d
:

2) � d
:

2

d
:

1 � d
:

2d
:

1 � d
:

2d
:

2 � (�3.0 m)î � (4.0 m)ĵ
d
:

1 � (4.0 m)î � (5.0 m)ĵ

b
:

� 2.0î � 1.0ĵ � 3.0k̂3.0ĵ � 3.0k̂
a: � 3.0î �

(a) , (b) , (c) , and(a: � b
:

) � b
:

a: � b
:

a: � b
:

is not shown.)

•34 Two vectors are presented as
and . Findb

:
� 2.0î � 4.0ĵa: � 3.0î � 5.0ĵ
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angles that the body diagonals make with the adjacent edges.
(f) Determine the length of the body diagonals in terms of a.

Module 3-3 Multiplying Vectors
•33 For the vectors in Fig. 3-32, with a 4, b 3, and c 5, what
are (a) the magnitude and (b) the direction
of , (c) the magnitude and (d) the di-
rection of , and (e) the magnitude
and (f) the direction of ? (The z axisb

:
� c:

a: � c:
a: � b

:

���

ponent of ; and (e) the x component and (f) the y component of ? If
,what are the values of (g) p and (h) q?

••44 In the product , take q � 2,

.

What then is in unit-vector notation if Bx � By?

Additional Problems

45 Vectors and lie in an xy plane. has magnitude 8.00 and
angle 130°; has components Bx 7.72 and By 9.20. (a)
What is What is in (b) unit-vector notation and
(c) magnitude-angle notation with spherical coordinates (see
Fig. 3-34)? (d) What is the angle between the directions of and

(Hint: Think a bit before you resort to a calculation.)
What is in (e) unit-vector notation and (f) magnitude-
angle notation with spherical coordinates?

A
:

� 3.00k̂
4A

:
� 3B

:
?

A
:

4A
:

� 3B
:

5A
:

� B
:

?
� �� �B

:
A
:

B
:

A
:

B
:

v: � 2.0î � 4.0ĵ � 6.0k̂  and F
:

� 4.0î � 20ĵ � 12k̂

F
:

� qv: � B
:

c: � pa: � qb
:

c:b
:

θ 
a

c

b

x

y

Figure 3-33 Problem 43.

φ 

θ 

y

x

z

Figure 3-34 Problem 45.

46 Vector has a magnitude of 5.0 m and is directed east.a:

(d) the component of along the direc-
tion of . (Hint: For (d), consider Eq. 3-20
and Fig. 3-18.)

•35 Two vectors, and , lie in the xy plane.Their magnitudes are
4.50 and 7.30 units, respectively, and their directions are 320° and
85.0°, respectively, as measured counterclockwise from the positive
x axis.What are the values of (a) and (b) ?

•36 If and , then what is
?

•37 Three vectors are given by 
and . Find (a)

, (b) , and (c) .

••38 For the following three vectors, what is ?

••39 Vector has a magnitude of 6.00 units, vector has a mag-B
:

A
:

B
:

� �3.00î � 4.00ĵ � 2.00k̂  C
:

� 7.00î � 8.00ĵ

A
:

� 2.00î � 3.00ĵ � 4.00k̂

3C
:

� (2A
:

� B
:

)

a: � (b
:

� c:)a: � (b
:

� c:)a: � (b
:

� c:)
c: � 2.0î � 2.0ĵ � 1.0k̂b

:
� �1.0î � 4.0ĵ � 2.0k̂,

a: � 3.0î � 3.0ĵ � 2.0k̂,

(d
:

1 � d
:

2) � (d
:

1 � 4d
:

2)
d
:

2 � �5î � 2ĵ � k̂d
:

1 � 3î � 2ĵ � 4k̂

r: � s:r: � s:

s:r:

b
:

a:

a

c
b

y

x

Figure 3-32
Problems 33 and 54.

nitude of 7.00 units, and has a value of 14.0. What is the angle
between the directions of and ?

••40 Displacement is in the yz plane 63.0° from the positive
direction of the y axis, has a positive z component, and has a mag-
nitude of 4.50 m. Displacement is in the xz plane 30.0° from the
positive direction of the x axis, has a positive z component, and has
magnitude 1.40 m. What are (a) , (b) , and (c) the an-
gle between and ?

••41 Use the definition of scalar product,
, and the fact that to cal-a: � b

:
� axbx � ayby � azbza: � b

:
� ab cos �

WWWILWSSM

d
:

2d
:

1

d
:

1 � d
:

2d
:

1 � d
:

2

d
:

2

d
:

1

B
:

A
:

A
:

� B
:

ax � 3.2, ay 1.6, bx 0.50, by 4.5. (a) Find the angle between
the directions of and .There are two vectors in the xy plane that
are perpendicular to and have a magnitude of 5.0 m. One, vector

, has a positive x component and the other, vector , a negative x
component. What are (b) the x component and (c) the y compo-
nent of vector , and (d) the x component and (e) the y component
of vector ?

49 A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far
and (b) in what direction must the sailor now sail to reach the orig-
inal destination?

50 Vector is in the negative direction of a y axis, and vector 
is in the positive direction of an x axis. What are the directions of
(a) and (b) What are the magnitudes of products (c)

and (d) What is the direction of the vector result-
ing from (e) and (f) ? What is the magnitude of the
vector product in (g) part (e) and (h) part (f)? What are the (i)
magnitude and (j) direction of ?d

:

1 � (d
:

2/4)

d
:

2 � d
:

1d
:

1 � d
:

2

d
:

1 � (d
:

2 /4)?d
:

1 � d
:

2

d
:

1/(�4)?d
:

2/4

d
:

2d
:

1

SSM

d
:

c:

d
:

c:
a:

b
:

a:
���

Vector has a magnitude of 4.0 m and is directed 35° west of due
north. What are (a) the magnitude and (b) the direction of ?
What are (c) the magnitude and (d) the direction of ? (e)
Draw a vector diagram for each combination.

47 Vectors and lie in an xy plane. has magnitude 8.00
and angle 130°; has components Bx � �7.72 and By � �9.20.
What are the angles between the negative direction of the y axis
and (a) the direction of , (b) the direction of the product

, and (c) the direction of ?

48 Two vectors and have the components, in meters,b
:

a:
A
:

� (B
:

� 3.00k̂)A
:

� B
:

A
:

B
:

A
:

B
:

A
:

b
:

� a:
a: � b

:
b
:
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51 Rock faults are ruptures along which opposite faces of rock
have slid past each other. In Fig. 3-35, points A and B coincided be-
fore the rock in the foreground slid down to the right. The net dis-
placement is along the plane of the fault.The horizontal compo-
nent of is the strike-slip AC. The component of that is
directed down the plane of the fault is the dip-slip AD. (a) What is the
magnitude of the net displacement if the strike-slip is 22.0 m and
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at angle

52.0° to the horizontal, what is the vertical component of ?AB
9:

� �

AB
9:

AB
9:

AB
9:

AB
9:

58 A vector has a magnitude of 2.5 m and points north. What
are (a) the magnitude and (b) the direction of ? What are (c)
the magnitude and (d) the direction of ?

59 has the magnitude 12.0 m and is angled 60.0° counterclock-
wise from the positive direction of the x axis of an xy coordinate
system. Also, on that same coordinate
system. We now rotate the system counterclockwise about the origin
by 20.0° to form an x�y� system. On this new system, what are (a) 
and (b) ,both in unit-vector notation?

60 If and , then what are
(a) and (b) ?

61 (a) In unit-vector notation, what is if 
5.0 4.0 6.0 , 2.0 2.0 3.0 , and 4.0

3.0 2.0 ? (b) Calculate the angle between and the positive z
axis. (c) What is the component of along the direction of ? (d)
What is the component of perpendicular to the direction of but
in the plane of and ? (Hint: For (c), see Eq. 3-20 and Fig. 3-18;
for (d), see Eq. 3-24.)

62 A golfer takes three putts to get the ball into the hole. The
first putt displaces the ball 3.66 m north, the second 1.83 m south-
east, and the third 0.91 m southwest. What are (a) the magnitude
and (b) the direction of the displacement needed to get the ball
into the hole on the first putt?

63 Here are three vectors in meters:

What results from (a) (b) and
(c) ?

64 A room has dimensions 3.00 m (height)
3.70 m 4.30 m. A fly starting at one corner flies around, ending
up at the diagonally opposite corner. (a) What is the magnitude of
its displacement? (b) Could the length of its path be less than this
magnitude? (c) Greater? (d) Equal? (e) Choose a suitable coordi-
nate system and express the components of the displacement vec-
tor in that system in unit-vector notation. (f) If the fly walks, what
is the length of the shortest path? (Hint: This can be answered
without calculus. The room is like a box. Unfold its walls to flatten
them into a plane.)

65 A protester carries his sign of protest, starting from the ori-
gin of an xyz coordinate system, with the xy plane horizontal. He
moves 40 m in the negative direction of the x axis, then 20 m
along a perpendicular path to his left, and then 25 m up a water
tower. (a) In unit-vector notation, what is the displacement of
the sign from start to end? (b) The sign then falls to the foot of
the tower. What is the magnitude of the displacement of the sign
from start to this new end?

66 Consider in the positive direction of x, in the positive di-
rection of y, and a scalar d. What is the direction of if d is
(a) positive and (b) negative? What is the magnitude of (c) 
and (d) ? What is the direction of the vector resulting from
(e) and (f) ? (g) What is the magnitude of the vector
product in (e)? (h) What is the magnitude of the vector product in
(f)? What are (i) the magnitude and (j) the direction of � if d
is positive?

b
:

/da:

b
:

� a:a: � b
:
a: � b

:
/d

a: � b
:

b
:

/d
b
:
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�
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d
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2 � d
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3)
d
:

1 � (d
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2 � d
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3),d
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1 � (d
:

2 � d
:

3),

d
:

3 � 2.0î � 3.0ĵ � 1.0k̂.

d
:

2 � �2.0î � 4.0ĵ � 2.0k̂

d
:

1 � �3.0î � 3.0ĵ � 2.0k̂

b
:

a:
b
:

a:
b
:

a:
r:k̂ĵ �

î �c: �k̂ĵ �î �b
:

� �k̂ĵ �î �a: �
c:b

:
�a: �r: �

b
:

a:
c: � 3î � 4ĵa: � b

:
� 2c:, a: � b

:
� 4c:,

B
:

A
:

B
:

� (12.0 m)î � (8.00 m)ĵ

A
:

�3.0d
:

4.0d
:

d
:

A

D

C

Strike-slip

Dip-slip

Fault plane 

B

φ 

Figure 3-35 Problem 51.

52 Here are three displacements, each measured in meters:
and

. (a) What is ? (b) What is the
angle between and the positive z axis? (c) What is the compo-
nent of along the direction of (d) What is the component of

that is perpendicular to the direction of and in the plane of 
and (Hint: For (c), consider  Eq. 3-20 and Fig. 3-18; for (d), con-
sider Eq. 3-24.)

53 A vector of magnitude 10 units and another vector 
of magnitude 6.0 units differ in directions by 60°. Find (a) the
scalar product of the two vectors and (b) the magnitude of the vec-
tor product .

54 For the vectors in Fig. 3-32, with a � 4, b � 3, and c � 5, calcu-
late (a) , (b) , and (c) .

55 A particle undergoes three successive displacements in a
plane, as follows: 4.00 m southwest; then 5.00 m east; and
finally 6.00 m in a direction 60.0° north of east. Choose a coor-
dinate system with the y axis pointing north and the x axis pointing
east.What are (a) the x component and (b) the y component of ?
What are (c) the x component and (d) the y component of  ?
What are (e) the x component and (f) the y component of ?
Next, consider the net displacement of the particle for the three
successive displacements. What are (g) the x component, (h) the y
component, (i) the magnitude, and ( j) the direction of the net dis-
placement? If the particle is to return directly to the starting point,
(k) how far and (l) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector
notation, and as (b) a magnitude and (c) an angle relative to �x.

: 10.0 m, at 25.0° counterclockwise from �x

: 12.0 m, at 10.0° counterclockwise from �y

: 8.00 m, at 20.0° clockwise from �y

: 9.00 m, at 40.0° counterclockwise from �y

57 If is added to , the result is 6.0 � 1.0 . If is subtracted
from , the result is 4.0 7.0 .What is the magnitude of ?A

:
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ĵîA
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B
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1d
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:

1 � d
:

2 � d
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34.0î � 3.0ĵ � 2.0k̂
d
:

3 �d
:

2 � �1.0î � 2.0ĵ � 3.0k̂,d
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1 � 4.0î � 5.0ĵ � 6.0k̂,
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67 Let be directed to the east, be directed to the north, and k̂ĵî 72 A fire ant, searching for hot sauce in a picnic area, goes
through three displacements along level ground: l for 0.40 m
southwest (that is, at 45° from directly south and from directly
west), 2 for 0.50 m due east, 3 for 0.60 m at 60° north of east.
Let the positive x direction be east and the positive y direction
be north. What are (a) the x component and (b) the y compo-
nent of l? Next, what are (c) the x component and (d) the y
component of 2? Also, what are (e) the x component and (f)
the y component of 3?

What are (g) the x component, (h) the y component, (i) the
magnitude, and (j) the direction of the ant’s net displacement? If
the ant is to return directly to the starting point, (k) how far and (1)
in what direction should it move?

73 Two vectors are given by � 3.0 � 5.0 and � 2.0 � 4.0 .ĵîb
:

ĵîa:

d
:

d
:

d
:

d
:

d
:

d
:

a

b

f

Figure 3-38 Problem 79.
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Figure 3-36 Problem 68.

be directed upward. What are the values of products (a) � , (b)
(� ) � (� ), and (c) � (� )? What are the directions (such as eastĵĵĵk̂

k̂î

or down) of products (d) � , (e) (� ) � (� ), and (f) (� ) � (� )?

68 A bank in downtown Boston is robbed (see the map in 
Fig. 3-36). To elude police, the robbers escape by helicopter, mak-
ing three successive flights described by the following displace-
ments: 32 km, 45° south of east; 53 km, 26° north of west; 26 km, 18°
east of south. At the end of the third flight they are captured. In
what town are they apprehended?

ĵk̂ĵîĵk̂

69 A wheel with a radius of 45.0 cm
rolls without slipping along a hori-
zontal floor (Fig. 3-37). At time t1,
the dot P painted on the rim of the
wheel is at the point of contact be-
tween the wheel and the floor. At a
later time t2, the wheel has rolled
through one-half of a revolution.
What are (a) the magnitude and (b)
the angle (relative to the floor) of
the displacement of P?

70 A woman walks 250 m in the direction 30° east of north, then
175 m directly east. Find (a) the magnitude and (b) the angle of her
final displacement from the starting point. (c) Find the distance she
walks. (d) Which is greater, that distance or the magnitude of her
displacement?

71 A vector has a magnitude 3.0 m and is directed south. What
are (a) the magnitude and (b) the direction of the vector 5.0 ? What
are (c) the magnitude and (d) the direction of the vector �2.0 ?d

:
d
:

d
:

P

At time t1 At time t2

P

Figure 3-37 Problem 69.

Find (a) � , (b) , (c) , and (d) the component of
along the direction of .

74 Vector lies in the yz plane 63.0� from the positive direction
of the y axis, has a positive z component, and has magnitude 3.20
units. Vector lies in the xz plane 48.0� from the positive direction
of the x axis, has a positive z component, and has magnitude 1.40
units. Find (a) � , (b) � , and (c) the angle between and .

75 Find (a) “north cross west,” (b) “down dot south,” (c) “east
cross up,” (d) “west dot west,” and (e) “south cross south.” Let each
“vector” have unit magnitude.

76 A vector , with a magnitude of 8.0 m, is added to a vector ,
which lies along an x axis. The sum of these two vectors is a third
vector that lies along the y axis and has a magnitude that is twice
the magnitude of .What is the magnitude of ?

77 A man goes for a walk, starting from the origin of an xyz
coordinate system, with the xy plane horizontal and the x axis east-
ward. Carrying a bad penny, he walks 1300 m east, 2200 m north,
and then drops the penny from a cliff 410 m high. (a) In unit-vector
notation, what is the displacement of the penny from start to its
landing point? (b) When the man returns to the origin, what is the
magnitude of his displacement for the return trip?

78 What is the magnitude of � ( � ) if a � 3.90, b � 2.70,
and the angle between the two vectors is 63.0°?

79 In Fig. 3-38, the magnitude of is 4.3, the magnitude of is
5.4, and � � 46°. Find the area of the triangle contained between
the two vectors and the thin diagonal line.
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C H A P T E R  4

Motion in Two and Three Dimensions

4-1 POSITION AND DISPLACEMENT
Learning Objectives
After reading this module, you should be able to . . .

4.01 Draw  two-dimensional and three-dimensional position
vectors for a particle, indicating the components along the
axes of a coordinate system.

4.02 On a coordinate system, determine the direction and

magnitude of a particle’s position vector from its compo-
nents, and vice versa.

4.03 Apply the relationship between a particle’s displace-
ment vector and its initial and final position vectors.

Key Ideas
● The location of a particle relative to the origin of a coordi-
nate system is given by a position vector , which in unit-
vector notation is

Here x , y , and z are the vector components of position 
vector , and and z are its scalar components (as well
as the coordinates of the particle).

● A position vector is described either by a magnitude and

x, y,r:
k̂ĵî

r: � x î � y ĵ � zk̂.

r:
one or two angles for orientation, or by its vector or scalar
components.

● If a particle moves so that its position vector changes from
to , the particle’s displacement is

The displacement can also be written as

� �x î � �y ĵ � �zk̂.

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂

� r: � r:2 � r:1.
� r:r:2r:1

What Is Physics?
In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example,
medical researchers and aeronautical engineers might concentrate on the
physics of the two- and three-dimensional turns taken by fighter pilots in dog-
fights because a modern high-performance jet can take a tight turn so quickly
that the pilot immediately loses consciousness. A sports engineer might focus
on the physics of basketball. For example, in a free throw (where a player gets
an uncontested shot at the basket from about 4.3 m), a player might employ the
overhand push shot, in which the ball is pushed away from about shoulder
height and then released. Or the player might use an underhand loop shot, in
which the ball is brought upward from about the belt-line level and released.
The first technique is the overwhelming choice among professional players, but
the legendary Rick Barry set the record for free-throw shooting with the under-
hand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.



Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the 
origin) to the particle. In the unit-vector notation of Module 3-2, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and z
are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (�3 m, 2 m, 5 m). Along the x axis the particle is
3 m from the origin, in the direction. Along the y axis it is 2 m from the
origin, in the direction. Along the z axis it is 5 m from the origin, in the 
direction.

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)� r: � �x î � �y ĵ � �zk̂.

������
r:2

r:1

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂,

� r: � (x2î � y2 ĵ � z2k̂) � (x1î � y1 ĵ � z1k̂)

� r: � r:2 � r:1.

� r:
r:2r:1

�k̂�ĵ
�î

r: � (�3 m)î � (2 m)ĵ � (5 m)k̂

r:k̂ĵî

r: � x î � y ĵ � zk̂,

r:
r:

Figure 4-1 The position vector for a parti-
cle is the vector sum of its vector compo-
nents.

r:

y

x

z

(–3 m)i
(2 m)j(5 m)k

O

ˆ
ˆ

ˆ

r

To locate the 
particle, this
is how far
parallel to z.

This is how far
parallel to y.

This is how far
parallel to x.

position vector . Let’s evaluate those coordinates at the
given time, and then we can use Eq. 3-6 to evaluate the mag-
nitude and orientation of the position vector.

r:

Sample Problem 4.01 Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x � �0.31t2 � 7.2t � 28 (4-5)

and y � 0.22t2 � 9.1t � 30. (4-6)

(a) At t � 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY IDEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s

r:

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t � 15 s, the scalar components are

x � (�0.31)(15)2 � (7.2)(15) � 28 � 66 m

and y � (0.22)(15)2 � (9.1)(15) � 30 � �57 m,

so (Answer)r: � (66 m)î � (57 m)ĵ,

r:
r:r:(t)

r:(t) � x(t)î � y(t)ĵ.

634-1 POSITION AND DISPLACEMENT
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t = 0 s

This is the path with
various times indicated.
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(a)

–41°

r

This is the y component.

To locate the 
rabbit, this is the 
x component.

Figure 4-2 (a) A rabbit’s position vector
at time t � 15 s. The scalar compo-

nents of are shown along the axes.
(b) The rabbit’s path and its position at
six values of t.

r:
r:

Additional examples, video, and practice available at WileyPLUS

Check: Although u � 139° has the same tangent as �41°,
the components of position vector indicate that the de-
sired angle is  139° � 180° � �41°.

(b) Graph the rabbit’s path for t � 0 to t � 25 s.

Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.

r:
which is drawn in Fig. 4-2a. To get the magnitude and angle
of , notice that the components form the legs of a right tri-
angle and r is the hypotenuse. So, we use Eq. 3-6:

(Answer)

and . (Answer)� � tan�1 y
x

� tan�1 � �57 m
66 m �� �41�

� 87 m,

r � 2x2 � y2 � 2(66 m)2 � (�57 m)2

r:

4.06 In magnitude-angle and unit-vector notations, relate a parti-
cle’s initial and final position vectors, the time interval between
those positions, and the particle’s average velocity vector.

4.07 Given a particle’s position vector as a function of time,
determine its (instantaneous) velocity vector.

Learning Objectives
After reading this module, you should be able to . . . 

4.04 Identify that velocity is a vector quantity and thus has
both magnitude and direction and also has components.

4.05 Draw two-dimensional and three-dimensional velocity
vectors for a particle, indicating the components along the
axes of the coordinate system.

which can be rewritten in unit-vector notation as

where and 

● The instantaneous velocity of a particle is always directed
along the tangent to the particle’s path at the particle’s 
position.

v:

vz � dz/dt.vx � dx/dt, vy � dy/dt,

v: � vx î � vy ĵ � vzk̂,

Key Ideas
● If a particle undergoes a displacement in time interval t,
its average velocity for that time interval is

● As t is shrunk to 0, reaches a limit called either the 
velocity or the instantaneous velocity :

v: �
d r:

dt
,

v:
v:avg�

v:avg �
� r:

�t
.

v:avg

�� r:
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Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in
2.0 s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s 
instantaneous velocity at some instant. This is the value that approaches
in the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks� r:r:1r:2

�

� r:
r:2r:1�

v: �
d r:

dt
.

v:
�

v:avgv:v:

v:avg �
� r:

�t
�

(12 m)î � (3.0 m)k̂
2.0 s

� (6.0 m/s)î � (1.5 m/s)k̂.

(12 m)î � (3.0 m)k̂

v:avg �
�xî � �yĵ � �zk̂

�t
�

�x
�t

 î �
�y
�t

 ĵ �
�z
�t

 k̂.

� r:
v:avg

v:avg �
� r:

�t
.

average velocity �
displacement
time interval

,

v:avg

�� r:

Figure 4-3 The displacement of a particle
during a time interval , from position 1 with
position vector at time t1 to position 2 
with position vector at time t2. The tangent
to the particle’s path at position 1 is shown.

r:2

r:1

�t
� r:

r1
r2

Path

Tangent

O

y

x

1
2

rΔ

As the particle moves,
the position vector
must change.

This is the 
displacement.



toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg� r:/�t

Figure 4-4 The velocity of a
particle, along with the scalar
components of .v:

v:

Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

Checkpoint 1
The figure shows a circular path taken by a particle.
If the instantaneous velocity of the particle is 

, through which quadrant is the par-
ticle moving at that instant if it is traveling (a) clockwise
and (b) counterclockwise around the circle? For both
cases, draw on the figure.v:

(2 m/s)î � (2 m/s)ĵ
v: �

y

x

66 CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components. Note
that is tangent to the particle’s path at the particle’s position. Caution: When a
position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that extends
from one point (a “here”) to another point (a “there”). However, when a velocity
vector is drawn, as in Fig. 4-4, it does not extend from one point to another.
Rather, it shows the instantaneous direction of travel of a particle at the tail, and
its length (representing the velocity magnitude) can be drawn to any scale.

v:
v:

r:v:
v:

vx �
dx
dt

, vy �
dy
dt

, and vz �
dz
dt

.

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d
dt

 (x î � y ĵ � zk̂) �
dx
dt

 î �
dy
dt

 ĵ �
dz
dt

 k̂.

r:
v:

In the limit as , we have and, most important here, takes
on the direction of the tangent line.Thus, has that direction as well:v:

v:avgv:avg : v:�t : 0
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(Answer)

and

(Answer)

Check: Is the angle �130° or �130° � 180° � 50°?

� tan�1 1.19 � �130�.

� � tan�1
vy

vx
� tan�1 � �2.5 m/s

�2.1 m/s �
� 3.3 m/s

v � 2vx
2 � vy

2 � 2(�2.1 m/s)2 � (�2.5 m/s)2For the rabbit in the preceding sample problem, find the 
velocity at time t � 15 s.

KEY IDEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to Eq. 4-5,
we find the x component of to be

(4-13)

At t � 15 s, this gives vx � �2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t � 15 s, this gives vy � �2.5 m/s. Equation 4-11 then yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t � 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: � (�2.1 m/s)î � (�2.5 m/s)ĵ ,

� 0.44t � 9.1.

vy �
dy
dt

�
d
dt

 (0.22t2 � 9.1t � 30)

� �0.62t � 7.2.

vx �
dx
dt

�
d
dt

 (�0.31t2 � 7.2t � 28)

v:

v:

v:

Sample Problem 4.02 Two-dimensional velocity, rabbit run

Additional examples, video, and practice available at WileyPLUS

Figure 4-5 The rabbit’s velocity at t � 15 s.v:
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v
These are the x and y
components of the vector
at this instant.
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the average acceleration vector in magnitude-angle and
unit-vector notations.

4.11 Given a particle’s velocity vector as a function of time,
determine its (instantaneous) acceleration vector.

4.12 For each dimension of motion, apply the constant-
acceleration equations (Chapter 2) to relate acceleration,
velocity, position, and time.

Learning Objectives
After reading this module, you should be able to . . . 

4.08 Identify that acceleration is a vector quantity and thus has
both magnitude and direction and also has components.

4.09 Draw two-dimensional and three-dimensional accelera-
tion vectors for a particle, indicating the components.

4.10 Given the initial and final velocity vectors of a particle
and the time interval between those velocities, determine

either the acceleration or the instantaneous acceleration :

● In unit-vector notation,

where and az � dvz/dt.ax � dvx/dt, ay � dvy/dt,

a: � ax î � ay ĵ � azk̂,

a: �
dv:

dt
.

a:
Key Ideas
● If a particle’s velocity changes from to in time interval

t, its average acceleration during t is

● As t is shrunk to 0, reaches a limiting value called a:avg�

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

��
v:2v:1
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Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink �t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax �
dvx

dt
, ay �

dvy

dt
, and az �

dvz

dt
.

a:

a: � ax î � ay ĵ � azk̂,

�
dvx

dt
 î �

dvy

dt
 ĵ �

dvz

dt
 k̂.

a: �
d
dt

 (vx î � vy ĵ � vzk̂)

v:

a: �
dv:

dt
.

a:
a:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

average
acceleration �

change in velocity
time interval

,

�a:avg

�v:2v:1

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Figure 4-6 The acceleration of a particle and the
scalar components of .a:

a:
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Sample Problem 4.03 Two-dimensional acceleration, rabbit run

Additional examples, video, and practice available at WileyPLUS

For the rabbit in the preceding two sample problems, find
the acceleration at time t � 15 s.

KEY IDEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.
To get the magnitude and angle of , either we use a

vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)

For the angle we have

However, this angle, which is the one displayed on a calcula-
tor, indicates that is directed to the right and downward in
Fig. 4-7. Yet, we know from the components that must be
directed to the left and upward. To find the other angle that

a:
a:

� � tan�1
ay

ax
� tan�1 � 0.44 m/s2

�0.62 m/s2 �� �35�.

� 0.76 m/s2.

a � 2ax
2 � ay

2 � 2(�0.62 m/s2)2 � (0.44 m/s2)2

a:

a: � (�0.62 m/s2)î � (0.44 m/s2)ĵ ,

ay �
dvy

dt
�

d

dt
 (0.44t � 9.1) � 0.44 m/s2.

ax �
dvx

dt
�

d
dt

 (�0.62t � 7.2) � �0.62 m/s2.

a:

a:

a:
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145°a

These are the x and y
components of the vector
at this instant.

Figure 4-7 The acceleration of the rabbit at t � 15 s. The rabbit
happens to have this same acceleration at all points on its path.

a:

has the same tangent as �35° but is not displayed on a cal-
culator, we add 180°:

�35° � 180° � 145°. (Answer)

This is consistent with the components of because it gives 
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant. That means that
we could draw the very same vector at any other point
along the rabbit’s path (just shift the vector to put its tail at
some other point on the path without changing the length
or orientation).

This has been the second sample problem in which we
needed to take the derivative of a vector that is written in
unit-vector notation. One common error is to neglect the unit
vectors themselves, with a result of only a set of numbers and
symbols. Keep in mind that a derivative of a vector is always
another vector.

a:
a:

Checkpoint 2
Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x � �3t 2 � 4t � 2 and y � 6t 2 � 4t (3)

(2) x � �3t 3 � 4t and y � �5t 2 � 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: � (4t3 � 2t)î � 3ĵ

r: � 2t2 î � (4t � 3)ĵ
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Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not a duck
in flight. Many sports involve the study of the projectile motion of a ball. For ex-
ample, the racquetball player who discovered the Z-shot in the 1970s easily won
his games because of the ball’s perplexing flight to the rear of the court.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Module 4-1 through 4-3 and making the
assumption that air has no effect on the projectile. Figure 4-9, which we shall ana-
lyze soon, shows the path followed by a projectile when the air has no effect. The
projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between
and the positive x direction:

v0x � v0 cos u0 and v0y � v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 � v0x î � v0y ĵ.

v:0

g:
v:0

Figure 4-8 A stroboscopic photograph of
a yellow tennis ball bouncing off a hard
surface. Between impacts, the ball has 
projectile motion.

Richard Megna/Fundamental Photographs

● In projectile motion, a particle is launched into the air with a
speed v0 and at an angle u0 (as measured from a horizontal x
axis). During flight, its horizontal acceleration is zero and its
vertical acceleration is �g (downward on a vertical y axis).

● The equations of motion for the particle (while in flight) can
be written as

v2
y � (v0 sin �0)2 � 2g(y � y0).

vy � v0 sin �0 � gt,
y � y0 � (v0 sin �0)t � 1

2gt2,

x � x0 � (v0 cos �0)t,

● The trajectory (path) of a particle in projectile motion is par-
abolic and is given by

if x0 and y0 are zero. 

● The particle’s horizontal range R, which is the horizontal
distance from the launch point to the point at which the parti-
cle returns to the launch height, is

R �
v0

2

g
sin 2�0.

y � (tan �0)x �
gx2

2(v0 cos �0)2 ,

4-4 PROJECTILE MOTION

4.14 Given the launch velocity in either magnitude-angle or
unit-vector notation, calculate the particle’s position, dis-
placement, and velocity at a given instant during the flight.

4.15 Given data for an instant during the flight, calculate the
launch velocity.

Learning Objectives
After reading this module, you should be able to . . .

4.13 On a sketch of the path taken in projectile motion, 
explain the magnitudes and directions of the velocity 
and acceleration components during the flight.

Key Ideas

In projectile motion, the horizontal motion and the vertical motion are indepen-
dent of each other; that is, neither motion affects the other.
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Figure 4-9 The projectile motion of an object launched into the air at the origin of a coordinate system and with launch
velocity at angle u0. The motion is a combination of vertical motion (constant acceleration) and horizontal motion 
(constant velocity), as shown by the velocity components.

v:0
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Checkpoint 3
At a certain instant, a fly ball has velocity (the x axis is horizontal, the
y axis is upward, and is in meters per second). Has the ball passed its highest point?v:

v: � 25î � 4.9ĵ

Figure 4-11 The projectile ball always 
hits the falling can. Each falls a distance h
from where it would be were there no
free-fall acceleration.

M

Can
h

Zer
o-g

path

G

The ball and the can fall
the same distance h.

Figure 4-10 One ball is released from rest at
the same instant that another ball is shot
horizontally to the right. Their vertical
motions are identical.

Richard Megna/Fundamental Photographs

The Horizontal Motion
Now we are ready to analyze projectile motion, horizontally and vertically.
We start with the horizontal motion. Because there is no acceleration in the hori-
zontal direction, the horizontal component vx of the projectile’s velocity remains
unchanged from its initial value v0x throughout the motion, as demonstrated in
Fig. 4-12. At any time t, the projectile’s horizontal displacement x � x0 from an
initial position x0 is given by Eq. 2-15 with a � 0, which we write as

x � x0 � v0xt.

Because v0x � v0 cos u0, this becomes

x � x0 � (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Module 2-5 for a particle in
free fall. Most important is that the acceleration is constant. Thus, the equations
of Table 2-1 apply, provided we substitute �g for a and switch to y notation.Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy � v0 sin u0 � gt (4-23)

and (4-24)vy
2 � (v0 sin �0)2 � 2g(y � y0).

� (v0 sin �0)t � 1
2gt 2,

y � y0 � v0yt � 1
2gt 2

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

Two Golf Balls
Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released and
the other shot horizontally by a spring.The golf balls have the same vertical motion,
both falling through the same vertical distance in the same interval of time. The fact
that one ball is moving horizontally while it is falling has no effect on its vertical mo-
tion; that is, the horizontal and vertical motions are independent of each other.

A Great Student Rouser
In Fig. 4-11, a blowgun G using a ball as a projectile is aimed directly at a can sus-
pended from a magnet M. Just as the ball leaves the blowgun, the can is released. If g
(the magnitude of the free-fall acceleration) were zero, the ball would follow the
straight-line path shown in Fig. 4-11 and the can would float in place after the
magnet released it. The ball would certainly hit the can. However, g is not zero,
but the ball still hits the can! As Fig. 4-11 shows, during the time of flight of the
ball, both ball and can fall the same distance h from their zero-g locations. The
harder the demonstrator blows, the greater is the ball’s initial speed, the shorter
the flight time, and the smaller the value of h.
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As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)

This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 � 0 and y0 � 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y � ax � bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched). To find range R, let us put x � x0 � R in Eq. 4-21 and y � y0 � 0 in 
Eq. 4-22, obtaining

R � (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 � 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

This equation does not give the horizontal distance traveled by a projectile when
the final height is not the launch height. Note that R in Eq. 4-26 has its maximum
value when sin 2u0 � 1, which corresponds to 2u0 � 90° or u0 � 45°.

R �
v0

2

g
 sin 2�0.

R �
2v0

2

g
 sin �0 cos �0.

0 � (v0 sin �0)t � 1
2gt 2.

y � (tan �0)x �
gx2

2(v0 cos �0)2

Figure 4-12 The vertical component of this
skateboarder’s velocity is changing but not
the horizontal component, which matches
the skateboard’s velocity. As a result, the
skateboard stays underneath him, allowing
him to land on it.

Jamie Budge

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in many sports, a launch
angle of 45° does not yield the maximum horizontal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 
44.7 m/s. Path I (the baseball player’s fly ball) is a calculated path that
approximates normal conditions of play, in air. Path II (the physics professor’s fly
ball) is the path the ball would follow in a vacuum.

Figure 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a
vacuum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Based on “The Trajectory of a Fly
Ball,” by Peter J. Brancazio, The Physics
Teacher, January 1985.)

x

y

60°

v0

I

II

Air reduces 
height ... ... and range.

Table 4-1 Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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Additional examples, video, and practice available at WileyPLUS

Sample Problem 4.04 Projectile dropped from airplane

Then Eq. 4-27 gives us

(Answer)

(b) As the capsule reaches the water, what is its velocity ?

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component vx does not change
from its initial value v0x � v0 cos u0 because there is no hori-
zontal acceleration. (3) Component vy changes from its initial
value v0y � v0 sinu0 because there is a vertical acceleration.

Calculations: When the capsule reaches the water,

vx � v0 cos u0 � (55.0 m/s)(cos 0°) � 55.0 m/s.

Using Eq. 4-23 and the capsule’s time of fall t � 10.1 s, we
also find that when the capsule reaches the water,

vy � v0 sin u0 � gt

� (55.0 m/s)(sin 0°) � (9.8 m/s2)(10.1 s)

� �99.0 m/s.
Thus, at the water

(Answer)

From Eq. 3-6, the magnitude and the angle of are

v � 113 m/s and u � �60.9°. (Answer)

v:

v: � (55.0 m/s)î � (99.0 m/s)ĵ.

v:

� � tan�1 555.5 m
500 m

� 48.0�.

In Fig. 4-14, a rescue plane flies at 198 km/h (� 55.0 m/s) and
constant height h � 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle f of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that f is given by

(4-27)

where x is the horizontal coordinate of the victim (and of
the capsule when it hits the water) and h � 500 m. We
should be able to find x with Eq. 4-21:

x � x0 � (v0 cos u0)t. (4-28)

Here we know that x0 � 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude v0 � 55.0 m/s and angle u0 � 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time t the capsule takes to
move from the plane to the victim.

To find t, we next consider the vertical motion and
specifically Eq. 4-22:

(4-29)

Here the vertical displacement y � y0 of the capsule is 
�500 m (the negative value indicates that the capsule
moves downward). So,

(4-30)

Solving for t, we find t � 10.1 s. Using that value in Eq. 4-28
yields

x � 0 � (55.0 m/s)(cos 0°)(10.1 s), (4-31)

or x � 555.5 m.

�500 m � (55.0 m/s)(sin 0�)t � 1
2 (9.8 m/s2)t2.

y � y0 � (v0 sin �0)t � 1
2gt2.

v:0

� � tan�1 x
h

,

y

θ

φ
O

v0

Trajectory
Line of sight

h

x

v

Figure 4-14 A plane drops a rescue capsule while moving at
constant velocity in level flight. While falling, the capsule 
remains under the plane.

Checkpoint 4
A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what
happens to its (a) horizontal and (b) vertical components of velocity? What are the (c)
horizontal and (d) vertical components of its acceleration during ascent, during de-
scent, and at the topmost point of its flight?
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Sample Problem 4.05 Launched into the air from a water slide

One of the most dramatic videos on the web (but entirely
fictitious) supposedly shows a man sliding along a long wa-
ter slide and then being launched into the air to land in a
water pool. Let’s attach some reasonable numbers to such
a flight to calculate the velocity with which the man would
have hit the water. Figure 4-15a indicates the launch and
landing sites and includes a superimposed coordinate sys-
tem with its origin conveniently located at the launch site.
From the video we take the horizontal flight distance as
D � 20.0 m, the flight time as t � 2.50 s, and the launch an-
gle as 0 � 40.0°. Find the magnitude of the velocity at
launch and at landing.

KEY IDEAS

(1) For projectile motion, we can apply the equations for con-
stant acceleration along the horizontal and vertical axes sepa-
rately. (2) Throughout the flight, the vertical acceleration is 
ay � �g � �9.8 m/s and the horizontal acceleration is .

Calculations: In most projectile problems, the initial chal-
lenge is to figure out where to start. There is nothing wrong
with trying out various equations, to see if we can somehow
get to the velocities. But here is a clue. Because we are going
to apply the constant-acceleration equations separately to
the x and y motions, we should find the horizontal and verti-
cal components of the velocities at launch and at landing.
For each site, we can then combine the velocity components
to get the velocity.

Because we know the horizontal displacement D �
20.0 m, let’s start with the horizontal motion. Since ,ax � 0

ax � 0

�

we know that the horizontal velocity component is con-
stant during the flight and thus is always equal to the hori-
zontal component v0x at launch. We can relate that compo-
nent, the displacement and the flight time t � 2.50 s
with Eq. 2-15:

(4-32)

Substituting this becomes Eq. 4-21. With 
we then write

That is a component of the launch velocity, but we need
the magnitude of the full vector, as shown in Fig. 4-15b,
where the components form the legs of a right triangle and
the full vector forms the hypotenuse. We can then apply a
trig definition to find the magnitude of the full velocity at
launch:

and so

(Answer)

Now let’s go after the magnitude v of the landing veloc-
ity. We already know the horizontal component, which does
not change from its initial value of 8.00 m/s.To find the verti-
cal component vy and because we know the elapsed time t �
2.50 s and the vertical acceleration let’s
rewrite Eq. 2-11 as

and then (from Fig. 4-15b) as

(4-33)

Substituting ay � �g, this becomes Eq. 4-23.We can then write

Now that we know both components of the landing velocity,
we use Eq. 3-6 to find the velocity magnitude:

(Answer)� 19.49 m/s2 � 19.5 m/s.

� 2(8.00 m/s)2 � (�17.78 m/s)2

v � 2vx
2 � vy

2

� �17.78 m/s.

vy � (10.44 m/s) sin (40.0�) � (9.8 m/s2)(2.50 s)

vy � v0 sin �0 � ayt.

vy � v0y � ayt

ay � �9.8 m/s2,

� 10.44 m/s �  10.4 m/s.

v0 �
v0x

cos u0
�

8.00 m/s
cos 40�

cos�0 �
v0x

v0
,

v0x � 8.00 m/s.

20 m � v0x(2.50 s) � 1
2 (0)(2.50 s)2

x � x0 � D,ax � 0,

x � x0 � v0xt � 1
2axt2.

x � x0,

vx

D

θ0

v0

y

x
Launch

Water
pool

(a)

θ0

v0
v0y

v0x

θ0

v
vy

v0x

(b) (c)

Landing
velocity

Launch
velocity

Figure 4-15 (a) Launch from a water slide, to land in a water pool.
The velocity at (b) launch and (c) landing.

Additional examples, video, and practice available at WileyPLUS
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Uniform Circular Motion
A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The accelera-
tion is always directed radially inward. Because of this, the acceleration associ-
ated with uniform circular motion is called a centripetal (meaning “center seek-
ing”) acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2pr) in time

(period). (4-35)

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34
To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed
v around a circle of radius r. At the instant shown, p has coordinates xp and yp.

Recall from Module 4-2 that the velocity of a moving particle is always
tangent to the particle’s path at the particle’s position. In Fig. 4-17a, that means

is perpendicular to a radius r drawn to the particle’s position. Then the angle
u that makes with a vertical at p equals the angle u that radius r makes with
the x axis.

v:
v:

v:

T �
2
r

v

a �
v2

r

a:

Figure 4-16 Velocity and acceleration 
vectors for uniform circular motion.

v

v

v

a

a
a

The acceleration vector
always points toward the
center.

The velocity
vector is always
tangent to the path.

4-5 UNIFORM CIRCULAR MOTION

4.17 Apply the relationships between the radius of the circu-
lar path, the period, the particle’s speed, and the particle’s
acceleration magnitude.

Learning Objectives
After reading this module, you should be able to . . .

4.16 Sketch the path taken in uniform circular motion and ex-
plain the velocity and acceleration vectors (magnitude and
direction) during the motion.

arc, and is said to be centripetal. The time for the particle to
complete a circle is

T is called the period of revolution, or simply the period, of the
motion.

T �
2
r

v
.

a:
Key Ideas
● If a particle travels along a circle or circular arc of radius r at
constant speed v, it is said to be in uniform circular motion
and has an acceleration of constant magnitude

The direction of is toward the center of the circle or circulara:

a �
v2

r
.

a:
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Figure 4-17 Particle p moves in counter-
clockwise uniform circular motion. (a) Its
position and velocity at a certain
instant. (b) Velocity . (c) Acceleration .a:v:

v:

y

x
θ

θ
p

yp
r

xp

v

(a)
y

x

θ

vx

vy

v

(b)
y

x

φ

ax

ay
a

(c)

The scalar components of are shown in Fig. 4-17b. With them, we can write
the velocity as

. (4-36)

Now, using the right triangle in Fig. 4-17a, we can replace sin u with yp/r and
cos u with xp/r to write

(4-37)

To find the acceleration of particle p, we must take the time derivative of this
equation. Noting that speed v and radius r do not change with time, we obtain

(4-38)

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt � vx, and, again from Fig. 4-17b, we see that vx �
�v sin u and vy � v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f � u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan � �
ay

ax
�

�(v2/r) sin �
�(v2/r) cos �

� tan �

a:

a � 2ax
2 � ay

2 �
v2

r
2(cos �)2 � (sin �)2 �

v2

r
11 �

v2

r
,

a: � ��
v2

r
 cos �� î � ��

v2

r
 sin �� ĵ

a: �
dv:

dt
� ��

v

r

dyp

dt � î � � v

r

dxp

dt � ĵ.

a:

v: � ��
vyp

r �î � � vxp

r �ĵ .

v: � vx î � vy ĵ � (�v sin �)î � (v cos �)ĵ

v:
v:

Checkpoint 5
An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x � �2 m, its velocity is �(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y � 2 m.

ĵ

Sample Problem 4.06 Top gun pilots in turns

KEY IDEAS

We assume the turn is made with uniform circular motion.
Then the pilot’s acceleration is centripetal and has magni-
tude a given by Eq. 4-34 (a � v2/R), where R is the circle’s
radius.Also, the time required to complete a full circle is the
period given by Eq. 4-35 (T � 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

To get the constant speed v, let’s substitute the components
of the initial velocity into Eq. 3-6:

v � 2(400 m/s)2 � (500 m/s)2 �  640.31 m/s.

a �
2
v
T

.

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood pres-
sure in the brain decreases, leading to loss of brain function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?��v:

f
�

�v:i �
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4-6 RELATIVE MOTION IN ONE DIMENSION

frames that move relative to each other at constant velocity
and along a single axis.

Learning Objective
After reading this module, you should be able to . . .

4.18 Apply the relationship between a particle’s position, ve-
locity, and acceleration as measured from two reference

where is the velocity of B with respect to A. Both ob-
servers measure the same acceleration for the particle:

a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA,

Key Idea
● When two frames of reference A and B are moving relative
to each other at constant velocity, the velocity of a particle P
as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are
related by

Relative Motion in One Dimension
Suppose you see a duck flying north at 30 km/h.To another duck flying alongside,
the first duck seems to be stationary. In other words, the velocity of a particle de-
pends on the reference frame of whoever is observing or measuring the velocity.
For our purposes, a reference frame is the physical object to which we attach our
coordinate system. In everyday life, that object is the ground. For example, the
speed listed on a speeding ticket is always measured relative to the ground. The
speed relative to the police officer would be different if the officer were moving
while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4-18) is parked by the side
of a highway, watching car P (the “particle”) speed past. Barbara (at the origin of
frame B) is driving along the highway at constant speed and is also watching car P.
Suppose that they both measure the position of the car at a given moment. From
Fig. 4-18 we see that

xPA � xPB � xBA. (4-40)

The equation is read: “The coordinate xPA of P as measured by A is equal to the
coordinate xPB of P as measured by B plus the coordinate xBA of B as measured
by A.” Note how this reading is supported by the sequence of the subscripts.

Taking the time derivative of Eq. 4-40, we obtain

Thus, the velocity components are related by

vPA � vPB � vBA. (4-41)

This equation is read: “The velocity vPA of P as measured by A is equal to the

d
dt

 (xPA) �
d
dt

 (xPB) �
d
dt

 (xBA).Figure 4-18 Alex (frame A) and Barbara
(frame B) watch car P, as both B and P
move at different velocities along the com-
mon x axis of the two frames. At the
instant shown, xBA is the coordinate of B
in the A frame. Also, P is at coordinate xPB

in the B frame and coordinate xPA � xPB �
xBA in the A frame.

x

Frame A Frame B

vBA

P

x

yy

xPA = xPB + xBAxBA

xPB

Frame B moves past
frame A while both
observe P.

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given

24.0 s. Thus a full circle would have taken T � 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a �
2
(640.31 m/s)

48.0 s
� 83.81 m/s2 � 8.6g.

Additional examples, video, and practice available at WileyPLUS
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velocity vPB of P as measured by B plus the velocity vBA of B as measured by A.”
The term vBA is the velocity of frame B relative to frame A.

Here we consider only frames that move at constant velocity relative to
each other. In our example, this means that Barbara (frame B) drives always at
constant velocity vBA relative to Alex (frame A). Car P (the moving particle),
however, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take
the time derivative of Eq. 4-41:

Because vBA is constant, the last term is zero and we have

aPA � aPB. (4-42)

In other words,

d
dt

 (vPA) �
d
dt

 (vPB) �
d
dt

 (vBA).

Observers on different frames of reference that move at constant velocity relative
to each other will measure the same acceleration for a moving particle.

Sample Problem 4.07 Relative motion, one dimensional, Alex and Barbara

to relate the acceleration to the initial and final velocities
of P.

Calculation: The initial velocity of P relative to Alex is
vPA � �78 km/h and the final velocity is 0.Thus, the acceler-
ation relative to Alex is

(Answer)

(c) What is the acceleration aPB of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vPB � �130 km/h). The final veloc-
ity of P relative to Barbara is �52 km/h (because this is
the velocity of the stopped car relative to the moving
Barbara). Thus,

(Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.

� 2.2 m/s2.

aPB �
v � v0

t
�

�52 km/h � (�130 km/h)
10 s

1 m/s
3.6 km/h

� 2.2 m/s2.

aPA �
v � v0

t
�

0 � (�78 km/h)
10 s

1 m/s
3.6 km/h

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vBA � 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vPA � �78 km/h for car P,
what velocity vPB will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq. 4-41 (vPA � vPB � vBA) to relate vPB to vPA and vBA.

Calculation: We find

�78 km/h � vPB � 52 km/h.

Thus, vPB � �130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time t � 10 s at constant acceleration,
what is its acceleration aPA relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the
acceleration is constant, we can use Eq. 2-11 (v � v0 � at)

Additional examples, video, and practice available at WileyPLUS
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4-7 RELATIVE MOTION IN TWO DIMENSIONS

frames that move relative to each other at constant velocity
and in two dimensions.

Learning Objective
After reading this module, you should be able to . . .

4.19 Apply the relationship between a particle’s position, ve-
locity, and acceleration as measured from two reference

where is the velocity of B with respect to A. Both 
observers measure the same acceleration for the particle:

a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA
,

Key Idea
● When two frames of reference A and B are moving relative
to each other at constant velocity, the velocity of a particle 
P as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are
related by

Relative Motion in Two Dimensions
Our two observers are again watching a moving particle P from the origins of refer-
ence frames A and B, while B moves at a constant velocity relative to A. (The
corresponding axes of these two frames remain parallel.) Figure 4-19 shows a cer-
tain instant during the motion.At that instant, the position vector of the origin of B
relative to the origin of A is .Also, the position vectors of particle P are rela-
tive to the origin of A and relative to the origin of B. From the arrangement of
heads and tails of those three position vectors, we can relate the vectors with

(4-43)

By taking the time derivative of this equation, we can relate the velocities 
and of particle P relative to our observers:

(4-44)

By taking the time derivative of this relation, we can relate the accelerations 
and of the particle P relative to our observers. However, note that because

is constant, its time derivative is zero.Thus, we get

(4-45)

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will
measure the same acceleration for a moving particle.

a:PA � a:PB.

v:BA

a:PB

a:PA

v:PA � v:PB � v:BA.

v:PB

v:PA

r:PA � r:PB � r:BA.

r:PB

r:PAr:BA

v:BA

Figure 4-19 Frame B has the constant 
two-dimensional velocity relative to
frame A. The position vector of B relative
to A is . The position vectors of parti-
cle P are relative to A and
relative to B.

r:PBr:PA

r:BA

v:BA

x

x

y

y

rPB
rPA

rBA
Frame B

Frame A

vBA

P

Sample Problem 4.08 Relative motion, two dimensional, airplanes

In Fig. 4-20a, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h, directed at angle u south of east. The wind
has velocity relative to the ground with speed 
65.0 km/h, directed 20.0° east of north. What is the magni-
tude of the velocity of the plane relative to the ground,
and what is ?�

v:PG

v:WG

v:PW

KEY IDEAS

The situation is like the one in Fig. 4-19. Here the moving par-
ticle P is the plane, frame A is attached to the ground (call it
G), and frame B is “attached” to the wind (call it W).We need
a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the
three vectors shown in Fig. 4-20b:



81REVIEW & SUMMARY

velocity of plane velocity of plane velocity of wind 
relative to ground

�
relative to wind

�
relative to ground.

(PG) (PW) (WG)

This relation is written in vector notation as

(4-46)

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

vPG,y � vPW,y � vWG,y

or 0 � �(215 km/h) sin u � (65.0 km/h)(cos 20.0°).

Solving for u gives us

(Answer)

Similarly, for the x components we find

vPG,x � vPW,x � vWG,x.

Here, because is parallel to the x axis, the component
vPG,x is equal to the magnitude vPG. Substituting this nota-
tion and the value u � 16.5°, we find

vPG � (215 km/h)(cos 16.5°) � (65.0 km/h)(sin 20.0°)

� 228 km/h. (Answer)

v:PG

� � sin�1 (65.0 km/h)(cos 20.0�)
215 km/h

� 16.5�.

v:PG � v:PW � v:WG. θ

θ

vPG

vPW vWG

vPG

vPW vWG

N

y

N
E

20°

x

(a)

(b)

This is the plane's actual
direction of travel.

This is the wind
direction.

The actual direction
is the vector sum of
the other two vectors
(head-to-tail arrangement).

This is the plane's
orientation.

Figure 4-20 A plane flying in a wind.

Additional examples, video, and practice available at WileyPLUS

Review & Summary

Position Vector The location of a particle relative to the ori-
gin of a coordinate system is given by a position vector , which in
unit-vector notation is

(4-1)

Here x , y , and z are the vector components of position vector ,
and x, y, and z are its scalar components (as well as the coordinates
of the particle). A position vector is described either by a magni-
tude and one or two angles for orientation, or by its vector or
scalar components.

Displacement If a particle moves so that its position vector
changes from to , the particle’s displacement is

(4-2)

The displacement can also be written as

(4-3)

� �x � �y � �z . (4-4)

Average Velocity and Instantaneous Velocity If a parti-
cle undergoes a displacement in time interval �t, its average ve-
locity for that time interval is

(4-8)v:avg �
� r:

�t
.

v:avg

� r:

k̂ĵî

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂

� r: � r:2 � r:1.

� r:r:2r:1

r:k̂ĵî

r: � x î � y ĵ � zk̂.

r:
As �t in Eq. 4-8 is shrunk to 0, reaches a limit called either the
velocity or the instantaneous velocity :

(4-10)

which can be rewritten in unit-vector notation as

(4-11)

where vx � dx /dt, vy � dy/dt, and vz � dz /dt. The instantaneous
velocity of a particle is always directed along the tangent to the
particle’s path at the particle’s position.

Average Acceleration and Instantaneous Acceleration
If a particle’s velocity changes from to in time interval �t, its
average acceleration during �t is

(4-15)

As �t in Eq. 4-15 is shrunk to 0, reaches a limiting value calleda:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

v:2v:1

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d r:

dt
,

v:
v:avg

either the acceleration or the instantaneous acceleration :

(4-16)
In unit-vector notation,

(4-17)

where ax � dvx/dt, ay � dvy/dt, and az � dvz/dt.

a: � ax î � ay ĵ � azk̂,

a: �
d v:

dt
.

a:
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Figure 4-23 Question 5.

(a) (b) (c)

Projectile Motion Projectile motion is the motion of a particle
that is launched with an initial velocity . During its flight, the par-
ticle’s horizontal acceleration is zero and its vertical acceleration is
the free-fall acceleration �g. (Upward is taken to be a positive di-
rection.) If is expressed as a magnitude (the speed v0) and an an-
gle u0 (measured from the horizontal), the particle’s equations of
motion along the horizontal x axis and vertical y axis are

v:0

v:0

Questions

1 Figure 4-21 shows the path taken by
a skunk foraging for trash food, from
initial point i. The skunk took the same
time T to go from each labeled point to
the next along its path. Rank points a, b,
and c according to the magnitude of the
average velocity of the skunk to reach
them from initial point i, greatest first.

2 Figure 4-22 shows the initial posi-
tion i and the final position f of a parti-
cle. What are the (a) initial position
vector and (b) final position vector , both in unit-vector nota-rf

:r:i

Figure 4-21
Question 1.

a i b c

Figure 4-22 Question 2.

z

x

i

f

y

4 m
4 m

1 m

2 m
3 m

3 m

3 m 5 m

twice as long as at 45º. Does that result mean that the air density at
high altitudes increases with altitude or decreases?

4 You are to launch a rocket, from just above the ground, with
one of the following initial velocity vectors: (1) ,
(2) , (3) , (4) . In
your coordinate system, x runs along level ground and y increases
upward. (a) Rank the vectors according to the launch speed of the
projectile, greatest first. (b) Rank the vectors according to the time
of flight of the projectile, greatest first.

5 Figure 4-23 shows three situations in which identical projectiles
are launched (at the same level) at identical initial speeds and an-
gles. The projectiles do not land on the same terrain, however.
Rank the situations according to the final speeds of the projectiles
just before they land, greatest first.

�20î � 70ĵv:0 �v:0 � 20î � 70ĵv:0 � �20î � 70ĵ
20î � 70ĵv:0 �

Uniform Circular Motion If a particle travels along a circle or
circular arc of radius r at constant speed v, it is said to be in uniform
circular motion and has an acceleration of constant magnitude

(4-34)

The direction of is toward the center of the circle or circular arc,
and is said to be centripetal. The time for the particle to complete
a circle is

. (4-35)

T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B are
moving relative to each other at constant velocity, the velocity of a par-
ticle P as measured by an observer in frame A usually differs from that
measured from frame B.The two measured velocities are related by

(4-44)

where is the velocity of B with respect to A. Both observers
measure the same acceleration for the particle:

(4-45)a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA,

T �
2
r

v

a:
a:

a �
v2

r
.

a:

x � x0 � (v0 cos u0)t, (4-21)

, (4-22)

vy � v0 sin u0 � gt, (4-23)

. (4-24)

The trajectory (path) of a particle in projectile motion is parabolic
and is given by

, (4-25)

if x0 and y0 of Eqs. 4-21 to 4-24 are zero. The particle’s horizontal
range R, which is the horizontal distance from the launch point to
the point at which the particle returns to the launch height, is

(4-26)R �
v2

0

g
 sin 2�0.

y � (tan �0)x �
gx2

2(v0 cos �0)2

v2
y � (v0 sin �0)2 � 2g(y � y0)

y � y0 � (v0 sin �0)t � 1
2gt2

3 When Paris was shelled from 100 km away with the WWI
long-range artillery piece “Big Bertha,” the shells were fired at an
angle greater than 45º to give them a greater range, possibly even

6 The only good use of a fruitcake
is in catapult practice. Curve 1 in
Fig. 4-24 gives the height y of a cata-
pulted fruitcake versus the angle u
between its velocity vector and its
acceleration vector during flight. (a)
Which of the lettered points on that
curve corresponds to the landing of
the fruitcake on the ground? (b)
Curve 2 is a similar plot for the same

y

θ 
A B

2

1

Figure 4-24 Question 6.

tion? (c) What is the x component of displacement ?� r:
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launch speed but for a different launch angle. Does the fruitcake
now land farther away or closer to the launch point?

7 An airplane flying horizontally at a constant speed of 350 km/h
over level ground releases a bundle of food supplies. Ignore the ef-
fect of the air on the bundle. What are the bundle’s initial (a) verti-
cal and (b) horizontal components of velocity? (c) What is its hori-
zontal component of velocity just before hitting the ground? (d) If
the airplane’s speed were, instead, 450 km/h, would the time of fall
be longer, shorter, or the same?

8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2,
and 3, which are identical in size and regularly spaced vertically.
Rank those three windows according to (a) the time the cream tan-
gerine takes to pass them and (b) the average speed of the cream
tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5,
and 6, which are identical in size and irregularly spaced horizon-
tally. Rank those three windows according to (c) the time the
cream tangerine takes to pass them and (d) the average speed of
the cream tangerine during the passage, greatest first.

11 Figure 4-28 shows four tracks (either half- or quarter-circles)
that can be taken by a train, which moves at a constant speed.
Rank the tracks according to the magnitude of a train’s accelera-
tion on the curved portion, greatest first.

1

2

3
4

5

6

Figure 4-25 Question 8.

R

θ 0

b
a

c

Figure 4-27 Question 10.

3

4

2

1

Figure 4-28 Question 11.

x

y

θ 
r

P

Figure 4-29 Question 12.

1 2 3

Figure 4-26 Question 9.

10 A ball is shot from ground level over level ground at a certain
initial speed. Figure 4-27 gives the range R of the ball versus its
launch angle u0. Rank the three lettered points on the plot accord-
ing to (a) the total flight time of the ball and (b) the ball’s speed at
maximum height, greatest first.

12 In Fig. 4-29, particle P is in uniform circular motion, cen-
tered on the origin of an xy coordinate system. (a) At what values
of u is the vertical component ry of the position vector greatest in
magnitude? (b) At what values of u is the vertical component vy

of the particle’s velocity greatest in magnitude? (c) At what val-
ues of u is the vertical component ay of the particle’s acceleration
greatest in magnitude?

13 (a) Is it possible to be accelerating while traveling at constant
speed? Is it possible to round a curve with (b) zero acceleration and
(c) a constant magnitude of acceleration?

14 While riding in a moving car, you toss an egg directly upward.
Does the egg tend to land behind you, in front of you, or back in your
hands if the car is (a) traveling at a constant speed, (b) increasing in
speed, and (c) decreasing in speed?

15 A snowball is thrown from ground level (by someone in a
hole) with initial speed v0 at an angle of 45° relative to the (level)
ground, on which the snowball later lands. If the launch angle is in-
creased, do (a) the range and (b) the flight time increase, decrease,
or stay the  same? 

16 You are driving directly behind a pickup truck, going at the
same speed as the truck. A crate falls from the bed of the truck to
the road. (a) Will your car hit the crate before the crate hits the
road if you neither brake nor swerve? (b) During the fall, is the
horizontal speed of the crate more than, less than, or the same as
that of the truck?

17 At what point in the path of a projectile is the speed a minimum?

18 In shot put, the shot is put (thrown) from above the athlete’s
shoulder level. Is the launch angle that produces the greatest range
45°, less than 45°, or greater than 45°?

9 Figure 4-26 shows three paths for a football kicked from ground
level. Ignoring the effects of air, rank the paths according to (a) time
of flight, (b) initial vertical velocity component, (c) initial horizontal
velocity component, and (d) initial speed, greatest first.
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Module 4-1 Position and Displacement
•1 The position vector for an electron is 

. (a) Find the magnitude of . (b) Sketch the
vector on a right-handed coordinate system.
•2 A watermelon seed has the following coordinates: x � �5.0 m,
y � 8.0 m, and z � 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

•3 A positron undergoes a displacement ,
ending with the position vector , in meters. What
was the positron’s initial position vector?

••4 The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (e) magnitude and (f) angle for the hour after that?

Module 4-2 Average Velocity and Instantaneous Velocity
•5 A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

•6 An electron’s position is given by ,
with t in seconds and in meters. (a) In unit-vector notation, what
is the electron’s velocity ? At t 2.00 s, what is (b) in unit-
vector notation and as (c) a magnitude and (d) an angle relative to
the positive direction of the x axis?

•7 An ion’s position vector is initially ,
and 10 s later it is , all in meters. In unit-
vector notation, what is its during the 10 s?

••8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city C in 1.50 h. For the total trip,
what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude
and (d) direction of its aver-
age velocity, and (e) its aver-
age speed?

••9 Figure 4-30 gives the
path of a squirrel moving
about on level ground, from
point A (at time t � 0), to
points B (at t � 5.00 min), C
(at t � 10.0 min), and finally D
(at t � 15.0 min). Consider the
average velocities of the squir-
rel from point A to each of the
other three points. Of them,
what are the (a) magnitude

v:avg

r: � �2.0î � 8.0ĵ � 2.0k̂
2.0k̂6.0ĵ �r: � 5.0î �

v:�v:(t)
r:

4.00t2ĵ � 2.00k̂r: � 3.00t î �

SSM

r: � 3.0ĵ � 4.0k̂
3.0ĵ � 6.0k̂� r: � 2.0î �

r:(3.0 m)ĵ � (2.0 m)k̂
r: � (5.0 m)î �

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

and (b) angle of the one with the
least magnitude and the (c) magni-
tude and (d) angle of the one with
the greatest magnitude?

•••10 The position vector
locates a

particle as a function of time t.
Vector is in meters, t is in seconds,
and factors e and f are constants.
Figure 4-31 gives the angle u of the
particle’s direction of travel as a
function of t (u is measured from
the positive x direction). What are (a) e and (b) f, including units?

Module 4-3 Average Acceleration and 
Instantaneous Acceleration
•11 The position of a particle moving in an xy plane is givenr:

r:

r: � 5.00t î � (et � ft2)ĵ

D

CA

B

25 50

50

25

0

–25

–50

y (m)

x (m)

Figure 4-30 Problem 9.

θ 

20°

0°

–20°

10 20

t (s)

Figure 4-31 Problem 10.

by , with in meters and t
in seconds. In unit-vector notation, calculate (a) , (b) , and (c) 
for t 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t 2.00 s? 

•12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s.Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

•13 A particle moves so that its position (in meters) asSSM

�
�

a:v:r:
r:r: � (2.00t3 � 5.00t)î � (6.00 � 7.00t4)ĵ

given by , with in meters per second
and t (> 0) in seconds. (a) What is the acceleration when t 3.0 s?
(b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal
10 m/s?

••17 A cart is propelled over an xy plane with acceleration compo-
nents ax � 4.0 m/s2 and ay � �2.0 m/s2. Its initial velocity has com-
ponents v0x � 8.0 m/s and v0y � 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

••18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration .(7.00 m/s2)ĵa: � (5.00 m/s2)î �

�
v:v: � (6.0t � 4.0t2)î � 8.0ĵ

a function of time (in seconds) is . Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

•14 A proton initially has and then 
4.0 s later has (in meters per second). For
that 4.0 s, what are (a) the proton’s average acceleration in unit-
vector notation, (b) the magnitude of , and (c) the angle between

and the positive direction of the x axis?

••15 A particle leaves the origin with an initial veloc-
ity and a constant acceleration 

. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

••16 The velocity of a particle moving in the xy plane isv:

0.500ĵ) m/s2
a: � (�1.00î �(3.00î) m/sv: �

ILWSSM

a:avg

a:avg

a:avg

v: � �2.0î � 2.0ĵ � 5.0k̂
v: � 4.0î � 2.0ĵ � 3.0k̂

r: � î � 4t2ĵ � tk̂
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••27 A certain airplane has a
speed of 290.0 km/h and is diving
at an angle of 30.0° below the
horizontal when the pilot releases
a radar decoy (Fig. 4-33). The hori-
zontal distance between the re-
lease point and the point where
the decoy strikes the ground is d �
700 m. (a) How long is the decoy in
the air? (b) How high was the re-
lease point?

••28 In Fig. 4-34, a stone is pro-
jected at a cliff of height h with an initial speed of 42.0 m/s directed
at angle u0 � 60.0° above the horizontal. The stone strikes at A,
5.50 s after launching. Find (a) the height h of the cliff, (b) the
speed of the stone just before impact at A, and (c) the maximum
height H reached above the ground.

� �

ILWAt time t 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by
12.0 m parallel to the x axis?

•••19 The acceleration of a particle moving only on a horizontal
xy plane is given by , where is in meters per second-
squared and t is in seconds. At t 0, the position vector

locates the particle, which then has the
velocity vector . At t 4.00 s, what
are (a) its position vector in unit-vector notation and (b) the angle
between its direction of travel and the positive direction of the
x axis?

•••20 In Fig. 4-32, particle A
moves along the line y 30 m
with a constant velocity of mag-
nitude 3.0 m/s and parallel to the
x axis. At the instant particle A
passes the y axis, particle B leaves
the origin with a zero initial speed
and a constant acceleration of
magnitude 0.40 m/s2. What angle u
between and the positive direc-
tion of the y axis would result in a
collision?

Module 4-4 Projectile Motion
•21 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at
point Q on the rim, vertically below P, 0.19 s later. (a) What is the
distance PQ? (b) How far away from the dart board is the dart
released?

•22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

•23 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

•24 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 
23-year long-jump record set by Bob Beamon. Assume that
Powell’s speed on takeoff was 9.5 m/s (about equal to that of a
sprinter) and that g 9.80 m/s2 in Tokyo. How much less was
Powell’s range than the maximum possible range for a particle
launched at the same speed?

•25 The current world-record motorcycle jump is 77.0 m,
set by Jason Renie. Assume that he left the take-off ramp at 
12.0º to the horizontal and that the take-off and landing 
heights are the same. Neglecting air drag, determine his take-off
speed.

•26 A stone is catapulted at time t 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t 1.10 s?
Repeat for the (c) horizontal and (d) vertical components at 
t 1.80 s, and for the (e) horizontal and (f) vertical components at
t 5.00 s.�

�

�

�

�

a:

a:

v:
�

�v: � (5.00 m/s)î � (2.00 m/s)ĵ
r: � (20.0 m)î � (40.0 m)ĵ

�
a:a: � 3t î � 4t ĵ

î�

xB

A

y

θ 

v

a

Figure 4-32 Problem 20.

θ 

d

Figure 4-33 Problem 27.

0

H

h

A

θ 

Figure 4-34 Problem 28.

••29 A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle .

••30 A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away in
the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground?

••31 In a jump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle of
the spike is difficult. Suppose a ball is spiked from a height of 2.30
m with an initial speed of 20.0 m/s at a downward angle of 18.00°.
How much farther on the opposite floor would it have landed if the
downward angle were, instead, 8.00°?

••32 You throw a ball toward a
wall at speed 25.0 m/s and at angle

40.0° above the horizontal
(Fig. 4-35). The wall is distance d
22.0 m from the release point of the
ball. (a) How far above the release
point does the ball hit the wall?
What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d) When
it hits, has it passed the highest point on its trajectory?

••33 A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of 730 m.
The projectile hits the ground 5.00 s after release. (a) What is the
speed of the plane? (b) How far does the projectile travel horizon-
tally during its flight? What are the (c) horizontal and (d) vertical
components of its velocity just before striking the ground?

••34 A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled against a
wall to break apart the wall. The machine was not placed near the
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of 9.1 m, its velocity is , with horizontal and 
upward. (a) To what maximum height does the ball rise? (b) What
total horizontal distance does the ball travel? What are the
(c) magnitude and (d) angle (below the horizontal) of the ball’s ve-
locity just before it hits the ground?

••44 A baseball leaves a pitcher’s hand horizontally at a speed of
161 km/h.The distance to the batter is 18.3 m. (a) How long does the
ball take to travel the first half of that distance? (b) The second half?
(c) How far does the ball fall freely during the first half? (d) During
the second half? (e) Why aren’t the quantities in (c) and (d) equal?

••45 In Fig. 4-40, a ball is launched with a velocity of magnitude
10.0 m/s, at an angle of 50.0° to the horizontal.The launch point is at
the base of a ramp of horizon-
tal length d1 6.00 m and
height d2 � 3.60 m. A plateau
is located at the top of the
ramp. (a) Does the ball land on
the ramp or the plateau? When
it lands, what are the (b) mag-
nitude and (c) angle of its dis-
placement from the launch point?

••46 In basketball, hang is an illusion in which a player
seems to weaken the gravitational acceleration while in midair.The
illusion depends much on a skilled player’s ability to rapidly shift
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wall because then arrows could reach it from the castle wall. Instead,
it was positioned so that the stone hit the wall during the second half
of its flight. Suppose a stone is launched with a speed of v0 � 28.0 m/s
and at an angle of u0 � 40.0°. What is the speed of the stone if it hits
the wall (a) just as it reaches the top of its parabolic path and (b)
when it has descended to half that height? (c) As a percentage, how
much faster is it moving in part (b) than in part (a)?

••35 A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with the ri-
fle, how high above the target must the rifle barrel be pointed so
that the bullet hits dead center?

••36 During a tennis match, a player serves the ball at 
23.6 m/s, with the center of the ball leaving the racquet horizontally
2.37 m above the court surface. The net is 12 m away and 0.90 m
high. When the ball reaches the net, (a) does the ball clear it and
(b) what is the distance between the center of the ball and the top
of the net? Suppose that, instead, the ball is served as before but
now it leaves the racquet at 5.00° below the horizontal. When the
ball reaches the net, (c) does the ball clear it and (d) what now is
the distance between the center of the ball and the top of the net?

••37 A lowly high diver pushes off horizontally
with a speed of 2.00 m/s from the platform edge 10.0 m above the
surface of the water. (a) At what horizontal distance from the
edge is the diver 0.800 s after pushing off? (b) At what vertical
distance above the surface of the water is the diver just then?
(c) At what horizontal distance from the edge does the diver
strike the water?

••38 A golf ball is struck at
ground level. The speed of
the golf ball as a function of
the time is shown in Fig. 4-36,
where t � 0 at the instant the
ball is struck. The scaling on
the vertical axis is set by

and .
(a) How far does the golf
ball travel horizontally be-
fore returning to ground
level? (b) What is the maximum height above ground level at-
tained by the ball?

••39 In Fig. 4-37, a ball is thrown leftward from the left edge of the
roof, at height h above the ground. The ball hits the ground 1.50 s
later, at distance d � 25.0 m from the building and at angle u � 60.0°
with the horizontal. (a) Find h.
(Hint: One way is to reverse the
motion, as if on video.) What
are the (b) magnitude and (c)
angle relative to the horizontal
of the velocity at which the ball
is thrown? (d) Is the angle
above or below the horizontal?

••40 Suppose that a shot putter can put a shot at the world-
class speed 15.00 m/s and at a height of 2.160 m. What hori-
zontal distance would the shot travel if the launch angle is
(a) 45.00° and (b) 42.00°? The answers indicate that the angle of
45°, which maximizes the range of projectile motion, does not max-
imize the horizontal distance when the launch and landing are at
different heights.
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••41 Upon spotting an in-
sect on a twig overhanging water, an
archer fish squirts water drops at the
insect to knock it into the water
(Fig. 4-38).Although the fish sees the
insect along a straight-line path at an-
gle f and distance d, a drop must be
launched at a different angle u0 if its
parabolic path is to intersect the
insect. If f � 36.0° and d � 0.900 m,
what launch angle u0 is required for the drop to be at the top of the
parabolic path when it reaches the insect?

••42 In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme: After being shot from a cannon, he
soared over three Ferris wheels and into a net (Fig. 4-39). Assume
that he is launched with a speed of 26.5 m/s and at an angle of 53.0°.
(a) Treating him as a particle, calculate his clearance over the first
wheel. (b) If he reached maximum height over the middle wheel, by
how much did he clear it? (c) How far from the cannon should the
net’s center have been positioned (neglect air drag)?

Insect
on twig

d

φ 

Archer fish

Figure 4-38 Problem 41.

••43 A ball is shot from the ground into the air. At a heightILW

Ball

d1

d2
v0

Figure 4-40 Problem 45.
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the ball between hands during the flight, but it might also be sup-
ported by the longer horizontal distance the player travels in the
upper part of the jump than in the lower part. If a player jumps
with an initial speed of v0 � 7.00 m/s at an angle of u0 � 35.0°,
what percent of the jump’s range does the player spend in the up-
per half of the jump (between maximum height and half maxi-
mum height)?

••47 A batter hits a pitched ball when the center of
the ball is 1.22 m above the ground. The ball leaves the bat at an
angle of 45° with the ground.With that launch, the ball should have
a horizontal range (returning to the launch level) of 107 m. (a)
Does the ball clear a 7.32-m-high fence that is 97.5 m horizontally
from the launch point? (b) At the fence, what is the distance be-
tween the fence top and the ball center?

••48 In Fig. 4-41, a ball is
thrown up onto a roof, landing
4.00 s later at height h 20.0 m
above the release level. The
ball’s path just before landing is
angled at u � 60.0° with the
roof. (a) Find the horizontal dis-
tance d it travels. (See the hint
to Problem 39.) What are the
(b) magnitude and (c) angle
(relative to the horizontal) of
the ball’s initial velocity?

•••49 A football kicker can give the ball an initial speed of 
25 m/s. What are the (a) least and (b) greatest elevation angles at
which he can kick the ball to score a field goal from a point 50 m in
front of goalposts whose horizontal bar is 3.44 m above the ground?

•••50 Two seconds after being projected from ground level, a
projectile is displaced 40 m horizontally and 53 m vertically
above its launch point. What are the (a) horizontal and (b)
vertical components of the initial velocity of the projectile? (c)
At the instant the projectile achieves its maximum height above
ground level, how far is it displaced horizontally from the launch
point?

•••51 A skilled skier knows to jump upward before reaching a
downward slope. Consider a jump in which the launch speed is 
v0 � 10 m/s, the launch angle is u0 � 11.3°, the initial course is
approximately flat, and the steeper track has a slope of 9.0°.
Figure 4-42a shows a prejump that allows the skier to land on the top
portion of the steeper track. Figure 4-42b shows a jump at the edge
of the steeper track. In Fig. 4-42a, the skier lands at approximately
the launch level. (a) In the landing, what is the angle f between the
skier’s path and the slope? In Fig. 4-42b, (b) how far below the
launch level does the skier land and (c) what is f? (The greater fall
and greater f can result in loss of control in the landing.)
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Figure 4-42 Problem 51.

•••52 A ball is to be shot from level ground toward a wall at dis-
tance x (Fig. 4-43a). Figure 4-43b shows the y component vy of the
ball’s velocity just as it would reach the wall, as a function of that
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Figure 4-43 Problem 52.

•••53 In Fig. 4-44, a baseball is hit at a height h � 1.00 m and
then caught at the same height. It travels alongside a wall, moving
up past the top of the wall 1.00 s after it is hit and then down past
the top of the wall 4.00 s later, at distance D � 50.0 m farther along
the wall. (a) What horizontal distance is traveled by the ball from
hit to catch? What are the (b) magnitude and (c) angle (relative to
the horizontal) of the ball’s velocity just after being hit? (d) How
high is the wall?

D

h h

Figure 4-44 Problem 53.

•••54 A ball is to be shot from
level ground with a certain speed.
Figure 4-45 shows the range R it will
have versus the launch angle u0. The
value of u0 determines the flight
time; let tmax represent the maximum
flight time. What is the least speed
the ball will have during its flight if
u0 is chosen such that the flight time
is 0.500tmax?

•••55 A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide.
Which step does the ball hit first?

Module 4-5 Uniform Circular Motion
•56 An Earth satellite moves in a circular orbit 640 km 
(uniform circular motion) above Earth’s surface with a period of
98.0 min. What are (a) the speed and (b) the magnitude of the
centripetal acceleration of the satellite?

•57 A carnival merry-go-round rotates about a vertical axis at a
constant rate. A man standing on the edge has a constant speed of
3.66 m/s and a centripetal acceleration of magnitude 1.83 m/s2.
Position vector locates him relative to the rotation axis. (a) What
is the magnitude of ? What is the direction of when is di-
rected (b) due east and (c) due south?

•58 A rotating fan completes 1200 revolutions every minute.
Consider the tip of a blade, at a radius of 0.15 m. (a) Through what
distance does the tip move in one revolution? What are (b) the
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Figure 4-45 Problem 54.

distance x. The scaling is set by m/s and What
is the launch angle?

xs � 20 m.vys � 5.0
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tip’s speed and (c) the magnitude of its acceleration? (d) What is
the period of the motion?

•59 A woman rides a carnival Ferris wheel at radius 15 m,
completing five turns about its horizontal axis every minute. What
are (a) the period of the motion, the (b) magnitude and (c) direction
of her centripetal acceleration at the highest point, and the (d) mag-
nitude and (e) direction of her centripetal acceleration at the lowest
point?

•60 A centripetal-acceleration addict rides in uniform circular
motion with radius r � 3.00 m. At one instant his acceleration is

. At that instant, what are the val-
ues of (a) and (b) ?

•61 When a large star becomes a supernova, its core may be
compressed so tightly that it becomes a neutron star, with a radius of
about 20 km (about the size of the San Francisco area). If a neutron
star rotates once every second, (a) what is the speed of a particle on
the star’s equator and (b) what is the magnitude of the particle’s cen-
tripetal acceleration? (c) If the neutron star rotates faster, do the an-
swers to (a) and (b) increase, decrease, or remain the same?

•62 What is the magnitude of the acceleration of a sprinter run-
ning at 10 m/s when rounding a turn of radius 25 m?

••63 At t1 � 2.00 s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s2) (4.00 m/s2) . It moves at
constant speed. At time t2 5.00 s, the particle’s acceleration is
(4.00 m/s2) (�6.00 m/s2) . What is the radius of the path taken
by the particle if t2 t1 is less than one period?

••64 A particle moves horizontally in uniform circular motion,
over a horizontal xy plane. At one instant, it moves through the
point at coordinates (4.00 m, 4.00 m) with a velocity of �5.00 m/s
and an acceleration of �12.5 m/s2. What are the (a) x and (b) y
coordinates of the center of the circular path?

••65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel
in uniform circular motion on the floor of a merry-go-round as the
ride turns. They are on the same radial line. At one instant, the ac-
celeration of the purse is (2.00 m/s2) � (4.00 m/s2) . At that instant
and in unit-vector notation, what is the acceleration of the wallet?

••66 A particle moves along a circular path over a horizontal xy
coordinate system, at constant speed.At time t1 � 4.00 s, it is at point
(5.00 m, 6.00 m) with velocity (3.00 m/s) and acceleration in the
positive x direction. At time t2 10.0 s, it has velocity ( 3.00 m/s)
and acceleration in the positive y direction. What are the (a) x and
(b) y coordinates of the center of the circular path if t2 � t1 is less
than one period?

•••67 A boy whirls a stone in a horizontal circle of
radius 1.5 m and at height 2.0 m above level ground. The string
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ĵî
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Module 4-6 Relative Motion in One Dimension
•69 A cameraman on a pickup truck is traveling westward at
20 km/h while he records a cheetah that is moving westward
30 km/h faster than the truck. Suddenly, the cheetah stops, turns,
and then runs at 45 km/h eastward, as measured by a suddenly
nervous crew member who stands alongside the cheetah’s path. The
change in the animal’s velocity takes 2.0 s. What are the (a) magni-
tude and (b) direction of the animal’s acceleration according to the
cameraman and the (c) magnitude and (d) direction according to
the nervous crew member?

•70 A boat is traveling upstream in the positive direction of an x
axis at 14 km/h with respect to the water of a river. The water is
flowing at 9.0 km/h with respect to the ground. What are the (a)
magnitude and (b) direction of the boat’s velocity with respect to
the ground? A child on the boat walks from front to rear at 
6.0 km/h with respect to the boat. What are the (c) magnitude and
(d) direction of the child’s velocity with respect to the ground?

••71 A suspicious-looking man runs as fast as he can along a
moving sidewalk from one end to the other, taking 2.50 s. Then se-
curity agents appear, and the man runs as fast as he can back along
the sidewalk to his starting point, taking 10.0 s. What is the ratio of
the man’s running speed to the sidewalk’s speed?

Module 4-7 Relative Motion in Two Dimensions
•72 A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He can
legally pass the ball to a teammate as long as the ball’s velocity rela-
tive to the field does not have a positive x component. Suppose the
player runs at speed 4.0 m/s relative to the field while he passes the
ball with velocity relative to himself. If has magnitude
6.0 m/s, what is the smallest angle it can have for the pass to be legal?

••73 Two highways intersect as shown in Fig. 4-46. At the instant
shown, a police car P is distance dP � 800 m from the intersection
and moving at speed vP � 80 km/h. Motorist M is distance dM �
600 m from the intersection and moving at speed vM � 60 km/h.

v:BPv:BP

x

y

M

dM

vP

vM

dP

P

Figure 4-46 Problem 73.

(a) In unit-vector notation, what is the velocity of the motorist
with respect to the police car? (b) For the instant shown in Fig. 4-46,
what is the angle between the velocity found in (a) and the line of
sight between the two cars? (c) If the cars maintain their veloci-
ties, do the answers to (a) and (b) change as the cars move nearer
the intersection?

breaks, and the stone flies off horizontally and strikes the ground
after traveling a horizontal distance of 10 m.What is the magnitude
of the centripetal acceleration of the stone during the circular 
motion?

•••68 A cat rides a merry-go-round turning with uniform
circular motion. At time t1 2.00 s, the cat’s velocity is 

, measured on a horizontal xy coordinate
system. At t2 5.00 s, the cat’s velocity is 

. What are (a) the magnitude of the cat’s centripetal
acceleration and (b) the cat’s average acceleration during the time
interval t2 � t1, which is less than one period?

(�4.00 m/s)ĵ
v:2 � (�3.00 m/s)î ��

(3.00 m/s)î � (4.00 m/s)ĵ
v:1 ��



89PROBLEMS

••74 After flying for 15 min in a wind blowing 42 km/h at an
angle of 20° south of east, an airplane pilot is over a town that is
55 km due north of the starting point. What is the speed of the air-
plane relative to the air?

••75 A train travels due south at 30 m/s (relative to the
ground) in a rain that is blown toward the south by the wind. The
path of each raindrop makes an angle of 70° with the vertical, as
measured by an observer stationary on the ground.An observer on
the train, however, sees the drops fall perfectly vertically.
Determine the speed of the raindrops relative to the ground.

••76 A light plane attains an airspeed of 500 km/h. The pilot sets
out for a destination 800 km due north but discovers that the plane
must be headed 20.0° east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b) direc-
tion of the wind velocity?

••77 Snow is falling vertically at a constant speed of 8.0 m/s.
At what angle from the vertical do the snowflakes appear to be
falling as viewed by the driver of a car traveling on a straight, level
road with a speed of 50 km/h?

••78 In the overhead view of
Fig. 4-47, Jeeps P and B race
along straight lines, across flat
terrain, and past stationary bor-
der guard A. Relative to the
guard, B travels at a constant
speed of 20.0 m/s, at the angle 
u2 � 30.0°. Relative to the guard,
P has accelerated from rest at a
constant rate of 0.400 m/s2 at the
angle u1 � 60.0°.At a certain time
during the acceleration, P has a speed of 40.0 m/s. At that time, what
are the (a) magnitude and (b) direction of the velocity of P relative to
B and the (c) magnitude and (d) direction of the acceleration of P
relative to B?

••79 Two ships, A and B, leave port at the same time.
Ship A travels northwest at 24 knots, and ship B travels at 28 knots
in a direction 40° west of south. (1 knot � 1 nautical mile per hour;
see Appendix D.) What are the (a) magnitude and (b) direction of
the velocity of ship A relative to B? (c) After what time will the
ships be 160 nautical miles apart? (d) What will be the bearing of B
(the direction of B’s position) relative to A at that time?

••80 A 200-m-wide river flows due east at a uniform speed of
2.0 m/s. A boat with a speed of 8.0 m/s relative to the water leaves
the south bank pointed in a direction 30° west of north. What are
the (a) magnitude and (b) direction of the boat’s velocity relative
to the ground? (c) How long does the boat take to cross the river?

•••81 Ship A is located 4.0 km north and 2.5 km east of ship
B. Ship A has a velocity of 22 km/h toward the south, and ship B
has a velocity of 40 km/h in a direction 37° north of east. (a)
What is the velocity of A relative to B in unit-vector notation
with toward the east? (b) Write an expression (in terms of and )
for the position of A relative to B as a function of t, where t 0
when the ships are in the positions described above. (c) At what
time is the separation between the ships least? (d) What is that
least separation?

•••82 A 200-m-wide river has a uniform flow speed of 1.1 m/s
through a jungle and toward the east. An explorer wishes to
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Figure 4-47 Problem 78.

leave a small clearing on the south bank and cross the river in a
powerboat that moves at a constant speed of 4.0 m/s with respect
to the water. There is a clearing on the north bank 82 m up-
stream from a point directly opposite the clearing on the south
bank. (a) In what direction must the boat be pointed in order to
travel in a straight line and land in the clearing on the north
bank? (b) How long will the boat take to cross the river and land
in the clearing?

Additional Problems
83 A woman who can row a boat at 6.4 km/h in still water faces a
long, straight river with a width of 6.4 km and a current of 3.2 km/h.
Let î point directly across the river and ĵ point directly down-
stream. If she rows in a straight line to a point directly opposite her
starting position, (a) at what angle to î must she point the boat and
(b) how long will she take? (c) How long will she take if, instead,
she rows 3.2 km down the river and then back to her starting
point? (d) How long if she rows 3.2 km up the river and then back
to her starting point? (e) At what angle to iî should she point the
boat if she wants to cross the river in the shortest possible time? (f)
How long is that shortest time?

84 In Fig. 4-48a, a sled moves in the negative x direction at con-
stant speed vs while a ball of ice is shot from the sled with a velocity

relative to the sled. When the ball lands, its hori-
zontal displacement �xbg relative to the ground (from its launch
position to its landing position) is measured. Figure 4-48b gives
�xbg as a function of vs. Assume the ball lands at approximately
its launch height. What are the values of (a) v0x and (b) v0y? The
ball’s displacement �xbs relative to the sled can also be measured.
Assume that the sled’s velocity is not changed when the ball is
shot.What is �xbs when vs is (c) 5.0 m/s and (d) 15 m/s?

v:0 � v0xî � v0yĵ

Figure 4-48 Problem 84.
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85 You are kidnapped by political-science majors (who are
upset because you told them political science is not a real
science). Although blindfolded, you can tell the speed of their
car (by the whine of the engine), the time of travel (by mentally
counting off seconds), and the direction of travel (by turns
along the rectangular street system). From these clues, you
know that you are taken along the following course: 50 km/h for
2.0 min, turn 90° to the right, 20 km/h for 4.0 min, turn 90° to the
right, 20 km/h for 60 s, turn 90° to the left, 50 km/h for 60 s, turn
90° to the right, 20 km/h for 2.0 min, turn 90° to the left, 50 km/h
for 30 s. At that point, (a) how far are you from your starting
point, and (b) in what direction relative to your initial direction
of travel are you?



87 A baseball is hit at ground level. The ball reaches its
maximum height above ground level 3.0 s after being hit. Then
2.5 s after reaching its maximum height, the ball barely clears a
fence that is 97.5 m from where it was hit. Assume the ground is
level. (a) What maximum height above ground level is reached by
the ball? (b) How high is the fence? (c) How far beyond the fence
does the ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere en-
counter the jet stream, an eastward airflow that can affect a plane’s
speed relative to Earth’s surface. If a pilot maintains a certain speed
relative to the air (the plane’s airspeed), the speed relative to the sur-
face (the plane’s ground speed) is more when the flight is in the di-
rection of the jet stream and less when the flight is opposite the jet
stream. Suppose a round-trip flight is scheduled between two cities
separated by 4000 km, with the outgoing flight in the direction of the
jet stream and the return flight opposite it. The airline computer ad-
vises an airspeed of 1000 km/h, for which the difference in flight
times for the outgoing and return flights is 70.0 min.What jet-stream
speed is the computer using?

89 A particle starts from the origin at t � 0 with a velocity
of 8.0 m/s and moves in the xy plane with constant acceleration
(4.0 2.0 ) m/s2. When the particle’s x coordinate is 29 m, what
are its (a) y coordinate and (b) speed?

90 At what initial speed
must the basketball player in
Fig. 4-50 throw the ball, at an-
gle u0 � 55° above the hori-
zontal, to make the foul shot?
The horizontal distances are
d1 � 1.0 ft and d2 � 14 ft, and
the heights are h1 � 7.0 ft
and h2 � 10 ft.

91 During volcanic erup-
tions, chunks of solid rock
can be blasted out of the vol-
cano; these projectiles are
called volcanic bombs. Figure 4-51 shows a cross section of Mt.
Fuji, in Japan. (a) At what initial speed would a bomb have to be
ejected, at angle u0 � 35° to the horizontal, from the vent at A in
order to fall at the foot of the volcano at B, at vertical distance 
h � 3.30 km and horizontal distance d � 9.40 km? Ignore, for the
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86 A radar station detects an airplane approaching directly from
the east. At first observation, the airplane is at distance d1 � 360 m
from the station and at angle u1 � 40° above the horizon (Fig. 4-49).
The airplane is tracked through an angular change �u � 123° in the
vertical east–west plane; its distance is then d2 � 790 m. Find the
(a) magnitude and (b) direction of the airplane’s displacement dur-
ing this period.
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θ 

Figure 4-50 Problem 90.

moment, the effects of air on the bomb’s travel. (b) What would
be the time of flight? (c) Would the effect of the air increase or
decrease your answer in (a)?

Figure 4-51 Problem 91.
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Figure 4-52 Problem 94.

92 An astronaut is rotated in a horizontal centrifuge at a radius
of 5.0 m. (a) What is the astronaut’s speed if the centripetal accel-
eration has a magnitude of 7.0g? (b) How many revolutions per
minute are required to produce this acceleration? (c) What is the
period of the motion?

93 Oasis A is 90 km due west of oasis B. A desert camel
leaves A and takes 50 h to walk 75 km at 37° north of due east.
Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h.
What are the (a) magnitude and (b) direction of the camel’s dis-
placement relative to A at the resting point? From the time the
camel leaves A until the end of the rest period, what are the (c)
magnitude and (d) direction of its average velocity and (e) its aver-
age speed? The camel’s last drink was at A; it must be at B no more
than 120 h later for its next drink. If it is to reach B just in time, what
must be the (f) magnitude and (g) direction of its average velocity
after the rest period?

94 Curtain of death. A large metallic asteroid strikes Earth
and quickly digs a crater into the rocky material below ground level
by launching rocks upward and outward. The following table gives
five pairs of launch speeds and angles (from the horizontal) for such
rocks, based on a model of crater formation. (Other rocks, with inter-
mediate speeds and angles, are also launched.) Suppose that you are
at x � 20 km when the asteroid strikes the ground at time t � 0 and
position x � 0 (Fig. 4-52). (a) At t � 20 s, what are the x and y
coordinates of the rocks headed in your direction from launches A
through E? (b) Plot these coordinates and then sketch a curve
through the points to include rocks with intermediate launch speeds
and angles.The curve should indicate what you would see as you look
up into the approaching rocks.

Launch Speed (m/s) Angle (degrees)

A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0
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Figure 4-49 Problem 86.
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95 Figure 4-53 shows the straight path of a particle
across an xy coordinate system as the particle is ac-
celerated from rest during time interval �t1. The ac-
celeration is constant. The xy coordinates for point
A are (4.00 m, 6.00 m); those for point B are (12.0
m, 18.0 m). (a) What is the ratio ay/ax of the acceler-
ation components? (b) What are the coordinates of
the particle if the motion is continued for another
interval equal to �t1?

96 For women’s volleyball the top of the net is 2.24 m above the
floor and the court measures 9.0 m by 9.0 m on each side of the
net. Using a jump serve, a player strikes the ball at a point that is
3.0 m above the floor and a horizontal distance of 8.0 m from the
net. If the initial velocity of the ball is horizontal, (a) what mini-
mum magnitude must it have if the ball is to clear the net and (b)
what maximum magnitude can it have if the ball is to strike the
floor inside the back line on the other side of the net?

97 A rifle is aimed horizontally at a target 30 m away. The
bullet hits the target 1.9 cm below the aiming point.What are (a) the
bullet’s time of flight and (b) its speed as it emerges from the rifle?

98 A particle is in uniform circular motion about the origin of an
xy coordinate system, moving clockwise with a period of 7.00 s. At
one instant, its position vector (measured from the origin) is

. At that instant, what is its velocity in
unit-vector notation?

99 In Fig. 4-54, a lump of wet
putty moves in uniform circular mo-
tion as it rides at a radius of 20.0 cm
on the rim of a wheel rotating coun-
terclockwise with a period of 5.00
ms. The lump then happens to fly off
the rim at the 5 o’clock position (as
if on a clock face). It leaves the rim
at a height of h � 1.20 m from the floor and at a distance d � 2.50
m from a wall.At what height on the wall does the lump hit?

100 An iceboat sails across the surface of a frozen lake with con-
stant acceleration produced by the wind. At a certain instant the
boat’s velocity is (6.30 � 8.42 ) m/s. Three seconds later, because
of a wind shift, the boat is instantaneously at rest. What is its aver-
age acceleration for this 3.00 s interval?

101 In Fig. 4-55, a ball is shot di-
rectly upward from the ground with
an initial speed of v0 � 7.00 m/s.
Simultaneously, a construction eleva-
tor cab begins to move upward from
the ground with a constant speed of
vc � 3.00 m/s. What maximum height
does the ball reach relative to (a) the
ground and (b) the cab floor? At what rate does the speed of the ball
change relative to (c) the ground and (d) the cab floor?

102 A magnetic field forces an electron to move in a circle with
radial acceleration 3.0 � 1014 m/s2. (a) What is the speed of the elec-
tron if the radius of its circular path is 15 cm? (b) What is the period
of the motion?

103 In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and
2.88 km upward from its release point on the ground. Find (a) the
magnitude of its average velocity and (b) the angle its average ve-
locity makes with the horizontal.
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104 A ball is thrown horizontally from a height of 20 m and hits
the ground with a speed that is three times its initial speed. What is
the initial speed?

105 A projectile is launched with an initial speed of 30 m/s at an
angle of 60° above the horizontal. What are the (a) magnitude and
(b) angle of its velocity 2.0 s after launch, and (c) is the angle above
or below the horizontal? What are the (d) magnitude and (e) angle
of its velocity 5.0 s after launch, and (f) is the angle above or below
the horizontal?

106 The position vector for a proton is initially 
and then later is , all

in meters. (a) What is the proton’s displacement vector, and (b) to
what plane is that vector parallel?

107 A particle P travels with con-
stant speed on a circle of radius r �
3.00 m (Fig. 4-56) and completes one
revolution in 20.0 s. The particle
passes through O at time t � 0. State
the following vectors in magnitude-
angle notation (angle relative to the
positive direction of x). With respect
to O, find the particle’s position vec-
tor at the times t of (a) 5.00 s, (b)
7.50 s, and (c) 10.0 s. (d) For the
5.00 s interval from the end of
the fifth second to the end of the
tenth second, find the particle’s displacement. For that interval,
find (e) its average velocity and its velocity at the (f) beginning and
(g) end. Next, find the acceleration at the (h) beginning and (i) end
of that interval.

108 The fast French train known as the TGV (Train à Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train
goes around a curve at that speed and the magnitude of the accel-
eration experienced by the passengers is to be limited to 0.050g,
what is the smallest radius of curvature for the track that can be
tolerated? (b) At what speed must the train go around a curve with
a 1.00 km radius to be at the acceleration limit?

109 (a) If an electron is projected horizontally with a speed of
3.0 � 106 m/s, how far will it fall in traversing 1.0 m of horizontal
distance? (b) Does the answer increase or decrease if the initial
speed is increased?

110 A person walks up a stalled 15-m-long escalator in 90 s.
When standing on the same escalator, now moving, the person is
carried up in 60 s. How much time would it take that person to
walk up the moving escalator? Does the answer depend on the
length of the escalator?

111 (a) What is the magnitude of the centripetal acceleration of
an object on Earth’s equator due to the rotation of Earth? (b)
What would Earth’s rotation period have to be for objects on the
equator to have a centripetal acceleration of magnitude 9.8 m/s2?

112 The range of a projectile depends not only on v0 and
but also on the value g of the free-fall acceleration, which varies
from place to place. In 1936, Jesse Owens established a world’s
running broad jump record of 8.09 m at the Olympic Games at
Berlin (where g 9.8128 m/s2). Assuming the same values of v0

and , by how much would his record have differed if he had com-
peted instead in 1956 at Melbourne (where g 9.7999 m/s2)?�
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113 Figure 4-57 shows the path
taken by a drunk skunk over level
ground, from initial point i to final
point f. The angles are 30.0°,

50.0°, and 80.0°, and the
distances are d1 5.00 m, d2 8.00
m, and d3 12.0 m.What are the (a)
magnitude and (b) angle of the
skunk’s displacement from i to f?

114 The position vector of a
particle moving in the xy plane is

, with
in meters and t in seconds. (a)

Calculate the x and y components
of the particle’s position at t 0, 1.0, 2.0, 3.0, and 4.0 s and
sketch the particle’s path in the xy plane for the interval 0 � t �
4.0 s. (b) Calculate the components of the particle’s velocity at
t 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the
path of the particle and in the direction the particle is moving at
each time by drawing the velocity vectors on the plot of the parti-
cle’s path in part (a). (c) Calculate the components of the parti-
cle’s acceleration at t � 1.0, 2.0, and 3.0 s.

115 An electron having an initial horizontal velocity of magnitude
1.00 � 109 cm/s travels into the region between two horizontal metal
plates that are electrically charged. In that region, the electron trav-
els a horizontal distance of 2.00 cm and has a constant downward ac-
celeration of magnitude 1.00 � 1017 cm/s2 due to the charged plates.
Find (a) the time the electron takes to travel the 2.00 cm, (b) the ver-
tical distance it travels during that time, and the magnitudes of its (c)
horizontal and (d) vertical velocity components as it emerges from
the region.

116 An elevator without a ceiling is ascending with a constant
speed of 10 m/s. A boy on the elevator shoots a ball directly up-
ward, from a height of 2.0 m above the elevator floor, just as the el-
evator floor is 28 m above the ground. The initial speed of the ball
with respect to the elevator is 20 m/s. (a) What maximum height
above the ground does the ball reach? (b) How long does the ball
take to return to the elevator floor?

117 A football player punts the football so that it will have a
“hang time” (time of flight) of 4.5 s and land 46 m away. If the ball
leaves the player’s foot 150 cm above the ground, what must be the
(a) magnitude and (b) angle (relative to the horizontal) of the
ball’s initial velocity?

118 An airport terminal has a moving sidewalk to speed passen-
gers through a long corridor. Larry does not use the moving side-
walk; he takes 150 s to walk through the corridor. Curly, who sim-
ply stands on the moving sidewalk, covers the same distance in 70 s.
Moe boards the sidewalk and walks along it. How long does Moe
take to move through the corridor? Assume that Larry and Moe
walk at the same speed.

119 A wooden boxcar is moving along a straight railroad track
at speed v1. A sniper fires a bullet (initial speed v2) at it from a
high-powered rifle. The bullet passes through both lengthwise
walls of the car, its entrance and exit holes being exactly opposite
each other as viewed from within the car. From what direction, rel-
ative to the track, is the bullet fired? Assume that the bullet is not
deflected upon entering the car, but that its speed decreases by
20%. Take v1 85 km/h and v2 650 m/s. (Why don’t you need to
know the width of the boxcar?)
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120 A sprinter running on a circular track has a velocity of con-
stant magnitude 9.20 m/s and a centripetal acceleration of magni-
tude 3.80 m/s2. What are (a) the track radius and (b) the period of
the circular motion?

121 Suppose that a space probe can withstand the stresses of a
20g acceleration. (a) What is the minimum turning radius of such a
craft moving at a speed of one-tenth the speed of light? (b) How
long would it take to complete a 90° turn at this speed?

122 You are to throw a ball with
a speed of 12.0 m/s at a target that is
height h = 5.00 m above the level at
which you release the ball (Fig. 4-58).
You want the ball’s velocity to be
horizontal at the instant it reaches
the target. (a) At what angle above
the horizontal must you throw the
ball? (b) What is the horizontal dis-
tance from the release point to the
target? (c) What is the speed of the
ball just as it reaches the target?

123 A projectile is fired with an
initial speed v0 = 30.0 m/s from level
ground at a target that is on the
ground, at distance R = 20.0 m, as
shown in Fig. 4-59. What are the (a)
least and (b) greatest launch angles
that will allow the projectile to hit the
target?

124 A graphing surprise.At time t = 0, a burrito is launched from
level ground, with an initial speed of 16.0 m/s and launch angle .
Imagine a position vector continuously directed from the
launching point to the burrito during the flight. Graph the magni-
tude r of the position vector for (a) = 40.0° and (b) = 80.0°. For

= 40.0°, (c) when does r reach its maximum value, (d) what is
that value, and how far (e) horizontally and (f) vertically is the bur-
rito from the launch point? For = 80.0°, (g) when does r reach its
maximum value, (h) what is that value, and how far (i) horizontally
and (j) vertically is the burrito from the launch point?

125 A cannon located at sea level fires a ball with initial speed
82 m/s and initial angle 45°.The ball lands in the water after travel-
ing a horizontal distance 686 m. How much greater would the hori-
zontal distance have been had the cannon been 30 m higher?

126 The magnitude of the velocity of a projectile when it is at its
maximum height above ground level is 10.0 m/s. (a) What is the
magnitude of the velocity of the projectile 1.00 s before it achieves
its maximum height? (b) What is the magnitude of the velocity of
the projectile 1.00 s after it achieves its maximum height? If we
take x = 0 and y = 0 to be at the point of maximum height and posi-
tive x to be in the direction of the velocity there, what are the (c) x
coordinate and (d) y coordinate of the projectile 1.00 s before it
reaches its maximum height and the (e) x coordinate and (f) y co-
ordinate 1.0 s after it reaches its maximum height?

127 A frightened rabbit moving at 6.00 m/s due east runs onto a
large area of level ice of negligible friction. As the rabbit slides
across the ice, the force of the wind causes it to have a constant ac-
celeration of 1.40 m/s2, due north. Choose a coordinate system with
the origin at the rabbit’s initial position on the ice and the positive
x axis directed toward the east. In unit-vector notation, what are
the rabbit’s (a) velocity and (b) position when it has slid for 3.00 s? 
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130 Some state trooper departments use aircraft to enforce
highway speed limits. Suppose that one of the airplanes has a speed
of 135 mi/h in still air. It is flying straight north so that it is at all
times directly above a north–south highway. A ground observer
tells the pilot by radio that a 70.0 mi/h wind is blowing but neglects
to give the wind direction. The pilot observes that in spite of the
wind the plane can travel 135 mi along the highway in 1.00 h. In
other words, the ground speed is the same as if there were no wind.
(a) From what direction is the wind blowing? (b) What is the head-
ing of the plane; that is, in what direction does it point?

131 A golfer tees off from the top of a rise, giving the golf ball an
initial velocity of 43.0 m/s at an angle of 30.0° above the horizontal.
The ball strikes the fairway a horizontal distance of 180 m from the
tee. Assume the fairway is level. (a) How high is the rise above the
fairway? (b) What is the speed of the ball as it strikes the fairway?

132 A track meet is held on a planet in a distant solar system. A
shot-putter releases a shot at a point 2.0 m above ground level. A
stroboscopic plot of the position of the shot is shown in Fig. 4-61,

where the readings are 0.50 s apart and the shot is released at
time t = 0. (a) What is the initial velocity of the shot in unit-vector
notation? (b) What is the magnitude of the free-fall acceleration
on the planet? (c) How long after it is released does the shot
reach the ground? (d) If an identical throw of the shot is made on
the surface of Earth, how long after it is released does it reach the
ground?

133 A helicopter is flying in a straight line over a level field at
a constant speed of 6.20 m/s and at a constant altitude of 9.50 m.
A package is ejected horizontally from the helicopter with an
initial velocity of 12.0 m/s relative to the helicopter and in a di-
rection opposite the helicopter’s motion. (a) Find the initial
speed of the package relative to the ground. (b) What is the hori-
zontal distance between the helicopter and the package at the
instant the package strikes the ground? (c) What angle does the
velocity vector of the package make with the ground at the in-
stant before impact, as seen from the ground?

134 A car travels around a flat circle on the ground, at a constant
speed of 12.0 m/s.At a certain instant the car has an acceleration of
3.00 m/s2 toward the east. What are its distance and direction from
the center of the circle at that instant if it is traveling (a) clockwise
around the circle and (b) counterclockwise around the circle?

135 You throw a ball from a cliff with an initial velocity of
15.0 m/s at an angle of 20.0° below the horizontal. Find (a) its hori-
zontal displacement and (b) its vertical displacement 2.30 s later.

136 A baseball is hit at Fenway Park in Boston at a point
0.762 m above home plate with an initial velocity of 33.53 m/s di-
rected 55.0° above the horizontal. The ball is observed to clear
the 11.28-m-high wall in left field (known as the “green mon-
ster”) 5.00 s after it is hit, at a point just inside the left-field foul-
line pole. Find (a) the horizontal distance down the left-field foul
line from home plate to the wall; (b) the vertical distance by
which the ball clears the wall; (c) the horizontal and vertical dis-
placements of the ball with respect to home plate 0.500 s before
it clears the wall.

137 A transcontinental flight of 4350 km is scheduled to take
50 min longer westward than eastward. The airspeed of the air-
plane is 966 km/h, and the jet stream it will fly through is pre-
sumed to move due east. What is the assumed speed of the jet
stream?

138 A woman can row a boat at 6.40 km/h in still water. (a) If
she is crossing a river where the current is 3.20 km/h, in what di-
rection must her boat be headed if she wants to reach a point di-
rectly opposite her starting point? (b) If the river is 6.40 km
wide, how long will she take to cross the river? (c) Suppose that
instead of crossing the river she rows 3.20 km down the river and
then back to her starting point. How long will she take? (d) How
long will she take to row 3.20 km up the river and then back to
her starting point? (e) In what direction should she head the
boat if she wants to cross in the shortest possible time, and what
is that time?
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128 The pilot of an aircraft flies due east relative to the ground
in a wind blowing 20.0 km/h toward the south. If the speed of the
aircraft in the absence of wind is 70.0 km/h, what is the speed of the
aircraft relative to the ground? 

129 The pitcher in a slow-pitch softball game releases the ball at a
point 3.0 ft above ground level.A stroboscopic plot of the position of
the ball is shown in Fig. 4-60, where the readings are 0.25 s apart and
the ball is released at t = 0. (a) What is the initial speed of the ball?
(b) What is the speed of the ball at the instant it reaches its maxi-
mum height above ground level? (c) What is that maximum height?
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What Is Physics?
We have seen that part of physics is a study of motion, including accelerations,
which are changes in velocities. Physics is also a study of what can cause an object
to accelerate.That cause is a force, which is, loosely speaking, a push or pull on the
object. The force is said to act on the object to change its velocity. For example,
when a dragster accelerates, a force from the track acts on the rear tires to cause
the dragster’s acceleration.When a defensive guard knocks down a quarterback, a
force from the guard acts on the quarterback to cause the quarterback’s backward
acceleration. When a car slams into a telephone pole, a force on the car from the

C H A P T E R  5

Force and Motion—I

5-1 NEWTON’S FIRST AND SECOND LAWS

After reading this module, you should be able to . . .

5.01 Identify that a force is a vector quantity and thus has
both magnitude and direction and also components.

5.02 Given two or more forces acting on the same particle,
add the forces as vectors to get the net force.

5.03 Identify Newton’s first and second laws of motion.
5.04 Identify inertial reference frames.
5.05 Sketch a free-body diagram for an object, showing the

object as a particle and drawing the forces acting on it as
vectors with their tails anchored on the particle.

5.06 Apply the relationship (Newton’s second law) between
the net force on an object, the mass of the object, and the
acceleration produced by the net force.

5.07 Identify that only external forces on an object can cause
the object to accelerate.

● The velocity of an object can change (the object can accel-
erate) when the object is acted on by one or more forces
(pushes or pulls) from other objects. Newtonian mechanics
relates accelerations and forces.

● Forces are vector quantities. Their magnitudes are defined
in terms of the acceleration they would give the standard kilo-
gram. A force that accelerates that standard body by exactly
1 m/s2 is defined to have a magnitude of 1 N. The direction of
a force is the direction of the acceleration it causes. Forces
are combined according to the rules of vector algebra. The
net force on a body is the vector sum of all the forces acting
on the body.

● If there is no net force on a body, the body remains at rest if
it is initially at rest or moves in a straight line at constant
speed if it is in motion.

● Reference frames in which Newtonian mechanics holds are
called inertial reference frames or inertial frames. Reference
frames in which Newtonian mechanics does not hold are
called noninertial reference frames or noninertial frames.

● The mass of a body is the characteristic of that body that 
relates the body’s acceleration to the net force causing the
acceleration. Masses are scalar quantities.

● The net force on a body with mass m is related to the
body’s acceleration by

which may be written in the component versions

.

The second law indicates that in SI units

1 N � 1 kg�m/s2.

● A free-body diagram is a stripped-down diagram in which
only one body is considered. That body is represented by 
either a sketch or a dot. The external forces on the body are
drawn, and a coordinate system is superimposed, oriented
so as to simplify the solution.

Fnet,x � max Fnet,y � may and Fnet,z � maz

Fnet
:

� ma:,

a:
Fnet
:

Key Ideas

Learning Objectives
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pole causes the car to stop. Science, engineering, legal, and medical journals are
filled with articles about forces on objects, including people.

A Heads Up. Many students find this chapter to be more challenging than the
preceding ones. One reason is that we need to use vectors in setting up equations—
we cannot just sum some scalars. So, we need the vector rules from Chapter 3.
Another reason is that we shall see a lot of different arrangements: objects will
move along floors, ceilings, walls, and ramps. They will move upward on ropes
looped around pulleys or by sitting in ascending or descending elevators.
Sometimes, objects will even be tied together.

However, in spite of the variety of arrangements, we need only a single key
idea (Newton’s second law) to solve most of the homework problems. The pur-
pose of this chapter is for us to explore how we can apply that single key idea to
any given arrangement. The application will take experience—we need to solve
lots of problems, not just read words. So, let’s go through some of the words and
then get to the sample problems.

Newtonian Mechanics
The relation between a force and the acceleration it causes was first understood
by Isaac Newton (1642–1727) and is the subject of this chapter. The study of that
relation, as Newton presented it, is called Newtonian mechanics. We shall focus
on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the in-
teracting bodies are very large—an appreciable fraction of the speed of light—we
must replace Newtonian mechanics with Einstein’s special theory of relativity,
which holds at any speed, including those near the speed of light. If the interacting
bodies are on the scale of atomic structure (for example, they might be electrons
in an atom), we must replace Newtonian mechanics with quantum mechanics.
Physicists now view Newtonian mechanics as a special case of these two more
comprehensive theories. Still, it is a very important special case because it applies
to the motion of objects ranging in size from the very small (almost on the scale of
atomic structure) to astronomical (galaxies and clusters of galaxies).

Newton’s First Law
Before Newton formulated his mechanics, it was thought that some influence,
a “force,” was needed to keep a body moving at constant velocity. Similarly, a
body was thought to be in its “natural state” when it was at rest. For a body to
move with constant velocity, it seemingly had to be propelled in some way, by
a push or a pull. Otherwise, it would “naturally” stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden
floor, it does indeed slow and then stop. If you want to make it move across the
floor with constant velocity, you have to continuously pull or push it.

Send a puck sliding over the ice of a skating rink, however, and it goes a lot
farther. You can imagine longer and more slippery surfaces, over which the puck
would slide farther and farther. In the limit you can think of a long, extremely
slippery surface (said to be a frictionless surface), over which the puck would
hardly slow. (We can in fact come close to this situation by sending a puck sliding
over a horizontal air table, across which it moves on a film of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot
change; that is, the body cannot accelerate.



An inertial reference frame is one in which Newton’s laws hold.
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In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

Force
Before we begin working problems with forces, we need to discuss several fea-
tures of forces, such as the force unit, the vector nature of forces, the combining of
forces, and the circumstances in which we can measure forces (without being
fooled by a fictitious force).

Unit. We can define the unit of force in terms of the acceleration a force
would give to the standard kilogram (Fig. 1-3), which has a mass defined to be ex-
actly 1 kg. Suppose we put that body on a horizontal, frictionless surface and pull
horizontally (Fig. 5-1) such that the body has an acceleration of 1 m/s2. Then we
can define our applied force as having a magnitude of 1 newton (abbreviated N).
If we then pulled with a force magnitude of 2 N, we would find that the accelera-
tion is 2 m/s2. Thus, the acceleration is proportional to the force. If the standard
body of 1 kg has an acceleration of magnitude a (in meters per second per sec-
ond), then the force (in newtons) producing the acceleration has a magnitude
equal to a.We now have a workable definition of the force unit.

Vectors. Force is a vector quantity and thus has not only magnitude but also
direction. So, if two or more forces act on a body, we find the net force (or result-
ant force) by adding them as vectors, following the rules of Chapter 3. A single
force that has the same magnitude and direction as the calculated net force
would then have the same effect as all the individual forces. This fact, called the
principle of superposition for forces, makes everyday forces reasonable and pre-
dictable. The world would indeed be strange and unpredictable if, say, you and a
friend each pulled on the standard body with a force of 1 N and somehow the net
pull was 14 N and the resulting acceleration was 14 m/s2.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,

a force or a net force can have components along coordinate axes.When forces act
only along a single axis, they are single-component forces. Then we can drop the
overhead arrows on the force symbols and just use signs to indicate the directions
of the forces along that axis.

The First Law. Instead of our previous wording, the more proper statement
of Newton’s First Law is in terms of a net force:

F
:

netF
:
,

Figure 5-1 A force on the standard
kilogram gives that body an acceleration a:.

F
:

a

F

Newton’s First Law: If no net force acts on a body , the body’s velocity
cannot change; that is, the body cannot accelerate.

(F
:

net � 0)

There may be multiple forces acting on a body, but if their net force is zero, the
body cannot accelerate. So, if we happen to know that a body’s velocity is con-
stant, we can immediately say that the net force on it is zero.

Inertial Reference Frames
Newton’s first law is not true in all reference frames, but we can always find
reference frames in which it (as well as the rest of Newtonian mechanics) is true.
Such special frames are referred to as inertial reference frames, or simply inertial
frames.

For example, we can assume that the ground is an inertial frame provided we can
neglect Earth’s astronomical motions (such as its rotation).
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That assumption works well if, say, a puck is sent sliding along a short strip
of frictionless ice — we would find that the puck’s motion obeys Newton’s laws.
However, suppose the puck is sent sliding along a long ice strip extending from
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space,
the puck moves south along a simple straight line because Earth’s rotation
around the north pole merely slides the ice beneath the puck. However, if we
view the puck from a point on the ground so that we rotate with Earth, the
puck’s path is not a simple straight line. Because the eastward speed of the
ground beneath the puck is greater the farther south the puck slides, from our
ground-based view the puck appears to be deflected westward (Fig. 5-2b).
However, this apparent deflection is caused not by a force as required by
Newton’s laws but by the fact that we see the puck from a rotating frame. In this
situation, the ground is a noninertial frame, and trying to explain the deflection
in terms of a force would lead us to a fictitious force. A more common example
of inventing such a nonexistent force can occur in a car that is rapidly increas-
ing in speed. You might claim that a force to the rear shoves you hard into the
seat back.

In this book we usually assume that the ground is an inertial frame and that
measured forces and accelerations are from this frame. If measurements are made
in, say, a vehicle that is accelerating relative to the ground, then the measurements
are being made in a noninertial frame and the results can be surprising.

Figure 5-2 (a) The path of a puck sliding
from the north pole as seen from a station-
ary point in space. Earth rotates to the east.
(b) The path of the puck as seen from the
ground.

N

S

EW

(a)

(b)

Earth's rotation
causes an
apparent deflection.

Checkpoint 1
Which of the figure’s six arrangements correctly show the vector addition of forces 
and to yield the third vector, which is meant to represent their net force ?F

:

netF
:

2

F
:

1

(a) (c)(b)

F1 F1 F1

F1 F1 F1

F2F2F2

F2

F2 F2
(d) ( f )(e)

Mass
From everyday experience you already know that applying a given force to bod-
ies (say, a baseball and a bowling ball) results in different accelerations. The com-
mon explanation is correct: The object with the larger mass is accelerated less.
But we can be more precise. The acceleration is actually inversely related to the
mass (rather than, say, the square of the mass).

Let’s justify that inverse relationship. Suppose, as previously, we push on the
standard body (defined to have a mass of exactly 1 kg) with a force of magnitude
1 N. The body accelerates with a magnitude of 1 m/s2. Next we push on body X
with the same force and find that it accelerates at 0.25 m/s2. Let’s make the (cor-
rect) assumption that with the same force,

mX

m0
�

a0

aX
,
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and thus

Defining the mass of X in this way is useful only if the procedure is consis-
tent. Suppose we apply an 8.0 N force first to the standard body (getting an accel-
eration of 8.0 m/s2) and then to body X (getting an acceleration of 2.0 m/s2). We
would then calculate the mass of X as

which means that our procedure is consistent and thus usable.
The results also suggest that mass is an intrinsic characteristic of a body—it

automatically comes with the existence of the body. Also, it is a scalar quantity.
However, the nagging question remains:What, exactly, is mass?

Since the word mass is used in everyday English, we should have some intu-
itive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteristics
are sometimes confused with mass. We can say only that the mass of a body is
the characteristic that relates a force on the body to the resulting acceleration. Mass
has no more familiar definition; you can have a physical sensation of mass only
when you try to accelerate a body, as in the kicking of a baseball or a bowling ball.

Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

mX � m0
a0

aX
� (1.0 kg)

8.0 m/s2

2.0 m/s2 � 4.0 kg,

mX � m0
a0

aX
� (1.0 kg) 

1.0 m/s2

0.25 m/s2 � 4.0 kg.

Newton’s Second Law: The net force on a body is equal to the product of the
body’s mass and its acceleration.

In equation form,

(Newton’s second law). (5-1)

Identify the Body. This simple equation is the key idea for nearly all the
homework problems in this chapter, but we must use it cautiously. First, we must
be certain about which body we are applying it to. Then must be the vector
sum of all the forces that act on that body. Only forces that act on that body are to
be included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body
to which you are applying Newton’s law.

Separate Axes. Like other vector equations, Eq. 5-1 is equivalent to three
component equations, one for each axis of an xyz coordinate system:

Fnet, x � max, Fnet, y � may, and Fnet, z � maz. (5-2)

Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component ax

of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component ax is caused only by the sum of the

F
:

net

F
:

net � ma:
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force components along the x axis and is completely unrelated to force compo-
nents along another axis. In general,

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Table 5-1 Units in Newton’s Second Law (Eqs. 5-1 and 5-2)

System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

CGSa dyne gram (g) cm/s2

Britishb pound (lb) slug ft/s2

a1 dyne � 1 g �cm/s2.
b1 lb � 1 slug �ft/s2.

Checkpoint 2
The figure here shows two horizontal forces acting
on a block on a frictionless floor. If a third horizon-
tal force also acts on the block, what are the magnitude and direction of when
the block is (a) stationary and (b) moving to the left with a constant speed of 5 m/s?

F
:

3F
:

3

3 N 5 N 

Forces in Equilibrium. Equation 5-1 tells us that if the net force on a body is
zero, the body’s acceleration . If the body is at rest, it stays at rest; if it is
moving, it continues to move at constant velocity. In such cases, any forces on the
body balance one another, and both the forces and the body are said to be in
equilibrium. Commonly, the forces are also said to cancel one another, but the
term “cancel” is tricky. It does not mean that the forces cease to exist (canceling
forces is not like canceling dinner reservations). The forces still act on the body
but cannot change the velocity.

Units. For SI units, Eq. 5-1 tells us that

1 N � (1 kg)(1 m/s2) � 1 kg �m/s2. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.
Diagrams. To solve problems with Newton’s second law, we often draw a

free-body diagram in which the only body shown is the one for which we are sum-
ming forces. A sketch of the body itself is preferred by some teachers but, to save
space in these chapters, we shall usually represent the body with a dot. Also, each
force on the body is drawn as a vector arrow with its tail anchored on the body.A
coordinate system is usually included, and the acceleration of the body is some-
times shown with a vector arrow (labeled as an acceleration). This whole proce-
dure is designed to focus our attention on the body of interest.

a: � 0

External Forces Only. A system consists of one or more bodies, and any
force on the bodies inside the system from bodies outside the system is called an
external force. If the bodies making up a system are rigidly connected to one an-
other, we can treat the system as one composite body, and the net force on it
is the vector sum of all external forces. (We do not include internal forces—that
is, forces between two bodies inside the system. Internal forces cannot accelerate
the system.) For example, a connected railroad engine and car form a system. If,
say, a tow line pulls on the front of the engine, the force due to the tow line acts on
the whole engine–car system. Just as for a single body, we can relate the net ex-
ternal force on a system to its acceleration with Newton’s second law, ,
where m is the total mass of the system.

F
:

net � ma:

F
:

net
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Sample Problem 5.01 One- and two-dimensional forces, puck

Here are examples of how to use Newton’s second law for a
puck when one or two forces act on it. Parts A, B, and C of
Fig. 5-3 show three situations in which one or two forces act
on a puck that moves over frictionless ice along an x axis, in
one-dimensional motion. The puck’s mass is m � 0.20 kg.
Forces and are directed along the axis and have
magnitudes F1 4.0 N and F2 2.0 N. Force is directedF

:

3��
F
:

2F
:

1

Figure 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.

F1
x

(a)

Puck
x

A

(b)

F1

F1F2
x

(c)

x

B

(d)

F1F2

F2
x

x

(e)

C

( f )

θ

θ

F3

F2

F3

The horizontal force
causes a horizontal
acceleration.

This is a free-body
diagram.

These forces compete.
Their net force causes
a horizontal acceleration.

This is a free-body
diagram.

Only the horizontal
component of F3
competes with F2.

This is a free-body
diagram.

at angle u � 30� and has magnitude F3 � 1.0 N. In each situ-
ation, what is the acceleration of the puck?

KEY IDEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the x
axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x � max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 � max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 � F2 � max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3,x

is. (Force is two-dimensional but the motion is only one-F
:

3

F
:

3

ax �
F1 � F2

m
�

4.0 N � 2.0 N
0.20 kg

� 10 m/s2.

F
:

2F
:

1

ax �
F1

m
�

4.0 N
0.20 kg

� 20 m/s2.

F
:

net � ma:
F
:

net

a:

dimensional.) Thus, we write Eq. 5-4 as

F3,x � F2 � max. (5-5)

From the figure, we see that F3,x � F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)

Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

�
(1.0 N)(cos 30�) � 2.0 N

0.20 kg
� �5.7 m/s2.

ax �
F3,x � F2

m
�

F3 cos � � F2

m

Additional examples, video, and practice available at WileyPLUS
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x components: Along the x axis we have

F3,x � max � F1,x � F2,x

� m(a cos 50�) � F1 cos(�150�) � F2 cos 90�.

Then, substituting known data, we find

F3,x � (2.0 kg)(3.0 m/s2) cos 50� � (10 N) cos(�150�)

� (20 N) cos 90�

� 12.5 N.

y components: Similarly, along the y axis we find

F3,y � may � F1,y � F2,y

� m(a sin 50�) � F1 sin(�150�) � F2 sin 90�

� (2.0 kg)(3.0 m/s2) sin 50� � (10 N) sin(�150�)

� (20 N) sin 90�

� �10.4 N.

Vector: In unit-vector notation, we can write

� F3,x � F3,y � (12.5 N) � (10.4 N)

� (13 N) � (10 N) . (Answer)

We can now use a vector-capable calculator to get the mag-
nitude and the angle of .We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

and (Answer)� � tan�1
F3,y

F3, x
� �40�.

F3 � 2F 3,x
2 � F 2

3,y � 16 N

F
:

3

ĵî

ĵîĵîF
:

3

Sample Problem 5.02 Two-dimensional forces, cookie tin

Here we find a missing force by using the acceleration. In
the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is acceler-
ated at 3.0 m/s2 in the direction shown by , over a friction-
less horizontal surface. The acceleration is caused by three
horizontal forces, only two of which are shown: of magni-
tude 10 N and of magnitude 20 N. What is the third force

in unit-vector notation and in magnitude-angle notation?

KEY IDEA

The net force on the tin is the sum of the three forces
and is related to the acceleration via Newton’s second law

.Thus,

, (5-6)

which gives us

(5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find merely by substituting the magnitudes for
the vector quantities on the right side of Eq. 5-7. Instead, we
must vectorially add , (the reverse of ), and 
(the reverse of ), as shown in Fig. 5-4b. This addition can
be done directly on a vector-capable calculator because we
know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis. Caution: Use only one axis at a time.

F
:

2

�F
:

2F
:

1�F
:

1ma:

F
:

3

F 3
:

� ma: � F
:

1 � F 2
:

.

F
:

1 � F 2
:

� F 3
:

� ma:

(F
:

net � ma: )
a:

F
:

net

F
:

3

F
:

2

F
:

1

a:

Additional examples, video, and practice available at WileyPLUS

Figure 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie
tin, resulting in acceleration . is not shown. (b) An arrangement of vectors , ,
and to find force .F

:

3�F
:

2

�F
:

1ma:F
:

3a:

y

(a)

30°
x

y

(b)

x

F2

F3

F2

F1

a

a
50°

m
–

F1–

These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to find the missing
third force vector.



Some Particular Forces
The Gravitational Force
A gravitational force on a body is a certain type of pull that is directed toward
a second body. In these early chapters, we do not discuss the nature of this force
and usually consider situations in which the second body is Earth. Thus, when we
speak of the gravitational force on a body, we usually mean a force that pulls
on it directly toward the center of Earth—that is, directly down toward the
ground.We shall assume that the ground is an inertial frame.

Free Fall. Suppose a body of mass m is in free fall with the free-fall accelera-
tion of magnitude g.Then, if we neglect the effects of the air, the only force acting
on the body is the gravitational force . We can relate this downward force andF

:

g

F
:

g

F
:

g
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5-2 SOME PARTICULAR FORCES

After reading this module, you should be able to . . .

5.08 Determine the magnitude and direction of the gravita-
tional force acting on a body with a given mass, at a location
with a given free-fall acceleration.

5.09 Identify that the weight of a body is the magnitude of the
net force required to prevent the body from falling freely, as
measured from the reference frame of the ground. 

5.10 Identify that a scale gives an object’s weight when the
measurement is done in an inertial frame but not in an ac-
celerating frame, where it gives an apparent weight.

5.11 Determine the magnitude and direction of the normal
force on an object when the object is pressed or pulled
onto a surface.

5.12 Identify that the force parallel to the surface is a frictional
force that appears when the object slides or attempts to
slide along the surface.

5.13 Identify that a tension force is said to pull at both ends of
a cord (or a cord-like object) when the cord is taut.

Learning Objectives

Key Ideas
● A gravitational force on a body is a pull by another body.
In most situations in this book, the other body is Earth or
some other astronomical body. For Earth, the force is directed
down toward the ground, which is assumed to be an inertial
frame. With that assumption, the magnitude of is

where m is the body’s mass and g is the magnitude of the
free-fall acceleration.

● The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W � mg.

Fg � mg,

Fg
:

Fg
:

● A normal force is the force on a body from a surface
against which the body presses. The normal force is always
perpendicular to the surface.

● A frictional force is the force on a body when the body
slides or attempts to slide along a surface. The force is always
parallel to the surface and directed so as to oppose the slid-
ing. On a frictionless surface, the frictional force is negligible.

● When a cord is under tension, each end of the cord pulls
on a body. The pull is directed along the cord, away from the
point of attachment to the body. For a massless cord (a cord
with negligible mass), the pulls at both ends of the cord have
the same magnitude T, even if the cord runs around a mass-
less, frictionless pulley (a pulley with negligible mass and
negligible friction on its axle to oppose its rotation).

f
:

FN
:

downward acceleration with Newton’s second law . We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,
Newton’s second law can be written in the form Fnet,y � may, which, in our
situation, becomes

�Fg � m(�g)

or Fg � mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.

(F
:

� ma ):



At Rest. This same gravitational force, with the same magnitude, still acts on
the body even when the body is not in free fall but is, say, at rest on a pool table or
moving across the table. (For the gravitational force to disappear, Earth would
have to disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

� �Fg ĵ � �mg ĵ � (5-9)

where ĵ is the unit vector that points upward along a y axis, directly away from
the ground, and is the free-fall acceleration (written as a vector), directed
downward.

Weight
The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest.The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
of zero relative to the ground, which we again assume to be an inertial frame.

Two forces act on the body: a downward gravitational force and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fnet,y � may.

In our situation, this becomes

W � Fg � m(0) (5-10)

or W � Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

F
:

g

a:

g:

mg:,F
:

g
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The weight W of a body is equal to the magnitude Fg of the gravitational force
on the body.

Substituting mg for Fg from Eq. 5-8, we find

W � mg (weight), (5-12)

which relates a body’s weight to its mass.
Weighing. To weigh a body means to measure its weight. One way to do this

is to place the body on one of the pans of an equal-arm balance (Fig. 5-5) and
then place reference bodies (whose masses are known) on the other pan until we
strike a balance (so that the gravitational forces on the two sides match). The
masses on the pans then match, and we know the mass of the body. If we know
the value of g for the location of the balance, we can also find the weight of the
body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in

Figure 5-5 An equal-arm balance. When the
device is in balance, the gravitational force

on the body being weighed (on the leftF
:

gL

FgL = mLg FgR = mRg

mRmL

Figure 5-6 A spring scale. The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

Fg = mg

Scale marked 
in either 
weight or 
mass units 

pan) and the total gravitational force 
on the reference bodies (on the right pan)
are equal. Thus, the mass mL of the body
being weighed is equal to the total mass
mR of the reference bodies.

F
:

gR



Figure 5-7 (a) A block resting on a table experiences a normal force perpendicular to
the tabletop. (b) The free-body diagram for the block.

F
:

N

Block

Normal force FN

(a) (b)

y

x

Block

Fg
Fg

FN

The normal force
is the force on
the block from the
supporting table.

The gravitational
force on the block
is due to Earth's
downward pull.

The forces
balance.
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either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.

F
:

N

When a body presses against a surface, the surface (even a seemingly rigid one)
deforms and pushes on the body with a normal force that is perpendicular to
the surface.

F
:

N

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force on the block. TheF

:

g
table pushes up on the block with normal force .The free-body diagram for the
block is given in Fig. 5-7b. Forces and are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (Fnet, y � may) as

FN � Fg � may.

F
:

NF
:

g

F
:

N
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From Eq. 5-8, we substitute mg for Fg, finding

Checkpoint 3
In Fig. 5-7, is the magnitude of the normal force greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

F
:

N

Friction
If we either slide or attempt to slide a body over a surface, the motion is resisted
by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface, or even the body, is said
to be frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force directed away from the
body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T � 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude T,

T
:

f
:

,

Figure 5-8 A frictional force opposes the
attempted slide of a body over a surface.

f
:

f

Direction of 
attempted

slide

T

(a) (b) (c)

T T

T

T

TThe forces at the two ends of
the cord are equal in magnitude.

Figure 5-9 (a) The cord, pulled taut, is under tension. If its mass is negligible, the cord
pulls on the body and the hand with force , even if the cord runs around a massless,
frictionless pulley as in (b) and (c).

T
:

FN � mg � may.

Then the magnitude of the normal force is

FN � mg � may � m(g � ay) (5-13)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). (Caution: We have already included the sign for g but ay can be
positive or negative here.) If the table and block are not accelerating relative to
the ground, then ay � 0 and Eq. 5-13 yields

FN � mg. (5-14)



Newton’s Third Law
Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force on the book from the crate (or due
to the crate) and a horizontal force on the crate from the book (or due to the
book).This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

F
:

CB

F
:

BC

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation

FBC � FCB (equal magnitudes)

or as the vector relation

(equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When

F
:

BC � �F
:

CB

Figure 5-10 (a) Book B leans against crate
C. (b) Forces (the force on the book
from the crate) and (the force on the
crate from the book) have the same mag-
nitude and are opposite in direction.

F
:

CB

F
:

BC

Crate CBook B

(a)

(b)

C

FCBFBC

B

The force on B
due to C has the same
magnitude as the 
force on C due to B.
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even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.

Checkpoint 4
The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than
75 N when the body is moving upward (a) at constant speed, (b) at increasing speed,
and (c) at decreasing speed?

5-3 APPLYING NEWTON’S LAWS 

After reading this module, you should be able to . . .

5.14 Identify Newton’s third law of motion and third-law force pairs.
5.15 For an object that moves vertically or on a horizontal or inclined

plane, apply Newton’s second law to a free-body diagram of the
object.

5.16 For an arrangement where a system of several objects
moves rigidly together, draw a free-body diagram and
apply Newton’s second law for the individual objects
and also for the system taken as a composite object.

● The net force on a body with mass m is related to the body’s
acceleration by

,

which may be written in the component versions

.Fnet,x � max Fnet,y � may and Fnet,z � maz

Fnet
:

� ma:
a:

Fnet
:

● If a force acts on body B due to body C, then there is
a force on body C due to body B:

The forces are equal in magnitude but opposite in directions.

FBC

:
� �FCB

: .

FCB
:

FBC
:

Learning Objectives

Key Ideas
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Earth E

Table T

Cantaloupe C

(a)

(b)

( c)

F CE  (gravitational force)

F CT

(d)

F TC

Earth

Cantaloupe

F CT  (normal force from table)

FCE

FEC

These forces
just happen
to be balanced.

These are
third-law force
pairs.

So are these.

Figure 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are and . (c) The third-law force pair for the cantaloupe–Earth
interaction. (d) The third-law force pair for the cantaloupe–table interaction.

F
:

CEF
:

CT

5-3 APPLYING NEWTON’S LAWS

any two bodies interact in any situation, a third-law force pair is present. The
book and crate in Fig. 5-10a are stationary, but the third law would still hold if
they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the can-
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe
interacts with the table and with Earth (this time, there are three bodies whose
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force
is the normal force on the cantaloupe from the table, and force is the

gravitational force on the cantaloupe due to Earth. Are they a third-law force
pair? No, because they are forces on a single body, the cantaloupe, and not on
two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the
interaction between the cantaloupe and one other body. In the cantaloupe–Earth
interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational force

and the cantaloupe pulls on Earth with a gravitational force . Are these
forces a third-law force pair? Yes, because they are forces on two interacting bod-
ies, the force on each due to the other.Thus, by Newton’s third law,

(cantaloupe–Earth interaction).

Next, in the cantaloupe–table interaction, the force on the cantaloupe from
the table is and, conversely, the force on the table from the cantaloupe is 
(Fig. 5-11d).These forces are also a third-law force pair, and so

(cantaloupe–table interaction).F
:

CT � �F
:

TC

F
:

TCF
:

CT

F
:

CE � �F
:

EC

F
:

ECF
:

CE

F
:

CEF
:

CT

Checkpoint 5
Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to
accelerate upward. (a) Do the magnitudes of and increase, decrease, or stay
the same? (b) Are those two forces still equal in magnitude and opposite in direction?
(c) Do the magnitudes of and increase,decrease,or stay the same? (d) Are those
two forces still equal in magnitude and opposite in direction?

F
:

ECF
:

CE

F
:

CTF
:

TC
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Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.

Sample Problem 5.03 Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M � 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m � 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a

F
:

N

F
:

gH,

F
:

gS,

certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting key idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second key
idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways. When we dis-
cuss rotation, we shall deal with pulleys in detail.
Meanwhile, we eliminate the pulley from consideration by
assuming its mass to be negligible compared with the
masses of the two blocks. Its only function is to change the
cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s
free-body diagram. Next, draw a set of axes. It makes sense

F
:

net � ma:

ma:
F
:

net �

Figure 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Sliding
block S

Hanging
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H 

Block S 

m

M

FN

Figure 5-13 The forces acting on the two blocks of Fig. 5-12.
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to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven’t told me how to apply
to the sliding block.All you’ve done is explain

how to draw a free-body diagram.
You are right, and here’s the third key idea: The

expression is a vector equation, so we can write
it as three component equations:

Fnet,x � Max Fnet,y � May Fnet,z � Maz (5-16)

in which Fnet,x, Fnet,y, and Fnet,z are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, Fnet, y � May becomes

FN � FgS � 0 or FN � FgS. (5-17)

Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,
which is T.Thus, Fnet, x � Max becomes

T � Ma. (5-18)

This equation contains two unknowns, T and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.

Q I agree. How do I apply to the hanging block?
We apply it just as we did for block S: Draw a free-body

diagram for block H, as in Fig. 5-14b.Then apply in
component form. This time, because the acceleration is along
the y axis, we use the y part of Eq. 5-16 (Fnet, y � may) to write

T � FgH � may. (5-19)

We can now substitute mg for FgH and �a for ay (negative

F
:

net � ma:

F
:

net � ma:

F
:

net � Ma:

F
:

net � ma:

because block H accelerates in the negative direction of the
y axis).We find

T � mg � �ma. (5-20)

Now note that Eqs. 5-18 and 5-20 are simultaneous equa-
tions with the same two unknowns, T and a. Subtracting
these equations eliminates T.Then solving for a yields

(5-21)

Substituting this result into Eq. 5-18 yields

(5-22)

Putting in the numbers gives, for these two quantities,

(Answer)

and

� 13 N. (Answer)

Q The problem is now solved, right?
That’s a fair question, but the problem is not really fin-

ished until we have examined the results to see whether
they make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g
(because of the cord, the hanging block is not in free fall).

Look now at Eq. 5-22, which we can rewrite in the form

(5-23)

In this form, it is easier to see that this equation is also
dimensionally correct, because both T and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the ten-
sion in the cord is always less than mg, and thus is always
less than the gravitational force on the hanging block.That is
a comforting thought because, if T were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g � 0, as if the experiment were carried out
in interstellar space. We know that in that case, the blocks
would not move from rest, there would be no forces on the
ends of the cord, and so there would be no tension in the
cord. Do the formulas predict this? Yes, they do. If you put
g � 0 in Eqs. 5-21 and 5-22, you find a � 0 and T � 0. Two
more special cases you might try are M � 0 and .m : �

T �
M

M � m
mg.

T �
Mm

M � m
g �

(3.3 kg)(2.1 kg)
3.3 kg � 2.1 kg

 (9.8 m/s2)

� 3.8 m/s2

a �
m

M � m
g �

2.1 kg
3.3 kg � 2.1 kg

 (9.8 m/s2)

T �
Mm

M � m
g.

a �
m

M � m
g.

Figure 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.

M

Sliding
block S

x

y

m

Hanging
block H

x

y

FgH

T

FgS

T

a

a

(a) (b)

FN

Additional examples, video, and practice available at WileyPLUS
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Sample Problem 5.04 Cord accelerates box up a ramp

Many students consider problems involving ramps (inclined
planes) to be especially hard. The difficulty is probably visual
because we work with (a) a tilted coordinate system and (b) the
components of the gravitational force, not the full force. Here is
a typical example with all the tilting and angles explained. (In
WileyPLUS, the figure is available as an animation with
voiceover.) In spite of the tilt, the key idea is to apply Newton’s
second law to the axis along which the motion occurs.

In Fig. 5-15a, a cord pulls a box of sea biscuits up along a
frictionless plane inclined at angle u � 30.0�. The box has
mass m � 5.00 kg, and the force from the cord has magni-
tude T � 25.0 N. What is the box’s acceleration a along the
inclined plane?

KEY IDEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendi-

cular to the plane), as expressed by Newton’s second law
(Eq. 5-1).

Calculations: We need to write Newton’s second law for
motion along an axis. Because the box moves along the in-
clined plane, placing an x axis along the plane seems reason-
able (Fig. 5-15b). (There is nothing wrong with using our
usual coordinate system, but the expressions for compo-
nents would be a lot messier because of the misalignment of
the x axis with the motion.)

After choosing a coordinate system, we draw a free-
body diagram with a dot representing the box (Fig. 5-15b).
Then we draw all the vectors for the forces acting on the box,
with the tails of the vectors anchored on the dot. (Drawing
the vectors willy-nilly on the diagram can easily lead to errors,
especially on exams, so always anchor the tails.)

Force from the cord is up the plane and has magni-T
:

θ

y

xFN

Fg

T

(b)

Cord

θ

(a)

The box accelerates.

Normal force

Cord's pull

Gravitational
force

x

T

mg sinθ

(g) (h)

θ mg cos
mg

θ

mg sinθ

y

xFN

(i)

mg cos θ

The net of these
forces determines
the acceleration.

These forces
merely balance.

(e)

Fg

(d)(c)

90° −

θ

θ 90° − θ

θ θ

( f )

θ

This is a right
triangle.

Parallel
component of
Fg

This is also.

Hypotenuse

Adjacent leg
(use cos   )θ

Opposite leg
(use sin   )θ

Perpendicular
component of
Fg

Figure 5-15 (a) A box is pulled up a plane by a
cord. (b) The three forces acting on the
box: the cord’s force the gravitational force

and the normal force (c)–(i) Finding
the force components along the plane and
perpendicular to it. In WileyPLUS, this figure
is available as an animation with voiceover.

FN
:

.Fg
:

,
T
:
,

A

tude T � 25.0 N. The gravitational force is downward (ofFg
:
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course) and has magnitude mg � (5.00 kg)(9.80 m/s2) � 49.0 N. plane and thus cannot affect the motion along the plane. (It
has no component along the plane to accelerate the box.)

We are now ready to write Newton’s second law for mo-
tion along the tilted x axis:

The component ax is the only component of the acceleration
(the box is not leaping up from the plane, which would be
strange, or descending into the plane, which would be even
stranger). So, let’s simply write a for the acceleration along the
plane. Because is in the positive x direction and the compo-
nent mg sin u is in the negative x direction, we next write

T � mg sin u � ma. (5-24)

Substituting data and solving for a, we find

a � 0.100 m/s2. (Answer)

The result is positive, indicating that the box accelerates up the
inclined plane, in the positive direction of the tilted x axis. If

T
:

Fnet,x � max.

That direction means that only a component of the force is
along the plane, and only that component (not the full force)
affects the box’s acceleration along the plane.Thus, before we
can write Newton’s second law for motion along the x axis, we
need to find an expression for that important component.

Figures 5-15c to h indicate the steps that lead to the ex-
pression. We start with the given angle of the plane and
work our way to a triangle of the force components (they
are the legs of the triangle and the full force is the hy-
potenuse). Figure 5-15c shows that the angle between the
ramp and is 90� � u. (Do you see a right triangle there?)Fg

:

Next, Figs. 5-15d to f show and its components: One com-
ponent is parallel to the plane (that is the one we want) and
the other is perpendicular to the plane.

Because the perpendicular component is perpendicular,
the angle between it and must be u (Fig. 5-15d). The com-
ponent we want is the far leg of the component right trian-
gle. The magnitude of the hypotenuse is mg (the magnitude
of the gravitational force).Thus, the component we want has
magnitude mg sin u (Fig. 5-15g).

We have one more force to consider, the normal force
shown in Fig. 5-15b. However, it is perpendicular to theFN

:

Fg
:

Fg
:

Sample Problem 5.05 Reading a force graph

Here is an example of where you must dig information out
of a graph, not just read off a number. In Fig. 5-16a, two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle to the posi-
tive direction of the x axis. Force is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration ax of the block for any given value of u from 0�
to 90�.What is the value of ax for u � 180�?

KEY IDEAS

(1) The horizontal acceleration ax depends on the net hori-
zontal force Fnet, x, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces and .

Calculations: The x component of is F2 because the vector
is horizontal. The x component of is F1 cos . Using these
expressions and a mass m of 4.00 kg, we can write Newton’s
second law ( m ) for motion along the x axis as

F1 cos u � F2 � 4.00ax. (5-25)

From this equation we see that when angle u � 90�, F1 cos u
is zero and F2 � 4.00ax. From the graph we see that the

a:F
:

net �

�F
:

1

F
:

2

F
:

2F
:

1

F
:

2

�
F
:

1

Figure 5-16 (a) One of the two forces applied to a block is shown.
Its angle u can be varied. (b) The block’s acceleration component
ax versus u.

When F1 is horizontal,
the acceleration is
3.0 m/s2.

F1

x
θ 

(a)

(b)

3

2

1

0
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a x
 (

m
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When F1 is vertical,
the acceleration is
0.50 m/s2.

corresponding acceleration is 0.50 m/s2. Thus, F2 � 2.00 N
and must be in the positive direction of the x axis.F

:

2

we decreased the magnitude of enough to make a � 0, the
box would move up the plane at constant speed.And if we de-
crease the magnitude of even more, the acceleration would
be negative in spite of the cord’s pull.

T
:

T
:

Additional examples, video, and practice available at WileyPLUS

From Eq. 5-25, we find that when u � 0�,

F1 cos 0� � 2.00 � 4.00ax. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s2. From Eq. 5-26, we then find that F1 � 10 N.

Substituting F1 � 10 N, F2 � 2.00 N, and u � 180� into
Eq. 5-25 leads to

ax � �2.00 m/s2. (Answer)
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Sample Problem 5.06 Forces within an elevator cab

Although people would surely avoid getting into the ele-
vator with you, suppose that you weigh yourself while on
an elevator that is moving. Would you weigh more than,
less than, or the same as when the scale is on a stationary
floor?

In Fig. 5-17a, a passenger of mass m 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY IDEAS

(1) The reading is equal to the magnitude of the normal force
on the passenger from the scale. The only other force act-

ing on the passenger is the gravitational force , as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration by using
Newton’s second law . However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground
to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger and
his acceleration are all directed vertically, along the y axis in
Fig. 5-17b, we can use Newton’s second law written for y
components (Fnet, y � may) to get

FN � Fg � ma

or FN � Fg � ma. (5-27)

(F
:

net � ma:)
a:

F
:

g

F
:

N

�

FN

y

(b)(a)

Passenger

Fg

These forces
compete.
Their net force
causes a vertical
acceleration.

Figure 5-17 (a) A passenger stands on a platform scale that indi-
cates either his weight or his apparent weight. (b) The free-body
diagram for the passenger, showing the normal force on him
from the scale and the gravitational force .F

:

g

F
:

N

This tells us that the scale reading, which is equal to normal
force magnitude FN, depends on the vertical acceleration.
Substituting mg for Fg gives us

FN � m(g � a) (Answer) (5-28)

for any choice of acceleration a. If the acceleration is up-
ward, a is positive; if it is downward, a is negative.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY IDEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN � (72.2 kg)(9.8 m/s2 � 0) � 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward at
3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a � 3.20 m/s2, Eq. 5-28 gives

FN � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

� 939 N, (Answer)

and for a � �3.20 m/s2, it gives

FN � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

� 477 N. (Answer)

For an upward acceleration (either the cab’s upward
speed is increasing or its downward speed is decreasing),
the scale reading is greater than the passenger’s weight.
That reading is a measurement of an apparent weight, be-
cause it is made in a noninertial frame. For a downward
acceleration (either decreasing upward speed or increas-
ing downward speed), the scale reading is less than the
passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force on
the passenger does not depend on the motion of the passen-
ger or the cab; so, from part (b), Fg is 708 N. From part (c), the
magnitude FN of the normal force on the passenger during

F
:

net � ma:p,cab
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Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp � FAB � mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which force
is applied, the two blocks form a rigidly connected system.

We can relate the net force on the system to the acceleration of
the system with Newton’s second law. Here, once again for the
x axis, we can write that law as

Fapp � (mA � mB)a,

where now we properly apply to the system with
total mass mA mB. Solving for a and substituting known
values, we find

(Answer)

Thus, the acceleration of the system and of each block is in the
positive direction of the x axis and has the magnitude 2.0 m/s2.

(b) What is the (horizontal) force on block B from
block A (Fig. 5-18c)?

KEY IDEA 

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA � mBa,

which, with known values, gives

FBA � (6.0 kg)(2.0 m/s2) � 12 N. (Answer)

Thus, force is in the positive direction of the x axis and
has a magnitude of 12 N.

F
:

BA

F
:

BA

a �
Fapp

mA � mB
�

20 N

4.0 kg � 6.0 kg
� 2.0 m/s2.

�
F
:

app

F
:

app

F
:

AB

F
:

AB

Sample Problem 5.07 Acceleration of block pushing on block

Some homework problems involve objects that move to-
gether, because they are either shoved together or tied to-
gether. Here is an example in which you apply Newton’s
second law to the composite of two blocks and then to the
individual blocks.

In Fig. 5-18a, a constant horizontal force of magni-F
:

app

tude 20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB � 6.0 kg.The blocks slide
over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components
(Fnet, x � max), writing it as

Fapp � mAa.

However, this is seriously wrong because is not the
only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).F

:

AB

F
:

app

a:

F
:

app

�

Figure 5-18 (a) A constant horizontal force is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (c) Only one horizontal force acts on block B.

F
:

app

FBA

(c)

x

B

(a)

x
A

B

Fapp

(b)

xA FABFapp

This force causes the
acceleration of the full
two-block system.

This is the only force
causing the acceleration
of block B.

These are the two forces
acting on just block A.
Their net force causes
its acceleration.

Additional examples, video, and practice available at WileyPLUS

the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet � FN � Fg � 939 N � 708 N � 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.



1 Figure 5-19 gives the free-body diagram for four situations in
which an object is pulled by several forces across a frictionless
floor, as seen from overhead. In which situations does the accel-
eration of the object have (a) an x component and (b) a y com-a:

Questions

x x

y y

7 N

3 N

2 N

4 N 4 N

2 N

2 N

6 N

5 N

3 N

(1) (2)

x x

y y

3 N

3 N

3 N
4 N

4 N

5 N

6 N

2 N

5 N

5 N
4 N

(3) (4)

Figure 5-19 Question 1.
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Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly
1 m/s2 is defined to have a magnitude of 1 N. The direction of a
force is the direction of the acceleration it causes. Forces are com-
bined according to the rules of vector algebra. The net force on a
body is the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or
inertial frames. Reference frames in which Newtonian mechanics
does not hold are called noninertial reference frames or noniner-
tial frames.

Mass The mass of a body is the characteristic of that body that
relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force on a body with
mass m is related to the body’s acceleration by

(5-1)

which may be written in the component versions

Fnet, x � max Fnet, y � may and Fnet, z � maz. (5-2)

The second law indicates that in SI units

1 N � 1 kg �m/s2. (5-3)

F
:

net � ma:,

a:
F
:

net

Review & Summary

A free-body diagram is a stripped-down diagram in which only
one body is considered.That body is represented by either a sketch or
a dot. The external forces on the body are drawn, and a coordinate
system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be
an inertial frame.With that assumption, the magnitude of is

Fg � mg, (5-8)

where m is the body’s mass and g is the magnitude of the free-fall
acceleration.

The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W � mg. (5-12)

A normal force is the force on a body from a surface
against which the body presses.The normal force is always perpen-
dicular to the surface.

A frictional force is the force on a body when the body
slides or attempts to slide along a surface. The force is always par-
allel to the surface and directed so as to oppose the sliding. On a
frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on a
body.The pull is directed along the cord, away from the point of at-
tachment to the body. For a massless cord (a cord with negligible
mass), the pulls at both ends of the cord have the same magnitude
T, even if the cord runs around a massless, frictionless pulley (a pul-
ley with negligible mass and negligible friction on its axle to op-
pose its rotation).

Newton’s Third Law If a force acts on body B due to
body C, then there is a force on body C due to body B:

F
:

BC � �F
:

CB.

F
:

CB

F
:

BC

f
:

F
:

N

F
:

g

F
:

g

ponent? (c) In each situation, give the direction of by naming
either a quadrant or a direction along an axis. (Don’t reach for
the calculator because this can be answered with a few mental
calculations.)

a:
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7 July 17, 1981, Kansas City: The newly opened Hyatt
Regency is packed with people listening and dancing to a band
playing favorites from the 1940s. Many of the people are crowded
onto the walkways that hang like bridges across the wide atrium.
Suddenly two of the walkways collapse, falling onto the merrymak-
ers on the main floor.

The walkways were suspended one above another on vertical
rods and held in place by nuts threaded onto the rods. In the origi-
nal design, only two long rods were to be used, each extending
through all three walkways (Fig. 5-24a). If each walkway and the
merrymakers on it have a combined mass of M, what is the total
mass supported by the threads and two nuts on (a) the lowest
walkway and (b) the highest walkway?

Apparently someone responsible for the actual construction
realized that threading nuts on a rod is impossible except at the
ends, so the design was changed: Instead, six rods were used, each
connecting two walkways (Fig. 5-24b). What now is the total mass
supported by the threads and two nuts on (c) the lowest walkway,
(d) the upper side of the highest walkway, and (e) the lower side of
the highest walkway? It was this design that failed on that tragic
night—a simple engineering error.

2 Two horizontal forces,

pull a banana split across a friction-
less lunch counter. Without using a
calculator, determine which of the
vectors in the free-body diagram of
Fig. 5-20 best represent (a) and
(b) . What is the net-force compo-
nent along (c) the x axis and (d) the y
axis? Into which quadrants do (e) the
net-force vector and (f) the split’s ac-
celeration vector point?

3 In Fig. 5-21, forces and 
are applied to a lunchbox as it
slides at constant velocity over a
frictionless floor. We are to de-
crease angle u without changing the
magnitude of . For constant ve-
locity, should we increase, decrease,
or maintain the magnitude of ?

4 At time t � 0, constant begins
to act on a rock moving through
deep space in the +x direction. (a)
For time t � 0, which are possible functions x(t) for the rock’s posi-
tion: (1) x � 4t � 3, (2) x � �4t2 � 6t � 3, (3) x � 4t2 � 6t � 3? (b)
For which function is directed opposite the rock’s initial direction
of motion?

5 Figure 5-22 shows overhead views of four situations in which
forces act on a block that lies on a frictionless floor. If the force
magnitudes are chosen properly, in which situations is it possible
that the block is (a) stationary and (b) moving with a constant
velocity?

F
:

F
:

F
:

2

F
:

1

F
:

2F
:

1

F
:

2

F
:

1

F
:

1 � (3 N)î � (4 N)ĵ  and  F
:

2 � �(1 N)î � (2 N)ĵ

Figure 5-21 Question 3.

y

x

58

4

32

67

1

Figure 5-20 Question 2.

θ F2

F1

Figure 5-22 Question 5.

(1) F2

F1

F3

(3) (4) 

(2) F1

F1

F1

F3

F2

F2

F2

6 N 3 N 

(a)

60 N 58 N 

(b)

15 N 13 N 

(c)

25 N 

20 N 

43 N 

(d)

Figure 5-23 Question 6.

6 Figure 5-23 shows the same breadbox in four situations where
horizontal forces are applied. Rank the situations according to the
magnitude of the box’s acceleration, greatest first.

Rods

Nuts

Walkways

(a) (b)

Figure 5-24 Question 7.

8 Figure 5-25 gives three graphs of velocity component vx(t) and
three graphs of velocity component vy(t). The graphs are not to
scale. Which vx(t) graph and which vy(t) graph best correspond to
each of the four situations in Question 1 and Fig. 5-19?

Figure 5-25 Question 8.

vx

t

(a)

vx

t

(b)

vx

t

(c)

vy

(d)

vy

t

(e)

vy

t

( f )
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••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 � 32 N, F2 � 55 N,
F3 � 41 N, u1 � 30�, and u3 � 60�.
What is the asteroid’s acceleration
(a) in unit-vector notation and as (b) a magnitude and (c) a direc-
tion relative to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire at
the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force

••7 There are two forces on the
2.00 kg box in the overhead view of
Fig. 5-31, but only one is shown. For
F1 � 20.0 N,a � 12.0 m/s2,and u� 30.0�,
find the second force (a) in unit-vector
notation and as (b) a magnitude and
(c) an angle relative to the positive di-
rection of the x axis.

••8 A 2.00 kg object is subjected to
three forces that give it an acceleration

. If
two of the three forces are

and
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) � �15.00 � 2.00t � 4.00t3 and y(t) � 25.00 � 7.00t � 9.00t2,
with x and y in meters and t in seconds. At t � 0.700 s, what are

�(12.0 N)î � (8.00 N)ĵ,
F2
:

�F1
:

� (30.0 N)î � (16.0 N)ĵ

a: � �(8.00 m/s2)î � (6.00 m/s2)ĵ

SSM

F
:

B?

F
:

C

F
:

C

F
:

A

Module 5-1 Newton’s First and Second Laws
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62� north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is
(a) (b) 
and (c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0� to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a
particle is to move at the constant
velocity One
of the forces is 

What is the other force?(�6 N)ĵ.
F1
:

� (2 N)î �
v: � (3 m/s)î � (4 m/s)ĵ.

(�4.0 N)ĵF
:

2 � (3.0 N)î �
(�3.0 N)î � (4.0 N)ĵ,F

:

2 �F
:

2 � (�3.0 N)î � (�4.0 N)ĵ,

F
:

1 � (3.0 N)î � (4.0 N)ĵ.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

x

y

F1

F2

F3

1θ 

3θ 

Figure 5-29 Problem 5.

Figure 5-30 Problem 6.

Alex
Charles

Betty137°

x

y

θ 

F1

a

Figure 5-31 Problem 7.
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9 Figure 5-26 shows a train of four blocks being pulled across a
frictionless floor by force . What total mass is accelerated to the
right by (a) force , (b) cord 3, and (c) cord 1? (d) Rank the blocks
according to their accelerations, greatest first. (e) Rank the cords
according to their tension, greatest first.

F
:

F
:

on block 3 from block 2? (d) Rank the blocks according to
their acceleration magnitudes, greatest first. (e) Rank forces , ,
and according to magnitude, greatest first.

11 A vertical force is applied to a block of mass m that lies on
a floor.What happens to the magnitude of the normal force on
the block from the floor as magnitude F is increased from zero if
force is (a) downward and (b) upward?

12 Figure 5-28 shows four choices for the direction of a force of
magnitude F to be applied to a block
on an inclined plane. The directions
are either horizontal or vertical.
(For choice b, the force is not
enough to lift the block off the
plane.) Rank the choices according
to the magnitude of the normal
force acting on the block from the
plane, greatest first.

F
:

F
:

N

F
:

F
:

32

F
:

21F
:

F
:

32

10 Figure 5-27 shows three blocks
being pushed across a frictionless
floor by horizontal force . What to-
tal mass is accelerated to the right
by (a) force , (b) force on
block 2 from block 1, and (c) force

F
:

21F
:

F
:

Cord
1

Cord
2

Cord
3

10 kg 3 kg 5 kg 2 kg 
F

Figure 5-26 Question 9.

30°

a
c

b

d

Figure 5-28 Question 12.

21

2 kg 

10 kg 
5 kg 

3

F

Figure 5-27 Question 10.



Module 5-2 Some Particular Forces
•13 Figure 5-33 shows an arrangement in
which four disks are suspended by cords. The
longer, top cord loops over a frictionless pul-
ley and pulls with a force of magnitude 98 N
on the wall to which it is attached.The tensions
in the three shorter cords are T1 � 58.8 N,
T2 � 49.0 N, and T3 � 9.8 N. What are the
masses of (a) disk A, (b) disk B, (c) disk C,
and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface. A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is supported by a cord that runs to
a spring scale, which is supported by a cord hung from the ceiling
(Fig. 5-34a). What is the reading on the scale, which is marked in SI
weight units? (This is a way to measure weight by a deli owner.) (b)
In Fig. 5-34b the salami is supported by a cord that runs around a
pulley and to a scale. The opposite end of the scale is attached by a
cord to a wall. What is the reading on the scale? (This is the way by
a physics major.) (c) In Fig. 5-34c the wall has been replaced with a
second 11.0 kg salami, and the assembly is stationary. What is the

SSM
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(a) the magnitude and (b) the angle (relative to the positive direc-
tion of the x axis) of the net force on the particle, and (c) what is
the angle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 

vx (m/s)

t (s)

4

2

0 1 2 3
–2

–4

Figure 5-32 Problem 12.

A

B

C

D

T1

T2

T3

Figure 5-33
Problem 13.

reading on the scale? (This is the way by a deli owner who was
once a physics major.)
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Spring scale 

Spring scale 

Spring
scale

(b)

(c)

(a)

Figure 5-34 Problem 15.

••16 Some insects can walk below
a thin rod (such as a twig) by hang-
ing from it. Suppose that such an in-
sect has mass m and hangs from a
horizontal rod as shown in Fig. 5-35,
with angle u � 40�. Its six legs are all
under the same tension, and the leg
sections nearest the body are hori-
zontal. (a) What is the ratio of the
tension in each tibia (forepart of a leg) to the insect’s weight? (b) If
the insect straightens out its legs somewhat, does the tension in each
tibia increase, decrease, or stay the same?

Module 5-3 Applying
Newton’s Laws
•17 In Fig. 5-36,
let the mass of the block be
8.5 kg and the angle be 30�.
Find (a) the tension in the cord
and (b) the normal force acting
on the block. (c) If the cord is
cut, find the magnitude of the re-
sulting acceleration of the block.

•18 In April 1974, John
Massis of Belgium managed to
move two passenger railroad
cars. He did so by clamping his teeth down on a bit that was at-
tached to the cars with a rope and then leaning backward while
pressing his feet against the railway ties.The cars together weighed
700 kN (about 80 tons). Assume that he pulled with a constant
force that was 2.5 times his body weight, at an upward angle u of
30� from the horizontal. His mass was 80 kg, and he moved the cars
by 1.0 m. Neglecting any retarding force from the wheel rotation,
find the speed of the cars at the end of the pull.

�

WWWSSM

θ 

Leg
joint Tibia

Rod

Figure 5-35 Problem 16.

m Frictionless

θ 

Figure 5-36 Problem 17.

to x(t) � �13.00 � 2.00t � 4.00t2 � 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t � 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x �
3.0 m � (4.0 m/s)t � ct2 � (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t � 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on which an xy coordinate system is laid
out. Force is in the positive direction of the x axis and has a mag-
nitude of 7.0 N. Force has a magnitude of 9.0 N. Figure 5-32
gives the x component vx of the velocity of the disk as a function of
time t during the sliding. What is the angle between the constant di-
rections of forces and ?F

:

2F
:

1

F
:

2

F
:

1

F
:

2F
:

1



•24 There are two horizontal
forces on the 2.0 kg box in the over-
head view of Fig. 5-38 but only one
(of magnitude F1 � 20 N) is shown.
The box moves along the x axis. For
each of the following values for the acceleration ax of the box,
find the second force in unit-vector notation: (a) 10 m/s2, (b) 20 m/s2,
(c) 0, (d) �10 m/s2, and (e) �20 m/s2.

•25 Sunjamming. A “sun yacht” is a spacecraft with a large sail
that is pushed by sunlight.Although such a push is tiny in everyday
circumstances, it can be large enough to send the spacecraft
outward from the Sun on a cost-free but slow trip. Suppose that
the spacecraft has a mass of 900 kg and receives a push of 20 N.
(a) What is the magnitude of the resulting acceleration? If the craft
starts from rest, (b) how far will it travel in 1 day and (c) how fast
will it then be moving?

•26 The tension at which a fishing line snaps is commonly called the
line’s “strength.”What minimum strength is needed for a line that is to
stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at
2.8 m/s? Assume a constant deceleration.

•27 An electron with a speed of 1.2 � 107 m/s moves hori-
zontally into a region where a constant vertical force of 4.5
10�16 N acts on it. The mass of the electron is 9.11 � 10�31 kg.
Determine the vertical distance the electron is deflected during the
time it has moved 30 mm horizontally.

•28 A car that weighs 1.30 � 104 N is initially moving at
40 km/h when the brakes are applied and the car is brought to a
stop in 15 m. Assuming the force that stops the car is constant,
find (a) the magnitude of that force and (b) the time required for
the change in speed. If the initial speed is doubled, and the car ex-
periences the same force during the braking, by what factors are
(c) the stopping distance and (d) the stopping time multiplied?
(There could be a lesson here about the danger of driving at high
speeds.)

•29 A firefighter who weighs 712 N slides down a vertical pole
with an acceleration of 3.00 m/s2, directed downward.What are the
(a) magnitude and (b) direction (up or down) of the vertical force
on the firefighter from the pole and the (c) magnitude and (d) di-
rection of the vertical force on the pole from the firefighter?

•30 The high-speed winds around a tornado can drive pro-
jectiles into trees, building walls, and even metal traffic signs. In a
laboratory simulation, a standard wood toothpick was shot by
pneumatic gun into an oak branch.The toothpick’s mass was 0.13 g,
its speed before entering the branch was 220 m/s, and its penetra-
tion depth was 15 mm. If its speed was decreased at a uniform
rate, what was the magnitude of the force of the branch on the
toothpick?

••31 A block is projected up a frictionless inclined
plane with initial speed v0 3.50
m/s. The angle of incline is 

32.0�. (a) How far up the plane
does the block go? (b) How long
does it take to get there? (c) What is
its speed when it gets back to the
bottom?

••32 Figure 5-39 shows an overhead
view of a 0.0250 kg lemon half and
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Figure 5-38 Problem 24.
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Figure 5-39 Problem 32.

•19 A 500 kg rocket sled can be accelerated at a constant
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of the
required net force?

•20 A car traveling at 53 km/h hits a bridge abutment. A passen-
ger in the car moves forward a distance of 65 cm (with respect to
the road) while being brought to rest by an inflated air bag. What
magnitude of force (assumed constant) acts on the passenger’s up-
per torso, which has a mass of 41 kg?

•21 A constant horizontal force pushes a 2.00 kg FedEx pack-
age across a frictionless floor on which an xy coordinate system has
been drawn. Figure 5-37 gives the package’s x and y velocity com-
ponents versus time t. What are the (a) magnitude and (b) direc-
tion of ?F

:

a

F
:

a

SSM

•22 A customer sits in an amusement park ride in which the
compartment is to be pulled downward in the negative direction of
a y axis with an acceleration magnitude of 1.24g, with g � 9.80 m/s2.
A 0.567 g coin rests on the customer’s knee. Once the motion be-
gins and in unit-vector notation, what is the coin’s acceleration rel-
ative to (a) the ground and (b) the customer? (c) How long does
the coin take to reach the compartment ceiling, 2.20 m above the
knee? In unit-vector notation, what are (d) the actual force on the
coin and (e) the apparent force according to the customer’s meas-
ure of the coin’s acceleration?

•23 Tarzan, who weighs 820 N, swings from a cliff at the end of a
20.0 m vine that hangs from a high tree limb and initially makes an
angle of 22.0� with the vertical. Assume that an x axis extends hori-
zontally away from the cliff edge and a y axis extends upward.
Immediately after Tarzan steps off the cliff, the tension in the vine
is 760 N. Just then, what are (a) the force on him from the vine in
unit-vector notation and the net force on him (b) in unit-vector no-
tation and as (c) a magnitude and (d) an angle relative to the
positive direction of the x axis? What are the (e) magnitude and
(f) angle of Tarzan’s acceleration just then?

vx (m/s)

vy (m/s)

t (s)
3210

5

10

t (s)
3210

–5

–10

0

Figure 5-37 Problem 21.



stant speed up a frictionless ramp
( 30.0�) by a horizontal force

. What are the magnitudes of (a) 
and (b) the force on the crate from
the ramp?

••35 The velocity of a 3.00 kg parti-
cle is given by � (8.00t + 3.00t2 )
m/s, with time t in seconds.At the instant the net force on the parti-
cle has a magnitude of 35.0 N, what are the direction (relative to
the positive direction of the x axis) of (a) the net force and (b) the
particle’s direction of travel?

••36 Holding on to a towrope moving parallel to a frictionless ski
slope, a 50 kg skier is pulled up the slope, which is at an angle of
8.0� with the horizontal.What is the magnitude Frope of the force on
the skier from the rope when (a) the magnitude v of the skier’s ve-
locity is constant at 2.0 m/s and (b) v � 2.0 m/s as v increases at a
rate of 0.10 m/s2?

••37 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a
frozen lake, 15 m apart but connected by a rope of negligible mass.
The girl exerts a horizontal 5.2 N force on the rope. What are the ac-
celeration magnitudes of (a) the sled and (b) the girl? (c) How far
from the girl’s initial position do they meet?

••38 A 40 kg skier skis directly down a frictionless slope angled
at 10� to the horizontal.Assume the skier moves in the negative di-
rection of an x axis along the slope. A wind force with component
Fx acts on the skier.What is Fx if the magnitude of the skier’s veloc-
ity is (a) constant, (b) increasing at a rate of 1.0 m/s2, and (c) in-
creasing at a rate of 2.0 m/s2?

••39 A sphere of mass 3.0 � 10�4 kg is suspended from
a cord. A steady horizontal breeze pushes the sphere so that the
cord makes a constant angle of 37� with the vertical. Find (a) the
push magnitude and (b) the tension in the cord.

••40 A dated box of dates, of mass 5.00 kg, is sent sliding up a
frictionless ramp at an angle of to the horizontal. Figure 5-41 gives,�
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m � 100 kg is pushed at con-
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has the constant velocity and (c) has the
varying velocity where t is time?

••33 An elevator cab and its load have a combined mass of 1600 kg.
Find the tension in the supporting cable when the cab, originally 
moving downward at 12 m/s, is brought to rest with constant accel-
eration in a distance of 42 m.

••34 In Fig. 5-40, a crate of mass

(13.0t î � 14.0t ĵ ) m/s2,v: �
v: � (13.0î � 14.0ĵ ) m/s,

has a magnitude of 7.00 N and is at 30.0�. In unit-vector no-
tation, what is the third force if the lemon half (a) is stationary, (b)

�2 �F
:

2

two of the three horizontal forces that act on it as it is on a frictionless
table. Force has a magnitude of 6.00 N and is at 30.0�. Force�1 �F

:

1

m

θ 

F

Figure 5-40 Problem 34.
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Figure 5-41 Problem 40.

as a function of time t, the component vx of the box’s velocity along an
x axis that extends directly up the ramp.What is the magnitude of the
normal force on the box from the ramp?

••41 Using a rope that will snap if the tension in it exceeds 387 N,
you need to lower a bundle of old roofing material weighing 449 N
from a point 6.1 m above the ground. Obviously if you hang the bun-
dle on the rope, it will snap. So, you allow the bundle to accelerate
downward. (a) What magnitude of the bundle’s acceleration will put
the rope on the verge of snapping? (b) At that acceleration, with
what speed would the bundle hit the ground?

••42 In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of u � 18� to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s2. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

θ 

Figure 5-42 Problem 42.

••43 In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a � 2.50
m/s2. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force on the top link from the
person lifting the chain and (f) the net force accel-
erating each link.

••44 A lamp hangs vertically from a cord in a de-
scending elevator that decelerates at 2.4 m/s2. (a)
If the tension in the cord is 89 N, what is the lamp’s
mass? (b) What is the cord’s tension when the ele-
vator ascends with an upward acceleration of 2.4 m/s2?

••45 An elevator cab that weighs 27.8 kN moves upward. What is
the tension in the cable if the cab’s speed is (a) increasing at a rate
of 1.22 m/s2 and (b) decreasing at a rate of 1.22 m/s2?

••46 An elevator cab is pulled upward by a cable. The cab and its
single occupant have a combined mass of 2000 kg.When that occu-
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2

downward.What is the tension in the cable?

••47 The Zacchini family was renowned for their hu-
man-cannonball act in which a family member was shot from a
cannon using either elastic bands or compressed air. In one version
of the act, Emanuel Zacchini was shot over three Ferris wheels to
land in a net at the same height as the open end of the cannon and
at a range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53�. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53�. Neglect air drag.)

F
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Figure 5-43
Problem 43.
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Figure 5-51 Problem 56.

••48 In Fig. 5-44, elevator cabs A and B are con-
nected by a short cable and can be pulled upward or
lowered by the cable above cab A. Cab A has mass
1700 kg; cab B has mass 1300 kg.A 12.0 kg box of cat-
nip lies on the floor of cab A.The tension in the cable
connecting the cabs is 1.91 � 104 N. What is the mag-
nitude of the normal force on the box from the floor?

••49 In Fig. 5-45, a block of mass m � 5.00 kg is
pulled along a horizontal frictionless floor by a cord
that exerts a force of magnitude F � 12.0 N at an
angle u � 25.0�. (a) What is the magnitude of the
block’s acceleration? (b) The force magnitude F is
slowly increased. What is its value just before the
block is lifted (completely) off the floor? (c) What is
the magnitude of the block’s acceleration just before it is lifted
(completely) off the floor?

••54 Figure 5-49 shows four penguins that are being playfully
pulled along very slippery (frictionless) ice by a curator. The masses
of three penguins and the tension in two of the cords are m1 � 12 kg,
m3 � 15 kg, m4 � 20 kg, T2 � 111 N, and T4 � 222 N. Find the pen-
guin mass m2 that is not given.

••50 In Fig. 5-46, three ballot
boxes are connected by cords, one
of which wraps over a pulley having
negligible friction on its axle and
negligible mass. The three masses
are mA � 30.0 kg, mB � 40.0 kg,
and mC � 10.0 kg.When the assem-
bly is released from rest, (a) what is the tension in the cord con-
necting B and C, and (b) how far does A move in the first 0.250 s
(assuming it does not reach the pulley)?

••51 Figure 5-47 shows two blocks connected by
a cord (of negligible mass) that passes over a fric-
tionless pulley (also of negligible mass). The
arrangement is known as Atwood’s machine. One
block has mass m1 � 1.30 kg; the other has mass m2 �
2.80 kg.What are (a) the magnitude of the blocks’ ac-
celeration and (b) the tension in the cord?

••52 An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that
runs over a frictionless pulley to a 65 kg sandbag.
With what speed does the man hit the ground if he
started from rest?

••53 In Fig. 5-48, three connected blocks are
pulled to the right on a horizontal frictionless table
by a force of magnitude T3 � 65.0 N. If m1 � 12.0 kg,
m2 � 24.0 kg, and m3 � 31.0 kg, calculate (a) the magnitude of the
system’s acceleration, (b) the tension T1, and (c) the tension T2.

A

B

Figure 5-44
Problem 48.

Fθ m

Figure 5-45
Problems 49 and 60.
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C

Figure 5-46 Problem 50.
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Figure 5-48 Problem 53.
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Figure 5-47
Problems 51 

and 65.
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Figure 5-49 Problem 54.

••55 Two blocks are in
contact on a frictionless table. A horizon-
tal force is applied to the larger block, as
shown in Fig. 5-50. (a) If m1 � 2.3 kg,
m2 1.2 kg, and F � 3.2 N, find the mag-
nitude of the force between the two
blocks. (b) Show that if a force of the same
magnitude F is applied to the smaller
block but in the opposite direction, the magnitude of the force be-
tween the blocks is 2.1 N, which is not the same value calculated in
(a). (c) Explain the difference.

••56 In Fig. 5-51a, a constant horizontal force is applied to
block A, which pushes against block B with a 20.0 N force directed
horizontally to the right. In Fig. 5-51b, the same force is applied
to block B; now block A pushes on block B with a 10.0 N force
directed horizontally to the left. The blocks have a combined mass
of 12.0 kg. What are the magnitudes of (a) their acceleration in
Fig. 5-51a and (b) force ?F

:

a

F
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a

F
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Figure 5-50
Problem 55.

••57 A block of mass m1 � 3.70 kg on a frictionless plane in-ILW

clined at angle 30.0� is connected by a cord over a massless,
frictionless pulley to a second block of mass m2 � 2.30 kg (Fig.
5-52). What are (a) the magnitude of the acceleration of each
block, (b) the direction of the acceleration of the hanging block,
and (c) the tension in the cord?

� �

m2

θ 

m1

Figure 5-52 Problem 57.

••58 Figure 5-53 shows a man sitting in a bosun’s chair that dan-
gles from a massless rope, which runs over a massless, frictionless
pulley and back down to the man’s hand. The combined mass of
man and chair is 95.0 kg. With what force magnitude must the man
pull on the rope if he is to rise (a) with a constant velocity and
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(b) with an upward acceleration of
1.30 m/s2? (Hint: A free-body dia-
gram can really help.) If the rope
on the right extends to the ground
and is pulled by a co-worker, with
what force magnitude must the co-
worker pull for the man to rise (c)
with a constant velocity and (d)
with an upward acceleration of
1.30 m/s2? What is the magnitude
of the force on the ceiling from the
pulley system in (e) part a, (f ) part
b, (g) part c, and (h) part d?

••59 A 10 kg monkey climbs
up a massless rope that runs over a
frictionless tree limb and back
down to a 15 kg package on the
ground (Fig. 5-54). (a) What is the
magnitude of the least acceleration
the monkey must have if it is to lift
the package off the ground? If, after
the package has been lifted, the
monkey stops its climb and holds
onto the rope, what are the (b)
magnitude and (c) direction of the
monkey’s acceleration and (d) the
tension in the rope?

••60 Figure 5-45 shows a 5.00 kg
block being pulled along a friction-
less floor by a cord that applies a
force of constant magnitude 20.0 N
but with an angle u(t) that varies
with time. When angle u � 25.0�, at
what rate is the acceleration of the
block changing if (a) u(t) � 
(2.00 � 10�2 deg/s)t and (b) u(t) � �(2.00 � 10�2 deg/s)t? (Hint:
The angle should be in radians.)

••61 A hot-air balloon of mass M is descending vertically
with downward acceleration of magnitude a. How much mass (ballast)
must be thrown out to give the balloon an upward acceleration of mag-
nitude a? Assume that the upward force from the air (the lift) does not
change because of the decrease in mass.

•••62 In shot putting, many athletes elect to launch the shot

ILWSSM

SSM

the axis, with a speed of 3.0 m/s.What are its (a) speed and (b) direc-
tion of travel at t � 11 s?

Figure 5-53 Problem 58.

Bananas

Figure 5-54 Problem 59.
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Figure 5-55 Problem 63.

at an angle that is smaller than the theoretical one (about 42�) at
which the distance of a projected ball at the same speed and
height is greatest. One reason has to do with the speed the athlete
can give the shot during the acceleration phase of the throw.
Assume that a 7.260 kg shot is accelerated along a straight path of
length 1.650 m by a constant applied force of magnitude 380.0 N,
starting with an initial speed of 2.500 m/s (due to the athlete’s pre-
liminary motion). What is the shot’s speed at the end of the accel-
eration phase if the angle between the path and the horizontal is
(a) 30.00� and (b) 42.00�? (Hint: Treat the motion as though it
were along a ramp at the given angle.) (c) By what percent is the
launch speed decreased if the athlete increases the angle from
30.00� to 42.00�?

•••63 Figure 5-55 gives, as a function of time t, the force compo-
nent Fx that acts on a 3.00 kg ice block that can move only along
the x axis. At t � 0, the block is moving in the positive direction of

•••64 Figure 5-56 shows a box of mass m2 � 1.0 kg on a fric-

θ 

F

m2

m1

Figure 5-56 Problem 64.

•••65 Figure 5-47 shows Atwood’s machine, in which two con-
tainers are connected by a cord (of negligible mass) passing over a
frictionless pulley (also of negligible mass).At time t � 0, container
1 has mass 1.30 kg and container 2 has mass 2.80 kg, but container 1
is losing mass (through a leak) at the constant rate of 0.200 kg/s. At
what rate is the acceleration magnitude of the containers changing
at (a) t � 0 and (b) t � 3.00 s? (c) When does the acceleration reach
its maximum value?

•••66 Figure 5-57 shows a section of a cable-car system. The
maximum permissible mass of each car with occupants is 2800 kg.
The cars, riding on a support cable, are pulled by a second cable
attached to the support tower on each car. Assume that the cables

Support cable 
Pull cable 

θ 

Figure 5-57 Problem 66.

tionless plane inclined at angle u � 30�. It is connected by a cord of
negligible mass to a box of mass m1 � 3.0 kg on a horizontal fric-
tionless surface. The pulley is frictionless and massless. (a) If the
magnitude of horizontal force is 2.3 N, what is the tension in the
connecting cord? (b) What is the largest value the magnitude of 
may have without the cord becoming slack?

F
:

F
:



antioxidants (m1 � 1.0 kg) on a fric-
tionless inclined surface is con-
nected to a tin of corned beef (m2

2.0 kg). The pulley is massless and
frictionless. An upward force of
magnitude F � 6.0 N acts on the
corned beef tin, which has a down-
ward acceleration of 5.5 m/s2. What
are (a) the tension in the connecting
cord and (b) angle b?

74 The only two forces acting on a
body have magnitudes of 20 N and
35 N and directions that differ by
80�. The resulting acceleration has a
magnitude of 20 m/s2. What is the
mass of the body?

75 Figure 5-62 is an overhead
view of a 12 kg tire that is to be
pulled by three horizontal ropes.
One rope’s force (F1 � 50 N) is in-
dicated. The forces from the other
ropes are to be oriented such that
the tire’s acceleration magnitude a is
least. What is that least a if (a) F2 �
30 N, F3 � 20 N; (b) F2 � 30 N, F3 �
10 N; and (c) F2 � F3 � 30 N?

76 A block of mass M is pulled
along a horizontal frictionless sur-
face by a rope of mass m, as shown
in Fig. 5-63. A horizontal force 
acts on one end of the rope.
(a) Show that the rope must sag, even if only by an imperceptible
amount. Then, assuming that the sag is negligible, find (b) the ac-
celeration of rope and block, (c) the force on the block from the
rope, and (d) the tension in the rope at its midpoint.

77 A worker drags a crate across a factory floor by pulling
on a rope tied to the crate. The worker exerts a force of magni-
tude F � 450 N on the rope, which is inclined at an upward angle
u � 38� to the horizontal, and the floor exerts a horizontal force
of magnitude f � 125 N that opposes the motion. Calculate the
magnitude of the acceleration of the crate if (a) its mass is 310 kg
and (b) its weight is 310 N.

78 In Fig. 5-64, a force of mag-
nitude 12 N is applied to a FedEx
box of mass m2 � 1.0 kg. The force
is directed up a plane tilted by u �
37�. The box is connected by a cord
to a UPS box of mass m1 � 3.0 kg
on the floor. The floor, plane, and
pulley are frictionless, and the
masses of the pulley and cord are negligible. What is the tension in
the cord?

79 A certain particle has a weight of 22 N at a point where 
g � 9.8 m/s2. What are its (a) weight and (b) mass at a point where
g � 4.9 m/s2? What are its (c) weight and (d) mass if it is moved to
a point in space where g � 0?

80 An 80 kg person is parachuting and experiencing a downward
acceleration of 2.5 m/s2. The mass of the parachute is 5.0 kg. (a)

F
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Figure 5-63 Problem 76.
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Figure 5-64 Problem 78.

are taut and inclined at angle u � 35�. What is the difference in
tension between adjacent sections of pull cable if the cars are at
the maximum permissible mass and are being accelerated up the
incline at 0.81 m/s2?

•••67 Figure 5-58 shows three
blocks attached by cords that loop
over frictionless pulleys. Block B
lies on a frictionless table; the
masses are mA � 6.00 kg, mB � 8.00
kg, and mC � 10.0 kg. When the
blocks are released, what is the
tension in the cord at the right?

•••68 A shot putter launches a 7.260 kg shot by pushing it
along a straight line of length 1.650 m and at an angle of 34.10°
from the horizontal, accelerating the shot to the launch speed
from its initial speed of 2.500 m/s (which is due to the athlete’s
preliminary motion).The shot leaves the hand at a height of 2.110 m
and at an angle of 34.10�, and it lands at a horizontal distance of
15.90 m. What is the magnitude of the athlete’s average force on
the shot during the acceleration phase? (Hint: Treat the motion
during the acceleration phase as though it were along a ramp at
the given angle.)

Additional Problems
69 In Fig. 5-59, 4.0 kg block A and 6.0 kg block B are connected by
a string of negligible mass. Force acts on block A;
force acts on block B.What is the tension in the string?F

:

B � (24 N)î
F
:

A � (12 N)î

73 In Fig. 5-61, a tin ofSSM

70 An 80 kg man drops to a concrete patio from a window
0.50 m above the patio. He neglects to bend his knees on landing, tak-
ing 2.0 cm to stop. (a) What is his average acceleration from when his
feet first touch the patio to when he stops? (b) What is the magnitude
of the average stopping force exerted on him by the patio?

71 Figure 5-60 shows a box of dirty money (mass m1 3.0 kg)�SSM
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Figure 5-58 Problem 67.
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Figure 5-59 Problem 69.
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Figure 5-60 Problem 71.
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Figure 5-61 Problem 73.

72 Three forces act on a particle that moves with unchanging ve-
locity Two of the forces are 

and . What is
the third force?

(8 N)ĵ � (�2 N)k̂F2
:

� (�5 N)î �(3 N)ĵ � (�2 N)k̂
F1
:

� (2 N)î �v: � (2 m/s)î � (7 m/s)ĵ.

x
F1

Figure 5-62 Problem 75.

on a frictionless plane inclined at angle 30�. The box is con-
nected via a cord of negligible mass to a box of laundered money
(mass m2 � 2.0 kg) on a frictionless plane inclined at angle u2 � 60�.
The pulley is frictionless and has negligible mass. What is the ten-
sion in the cord?

�1 �
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What is the upward force on the open parachute from the air? (b)
What is the downward force on the parachute from the person?

81 A spaceship lifts off vertically from the Moon, where g �
1.6 m/s2. If the ship has an upward acceleration of 1.0 m/s2 as it lifts
off, what is the magnitude of the force exerted by the ship on its pi-
lot, who weighs 735 N on Earth?

82 In the overhead view of Fig.
5-65, five forces pull on a box of
mass m � 4.0 kg. The force magni-
tudes are F1 � 11 N, F2 � 17 N,
F3 � 3.0 N, F4 � 14 N, and F5 � 5.0 N,
and angle u4 is 30�. Find the box’s
acceleration (a) in unit-vector nota-
tion and as (b) a magnitude and
(c) an angle relative to the positive
direction of the x axis.

83 A certain force gives an
object of mass m1 an acceleration
of 12.0 m/s2 and an object of mass m2 an acceleration of 3.30
m/s2. What acceleration would the force give to an object of mass
(a) m2 � m1 and (b) m2 � m1?

84 You pull a short refrigerator with a constant force across a
greased (frictionless) floor, either with horizontal (case 1) or with

tilted upward at an angle u (case 2). (a) What is the ratio of the re-
frigerator’s speed in case 2 to its speed in case 1 if you pull for a cer-
tain time t? (b) What is this ratio if you pull for a certain distance d?

85 A 52 kg circus performer is to slide down a rope that will
break if the tension exceeds 425 N. (a) What happens if the per-
former hangs stationary on the rope? (b) At what magnitude of ac-
celeration does the performer just avoid breaking the rope?

86 Compute the weight of a 75 kg space ranger (a) on Earth,
(b) on Mars, where g � 3.7 m/s2, and (c) in interplanetary space,
where g � 0. (d) What is the ranger’s mass at each location?

87 An object is hung from a spring balance attached to the ceil-
ing of an elevator cab. The balance reads 65 N when the cab is
standing still. What is the reading when the cab is moving upward
(a) with a constant speed of 7.6 m/s and (b) with a speed of 7.6 m/s
while decelerating at a rate of 2.4 m/s2?

88 Imagine a landing craft approaching the surface of Callisto,
one of Jupiter’s moons. If the engine provides an upward force
(thrust) of 3260 N, the craft descends at constant speed; if the en-
gine provides only 2200 N, the craft accelerates downward at
0.39 m/s2. (a) What is the weight of the landing craft in the vicinity
of Callisto’s surface? (b) What is the mass of the craft? (c) What is
the magnitude of the free-fall acceleration near the surface of
Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger
jet by just three bolts (this is the usual practice). Assume that each
bolt supports one-third of the load. (a) Calculate the force on each
bolt as the plane waits in line for clearance to take off. (b) During
flight, the plane encounters turbulence, which suddenly imparts an
upward vertical acceleration of 2.6 m/s2 to the plane. Calculate the
force on each bolt now.

90 An interstellar ship has a mass of 1.20 � 106 kg and is initially at
rest relative to a star system. (a) What constant acceleration is needed
to bring the ship up to a speed of 0.10c (where c is the speed of light,
3.0 � 108 m/s) relative to the star system in 3.0 days? (b) What is that
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acceleration in g units? (c) What force is required for the accelera-
tion? (d) If the engines are shut down when 0.10c is reached (the
speed then remains constant), how long does the ship take (start to
finish) to journey 5.0 light-months, the distance that light travels in
5.0 months?

91 A motorcycle and 60.0 kg rider accelerate at 3.0 m/s2 upSSM

x
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F1

F2

F4

F5

F3

4θ 

Figure 5-65 Problem 82.

94 For sport, a 12 kg armadillo runs onto a large pond of level,
frictionless ice. The armadillo’s initial velocity is 5.0 m/s along the
positive direction of an x axis. Take its initial position on the ice as
being the origin. It slips over the ice while being pushed by a wind
with a force of 17 N in the positive direction of the y axis. In unit-
vector notation, what are the animal’s (a) velocity and (b) position
vector when it has slid for 3.0 s?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg
and 4.0 kg. (a) Which mass should the hanging block have if the
magnitude of the acceleration is to be as large as possible? What
then are (b) the magnitude of the acceleration and (c) the tension
in the cord?

96 A nucleus that captures a stray neutron must bring the neu-
tron to a stop within the diameter of the nucleus by means of the
strong force. That force, which “glues” the nucleus together, is ap-
proximately zero outside the nucleus. Suppose that a stray neutron
with an initial speed of 1.4 � 107 m/s is just barely captured by a
nucleus with diameter d � 1.0 � 10�14 m. Assuming the strong
force on the neutron is constant, find the magnitude of that force.
The neutron’s mass is 1.67 � 10�27 kg.

97 If the 1 kg standard body is accelerated by only 
, then what

is (a) in unit-vector notation and as (b) a magnitude and
(c) an angle relative to the positive x direction? What are the (d)
magnitude and (e) angle of ?a:
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(3.0 N)î � (4.0 N)ĵ  and  F
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2 � (�2.0 N)î � (�6.0 N)ĵ
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(a) (b)

m1

m2

m3

m5

Figure 5-66 Problem 93.

a ramp inclined 10� above the horizontal. What are the magnitudes
of (a) the net force on the rider and (b) the force on the rider from
the motorcycle?

92 Compute the initial upward acceleration of a rocket of mass
1.3 � 104 kg if the initial upward force produced by its engine (the
thrust) is 2.6 � 105 N. Do not neglect the gravitational force on the
rocket.

93 Figure 5-66a shows a mobile hanging from a ceiling; it
consists of two metal pieces (m1 3.5 kg and m2 4.5 kg) that are
strung together by cords of negligible mass. What is the tension in
(a) the bottom cord and (b) the top cord? Figure 5-66b shows a
mobile consisting of three metal pieces.Two of the masses are m3 �
4.8 kg and m5 � 5.5 kg.The tension in the top cord is 199 N.What is
the tension in (c) the lowest cord and (d) the middle cord?

��

SSM
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What Is Physics?
In this chapter we focus on the physics of three common types of force: frictional
force, drag force, and centripetal force. An engineer preparing a car for the
Indianapolis 500 must consider all three types. Frictional forces acting on the tires
are crucial to the car’s acceleration out of the pit and out of a curve (if the car hits
an oil slick, the friction is lost and so is the car). Drag forces acting on the car
from the passing air must be minimized or else the car will consume too much
fuel and have to pit too early (even one 14 s pit stop can cost a driver the race).
Centripetal forces are crucial in the turns (if there is insufficient centripetal force,
the car slides into the wall).We start our discussion with frictional forces.

Friction
Frictional forces are unavoidable in our daily lives. If we were not able to coun-
teract them, they would stop every moving object and bring to a halt every
rotating shaft. About 20% of the gasoline used in an automobile is needed to
counteract friction in the engine and in the drive train. On the other hand, if fric-
tion were totally absent, we could not get an automobile to go anywhere, and we
could not walk or ride a bicycle. We could not hold a pencil, and, if we could, it
would not write. Nails and screws would be useless, woven cloth would fall apart,
and knots would untie.

C H A P T E R  6

Force and Motion—II

6-1 FRICTION

After reading this module, you should be able to . . .

6.01 Distinguish between friction in a static situation and a 
kinetic situation.

6.02 Determine direction and magnitude of a frictional force.

6.03 For objects on horizontal, vertical, or inclined planes in
situations involving friction, draw free-body diagrams and
apply Newton’s second law.

● When a force tends to slide a body along a surface, a fric-
tional force from the surface acts on the body. The frictional
force is parallel to the surface and directed so as to oppose the
sliding. It is due to bonding between the body and the surface.

If the body does not slide, the frictional force is a static
frictional force . If there is sliding, the frictional force is a 
kinetic frictional force .

● If a body does not move, the static frictional force and
the component of parallel to the surface are equal in magni-
tude, and is directed opposite that component. If the com-
ponent increases, fs also increases.
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● The magnitude of has a maximum value s,max given by

fs,max � msFN,

where ms is the coefficient of static friction and FN is the mag-
nitude of the normal force. If the component of parallel to
the surface exceeds fs,max, the body slides on the surface.

● If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value given by

fk � mkFN,

where mk is the coefficient of kinetic friction.
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(a)

(b)

(c)

(d)

fs

fs

fs

Fg

Fg

Fg

Fg

F

F

F

FN

FN

FN

FNThere is no attempt
at sliding. Thus,
no friction and
no motion.

Frictional force = 0

Force F  attempts
sliding but is balanced
by the frictional force.
No motion.

Force F  is now 
stronger but is still
balanced by the
frictional force.
No motion.

Force F  is now even 
stronger but is still
balanced by the
frictional force.
No motion.

Frictional force = F

Frictional force = F

Frictional force = F

Figure 6-1 (a) The forces on a
stationary block. (b–d) An external
force , applied to the block, is
balanced by a static frictional force

. As F is increased, fs also increases,
until fs reaches a certain maximum
value. (Figure continues)
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Three Experiments. Here we deal with the frictional forces that exist be-
tween dry solid surfaces, either stationary relative to each other or moving across
each other at slow speeds. Consider three simple thought experiments:

1. Send a book sliding across a long horizontal counter. As expected, the book
slows and then stops. This means the book must have an acceleration parallel
to the counter surface, in the direction opposite the book’s velocity. From
Newton’s second law, then, a force must act on the book parallel to the counter
surface, in the direction opposite its velocity.That force is a frictional force.

2. Push horizontally on the book to make it travel at constant velocity along the
counter. Can the force from you be the only horizontal force on the book?
No, because then the book would accelerate. From Newton’s second law, there
must be a second force, directed opposite your force but with the same magni-
tude, so that the two forces balance. That second force is a frictional force,
directed parallel to the counter.

3. Push horizontally on a heavy crate. The crate does not move. From Newton’s
second law, a second force must also be acting on the crate to counteract your
force. Moreover, this second force must be directed opposite your force and
have the same magnitude as your force, so that the two forces balance. That
second force is a frictional force. Push even harder. The crate still does not
move. Apparently the frictional force can change in magnitude so that the two
forces still balance. Now push with all your strength. The crate begins to slide.
Evidently, there is a maximum magnitude of the frictional force. When you
exceed that maximum magnitude, the crate slides.

Two Types of Friction. Figure 6-1 shows a similar situation. In Fig. 6-1a, a block
rests on a tabletop, with the gravitational force balanced by a normal force F

:
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In Fig. 6-1b, you exert a force on the block, attempting to pull it to the left. In re-
sponse, a frictional force is directed to the right, exactly balancing your force.
The force is called the static frictional force. The block does not move.f
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126 CHAPTER 6 FORCE AND MOTION—II

Figures 6-1c and 6-1d show that as you increase the magnitude of your
applied force, the magnitude of the static frictional force also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion
is called the kinetic frictional force .

Usually, the magnitude of the kinetic frictional force, which acts when there is
motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

Microscopic View. A frictional force is, in essence, the vector sum of many
forces acting between the surface atoms of one body and those of another body. If
two highly polished and carefully cleaned metal surfaces are brought together in
a very good vacuum (to keep them clean), they cannot be made to slide over each
other. Because the surfaces are so smooth, many atoms of one surface contact
many atoms of the other surface, and the surfaces cold-weld together instantly,
forming a single piece of metal. If a machinist’s specially polished gage blocks are
brought together in air, there is less atom-to-atom contact, but the blocks stick
firmly to each other and can be separated only by means of a wrenching motion.
Usually, however, this much atom-to-atom contact is not possible. Even a highly
polished metal surface is far from being flat on the atomic scale. Moreover, the
surfaces of everyday objects have layers of oxides and other contaminants that
reduce cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
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FN
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Finally, the applied force
has overwhelmed the
static frictional force.
Block slides and
accelerates.

Static frictional force
can only match growing
applied force.

Weak kinetic
frictional force

Same weak kinetic
frictional force

Kinetic frictional force
has only one value
(no matching).

To maintain the speed,
weaken force F  to match
the weak frictional force.

Figure 6-1 (Continued)  (e) Once fs reaches
its maximum value, the block “breaks
away,” accelerating suddenly in the direc-
tion of . (f ) If the block is now to move
with constant velocity, F must be reduced
from the maximum value it had just
before the block broke away. (g) Some
experimental results for the sequence
(a) through (f ). In WileyPLUS, this
figure is available as an animation with
voiceover.
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many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-weld.
Now getting the surfaces to slide relative to each other requires a greater applied
force: The static frictional force has a greater maximum value. Once the sur-
faces are sliding, there are many more points of momentary cold-welding, so the
kinetic frictional force also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the two
surfaces alternately stick together and then slip. Such repetitive stick-and-slip can pro-
duce squeaking or squealing, as when tires skid on dry pavement, fingernails scratch
along a chalkboard, or a rusty hinge is opened. It can also produce beautiful and capti-
vating sounds,as in music when a bow is drawn properly across a violin string.

Properties of Friction
Experiment shows that when a dry and unlubricated body presses against a surface
in the same condition and a force attempts to slide the body along the surface,
the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force and the
component of that is parallel to the surface balance each other. They are
equal in magnitude, and is directed opposite that component of .

Property 2. The magnitude of has a maximum value fs,max that is given by

fs,max � msFN, (6-1)

where ms is the coefficient of static friction and FN is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of that is parallel to the surface exceeds fs,max, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value fk given by

fk � mkFN, (6-2)

where mk is the coefficient of kinetic friction. Thereafter, during the sliding, a 
kinetic frictional force with magnitude given by Eq. 6-2 opposes the motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded
in terms of a single applied force , but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of or is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force is perpendicular to the surface.

The coefficients ms and mk are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of ms between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of mk

does not depend on the speed at which the body slides along the surface.
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1276-1 FRICTION

Figure 6-2 The mechanism of sliding 
friction. (a) The upper surface is sliding to
the right over the lower surface in this
enlarged view. (b) A detail, showing two
spots where cold-welding has occurred.
Force is required to break the welds and
maintain the motion.

(a)

(b)
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Checkpoint 1
A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does
not move, what is the magnitude of the frictional force on it? (c) If the maximum
value fs,max of the static frictional force on the block is 10 N, will the block move if the
magnitude of the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the
magnitude of the frictional force in part (c)?

ond law as

FN � mg � F sin u � m(0), (6-4)

which gives us

FN � mg � F sin u. (6-5)

Now we can evaluate fs,max � msFN:

fs,max � ms (mg � F sin u)

� (0.700)((8.00 kg)(9.8 m/s2) � (12.0 N)(sin 30�))

� 59.08 N. (6-6)

Because the magnitude Fx (� 10.39 N) of the force com-
ponent attempting to slide the block is less than fs,max

(� 59.08 N), the block remains stationary. That means that
the magnitude fs of the frictional force matches Fx. From
Fig. 6-3d, we can write Newton’s second law for x compo-
nents as

Fx � fs � m(0), (6-7)

and thus fs � Fx � 10.39 N 10.4 N. (Answer)�

Sample Problem 6.01 Angled force applied to an initially stationary block

This sample problem involves a tilted applied force,
which requires that we work with components to find a
frictional force. The main challenge is to sort out all the
components. Figure 6-3a shows a force of magnitude F �
12.0 N applied to an 8.00 kg block at a downward angle of 
u � 30.0�. The coefficient of static friction between block
and floor is ms � 0.700; the coefficient of kinetic friction is
mk � 0.400. Does the block begin to slide or does it re-
main stationary? What is the magnitude of the frictional
force on the block?

KEY IDEAS

(1) When the object is stationary on a surface, the static fric-
tional force balances the force component that is attempting
to slide the object along the surface. (2) The maximum possi-
ble magnitude of that force is given by Eq. 6-1 ( fs,max � msFN).
(3) If the component of the applied force along the surface
exceeds this limit on the static friction, the block begins to
slide. (4) If the object slides, the kinetic frictional force is
given by Eq. 6-2 ( fk � mkFN).

Calculations: To see if the block slides (and thus to calcu-
late the magnitude of the frictional force), we must com-
pare the applied force component Fx with the maximum
magnitude fs,max that the static friction can have. From the
triangle of components and full force shown in Fig. 6-3b,
we see that

Fx � F cos u

� (12.0 N) cos 30� � 10.39 N. (6-3)

From Eq. 6-1, we know that fs,max � msFN, but we need the
magnitude FN of the normal force to evaluate fs,max. Because
the normal force is vertical, we need to write Newton’s sec-
ond law (Fnet,y � may) for the vertical force components act-
ing on the block, as displayed in Fig. 6-3c. The gravitational
force with magnitude mg acts downward. The applied force
has a downward component Fy � F sin u. And the vertical
acceleration ay is just zero. Thus, we can write Newton’s sec-

F

y

x u

(a)

(c)

Fg

Fy

FN

Block

Block

u

F
Fy

Fx

(b)

fs Fx

(d)

Figure 6-3 (a) A force is applied to an initially stationary block. (b)
The components of the applied force. (c) The vertical force com-
ponents. (d) The horizontal force components.

Additional examples, video, and practice available at WileyPLUS
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Inserting the initial speed v0 � 10.0 m/s, the final speed v � 0,
and the coefficient of kinetic friction mk � 0.60, we find that
the car’s stopping distance is

x � x0 � 8.50 m 8.5 m. (Answer)

(b) What is the stopping distance if the road is covered with
ice with mk � 0.10?

Calculation: Our solution is perfectly fine through Eq. 6-12
but now we substitute this new mk, finding

x � x0 � 51 m. (Answer)

Thus, a much longer clear path would be needed to avoid
the car hitting something along the way.

(c) Now let’s have the car sliding down an icy hill with an in-
clination of u � 5.00� (a mild incline, nothing like the hills of
San Francisco). The free-body diagram shown in Fig. 6-4c is
like the ramp in Sample Problem 5.04 except, to be consis-
tent with Fig. 6-4b, the positive direction of the x axis is
down the ramp.What now is the stopping distance?

Calculations: Switching from Fig. 6-4b to c involves two ma-
jor changes. (1) Now a component of the gravitational force is
along the tilted x axis, pulling the car down the hill. From
Sample Problem 5.04 and Fig. 5-15, that down-the-hill com-
ponent is mg sin u, which is in the positive direction of the x
axis in Fig. 6-4c. (2) The normal force (still perpendicular to
the road) now balances only a component of the gravitational

�

Sample Problem 6.02 Sliding to a stop on icy roads, horizontal and inclined

Some of the funniest videos on the web involve motorists
sliding uncontrollably on icy roads. Here let’s compare the
typical stopping distances for a car sliding to a stop from an
initial speed of 10.0 m/s on a dry horizontal road, an icy hori-
zontal road, and (everyone’s favorite) an icy hill.

(a) How far does the car take to slide to a stop on a hori-
zontal road (Fig. 6-4a) if the coefficient of kinetic friction is
mk � 0.60, which is typical of regular tires on dry pavement?
Let’s neglect any effect of the air on the car, assume that
the wheels lock up and the tires slide, and extend an x axis
in the car’s direction of motion.

KEY IDEAS

(1) The car accelerates (its speed decreases) because a hori-
zontal frictional force acts against the motion, in the negative
direction of the x axis. (2) The frictional force is a kinetic fric-
tional force with a magnitude given by Eq. 6-2 ( fk � mkFN), in
which FN is the magnitude of the normal force on the car from
the road. (3) We can relate the frictional force to the resulting
acceleration by writing Newton’s second law (Fnet,x � max) for
motion along the road.

Calculations: Figure 6-4b shows the free-body diagram for the
car.The normal force is upward, the gravitational force is down-
ward, and the frictional force is horizontal. Because the fric-
tional force is the only force with an x component, Newton’s
second law written for motion along the x axis becomes

�fk � max. (6-8)

Substituting fk � mkFN gives us

�mkFN � max. (6-9)

From Fig. 6-4b we see that the upward normal force bal-
ances the downward gravitational force, so in Eq. 6-9 let’s
replace magnitude FN with magnitude mg. Then we can can-
cel m (the stopping distance is thus independent of the car’s
mass—the car can be heavy or light, it does not matter).
Solving for ax we find

ax � �mkg. (6-10)

Because this acceleration is constant, we can use the 
constant-acceleration equations of Table 2-1. The easiest
choice for finding the sliding distance x � x0 is Eq. 2-16

which gives us

(6-11)

Substituting from Eq. 6-10, we then have

(6-12)x � x0 �
v2 � v2

0

�2mkg
.

x � x0 �
v2 � v2

0

2ax
.

(v2 � v2
0 � 2a(x � x0)),

x – x0

v0

= 0.60

(a)

μ

v = 0

fk

Fg

FN

Car
x

y

x

(b)

y

This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

fk

FN

Fg

mg cos

(c)

u u u

mg sinu

Figure 6-4 (a) A car sliding to the right and finally stopping after
a displacement of 290 m. A free-body diagram for the car on
(b) a horizontal road and (c) a hill.
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force, not the full force. From Sample Problem 5.04 (see Fig.
5-15i), we write that balance as 

FN � mg cos u.

In spite of these changes, we still want to write Newton’s
second law (Fnet,x � max) for the motion along the (now
tilted) x axis.We have

�fk � mg sin u � max,
�mkFN � mg sin u � max,

and �mkmg cos u � mg sin u � max.

Solving for the acceleration and substituting the given data

now give us

ax � �mkg cos u � g sin u

� �(0.10)(9.8 m/s2) cos 5.00� � (9.8 m/s2) sin 5.00�

� �0.122 m/s2. (6-13)

Substituting this result into Eq. 6-11 gives us the stopping
distance hown the hill:

x � x0 � 409 m 400 m, (Answer)

which is about mi! Such icy hills separate people who can
do this calculation (and thus know to stay home) from peo-
ple who cannot (and thus end up in web videos).

1
4

�

Additional examples, video, and practice available at WileyPLUS

6-2 THE DRAG FORCE AND TERMINAL SPEED 

After reading this module, you should be able to . . .
6.04 Apply the relationship between the drag force on an

object moving through air and the speed of the object.
6.05 Determine the terminal speed of an object falling

through air.

● When there is relative motion between air (or some other
fluid) and a body, the body experiences a drag force that
opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of 
is related to the relative speed v by an experimentally deter-
mined drag coefficient C according to

,

where r is the fluid density (mass per unit volume) and A
is the effective cross-sectional area of the body (the area

D � 1
2C�Av2

D
:

D
:

of a cross section taken perpendicular to the relative
velocity ).

● When a blunt object has fallen far enough through air, the
magnitudes of the drag force and the gravitational force 
on the body become equal. The body then falls at a constant
terminal speed vt given by

.vt � A
2Fg

CrA

Fg
:

D
:
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Learning Objectives

Key Ideas

The Drag Force and Terminal Speed
A fluid is anything that can flow—generally either a gas or a liquid.When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force that opposes the relative motion and points in the direction in
which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the
body. In such cases, the magnitude of the drag force is related to the relative
speed v by an experimentally determined drag coefficient C according to

(6-14)D � 1
2C�Av2,

D
:

D
:



where r is the air density (mass per volume) and A is the effective cross-sectional
area of the body (the area of a cross section taken perpendicular to the
velocity ). The drag coefficient C (typical values range from 0.4 to 1.0) is not
truly a constant for a given body because if v varies significantly, the value of C
can vary as well. Here, we ignore such complications.

Downhill speed skiers know well that drag depends on A and v2. To reach
high speeds a skier must reduce D as much as possible by, for example, riding the
skis in the “egg position” (Fig. 6-5) to minimize A.

Falling. When a blunt body falls from rest through air, the drag force is
directed upward; its magnitude gradually increases from zero as the speed of the
body increases.This upward force opposes the downward gravitational force 
on the body. We can relate these forces to the body’s acceleration by writing
Newton’s second law for a vertical y axis (Fnet,y � may) as

D � Fg � ma, (6-15)

where m is the mass of the body. As suggested in Fig. 6-6, if the body falls long
enough, D eventually equals Fg. From Eq. 6-15, this means that a � 0, and so the
body’s speed no longer increases. The body then falls at a constant speed, called
the terminal speed vt.

To find vt, we set a � 0 in Eq. 6-15 and substitute for D from Eq. 6-14, obtaining

which gives (6-16)

Table 6-1 gives values of vt for some common objects.
According to calculations* based on Eq. 6-14, a cat must fall about six

floors to reach terminal speed. Until it does so, Fg � D and the cat accelerates
downward because of the net downward force. Recall from Chapter 2
that your body is an accelerometer, not a speedometer. Because the cat also
senses the acceleration, it is frightened and keeps its feet underneath its body,
its head tucked in, and its spine bent upward, making A small, vt large, and in-
jury likely.

However, if the cat does reach vt during a longer fall, the acceleration vanishes
and the cat relaxes somewhat, stretching its legs and neck horizontally outward and

vt � A
2Fg

C�A
.

1
2C�Avt

2 � Fg � 0,
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Table 6-1 Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distancea (m)

Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius � 1.5 mm) 7 6
Parachutist (typical) 5 3

aThis is the distance through which the body must fall from rest to reach 95% of its terminal speed.

Based on Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

Figure 6-5 This skier crouches in an “egg
position” so as to minimize her effective
cross-sectional area and thus minimize the
air drag acting on her.

Figure 6-6 The forces that act on a body
falling through air: (a) the body when it
has just begun to fall and (b) the free-
body diagram a little later, after a drag
force has developed. (c) The drag force
has increased until it balances the
gravitational force on the body. The body
now falls at its constant terminal speed.

Karl-Josef Hildenbrand/dpa/Landov LLC

Fg

(a)

Falling
body D

D

(b) (c)

Fg
Fg

As the cat's speed
increases, the upward
drag force increases
until it balances the
gravitational force.

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats.” The Journal of the American
Veterinary Medical Association, 1987.
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straightening its spine (it then resembles a flying squirrel). These actions increase
area A and thus also, by Eq. 6-14, the drag D. The cat begins to slow because now
D � Fg (the net force is upward), until a new, smaller vt is reached. The decrease
in vt reduces the possibility of serious injury on landing. Just before the end of the
fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its
body to prepare for the landing.

Humans often fall from great heights for the fun of skydiving. However, in
April 1987, during a jump, sky diver Gregory Robertson noticed that fellow
sky diver Debbie Williams had been knocked unconscious in a collision with
a third sky diver and was unable to open her parachute. Robertson, who
was well above Williams at the time and who had not yet opened his parachute
for the 4 km plunge, reoriented his body head-down so as to minimize A and
maximize his downward speed. Reaching an estimated vt of 320 km/h, he
caught up with Williams and then went into a horizontal “spread eagle” (as in
Fig. 6-7) to increase D so that he could grab her. He opened her parachute
and then, after releasing her, his own, a scant 10 s before impact. Williams
received extensive internal injuries due to her lack of control on landing but
survived.

Figure 6-7 Sky divers in a horizontal
“spread eagle” maximize air drag.

Steve Fitchett/Taxi/Getty Images

sity ra and the water density rw,we obtain

(Answer)

Note that the height of the cloud does not enter into the
calculation.

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity v0 is 0, and the displacement x � x0 is �h, we
use Eq. 2-16 to find v:

(Answer)

Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the
place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

� 153 m/s � 550 km/h.

v � 22gh � 2(2)(9.8 m/s2)(1200 m)

� 7.4 m/s � 27 km/h.

� A
(8)(1.5 � 10�3 m)(1000 kg/m3)(9.8 m/s2)

(3)(0.60)(1.2 kg/m3)

vt � A
2Fg

Cra A
� A

8pR3rwg

3Cra
R2 � A
8Rrwg

3Cra

Sample Problem 6.03 Terminal speed of falling raindrop

A raindrop with radius R 1.5 mm falls from a cloud that is
at height h � 1200 m above the ground.The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water rw is 1000 kg/m3,
and the density of air ra is 1.2 kg/m3.

(a) As Table 6-1 indicates, the raindrop reaches terminal
speed after falling just a few meters. What is the terminal
speed?

KEY IDEA

The drop reaches a terminal speed vt when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find vt, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude Fg of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (pR2) that has the same radius as the sphere. To find
Fg, we use three facts: (1) Fg � mg, where m is the drop’s
mass; (2) the (spherical) drop’s volume is pR3; and
(3) the density of the water in the drop is the mass per vol-
ume, or rw � m /V.Thus, we find

.

We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

Fg � Vrwg � 4
3pR3rwg

V � 4
3

�

Additional examples, video, and practice available at WileyPLUS



Uniform Circular Motion
From Module 4-5, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

(centripetal acceleration), (6-17)

where R is the radius of the circle. Here are two examples:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly
turns left, rounding a corner in a circular arc, you slide across the seat toward the
right and then jam against the car wall for the rest of the turn.What is going on?

While the car moves in the circular arc, it is in uniform circular motion;
that is, it has an acceleration that is directed toward the center of the circle.
By Newton’s second law, a force must cause this acceleration. Moreover, the
force must also be directed toward the center of the circle. Thus, it is a cen-
tripetal force, where the adjective indicates the direction. In this example, the
centripetal force is a frictional force on the tires from the road; it makes the
turn possible.

If you are to move in uniform circular motion along with the car, there
must also be a centripetal force on you. However, apparently the frictional
force on you from the seat was not great enough to make you go in a circle
with the car. Thus, the seat slid beneath you, until the right wall of the car
jammed into you. Then its push on you provided the needed centripetal force
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As
it and you orbit Earth, you float through your cabin.What is going on?

Both you and the shuttle are in uniform circular motion and have acceler-
ations directed toward the center of the circle. Again by Newton’s second law,
centripetal forces must cause these accelerations. This time the centripetal
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex-
erted by Earth and directed radially inward, toward the center of Earth.

a �
v2

R
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After reading this module, you should be able to. . . 
6.06 Sketch the path taken in uniform circular motion and

explain the velocity, acceleration, and force vectors 
(magnitudes and directions) during the motion.

6.07 ldentify that unless there is a radially inward net force
(a centripetal force), an object cannot move in circular motion.

6.08 For a particle in uniform circular motion, apply the rela-
tionship between the radius of the path, the particle’s
speed and mass, and the net force acting on the particle.

● If a particle moves in a circle or a circular arc of radius R at
constant speed v, the particle is said to be in uniform circular
motion. It then has a centripetal acceleration with magni-
tude given by

a �
v2

R
.

a:

● This acceleration is due to a net centripetal force on the
particle, with magnitude given by

,

where m is the particle’s mass. The vector quantities and 
are directed toward the center of curvature of the particle’s path.

F
:

a:

F �
mv2

R
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Key Ideas
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In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In
the car, jammed up against the wall, you are aware of being compressed by the
wall. In the orbiting shuttle, however, you are floating around with no sensation
of any force acting on you.Why this difference?

The difference is due to the nature of the two centripetal forces. In the
car, the centripetal force is the push on the part of your body touching the car
wall. You can sense the compression on that part of your body. In the shuttle,
the centripetal force is Earth’s gravitational pull on every atom of your body.
Thus, there is no compression (or pull) on any one part of your body and no
sensation of a force acting on you. (The sensation is said to be one of “weight-
lessness,” but that description is tricky. The pull on you by Earth has certainly
not disappeared and, in fact, is only a little less than it would be with you on
the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey
puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. This time the centripetal force is the radially inward pull on
the puck from the string. Without that force, the puck would slide off in a straight
line instead of moving in a circle.

Note again that a centripetal force is not a new kind of force.The name merely
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational
force, the force from a car wall or a string, or any other force. For any situation:

Figure 6-8 An overhead view of a hockey puck moving with constant speed v in a 
circular path of radius R on a horizontal frictionless surface. The centripetal force on the
puck is , the pull from the string, directed inward along the radial axis r extending
through the puck.

T
:

String

Puck

R

v r

T The puck moves
in uniform
circular motion
only because
of a toward-the-
center force.

A centripetal force accelerates a body by changing the direction of the body’s
velocity without changing the body’s speed.

From Newton’s second law and Eq. 6-17 (a � v2/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

(magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

F � m
v2

R
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KEY IDEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration of this particlea:

Sample Problem 6.04 Vertical circular loop, Diavolo

Largely because of riding in cars, you are used to horizon-
tal circular motion. Vertical circular motion would be a
novelty. In this sample problem, such motion seems to
defy the gravitational force.

In a 1901 circus performance, Allo “Dare Devil”
Diavolo introduced the stunt of riding a bicycle in a loop-
the-loop (Fig. 6-9a). Assuming that the loop is a circle with
radius R � 2.7 m, what is the least speed v that Diavolo and
his bicycle could have at the top of the loop to remain in
contact with it there?

Figure 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the
loop.

y
Diavolo

and bicycle
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The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.
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Additional examples, video, and practice available at WileyPLUS

Checkpoint 2
As every amusement park fan knows, a Ferris wheel is a ride consisting of seats
mounted on a tall ring that rotates around a horizontal axis.When you ride in a
Ferris wheel at constant speed, what are the directions of your acceleration and the
normal force on you (from the always upright seat) as you pass through (a) the
highest point and (b) the lowest point of the ride? (c) How does the magnitude of
the acceleration at the highest point compare with that at the lowest point? (d) How
do the magnitudes of the normal force compare at those two points?

F
:

N

a:

must have the magnitude a � v2/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the top
of the loop are shown in the free-body diagram of Fig 6-9b.
The gravitational force is downward along a y axis; so is the
normal force on the particle from the loop (the loop can
push down, not pull up); so also is the centripetal acceleration
of the particle. Thus, Newton’s second law for y components
(Fnet,y � may) gives us

�FN � Fg � m(�a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN � 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the
top of the loop was greater than 5.1 m/s so that he did not
lose contact with the loop and fall away from it. Note that
this speed requirement is independent of the mass of
Diavolo and his bicycle. Had he feasted on, say, pierogies
before his performance, he still would have had to exceed
only 5.1 m/s to maintain contact as he passed through the
top of the loop.

� 5.1 m/s.

v � 2gR � 2(9.8 m/s2)(2.7 m)

�FN � mg � m��
v2

R�.

F
:

N

F
:

g
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(b)

r
CarCenter fs

a

Fg

FN

y

R

(a)

r

FL

v

fs

The toward-the-
center force is
the frictional force.

Friction: toward the
center

Track-level view 
of the forces

Normal force:
helps support car

Gravitational force:
pulls car downward

Negative lift: presses
car downward

Figure 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force provides the necessary centripetal force along a radial axis r. (b) A free-body diagram
(not to scale) for the car, in the vertical plane containing r.

f
:

s

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v2/R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (Fnet,r � mar) as

(6-20)

Substituting fs,max � msFN for fs leads us to

(6-21)

Vertical calculations: Next, let’s consider the vertical forces
on the car. The normal force is directed up, in the posi-
tive direction of the y axis in Fig. 6-10b. The gravitational
force and the negative lift are directed down.
The acceleration of the car along the y axis is zero. Thus we
can write Newton’s second law for components along the
y axis (Fnet,y � may) as

FN � mg � FL � 0,

or FN � mg � FL. (6-22)

Combining results: Now we can combine our results along
the two axes by substituting Eq. 6-22 for FN in Eq. 6-21. Doing
so and then solving for FL lead to

(Answer)� 663.7 N � 660 N.

� (600 kg) � (28.6 m/s)2

(0.75)(100 m)
� 9.8 m/s2�

F L � m � v 2

�sR
� g�

F
:

LF
:

g � mg:

F
:

N

msFN � m � v2

R �.

�fs � m ��
v2

R �.

f
:
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Sample Problem 6.05 Car in flat circular turn

Upside-down racing: A modern race car is designed so that
the passing air pushes down on it, allowing the car to travel
much faster through a flat turn in a Grand Prix without fric-
tion failing. This downward push is called negative lift. Can a
race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m � 600 kg as it travels on a flat track in a circular arc of
radius R � 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?

KEY IDEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max � msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

F
:

N

f
:

s
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:

L

F
:
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Substituting our known negative lift of FL � 663.7 N and
solving for FL,90 give us

FL,90 � 6572 N � 6600 N. (Answer)

Upside-down racing: The gravitational force is, of course,
the force to beat if there is a chance of racing upside down:

Fg � mg � (600 kg)(9.8 m/s2)

� 5880 N.

With the car upside down, the negative lift is an upward
force of 6600 N, which exceeds the downward 5880 N. Thus,
the car could run on a long ceiling provided that it moves at
about 90 m/s (� 324 km/h � 201 mi/h). However, moving
that fast while right side up on a horizontal track is danger-
ous enough, so you are not likely to see upside-down racing
except in the movies.

(b) The magnitude FL of the negative lift on a car depends
on the square of the car’s speed v2, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

KEY IDEA 

FL is proportional to v2.

Calculations: Thus we can write a ratio of the negative lift
FL,90 at v � 90 m/s to our result for the negative lift FL at v �
28.6 m/s as

FL,90

FL
�

(90 m/s)2

(28.6 m/s)2 .

of mass m as it moves at a constant speed v of 20 m/s around
a banked circular track of radius R � 190 m. (It is a normal
car, rather than a race car, which means that any vertical
force from the passing air is negligible.) If the frictional
force from the track is negligible, what bank angle u pre-
vents sliding?

KEY IDEAS

Here the track is banked so as to tilt the normal force on
the car toward the center of the circle (Fig. 6-11b). Thus,
now has a centripetal component of magnitude FNr , directed
inward along a radial axis r. We want to find the value of
the bank angle u such that this centripetal component
keeps the car on the circular track without need of friction.

F
:

N

F
:

N

Sample Problem 6.06 Car in banked circular turn

This problem is quite challenging in setting up but takes
only a few lines of algebra to solve. We deal with not only
uniformly circular motion but also a ramp. However, we will
not need a tilted coordinate system as with other ramps.
Instead we can take a freeze-frame of the motion and work
with simply horizontal and vertical axes. As always in this
chapter, the starting point will be to apply Newton’s second
law, but that will require us to identify the force component
that is responsible for the uniform circular motion.

Curved portions of highways are always banked (tilted)
to prevent cars from sliding off the highway. When a high-
way is dry, the frictional force between the tires and the road
surface may be enough to prevent sliding. When the high-
way is wet, however, the frictional force may be negligible,
and banking is then essential. Figure 6-11a represents a car

(b)

y

r
FNr

R

(a)

θ

FNy
θv

r Car

Fg

FN

a

The toward-the-
center force is due
to the tilted track.

Track-level view 
of the forces

The gravitational force
pulls car downward.

Tilted normal force
supports car and
provides the toward-
the-center force.

Figure 6-11 (a) A car moves around a curved banked road at constant speed v. The bank angle is exaggerated for clarity. (b)
A free-body diagram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift.
The radially inward component FNr of the normal force (along radial axis r) provides the necessary centripetal force and
radial acceleration.
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write Newton’s second law for components along the y axis
(Fnet,y � may) as

FN cos u � mg � m(0),

from which

FN cos u � mg. (6-24)

Combining results: Equation 6-24 also contains the
unknowns FN and m, but note that dividing Eq. 6-23 by
Eq. 6-24 neatly eliminates both those unknowns. Doing so,
replacing (sin u)/(cos u) with tan u, and solving for u then
yield

. (Answer)� tan�1 (20 m/s)2

(9.8 m/s2)(190 m)
� 12�

� � tan�1 v2

gR

Radial calculation: As Fig. 6-11b shows (and as you
should verify), the angle that force makes with the ver-
tical is equal to the bank angle u of the track. Thus, the ra-
dial component FNr is equal to FN sin u. We can now write
Newton’s second law for components along the r axis
(Fnet,r � mar) as

. (6-23)

We cannot solve this equation for the value of u because it
also contains the unknowns FN and m.

Vertical calculations: We next consider the forces and ac-
celeration along the y axis in Fig. 6-11b. The vertical com-
ponent of the normal force is FNy � FN cos u, the gravita-
tional force on the car has the magnitude mg, and the
acceleration of the car along the y axis is zero. Thus we can

F
:

g

�FN sin u � m��
v2

R �

F
:

N

Additional examples, video, and practice available at WileyPLUS

Friction When a force tends to slide a body along a surface, a
frictional force from the surface acts on the body. The frictional force
is parallel to the surface and directed so as to oppose the sliding. It is
due to bonding between the atoms on the body and the atoms on the
surface,an effect called cold-welding.

If the body does not slide, the frictional force is a static
frictional force . If there is sliding, the frictional force is a kinetic
frictional force .

1. If a body does not move, the static frictional force and the
component of parallel to the surface are equal in magnitude,
and is directed opposite that component. If the component
increases, fs also increases.

2. The magnitude of has a maximum value fs,max given by

fs,max � msFN, (6-1)

where ms is the coefficient of static friction and FN is the magni-
tude of the normal force. If the component of parallel to the
surface exceeds fs,max, the static friction is overwhelmed and the
body slides on the surface.

3. If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value fk given
by

fk � mkFN, (6-2)

where mk is the coefficient of kinetic friction.

Drag Force When there is relative motion between air (or
some other fluid) and a body, the body experiences a drag force
that opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of isD
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Review & Summary

related to the relative speed v by an experimentally determined
drag coefficient C according to

(6-14)

where r is the fluid density (mass per unit volume) and A is the
effective cross-sectional area of the body (the area of a cross sec-
tion taken perpendicular to the relative velocity ).

Terminal Speed When a blunt object has fallen far enough
through air, the magnitudes of the drag force and the gravita-
tional force on the body become equal. The body then falls at a
constant terminal speed vt given by

(6-16)

Uniform Circular Motion If a particle moves in a circle or a
circular arc of radius R at constant speed v, the particle is said to be
in uniform circular motion. It then has a centripetal acceleration
with magnitude given by

(6-17)

This acceleration is due to a net centripetal force on the particle,
with magnitude given by

(6-18)

where m is the particle’s mass. The vector quantities and are
directed toward the center of curvature of the particle’s path. A
particle can move in circular motion only if a net centripetal
force acts on it.
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Questions

1 In Fig. 6-12, if the box is station-
ary and the angle u between the hor-
izontal and force is increased
somewhat, do the following quanti-
ties increase, decrease, or remain the
same: (a) Fx; (b) fs; (c) FN; (d) fs,max? (e) If, instead, the box is sliding
and u is increased, does the magnitude of the frictional force on the
box increase, decrease, or remain the same?

2 Repeat Question 1 for force angled upward instead of down-
ward as drawn.

3 In Fig. 6-13, horizontal force 
of magnitude 10 N is applied to a
box on a floor, but the box does not
slide. Then, as the magnitude of ver-
tical force is increased from zero,
do the following quantities increase,
decrease, or stay the same: (a) the magnitude of the frictional
force on the box; (b) the magnitude of the normal force on
the box from the floor; (c) the maximum value fs,max of the magni-
tude of the static frictional force on the box? (d) Does the box
eventually slide?

4 In three experiments, three different horizontal forces are ap-
plied to the same block lying on the same countertop. The force
magnitudes are F1 � 12 N, F2 � 8 N, and F3 � 4 N. In each experi-
ment, the block remains stationary in spite of the applied force.
Rank the forces according to (a) the magnitude fs of the static fric-
tional force on the block from the countertop and (b) the maximum
value fs,max of that force, greatest first.

5 If you press an apple crate against a wall so hard that the crate
cannot slide down the wall, what is the direction of (a) the static
frictional force on the crate from the wall and (b) the normal
force on the crate from the wall? If you increase your push,
what happens to (c) fs, (d) FN, and (e) fs,max?

6 In Fig. 6-14, a block of mass m is held sta-
tionary on a ramp by the frictional force on
it from the ramp. A force , directed up the
ramp, is then applied to the block and grad-
ually increased in magnitude from zero.
During the increase, what happens to the di-
rection and magnitude of the frictional force
on the block?

7 Reconsider Question 6 but with the force now directed
down the ramp. As the magnitude of is increased from zero,
what happens to the direction and magnitude of the frictional
force on the block?

8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10
kg slab that is initially stationary on a frictionless floor, to acceler-
ate the slab. A 10 kg block lies on top of the slab; the coefficient of
friction m between the block and the slab is not known, and the
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Figure 6-12 Question 1.

block might slip. In fact, the contact between the block and the slab
might even be frictionless. (a) Considering that possibility, what is
the possible range of values for the magnitude of the slab’s acceler-
ation aslab? (Hint: You don’t need written calculations; just consider
extreme values for m.) (b) What is the possible range for the mag-
nitude ablock of the block’s acceleration?

9 Figure 6-16 shows the overhead view of the path of an
amusement-park ride that travels at constant speed through five
circular arcs of radii R0, 2R0, and 3R0. Rank the arcs according to
the magnitude of the centripetal force on a rider traveling in the
arcs, greatest first.

F2

F1

Figure 6-13 Question 3.

θ 

F

Figure 6-14
Question 6.

100 N 
Block

Slab

1

2 3

4

5

Figure 6-16 Question 9.

Figure 6-15 Question 8.

10 In 1987, as a Halloween stunt, two sky divers passed a
pumpkin back and forth between them while they were in free fall
just west of Chicago.The stunt was great fun until the last sky diver
with the pumpkin opened his parachute. The pumpkin broke free
from his grip, plummeted about 0.5 km, ripped through the roof of
a house, slammed into the kitchen floor, and splattered all over the
newly remodeled kitchen. From the sky diver’s viewpoint and from
the pumpkin’s viewpoint, why did the sky diver lose control of the
pumpkin?

11 A person riding a Ferris wheel moves through positions at
(1) the top, (2) the bottom, and (3) midheight. If the wheel rotates
at a constant rate, rank these three positions according to (a) the
magnitude of the person’s centripetal acceleration, (b) the magni-
tude of the net centripetal force on the person, and (c) the magni-
tude of the normal force on the person, greatest first.

12 During a routine flight in 1956, test pilot Tom Attridge put his
jet fighter into a 20� dive for a test of the aircraft’s 20 mm machine
cannons. While traveling faster than sound at 4000 m altitude,
he shot a burst of rounds. Then, after allowing the cannons to cool,
he shot another burst at 2000 m; his speed was then 344 m/s, the
speed of the rounds relative to him was 730 m/s, and he was still in
a dive.

Almost immediately the canopy around him was shredded
and his right air intake was damaged. With little flying capability
left, the jet crashed into a wooded area, but Attridge managed to
escape the resulting explosion. Explain what apparently happened
just after the second burst of cannon rounds. (Attridge has been
the only pilot who has managed to shoot himself down.)

13 A box is on a ramp that is at angle u to the horizontal. As u
is increased from zero, and before the box slips, do the following
increase, decrease, or remain the same: (a) the component of the
gravitational force on the box, along the ramp, (b) the magnitude
of the static frictional force on the box from the ramp, (c) the
component of the gravitational force on the box, perpendicular
to the ramp, (d) the magnitude of the normal force on the
box from the ramp, and (e) the maximum value fs,max of the static
frictional force?



•9 A 3.5 kg block is pushed
along a horizontal floor by a force

of magnitude 15 N at an angle
40� with the horizontal

(Fig. 6-19). The coefficient of ki-
netic friction between the block
and the floor is 0.25. Calculate the
magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

•10 Figure 6-20 shows an initially
stationary block of mass m on a
floor. A force of magnitude 0.500mg
is then applied at upward angle u �
20�.What is the magnitude of the ac-
celeration of the block across the
floor if the friction coefficients are (a) ms � 0.600 and mk � 0.500
and (b) ms � 0.400 and mk � 0.300?

•11 A 68 kg crate is dragged across a floor by pulling on 
a rope attached to the crate and inclined 158 above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving?
(b) If mk � 0.35, what is the magnitude of the initial acceleration of
the crate?

•12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each
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Module 6-1 Friction
•1 The floor of a railroad flatcar is loaded with loose crates hav-
ing a coefficient of static friction of 0.25 with the floor. If the train
is initially moving at a speed of 48 km/h, in how short a distance
can the train be stopped at constant acceleration without causing
the crates to slide over the floor?

•2 In a pickup game of dorm shuffleboard, students crazed by fi-
nal exams use a broom to propel a calculus book along the dorm
hallway. If the 3.5 kg book is pushed from rest through a distance
of 0.90 m by the horizontal 25 N force from the broom and then
has a speed of 1.60 m/s, what is the coefficient of kinetic friction be-
tween the book and floor?

•3 A bedroom bureau with a mass of 45 kg, includ-
ing drawers and clothing, rests on the floor. (a) If the coefficient of
static friction between the bureau and the floor is 0.45, what is the
magnitude of the minimum horizontal force that a person must ap-
ply to start the bureau moving? (b) If the drawers and clothing,
with 17 kg mass, are removed before the bureau is pushed, what is
the new minimum magnitude?

•4 A slide-loving pig slides down a certain 35� slide in twice the
time it would take to slide down a frictionless 35� slide. What is the
coefficient of kinetic friction between the pig and the slide?

•5 A 2.5 kg block is initially at rest on a horizontal surface. A

WWWSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Problems 9 and 32.

Figure 6-18 Problem 8. What moved the stone?

Jerry Schad/Photo Researchers, Inc.

•6 A baseball player with mass m � 79 kg, sliding into second
base, is retarded by a frictional force of magnitude 470 N. What is
the coefficient of kinetic friction mk between the player and the
ground?

•7 A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor. The coefficient
of kinetic friction between the crate and the floor is 0.35. What is
the magnitude of (a) the frictional force and (b) the acceleration of
the crate?

•8 The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones

ILWSSM

horizontal force of magnitude 6.0 N and a vertical force are
then applied to the block (Fig. 6-17). The coefficients of friction for
the block and surface are ms � 0.40 and mk � 0.25. Determine the
magnitude of the frictional force acting on the block if the magni-
tude of is (a) 8.0 N, (b) 10 N, and (c) 12 N.P

:

P
:

F
:

over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)



Cheerios (mass mC � 1.0 kg) and a
box of Wheaties (mass mW 3.0
kg) are accelerated across a hori-
zontal surface by a horizontal force

applied to the Cheerios box. The
magnitude of the frictional force on the Cheerios box is 2.0 N,
and the magnitude of the frictional force on the Wheaties box is
4.0 N. If the magnitude of is 12 N, what is the magnitude of the
force on the Wheaties box from the Cheerios box?

••21 An initially stationary box of sand is to be pulled across a
floor by means of a cable in which the tension should not exceed
1100 N. The coefficient of static friction between the box and the
floor is 0.35. (a) What should be the angle between the cable and
the horizontal in order to pull the greatest possible amount of sand,
and (b) what is the weight of the sand and box in that situation?

••22 In Fig. 6-23, a sled is held on an inclined plane by a cord
pulling directly up the plane. The sled is to be on the verge of
moving up the plane. In Fig. 6-
28, the magnitude F required of
the cord’s force on the sled is
plotted versus a range of values
for the coefficient of static fric-
tion ms between sled and plane:
F1 � 2.0 N, F2 � 5.0 N, and m2 �
0.50.At what angle u is the plane
inclined?
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initially at rest on a plane inclined at angle u � 15� to the horizon-
tal. The positive direction of the x axis is up the plane. Between
block and plane, the coefficient of static friction is ms � 0.50 and
the coefficient of kinetic friction is mk � 0.34. In unit-vector nota-
tion, what is the frictional force on the block from the plane when

is (a) (�5.0 N) , (b) (�8.0 N) , and (c) (�15 N) ?

••18 You testify as an expert witness in a case involving an acci-
dent in which car A slid into the rear of car B, which was stopped at
a red light along a road headed down a hill (Fig. 6-25). You find
that the slope of the hill is u � 12.0�, that the cars were separated
by distance d � 24.0 m when the driver of car A put the car into a
slide (it lacked any automatic anti-brake-lock system), and that the
speed of car A at the onset of braking was v0 � 18.0 m/s.With what
speed did car A hit car B if the coefficient of kinetic friction was
(a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with
wet leaves)?

îîîP
:

hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb
or opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

•13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of fs,max under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e)
If, instead, the second worker pulls horizontally to help out, what is
the least pull that will get the crate moving?

•14 Figure 6-22 shows the cross
section of a road cut into the side of
a mountain. The solid line AA� rep-
resents a weak bedding plane along
which sliding is possible. Block B
directly above the highway is sepa-
rated from uphill rock by a large
crack (called a joint), so that only
friction between the block and the
bedding plane prevents sliding. The
mass of the block is 1.8 � 107 kg, the dip angle u of the bedding
plane is 24�, and the coefficient of static friction between block
and plane is 0.63. (a) Show that the block will not slide under
these circumstances. (b) Next, water seeps into the joint and ex-
pands upon freezing, exerting on the block a force parallel to
AA�. What minimum value of force magnitude F will trigger a
slide down the plane?

•15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?

••16 A loaded penguin sled weigh-
ing 80 N rests on a plane inclined at
angle u � 20� to the horizontal (Fig.
6-23). Between the sled and the
plane, the coefficient of static
friction is 0.25, and the coefficient of
kinetic friction is 0.15. (a) What is
the least magnitude of the force 
parallel to the plane, that will pre-
vent the sled from slipping down the plane? (b) What is the mini-
mum magnitude F that will start the sled moving up the plane? (c)
What value of F is required to
move the sled up the plane at con-
stant velocity?

••17 In Fig. 6-24, a force acts on
a block weighing 45 N. The block is
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••19 A 12 N horizontal force 
pushes a block weighing 5.0 N
against a vertical wall (Fig. 6-26).
The coefficient of static friction be-
tween the wall and the block is 0.60,
and the coefficient of kinetic friction
is 0.40. Assume that the block is not
moving initially. (a) Will the block move? (b) In unit-vector nota-
tion, what is the force on the block from the wall?

••20 In Fig. 6-27, a box of
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Figure 6-36 Problem 32.

••30 A toy chest and its contents have a combined weight of 
180 N. The coefficient of static friction between toy chest and floor
is 0.42. The child in Fig. 6-35 attempts to move the chest across the
floor by pulling on an attached rope. (a) If u is 42�, what is the mag-
nitude of the force that the child must exert on the rope to put
the chest on the verge of moving? (b) Write an expression for the
magnitude F required to put the chest on the verge of moving as a
function of the angle u. Determine (c) the value of u for which F is
a minimum and (d) that minimum magnitude.

F
:

••23 When the three blocks in
Fig. 6-29 are released from rest, they
accelerate with a magnitude of
0.500 m/s2. Block 1 has mass M,
block 2 has 2M, and block 3 has 2M.
What is the coefficient of kinetic
friction between block 2 and the
table?

••24 A 4.10 kg block is pushed
along a floor by a constant applied
force that is horizontal and has a
magnitude of 40.0 N. Figure 6-30
gives the block’s speed v versus
time t as the block moves along an x
axis on the floor. The scale of the
figure’s vertical axis is set by vs �
5.0 m/s. What is the coefficient of
kinetic friction between the block
and the floor?

••25 Block B in Fig.
6-31 weighs 711 N.The coefficient of
static friction between block and
table is 0.25; angle u is 30�; assume
that the cord between B and the
knot is horizontal. Find the maxi-
mum weight of block A for which
the system will be stationary.

••26 Figure 6-32 shows three
crates being pushed over a concrete
floor by a horizontal force of
magnitude 440 N. The masses of the
crates are m1 � 30.0 kg, m2 � 10.0
kg, and m3 � 20.0 kg. The coefficient
of kinetic friction between the floor
and each of the crates is 0.700. (a)
What is the magnitude F32 of the
force on crate 3 from crate 2? (b) If
the crates then slide onto a polished
floor, where the coefficient of kinetic friction is less than 0.700, is
magnitude F32 more than, less than, or the same as it was when the
coefficient was 0.700?

••27 Body A in Fig. 6-33 weighs
102 N, and body B weighs 32 N. The
coefficients of friction between A
and the incline are ms � 0.56 and
mk � 0.25. Angle u is 40�. Let the
positive direction of an x axis be up
the incline. In unit-vector notation,
what is the acceleration of A if A is
initially (a) at rest, (b) moving up
the incline, and (c) moving down
the incline?

••28 In Fig. 6-33, two blocks are connected over a pulley. The
mass of block A is 10 kg, and the coefficient of kinetic friction be-
tween A and the incline is 0.20. Angle u of the incline is 30�. Block
A slides down the incline at constant speed. What is the mass of
block B? Assume the connecting rope has negligible mass. (The
pulley’s function is only to redirect the rope.)

F
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••29 In Fig. 6-34, blocks A and B have weights of 44 N and 22
N, respectively. (a) Determine the minimum weight of block C to
keep A from sliding if ms between A and the table is 0.20. (b) Block
C suddenly is lifted off A. What is the acceleration of block A if mk

between A and the table is 0.15?3
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θ 

by a massless string and slide down a 30� inclined plane. The coeffi-
cient of kinetic friction between the lighter block and the plane is
0.10, and the coefficient between the heavier block and the plane is
0.20. Assuming that the lighter block leads, find (a) the magnitude
of the acceleration of the blocks and (b) the tension in the taut
string.

••32 A block is pushed across a floor by a constant force that is
applied at downward angle u (Fig. 6-19). Figure 6-36 gives the accel-
eration magnitude a versus a range of values for the coefficient of
kinetic friction mk between block and floor: a1 � 3.0 m/s2, mk2 �
0.20, and mk3 � 0.40.What is the value of u?

••31 Two blocks, of weights 3.6 N and 7.2 N, are connectedSSM



kg and M � 88 kg) in Fig. 6-38 are
not attached to each other.The coef-
ficient of static friction between the
blocks is ms � 0.38, but the surface
beneath the larger block is friction-
less.What is the minimum magnitude
of the horizontal force required to
keep the smaller block from slipping down the larger block?

Module 6-2 The Drag Force and Terminal Speed
•36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

••37 Continuation of Problem 8. Now assume that 
Eq. 6-14 gives the magnitude of the air drag force on the typical 
20 kg stone, which presents to the wind a vertical cross-sectional
area of 0.040 m2 and has a drag coefficient C of 0.80. Take the air
density to be 1.21 kg/m3, and the coefficient of kinetic friction to
be 0.80. (a) In kilometers per hour, what wind speed V along the
ground is needed to maintain the stone’s motion once it has
started moving? Because winds along the ground are retarded by
the ground, the wind speeds reported for storms are often meas-
ured at a height of 10 m. Assume wind speeds are 2.00 times
those along the ground. (b) For your answer to (a), what wind
speed would be reported for the storm? (c) Is that value reason-
able for a high-speed wind in a storm? (Story continues with
Problem 65.)

••38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the 
appropriate vt value from Table 6-1, estimate the magnitudes of
(a) the drag force on the pilot � seat and (b) their horizontal de-
celeration (in terms of g), both just after ejection. (The result of
(a) should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

••39 Calculate the ratio of the drag force on a jet flying at
1000 km/h at an altitude of 10 km to the drag force on a prop-
driven transport flying at half that speed and altitude. The density

F
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•••34 In Fig. 6-37, a slab of mass
m1 � 40 kg rests on a frictionless
floor, and a block of mass m2 10
kg rests on top of the slab. Between
block and slab, the coefficient of
static friction is 0.60, and the coefficient of kinetic friction is 0.40.A
horizontal force of magnitude 100 N begins to pull directly on
the block, as shown. In unit-vector notation, what are the resulting
accelerations of (a) the block and (b) the slab?

•••35 The two blocks (m � 16ILW
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•••33 A 1000 kg boat is traveling at 90 km/h when its engine
is shut off. The magnitude of the frictional force between boat
and water is proportional to the speed v of the boat: fk 70v, where
v is in meters per second and fk is in newtons. Find the time required
for the boat to slow to 45 km/h.
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of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that
the airplanes have the same effective cross-sectional area and drag 
coefficient C.

••40 In downhill speed skiing a skier is retarded by both
the air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is u � 40.0�, the snow is dry snow
with a coefficient of kinetic friction mk � 0.0400, the mass of the
skier and equipment is m � 85.0 kg, the cross-sectional area of the
(tucked) skier is A � 1.30 m2, the drag coefficient is C � 0.150, and
the air density is 1.20 kg/m3. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

Module 6-3 Uniform Circular Motion
•41 A cat dozes on a stationary merry-go-round in an amuse-
ment park, at a radius of 5.4 m from the center of the ride.Then the
operator turns on the ride and brings it up to its proper turning
rate of one complete rotation every 6.0 s. What is the least coeffi-
cient of static friction between the cat and the merry-go-round that
will allow the cat to stay in place, without sliding (or the cat cling-
ing with its claws)?

•42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

•43 What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
ms between tires and track is 0.32?

•44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

••45 A student of weight 667 N rides a
steadily rotating Ferris wheel (the student sits upright). At the
highest point, the magnitude of the normal force on the student
from the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of at the lowest point? If the
wheel’s speed is doubled, what is the magnitude FN at the (c) high-
est and (d) lowest point?

••46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg.What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

••47 A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

••48 A roller-coaster car at an amusement park has a mass
of 1200 kg when fully loaded with passengers. As the car passes
over the top of a circular hill of radius 18 m, assume that its speed
is not changing. At the top of the hill, what are the (a) magnitude
FN and (b) direction (up or down) of the normal force on the car
from the track if the car’s speed is v � 11 m/s? What are (c) FN and
(d) the direction if v � 14 m/s? 
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••58 Brake or turn? Figure 6-
44 depicts an overhead view of a car’s
path as the car travels toward a wall.
Assume that the driver begins to
brake the car when the distance to
the wall is d � 107 m, and take the
car’s mass as m � 1400 kg, its initial
speed as v0 � 35 m/s, and the coeffi-
cient of static friction as ms � 0.50.
Assume that the car’s weight is dis-
tributed evenly on the four wheels,
even during braking. (a) What magni-
tude of static friction is needed (between tires and road) to stop
the car just as it reaches the wall? (b) What is the maximum pos-
sible static friction fs,max? (c) If the coefficient of kinetic friction
between the (sliding) tires and the road is mk � 0.40, at what
speed will the car hit the wall? To avoid the crash, a driver could
elect to turn the car so that it just barely misses the wall, as
shown in the figure. (d) What magnitude of frictional force would
be required to keep the car in a circular path of radius d and at
the given speed v0, so that the car moves in a quarter circle and
then parallel to the wall? (e) Is the required force less than fs,max

so that a circular path is possible? 
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Figure 6-40 Problem 50.

dv in the speed with r held constant, and (c) a variation dT in the
period with r held constant? 

••55 A bolt is threaded onto one
end of a thin horizontal rod, and
the rod is then rotated horizontally
about its other end. An engineer
monitors the motion by flashing a
strobe lamp onto the rod and bolt,
adjusting the strobe rate until the
bolt appears to be in the same
eight places during each full rota-
tion of the rod (Fig. 6-42). The strobe rate is 2000 flashes per sec-
ond; the bolt has mass 30 g and is at radius 3.5 cm. What is the
magnitude of the force on the bolt from the rod?

••56 A banked circular highway curve is designed for traffic
moving at 60 km/h. The radius of the curve is 200 m. Traffic is
moving along the highway at 40 km/h on a rainy day. What is the
minimum coefficient of friction between tires and road that will
allow cars to take the turn without sliding off the road? (Assume
the cars do not have negative lift.)

••57 A puck of mass m � 1.50 kg slides in a circle of radius
r 20.0 cm on a frictionless table while attached to a hanging
cylinder of mass M � 2.50 kg by means of a cord that extends
through a hole in the table (Fig. 6-43).What speed keeps the cylin-
der at rest?

�

••49 In Fig. 6-39, a car is driven at constant speed over a circu-
lar hill and then into a circular valley with the same radius. At the
top of the hill, the normal force on the driver from the car seat is 0.
The driver’s mass is 70.0 kg. What is the magnitude of the normal
force on the driver from the seat when the car passes through the
bottom of the valley?

Radius

Radius

Figure 6-39 Problem 49.

••50 An 85.0 kg passenger is made to move along a circular path
of radius r � 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the
plot’s slope at v � 8.30 m/s? (b) Figure 6-40b is a plot of F for a
range of possible values of T, the period of the motion. What is the
plot’s slope at T � 2.50 s?

••51 An airplane is fly-
ing in a horizontal circle at a speed of
480 km/h (Fig. 6-41). If its wings are
tilted at angle u � 40� to the horizon-
tal, what is the radius of the circle in
which the plane is flying? Assume
that the required force is provided
entirely by an “aerodynamic lift” that
is perpendicular to the wing surface.

••52 An amusement park
ride consists of a car moving in a ver-
tical circle on the end of a rigid boom
of negligible mass. The combined weight of the car and riders is 5.0
kN, and the circle’s radius is 10 m. At the top of the circle, what
are the (a) magnitude FB and (b) direction (up or down) of
the force on the car from the boom if the car’s speed is v � 5.0 m/s?
What are (c) FB and (d) the direction if v � 12 m/s? 

••53 An old streetcar rounds a flat corner of radius 9.1 m, at
16 km/h. What angle with the vertical will be made by the loosely
hanging hand straps?

••54 In designing circular rides for amusement parks,
mechanical engineers must consider how small variations in cer-
tain parameters can alter the net force on a passenger. Consider a
passenger of mass m riding around a horizontal circle of radius r at
speed v. What is the variation dF in the net force magnitude for
(a) a variation dr in the radius with v held constant, (b) a variation
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•••59 In Fig. 6-45, a 1.34 kg
ball is connected by means of two mass-
less strings, each of length L 1.70 m, to
a vertical, rotating rod.The strings are tied
to the rod with separation d � 1.70 m and
are taut. The tension in the upper string is
35 N. What are the (a) tension in the lower
string, (b) magnitude of the net force 
on the ball, and (c) speed of the ball? (d)
What is the direction of ?F

:

net

F
:

net

�

ILWSSM 63 In Fig. 6-49, a 49 kg rock climber is climbing a “chim-
ney.” The coefficient of static friction between her shoes and the
rock is 1.2; between her back and the rock is 0.80. She has reduced
her push against the rock until her back and her shoes are on the
verge of slipping. (a) Draw a free-body diagram of her. (b) What is
the magnitude of her push against the rock? (c) What fraction of
her weight is supported by the frictional force on her shoes?

m1

m2

θ 
Figure 6-46 Problem 60.

61 A block of mass mt � 4.0 kg is put on top of a block of
mass mb 5.0 kg. To cause the top block to slip on the bottom one
while the bottom one is held fixed, a horizontal force of at least 12
N must be applied to the top block. The assembly of blocks is now
placed on a horizontal, frictionless table (Fig. 6-47). Find the mag-
nitudes of (a) the maximum horizontal force that can be applied
to the lower block so that the blocks will move together and (b) the
resulting acceleration of the blocks.
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Fmb

Figure 6-47 Problem 61.

62 A 5.00 kg stone is rubbed across the horizontal ceiling of a
cave passageway (Fig. 6-48). If the coefficient of kinetic friction is
0.65 and the force applied to the stone is angled at u � 70.0°, what
must the magnitude of the force be for the stone to move at constant
velocity?

Stone

θ 
F

Figure 6-48 Problem 62.

Figure 6-49 Problem 63.

64 A high-speed railway car goes around a flat, horizontal circle
of radius 470 m at a constant speed. The magnitudes of the hori-
zontal and vertical components of the force of the car on a 51.0 kg
passenger are 210 N and 500 N, respectively. (a) What is the magni-
tude of the net force (of all the forces) on the passenger? (b) What
is the speed of the car?

65 Continuation of Problems 8 and 37. Another explana-
tion is that the stones move only when the water dumped on the
playa during a storm freezes into a large, thin sheet of ice. The
stones are trapped in place in the ice. Then, as air flows across
the ice during a wind, the air-drag forces on the ice and stones
move them both, with the stones gouging out the trails. The magni-
tude of the air-drag force on this horizontal “ice sail” is given by
Dice � 4CicerAicev2, where Cice is the drag coefficient (2.0 � 10�3), r
is the air density (1.21 kg/m3), Aice is the horizontal area of the ice,
and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m
by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the
ground and a density of 917 kg/m3. Also assume that 100 stones
identical to the one in Problem 8 are trapped in the ice. To main-
tain the motion of the sheet, what are the required wind speeds (a)
near the sheet and (b) at a height of 10 m? (c) Are these reason-
able values for high-speed winds in a storm?

66 In Fig. 6-50, block 1 of mass m1 2.0 kg and block 2 of
mass m2 3.0 kg are connected by a string of negligible mass and
are initially held in place. Block 2 is on a frictionless surface tilted
at u � 30�. The coefficient of kinetic friction between block 1 and
the horizontal surface is 0.25. The pulley has negligible mass and
friction. Once they are released, the blocks move. What then is the
tension in the string?

�
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m1

m2

Figure 6-50 Problem 66.

Additional Problems
60 In Fig. 6-46, a box of ant aunts (total
mass m1 � 1.65 kg) and a box of ant un-
cles (total mass m2 � 3.30 kg) slide down an inclined plane while
attached by a massless rod parallel to the plane. The angle of in-
cline is u � 30.0°. The coefficient of kinetic friction between the
aunt box and the incline is m1 � 0.226; that between the uncle box
and the incline is m2 � 0.113. Compute (a) the tension in the rod
and (b) the magnitude of the common acceleration of the two
boxes. (c) How would the answers to (a) and (b) change if the un-
cles trailed the aunts?
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Figure 6-45
Problem 59.
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Figure 6-52 Problem 69.
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Figure 6-55 Problem 76.

67 In Fig. 6-51, a crate slides down an inclined right-angled
trough.The coefficient of kinetic friction between the crate and the
trough is mk. What is the acceleration of the crate in terms of mk, u,
and g?

To three significant figures, what is the magnitude of that applied
force if it puts the block on the verge of sliding when the force is
directed (a) horizontally, (b) upward at 60.0� from the horizontal,
and (c) downward at 60.0° from the horizontal?

72 A box of canned goods slides down a ramp from street level
into the basement of a grocery store with acceleration 0.75 m/s2 di-
rected down the ramp. The ramp makes an angle of 40� with the
horizontal. What is the coefficient of kinetic friction between the
box and the ramp?

73 In Fig. 6-54, the coefficient of kinetic friction
between the block and inclined plane is 0.20, and
angle u is 60�. What are the (a) magnitude a and
(b) direction (up or down the plane) of the block’s
acceleration if the block is sliding down the plane?
What are (c) a and (d) the direction if the block is
sent sliding up the plane?

74 A 110 g hockey puck sent sliding over ice is
stopped in 15 m by the frictional force on it from the ice. (a) If its ini-
tial speed is 6.0 m/s, what is the magnitude of the frictional force? (b)
What is the coefficient of friction between the puck and the ice?

75 A locomotive accelerates a 25-car train along a level track.
Every car has a mass of 5.0 � 104 kg and is subject to a frictional
force f � 250v, where the speed v is in meters per second and the
force f is in newtons. At the instant when the speed of the train is
30 km/h, the magnitude of its acceleration is 0.20 m/s2. (a) What
is the tension in the coupling between the first car and the 
locomotive? (b) If this tension is equal to the maximum force the
locomotive can exert on the train, what is the steepest grade up
which the locomotive can pull the train at 30 km/h?

76 A house is built on the top of a hill with a nearby slope at angle 
u � 45� (Fig. 6-55). An engineering study indicates that the slope an-
gle should be reduced because the top layers of soil along the slope
might slip past the lower layers. If the coefficient of static friction be-
tween two such layers is 0.5, what is the least angle f through which
the present slope should be reduced to prevent slippage?

θ 

90°

Figure 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too
fast, the car tends to slide out of the curve. For a banked curve with
friction, a frictional force acts on a fast car to oppose the tendency
to slide out of the curve; the force is directed down the bank (in the
direction water would drain). Consider a circular curve of radius 
R � 200 m and bank angle u, where the coefficient of static friction
between tires and pavement is ms. A car (without negative lift) is
driven around the curve as shown in Fig. 6-11. (a) Find an expres-
sion for the car speed vmax that puts the car on the verge of sliding
out. (b) On the same graph, plot vmax versus angle u for the range 0�
to 50�, first for ms � 0.60 (dry pavement) and then for
ms � 0.050 (wet or icy pavement). In kilometers per hour, evaluate
vmax for a bank angle of u � 10� and for (c) ms � 0.60 and (d) ms �
0.050. (Now you can see why accidents occur in highway curves
when icy conditions are not obvious to drivers, who tend to drive at
normal speeds.)

69 A student, crazed by final exams, uses a force of magnitude
80 N and angle u � 70� to push a 5.0 kg block across the ceiling of
his room (Fig. 6-52). If the coefficient of kinetic friction between the
block and the ceiling is 0.40, what is the magnitude of the block’s 
acceleration?

P
:

70 Figure 6-53 shows a conical
pendulum, in which the bob (the
small object at the lower end of the
cord) moves in a horizontal circle at
constant speed. (The cord sweeps
out a cone as the bob rotates.) The
bob has a mass of 0.040 kg, the
string has length L � 0.90 m and
negligible mass, and the bob follows
a circular path of circumference
0.94 m. What are (a) the tension in
the string and (b) the period of the
motion?

71 An 8.00 kg block of steel is at
rest on a horizontal table. The co-
efficient of static friction between
the block and the table is 0.450. A
force is to be applied to the block.

L

Bob

Cord

r

Figure 6-53 Problem 70.
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Figure 6-54
Problem 73.

77 What is the terminal speed of a 6.00 kg spherical ball that has
a radius of 3.00 cm and a drag coefficient of 1.60? The density of
the air through which the ball falls is 1.20 kg/m3.

78 A student wants to determine the coefficients of static fric-
tion and kinetic friction between a box and a plank. She places
the box on the plank and gradually raises one end of the plank.
When the angle of inclination with the horizontal reaches 30�, the
box starts to slip, and it then slides 2.5 m down the plank in 4.0 s
at constant acceleration. What are (a) the coefficient of static
friction and (b) the coefficient of kinetic friction between the box
and the plank?
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79 Block A in Fig. 6-56 has mass mA � 4.0 kg, and block B has
mass mB 2.0 kg.The coefficient of kinetic friction between block B
and the horizontal plane is mk � 0.50.The inclined plane is frictionless
and at angle u � 30°.The pulley serves only to change the direction
of the cord connecting the blocks. The cord has negligible mass.
Find (a) the tension in the cord and (b) the magnitude of the accel-
eration of the blocks.

�

SSM cal change in the road surface because of the temperature de-
crease. By what percentage must the coefficient decrease if the car
is to be in danger of sliding down the street?

86 A sling-thrower puts a stone (0.250 kg) in the sling’s
pouch (0.010 kg) and then begins to make the stone and pouch
move in a vertical circle of radius 0.650 m. The cord between the
pouch and the person’s hand has negligible mass and will break
when the tension in the cord is 33.0 N or more. Suppose the sling-
thrower could gradually increase the speed of the stone. (a) Will
the breaking occur at the lowest point of the circle or at the highest
point? (b) At what speed of the stone will that breaking occur?

87 A car weighing 10.7 kN and traveling at 13.4 m/s without
negative lift attempts to round an unbanked curve with a radius of
61.0 m. (a) What magnitude of the frictional force on the tires is re-
quired to keep the car on its circular path? (b) If the coefficient of
static friction between the tires and the road is 0.350, is the attempt
at taking the curve successful?

88 In Fig. 6-59, block 1 of mass 
m1 � 2.0 kg and block 2 of mass 
m2 � 1.0 kg are connected by a
string of negligible mass. Block 2 is
pushed by force of magnitude 20
N and angle u � 35�. The coefficient
of kinetic friction between each block and the horizontal surface is
0.20.What is the tension in the string?

89 A filing cabinet weighing 556 N rests on the floor. The
coefficient of static friction between it and the floor is 0.68, and the
coefficient of kinetic friction is 0.56. In four different attempts to
move it, it is pushed with horizontal forces of magnitudes (a) 222 N,
(b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate the
magnitude of the frictional force on it from the floor. (The cabinet is
initially at rest.) (e) In which of the attempts does the cabinet move?

90 In Fig. 6-60, a block weighing 22 N is held at
rest against a vertical wall by a horizontal force 
of magnitude 60 N. The coefficient of static friction
between the wall and the block is 0.55, and the co-
efficient of kinetic friction between them is 0.38. In
six experiments, a second force is applied to the
block and directed parallel to the wall with these
magnitudes and directions: (a) 34 N, up, (b) 12 N,
up, (c) 48 N, up, (d) 62 N, up, (e) 10 N, down, and
(f) 18 N, down. In each experiment, what is the
magnitude of the frictional force on the block? In
which does the block move (g) up the wall and (h) down the wall?
(i) In which is the frictional force directed down the wall?

91 A block slides with constant velocity down an inclined
plane that has slope angle .The block is then projected up the same
plane with an initial speed v0. (a) How far up the plane will it move
before coming to rest? (b) After the block comes to rest, will it slide
down the plane again? Give an argument to back your answer.

92 A circular curve of highway is designed for traffic moving at
60 km/h. Assume the traffic consists of cars without negative lift.
(a) If the radius of the curve is 150 m, what is the correct angle of
banking of the road? (b) If the curve were not banked, what would
be the minimum coefficient of friction between tires and road that
would keep traffic from skidding out of the turn when traveling at
60 km/h?
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Figure 6-56 Problem 79.

80 Calculate the magnitude of the drag force on a missile 53 cm
in diameter cruising at 250 m/s at low altitude, where the density of
air is 1.2 kg/m3. Assume C � 0.75.

81 A bicyclist travels in a circle of radius 25.0 m at a con-
stant speed of 9.00 m/s.The bicycle–rider mass is 85.0 kg. Calculate
the magnitudes of (a) the force of friction on the bicycle from the
road and (b) the net force on the bicycle from the road.

82 In Fig. 6-57, a stuntman drives
a car (without negative lift) over
the top of a hill, the cross section of
which can be approximated by a
circle of radius R � 250 m. What is
the greatest speed at which he can
drive without the car leaving the road at the top of the hill?

83 You must push a crate across a floor to a docking bay. The
crate weighs 165 N. The coefficient of static friction between crate
and floor is 0.510, and the coefficient of kinetic friction is 0.32.
Your force on the crate is directed horizontally. (a) What magni-
tude of your push puts the crate on the verge of sliding? (b) With
what magnitude must you then push to keep the crate moving at a
constant velocity? (c) If, instead, you then push with the same
magnitude as the answer to (a), what is the magnitude of the
crate’s acceleration?

84 In Fig. 6-58, force is applied
to a crate of mass m on a floor
where the coefficient of static fric-
tion between crate and floor is ms.
Angle u is initially 0� but is gradu-
ally increased so that the force vec-
tor rotates clockwise in the figure. During the rotation, the mag-
nitude F of the force is continuously adjusted so that the crate is
always on the verge of sliding. For ms � 0.70, (a) plot the ratio
F/mg versus u and (b) determine the angle uinf at which the ratio
approaches an infinite value. (c) Does lubricating the floor in-
crease or decrease uinf, or is the value unchanged? (d) What is uinf

for ms � 0.60?

85 In the early afternoon, a car is parked on a street that runs
down a steep hill, at an angle of 35.0� relative to the horizontal. Just
then the coefficient of static friction between the tires and the
street surface is 0.725. Later, after nightfall, a sleet storm hits the
area, and the coefficient decreases due to both the ice and a chemi-
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93 A 1.5 kg box is initially at rest on a horizontal surface when at
t � 0 a horizontal force (with t in seconds) is applied
to the box. The acceleration of the box as a function of time t is
given by for 0 � t � 2.8 s and for t �
2.8 s. (a) What is the coefficient of static friction between the box
and the surface? (b) What is the coefficient of kinetic friction be-
tween the box and the surface?

94 A child weighing 140 N sits at rest at the top of a playground
slide that makes an angle of 25� with the horizontal.The child keeps
from sliding by holding onto the sides of the slide. After letting go
of the sides, the child has a constant acceleration of 0.86 m/s2 (down
the slide, of course). (a) What is the coefficient of kinetic friction be-
tween the child and the slide? (b) What maximum and minimum
values for the coefficient of static friction between the child and the
slide are consistent with the information given here?

95 In Fig. 6-61 a fastidious worker
pushes directly along the handle of
a mop with a force . The handle is
at an angle u with the vertical, and
ms and mk are the coefficients of
static and kinetic friction between
the head of the mop and the floor.
Ignore the mass of the handle and
assume that all the mop’s mass m is
in its head. (a) If the mop head
moves along the floor with a con-
stant velocity, then what is F? (b) Show that if u is less than a cer-
tain value u0, then (still directed along the handle) is unable to
move the mop head. Find u0.

96 A child places a picnic basket on the outer rim of a merry-
go-round that has a radius of 4.6 m and revolves once every 30 s.
(a) What is the speed of a point on that rim? (b) What is the lowest
value of the coefficient of static friction between basket and
merry-go-round that allows the basket to stay on the ride?

97 A warehouse worker exerts a constant horizontal force
of magnitude 85 N on a 40 kg box that is initially at rest on the hor-
izontal floor of the warehouse.When the box has moved a distance
of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic fric-
tion between the box and the floor?

98 In Fig. 6-62, a 5.0 kg block is sent sliding up a plane inclined at
u � 37° while a horizontal force of magnitude 50 N acts on it.
The coefficient of kinetic friction between block and plane is 0.30.
What are the (a) magnitude and (b) direction (up or down the
plane) of the block’s acceleration? The block’s initial speed is 4.0
m/s. (c) How far up the plane does the block go? (d) When it
reaches its highest point, does it remain at rest or slide back down
the plane?
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99 An 11 kg block of steel is at rest on a horizontal table. The
coefficient of static friction between block and table is 0.52. (a)
What is the magnitude of the horizontal force that will put the
block on the verge of moving? (b) What is the magnitude of a
force acting upward 60� from the horizontal that will put the
block on the verge of moving? (c) If the force acts downward at
60� from the horizontal, how large can its magnitude be without
causing the block to move?

100 A ski that is placed on snow will stick to the snow. However,
when the ski is moved along the snow, the rubbing warms and par-
tially melts the snow, reducing the coefficient of kinetic friction
and promoting sliding.Waxing the ski makes it water repellent and
reduces friction with the resulting layer of water. A magazine 
reports that a new type of plastic ski is especially water repellent
and that, on a gentle 200 m slope in the Alps, a skier reduced his
top-to-bottom time from 61 s with standard skis to 42 s with the
new skis. Determine the magnitude of his average acceleration
with (a) the standard skis and (b) the new skis. Assuming a 3.0�
slope, compute the coefficient of kinetic friction for (c) the stan-
dard skis and (d) the new skis.

101 Playing near a road construction site, a child falls over a
barrier and down onto a dirt slope that is angled downward at 35�
to the horizontal. As the child slides down the slope, he has an
acceleration that has a magnitude of 0.50 m/s2 and that is directed
up the slope. What is the coefficient of kinetic friction between the
child and the slope?

102 A 100 N force, directed at an angle u above a horizontal
floor, is applied to a 25.0 kg chair sitting on the floor. If u � 0�, what
are (a) the horizontal component Fh of the applied force and
(b) the magnitude FN of the normal force of the floor on the chair?
If u � 30.0�, what are (c) Fh and (d) FN? If u � 60.0�, what are (e) Fh

and (f) FN? Now assume that the coefficient of static friction be-
tween chair and floor is 0.420. Does the chair slide or remain at rest
if u is (g) 0�, (h) 30.0�, and (i) 60.0�?

103 A certain string can withstand a maximum tension of 40 N
without breaking. A child ties a 0.37 kg stone to one end and, hold-
ing the other end, whirls the stone in a vertical circle of radius 0.91
m, slowly increasing the speed until the string breaks. (a) Where is
the stone on its path when the string breaks? (b) What is the speed
of the stone as the string breaks?

104 A four-person bobsled (total mass � 630 kg) comes
down a straightaway at the start of a bobsled run.The straightaway
is 80.0 m long and is inclined at a constant angle of 10.2� with the
horizontal. Assume that the combined effects of friction and air
drag produce on the bobsled a constant force of 62.0 N that acts
parallel to the incline and up the incline. Answer the following
questions to three significant digits. (a) If the speed of the bobsled
at the start of the run is 6.20 m/s, how long does the bobsled take to
come down the straightaway? (b) Suppose the crew is able to re-
duce the effects of friction and air drag to 42.0 N. For the same ini-
tial velocity, how long does the bobsled now take to come down the
straightaway?

105 As a 40 N block slides down a plane that is inclined at 25� to
the horizontal, its acceleration is 0.80 m/s2, directed up the plane.
What is the coefficient of kinetic friction between the block and
the plane?

θ F

Figure 6-61 Problem 95.

F

θ 

Figure 6-62 Problem 98.



What Is Physics?
One of the fundamental goals of physics is to investigate something that every-
one talks about: energy. The topic is obviously important. Indeed, our civilization
is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of an
office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use energy.
Wars have been started because of energy resources. Wars have been ended
because of a sudden, overpowering use of energy by one side. Everyone knows
many examples of energy and its use, but what does the term energy really mean?

What Is Energy?
The term energy is so broad that a clear definition is difficult to write.Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict the
outcomes of experiments and, even more important, to build machines, such as fly-
ing machines. This success is based on a wonderful property of our universe:
Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing
money in many types of bank accounts. Rules have been made about what such
money numbers mean and how they can be changed. You can transfer money
numbers from one account to another or from one system to another, perhaps

C H A P T E R  7

Kinetic Energy and Work

7-1 KINETIC ENERGY

After reading this module, you should be able to . . .

7.01 Apply the relationship between a particle’s kinetic
energy, mass, and speed.

7.02 Identify that kinetic energy is a scalar quantity.

Key Idea

Learning Objectives

149149

● The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

(kinetic energy).K � 1
2 mv2



electronically with nothing material actually moving. However, the total amount
(the total of all the money numbers) can always be accounted for: It is always
conserved. In this chapter we focus on only one type of energy (kinetic energy)
and on only one way in which energy can be transferred (work).

Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

(kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg �m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named
for James Prescott Joule, an English scientist of the 1800s and defined as

1 joule � 1 J � 1 kg �m2/s2. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

K � 1
2mv2
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Sample Problem 7.01 Kinetic energy, train crash

In 1896 in Waco,Texas,William Crush parked two locomotives
at opposite ends of a 6.4-km-long track, fired them up, tied
their throttles open, and then allowed them to crash head-on at
full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of
people were hurt by flying debris; several were killed.
Assuming each locomotive weighed 1.2 � 106 N and its accel-
eration was a constant 0.26 m/s2, what was the total kinetic en-
ergy of the two locomotives just before the collision?

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

With v0 � 0 and x � x0 � 3.2 � 103 m (half the initial sepa-
ration), this yields

v2 � 0 � 2(0.26 m/s2)(3.2 � 103 m),

or v � 40.8 m/s � 147 km/h.

v2 � v0
2 � 2a(x � x0).

Figure 7-1 The aftermath of an 1896 crash of two locomotives.

Courtesy Library of Congress

We can find the mass of each locomotive by dividing its
given weight by g:

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

(Answer)

This collision was like an exploding bomb.

� 2.0 � 108 J.

K � 2(1
2 mv2) � (1.22 � 105 kg)(40.8 m/s)2

m �
1.2 � 106 N

9.8 m/s2 � 1.22 � 105 kg.

Additional examples, video, and practice available at WileyPLUS



Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (� 1
2 mv2)
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7-2 WORK AND KINETIC ENERGY

After reading this module, you should be able to . . .

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle
or unit-vector notation.

7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work–kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

● Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

● The work done on a particle by a constant force during
displacement is

(work, constant force),

in which f is the constant angle between the directions of 
and .

● Only the component of that is along the displacement 
can do work on the object. 

d
:

F
:

d
:

F
:

W � Fd cos f � F
:

� d
:

d
:

F
:

● When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force of those forces.

● For a particle, a change �K in the kinetic energy equals the
net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem),

in which Ki is the initial kinetic energy of the particle and Kf is
the kinetic energy after the work is done. The equation
rearranged gives us

Kf � Ki � W.

F
:

net

Learning Objectives

Key Ideas

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.



Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx � max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term is the kinetic energy Kf of the bead at the end of the displacement
d, and the second term is the kinetic energy Ki of the bead at the start. Thus, the
left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and
the right side tells us the change is equal to Fxd. Therefore, the work W done on
the bead by the force (the energy transfer due to the force) is

W � Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W.

1
2 mv2 �

1
2 mv0

2 � Fxd.

v2 � v0
2 � 2axd.

v:v:0

d
:

F
:
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To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.
The force component perpendicular to the displacement does zero work.

Figure 7-2 A constant force directed at
angle f to the displacement of a bead
on a wire accelerates the bead along the
wire, changing the velocity of the bead
from to . A “kinetic energy gauge”
indicates the resulting change in the kinet-
ic energy of the bead, from the value Ki to
the value Kf.
In WileyPLUS, this figure is available as
an animation with voiceover.

v:v:0

d
:

F
:

A

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W � Fd cos f (work done by a constant force). (7-7)

F
:

d
:

xx
Bead

Wireφ

F

Ki

Kf

v

v0

This component
does no work.

Small initial
kinetic energy

Larger final
kinetic energy

This force does positive work
on the bead, increasing speed
and kinetic energy.

This component
does work.

φ

F

φ

F

φ

F

Displacement d



We can use the definition of the scaler (dot) product (Eq. 3-20) to write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scaler
products in Module 3-3.) Equation 7-8 is especially useful for calculating the
work when and are given in unit-vector notation.

Cautions. There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90�, then cos f is
positive and thus so is the work. However, if f is greater than 90� (up to 180�), then
cos f is negative and thus so is the work. (Can you see that the work is zero when
f � 90�?) These results lead to a simple rule. To find the sign of the work done by a
force,consider the force vector component that is parallel to the displacement:

d
:

F
:

F
:

.

W � F
:

� d
:
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Figure 7-3 A contestant in a bed race. We
can approximate the bed and its occupant
as being a particle for the purpose of cal-
culating the work done on them by the
force applied by the contestant.

F

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N �m). The corresponding unit in the British system is the foot-pound
(ft � lb). Extending Eq. 7-2, we have

1 J � 1 kg �m2/s2 � 1 N �m � 0.738 ft � lb. (7-9)

Net Work. When two or more forces act on an object, the net work done on
the object is the sum of the works done by the individual forces. We can
calculate the net work in two ways. (1) We can find the work done by each force
and then sum those works. (2) Alternatively, we can first find the net force 
of those forces. Then we can use Eq. 7-7, substituting the magnitude Fnet for F
and also the angle between the directions of and for f. Similarly, we can
use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (� Fxd) done on the bead. ForKf � 1
2 mv2Ki � 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

such particle-like objects, we can generalize that equation. Let �K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

�K � Kf � Ki � W, (7-10)

which says that

We can also write

Kf � Ki � W, (7-11)

which says that

.� kinetic energy after
the net work is done� � � kinetic energy 

before the net work� � � the net
work done�

�change in the kinetic
energy of a particle � � �net work done on

the particle �.



done on the safe by the normal force from the floor?

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg � mgd cos 90� � mgd(0) � 0 (Answer)

and WN � FNd cos 90� � FNd(0) � 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .F

:

2F
:

1

F
:

N

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.
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Checkpoint 1
A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from �3 m/s to �2 m/s
and (b) from �2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

Sample Problem 7.02 Work done by two constant forces, industrial spies

8.50 m. The push of spy 001 is 12.0 N at an angle of 30.0�
downward from the horizontal; the pull of spy 002 isF

:

2

F
:

1

Figure 7-4 (a) Two spies move a floor safe through a displacement
. (b) A free-body diagram for the safe.d

:

(a)

Safe

(b)

40.0°
30.0°

Spy 001 
Spy 002 

Fg

FN

F1

F2

d

Only force components
parallel to the displacement
do work.

(b) During the displacement, what is the work Wg done on the
safe by the gravitational force and what is the work WNF

:

g

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnituded

:

10.0 N at 40.0� above the horizontal. The magnitudes and di-
rections of these forces do not change as the safe moves, and
the floor and safe make frictionless contact.

(a) What is the net work done on the safe by forces and 
during the displacement ?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W � Fd cos f) or Eq. 7-8 to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 � F1d cos f1 � (12.0 N)(8.50 m)(cos 30.0�)

� 88.33 J,

and the work done by is

W2 � F2d cos f2 � (10.0 N)(8.50 m)(cos 40.0�)

� 65.11 J.

Thus, the net work W is

W � W1 � W2 � 88.33 J � 65.11 J

� 153.4 J � 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

F
:

2

F
:

1

(W � F
:

� d
:

)

d
:

F
:

2F
:

1
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Calculations: We relate the speed to the work done by
combining Eqs. 7-10 (the work–kinetic energy theorem) and
7-1 (the definition of kinetic energy):

The initial speed vi is zero, and we now know that the work

W � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2.

done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer)� 1.17 m/s.

vf � A
2W
m

� A
2(153.4 J)

225 kg

Sample Problem 7.03 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W �
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î � î, ĵ � ĵ, and
k̂ �k̂ are nonzero (see Appendix E). Here we obtain

W � (2.0 N)(�3.0 m)î � î � (�6.0 N)(�3.0 m)ĵ � î

� (�6.0 J)(1) � 0 � �6.0 J. (Answer)

W � F
:

� d
:

� [(2.0 N)î � (�6.0 N)ĵ] � [(�3.0 m)î].

d
:

F
:

(W � F
:

� d
:

)

(2.0 N)î � (�6.0 N)ĵF
:

�

d
:

� (�3.0 m)î

Figure 7-5 Force slows a
crate during displacement .d

:
F
:

y

x
F

d

The parallel force component does
negative work, slowing the crate.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf � Ki � W � 10 J � (�6.0 J) � 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Additional examples, video, and practice available at WileyPLUS
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Learning Objectives

7.08 Apply the work–kinetic energy theorem to situations
where an object is lifted or lowered.

● The work Wg done by the gravitational force on a
particle-like object of mass m as the object moves through a
displacement is given by

Wg � mgd cos f,

in which f is the angle between and .

● The work Wa done by an applied force as a particle-like
object is either lifted or lowered is related to the work Wg

d
:

F
:

g

d
:

F
:

g done by the gravitational force and the change �K in the
object’s kinetic energy by

�K � Kf � Ki � Wa � Wg.

If Kf � Ki, then the equation reduces to

Wa � �Wg,

which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.

After reading this module, you should be able to . . . 

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas
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Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomatoKi � 1

2 mv2
0

Figure 7-6 Because the gravitational force 
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity to
velocity during displacement . A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (� 1
2 mv2)Ki (�

1
2 mv2

0)

d
:

v:
v:0

F
:

g

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.

rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energyF
:

g
decreases because does work on the tomato as it rises. Because we can treatF

:

g

Figure 7-7 (a) An applied force lifts an
object. The object’s displacement makes
an angle f � 180� with the gravitational
force on the object. The applied force
does positive work on the object. (b) An
applied force lowers an object. The dis-
placement of the object makes an angle
f with the gravitational force . The
applied force does negative work on the
object.

F
:

g� 0�
d
:

F
:

F
:

g

d
:

F
:

(Fig. 7-7a), then f � 180� and the work done by the applied force equals mgd.

the tomato as a particle, we can use Eq. 7-7 (W � Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:

g.Thus, the work Wg done by the gravitational force F
:

g is

Wg � mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus, f � 180� and

Wg � mgd cos 180� � mgd(�1) � �mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg � mgd cos 0� � mgd(�1) � �mgd. (7-14)

The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the falling object (it speeds up, of course).

Work Done in Lifting and Lowering an Object
Now suppose we lift a particle-like object by applying a vertical force to it.
During the upward displacement, our applied force does positive work Wa on the
object while the gravitational force does negative work Wg on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change �K in the kinetic energy of the
object due to these two energy transfers is

�K � Kf � Ki � Wa � Wg, (7-15)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy to the object while our
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from
the floor to a shelf), then Kf and Ki are both zero, and Eq. 7-15 reduces to

Wa � Wg � 0

or Wa � �Wg. (7-16)

Note that we get the same result if Kf and Ki are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from
the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as

Wa � �mgd cos f (work done in lifting and lowering; Kf � Ki), (7-17)

with f being the angle between and . If the displacement is vertically upwardd
:

F
:

g

F
:

d
:

F
:

g

d
:

d
:

(a)

Fg

F

d

Object

Does
positive
work

Upward
displacement

Does
negative
work

(b)

Fg

F

d

Object

Does
positive
work

Downward
displacement

Does
negative
work
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If the displacement is vertically downward (Fig. 7-7b), then f � 0� and the work
done by the applied force equals �mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift.They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor
to over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of
the mug and d is the distance you lift it.

The angle f between the displacement and this force com-
ponent is 180�. So we can apply Eq. 7-7 to write

Sample Problem 7.04 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the ob-
ject starts and ends at rest and thus has no overall change in
its kinetic energy (that is important). Figure 7-8a shows the
situation. A rope pulls a 200 kg sleigh (which you may know)
up a slope at incline angle u � 30�, through distance d � 20 m.
The sleigh and its contents have a total mass of 200 kg. The
snowy slope is so slippery that we take it to be frictionless.
How much work is done by each force acting on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in magnitude
and direction and thus we can calculate the work done by
each with Eq. 7-7 (W � Fd cos f) in which f is the angle be-
tween the force and the displacement. We reach the same
result with Eq. 7-8 (W � � ) in which we take a dot prod-
uct of the force vector and displacement vector. (2) We can
relate the net work done by the forces to the change in
kinetic energy (or lack of a change, as here) with the
work–kinetic energy theorem of Eq. 7-10 (�K � W).

Calculations: The first thing to do with most physics prob-
lems involving forces is to draw a free-body diagram to organ-
ize our thoughts. For the sleigh, Fig.7-8b is our free-body dia-
gram, showing the gravitational force , the force from theT

:
F
:

g

d
:

F
:

rope, and the normal force from the slope.

Work WN by the normal force. Let’s start with this easy cal-
culation. The normal force is perpendicular to the slope and
thus also to the sleigh’s displacement.Thus the normal force
does not affect the sleigh’s motion and does zero work. To
be more formal, we can apply Eq. 7-7 to write

WN � FNd cos 90� � 0. (Answer)

Work Wg by the gravitational force. We can find the work
done by the gravitational force in either of two ways (you
pick the more appealing way). From an earlier discussion
about ramps (Sample Problem 5.04 and Fig. 5-15), we know
that the component of the gravitational force along the
slope has magnitude mg sin u and is directed down the
slope.Thus the magnitude is

Fgx � mg sin u � (200 kg)(9.8 m/s2) sin 30�

� 980 N.

FN
:

Wg � Fgxd cos 180� � (980 N)(20 m)(�1)

Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The free-
body diagram for the sleigh.

θ

d

FN

T

Fg

mg cosu

mg sinu

(b)

(a)

u

Does
positive workDoes negative work

x

��1.96 � 104 J. (Answer)

The negative result means that the gravitational force re-
moves energy from the sleigh.

The second (equivalent) way to get this result is to use
the full gravitational force instead of a component. TheF

:

g

angle between and is 120� (add the incline angle 30�d
:

F
:

g

to 90�). So, Eq. 7-7 gives us

Wg � Fgd cos 120� � mgd cos 120�

� (200 kg)(9.8 m/s2)(20 m) cos 120�

��1.96 � 104 J. (Answer)

Work WT by the rope’s force. We have two ways of calculat-
ing this work. The quickest way is to use the work–kinetic en-
ergy theorem of Eq. 7-10 (�K � W), where the net work W
done by the forces is WN � Wg � WT and the change �K in the
kinetic energy is just zero (because the initial and final kinetic
energies are the same—namely, zero). So, Eq. 7-10 gives us

0 � WN � Wg � WT � 0 � 1.96 � 104 J � WT

and WT � 1.96 � l04 J. (Answer)
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Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m � 500 kg is descending with speed
vi � 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration (Fig. 7-9a).

(a) During the fall through a distance d � 12 m, what is the
work Wg done on the cab by the gravitational force ?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12 
(Wg � mgd cos f) to find the work Wg.

Calculation: From Fig. 7-9b, we see that the angle between
the directions of F

:

g and the cab’s displacement is 0�. So,

Wg � mgd cos 0� � (500 kg)(9.8 m/s2)(12 m)(1)

� 5.88 � 104 J � 59 kJ. (Answer)

(b) During the 12 m fall, what is the work WT done on the
cab by the upward pull of the elevator cable?

KEY IDEA

We can calculate work WT with Eq. 7-7 (W � Fd cos f)  by
first writing Fnet,y � may for the components in Fig. 7-9b.

Calculations: We get

T � Fg � ma. (7-18)

Solving for T, substituting mg for Fg, and then substituting
the result in Eq. 7-7, we obtain

WT � Td cos f � m(a � g)d cos f. (7-19)

Next, substituting �g/5 for the (downward) acceleration a
and then 180� for the angle f between the directions of
forces and , we find

(Answer)� �4.70 � 10 4 J � �47 kJ.

�
4
5

 (500 kg)(9.8 m/s2)(12 m) cos 180�

WT � m��
g
5

� g� d cos � �
4
5

mgd cos �

mg:T
:

T
:

d
:

F
:

g

a: � g:/5
Figure 7-9 An elevator
cab, descending with
speed vi, suddenly 
begins to accelerate
downward. (a) It
moves through a dis-
placement with
constant acceleration

(b) A free-
body diagram for the
cab, displacement
included.

a: � g:/5.

d
:

Caution: Note that WT is not simply the negative of Wg be-
cause the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W � Wg � WT � 5.88 � 104 J � 4.70 � 104 J

� 1.18 � 104 J � 12 kJ. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq. 7-11 (Kf � Ki � W).

Calculation: From Eq. 7-1, we write the initial kinetic
energy as .We then write Eq. 7-11 as

(Answer)� 1.58 � 104 J � 16 kJ.

� 1
2(500 kg)(4.0 m/s)2 � 1.18 � 104 J

Kf � Ki � W � 1
2 mvi

2 � W

Ki � 1
2mvi

2

Additional examples, video, and practice available at WileyPLUS

Instead of doing this, we can apply Newton’s second law for
motion along the x axis to find the magnitude FT of the rope’s
force. Assuming that the acceleration along the slope is zero
(except for the brief starting and stopping), we can write

Fnet,x � max,

FT � mg sin 30� � m(0),
to find

FT � mg sin 30�.

This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two
vectors is zero. So, we can now write Eq. 7-7 to find the work
done by the rope’s force:

WT � FTd cos 0� � (mg sin 30�)d cos 0�

� (200 kg)(9.8 m/s2)(sin 30�)(20 m) cos 0�

� 1.96 � 104 J. (Answer)

Elevator
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Cab

(b)(a)

a

d
Fg

T
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work
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work
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Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-10a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-10b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-10c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-10 an x axis has been placed parallel to the length of the spring, with
the origin (x � 0) at the position of the free end when the spring is in its relaxed

F
:

s � �kd
:

d
:

F
:

s

7-4 WORK DONE BY A SPRING FORCE
Learning Objectives

position of the object or by using the known generic result
of that integration.

7.12 Calculate work by graphically integrating on a graph of
force versus position of the object.

7.13 Apply the work–kinetic energy theorem to situations in
which an object is moved by a spring force.

● The force from a spring is

(Hooke’s law),

where is the displacement of the spring’s free end from
its position when the spring is in its relaxed state (neither
compressed nor extended), and k is the spring constant 
(a measure of the spring’s stiffness). If an x axis lies along the
spring, with the origin at the location of the spring’s free end
when the spring is in its relaxed state, we can write

Fx � �kx (Hooke’s law).

d
:

F
:

s � �kd
:

F
:

s ● A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

● If an object is attached to the spring’s free end, the work Ws

done on the object by the spring force when the object is
moved from an initial position xi to a final position xf is

If xi � 0 and xf � x, then the equation becomes

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

After reading this module, you should be able to . . . 

7.09 Apply the relationship (Hooke’s law) between the force
on an object due to a spring, the stretch or compression
of the spring, and the spring constant of the spring.

7.10 Identify that a spring force is a variable force.
7.11 Calculate the work done on an object by a spring force

by integrating the force from the initial position to the final

Key Ideas

Figure 7-10 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by , and
the spring is stretched by a positive amount
x. Note the restoring force exerted by
the spring. (c) The spring is compressed by
a negative amount x. Again, note the
restoring force.

F
:

s

d
:

Block
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to spring 

x
0

x
0

x

x

0
x

x = 0
Fx = 0 

x positive
Fx negative

x negative
Fx positive
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state. For this common arrangement, we can write Eq. 7-20 as

Fx � �kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-10a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find this
work by using Eq. 7-7 (W � Fd cos f) because there is no one value of F to plug
into that equation—the value of F increases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation
in F in each segment. (2) Then in each segment, the force has (approximately) a
single value and thus we can use Eq. 7-7 to find the work in that segment. (3)
Then we add up the work results for all the segments to get the total work. Well,
that is our intent, but we don’t really want to spend the next several days adding
up a great many results and, besides, they would be only approximations. Instead,
let’s make the segments infinitesimal so that the error in each work result goes to
zero. And then let’s add up all the results by integration instead of by hand.
Through the ease of calculus, we can do all this in minutes instead of days.

Let the block’s initial position be xi and its later position be xf. Then divide
the distance between those two  positions into many segments, each of tiny length
�x. Label these segments, starting from xi, as segments 1, 2, and so on. As the
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force magni-
tude as being constant within the segment. Label these magnitudes as Fx1 in
segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f � 180�, and so cos f � �1. Then
the work done is �Fx1 �x in segment 1, �Fx2 �x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf, is the sum of all these works:

(7-22)

where j labels the segments. In the limit as �x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)� (�1
2k)[x2]xi

xf � (�1
2 k)(xf

2 � xi
2).

Ws � �xf

xi

�kx dx � �k �xf

xi

x dx

Ws � �xf

xi

�Fx dx.

Ws � � �Fxj �x,
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Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

Work Ws is positive if the block ends up closer to the relaxed position (x � 0) than
it was initially. It is negative if the block ends up farther away from x � 0. It is zero
if the block ends up at the same distance from x � 0.

If xi � 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:

a

Ws � �1
2 kx2

7-4 WORK DONE BY A SPRING FORCE

If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the
work done on it by the spring force.

Checkpoint 2
For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-10 are (a) �3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) �2 cm, 2 cm. In each sit-
uation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the
work by simply multiplying the spring force by the object’s
displacement. The reason is that there is no one value for
the force—it changes. However, we can split the displace-
ment up into an infinite number of tiny parts and then ap-
proximate the force in each as being constant. Integration
sums the work done in all those parts. Here we use the
generic result of the integration.

In Fig. 7-11, a cumin canister of mass m � 0.40 kg slides
across a horizontal frictionless counter with speed v � 0.50 m/s.

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf. Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws � 1
2 kxi

2 � 1
2 kxf

2

Figure 7-11 A canister moves toward a spring.

k
mFrictionless

First touchStop

v

d

The spring force does
negative work, decreasing
speed and kinetic energy.

while the spring force does work Ws. By Eq. 7-10, the change �K in the kinetic en-
ergy of the block due to these two energy transfers is

�K � Kf � Ki � Wa � Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa � �Ws. (7-28)
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Work Done by a General Variable Force
One-Dimensional Analysis
Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.

7-5 WORK DONE BY A GENERAL VARIABLE FORCE

After reading this module, you should be able to . . .

7.14 Given a variable force as a function of position, calculate
the work done by it on an object by integrating the function
from the initial to the final position of the object, in one or
more dimensions.

7.15 Given a graph of force versus position, calculate the
work done by graphically integrating from the initial
position to the final position of the object.

7.16 Convert a graph of acceleration versus position to a
graph of force versus position.

7.17 Apply the work–kinetic energy theorem to situations
where an object is moved by a variable force.

Learning Objectives

● When the force on a particle-like object depends on
the position of the object, the work done by on the ob-
ject while the object moves from an initial position ri with
coordinates (xi, yi, zi) to a final position rf with coordinates
(xf, yf, zf) must be found by integrating the force. If we as-
sume that component Fx may depend on x but not on y or
z, component Fy may depend on y but not on x or z, and
component Fz may depend on z but not on x or y, then the

F
:

F
: work is

● If has only an x component, then this reduces to

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

It then runs into and compresses a spring of spring constant
k � 750 N/m. When the canister is momentarily stopped by
the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work Ws done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (Ws �

, with d replacing x.

2. The work Ws is also related to the kinetic energy of the
canister by Eq. 7-10 (Kf � Ki � W).

3. The canister’s kinetic energy has an initial value of K �
and a value of zero when the canister is momen-

tarily at rest.

1
2 mv2

�1
2 kx2)

Calculations: Putting the first two of these ideas together,
we write the work–kinetic energy theorem for the canister as

Substituting according to the third key idea gives us this
expression:

Simplifying, solving for d, and substituting known data then
give us

(Answer)� 1.2 � 10�2 m � 1.2 cm.

d � vA
m
k

� (0.50 m/s)A
0.40 kg

750 N/m

0 � 1
2 mv2 � �1

2 kd 2.

Kf � Ki � �1
2 kd 2.
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Figure 7-12 (a) A one-dimensional force
plotted against the displacement x of

a particle on which it acts. The particle
moves from xi to xf. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (c) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force
is given by Eq. 7-32 and is represented by
the shaded area between the curve and
the x axis and between xi and xf.

F
:
(x)

Figure 7-12a shows a plot of such a one-dimensional variable force. We want
an expression for the work done on the particle by this force as the particle
moves from an initial point xi to a final point xf. However, we cannot use Eq. 7-7
(W � Fd cos f) because it applies only for a constant force . Here, again, we
shall use calculus. We divide the area under the curve of Fig. 7-12a into a number
of narrow strips of width �x (Fig. 7-12b).We choose �x small enough to permit us
to take the force F(x) as being reasonably constant over that interval.We let Fj,avg

be the average value of F(x) within the jth interval. Then in Fig. 7-12b, Fj,avg is the
height of the jth strip.

With Fj,avg considered constant, the increment (small amount) of work
�Wj done by the force in the jth interval is now approximately given by Eq.
7-7 and is

�Wj � Fj,avg �x. (7-29)

In Fig. 7-12b, �Wj is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves

from xi to xf, we add the areas of all the strips between xi and xf in Fig. 7-12b:

W � � �x. (7-30)

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-12b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width �x and
using more strips (Fig. 7-12c). In the limit, we let the strip width approach
zero; the number of strips then becomes infinitely large and we have, as an ex-
act result,

(7-31)

This limit is exactly what we mean by the integral of the function F(x) between
the limits xi and xf.Thus, Eq. 7-31 becomes

(work: variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits xi and
xf (shaded in Fig. 7-12d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

� Fx � Fy � Fz , (7-33)

in which the components Fx, Fy, and Fz can depend on the position of the particle;
that is, they can be functions of that position. However, we make three simplifica-
tions: Fx may depend on x but not on y or z, Fy may depend on y but not on x or z,
and Fz may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement

� dx � dy � dz . (7-34)

The increment of work dW done on the particle by during the displacement 
is, by Eq. 7-8,

(7-35)dW � F
:

� dr: � Fx dx � Fy dy � Fz dz.

dr:F
:

k̂ĵîdr:

k̂ĵîF
:

W � �xf

xi

F(x) dx

W � lim
�x : 0

�Fj,avg �x.

�Fj,avg��Wj

F
: F(x)

xxi xf0
(a)

Work is equal to the
area under the curve.

F(x)

xxi xf

Fj, avg

Δ   x
0

(b)

ΔWj

We can approximate that area 
with the area of these strips.

F(x)

xxi xf0
Δ   x(c)

We can do better with
more, narrower strips.

F(x)

xxi xf0

W

(d)

For the best, take the limit of 
strip widths going to zero.



164 CHAPTER 7 KINETIC ENERGY AND WORK

Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor
as a force acts on it, starting at x1 � 0 and ending at x3 � 6.5 m.
As the block moves, the magnitude and direction of the
force varies according to the graph shown in Fig. 7-13a. For

The work W done by while the particle moves from an initial position ri having
coordinates (xi, yi, zi) to a final position rf having coordinates (xf, yf, zf) is then

(7-36)

If has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work–Kinetic Energy Theorem with a Variable Force
Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work–kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a
net force F(x) that is directed along that axis. The work done on the particle
by this force as the particle moves from position xi to position xf is given by
Eq. 7-32 as

(7-37)

in which we use Newton’s second law to replace F(x) with ma. We can write the
quantity ma dx in Eq. 7-37 as

(7-38)

From the chain rule of calculus, we have

(7-39)

and Eq. 7-38 becomes

(7-40)

Substituting Eq. 7-40 into Eq. 7-37 yields

(7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W � Kf � Ki � �K,

which is the work–kinetic energy theorem.

� 1
2 mvf

2 � 1
2 mvi

2.

W � �vf

vi

mv dv � m �vf

vi

v dv

ma dx � m
dv
dx

v dx � mv dv.

dv
dt

�
dv
dx

dx
dt

�
dv
dx

v,

ma dx � m
dv
dt

dx.

W � �xf

xi

F(x) dx � �xf

xi

ma dx,

F
:

W � �rf

ri

dW � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

F
:

example, from x � 0 to x � 1 m, the force is positive (in
the positive direction of the x axis) and increases in mag-
nitude from 0 to 40 N. And from x � 4 m to x � 5 m, the
force is negative and increases in magnitude from 0 to 20 N.
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Additional examples, video, and practice available at WileyPLUS

2
0

�20

40

4 6

20 4 6

x (m)

x (m)

F (N)

(a)

(b)

v1 v2 v3
F F

Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
a floor, (b) The location of the block at several times.

Again using the definition of kinetic energy, we find

and then

(Answer)

This is the block’s greatest speed because from x � 4.0 m to
x � 6.5 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
area between the plot and the x axis is

This means that the work done by the force in that range is
�35 J. At x � 4.0, the block has K � 400 J. At x � 6.5 m, the
work–kinetic energy theorem tells us that its kinetic energy is

Again using the definition of kinetic energy, we find

and then

(Answer)

The block is still moving in the positive direction of the
x axis, a bit faster than initially.

v3 � 9.55 m/s � 9.6 m/s.

365 J � 1
2(8.0 kg)v2

3,

K3 � 1
2mv2

3,

� 400 J � 35 J � 365 J.

K3 � K2 � W

� 35 J.

1
2(20 N)(1 m) � (20 N)(1 m) � 1

2(20 N)(0.5 m) � 35 N �m

v2 � 10 m/s.

 400 J � 1
2(8.0 kg)v2

2,

K2 � 1
2mv2

2,

(Note that this latter value is displayed as �20 N.) The
block’s kinetic energy at x1 is K1 � 280 J. What is the
block’s speed at x1 � 0, x2 � 4.0 m, and x3 � 6.5 m?

KEY IDEAS

(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (2) We can relate
the kinetic energy Kf at a later point to the initial kinetic Ki

and the work W done on the block by using the work–
kinetic energy theorem of Eq. 7-10 (Kf � Ki � W). (3) We
can calculate the work W done by a variable force F(x) by
integrating the force versus position x. Equation 7-32 tells
us that

We don’t have a function F(x) to carry out the integration,
but we do have a graph of F(x) where we can integrate by
finding the area between the plotted line and the x axis.
Where the plot is above the axis, the work (which is equal to
the area) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x � 0 is easy because
we already know the kinetic energy. So, we just plug the 
kinetic energy into the formula for kinetic energy:

and then

(Answer)

As the block moves from x � 0 to x � 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left, a rectangle in the center, and a
triangle at the right.Their total area is

This means that between x � 0 and x � 4.0 m, the force
does 120 J of work on the block, increasing the kinetic en-
ergy and speed of the block. So, when the block reaches
x � 4.0 m, the work–kinetic energy theorem tells us that
the kinetic energy is

� 280 J � 120 J � 400 J.

K2 � K1 � W

� 120 J.

1
2(40 N)(1 m) � (40 N)(2 m) � 1

2(40 N)(1 m) � 120 N �m

v1 � 8.37 m/s � 8.4 m/s.

 280 J � 1
2(8.0 kg)v2

1,

K1 � 1
2mv2

1,

W � �xf

xi

F(x) dx.

(K � 1
2mv2).
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KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

K � 1
2mv2

F
:

� 7.0 J.

� 3[1
3x

3]2
3 � 4[y]3

0 � [33 � 23] � 4[0 � 3]

W � �3

2
3x2 dx � �0

3
 4 dy � 3 �3

2
x2 dx � 4 �0

3
dy

Sample Problem 7.08 Work, two-dimensional integration

When the force on an object depends on the position of the
object, we cannot find the work done by it on the object by
simply multiplying the force by the displacement. The rea-
son is that there is no one value for the force—it changes.
So, we must find the work in tiny little displacements and
then add up all the work results.We effectively say,“Yes, the
force varies over any given tiny little displacement, but the
variation is so small we can approximate the force as being
constant during the displacement.” Sure, it is not precise, but
if we make the displacements infinitesimal, then our error
becomes infinitesimal and the result becomes precise. But,
to add an infinite number of work contributions by hand
would take us forever, longer than a semester. So, we add
them up via an integration, which allows us to do all this in
minutes (much less than a semester).

Force � (3x2 N) � (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

ĵîF
:

Additional examples, video, and practice available at WileyPLUS

7-6 POWER
Learning Objectives

7.20 Determine the instantaneous power by taking a dot
product of the force vector and an object’s velocity vector,
in magnitude-angle and unit-vector notations.

● The power due to a force is the rate at which that force
does work on an object.

● If the force does work W during a time interval �t, the aver-
age power due to the force over that time interval is

Pavg �
W
�t

.

● Instantaneous power is the instantaneous rate of doing work:

● For a force at an angle f to the direction of travel of the
instantaneous velocity , the instantaneous power is

.P � Fv cos � � F
:

� v:
v:

F
:

P �
dW
dt

.

After reading this module, you should be able to . . . 

7.18 Apply the relationship between average power, the
work done by a force, and the time interval in which that
work is done.

7.19 Given the work as a function of time, find the instanta-
neous power.

Key Ideas

Power
The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time �t, the average
power due to the force during that time interval is

(average power). (7-42)Pavg �
W
�t
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The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t � 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t � 3.0 s.

The SI unit of power is the joule per second. This unit is used so often that it
has a special name, the watt (W), after James Watt, who greatly improved the
rate at which steam engines could do work. In the British system, the unit of
power is the foot-pound per second. Often the horsepower is used. These are
related by

1 watt � 1 W � 1 J/s � 0.738 ft � lb/s (7-44)

and 1 horsepower � 1 hp � 550 ft � lb/s � 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour.Thus,

1 kilowatt-hour � 1 kW �h � (103 W)(3600 s)

� 3.60 � 106 J � 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 � 10�6 kW �h (or more conveniently as 4 mW �h).

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P � Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-14 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

F
:

F
:

v:
F
:

P � F
:

� v:

F
:

� v:,

P �
dW
dt

�
F cos f dx

dt
� F cos f � dx

dt �,

F
:

P �
dW
dt

7-6 POWER

Figure 7-14 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load.

© Reglain/ZUMA

Checkpoint 3
A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the
cord positive, negative, or zero?
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Calculation: We use Eq. 7-47 for each force. For force , at
angle f1 � 180	 to velocity , we have

P1 � F1v cos f1 � (2.0 N)(3.0 m/s) cos 180	

� �6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f2 � 60	 to velocity , we have

P2 � F2v cos f2 � (4.0 N)(3.0 m/s) cos 60	

� 6.0 W. (Answer)

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Pnet � P1 � P2

� �6.0 W � 6.0 W � 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K � 1
2 mv2)

F
:

2

v:F
:

2

F
:

1

v:
F
:

1

Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces

and acting on a box as the box slides rightward across a
frictionless floor. Force is horizontal, with magnitude 2.0 N;F

:

1

F
:

2F
:

1

Additional examples, video, and practice available at WileyPLUS

Figure 7-15 Two forces and act on a box that slides
rightward across a frictionless floor. The velocity of the box is .v:

F
:

2F
:

1

60°
Frictionless F1

F2

v

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

(kinetic energy). (7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

Work Done by a Constant Force The work done on a par-
ticle by a constant force during displacement is

(work, constant force), (7-7, 7-8)

in which f is the constant angle between the directions of and .
Only the component of that is along the displacement can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force of those forces.

Work and Kinetic Energy For a particle, a change �K in the
kinetic energy equals the net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem), (7-10)

F
:

net

d
:

F
:

d
:

F
:

W � Fd cos � � F
:

� d
:

d
:

F
:

K � 1
2 mv2

Review & Summary

in which Ki is the initial kinetic energy of the particle and Kf is the ki-
netic energy after the work is done. Equation 7-10 rearranged gives us

Kf � Ki � W. (7-11)

Work Done by the Gravitational Force The work Wg

done by the gravitational force on a particle-like object of mass
m as the object moves through a displacement is given by

Wg � mgd cos f, (7-12)

in which f is the angle between and .

Work Done in Lifting and Lowering an Object The work
Wa done by an applied force as a particle-like object is either lifted
or lowered is related to the work Wg done by the gravitational
force and the change �K in the object’s kinetic energy by

�K � Kf � Ki � Wa � Wg. (7-15)

If Kf � Ki , then Eq. 7-15 reduces to

Wa � �Wg, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.

d
:

F
:

g

d
:

F
:

g

force is angled upward by 60	 to the floor and has magni-
tude 4.0 N.The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

F
:

2



169QUESTIONS

Fx

F1

–F1

x1 x

(a)

Fx

F1

–F1

x1 x

(b)
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–F1
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(c)

Fx

F1

–F1

x1
x

(d)
Figure 7-18
Question 5.

Spring Force The force from a spring is

(Hooke’s law), (7-20)

where is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

Fx � �kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work Ws done on the object by the spring
force when the object is moved from an initial position xi to a final
position xf is

(7-25)

If xi � 0 and xf � x, then Eq. 7-25 becomes

(7-26)

Work Done by a Variable Force When the force on a particle-
like object depends on the position of the object, the work done by 
on the object while the object moves from an initial position ri with co-
ordinates (xi, yi, zi) to a final position rf with coordinates (xf, yf, zf)

F
:

F
:

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

d
:

F
:

s � �kd
:

F
:

s must be found by integrating the force. If we assume that component
Fx may depend on x but not on y or z, component Fy may depend on y
but not on x or z, and component Fz may depend on z but not on x or
y, then the work is

(7-36)

If has only an x component, then Eq. 7-36 reduces to

(7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val �t, the average power due to the force over that time interval is

(7-42)

Instantaneous power is the instantaneous rate of doing work:

(7-43)

For a force at an angle f to the direction of travel of the instan-
taneous velocity , the instantaneous power is

. (7-47, 7-48)P � Fv cos � � F
:

� v:

v:
F
:

P �
dW
dt

.

Pavg �
W
�t

.

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Questions

1 Rank the following velocities according to the kinetic energy a
particle will have with each velocity, greatest first: (a) ,
(b) , (c) , (d) , (e) ,v: � 5î3î � 4ĵv: �v: � �3î � 4ĵv: � �4î � 3ĵ

v: � 4î � 3ĵ

F2F1

(a) (b)

3

2

1

K

t

Figure 7-16 Question 2.

3 Is positive or negative work done by a constant force on a par-
ticle during a straight-line displacement if (a) the angle between 
and is 30	; (b) the angle is 100	; (c) and ?

4 In three situations, a briefly applied horizontal force changes the
velocity of a hockey puck that slides over frictionless ice. The over-
head views of Fig. 7-17 indicate, for each situation, the puck’s initial
speed vi, its final speed vf, and the directions of the corresponding ve-
locity vectors. Rank the situations according to the work done on the
puck by the applied force, most positive first and most negative last.

d
:

� �4îF
:

� 2î � 3ĵd
:

F
:

d
:

F
:

Figure 7-17 Question 4.

and (f) v 5 m/s at 30	 to the horizontal.

2 Figure 7-16a shows two horizontal forces that act on a block
that is sliding to the right across a frictionless floor. Figure 7-16b
shows three plots of the block’s kinetic energy K versus time t.
Which of the plots best corresponds to the following three situ-
ations: (a) F1 � F2, (b) F1 
 F2, (c) F1 � F2?

�

5 The graphs in Fig. 7-18 give the x component Fx of a force act-
ing on a particle moving along an x axis. Rank them according to
the work done by the force on the particle from x � 0 to x � x1,
from most positive work first to most negative work last.

(a) (b) (c)

y
vf = 5 m/s

vi = 6 m/s
x

y

vf = 3 m/s

vi = 4 m/s
x

y vf = 4 m/s

vi = 2 m/s

x
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6 Figure 7-19 gives the x com-
ponent Fx of a force that can act
on a particle. If the particle be-
gins at rest at x � 0, what is its
coordinate when it has (a) its
greatest kinetic energy, (b) its
greatest speed, and (c) zero
speed? (d) What is the particle’s
direction of travel after it
reaches x � 6 m?

7 In Fig. 7-20, a greased pig has a choice of three frictionless slides
along which to slide to the ground. Rank the slides according to how
much work the gravitational force does on the pig during the descent,
greatest first.

8 Figure 7-21a shows four situations in which a horizontal force acts
on the same block, which is initially at rest. The force magnitudes are
F2 � F4 � 2F1 � 2F3. The horizontal component vx of the block’s ve-
locity is shown in Fig. 7-21b for the four situations. (a) Which plot in
Fig. 7-21b best corresponds to which force in Fig. 7-21a? (b) Which

1 2 3 4 5 6 7 8 
x (m) 

F2

F1

Fx

–F1

–F2

Figure 7-19 Question 6.

(a) (b) (c)
Figure 7-20
Question 7.

F1 F2 F4F3

x

(a)

(b)

vx

t

D
C

B
A

(c)

K

t

H
G

F
E

Figure 7-21 Question 8.

K

K

K

K

K

K

K

K

t

t

t

t

t

t

t

t

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7-22 Question 10.

11 In three situations, a single force acts on a moving particle.
Here are the velocities (at that instant) and the forces:
(1) (2) 

(3) . Rank
the situations according to the rate at which energy is being trans-
ferred, greatest transfer to the particle ranked first, greatest trans-
fer from the particle ranked last.

12 Figure 7-23 shows three arrangements of a block attached to
identical springs that are in their relaxed state when the block is
centered as shown. Rank the arrangements according to the mag-
nitude of the net force on the block, largest first, when the block is
displaced by distance d (a) to the right and (b) to the left. Rank the
arrangements according to the work done on the block by the
spring forces, greatest first, when the block is displaced by d (c) to
the right and (d) to the left.

F
:

� (2î � 6ĵ) Nv: � (�3î � ĵ) m/s,F
:

� (�2ĵ � 7k̂) N;
v: � (2î � 3ĵ) m/s,F

:
� (6î � 20ĵ) N;v: � (�4î) m/s,

(1) (2) (3)
Figure 7-23 Question 12.

plot in Fig. 7-21c (for kinetic energy K versus time t) best corre-
sponds to which plot in Fig. 7-21b?

9 Spring A is stiffer than spring B (kA 
 kB). The spring force of
which spring does more work if the springs are compressed (a) the
same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a
cliff. Which of the graphs in Fig. 7-22 could possibly show how the
kinetic energy of the glob changes during its flight?

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 7-1 Kinetic Energy

•1 A proton (mass m � 1.67 � 10�27 kg) is being acceler-
ated along a straight line at 3.6 1015 m/s2 in a machine. If the pro-
ton has an initial speed of 2.4 � 107 m/s and travels 3.5 cm, what
then is (a) its speed and (b) the increase in its kinetic energy?

�

SSM

•2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 � 105 kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

•3 On August 10, 1972, a large meteorite skipped across the
atmosphere above the western United States and western Canada,
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much like a stone skipped across water. The accompanying fireball
was so bright that it could be seen in the daytime sky and was
brighter than the usual meteorite trail. The meteorite’s mass was
about 4 � 106 kg; its speed was about 15 km/s. Had it entered the
atmosphere vertically, it would have hit Earth’s surface with about
the same speed. (a) Calculate the meteorite’s loss of kinetic energy
(in joules) that would have been associated with the vertical impact.
(b) Express the energy as a multiple of the explosive energy of
1 megaton of TNT, which is 4.2 � 1015 J. (c) The energy associated
with the atomic bomb explosion over Hiroshima was equivalent to
13 kilotons of TNT. To how many Hiroshima bombs would the me-
teorite impact have been equivalent? 

•4 An explosion at ground level leaves a crater with a diam-
eter that is proportional to the energy of the explosion raised to
the power; an explosion of 1 megaton of TNT leaves a crater
with a 1 km diameter. Below Lake Huron in Michigan there ap-
pears to be an ancient impact crater with a 50 km diameter. What
was the kinetic energy associated with that impact, in terms of
(a) megatons of TNT (1 megaton yields 4.2 � 1015 J) and
(b) Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly
altered the climate, killing off the dinosaurs and other life-forms.)

••5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father.The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son.What are the origi-
nal speeds of (a) the father and (b) the son?

••6 A bead with mass 1.8 � 10�2 kg is moving along a wire in
the positive direction of an x axis. Beginning at time t � 0, when
the bead passes through x � 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-24 indicates the bead’s position at
these four times: t0 � 0, t1 � 1.0 s, t2 � 2.0 s, and t3 � 3.0 s. The
bead momentarily stops at t � 3.0 s. What is the kinetic energy of
the bead at t � 10 s?
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0 0.2 0.4 0.6 0.8 

t = 0 0.5 s 1.0 s 1.5 s 2.0 s 

x (m) 

Figure 7-25 Problem 7.

ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

•10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.0 N and is directed at a counterclockwise angle of 100	
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

••11 A 12.0 N force with a fixed orientation does work on a
particle as the particle moves through the three-dimensional dis-
placement m. What is the angle be-
tween the force and the displacement if the change in the particle’s
kinetic energy is (a) �30.0 J and (b) �30.0 J?

••12 A can of bolts and nuts is
pushed 2.00 m along an x axis by a
broom along the greasy (friction-
less) floor of a car repair shop in a
version of shuffleboard. Figure 7-26
gives the work W done on the can
by the constant horizontal force
from the broom, versus the can’s po-
sition x.The scale of the figure’s ver-
tical axis is set by Ws � 6.0 J. (a)
What is the magnitude of that
force? (b) If the can had an initial kinetic energy of 3.00 J, moving
in the positive direction of the x axis, what is its kinetic energy at
the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from a
downhill track onto a horizontal straight track with an initial speed
of 37 m/s. If a force slows them to a stop at a constant rate of 2.0
m/s2, (a) what magnitude F is required for the force, (b) what dis-
tance d do they travel while slowing, and (c) what work W is done
on them by the force? What are (d) F, (e) d, and (f) W if they, in-
stead, slow at 4.0 m/s2?

••14 Figure 7-27 shows an over-
head view of three horizontal forces
acting on a cargo canister that was
initially stationary but now moves
across a frictionless floor. The force
magnitudes are F1 � 3.00 N, F2 �
4.00 N, and F3 � 10.0 N, and the indi-
cated angles are u2 � 50.0	 and u3 �
35.0	. What is the net work done on
the canister by the three forces dur-
ing the first 4.00 m of displacement?

••15 Figure 7-28 shows three
forces applied to a trunk that moves
leftward by 3.00 m over a friction-
less floor. The force magnitudes are
F1 � 5.00 N, F2 � 9.00 N, and F3 �
3.00 N, and the indicated angle is u �
60.0	. During the displacement,
(a) what is the net work done on the
trunk by the three forces and (b)
does the kinetic energy of the trunk
increase or decrease?

••16 An 8.0 kg object is moving in the positive direction
of an x axis.When it passes through x 0, a constant force directed�

d
:
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Figure 7-26 Problem 12.

Module 7-2 Work and Kinetic Energy
•7 A 3.0 kg body is at rest on a frictionless horizontal air track
when a constant horizontal force acting in the positive direction of
an x axis along the track is applied to the body.A stroboscopic graph
of the position of the body as it slides to the right is shown in Fig. 7-
25.The force is applied to the body at t � 0, and the graph records
the position of the body at 0.50 s intervals. How much work is done
on the body by the applied force between t � 0 and t � 2.0 s?F

:

F
:

F
:

•8 A ice block floating in a river is pushed through a displacement
along a straight embankment by rushing wa-

ter, which exerts a force on the block. How
much work does the force do on the block during the displacement?

•9 The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N.The canister initially has a veloc-
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of magnitude 20.0 N is applied to a
3.00 kg psychology book as the book
slides a distance d � 0.500 m up a fric-
tionless ramp at angle u � 30.0	. (a)
During the displacement, what is the net
work done on the book by , the gravi-
tational force on the book, and the nor-
mal force on the book? (b) If the book
has zero kinetic energy at the start of the
displacement, what is its speed at the end of the displacement?

•••25 In Fig. 7-34, a 0.250 kg block of cheese lies on
the floor of a 900 kg elevator cab that is being pulled
upward by a cable through distance d1 � 2.40 m and
then through distance d2 � 10.5 m. (a) Through d1, if
the normal force on the block from the floor has con-
stant magnitude FN � 3.00 N, how much work is done
on the cab by the force from the cable? (b) Through d2,
if the work done on the cab by the (constant) force
from the cable is 92.61 kJ, what is the magnitude of FN?

Module 7-4 Work Done by a Spring Force
•26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the
block stationary at x � �2.0 cm. From that position, we then slowly
move the block so that our force does �4.0 J of work on the
spring–block system; the block is then again stationary. What is the
block’s position? (Hint:There are two answers.)

•27 A spring and block are in the arrangement of Fig. 7-10.When the
block is pulled out to x � �4.0 cm, we must apply a force of magnitude
360 N to hold it there.We pull the block to x � 11 cm and then release
it. How much work does the spring do on the block as the block
moves from xi � �5.0 cm to (a) x � �3.0 cm, (b) x � �3.0 cm,
(c) x � �5.0 cm,and (d) x � �9.0 cm?

•28 During spring semester at MIT, residents of the parallel build-
ings of the East Campus dorms battle one another with large cata-
pults that are made with surgical hose mounted on a window frame.
A balloon filled with dyed water is placed in a pouch attached to the
hose, which is then stretched through the width of the room.Assume
that the stretching of the hose obeys Hooke’s law with a spring con-
stant of 100 N/m. If the hose is stretched by 5.00 m and then released,
how much work does the force from the hose do on the balloon in
the pouch by the time the hose reaches its relaxed length?

••29 In the arrangement of Fig. 7-10, we gradually pull the block
from x � 0 to x � �3.0 cm, where it is stationary. Figure 7-35 gives

F
:

a

F
:

a

through vertical distance h � 0.150 m?

••24 In Fig. 7-33, a horizontal force

along the axis begins to act on it.
Figure 7-29 gives its kinetic energy
K versus position x as it moves
from x � 0 to x � 5.0 m; K0 � 30.0
J. The force continues to act. What
is v when the object moves back
through x � �3.0 m?

Module 7-3 Work Done by
the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-30, a block of ice
slides down a frictionless ramp at angle

50	 while an ice worker pulls on
the block (via a rope) with a force 
that has a magnitude of 50 N and is di-
rected up the ramp. As the block slides
through distance d 0.50 m along the
ramp, its kinetic energy increases by 80
J. How much greater would its kinetic
energy have been if the rope had not
been attached to the block?

••20 A block is sent up a frictionless
ramp along which an x axis extends up-
ward. Figure 7-31 gives the kinetic en-
ergy of the block as a function of posi-
tion x; the scale of the figure’s vertical
axis is set by Ks � 40.0 J. If the block’s
initial speed is 4.00 m/s, what is the nor-
mal force on the block?

••21 A cord is used to vertically
lower an initially stationary block of
mass M at a constant downward acceleration of g/4.When the block
has fallen a distance d, find (a) the work done by the cord’s force on
the block, (b) the work done by the gravitational force on the block,
(c) the kinetic energy of the block, and (d) the speed of the block.

••22 A cave rescue team lifts an injured spelunker directly upward
and out of a sinkhole by means of a motor-driven cable. The lift is
performed in three stages, each requiring a vertical distance of 10.0
m: (a) the initially stationary spelunker is accelerated to a speed of
5.00 m/s; (b) he is then lifted at the con-
stant speed of 5.00 m/s; (c) finally he is
decelerated to zero speed. How much
work is done on the 80.0 kg rescuee by
the force lifting him during each stage?

••23 In Fig. 7-32, a constant force of
magnitude 82.0 N is applied to a 3.00
kg shoe box at angle 53.0	, causing� �
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the work that our force does on the block. The scale of the figure’s
vertical axis is set by Ws � 1.0 J. We then pull the block out to x �
�5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from xi � �5.0 cm to
(a) x � �4.0 cm, (b) x � �2.0 cm, and (c) x � �5.0 cm?

••30 In Fig. 7-10a, a block of mass
m lies on a horizontal frictionless
surface and is attached to one end
of a horizontal spring (spring con-
stant k) whose other end is fixed.
The block is initially at rest at the
position where the spring is
unstretched (x � 0) when a con-
stant horizontal force in the positive direction of the x axis is ap-
plied to it.A plot of the resulting kinetic energy of the block versus
its position x is shown in Fig. 7-36. The scale of the figure’s vertical
axis is set by Ks � 4.0 J. (a) What is the magnitude of ? (b) What
is the value of k?

••31 The only force acting on a 2.0 kg body as it
moves along a positive x axis has an x component Fx 6x N,
with x in meters.The velocity at x � 3.0 m is 8.0 m/s. (a) What is the
velocity of the body at x � 4.0 m? (b) At what positive value of x
will the body have a velocity of 5.0 m/s?

••32 Figure 7-37 gives spring force
Fx versus position x for the
spring–block arrangement of Fig. 7-
10. The scale is set by Fs 160.0 N.
We release the block at x 12 cm.
How much work does the spring do
on the block when the block moves
from xi �8.0 cm to (a) x �5.0
cm, (b) x 5.0 cm, (c) x 8.0
cm, and (d) x 10.0 cm?

•••33 The block in Fig. 7-10a lies on a horizontal frictionless
surface, and the spring constant is 50 N/m. Initially, the spring is at
its relaxed length and the block is stationary at position x � 0.
Then an applied force with a constant magnitude of 3.0 N pulls the
block in the positive direction of the x axis, stretching the spring
until the block stops.When that stopping point is reached, what are
(a) the position of the block, (b) the work that has been done on
the block by the applied force, and (c) the work that has been done
on the block by the spring force? During the block’s displacement,
what are (d) the block’s position when its kinetic energy is maxi-
mum and (e) the value of that maximum kinetic energy?

Module 7-5 Work Done by a General Variable Force
•34 A 10 kg brick moves along an x axis. Its acceleration as a
function of its position is shown in Fig. 7-38.The scale of the figure’s
vertical axis is set by as � 20.0 m/s2. What is the net work per-
formed on the brick by the force causing the acceleration as the
brick moves from x � 0 to x � 8.0 m?
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•35 The force on a particle is directed along an x axis
and given by F F0(x/x0 1). Find the work done by the force in
moving the particle from x � 0 to x � 2x0 by (a) plotting F(x) and
measuring the work from the graph and (b) integrating F(x).

•36 A 5.0 kg block moves in a
straight line on a horizontal friction-
less surface under the influence of a
force that varies with position as
shown in Fig. 7-39.The scale of the fig-
ure’s vertical axis is set by Fs 10.0 N.
How much work is done by the force
as the block moves from the origin
to x � 8.0 m?

••37 Figure 7-40 gives the accel-
eration of a 2.00 kg particle as an applied force moves it from restF
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••38 A 1.5 kg block is initially at rest on a horizontal frictionless
surface when a horizontal force along an x axis is applied to the block.
The force is given by , where x is in meters and
the initial position of the block is x 0. (a) What is the kinetic energy
of the block as it passes through x � 2.0 m? (b) What is the maximum
kinetic energy of the block between x � 0 and x � 2.0 m?

••39 A force acts on a particle as the parti-
cle moves along an x axis, with in newtons, x in meters, and c a
constant.At x � 0, the particle’s kinetic energy is 20.0 J; at x � 3.00 m,
it is 11.0 J. Find c.

••40 A can of sardines is made to move along an x axis from
x � 0.25 m to x � 1.25 m by a force with a magnitude given by
F � exp(�4x2), with x in meters and F in newtons. (Here exp is the ex-
ponential function.) How much work is done on the can by the force?

••41 A single force acts on a 3.0 kg particle-like object whose posi-
tion is given by x � 3.0t � 4.0t2 � 1.0t3, with x in meters and t in
seconds. Find the work done by the force from t � 0 to t � 4.0 s.

•••42 Figure 7-41 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left

F
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(2.5 � x2)î NF
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along an x axis from x � 0 to x 9.0 m.The scale of the figure’s verti-
cal axis is set by as 6.0 m/s2. How much work has the force done on
the particle when the particle reaches (a) x � 4.0 m, (b) x � 7.0 m,
and (c) x � 9.0 m? What is the particle’s speed and direction of travel
when it reaches (d) x � 4.0 m, (e) x � 7.0 m, and (f) x � 9.0 m?
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end of the cord is pulled over a pulley, of negligible mass and friction
and at cord height h � 1.20 m, so the cart slides from x1 � 3.00 m to
x2 � 1.00 m. During the move, the tension in the cord is a constant
25.0 N. What is the change in the kinetic energy of the cart during
the move?

Module 7-6 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope
that makes an angle of 12	 with the horizontal. The rope moves
parallel to the slope with a constant speed of 1.0 m/s. The force
of the rope does 900 J of work on the skier as the skier moves a
distance of 8.0 m up the incline. (a) If the rope moved with a
constant speed of 2.0 m/s, how much work would the force of the
rope do on the skier as the skier moved a distance of 8.0 m up
the incline? At what rate is the force of the rope doing work on
the skier when the rope moves with a speed of (b) 1.0 m/s and
(c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of
5.0 m/s across a horizontal floor by an applied force of 122 N di-
rected 37	 above the horizontal. What is the rate at which the force
does work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 � 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t � 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k � 500 N/m) whose
other end is fixed. The ladle has a kinetic energy of 10 J as it
passes through its equilibrium position (the point at which the
spring force is zero). (a) At what rate is the spring doing work on
the ladle as the ladle passes through its equilibrium position?
(b) At what rate is the spring doing work on the ladle when the
spring is compressed 0.10 m and the ladle is moving away from the
equilibrium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward
54 m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is �12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of
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ILWSSM

SSM

to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-42 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d � 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 � 5.00 N and F2 � 1.00 N; the third is
angled down by u � 60.0	 and has the magnitude F3 � 4.00 N.
(a) For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?
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Figure 7-42 Problem 53.
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54 The only force acting on a
2.0 kg body as the body moves along
an x axis varies as shown in Fig. 7-43.
The scale of the figure’s vertical axis
is set by Fs � 4.0 N. The velocity of
the body at x � 0 is 4.0 m/s. (a) What
is the kinetic energy of the body at
x � 3.0 m? (b) At what value of x will
the body have a kinetic energy of
8.0 J? (c) What is the maximum kinetic energy of the body between 
x � 0 and x � 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30	
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally and
uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval, how
much work is done on the object by the
force accelerating it? What is the instan-
taneous power due to that force (b) at
the end of the interval and (c) at the end
of the first half of the interval?

57 A 230 kg crate hangs from the end
of a rope of length L � 12.0 m.You push
horizontally on the crate with a
varying force to move it distance d �
4.00 m to the side (Fig. 7-44). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
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bead for a range of f values; W0 � 25 J.
How much work is done by if f is (a)
64	 and (b) 147	?

60 A frightened child is restrained by her mother as the child slides
down a frictionless playground slide. If the force on the child from the
mother is 100 N up the slide, the child’s kinetic energy increases by 30 J
as she moves down the slide a distance of 1.8 m. (a) How much work is
done on the child by the gravitational force during the 1.8 m descent?
(b) If the child is not restrained by her mother, how much will the
child’s kinetic energy increase as she comes down the slide that same
distance of 1.8 m?

61 How much work is done by a force ,
with x in meters, that moves a particle from a position 

to a position ?

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k �
2.5 N/cm (Fig. 7-46).The block becomes attached to
the spring and compresses the spring 12 cm before
momentarily stopping. While the spring is being
compressed, what work is done on the block by
(a) the gravitational force on it and (b) the spring
force? (c) What is the speed of the block just before
it hits the spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is doubled, what is
the maximum compression of the spring?

63 To push a 25.0 kg crate up a frictionlessSSM
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work done on it, (c) the work done by the gravitational force on the
crate, and (d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displace-
ment, use the answers to (b), (c), and (d) to find the work your force

does on the crate. (f) Why is the work of your force not equal to
the product of the horizontal displacement and the answer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a
worker applies a force of 210 N, directed 20	 above the horizontal.
As the crate moves 3.0 m, what work is done on the crate by (a) the
worker’s force, (b) the gravitational force, and (c) the normal force?
(d) What is the total work?

59 A force is applied to a bead as
the bead is moved along a straight wire
through displacement 5.0 cm. The mag-
nitude of is set at a certain value, but
the angle f between and the bead’s
displacement can be chosen. Figure 7-45
gives the work W done by on theF

:

a

F
:

a

F
:

a

�

F
:

a

F
:

65 In Fig. 7-47, a cord runs around
two massless, frictionless pulleys. A
canister with mass m � 20 kg hangs
from one pulley, and you exert a
force on the free end of the cord.
(a) What must be the magnitude of 
if you are to lift the canister at a con-
stant speed? (b) To lift the canister
by 2.0 cm, how far must you pull the
free end of the cord? During that lift,
what is the work done on the canister
by (c) your force (via the cord) and
(d) the gravitational force? (Hint:
When a cord loops around a pulley
as shown, it pulls on the pulley with a
net force that is twice the tension in the cord.)

66 If a car of mass 1200 kg is moving along a highway at
120 km/h, what is the car’s kinetic energy as determined by some-
one standing alongside the highway?

67 A spring with a pointer attached is hanging next to a
scale marked in millimeters. Three different packages are hung
from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on
the scale will the pointer indicate when no package is hung from
the spring? (b) What is the weight W of the third package?

SSM

F
:

F
:

W
 (

J)

W0

0
φ 

Figure 7-45
Problem 59.

Figure 7-46
Problem 62.

mF

Figure 7-47 Problem 65.

mm
0

30

W

mm
0

40

110 N 

mm
0

60

240 N 

Figure 7-48 Problem 67.

68 An iceboat is at rest on a frictionless frozen lake when a sud-
den wind exerts a constant force of 200 N, toward the east, on the
boat. Due to the angle of the sail, the wind causes the boat to
slide in a straight line for a distance of 8.0 m in a direction 20	
north of east. What is the kinetic energy of the iceboat at the end
of that 8.0 m?

69 If a ski lift raises 100 passengers averaging 660 N in weight to
a height of 150 m in 60.0 s, at constant speed, what average power
is required of the force making the lift?

70 A force acts on a particle as the particle
goes through displacement . (Other forces
also act on the particle.) What is c if the work done on the particle
by force is (a) 0, (b) 17 J, and (c) �18 J?

71 A constant force of magnitude 10 N makes an angle of 150	
(measured counterclockwise) with the positive x direction as it acts
on a 2.0 kg object moving in an xy plane. How much work is done
on the object by the force as the object moves from the origin to
the point having position vector (2.0 m) � (4.0 m) ?ĵî

F
:

d
:

� (3.0 m)î � (2.0 m)ĵ
F
:

� (4.0 N)î � cĵ

incline, angled at 25.0	 to the horizontal, a worker exerts a force of
209 N parallel to the incline. As the crate slides 1.50 m, how much
work is done on the crate by (a) the worker’s applied force, (b) the
gravitational force on the crate, and (c) the normal force exerted
by the incline on the crate? (d) What is the total work done on the
crate?

64 Boxes are transported from one location to another in a ware-
house by means of a conveyor belt that moves with a constant
speed of 0.50 m/s. At a certain location the conveyor belt moves for
2.0 m up an incline that makes an angle of 10	 with the horizontal,
then for 2.0 m horizontally, and finally for 2.0 m down an incline
that makes an angle of 10	 with the horizontal.Assume that a 2.0 kg
box rides on the belt without slipping. At what rate is the force of
the conveyor belt doing work on the box as the box moves (a) up
the 10	 incline, (b) horizontally, and (c) down the 10	 incline?
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72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a
downward angle u as the block moves rightward through 1.0 m
across a frictionless floor. Find an expression for the speed vf of the
block at the end of that distance if the block’s initial velocity is
(a) 0 and (b) 1.0 m/s to the right. (c) The situation in Fig. 7-49b is
similar in that the block is initially moving at 1.0 m/s to the right,
but now the 2.0 N force is directed downward to the left. Find an
expression for the speed vf of the block at the end of the 1.0 m dis-
tance. (d) Graph all three expressions for vf versus downward
angle u for u � 0	 to u � 90	. Interpret the graphs.

rected along the x axis and has the x component Fax 9x 3x2,
with x in meters and Fax in newtons. The case starts at rest at the
position x � 0, and it moves until it is again at rest. (a) Plot the
work does on the case as a function of x. (b) At what position is
the work maximum, and (c) what is that maximum value? (d) At
what position has the work decreased to zero? (e) At what position
is the case again at rest?

79 A 2.0 kg lunchbox is sent sliding over a frictionless
surface, in the positive direction of an x axis along the surface.
Beginning at time t � 0, a steady wind pushes on the lunchbox in the
negative direction of the x axis. Figure 7-51 shows the position x of
the lunchbox as a function of time t as the wind pushes on the lunch-
box. From the graph, estimate the kinetic energy of the lunchbox at
(a) t � 1.0 s and (b) t � 5.0 s. (c) How much work does the force
from the wind do on the lunchbox from t � 1.0 s to t � 5.0 s?

SSM

F
:

a

��

θ 

F

θ 

F

(a) (b)

Figure 7-49 Problem 72.

73 A force in the positive direction of an x axis acts on an object
moving along the axis. If the magnitude of the force is F � 10e�x/2.0

N, with x in meters, find the work done by as the object moves
from x � 0 to x � 2.0 m by (a) plotting F(x) and estimating the area
under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement
while force acts on it. (Other

forces also act on the particle.) What is the value of c if the work
done by on the particle is (a) zero, (b) positive, and (c) negative?

75 What is the power of the force required to move a 4500
kg elevator cab with a load of 1800 kg upward at constant speed
3.80 m/s?

76 A 45 kg block of ice slides down a frictionless incline 1.5 m
long and 0.91 m high. A worker pushes up against the ice, parallel
to the incline, so that the block slides down at constant speed.
(a) Find the magnitude of the worker’s force. How much work is
done on the block by (b) the worker’s force, (c) the gravitational
force on the block, (d) the normal force on the block from the sur-
face of the incline, and (e) the net force on the block?

77 As a particle moves along an x axis, a force in the positive direc-
tion of the axis acts on it. Figure 7-50 shows the magnitude F of the
force versus position x of the particle.The curve is given by F � a/x2,
with a � 9.0 N �m2. Find the work done on the particle by the force
as the particle moves from x � 1.0 m to x � 3.0 m by (a) estimating
the work from the graph and (b) integrating the force function.

SSM

F
:

F
:

� (2 N)î � (4 N)ĵd
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� (8 m)î � cĵ
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Figure 7-51 Problem 79.

80 Numerical integration. A breadbox is made to move along an
x axis from x � 0.15 m to x � 1.20 m by a force with a magnitude
given by F � exp(�2x2), with x in meters and F in newtons. (Here
exp is the exponential function.) How much work is done on the
breadbox by the force?

81 In the block–spring arrangement of Fig. 7-10, the block’s mass
is 4.00 kg and the spring constant is 500 N/m. The block is released
from position xi � 0.300 m.What are (a) the block’s speed at x � 0,
(b) the work done by the spring when the block reaches x � 0, (c)
the instantaneous power due to the spring at the release point xi ,
(d) the instantaneous power at x � 0, and (e) the block’s position
when the power is maximum?

82 A 4.00 kg block is pulled up a frictionless inclined plane by a
50.0 N force that is parallel to the plane, starting from rest.The nor-
mal force on the block from the plane has magnitude 13.41 N.What
is the block’s speed when its displacement up the ramp is 3.00 m?

83 A spring with a spring constant of 18.0 N/cm has a cage at-
tached to its free end. (a) How much work does the spring force do
on the cage when the spring is stretched from its relaxed length by
7.60 mm? (b) How much additional work is done by the spring force
when the spring is stretched by an additional 7.60 mm?

84 A force N acts on a 2.90 kg
object that moves in time interval 2.10 s from an initial posi-
tion m to a final position r:2 �r:1 � (2.70î � 2.90ĵ � 5.50k̂)

F
:

� (2.00î � 9.00ĵ � 5.30k̂)

78 A CD case slides along a floor in the positive direction of an
x axis while an applied force acts on the case. The force is di-F

:

a

m. Find (a) the work done on the object
by the force in that time interval, (b) the average power due to the
force during that time interval, and (c) the angle between vectors

and .

85 At t � 0, force N begins to act
on a 2.00 kg particle with an initial speed of 4.00 m/s. What is the
particle’s speed when its displacement from the initial point is

m?d
:

� (2.00î � 2.00ĵ � 7.00k̂)

F
:

� (�5.00î � 5.00ĵ � 4.00k̂)

r:2r:1

(�4.10î � 3.30ĵ � 5.40k̂)



What Is Physics?
One job of physics is to identify the different types of energy in the world,
especially those that are of common importance. One general type of energy is
potential energy U. Technically, potential energy is energy that can be associated
with the configuration (arrangement) of a system of objects that exert forces on
one another.

C H A P T E R  8

Potential Energy and 
Conservation of Energy

8-1 POTENTIAL ENERGY

After reading this module, you should be able to . . .
8.01 Distinguish a conservative force from a nonconservative

force.
8.02 For a particle moving between two points, identify that

the work done by a conservative force does not depend on
which path the particle takes.

8.03 Calculate the gravitational potential energy of a particle
(or, more properly, a particle–Earth system).

8.04 Calculate the elastic potential energy of a block–spring
system.

● A force is a conservative force if the net work it does on
a particle moving around any closed path, from an initial
point and then back to that point, is zero. Equivalently, a force
is conservative if the net work it does on a particle moving 
between two points does not depend on the path taken by
the particle. The gravitational force and the spring force are
conservative forces; the kinetic frictional force is a noncon-
servative force.

● Potential energy is energy that is associated with the con-
figuration of a system in which a conservative force acts.
When the conservative force does work W on a particle
within the system, the change �U in the potential energy of
the system is

�U � �W.

If the particle moves from point xi to point xf, the change in
the potential energy of the system is

�U � ��xf

xi

F(x) dx.

● The potential energy associated with a system consisting of
Earth and a nearby particle is gravitational potential energy. If
the particle moves from height yi to height yf , the change in the
gravitational potential energy of the particle–Earth system is

�U � mg(yf � yi) � mg �y.

● If the reference point of the particle is set as yi � 0 and the
corresponding gravitational potential energy of the system is
set as Ui � 0, then the gravitational potential energy U when
the particle is at any height y is

U(y) � mgy.

● Elastic potential energy is the energy associated with the
state of compression or extension of an elastic object. For a
spring that exerts a spring force F � �kx when its free end
has displacement x, the elastic potential energy is

● The reference configuration has the spring at its relaxed
length, at which x � 0 and U � 0.

U(x) � 1
2kx2.

Key Ideas

Learning Objectives
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This is a pretty formal definition of something that is actually familiar to you.
An example might help better than the definition: A bungee-cord jumper plunges
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the
jumper. The force between the objects is the gravitational force. The configuration
of the system changes (the separation between the jumper and Earth decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion
and increase in kinetic energy by defining a gravitational potential energy U. This
is the energy associated with the state of separation between two objects that at-
tract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the
plunge, the system of objects consists of the cord and the jumper. The force
between the objects is an elastic (spring-like) force. The configuration of the sys-
tem changes (the cord stretches). We can account for the jumper’s decrease in
kinetic energy and the cord’s increase in length by defining an elastic potential
energy U.This is the energy associated with the state of compression or extension
of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so
that energy might be stored or put to use. For example, before any particular
bungee-cord jumper takes the plunge, someone (probably a mechanical engi-
neer) must determine the correct cord to be used by calculating the gravitational
and elastic potential energies that can be expected.Then the jump is only thrilling
and not fatal.

Work and Potential Energy
In Chapter 7 we discussed the relation between work and a change in kinetic energy.
Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2).We already know that as the tomato
rises, the work Wg done on the tomato by the gravitational force is negative
because the force transfers energy from the kinetic energy of the tomato. We can
now finish the story by saying that this energy is transferred by the gravitational
force to the gravitational potential energy of the tomato–Earth system.

The tomato slows, stops, and then begins to fall back down because of the
gravitational force. During the fall, the transfer is reversed: The work Wg done on
the tomato by the gravitational force is now positive—that force transfers energy
from the gravitational potential energy of the tomato–Earth system to the
kinetic energy of the tomato.

For either rise or fall, the change �U in gravitational potential energy is
defined as being equal to the negative of the work done on the tomato by the
gravitational force. Using the general symbol W for work, we write this as

�U � �W. (8-1)
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Figure 8-1 The kinetic energy of a bungee-
cord jumper increases during the free fall,
and then the cord begins to stretch, slow-
ing the jumper.

Rough Guides/Greg Roden/Getty Images, Inc.

Figure 8-2 A tomato is thrown upward. As it rises, the 
gravitational force does negative work on it, decreasing 
its kinetic energy. As the tomato descends, the 
gravitational force does positive work on it, increasing 
its kinetic energy.

Negative
work done 
by the 
gravitational
force

Positive
work done 
by the 
gravitational
force



This equation also applies to a block–spring system, as in Fig. 8-3. If we
abruptly shove the block to send it moving rightward, the spring force acts leftward
and thus does negative work on the block, transferring energy from the kinetic
energy of the block to the elastic potential energy of the spring–block system.The
block slows and eventually stops, and then begins to move leftward because the
spring force is still leftward. The transfer of energy is then reversed—it is from
potential energy of the spring–block system to kinetic energy of the block.

Conservative and Nonconservative Forces
Let us list the key elements of the two situations we just discussed:

1. The system consists of two or more objects.

2. A force acts between a particle-like object (tomato or block) in the system and
the rest of the system.

3. When the system configuration changes, the force does work (call it W1) on
the particle-like object, transferring energy between the kinetic energy K of
the object and some other type of energy of the system.

4. When the configuration change is reversed, the force reverses the energy
transfer, doing work W2 in the process.

In a situation in which W1 � �W2 is always true, the other type of energy is
a potential energy and the force is said to be a conservative force. As you might
suspect, the gravitational force and the spring force are both conservative (since
otherwise we could not have spoken of gravitational potential energy and elastic
potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic
frictional force and drag force are nonconservative. For an example, let us send
a block sliding across a floor that is not frictionless. During the sliding, a kinetic
frictional force from the floor slows the block by transferring energy from its
kinetic energy to a type of energy called thermal energy (which has to do with the
random motions of atoms and molecules). We know from experiment that this
energy transfer cannot be reversed (thermal energy cannot be transferred back
to kinetic energy of the block by the kinetic frictional force). Thus, although we
have a system (made up of the block and the floor), a force that acts between
parts of the system, and a transfer of energy by the force, the force is not conser-
vative.Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly
simplify otherwise difficult problems involving motion of the object. Let’s next
develop a test for identifying conservative forces, which will provide one means
for simplifying such problems.

Path Independence of Conservative Forces
The primary test for determining whether a force is conservative or nonconserva-
tive is this: Let the force act on a particle that moves along any closed path, begin-
ning at some initial position and eventually returning to that position (so that the
particle makes a round trip beginning and ending at the initial position). The
force is conservative only if the total energy it transfers to and from the particle
during the round trip along this and any other closed path is zero. In other words:

1798-1 POTENTIAL ENERGY

The net work done by a conservative force on a particle moving around any
closed path is zero.

Figure 8-3 A block, attached to a spring and
initially at rest at x � 0, is set in motion
toward the right. (a) As the block moves
rightward (as indicated by the arrow), the
spring force does negative work on it.
(b) Then, as the block moves back toward
x � 0, the spring force does positive work
on it.

(a)

(b)

0

x

0

x

We know from experiment that the gravitational force passes this closed-
path test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the
launch point with speed v0 and kinetic energy .The gravitational force acting1

2 mv0
2



Checkpoint 1
The figure shows three paths connecting points a
and b.A single force does the indicated work on
a particle moving along each path in the indicated
direction. On the basis of this information, is force

conservative?F
:

F
:

on the tomato slows it, stops it, and then causes it to fall back down. When the
tomato returns to the launch point, it again has speed v0 and kinetic energy 

Thus, the gravitational force transfers as much energy from the tomato dur-
ing the ascent as it transfers to the tomato during the descent back to the launch
point. The net work done on the tomato by the gravitational force during the
round trip is zero.

An important result of the closed-path test is that:

1
2 mv0

2.
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b

a

1

2

(a)

b

a

1

2

(b)

The force is 
conservative. Any 
choice of path 
between the points 
gives the same
amount of work.

And a round trip 
gives a total work 
of zero.

Figure 8-4 (a) As a conservative force acts
on it, a particle can move from point a to
point b along either path 1 or path 2.
(b) The particle moves in a round trip,
from point a to point b along path 1 and
then back to point a along path 2.

a

b

–60 J

60 J

60 J

The work done by a conservative force on a particle moving between two points
does not depend on the path taken by the particle.

For example, suppose that a particle moves from point a to point b in Fig. 8-4a
along either path 1 or path 2. If only a conservative force acts on the particle, then
the work done on the particle is the same along the two paths. In symbols, we can
write this result as

Wab,1 � Wab,2, (8-2)

where the subscript ab indicates the initial and final points, respectively, and the
subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems
when only a conservative force is involved. Suppose you need to calculate the
work done by a conservative force along a given path between two points, and
the calculation is difficult or even impossible without additional information.
You can find the work by substituting some other path between those two points
for which the calculation is easier and possible.

Proof of Equation 8-2
Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single
force. The particle moves from an initial point a to point b along path 1 and then
back to point a along path 2. The force does work on the particle as the particle
moves along each path. Without worrying about where positive work is done and
where negative work is done, let us just represent the work done from a to b along
path 1 as Wab,1 and the work done from b back to a along path 2 as Wba,2. If the force
is conservative, then the net work done during the round trip must be zero:

Wab,1 � Wba,2 � 0,
and thus

Wab,1 � �Wba,2. (8-3)

In words, the work done along the outward path must be the negative of the work
done along the path back.

Let us now consider the work Wab,2 done on the particle by the force when
the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is
conservative, that work is the negative of Wba,2:

Wab,2 � �Wba,2. (8-4)

Substituting Wab,2 for �Wba,2 in Eq. 8-3, we obtain

Wab,1 � Wab,2,

which is what we set out to prove.



Determining Potential Energy Values
Here we find equations that give the value of the two types of potential energy
discussed in this chapter: gravitational potential energy and elastic potential
energy. However, first we must find a general relation between a conservative
force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative
force acts. When that force does work W on the object, the change �U in
the potential energy associated with the system is the negative of the work done.
We wrote this fact as Eq. 8-1 (�U � �W). For the most general case, in which the
force may vary with position, we may write the work W as in Eq. 7-32:

(8-5)

This equation gives the work done by the force when the object moves from
point xi to point xf, changing the configuration of the system. (Because the
force is conservative, the work is the same for all paths between those two
points.)

W � �xf

xi

F(x) dx.

F
:
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Sample Problem 8.01 Equivalent paths for calculating work, slippery cheese

The main lesson of this sample problem is this: It is perfectly
all right to choose an easy path instead of a hard path.
Figure 8-5a shows a 2.0 kg block of slippery cheese that
slides along a frictionless track from point a to point b. The
cheese travels through a total distance of 2.0 m along the
track, and a net vertical distance of 0.80 m. How much work is
done on the cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (Wg �
mgd cos f). The reason is that the angle f between the 
directions of the gravitational force and the displacement

varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate f along it,
the calculation could be very difficult.) (2) Because is a
conservative force, we can find the work by choosing some
other path between a and b—one that makes the calcula-
tion easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle f is a constant 90	. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work Wh done there is

Wh � mgd cos 90	 � 0.

Along the vertical segment, the displacement d is 0.80 m
and, with and both downward, the angle f is a constantd

:
F
:

g

F
:

g

d
:

F
:

g

Additional examples, video, and practice available at WileyPLUS

a

(a) (b)

b

a

b

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

Figure 8-5 (a) A block of cheese slides along a frictionless track
from point a to point b. (b) Finding the work done on the cheese by
the gravitational force is easier along the dashed path than along
the actual path taken by the cheese; the result is the same for
both paths.

vertical part of the dashed path,

Wv � mgd cos 0	

� (2.0 kg)(9.8 m/s2)(0.80 m)(1) � 15.7 J.

The total work done on the cheese by as the cheese
moves from point a to point b along the dashed path is then

W � Wh � Wv � 0 � 15.7 J � 16 J. (Answer)

This is also the work done as the cheese slides along the
track from a to b.

F
:

g

0	. Thus, Eq. 7-12 gives us, for the work Wv done along the



Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy
due to the change in configuration is, in general notation,

(8-6)

Gravitational Potential Energy
We first consider a particle with mass m moving vertically along a y axis (the
positive direction is upward). As the particle moves from point yi to point yf,
the gravitational force does work on it. To find the corresponding change in
the gravitational potential energy of the particle–Earth system, we use Eq. 8-6
with two changes: (1) We integrate along the y axis instead of the x axis, because
the gravitational force acts vertically. (2) We substitute �mg for the force symbol F,
because has the magnitude mg and is directed down the y axis.We then have

which yields

�U � mg(yf � yi) � mg �y. (8-7)

Only changes �U in gravitational potential energy (or any other type of
potential energy) are physically meaningful. However, to simplify a calculation or
a discussion, we sometimes would like to say that a certain gravitational potential
value U is associated with a certain particle–Earth system when the particle is at
a certain height y.To do so, we rewrite Eq. 8-7 as

U � Ui � mg(y � yi). (8-8)

Then we take Ui to be the gravitational potential energy of the system when it is
in a reference configuration in which the particle is at a reference point yi.
Usually we take Ui � 0 and yi � 0. Doing this changes Eq. 8-8 to

U( y) � mgy (gravitational potential energy). (8-9)

This equation tells us:

�U � ��yf

yi

(�mg) dy � mg �yf

yi

dy � mg	y

yf

yi

,

F
:

g

F
:

g

�U � ��xf

xi

F(x) dx.
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Elastic Potential Energy
We next consider the block–spring system shown in Fig. 8-3, with the block
moving on the end of a spring of spring constant k. As the block moves from
point xi to point xf, the spring force Fx � �kx does work on the block. To find the
corresponding change in the elastic potential energy of the block–spring system,
we substitute �kx for F(x) in Eq. 8-6.We then have

or (8-10)

To associate a potential energy value U with the block at position x, we
choose the reference configuration to be when the spring is at its relaxed length
and the block is at xi � 0. Then the elastic potential energy Ui is 0, and Eq. 8-10

�U � 1
2 kxf

2 � 1
2 kxi

2.

�U � ��xf

xi

(�kx) dx � k �xf

xi

x dx � 1
2k	x2


xf

xi

,

The gravitational potential energy associated with a particle–Earth system
depends only on the vertical position y (or height) of the particle relative to the
reference position y � 0, not on the horizontal position.
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Checkpoint 2
A particle is to move along an x axis from x � 0 to x1 while a conser-
vative force, directed along the x axis, acts on the particle.The figure
shows three situations in which the x component of that force varies
with x.The force has the same maximum magnitude F1 in all three sit-
uations. Rank the situations according to the change in the associated
potential energy during the particle’s motion, most positive first.

F1 F1

–F1

x1

x1x1

(1) (2) (3)

the ground, (3) at the limb, and (4) 1.0 m above the limb?
Take the gravitational potential energy to be zero at y � 0.

KEY IDEA

Once we have chosen the reference point for y � 0, we can
calculate the gravitational potential energy U of the system
relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the sloth is at y � 5.0 m, and

U � mgy � (2.0 kg)(9.8 m/s2)(5.0 m)

� 98 J. (Answer)

For the other choices, the values of U are

(2) U � mgy � mg(2.0 m) � 39 J,
(3) U � mgy � mg(0) � 0 J,
(4) U � mgy � mg(�1.0 m)

� �19.6 J � �20 J. (Answer)

(b) The sloth drops to the ground. For each choice of refer-
ence point, what is the change �U in the potential energy of
the sloth–Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the
choice of the reference point for y � 0; instead, it depends
on the change in height �y.

Calculation: For all four situations, we have the same �y �
�5.0 m.Thus, for (1) to (4), Eq. 8-7 tells us that

�U � mg �y � (2.0 kg)(9.8 m/s2)(�5.0 m)

� �98 J. (Answer)

Sample Problem 8.02 Choosing reference level for gravitational potential energy, sloth

Here is an example with this lesson plan: Generally you can
choose any level to be the reference level, but once chosen,
be consistent. A 2.0 kg sloth hangs 5.0 m above the ground
(Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth–Earth system if we take the reference point y � 0 to be
(1) at the ground, (2) at a balcony floor that is 3.0 m above

Additional examples, video, and practice available at WileyPLUS

0 –3 –5 –6 

3 0 –2 –3 

5 2 0 

6 3 1 0 

(1) (2) (3) (4) 

Figure 8-6 Four choices of reference point y � 0. Each y axis is marked
in units of meters. The choice affects the value of the potential energy
U of the sloth–Earth system. However, it does not affect the change
�U in potential energy of the system if the sloth moves by, say, falling.

becomes

which gives us

(elastic potential energy). (8-11)U(x) � 1
2 kx2

U � 0 � 1
2 kx2 � 0,



Conservation of Mechanical Energy
The mechanical energy Emec of a system is the sum of its potential energy U and
the kinetic energy K of the objects within it:

Emec � K � U (mechanical energy). (8-12)

In this module, we examine what happens to this mechanical energy when only
conservative forces cause energy transfers within the system—that is, when
frictional and drag forces do not act on the objects in the system. Also, we shall
assume that the system is isolated from its environment; that is, no external force
from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, that
force transfers energy between kinetic energy K of the object and potential
energy U of the system. From Eq. 7-10, the change �K in kinetic energy is

�K � W (8-13)

and from Eq. 8-1, the change �U in potential energy is

�U � �W. (8-14)

Combining Eqs. 8-13 and 8-14, we find that

�K � ��U. (8-15)

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8-15 as

K2 � K1 � �(U2 � U1), (8-16)

where the subscripts refer to two different instants and thus to two different
arrangements of the objects in the system. Rearranging Eq. 8-16 yields

K2 � U2 � K1 � U1 (conservation of mechanical energy). (8-17)

In words, this equation says:

�the sum of K and U for
any state of a system � � � the sum of K and U for

any other state of the system�,

184 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

8-2 CONSERVATION OF MECHANICAL ENERGY

After reading this module, you should be able to . . .

8.05 After first clearly defining which objects form a system,
identify that the mechanical energy of the system is the
sum of the kinetic energies and potential energies of those
objects.

8.06 For an isolated system in which only conservative forces
act, apply the conservation of mechanical energy to relate
the initial potential and kinetic energies to the potential and
kinetic energies at a later instant.

Learning Objectives

Key Ideas
● The mechanical energy Emec of a system is the sum of its 
kinetic energy K and potential energy U:

Emec � K � U.

● An isolated system is one in which no external force causes
energy changes. If only conservative forces do work within
an isolated system, then the mechanical energy Emec of the

system cannot change. This principle of conservation of 
mechanical energy is written as

K2 � U2 � K1 � U1,

in which the subscripts refer to different instants during an
energy transfer process. This conservation principle can also
be written as

�Emec � �K � �U � 0.

©AP/Wide World Photos

In olden days, a person would be tossed
via a blanket to be able to see farther
over the flat terrain. Nowadays, it is
done just for fun. During the ascent of
the person in the photograph, energy is
transferred from kinetic energy to gravita-
tional potential energy. The maximum
height is reached when that transfer is
complete. Then the transfer is reversed
during the fall.



when the system is isolated and only conservative forces act on the objects in the
system. In other words:

1858-2 CONSERVATION OF MECHANICAL ENERGY

In an isolated system where only conservative forces cause energy changes, the
kinetic energy and potential energy can change, but their sum, the mechanical
energy Emec of the system, cannot change.

When the mechanical energy of a system is conserved, we can relate the sum of kinetic
energy and potential energy at one instant to that at another instant without consider-
ing the intermediate motion and without finding the work done by the forces involved.

This result is called the principle of conservation of mechanical energy. (Now you
can see where conservative forces got their name.) With the aid of Eq. 8-15, we
can write this principle in one more form, as

�Emec � �K � �U � 0. (8-18)

The principle of conservation of mechanical energy allows us to solve
problems that would be quite difficult to solve using only Newton’s laws:

Figure 8-7 shows an example in which the principle of conservation of
mechanical energy can be applied: As a pendulum swings, the energy of the

Figure 8-7 A pendulum, with its mass 
concentrated in a bob at the lower end,
swings back and forth. One full cycle of
the motion is shown. During the cycle the
values of the potential and kinetic ener-
gies of the pendulum–Earth system vary
as the bob rises and falls, but the mechani-
cal energy Emec of the system remains 
constant. The energy Emec can be
described as continuously shifting between
the kinetic and potential forms. In stages
(a) and (e), all the energy is kinetic energy.
The bob then has its greatest speed and is
at its lowest point. In stages (c) and (g), all
the energy is potential energy. The bob
then has zero speed and is at its highest
point. In stages (b), (d), ( f ), and (h), half
the energy is kinetic energy and half is
potential energy. If the swinging involved
a frictional force at the point where the
pendulum is attached to the ceiling, or a
drag force due to the air, then Emec would
not be conserved, and eventually the 
pendulum would stop.

(a)

KU

(b)

KU

(c)

KU

(d)

KU

(e)

KU

(h)

KU

( f )

KU

(g)

KU

v = +vmax

v = 0 

v = –vmax

v = 0 

v

v

v

v

v

v

All potential
energy

All potential
energy

The total energy
does not change
(it is conserved ).

All kinetic energy

All kinetic energy



pendulum–Earth system is transferred back and forth between kinetic energy K
and gravitational potential energy U, with the sum K � U being constant. If we
know the gravitational potential energy when the pendulum bob is at its highest
point (Fig. 8-7c), Eq. 8-17 gives us the kinetic energy of the bob at the lowest
point (Fig. 8-7e).

For example, let us choose the lowest point as the reference point, with the
gravitational potential energy U2 � 0. Suppose then that the potential energy at
the highest point is U1 � 20 J relative to the reference point. Because the bob mo-
mentarily stops at its highest point, the kinetic energy there is K1 � 0. Putting these
values into Eq. 8-17 gives us the kinetic energy K2 at the lowest point:

K2 � 0 � 0 � 20 J or K2 � 20 J.

Note that we get this result without considering the motion between the highest
and lowest points (such as in Fig. 8-7d) and without finding the work done by any
forces involved in the motion.

186 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

Checkpoint 3
The figure shows four 
situations—one in
which an initially sta-
tionary block is dropped
and three in which the
block is allowed to slide
down frictionless ramps.
(a) Rank the situations 
according to the kinetic energy of the block at point B, greatest first. (b) Rank them
according to the speed of the block at point B, greatest first.

A

B B B B 

(1) (2) (3) (4)

System: Because the only force doing work on the child
is the gravitational force, we choose the child–Earth system
as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in
an isolated system, so we can use the principle of conserva-
tion of mechanical energy.

Calculations: Let the mechanical energy be Emec,t when the
child is at the top of the slide and Emec,b when she is at the
bottom.Then the conservation principle tells us

Emec,b � Emec,t. (8-19)

Sample Problem 8.03 Conservation of mechanical energy, water slide

The huge advantage of using the conservation of energy in-
stead of Newton’s laws of motion is that we can jump from
the initial state to the final state without considering all the
intermediate motion. Here is an example. In Fig. 8-8, a child
of mass m is released from rest at the top of a water slide,
at height h � 8.5 m above the bottom of the slide.
Assuming that the slide is frictionless because of the water
on it, find the child’s speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her ac-
celeration along the slide as we might have in earlier chap-
ters because we do not know the slope (angle) of the slide.
However, because that speed is related to her kinetic en-
ergy, perhaps we can use the principle of conservation of
mechanical energy to get the speed. Then we would not
need to know the slope. (2) Mechanical energy is conserved
in a system if the system is isolated and if only conservative
forces cause energy transfers within it. Let’s check.

Forces: Two forces act on the child. The gravitational
force, a conservative force, does work on her. The normal
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicular
to the direction in which the child moves.

Figure 8-8 A child slides down a water slide as she descends a
height h.

h

The total mechanical 
energy at the top
is equal to the total 
at the bottom.



Reading a Potential Energy Curve
Once again we consider a particle that is part of a system in which a conservative
force acts. This time suppose that the particle is constrained to move along an
x axis while the conservative force does work on it. We want to plot the potential
energy U(x) that is associated with that force and the work that it does, and then
we want to consider how we can relate the plot back to the force and to the kinetic
energy of the particle. However, before we discuss such plots, we need one more
relationship between the force and the potential energy.

Finding the Force Analytically
Equation 8-6 tells us how to find the change �U in potential energy between two
points in a one-dimensional situation if we know the force F(x). Now we want to

1878-3 READING A POTENTIAL ENERGY CURVE

To show both kinds of mechanical energy, we have

Kb � Ub � Kt � Ut, (8-20)

or

Dividing by m and rearranging yield

Putting vt � 0 and yt � yb � h leads to

(Answer)� 13 m/s.

vb � 12gh � 1(2)(9.8 m/s2)(8.5 m)

vb
2 � vt

2 � 2g(yt � yb).

1
2 mvb

2 � mgyb � 1
2 mvt

2 � mgyt .

Additional examples, video, and practice available at WileyPLUS

8-3 READING A POTENTIAL ENERGY CURVE

After reading this module, you should be able to  . . .

8.07 Given a particle’s potential energy as a function of its
position x, determine the force on the particle.

8.08 Given a graph of potential energy versus x, determine
the force on a particle.

8.09 On a graph of potential energy versus x, superimpose a
line for a particle’s mechanical energy and determine the
particle’s kinetic energy for any given value of x.

8.10 If a particle moves along an x axis, use a potential-
energy graph for that axis and the conservation of mechan-
ical energy to relate the energy values at one position to
those at another position.

8.11 On a potential-energy graph, identify any turning points
and any regions where the particle is not allowed because
of energy requirements.

8.12 Explain neutral equilibrium, stable equilibrium, and 
unstable equilibrium.

Learning Objectives

Key Ideas
● If we know the potential energy function U(x) for a system
in which a one-dimensional force F(x) acts on a particle, we
can find the force as

● If U(x) is given on a graph, then at any value of x, the force
F(x) is the negative of the slope of the curve there and the

F(x) � �
dU(x)

dx
.

kinetic energy of the particle is given by

K(x) � Emec � U(x),

where Emec is the mechanical energy of the system.
● A turning point is a point x at which the particle reverses its
motion (there, K � 0).
● The particle is in equilibrium at points where the slope of
the U(x) curve is zero (there, F(x) � 0).

This is the same speed that the child would reach if she fell
8.5 m vertically. On an actual slide, some frictional forces
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly
with Newton’s laws, using conservation of mechanical en-
ergy makes the solution much easier. However, if we were
asked to find the time taken for the child to reach the bot-
tom of the slide, energy methods would be of no use; we
would need to know the shape of the slide, and we would
have a difficult problem.



go the other way; that is, we know the potential energy function U(x) and want
to find the force.

For one-dimensional motion, the work W done by a force that acts on a parti-
cle as the particle moves through a distance �x is F(x) �x. We can then write
Eq. 8-1 as

�U(x) � �W � �F(x) �x. (8-21)

Solving for F(x) and passing to the differential limit yield

(one-dimensional motion), (8-22)

which is the relation we sought.
We can check this result by putting , which is the elastic poten-

tial energy function for a spring force. Equation 8-22 then yields, as expected,
F(x) � �kx, which is Hooke’s law. Similarly, we can substitute U(x) � mgx,
which is the gravitational potential energy function for a particle–Earth system,
with a particle of mass m at height x above Earth’s surface. Equation 8-22 then
yields F � �mg, which is the gravitational force on the particle.

The Potential Energy Curve
Figure 8-9a is a plot of a potential energy function U(x) for a system in which a
particle is in one-dimensional motion while a conservative force F(x) does work
on it.We can easily find F(x) by (graphically) taking the slope of the U(x) curve at
various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the
U(x) curve.) Figure 8-9b is a plot of F(x) found in this way.

Turning Points
In the absence of a nonconservative force, the mechanical energy E of a system
has a constant value given by

U(x) � K(x) � Emec. (8-23)

Here K(x) is the kinetic energy function of a particle in the system (this K(x)
gives the kinetic energy as a function of the particle’s location x). We may
rewrite Eq. 8-23 as

K(x) � Emec � U(x). (8-24)

Suppose that Emec (which has a constant value, remember) happens to be 5.0 J. It
would be represented in Fig. 8-9c by a horizontal line that runs through the value
5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy K for
any location x of the particle: On the U(x) curve, find U for that location x and
then subtract U from Emec. In Fig. 8-9e for example, if the particle is at any point
to the right of x5, then K � 1.0 J. The value of K is greatest (5.0 J) when the parti-
cle is at x2 and least (0 J) when the particle is at x1.

Since K can never be negative (because v2 is always positive), the particle can
never move to the left of x1, where Emec � U is negative. Instead, as the particle
moves toward x1 from x2, K decreases (the particle slows) until K � 0 at x1 (the
particle stops there).

Note that when the particle reaches x1, the force on the particle, given by
Eq. 8-22, is positive (because the slope dU/dx is negative). This means that the
particle does not remain at x1 but instead begins to move to the right, opposite its
earlier motion. Hence x1 is a turning point, a place where K � 0 (because U � E)
and the particle changes direction. There is no turning point (where K � 0) on
the right side of the graph. When the particle heads to the right, it will continue
indefinitely.

U(x) � 1
2 kx2

F(x) � �
dU(x)

dx
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Mild force, –x direction
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This is a plot of the potential
energy U versus position x.

Force is equal to the negative of
the slope of the U(x ) plot.
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U  (J), Emec  (J)

xx2x1 x3 x4 x5(c)

Emec = 5.0 J

U(x)

The flat line shows a given value of
the total mechanical energy Emec.

The difference between the total energy
and the potential energy is the
kinetic energy K.
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U  (J), Emec  (J)
At this position, K is greatest and
the particle is moving the fastest.

At this position, K is zero (a turning point).
The particle cannot go farther to the left.

For either of these three choices for Emec,
the particle is trapped (cannot escape
left or right).
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U  (J), Emec  (J)

xx2x1 x3 x4 x5(e)

Emec = 5.0 J

K = 1.0 J at x > x5

K = 5.0 J at x2

A

Figure 8-9 (a) A plot of U(x), the potential energy function of a system containing a particle confined to move along an x axis. There is no
friction, so mechanical energy is conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential energy plot by
taking its slope at various points. (c)–(e) How to determine the kinetic energy. ( f ) The U(x) plot of (a) with three possible values of Emec

shown. In WileyPLUS, this figure is available as an animation with voiceover.



Equilibrium Points
Figure 8-9f shows three different values for Emec superposed on the plot of the
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa-
tion. If Emec � 4.0 J (purple line), the turning point shifts from x1 to a point
between x1 and x2. Also, at any point to the right of x5, the system’s mechanical
energy is equal to its potential energy; thus, the particle has no kinetic energy and
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a
position is said to be in neutral equilibrium. (A marble placed on a horizontal
tabletop is in that state.)

If Emec � 3.0 J (pink line), there are two turning points: One is between
x1 and x2, and the other is between x4 and x5. In addition, x3 is a point at which
K � 0. If the particle is located exactly there, the force on it is also zero, and the
particle remains stationary. However, if it is displaced even slightly in either
direction, a nonzero force pushes it farther in the same direction, and the particle
continues to move. A particle at such a position is said to be in unstable equilib-
rium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle’s behavior if Emec � 1.0 J (green line). If we place it
at x4, it is stuck there. It cannot move left or right on its own because to do so would
require a negative kinetic energy. If we push it slightly left or right, a restoring force
appears that moves it back to x4. A particle at such a position is said to be in stable
equilibrium. (A marble placed at the bottom of a hemispherical bowl is an example.)
If we place the particle in the cup-like potential well centered at x2, it is between two
turning points. It can still move somewhat, but only partway to x1 or x3.
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Checkpoint 4
The figure gives the potential energy function 
U(x) for a system in which a particle is in one-
dimensional motion. (a) Rank regions AB, BC, and
CD according to the magnitude of the force on the
particle, greatest first. (b) What is the direction of
the force when the particle is in region AB?

U
(x

) 
(J

) 5

3

1

A B C D 
x

Calculations: At , the particle has kinetic energy

Because the potential energy there is , the mechanical
energy is

.

This value for is plotted as a horizontal line in Fig. 8-10a.
From that figure we see that at , the potential 
energy is . The kinetic energy is the difference
between and :

.

Because , we find

. (Answer)

(b) Where is the particle’s turning point located?

v1 � 3.0 m/s

K1 � 1
2 mv1

2

K1 � Emec � U1 � 16.0 J � 7.0 J � 9.0 J

U1Emec

K1U1 � 7.0 J
x � 4.5 m

Emec

Emec � K0 � U0 � 16.0 J � 0 � 16.0 J

U � 0

� 16.0 J.

K0 � 1
2mv2

0 � 1
2(2.00 kg)(4.00 m/s)2

x � 6.5 m

Sample Problem 8.04 Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between and , it would have the
plotted value of U. At , the particle has velocity

.

(a) From Fig. 8-10a, determine the particle’s speed at
.

KEY IDEAS

(1) The particle’s kinetic energy is given by Eq. 7-1
( ). (2) Because only a conservative force acts on
the particle, the mechanical energy is con-
served as the particle moves. (3) Therefore, on a plot of U(x)
such as Fig. 8-10a, the kinetic energy is equal to the differ-
ence between and U.Emec

Emec (� K � U)
K � 1

2mv2

x1 � 4.5 m

îv0
: � (�4.00 m/s)

x � 6.5 m
x � 7.00 mx � 0



Additional examples, video, and practice available at WileyPLUS

1918-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

KEY IDEA

The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has and thus .

Calculations: Because K is the difference between
, we want the point in Fig. 8-10a where the plot of

U rises to meet the horizontal line of , as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-10b,
we can draw nested right triangles as shown and then write
the proportionality of distances

,

which gives us .Thus, the turning point is at

. (Answer)

(c) Evaluate the force acting on the particle when it is in the
region .

KEY IDEA

The force is given by Eq. 8-22 (F(x) � �dU(x)/dx):The force
is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for
the range the force is

. (Answer)F � �
20 J � 7.0 J

1.0 m � 4.0 m
� 4.3 N

1.0 m � x � 4.0 m

1.9 m � x � 4.0 m

x � 4.0 m � d � 1.9 m

d � 2.08 m

16 � 7.0
d

�
20 � 7.0
4.0 � 1.0

Emec

Emec and U

K � 0v � 0

Thus, the force has magnitude 4.3 N and is in the positive 
direction of the x axis. This result is consistent with the fact
that the initially leftward-moving particle is stopped by the
force and then sent rightward.

Figure 8-10 (a) A plot of potential energy U versus position x.
(b) A section of the plot used to find where the particle turns
around.

Kinetic energy is the difference
between the total energy and
the potential energy.
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The kinetic energy is zero
at the turning point (the
particle speed is zero).

8-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

After reading this module, you should be able to . . .
8.13 When work is done on a system by an external force

with no friction involved, determine the changes in kinetic
energy and potential energy.

8.14 When work is done on a system by an external force
with friction involved, relate that work to the changes in
kinetic energy, potential energy, and thermal energy.

● Work W is energy transferred to or from a system by means
of an external force acting on the system. 

● When more than one force acts on a system, their net work
is the transferred energy. 

● When friction is not involved, the work done on the system
and the change �Emec in the mechanical energy of the system
are equal:

W � �Emec � �K � �U.

● When a kinetic frictional force acts within the system, then
the thermal energy Eth of the system changes. (This energy is
associated with the random motion of atoms and molecules
in the system.) The work done on the system is then

W � �Emec � �Eth.

● The change �Eth is related to the magnitude fk of the frictional
force and the magnitude d of the displacement caused by the
external force by

�Eth � fkd.

Learning Objectives

Key Ideas



Work Done on a System by an External Force
In Chapter 7, we defined work as being energy transferred to or from an object
by means of a force acting on the object. We can now extend that definition to an
external force acting on a system of objects.
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Work is energy transferred to or from a system by means of an external force 
acting on that system.

Figure 8-11a represents positive work (a transfer of energy to a system), and
Fig. 8-11b represents negative work (a transfer of energy from a system). When
more than one force acts on a system, their net work is the energy transferred to
or from the system.

These transfers are like transfers of money to and from a bank account. If a
system consists of a single particle or particle-like object, as in Chapter 7, the
work done on the system by a force can change only the kinetic energy of the
system. The energy statement for such transfers is the work–kinetic energy theo-
rem of Eq. 7-10 (�K � W); that is, a single particle has only one energy account,
called kinetic energy. External forces can transfer energy into or out of that
account. If a system is more complicated, however, an external force can change
other forms of energy (such as potential energy); that is, a more complicated
system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situa-
tions, one that does not involve friction and one that does.

No Friction Involved
To compete in a bowling-ball-hurling contest, you first squat and cup your hands
under the ball on the floor.Then you rapidly straighten up while also pulling your
hands up sharply, launching the ball upward at about face level. During your
upward motion, your applied force on the ball obviously does work; that is, it is an
external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change �K in
the ball’s kinetic energy and, because the ball and Earth become more sepa-
rated, there is a change �U in the gravitational potential energy of the
ball–Earth system. To include both changes, we need to consider the ball –Earth
system. Then your force is an external force doing work on that system, and the
work is

W � �K � �U, (8-25)

or W � �Emec (work done on system, no friction involved), (8-26)

where �Emec is the change in the mechanical energy of the system. These two
equations, which are represented in Fig. 8-12, are equivalent energy statements
for work done on a system by an external force when friction is not involved.

Friction Involved
We next consider the example in Fig. 8-13a. A constant horizontal force pulls a
block along an x axis and through a displacement of magnitude d, increasing the
block’s velocity from to . During the motion, a constant kinetic frictional
force from the floor acts on the block. Let us first choose the block as our
system and apply Newton’s second law to it. We can write that law for compo-
nents along the x axis (Fnet, x � max) as

F � fk � ma. (8-27)

f
:

k

v:v:0

F
:

Positive W

System

(a)

Negative W

System

(b)

Figure 8-11 (a) Positive work W done on an
arbitrary system means a transfer of
energy to the system. (b) Negative work
W means a transfer of energy from the
system.

W
ΔEmec = ΔK + ΔU

Ball–Earth
system

Your lifting force
transfers energy to
kinetic energy and
potential energy.

Figure 8-12 Positive work W is done on a
system of a bowling ball and Earth, caus-
ing a change �Emec in the mechanical
energy of the system, a change �K in the
ball’s kinetic energy, and a change �U in
the system’s gravitational potential energy.



Because the forces are constant, the acceleration is also constant. Thus, we can
use Eq. 2-16 to write

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging
then give us

(8-28)

or, because for the block,

Fd � �K � fkd. (8-29)

In a more general situation (say, one in which the block is moving up a ramp), there
can be a change in potential energy.To include such a possible change, we general-
ize Eq. 8-29 by writing

Fd � �Emec � fkd. (8-30)

By experiment we find that the block and the portion of the floor along
which it slides become warmer as the block slides. As we shall discuss in
Chapter 18, the temperature of an object is related to the object’s thermal energy
Eth (the energy associated with the random motion of the atoms and molecules in
the object). Here, the thermal energy of the block and floor increases because
(1) there is friction between them and (2) there is sliding. Recall that friction is
due to the cold-welding between two surfaces. As the block slides over the floor,
the sliding causes repeated tearing and re-forming of the welds between the
block and the floor, which makes the block and floor warmer. Thus, the sliding
increases their thermal energy Eth.

Through experiment, we find that the increase �Eth in thermal energy is
equal to the product of the magnitudes fk and d:

�Eth � fkd (increase in thermal energy by sliding). (8-31)

Thus, we can rewrite Eq. 8-30 as

Fd � �Emec � �Eth. (8-32)

Fd is the work W done by the external force (the energy transferred by the
force), but on which system is the work done (where are the energy transfers made)?
To answer, we check to see which energies change. The block’s mechanical energy

F
:

1
2 mv2 � 1

2 mv0
2 � �K

Fd � 1
2 mv2 � 1

2 mv0
2 � fkd

v2 � v0
2 � 2ad.

a:
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fk

v0 v

F

d

x

(a)

The applied force supplies energy.
The frictional force transfers some
of it to thermal energy.

(b)

Block–floor
system

ΔEmec

ΔEth

W

So, the work done by the applied
force goes into kinetic energy
and also thermal energy.

Figure 8-13 (a) A block is pulled across a floor by force while a kinetic frictional
force opposes the motion. The block has velocity at the start of a displacement 
and velocity at the end of the displacement. (b) Positive work W is done on the
block–floor system by force , resulting in a change �Emec in the block’s mechanical
energy and a change �Eth in the thermal energy of the block and floor.
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Checkpoint 5
In three trials, a block is pushed
by a horizontal applied force
across a floor that is not friction-
less, as in Fig. 8-13a.The magni-
tudes F of the applied force and
the results of the pushing on the
block’s speed are given in the
table. In all three trials, the block is pushed through the same distance d. Rank the
three trials according to the change in the thermal energy of the block and floor that
occurs in that distance d, greatest first.

Trial F Result on Block’s Speed

a 5.0 N decreases
b 7.0 N remains constant
c 8.0 N increases

be friction and a change �Eth in thermal energy of the crate
and the floor. Therefore, the system on which the work is
done is the crate–floor system, because both energy
changes occur in that system.

(b) What is the increase �Eth in the thermal energy of the
crate and floor?

KEY IDEA

We can relate �Eth to the work W done by with the energy
statement of Eq. 8-33 for a system that involves friction:

W � �Emec � �Eth. (8-34)

Calculations: We know the value of W from (a). The
change �Emec in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

Substituting this into Eq.8-34 and solving for �Eth,we find

(Answer)

Without further experiments, we cannot say how much of
this thermal energy ends up in the crate and how much in
the floor.We simply know the total amount.

� 22.2 J � 22 J.

� 20 J � 1
2(14 kg)[(0.20 m/s)2 � (0.60 m/s)2]

�Eth � W � (1
2 mv2 � 1

2 mv0
2) � W � 1

2 m(v2 � v0
2)

�Emec � �K � 1
2 mv2 � 1

2 mv0
2.

F
:

Sample Problem 8.05 Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass m 14 kg) across a concrete floor with a constant
horizontal force of magnitude 40 N. In a straight-line dis-
placement of magnitude d 0.50 m, the speed of the crate
decreases from v0 0.60 m/s to v 0.20 m/s.

(a) How much work is done by force , and on what system
does it do the work?

KEY IDEA

Because the applied force is constant, we can calculate
the work it does by using Eq. 7-7 ( ).

Calculation: Substituting given data, including the fact that
force and displacement are in the same direction, we
find

W � Fd cos f � (40 N)(0.50 m) cos 0	

� 20 J. (Answer)

Reasoning: To determine the system on which the work is
done, let’s check which energies change. Because the crate’s
speed changes, there is certainly a change �K in the crate’s
kinetic energy. Is there friction between the floor and the
crate, and thus a change in thermal energy? Note that and
the crate’s velocity have the same direction. Thus, if there is
no friction, then should be accelerating the crate to a
greater speed. However, the crate is slowing, so there must

F
:

F
:

d
:

F
:

W � Fd cos �
F
:

F
:

��
�

F
:

�

Additional examples, video, and practice available at WileyPLUS

changes, and the thermal energies of the block and floor also change. Therefore, the
work done by force is done on the block–floor system.That work is

W � �Emec � �Eth (work done on system, friction involved). (8-33)

This equation, which is represented in Fig. 8-13b, is the energy statement for the
work done on a system by an external force when friction is involved.

F
:



Conservation of Energy
We now have discussed several situations in which energy is transferred to or
from objects and systems, much like money is transferred between accounts.
In each situation we assume that the energy that was involved could always be
accounted for; that is, energy could not magically appear or disappear. In more
formal language, we assumed (correctly) that energy obeys a law called the law of
conservation of energy, which is concerned with the total energy E of a system.
That total is the sum of the system’s mechanical energy, thermal energy, and any
type of internal energy in addition to thermal energy. (We have not yet discussed
other types of internal energy.) The law states that

1958-5 CONSERVATION OF ENERGY

The total energy E of a system can change only by amounts of energy that are
transferred to or from the system.

8-5 CONSERVATION OF ENERGY

After reading this module, you should be able to . . .

8.15 For an isolated system (no net external force), apply the
conservation of energy to relate the initial total energy 
(energies of all kinds) to the total energy at a later instant.

8.16 For a nonisolated system, relate the work done on the
system by a net external force to the changes in the vari-
ous types of energies within the system.

8.17 Apply the relationship between average power, the 
associated energy transfer, and the time interval in which
that transfer is made.

8.18 Given an energy transfer as a function of time (either as
an equation or a graph), determine the instantaneous
power (the transfer at any given instant).   

Learning Objectives

● The total energy E of a system (the sum of its mechanical
energy and its internal energies, including thermal energy)
can change only by amounts of energy that are transferred to
or from the system. This experimental fact is known as the law
of conservation of energy. 

● If work W is done on the system, then

W � �E � �Emec � �Eth � �Eint.

If the system is isolated (W � 0), this gives

�Emec � �Eth � �Eint � 0

and Emec,2 � Emec,1 � �Eth � �Eint,

where the subscripts 1 and 2 refer to two different instants.

● The power due to a force is the rate at which that force
transfers energy. If an amount of energy �E is transferred by
a force in an amount of time �t, the average power of the
force is

● The instantaneous power due to a force is

On a graph of energy E versus time t, the power is the slope
of the plot at any given time.

P �
dE
dt

.

Pavg �
�E
�t

.

Key Ideas

The only type of energy transfer that we have considered is work W done on a
system by an external force.Thus, for us at this point, this law states that

W � �E � �Emec � �Eth � �Eint, (8-35)

where �Emec is any change in the mechanical energy of the system, �Eth is any
change in the thermal energy of the system, and �Eint is any change in any
other type of internal energy of the system. Included in �Emec are changes �K in
kinetic energy and changes �U in potential energy (elastic, gravitational, or any
other type we might find).

This law of conservation of energy is not something we have derived from
basic physics principles. Rather, it is a law based on countless experiments.



Scientists and engineers have never found an exception to it. Energy simply can-
not magically appear or disappear.

Isolated System
If a system is isolated from its environment, there can be no energy transfers to or
from it. For that case, the law of conservation of energy states:
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The total energy E of an isolated system cannot change.

Many energy transfers may be going on within an isolated system — between,
say, kinetic energy and a potential energy or between kinetic energy and ther-
mal energy. However, the total of all the types of energy in the system cannot
change. Here again, energy cannot magically appear or disappear.

We can use the rock climber in Fig. 8-14 as an example, approximating
him, his gear, and Earth as an isolated system. As he rappels down the rock
face, changing the configuration of the system, he needs to control the transfer
of energy from the gravitational potential energy of the system. (That energy
cannot just disappear.) Some of it is transferred to his kinetic energy.
However, he obviously does not want very much transferred to that type or he
will be moving too quickly, so he has wrapped the rope around metal rings to
produce friction between the rope and the rings as he moves down. The sliding
of the rings on the rope then transfers the gravitational potential energy of the
system to thermal energy of the rings and rope in a way that he can control.
The total energy of the climber – gear – Earth system (the total of its gravita-
tional potential energy, kinetic energy, and thermal energy) does not change
during his descent.

For an isolated system, the law of conservation of energy can be written in
two ways. First, by setting W � 0 in Eq. 8-35, we get

�Emec � �Eth � �Eint � 0 (isolated system). (8-36)

We can also let �Emec � Emec,2 � Emec,1, where the subscripts 1 and 2 refer to two
different instants—say, before and after a certain process has occurred.Then Eq.
8-36 becomes

Emec,2 � Emec,1 � �Eth � �Eint. (8-37)

Equation 8-37 tells us:

Figure 8-14 To descend, the rock climber
must transfer energy from the gravitational
potential energy of a system consisting of
him, his gear, and Earth. He has wrapped
the rope around metal rings so that the
rope rubs against the rings. This allows
most of the transferred energy to go to the
thermal energy of the rope and rings
rather than to his kinetic energy.

Tyler Stableford/The Image Bank/Getty Images

In an isolated system, we can relate the total energy at one instant to the total
energy at another instant without considering the energies at intermediate times.

This fact can be a very powerful tool in solving problems about isolated systems
when you need to relate energies of a system before and after a certain process
occurs in the system.

In Module 8-2, we discussed a special situation for isolated systems—namely,
the situation in which nonconservative forces (such as a kinetic frictional force)
do not act within them. In that special situation, �Eth and �Eint are both zero, and
so Eq. 8-37 reduces to Eq. 8-18. In other words, the mechanical energy of an
isolated system is conserved when nonconservative forces do not act in it.

External Forces and Internal Energy Transfers
An external force can change the kinetic energy or potential energy of an object
without doing work on the object—that is, without transferring energy to the
object. Instead, the force is responsible for transfers of energy from one type to
another inside the object.



Figure 8-15 shows an example. An initially stationary ice-skater pushes away
from a railing and then slides over the ice (Figs. 8-15a and b). Her kinetic energy
increases because of an external force on her from the rail. However, that force
does not transfer energy from the rail to her. Thus, the force does no work on
her. Rather, her kinetic energy increases as a result of internal transfers from the
biochemical energy in her muscles.

Figure 8-16 shows another example. An engine increases the speed of a car
with four-wheel drive (all four wheels are made to turn by the engine). During
the acceleration, the engine causes the tires to push backward on the road sur-
face. This push produces frictional forces that act on each tire in the forward
direction. The net external force from the road, which is the sum of these fric-
tional forces, accelerates the car, increasing its kinetic energy. However, does
not transfer energy from the road to the car and so does no work on the car.
Rather, the car’s kinetic energy increases as a result of internal transfers from the
energy stored in the fuel.

F
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F
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f
:

F
:
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Figure 8-15 (a) As a skater pushes herself away from a railing, the force on her from
the railing is . (b) After the skater leaves the railing, she has velocity . (c) External
force acts on the skater, at angle f with a horizontal x axis. When the skater goes
through displacement , her velocity is changed from (� 0) to by the horizontal
component of .F

:
v:v:0d

:
F
:

v:F
:

Ice

(a)

φF φ

(c)

v0

x

F

v

d

(b)

v

Her push on the rail causes 
a transfer of internal energy 
to kinetic energy.

Figure 8-16 A vehicle accelerates to the
right using four-wheel drive. The road
exerts four frictional forces (two of them
shown) on the bottom surfaces of the tires.
Taken together, these four forces make up
the net external force acting on the car.F

:

acom

f f

In situations like these two, we can sometimes relate the external force on
an object to the change in the object’s mechanical energy if we can simplify the
situation. Consider the ice-skater example. During her push through distance d in
Fig. 8-15c, we can simplify by assuming that the acceleration is constant, her
speed changing from v0 � 0 to v. (That is, we assume has constant magnitude F
and angle f.) After the push, we can simplify the skater as being a particle and
neglect the fact that the exertions of her muscles have increased the thermal
energy in her muscles and changed other physiological features. Then we can
apply Eq. 7-5 to write

K � K0 � (F cos f)d,

or �K � Fd cos f. (8-38)

If the situation also involves a change in the elevation of an object, we can
include the change �U in gravitational potential energy by writing

�U � �K � Fd cos f. (8-39)

The force on the right side of this equation does no work on the object but is still
responsible for the changes in energy shown on the left side.

Power
Now that you have seen how energy can be transferred from one type to another,
we can expand the definition of power given in Module 7-6. There power is

(1
2 mv2 � 1

2 mv0
2 � Fxd)

F
:

F
:



defined as the rate at which work is done by a force. In a more general sense,
power P is the rate at which energy is transferred by a force from one type to
another. If an amount of energy �E is transferred in an amount of time �t, the
average power due to the force is

(8-40)

Similarly, the instantaneous power due to the force is

(8-41)P �
dE
dt

.

Pavg �
�E
�t

.

198 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

on the glider to get it moving, a spring force does work on
it, transferring energy from the elastic potential energy of
the compressed spring to kinetic energy of the glider. The
spring force also pushes against a rigid wall. Because there
is friction between the glider and the ground-level track,
the sliding of the glider along that track section increases
their thermal energies.

System: Let’s take the system to contain all the interact-
ing bodies: glider, track, spring, Earth, and wall. Then, be-
cause all the force interactions are within the system, the
system is isolated and thus its total energy cannot change.
So, the equation we should use is not that of some external
force doing work on the system. Rather, it is a conservation
of energy.We write this in the form of Eq. 8-37:

Emec,2 � Emec,1 � �Eth. (8-42)

This is like a money equation: The final money is equal to
the initial money minus the amount stolen away by a thief.
Here, the final mechanical energy is equal to the initial me-
chanical energy minus the amount stolen away by friction.
None has magically appeared or disappeared.

Calculations: Now that we have an equation, let’s find
distance L. Let subscript 1 correspond to the initial state
of the glider (when it is still on the compressed spring)
and subscript 2 correspond to the final state of the glider
(when it has come to rest on the ground-level track). For
both states, the mechanical energy of the system is the
sum of any potential energy and any kinetic energy.

We have two types of potential energy: the elastic po-
tential energy (Ue � kx2) associated with the compressed1

2

Sample Problem 8.06 Lots of energies at an amusement park water slide

Figure 8-17 shows a water-slide ride in which a glider is shot
by a spring along a water-drenched (frictionless) track that
takes the glider from a horizontal section down to ground
level.As the glider then moves along ground-level track, it is
gradually brought to rest by friction. The total mass of the
glider and its rider is m � 200 kg, the initial compression of
the spring is d � 5.00 m, the spring constant is k � 3.20 �
103 N/m, the initial height is h � 35.0 m, and the coefficient
of kinetic friction along the ground-level track is mk � 0.800.
Through what distance L does the glider slide along the
ground-level track until it stops?

KEY IDEAS

Before we touch a calculator and start plugging numbers
into equations, we need to examine all the forces and then
determine what our system should be. Only then can we
decide what equation to write. Do we have an isolated sys-
tem (our equation would be for the conservation of en-
ergy) or a system on which an external force does work
(our equation would relate that work to the system’s
change in energy)?

Forces: The normal force on the glider from the track
does no work on the glider because the direction of this
force is always perpendicular to the direction of the
glider’s displacement. The gravitational force does work
on the glider, and because the force is conservative we can
associate a potential energy with it. As the spring pushes

spring and the gravitational potential energy (Ug � mgy) as-

L
mk

m� 0

k

h

Figure 8-17 A spring-loaded amusement park water slide.

sociated with the glider’s elevation. For the latter, let’s take
ground level as the reference level. That means that the
glider is initially at height y � h and finally at height y � 0.

In the initial state, with the glider stationary and ele-
vated and the spring compressed, the energy is

Emec,1 � K1 � Ue1 � Ug1

� 0 � kd2 � mgh. (8-43)1
2
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Substituting Eqs. 8-43 through 8-45 into Eq. 8-42, we find

0 � kd2 � mgh � mkmgL, (8-46)
and

L

� 69.3 m. (Answer)

Finally, note how algebraically simple our solution is. By
carefully defining a system and realizing that we have an
isolated system, we get to use the law of the conservation of
energy. That means we can relate the initial and final states
of the system with no consideration of the intermediate
states. In particular, we did not need to consider the glider as
it slides over the uneven track. If we had, instead, applied
Newton’s second law to the motion, we would have had to
know the details of the track and would have faced a far
more difficult calculation.

�
(3.20 � 103 N/m)(5.00 m)2

2(0.800)(200 kg)(9.8 m/s2)
�

35 m
0.800

�
kd2

2mkmg
�

h
mk

1
2

Conservative Forces A force is a conservative force if the net
work it does on a particle moving around any closed path, from an
initial point and then back to that point, is zero. Equivalently, a
force is conservative if the net work it does on a particle moving
between two points does not depend on the path taken by the par-
ticle. The gravitational force and the spring force are conservative
forces; the kinetic frictional force is a nonconservative force.

Potential Energy A potential energy is energy that is associated
with the configuration of a system in which a conservative force acts.
When the conservative force does work W on a particle within the sys-
tem, the change �U in the potential energy of the system is

�U � �W. (8-1)

If the particle moves from point xi to point xf , the change in the
potential energy of the system is

(8-6)

Gravitational Potential Energy The potential energy asso-
ciated with a system consisting of Earth and a nearby particle is
gravitational potential energy. If the particle moves from height yi

to height yf, the change in the gravitational potential energy of the
particle–Earth system is

�U � mg(yf � yi) � mg �y. (8-7)

If the reference point of the particle is set as yi � 0 and the cor-
responding gravitational potential energy of the system is set as
Ui � 0, then the gravitational potential energy U when the parti-

�U � ��xf

xi

F(x) dx.

Review & Summary

cle is at any height y is

U(y) � mgy. (8-9)

Elastic Potential Energy Elastic potential energy is the
energy associated with the state of compression or extension of an
elastic object. For a spring that exerts a spring force F � �kx when
its free end has displacement x, the elastic potential energy is

(8-11)

The reference configuration has the spring at its relaxed length, at
which x � 0 and U � 0.

Mechanical Energy The mechanical energy Emec of a system
is the sum of its kinetic energy K and potential energy U:

Emec � K � U. (8-12)

An isolated system is one in which no external force causes energy
changes. If only conservative forces do work within an isolated sys-
tem, then the mechanical energy Emec of the system cannot change.
This principle of conservation of mechanical energy is written as

K2 � U2 � K1 � U1, (8-17)

in which the subscripts refer to different instants during an
energy transfer process. This conservation principle can also be
written as

�Emec � �K � �U � 0. (8-18)

Potential Energy Curves If we know the potential energy
function U(x) for a system in which a one-dimensional force F(x)

U(x) � 1
2kx2.

In the final state, with the spring now in its relaxed state and
the glider again stationary but no longer elevated, the final
mechanical energy of the system is

Emec,2 � K2 � Ue2 � Ug2

� 0 � 0 � 0. (8-44)

Let’s next go after the change �Eth of the thermal energy of
the glider and ground-level track. From Eq. 8-31, we can
substitute for �Eth with fkL (the product of the frictional
force magnitude and the distance of rubbing). From Eq. 6-2,
we know that fk � mkFN, where FN is the normal force.
Because the glider moves horizontally through the region
with friction, the magnitude of FN is equal to mg (the up-
ward force matches the downward force). So, the friction’s
theft from the mechanical energy amounts to

�Eth � mkmgL. (8-45)

(By the way, without further experiments, we cannot say
how much of this thermal energy ends up in the glider and
how much in the track. We simply know the total amount.)
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acts on a particle, we can find the force as

(8-22)

If U(x) is given on a graph, then at any value of x, the force F(x) is
the negative of the slope of the curve there and the kinetic energy
of the particle is given by

K(x) � Emec � U(x), (8-24)

where Emec is the mechanical energy of the system. A turning point
is a point x at which the particle reverses its motion (there, K � 0).
The particle is in equilibrium at points where the slope of the U(x)
curve is zero (there, F(x) � 0).

Work Done on a System by an External Force Work W
is energy transferred to or from a system by means of an external
force acting on the system. When more than one force acts on a
system, their net work is the transferred energy. When friction is
not involved, the work done on the system and the change �Emec in
the mechanical energy of the system are equal:

W � �Emec � �K � �U. (8-26, 8-25)

When a kinetic frictional force acts within the system, then the ther-
mal energy Eth of the system changes. (This energy is associated with
the random motion of atoms and molecules in the system.) The
work done on the system is then

W � �Emec � �Eth. (8-33)

F(x) � �
dU(x)

dx
.

The change �Eth is related to the magnitude fk of the frictional force
and the magnitude d of the displacement caused by the external
force by

�Eth � fkd. (8-31)

Conservation of Energy The total energy E of a system
(the sum of its mechanical energy and its internal energies,
including thermal energy) can change only by amounts of energy
that are transferred to or from the system. This experimental fact
is known as the law of conservation of energy. If work W is done
on the system, then

W � �E � �Emec � �Eth � �Eint. (8-35)

If the system is isolated (W � 0), this gives

�Emec � �Eth � �Eint � 0 (8-36)

and Emec,2 � Emec,1 � �Eth � �Eint, (8-37)

where the subscripts 1 and 2 refer to two different instants.

Power The power due to a force is the rate at which that force
transfers energy. If an amount of energy �E is transferred by
a force in an amount of time �t, the average power of the force is

(8-40)

The instantaneous power due to a force is

(8-41)P �
dE
dt

.

Pavg �
�E
�t

.

1 In Fig. 8-18, a horizontally moving block can take three fric-
tionless routes, differing only in elevation, to reach the dashed 
finish line. Rank the routes according to (a) the speed of the block
at the finish line and (b) the travel time of the block to the finish
line, greatest first.

tude of the force on the particle, greatest first. What value must
the mechanical energy Emec of the particle not exceed if the par-
ticle is to be (b) trapped in the potential well at the left, (c)
trapped in the potential well at the right, and (d) able to move
between the two potential wells but not to the right of point H?
For the situation of (d), in which of regions BC, DE, and FG will
the particle have (e) the greatest kinetic energy and (f ) the least
speed?

3 Figure 8-20 shows one direct
path and four indirect paths from
point i to point f. Along the direct
path and three of the indirect paths,
only a conservative force Fc acts on
a certain object. Along the fourth
indirect path, both Fc and a noncon-
servative force Fnc act on the object.
The change �Emec in the object’s
mechanical energy (in joules) in going from i to f is indicated along
each straight-line segment of the indirect paths. What is �Emec (a)
from i to f along the direct path and (b) due to Fnc along the one
path where it acts?

4 In Fig. 8-21, a small, initially stationary block is released on a
frictionless ramp at a height of 3.0 m. Hill heights along the ramp
are as shown in the figure.The hills have identical circular tops, and
the block does not fly off any hill. (a) Which hill is the first the
block cannot cross? (b) What does the block do after failing
to cross that hill? Of the hills that the block can cross, on which hill-

Questions
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Figure 8-18 Question 1.
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Figure 8-19 Question 2.
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Figure 8-20 Question 3.
2 Figure 8-19 gives the potential energy function of a particle.
(a) Rank regions AB, BC, CD, and DE according to the magni-



descends, it pulls on a block via a
second rope, and the block slides
over a lab table. Again consider the
cylinder–rod–Earth system, similar
to that shown in Fig. 8-23b. Your
work on the system is 200 J. The sys-
tem does work of 60 J on the block.
Within the system, the kinetic
energy increases by 130 J and
the gravitational potential energy
decreases by 20 J. (a) Draw an “en-
ergy statement” for the system, as in
Fig. 8-23c. (b) What is the change in
the thermal energy within the system?

8 In Fig. 8-25, a block slides along a track that descends through
distance h. The track is frictionless except for the lower section.
There the block slides to a stop in a certain distance D because of
friction. (a) If we decrease h, will the block now slide to a stop in a
distance that is greater than, less than, or equal to D? (b) If, instead,
we increase the mass of the block, will the stopping distance now be
greater than, less than, or equal to D?

201QUESTIONS

top is (c) the centripetal acceleration of the block greatest and (d) the
normal force on the block least?

(1) (3)(2)

Figure 8-26 Question 9.

h D

Figure 8-25 Question 8.

Figure 8-21 Question 4.

System's energies: 

ΔK = +50 J

ΔUg = +20 J

ΔEth = ? 

W = +100 J

(b)(a) (c)

Cylinder

Earth

Rope
Rod

System

Work W

A

B

C D 

Figure 8-22 Question 5.

Figure 8-23 Question 6.
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1.5 m 
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(2)

(3)

(4)

Cylinder

Rod

Block

Rope

Figure 8-24 Question 7.

5 In Fig. 8-22, a block slides from A to C along a frictionless ramp,
and then it passes through horizontal region CD, where a frictional
force acts on it. Is the block’s kinetic energy increasing, decreasing,
or constant in (a) region AB, (b) region BC, and (c) region CD?
(d) Is the block’s mechanical energy increasing, decreasing, or 
constant in those regions?

6 In Fig. 8-23a, you pull upward on a rope that is attached to a
cylinder on a vertical rod. Because the cylinder fits tightly on the
rod, the cylinder slides along the rod with considerable friction.
Your force does work W � �100 J on the cylinder–rod–Earth
system (Fig. 8-23b).An “energy statement” for the system is shown
in Fig. 8-23c: the kinetic energy K increases by 50 J, and the gravita-
tional potential energy Ug increases by 20 J. The only other change
in energy within the system is for the thermal energy Eth. What is
the change �Eth?

10 Figure 8-27 shows three plums
that are launched from the same level
with the same speed. One moves
straight upward, one is launched at a
small angle to the vertical, and one is
launched along a frictionless incline.
Rank the plums according to their
speed when they reach the level of
the dashed line, greatest first.

11 When a particle moves from f
to i and from j to i along the paths
shown in Fig. 8-28, and in the indi-
cated directions, a conservative
force does the indicated amounts
of work on it. How much work is
done on the particle by when the
particle moves directly from f to j?

F
:

F
:

(1) (2) (3)

Figure 8-27 Question 10.

f

i

j

20 J

�20 J

Figure 8-28 Question 11.

7 The arrangement shown in Fig. 8-24 is similar to that in
Question 6. Here you pull downward on the rope that is attached
to the cylinder, which fits tightly on the rod. Also, as the cylinder

9 Figure 8-26 shows three situations involving a plane that is not
frictionless and a block sliding along the plane.The block begins with
the same speed in all three situations and slides until the kinetic fric-
tional force has stopped it. Rank the situations according to the in-
crease in thermal energy due to the sliding, greatest first.



•3 You drop a 2.00 kg book to a friend
who stands on the ground at distance
D � 10.0 m below. If your friend’s out-
stretched hands are at distance d � 1.50 m
above the ground (Fig. 8-30), (a) how
much work Wg does the gravitational
force do on the book as it drops to her
hands? (b) What is the change �U in the
gravitational potential energy of the
book–Earth system during the drop? If
the gravitational potential energy U of
that system is taken to be zero at ground
level, what is U (c) when the book is re-
leased and (d) when it reaches her
hands? Now take U to be 100 J at
ground level and again find (e) Wg,
(f) �U, (g) U at the release point, and
(h) U at her hands.

•4 Figure 8-31 shows a ball with mass 
m � 0.341 kg attached to the end of a thin rod
with length L � 0.452 m and negligible mass.
The other end of the rod is pivoted so that the
ball can move in a vertical circle. The rod is
held horizontally as shown and then given
enough of a downward push to cause the
ball to swing down and around and just reach
the vertically up position, with zero speed
there. How much work is done on the ball by
the gravitational force from the initial point
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Module 8-1 Potential Energy
•1 What is the spring constant of a spring that stores 25 J of
elastic potential energy when compressed by 7.5 cm?

•2 In Fig. 8-29, a single frictionless roller-coaster car of mass
m � 825 kg tops the first hill with speed v0 � 17.0 m/s at height 
h � 42.0 m. How much work does the gravitational force do on the
car from that point to (a) point A, (b) point B, and (c) point C? If the
gravitational potential energy of the car–Earth system is taken to be
zero at C, what is its value when the car is at (d) B and (e) A? (f) If
mass m were doubled, would the change in the gravitational potential
energy of the system between points A and B increase, decrease, or
remain the same?

SSM

to (a) the lowest point, (b) the highest point, and (c) the point on
the right level with the initial point? If the gravitational potential
energy of the ball–Earth system is taken to be zero at the initial
point, what is it when the ball reaches (d) the lowest point, (e) the
highest point, and (f) the point on the right level with the initial
point? (g) Suppose the rod were pushed harder so that the ball
passed through the highest point with a nonzero speed.Would �Ug

from the lowest point to the highest point then be greater than, less
than, or the same as it was when the ball stopped at the highest
point?

•5 In Fig. 8-32, a 2.00 g ice
flake is released from the edge of a
hemispherical bowl whose radius r
is 22.0 cm. The flake–bowl contact
is frictionless. (a) How much work is
done on the flake by the gravita-
tional force during the flake’s
descent to the bottom of the bowl?
(b) What is the change in the poten-
tial energy of the flake–Earth sys-
tem during that descent? (c) If that
potential energy is taken to be zero
at the bottom of the bowl, what is its
value when the flake is released? (d) If, instead, the potential en-
ergy is taken to be zero at the release point, what is its value when
the flake reaches the bottom of the bowl? (e) If the mass of the
flake were doubled, would the magnitudes of the answers to (a)
through (d) increase, decrease, or remain the same?

••6 In Fig. 8-33, a small block of
mass m � 0.032 kg can slide along
the frictionless loop-the-loop, with
loop radius R � 12 cm. The block is
released from rest at point P, at
height h � 5.0R above the bottom
of the loop. How much work does
the gravitational force do on the
block as the block travels from point
P to (a) point Q and (b) the top of
the loop? If the gravitational poten-
tial energy of the block–Earth sys-
tem is taken to be zero at the bot-
tom of the loop, what is that potential energy when the block is (c)
at point P, (d) at point Q, and (e) at the top of the loop? (f) If, in-
stead of merely being released, the block is given some initial
speed downward along the track, do the answers to (a) through (e)
increase, decrease, or remain the same?

••7 Figure 8-34 shows a thin rod, of length L � 2.00 m and neg-
ligible mass, that can pivot about one end to rotate in a vertical
circle. A ball of mass m � 5.00 kg is attached to the other end.
The rod is pulled aside to angle u0 � 30.0� and released with 
initial velocity . As the ball descends to its lowest point,
(a) how much work does the gravitational force do on it and
(b) what is the change in the gravitational potential energy of

v:0 � 0

SSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Figure 8-32 Problems 5 
and 11.

Figure 8-29 Problems 2 and 9.
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Problems 4 

and 14.
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Problems 3 and 10.
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Figure 8-33 Problems 6 
and 17.



••16 A 700 g block is released from rest at height h0 above a ver-
tical spring with spring constant k � 400 N/m and negligible mass.
The block sticks to the spring and momentarily stops after com-
pressing the spring 19.0 cm. How much work is done (a) by the
block on the spring and (b) by the spring on the block? (c) What is
the value of h0? (d) If the block were released from height 2.00h0

above the spring, what would be the maximum compression of the
spring?

••17 In Problem 6, what are the magnitudes of (a) the horizontal
component and (b) the vertical component of the net force acting
on the block at point Q? (c) At what height h should the block be
released from rest so that it is on the verge of losing contact with
the track at the top of the loop? (On the verge of losing contact
means that the normal force on the block from the track has just
then become zero.) (d) Graph the magnitude of the normal force on
the block at the top of the loop versus initial height h, for the range
h � 0 to h � 6R.

••18 (a) In Problem 7, what is the speed of the ball at the lowest
point? (b) Does the speed increase, decrease, or remain the same if
the mass is increased?

••19 Figure 8-36 shows an 8.00 kg stone
at rest on a spring. The spring is compressed
10.0 cm by the stone. (a) What is the spring
constant? (b) The stone is pushed down an
additional 30.0 cm and released. What is the
elastic potential energy of the compressed
spring just before that release? (c) What is
the change in the gravitational potential en-
ergy of the stone–Earth system when the
stone moves from the release point to its maximum height? (d) What
is that maximum height, measured from the release point?

••20 A pendulum consists of a 2.0 kg stone swinging on a
4.0 m string of negligible mass. The stone has a speed of 8.0 m/s
when it passes its lowest point. (a) What is the speed when the
string is at 60� to the vertical? (b) What is the greatest angle with
the vertical that the string will reach during the stone’s motion?
(c) If the potential energy of the pendulum–Earth system is taken
to be zero at the stone’s lowest point, what is the total mechanical
energy of the system?

••21 Figure 8-34 shows a pendulum of length L � 1.25 m. Its bob
(which effectively has all the mass) has speed v0 when the cord makes
an angle u0 � 40.0� with the vertical. (a) What is the speed of the bob
when it is in its lowest position if v0 � 8.00 m/s? What is the least
value that v0 can have if the pendulum is to swing down and then up
(b) to a horizontal position, and (c) to a vertical position with the
cord remaining straight? (d) Do the answers to (b) and (c) increase,
decrease, or remain the same if u0 is increased by a few degrees?
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the ball – Earth system? (c) If the gravita-
tional potential energy is taken to be zero
at the lowest point, what is its value just as
the ball is released? (d) Do the magnitudes
of the answers to (a) through (c) increase,
decrease, or remain the same if angle u0 is
increased?

••8 A 1.50 kg snowball is fired from a cliff
12.5 m high. The snowball’s initial velocity is
14.0 m/s, directed 41.0� above the horizontal.
(a) How much work is done on the snowball
by the gravitational force during its flight to
the flat ground below the cliff? (b) What is
the change in the gravitational potential en-
ergy of the snowball–Earth system during
the flight? (c) If that gravitational potential
energy is taken to be zero at the height of the cliff, what is its value
when the snowball reaches the ground?

Module 8-2 Conservation of Mechanical Energy
•9 In Problem 2, what is the speed of the car at (a) point A,
(b) point B, and (c) point C? (d) How high will the car go on the
last hill, which is too high for it to cross? (e) If we substitute a sec-
ond car with twice the mass, what then are the answers to (a)
through (d)?

•10 (a) In Problem 3, what is the speed of the book when it
reaches the hands? (b) If we substituted a second book with twice
the mass, what would its speed be? (c) If, instead, the book were
thrown down, would the answer to (a) increase, decrease, or 
remain the same?

•11 (a) In Problem 5, what is the speed of the flake
when it reaches the bottom of the bowl? (b) If we substituted a sec-
ond flake with twice the mass, what would its speed be? (c) If,
instead, we gave the flake an initial downward speed along the
bowl, would the answer to (a) increase, decrease, or remain the
same?

•12 (a) In Problem 8, using energy techniques rather than the
techniques of Chapter 4, find the speed of the snowball as it
reaches the ground below the cliff. What is that speed (b) if the
launch angle is changed to 41.0� below the horizontal and (c) if the
mass is changed to 2.50 kg?

•13 A 5.0 g marble is fired vertically upward using a spring
gun. The spring must be compressed 8.0 cm if the marble is to just
reach a target 20 m above the marble’s position on the compressed
spring. (a) What is the change �Ug in the gravitational potential en-
ergy of the marble–Earth system during the 20 m ascent?
(b) What is the change �Us in the elastic potential energy of the
spring during its launch of the marble? (c) What is the spring con-
stant of the spring?

•14 (a) In Problem 4, what initial speed must be given the ball so
that it reaches the vertically upward position with zero speed? What
then is its speed at (b) the lowest point and (c) the point on the right
at which the ball is level with the initial point? (d) If the ball’s mass
were doubled, would the answers to (a) through (c) increase, de-
crease, or remain the same?

•15 In Fig. 8-35, a runaway truck with failed brakes is mov-
ing downgrade at 130 km/h just before the driver steers the truck
up a frictionless emergency escape ramp with an inclination of 
u � 15�.The truck’s mass is 1.2 � 104 kg. (a) What minimum length

SSM
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L must the ramp have if the truck is to stop (momentarily) along
it? (Assume the truck is a particle, and justify that assumption.)
Does the minimum length L increase, decrease, or remain the same
if (b) the truck’s mass is decreased and (c) its speed is decreased?

L

θ 0

v0

m

Figure 8-34
Problems 7, 18,

and 21.

L

θ 

Figure 8-35 Problem 15.

k

Figure 8-36
Problem 19.



�U of the ball–Earth system between t 0 and
t 6.0 s (still free fall)?

••26 A conservative force ,
where x is in meters, acts on a particle moving
along an x axis. The potential energy U associated
with this force is assigned a value of 27 J at x � 0.
(a) Write an expression for U as a function of x,
with U in joules and x in meters. (b)
What is the maximum positive poten-
tial energy? At what (c) negative
value and (d) positive value of x is the
potential energy equal to zero?

••27 Tarzan, who weighs 688 N,
swings from a cliff at the end of a vine
18 m long (Fig. 8-40). From the top of
the cliff to the bottom of the swing, he
descends by 3.2 m.The vine will break
if the force on it exceeds 950 N.
(a) Does the vine break? (b) If no,
what is the greatest force on it during
the swing? If yes, at what angle with
the vertical does it break?

F
:

� (6.0x � 12)î  N

�
�

is L � 120 cm long, has a ball
attached to one end, and is
fixed at its other end. The dis-
tance d from the fixed end to a
fixed peg at point P is 75.0 cm.
When the initially stationary
ball is released with the string
horizontal as shown, it will
swing along the dashed arc.
What is its speed when it
reaches (a) its lowest point

••31 A block with mass m 2.00 kg is placed against a spring�

and (b) its highest point after
the string catches on the peg?

••24 A block of mass m � 2.0 kg is dropped
from height h � 40 cm onto a spring of spring
constant k � 1960 N/m (Fig. 8-39). Find the max-
imum distance the spring is compressed.

••25 At t � 0 a 1.0 kg ball is thrown from a tall
tower with . What isv: � (18 m/s)î � (24 m/s)ĵ

••23 The string in Fig. 8-38ILW
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••22 A 60 kg skier starts from rest at height H � 20 m above
the end of a ski-jump ramp (Fig. 8-37) and leaves the ramp at angle
u � 28�. Neglect the effects of air resistance and assume the ramp
is frictionless. (a) What is the maximum height h of his jump above
the end of the ramp? (b) If he increased his weight by putting on a
backpack, would h then be greater, less, or the same?

r
P

L

d

Figure 8-38 Problems 23 and 70.

H

h
θ 

End of 
ramp

Figure 8-37 Problem 22.

h

k

m

Figure 8-39
Problem 24.

Figure 8-40 Problem 27.

θ 

Figure 8-43 Problem 30.

••28 Figure 8-41a applies to the spring
in a cork gun (Fig. 8-41b); it shows the
spring force as a function of the stretch or
compression of the spring. The spring is
compressed by 5.5 cm and used to propel
a 3.8 g cork from the gun. (a) What is the
speed of the cork if it is released as the
spring passes through its relaxed posi-
tion? (b) Suppose, instead, that the cork
sticks to the spring and stretches it 1.5 cm
before separation occurs.What now is the
speed of the cork at the time of release?

of mass m � 12 kg is released from rest
on a frictionless incline of angle 30�.
Below the block is a spring that can be
compressed 2.0 cm by a force of 270 N.
The block momentarily stops when
it compresses the spring by 5.5 cm.
(a) How far does the block move
down the incline from its rest posi-
tion to this stopping point? (b) What
is the speed of the block just as it
touches the spring?

••30 A 2.0 kg breadbox on a fric-
tionless incline of angle u � 40� is
connected, by a cord that runs over a
pulley, to a light spring of spring con-
stant k � 120 N/m, as shown in

� �

θ 

m

Figure 8-42 Problems 29 
and 35.

••29 In Fig. 8-42, a blockWWWSSM
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Figure 8-41 Problem 28.

Fig. 8-43. The box is released from rest when the spring is
unstretched. Assume that the pulley is massless and frictionless. (a)
What is the speed of the box when it has moved 10 cm down the in-
cline? (b) How far down the incline from its point of release does
the box slide before momentarily stopping, and what are the (c)
magnitude and (d) direction (up or down the incline) of the box’s
acceleration at the instant the box momentarily stops?

ILW

on a frictionless incline with angle 30.0� (Fig. 8-44). (The block is
not attached to the spring.) The spring, with spring constant k 19.6
N/cm, is compressed 20.0 cm and then released. (a) What is the elastic
potential energy of the compressed
spring? (b) What is the change in the
gravitational potential energy of the
block–Earth system as the block
moves from the release point to its
highest point on the incline? (c)
How far along the incline is the
highest point from the release
point?

�
� �

θ 

m

k

Figure 8-44 Problem 31.



a distance d down a frictionless incline at angle u � 30.0� where it
runs into a spring of spring constant 431 N/m. When the block mo-
mentarily stops, it has compressed the spring by 21.0 cm. What are
(a) distance d and (b) the distance between the point of the first
block–spring contact and the point where the block’s speed is
greatest?

•••36 Two children are
playing a game in which
they try to hit a small box
on the floor with a marble
fired from a spring-loaded
gun that is mounted on a
table. The target box is hori-
zontal distance D � 2.20 m
from the edge of the table;
see Fig. 8-48. Bobby compresses the spring 1.10 cm, but the center
of the marble falls 27.0 cm short of the center of the box. How far
should Rhoda compress the spring to score a direct hit? Assume
that neither the spring nor the ball encounters friction in the gun.

•••37 A uniform cord of length 25 cm and mass 15 g is initially
stuck to a ceiling. Later, it hangs vertically from the ceiling with only
one end still stuck. What is the change in the gravitational potential
energy of the cord with this change in orientation? (Hint: Consider a
differential slice of the cord and then use integral calculus.)

Module 8-3 Reading a Potential Energy Curve
••38 Figure 8-49 shows a plot of potential energy U versus posi-
tion x of a 0.200 kg particle that can travel only along an x axis
under the influence of a conservative force. The graph has these

••39 Figure 8-50 shows a
plot of potential energy U ver-
sus position x of a 0.90 kg parti-
cle that can travel only along an
x axis. (Nonconservative forces
are not involved.) Three values
are
and The particle is
released at x 4.5 m with an
initial speed of 7.0 m/s, headed
in the negative x direction.
(a) If the particle can reach x � 1.0 m, what is its speed there, and if
it cannot, what is its turning point? What are the (b) magnitude
and (c) direction of the force on the particle as it begins to move to
the left of x � 4.0 m? Suppose, instead, the particle is headed in the
positive x direction when it is released at x � 4.5 m at speed 7.0 m/s.
(d) If the particle can reach x � 7.0 m, what is its speed there, and if
it cannot, what is its turning point? What are the (e) magnitude and
(f) direction of the force on the particle as it begins to move to the
right of x � 5.0 m?

••40 The potential energy of a diatomic molecule (a two-atom
system like H2 or O2) is given by

where r is the separation of the two atoms of the molecule and A
and B are positive constants. This potential energy is associated
with the force that binds the two atoms together. (a) Find the equilib-
rium separation—that is, the distance between the atoms at which the
force on each atom is zero. Is the force repulsive (the atoms are
pushed apart) or attractive (they are pulled together) if their separa-
tion is (b) smaller and (c) larger than the equilibrium separation?

•••41 A single conservative force F(x) acts on a 1.0 kg particle
that moves along an x axis. The potential energy U(x) associated
with F(x) is given by

U(x) � �4x e�x/4 J,

where x is in meters. At x � 5.0 m the particle has a kinetic energy
of 2.0 J. (a) What is the mechanical energy of the system? (b) Make

U �
A
r12 �

B
r 6 ,

�
UC � 45.0 J.

UB � 35.0 J,UA � 15.0 J,

k � 170 N/m is at the top of a fric-
tionless incline of angle 37.0�.
The lower end of the incline is dis-
tance D 1.00 m from the end of
the spring, which is at its relaxed
length. A 2.00 kg canister is pushed
against the spring until the spring is
compressed 0.200 m and released
from rest. (a) What is the speed of
the canister at the instant the spring
returns to its relaxed length (which is when the canister loses contact
with the spring)? (b) What is the speed of the canister when it
reaches the lower end of the incline?

•••34 A boy is initially seated
on the top of a hemispherical ice
mound of radius R 13.8 m. He
begins to slide down the ice, with a
negligible initial speed (Fig. 8-47).
Approximate the ice as being fric-
tionless. At what height does the
boy lose contact with the ice?

•••35 In Fig. 8-42, a block of mass m � 3.20 kg slides from rest

�

�

� �

••32 In Fig. 8-45, a chain is held
on a frictionless table with one-
fourth of its length hanging over
the edge. If the chain has length
L � 28 cm and mass m � 0.012 kg,
how much work is required to pull
the hanging part back onto the
table?

•••33 In Fig. 8-46, a spring with
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values: , and . The particle is
released at the point where U forms a “potential hill” of “height”

, with kinetic energy 4.00 J. What is the speed of the
particle at (a) m and (b) m? What is the position
of the turning point on (c) the right side and (d) the left side?

x � 6.5x � 3.5
UB � 12.00 J

UD � 24.00 JUA � 9.00 J, UC � 20.00 J

D

θ 

Figure 8-46 Problem 33.

D

Figure 8-48 Problem 36.

R

Figure 8-47 Problem 34.

Figure 8-45 Problem 32.
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UA
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U
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J)

Figure 8-50 Problem 39.
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Figure 8-49 Problem 38.



•50 A 60 kg skier leaves the end of a ski-jump ramp with a ve-
locity of 24 m/s directed 25� above the horizontal. Suppose that as a
result of air drag the skier returns to the ground with a speed of 22
m/s, landing 14 m vertically below the end of the ramp. From the
launch to the return to the ground, by how much is the mechanical
energy of the skier–Earth system reduced because of air drag?

•51 During a rockslide, a 520 kg rock slides from rest down a hill-
side that is 500 m long and 300 m high. The coefficient of kinetic
friction between the rock and the hill surface is 0.25. (a) If the grav-
itational potential energy U of the rock–Earth system is zero at
the bottom of the hill, what is the value of U just before the slide?
(b) How much energy is transferred to thermal energy during the
slide? (c) What is the kinetic energy of the rock as it reaches the
bottom of the hill? (d) What is its speed then?

••52 A large fake cookie sliding on a horizontal surface is 
attached to one end of a horizontal spring with spring constant 
k � 400 N/m; the other end of the spring is fixed in place. The
cookie has a kinetic energy of 20.0 J as it passes through
the spring’s equilibrium position. As the cookie slides, a frictional
force of magnitude 10.0 N acts on it. (a) How far will the cookie
slide from the equilibrium position before coming momentarily to
rest? (b) What will be the kinetic energy of the cookie as it slides
back through the equilibrium position?

••53 In Fig. 8-52, a 3.5 kg
block is accelerated from rest
by a compressed spring of
spring constant 640 N/m. The
block leaves the spring at the
spring’s relaxed length and
then travels over a horizontal
floor with a coefficient of ki-
netic friction mk � 0.25. The frictional force stops the block in dis-
tance D � 7.8 m. What are (a) the increase in the thermal energy
of the block–floor system, (b) the maximum kinetic energy of the
block, and (c) the original compression distance of the spring?

••54 A child whose weight is 267 N slides down a 6.1 m play-
ground slide that makes an angle of 20� with the horizontal.The co-
efficient of kinetic friction between slide and child is 0.10. (a) How
much energy is transferred to thermal energy? (b) If she starts at
the top with a speed of 0.457 m/s, what is her speed at the bottom?

••55 In Fig. 8-53, a block of mass m � 2.5 kg slides head on
into a spring of spring constant
k 320 N/m. When the block�

ILW

stops, it has compressed the
spring by 7.5 cm. The coefficient
of kinetic friction between block
and floor is 0.25. While the block
is in contact with the spring and
being brought to rest, what are (a)
the work done by the spring force and (b) the increase in thermal
energy of the block–floor system? (c) What is the block’s speed
just as it reaches the spring?

••56 You push a 2.0 kg block against a horizontal spring, com-
pressing the spring by 15 cm. Then you release the block, and the

206 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

a plot of U(x) as a function of x for 0 	 x 	 10 m, and on the same
graph draw the line that represents the mechanical energy of the
system. Use part (b) to determine (c) the least value of x the parti-
cle can reach and (d) the greatest value of x the particle can reach.
Use part (b) to determine (e) the maximum kinetic energy of the
particle and (f) the value of x at which it occurs. (g) Determine an
expression in newtons and meters for F(x) as a function of x. (h)
For what (finite) value of x does F(x) � 0?

Module 8-4 Work Done on a System by an External Force
•42 A worker pushed a 27 kg block 9.2 m along a level floor at con-
stant speed with a force directed 32� below the horizontal. If the coef-
ficient of kinetic friction between block and floor was 0.20, what were
(a) the work done by the worker’s force and (b) the increase in ther-
mal energy of the block–floor system?

•43 A collie drags its bed box across a floor by applying a hori-
zontal force of 8.0 N. The kinetic frictional force acting on the box
has magnitude 5.0 N. As the box is dragged through 0.70 m along
the way, what are (a) the work done by the collie’s applied force
and (b) the increase in thermal energy of the bed and floor?

••44 A horizontal force of magnitude 35.0 N pushes a block of
mass 4.00 kg across a floor where the coefficient of kinetic friction is
0.600. (a) How much work is done by that applied force on the
block–floor system when the block slides through a displacement of
3.00 m across the floor? (b) During that displacement, the thermal
energy of the block increases by 40.0 J. What is the increase in ther-
mal energy of the floor? (c) What is the increase in the kinetic energy
of the block?

••45 A rope is used to pull a 3.57 kg block at constant speed
4.06 m along a horizontal floor. The force on the block from the
rope is 7.68 N and directed 15.0� above the horizontal.What are (a)
the work done by the rope’s force, (b) the increase in thermal en-
ergy of the block–floor system, and (c) the coefficient of kinetic
friction between the block and floor?

Module 8-5 Conservation of Energy
•46 An outfielder throws a baseball with an initial speed of
81.8 mi/h. Just before an infielder catches the ball at the same
level, the ball’s speed is 110 ft/s. In foot-pounds, by how much is the
mechanical energy of the ball–Earth system reduced because of
air drag? (The weight of a baseball is 9.0 oz.)

•47 A 75 g Frisbee is thrown from a point 1.1 m above the
ground with a speed of 12 m/s. When it has reached a height of
2.1 m, its speed is 10.5 m/s. What was the reduction in Emec of the
Frisbee–Earth system because of air drag?

•48 In Fig. 8-51, a block slides
down an incline. As it moves from
point A to point B, which are 5.0 m
apart, force acts on the block, with
magnitude 2.0 N and directed down
the incline.The magnitude of the fric-
tional force acting on the block is
10 N. If the kinetic energy of the
block increases by 35 J between A and B, how much work is done on
the block by the gravitational force as the block moves from A to B?

•49 A 25 kg bear slides, from rest, 12 m down a
lodgepole pine tree, moving with a speed of 5.6 m/s just before
hitting the ground. (a) What change occurs in the gravitational
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potential energy of the bear – Earth system during the slide?
(b) What is the kinetic energy of the bear just before hitting the
ground? (c) What is the average frictional force that acts on the
sliding bear?

x
0

Figure 8-53 Problem 55.

No friction D
( k)μ 

Figure 8-52 Problem 53.

A

B

Figure 8-51 Problems 48 
and 71.



•••65 A particle can slide along a
track with elevated ends and a flat
central part, as shown in Fig. 8-58.
The flat part has length L � 40 cm.
The curved portions of the track are
frictionless, but for the flat part the
coefficient of kinetic friction is mk �
0.20.The particle is released from rest at point A, which is at height
h � L/2. How far from the left edge of the flat part does the particle
finally stop?

Additional Problems
66 A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is the
gravitational potential energy of the sloth–Earth system if we take
the reference point y 0 to be at the ground? If the sloth drops
to the ground and air drag on it is assumed to be negligible, what
are the (b) kinetic energy and (c) speed of the sloth just before it
reaches the ground?

�
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spring sends it sliding across a tabletop. It stops 75 cm from where
you released it. The spring constant is 200 N/m. What is the
block–table coefficient of kinetic friction?

••57 In Fig. 8-54, a block slides along a track from one level to a
higher level after passing through an intermediate valley. The track
is frictionless until the block reaches the higher level. There a fric-
tional force stops the block in a distance d. The block’s initial speed
v0 is 6.0 m/s, the height difference h is 1.1 m, and mk is 0.60. Find d.

•••63 The cable of the 1800 kg elevator
cab in Fig. 8-56 snaps when the cab is at
rest at the first floor, where the cab bottom
is a distance d � 3.7 m above a spring of
spring constant k � 0.15 MN/m. A safety
device clamps the cab against guide rails so
that a constant frictional force of 4.4 kN
opposes the cab’s motion. (a) Find the
speed of the cab just before it hits the
spring. (b) Find the maximum distance x
that the spring is compressed (the fric-
tional force still acts during this compres-
sion). (c) Find the distance that the cab
will bounce back up the shaft. (d) Using
conservation of energy, find the approxi-
mate total distance that the cab will move before coming to rest.
(Assume that the frictional force on the cab is negligible when the
cab is stationary.)

•••64 In Fig. 8-57, a block is released from rest at height d � 40
cm and slides down a frictionless ramp and onto a first plateau,
which has length d and where the coefficient of kinetic friction is
0.50. If the block is still moving, it then slides down a second fric-
tionless ramp through height d/2 and onto a lower plateau, which
has length d/2 and where the coefficient of kinetic friction is
again 0.50. If the block is still moving, it then slides up a friction-
less ramp until it (momentarily) stops. Where does the block
stop? If its final stop is on a plateau, state which one and give the
distance L from the left edge of that plateau. If the block reaches
the ramp, give the height H above the lower plateau where it
momentarily stops.

h μ k
μ = 0 v0

d

Figure 8-54 Problem 57.

••58 A cookie jar is moving up a 40� incline. At a point 55 cm
from the bottom of the incline (measured along the incline), the jar
has a speed of 1.4 m/s. The coefficient of kinetic friction between
jar and incline is 0.15. (a) How much farther up the incline will the
jar move? (b) How fast will it be going when it has slid back to the
bottom of the incline? (c) Do the answers to (a) and (b) increase,
decrease, or remain the same if we decrease the coefficient of ki-
netic friction (but do not change the given speed or location)?

••59 A stone with a weight of 5.29 N is launched vertically from
ground level with an initial speed of 20.0 m/s, and the air drag on it
is 0.265 N throughout the flight. What are (a) the maximum height
reached by the stone and (b) its speed just before it hits the ground?

••60 A 4.0 kg bundle starts up a 30� incline with 128 J of kinetic
energy. How far will it slide up the incline if the coefficient of ki-
netic friction between bundle and incline is 0.30?

••61 When a click beetle is upside down on its back, it jumps
upward by suddenly arching its back, transferring energy stored in a
muscle to mechanical energy.This launching mechanism produces an
audible click, giving the beetle its name.Videotape of a certain click-
beetle jump shows that a beetle of mass m � 4.0 � 10�6 kg moved di-
rectly upward by 0.77 mm during the launch and then to a maximum
height of h � 0.30 m. During the launch, what are the average mag-
nitudes of (a) the external force on the beetle’s back from the floor
and (b) the acceleration of the beetle in terms  of g?

•••62 In Fig. 8-55, a block slides along a path that is without fric-
tion until the block reaches the section of length L 0.75 m, which
begins at height h � 2.0 m on a ramp of angle u � 30�. In that sec-
tion, the coefficient of kinetic friction is 0.40. The block passes
through point A with a speed of 8.0 m/s. If the block can reach point
B (where the friction ends), what is its speed there, and if it cannot,
what is its greatest height above A?

�

θ A
h

L
B

Figure 8-55 Problem 62.

d

d/2

d

d/2

Figure 8-57 Problem 64.

L

h

A

Figure 8-58 Problem 65.

d

k

Figure 8-56
Problem 63.



between snow and skis would make him stop just at the top of
the lower peak?

73 The temperature of a plastic cube is monitored while the
cube is pushed 3.0 m across a floor at constant speed by a horizon-
tal force of 15 N. The thermal energy of the cube increases by 20 J.
What is the increase in the thermal energy of the floor along which
the cube slides?

74 A skier weighing 600 N goes over a frictionless circular hill
of radius R 20 m (Fig. 8-62). Assume that the effects of air re-
sistance on the skier are negligible. As she comes up the hill, her
speed is 8.0 m/s at point B, at angle u � 20�. (a) What is her
speed at the hilltop (point A) if she coasts without using her
poles? (b) What minimum speed can she have at B and still coast
to the hilltop? (c) Do the answers to these two questions in-
crease, decrease, or remain the same if the skier weighs 700 N 
instead of 600 N?

�
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67 A spring (k 200 N/m) is
fixed at the top of a frictionless plane
inclined at angle 40� (Fig. 8-59). A
1.0 kg block is projected up the plane,
from an initial position that is distance 
d 0.60 m from the end of the relaxed
spring, with an initial kinetic energy of
16 J. (a) What is the kinetic energy of
the block at the instant it has com-
pressed the spring 0.20 m? (b) With
what kinetic energy must the block be
projected up the plane if it is to stop momentarily when it has
compressed the spring by 0.40 m?

68 From the edge of a cliff, a 0.55 kg projectile is launched
with an initial kinetic energy of 1550 J. The projectile’s maximum
upward displacement from the launch point is �140 m. What
are the (a) horizontal and (b) vertical components of its launch
velocity? (c) At the instant the vertical component of its velocity
is 65 m/s, what is its vertical displacement from the launch
point?

69 In Fig. 8-60, the pulley has
negligible mass, and both it and the
inclined plane are frictionless. Block
A has a mass of 1.0 kg, block B has a
mass of 2.0 kg, and angle u is 30�. If
the blocks are released from rest
with the connecting cord taut, what
is their total kinetic energy when
block B has fallen 25 cm?

70 In Fig. 8-38, the string is L � 120 cm long, has a ball
attached to one end, and is fixed at its other end. A fixed peg is at
point P. Released from rest, the ball swings down until the string
catches on the peg; then the ball swings up, around the peg. If the
ball is to swing completely around the peg, what value must dis-
tance d exceed? (Hint: The ball must still be moving at the top of
its swing. Do you see why?)

71 In Fig. 8-51, a block is sent sliding down a frictionless
ramp. Its speeds at points A and B are 2.00 m/s and 2.60 m/s, re-
spectively. Next, it is again sent sliding down the ramp, but this
time its speed at point A is 4.00 m/s. What then is its speed at
point B?

72 Two snowy peaks are at heights H 850 m and h 750 m
above the valley between them. A ski run extends between
the peaks, with a total length of 3.2 km and an average slope of

30� (Fig. 8-61). (a) A skier starts from rest at the top of
the higher peak. At what speed will he arrive at the top of
the lower peak if he coasts without using ski poles? Ignore fric-
tion. (b) Approximately what coefficient of kinetic friction

� �
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Figure 8-59 Problem 67.

Outward Inward

(a) �3.0 �3.0
(b) �5.0 �5.0
(c) �2.0x �2.0x

(d) �3.0x2 �3.0x2

θ 
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Figure 8-60 Problem 69.
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θ θ 

Figure 8-61 Problem 72.

R

θ 
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Figure 8-62 Problem 74.

Find the net work done on the particle by the external force for the
round trip for each of the four situations. (e) For which, if any, is the
external force conservative?

77 A conservative force F(x) acts on a 2.0 kg particle that
moves along an x axis. The potential energy U(x) associated with
F(x) is graphed in Fig. 8-63. When the particle is at x 2.0 m, its�

SSM

75 To form a pendulum, a 0.092 kg ball is attached to one end
of a rod of length 0.62 m and negligible mass, and the other end of
the rod is mounted on a pivot. The rod is rotated until it is straight
up, and then it is released from rest so that it swings down around
the pivot. When the ball reaches its lowest point, what are (a) its
speed and (b) the tension in the rod? Next, the rod is rotated until it
is horizontal, and then it is again released from rest. (c) At what an-
gle from the vertical does the tension in the rod equal the weight of
the ball? (d) If the mass of the ball is increased, does the answer to
(c) increase, decrease, or remain the same?

76 We move a particle along an x axis, first outward from x 1.0 m
to x 4.0 m and then back to x 1.0 m, while an external force
acts on it. That force is directed along the x axis, and its x compo-
nent can have different values for the outward trip and for the re-
turn trip. Here are the values (in newtons) for four situations, where
x is in meters:

��
�
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velocity is �1.5 m/s. What are the (a) magnitude and (b) direction
of F(x) at this position? Between what positions on the (c) left and
(d) right does the particle move? (e) What is the particle’s speed at
x 7.0 m?�

81 A particle can move along only an x axis, where conservative
forces act on it (Fig. 8-66 and the following table). The particle is
released at x 5.00 m with a kinetic energy of K 14.0 J and a
potential energy of U 0. If its motion is in the negative direction
of the x axis, what are its (a) K and (b) U at x 2.00 m and its
(c) K and (d) U at x 0? If its motion is in the positive direction of
the x axis, what are its (e) K and (f) U at x 11.0 m, its (g) K and
(h) U at x 12.0 m, and its (i) K and ( j) U at x 13.0 m? (k) Plot
U(x) versus x for the range x 0 to x 13.0 m.��
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Figure 8-63 Problem 77.

78 At a certain factory, 300 kg
crates are dropped vertically from
a packing machine onto a conveyor
belt moving at 1.20 m/s (Fig. 8-64).
(A motor maintains the belt’s con-
stant speed.) The coefficient of ki-
netic friction between the belt and
each crate is 0.400. After a short
time, slipping between the belt and
the crate ceases, and the crate then moves along with the belt. For
the period of time during which the crate is being brought to rest
relative to the belt, calculate, for a coordinate system at rest in
the factory, (a) the kinetic energy supplied to the crate, (b) the
magnitude of the kinetic frictional force acting on the crate, and
(c) the energy supplied by the motor. (d) Explain why answers
(a) and (c) differ.

79 A 1500 kg car begins sliding down a 5.0� inclined road
with a speed of 30 km/h. The engine is turned off, and the only
forces acting on the car are a net frictional force from the road and
the gravitational force. After the car has traveled 50 m along the
road, its speed is 40 km/h. (a) How much is the mechanical energy
of the car reduced because of the net frictional force? (b) What is
the magnitude of that net frictional force?

80 In Fig. 8-65, a 1400 kg block of granite is pulled up an incline
at a constant speed of 1.34 m/s by a cable and winch. The indicated
distances are d1 40 m and d2 30 m. The coefficient of kinetic
friction between the block and the incline is 0.40. What is the
power due to the force applied to the block by the cable?
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d1

Figure 8-65 Problem 80.
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Figure 8-64 Problem 78.
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Figure 8-66 Problems 81 and 82.

Range Force

0 to 2.00 m
2.00 m to 3.00 m
3.00 m to 8.00 m F 0

8.00 m to 11.0 m

11.0 m to 12.0 m

12.0 m to 15.0 m F � 0

F
:

4 � �(1.00 N)î

F
:

3 � �(4.00 N)î

�

F
:

2 � �(5.00 N)î
F
:

1 � �(3.00 N)î

Next, the particle is released from rest at x 0. What are (l) its
kinetic energy at x 5.0 m and (m) the maximum positive position
xmax it reaches? (n) What does the particle do after it reaches xmax?

�
�

82 For the arrangement of forces in Problem 81, a 2.00 kg parti-
cle is released at x 5.00 m with an initial velocity of 3.45 m/s in
the negative direction of the x axis. (a) If the particle can reach
x 0 m, what is its speed there, and if it cannot, what is its turning
point? Suppose, instead, the particle is headed in the positive x di-
rection when it is released at x 5.00 m at speed 3.45 m/s. (b) If
the particle can reach x 13.0 m, what is its speed there, and if it
cannot, what is its turning point?

83 A 15 kg block is accelerated at 2.0 m/s2 along a horizon-
tal frictionless surface, with the speed increasing from 10 m/s to
30 m/s. What are (a) the change in the block’s mechanical energy
and (b) the average rate at which energy is transferred to the
block? What is the instantaneous rate of that transfer when the
block’s speed is (c) 10 m/s and (d) 30 m/s?

84 A certain spring is found not to conform to Hooke’s law. The
force (in newtons) it exerts when stretched a distance x (in meters)
is found to have magnitude 52.8x � 38.4x2 in the direction oppos-
ing the stretch. (a) Compute the work required to stretch the
spring from x 0.500 m to x 1.00 m. (b) With one end of the
spring fixed, a particle of mass 2.17 kg is attached to the other end
of the spring when it is stretched by an amount x 1.00 m. If the
particle is then released from rest, what is its speed at the instant
the stretch in the spring is x 0.500 m? (c) Is the force exerted by
the spring conservative or nonconservative? Explain.

85 Each second, 1200 m3 of water passes over a waterfall
100 m high. Three-fourths of the kinetic energy gained by the water
in falling is transferred to electrical energy by a hydroelectric gener-
ator. At what rate does the generator produce electrical energy?
(The mass of 1 m3 of water is 1000 kg.)
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a spring of spring constant k � 200 N/m that has one end fixed, as
shown in Fig. 8-69. The horizontal
surface and the pulley are friction-
less, and the pulley has negligible
mass. The blocks are released from
rest with the spring relaxed.
(a) What is the combined kinetic
energy of the two blocks when the
hanging block has fallen 0.090 m?
(b) What is the kinetic energy of
the hanging block when it has
fallen that 0.090 m? (c) What maxi-
mum distance does the hanging block fall before momentarily
stopping?

92 A volcanic ash flow is moving across horizontal ground when
it encounters a 10� upslope. The front of the flow then travels 920
m up the slope before stopping. Assume that the gases entrapped
in the flow lift the flow and thus make the frictional force from the
ground negligible; assume also that the mechanical energy of
the front of the flow is conserved.What was the initial speed of the
front of the flow?

93 A playground slide is in the form of an arc of a circle that has
a radius of 12 m.The maximum height of the slide is h � 4.0 m, and
the ground is tangent to the circle (Fig. 8-70). A 25 kg child starts
from rest at the top of the slide and has a speed of 6.2 m/s at the
bottom. (a) What is the length of the slide? (b) What average fric-
tional force acts on the child over this distance? If, instead of the
ground, a vertical line through the top of the slide is tangent to the
circle, what are (c) the length of the slide and (d) the average fric-
tional force on the child?
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86 In Fig. 8-67, a small block is sent through point A with a
speed of 7.0 m/s. Its path is without friction until it reaches the sec-
tion of length L 12 m, where the coefficient of kinetic friction is
0.70. The indicated heights are h1 6.0 m and h2 2.0 m. What
are the speeds of the block at (a) point B and (b) point C? (c) Does
the block reach point D? If so, what is its speed there; if not, how far
through the section of friction does it travel?

��
�

91 Two blocks, of masses M �2.0 kg and 2M, are connected to

A

B

C Dh1

h2
L

Figure 8-67 Problem 86.

87 A massless rigid rod of
length L has a ball of mass m
attached to one end (Fig. 8-68). The
other end is pivoted in such a way
that the ball will move in a vertical
circle. First, assume that there is no
friction at the pivot. The system is
launched downward from the hori-
zontal position A with initial speed
v0. The ball just barely reaches point
D and then stops. (a) Derive an ex-
pression for v0 in terms of L, m, and
g. (b) What is the tension in the rod
when the ball passes through B? (c) A little grit is placed on the
pivot to increase the friction there. Then the ball just barely
reaches C when launched from A with the same speed as before.
What is the decrease in the mechanical energy during this motion?
(d) What is the decrease in the mechanical energy by the time the
ball finally comes to rest at B after several oscillations?

88 A 1.50 kg water balloon is shot straight up with an initial speed
of 3.00 m/s. (a) What is the kinetic energy of the balloon just as it is
launched? (b) How much work does the gravitational force do on
the balloon during the balloon’s full ascent? (c) What is the change
in the gravitational potential energy of the balloon–Earth system
during the full ascent? (d) If the gravitational potential energy is
taken to be zero at the launch point, what is its value when the bal-
loon reaches its maximum height? (e) If, instead, the gravitational
potential energy is taken to be zero at the maximum height, what is
its value at the launch point? (f) What is the maximum height?

89 A 2.50 kg beverage can is thrown directly downward from a
height of 4.00 m, with an initial speed of 3.00 m/s. The air drag on
the can is negligible. What is the kinetic energy of the can (a) as it
reaches the ground at the end of its fall and (b) when it is halfway
to the ground? What are (c) the kinetic energy of the can and (d)
the gravitational potential energy of the can–Earth system 0.200 s
before the can reaches the ground? For the latter, take the refer-
ence point y � 0 to be at the ground.

90 A constant horizontal force moves a 50 kg trunk 6.0 m up a
30� incline at constant speed. The coefficient of kinetic friction is
0.20. What are (a) the work done by the applied force and (b) the
increase in the thermal energy of the trunk and incline?
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Figure 8-68 Problem 87.

94 The luxury liner Queen Elizabeth 2 has a diesel-electric
power plant with a maximum power of 92 MW at a cruising speed
of 32.5 knots. What forward force is exerted on the ship at this
speed? (1 knot � 1.852 km/h.)

95 A factory worker accidentally releases a 180 kg crate that was
being held at rest at the top of a ramp that is 3.7 m long and in-
clined at 39� to the horizontal.The coefficient of kinetic friction be-
tween the crate and the ramp, and between the crate and the hori-
zontal factory floor, is 0.28. (a) How fast is the crate moving as it
reaches the bottom of the ramp? (b) How far will it subsequently
slide across the floor? (Assume that the crate’s kinetic energy does
not change as it moves from the ramp onto the floor.) (c) Do the
answers to (a) and (b) increase, decrease, or remain the same if we
halve the mass of the crate?

96 If a 70 kg baseball player steals home by sliding into the plate
with an initial speed of 10 m/s just as he hits the ground, (a) what
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is the decrease in the player’s kinetic energy and (b) what is the 
increase in the thermal energy of his body and the ground along
which he slides?

97 A 0.50 kg banana is thrown directly upward with an initial
speed of 4.00 m/s and reaches a maximum height of 0.80 m. What
change does air drag cause in the mechanical energy of the
banana–Earth system during the ascent?

98 A metal tool is sharpened by being held against the rim of a
wheel on a grinding machine by a force of 180 N. The frictional
forces between the rim and the tool grind off small pieces of the
tool. The wheel has a radius of 20.0 cm and rotates at 2.50 rev/s.
The coefficient of kinetic friction between the wheel and the tool is
0.320. At what rate is energy being transferred from the motor
driving the wheel to the thermal energy of the wheel and tool and
to the kinetic energy of the material thrown from the tool?

99 A swimmer moves through the water at an average speed of
0.22 m/s. The average drag force is 110 N. What average power is
required of the swimmer?

100 An automobile with passengers has weight 16 400 N and is
moving at 113 km/h when the driver brakes, sliding to a stop. The
frictional force on the wheels from the road has a magnitude of
8230 N. Find the stopping distance.

101 A 0.63 kg ball thrown directly upward with an initial speed
of 14 m/s reaches a maximum height of 8.1 m. What is the change
in the mechanical energy of the ball–Earth system during the 
ascent of the ball to that maximum height?

102 The summit of Mount Everest is 8850 m above sea level.
(a) How much energy would a 90 kg climber expend against the
gravitational force on him in climbing to the summit from sea
level? (b) How many candy bars, at 1.25 MJ per bar, would supply
an energy equivalent to this? Your answer should suggest that
work done against the gravitational force is a very small part of the
energy expended in climbing a mountain.

103 A sprinter who weighs 670 N runs the first 7.0 m of a race in
1.6 s, starting from rest and accelerating uniformly. What are the
sprinter’s (a) speed and (b) kinetic energy at the end of the 1.6 s?
(c) What average power does the sprinter generate during the 1.6 s
interval?

104 A 20 kg object is acted on by a conservative force given by
F � �3.0x � 5.0x2, with F in newtons and x in meters. Take the
potential energy associated with the force to be zero when the
object is at x � 0. (a) What is the potential energy of the system
associated with the force when the object is at x � 2.0 m? (b) If
the object has a velocity of 4.0 m/s in the negative direction of the
x axis when it is at x � 5.0 m, what is its speed when it passes
through the origin? (c) What are the answers to (a) and (b) if the
potential energy of the system is taken to be �8.0 J when the ob-
ject is at x � 0?

105 A machine pulls a 40 kg trunk 2.0 m up a 40� ramp at con-
stant velocity, with the machine’s force on the trunk directed paral-
lel to the ramp. The coefficient of kinetic friction between the
trunk and the ramp is 0.40. What are (a) the work done on the
trunk by the machine’s force and (b) the increase in thermal en-
ergy of the trunk and the ramp?

106 The spring in the muzzle of a child’s spring gun has a spring
constant of 700 N/m. To shoot a ball from the gun, first the spring is
compressed and then the ball is placed on it. The gun’s trigger then

releases the spring, which pushes the ball through the muzzle. The
ball leaves the spring just as it leaves the outer end of the muzzle.
When the gun is inclined upward by 30� to the horizontal, a 57 g ball
is shot to a maximum height of 1.83 m above the gun’s muzzle.
Assume air drag on the ball is negligible. (a) At what speed does
the spring launch the ball? (b) Assuming that friction on the ball
within the gun can be neglected, find the spring’s initial compres-
sion distance.

107 The only force acting on a particle is conservative force . If
the particle is at point A, the potential energy of the system associ-
ated with and the particle is 40 J. If the particle moves from point
A to point B, the work done on the particle by is �25 J. What is
the potential energy of the system with the particle at B?

108 In 1981, Daniel Goodwin climbed 443 m up the exterior of
the Sears Building in Chicago using suction cups and metal clips.
(a) Approximate his mass and then compute how much energy he
had to transfer from biomechanical (internal) energy to the gravi-
tational potential energy of the Earth–Goodwin system to lift
himself to that height. (b) How much energy would he have had to
transfer if he had, instead, taken the stairs inside the building (to
the same height)?

109 A 60.0 kg circus performer slides 4.00 m down a pole to the
circus floor, starting from rest. What is the kinetic energy of the
performer as she reaches the floor if the frictional force on her
from the pole (a) is negligible (she will be hurt) and (b) has a mag-
nitude of 500 N?

110 A 5.0 kg block is projected at 5.0 m/s up a plane that is
inclined at 30� with the horizontal. How far up along the
plane does the block go (a) if the plane is frictionless and (b) if the
coefficient of kinetic friction between the block and the plane is
0.40? (c) In the latter case, what is the increase in thermal energy
of block and plane during the block’s ascent? (d) If the block then
slides back down against the frictional force, what is the block’s
speed when it reaches the original projection point?

111 A 9.40 kg projectile is fired vertically upward. Air drag de-
creases the mechanical energy of the projectile–Earth system by
68.0 kJ during the projectile’s ascent. How much higher would the
projectile have gone were air drag negligible?

112 A 70.0 kg man jumping from a window lands in an elevated
fire rescue net 11.0 m below the window. He momentarily stops
when he has stretched the net by 1.50 m. Assuming that mechani-
cal energy is conserved during this process and that the net func-
tions like an ideal spring, find the elastic potential energy of the net
when it is stretched by 1.50 m.

113 A 30 g bullet moving a horizontal velocity of 500 m/s comes
to a stop 12 cm within a solid wall. (a) What is the change in the
bullet’s mechanical energy? (b) What is the magnitude of the aver-
age force from the wall stopping it?

114 A 1500 kg car starts from rest on a horizontal road and
gains a speed of 72 km/h in 30 s. (a) What is its kinetic energy at
the end of the 30 s? (b) What is the average power required of the
car during the 30 s interval? (c) What is the instantaneous power
at the end of the 30 s interval, assuming that the acceleration is
constant?

115 A 1.50 kg snowball is shot upward at an angle of 34.0� to the
horizontal with an initial speed of 20.0 m/s. (a) What is its initial
kinetic energy? (b) By how much does the gravitational potential
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124 The magnitude of the gravitational force between a particle
of mass m1 and one of mass m2 is given by

F(x) �

where G is a constant and x is the distance between the particles.
(a) What is the corresponding potential energy function U(x)?
Assume that U(x) 0 as x and that x is positive. (b) How
much work is required to increase the separation of the particles
from x � x1 to x � x1 � d?

125 Approximately 5.5 � 106 kg of water falls 50 m over
Niagara Falls each second. (a) What is the decrease in the gravi-
tational potential energy of the water–Earth system each sec-
ond? (b) If all this energy could be converted to electrical
energy (it cannot be), at what rate would electrical energy be
supplied? (The mass of 1 m3 of water is 1000 kg.) (c) If the elec-
trical energy were sold at 1 cent/kW h, what would be the yearly
income?

126 To make a pendulum, a 300 g ball is attached to one end of
a string that has a length of 1.4 m and negligible mass. (The other
end of the string is fixed.) The ball is pulled to one side until the
string makes an angle of 30.0� with the vertical; then (with
the string taut) the ball is released from rest. Find (a) the speed of
the ball when the string makes an angle of 20.0� with the vertical
and (b) the maximum speed of the ball. (c) What is the angle be-
tween the string and the vertical when the speed of the ball is
one-third its maximum value?

127 In a circus act, a 60 kg clown is shot from a cannon with an
initial velocity of 16 m/s at some unknown angle above the hori-
zontal. A short time later the clown lands in a net that is 3.9 m ver-
tically above the clown’s initial position. Disregard air drag. What
is the kinetic energy of the clown as he lands in the net?

128 A 70 kg firefighter slides, from rest, 4.3 m down a vertical
pole. (a) If the firefighter holds onto the pole lightly, so that the
frictional force of the pole on her is negligible, what is her speed
just before reaching the ground floor? (b) If the firefighter grasps
the pole more firmly as she slides, so that the average frictional
force of the pole on her is 500 N upward, what is her speed just be-
fore reaching the ground floor?

129 The surface of the continental United States has an area of
about 8 � 106 km2 and an average elevation of about 500 m
(above sea level). The average yearly rainfall is 75 cm. The frac-
tion of this rainwater that returns to the atmosphere by evapora-
tion is ; the rest eventually flows into the ocean. If the decrease
in gravitational potential energy of the water–Earth system asso-
ciated with that flow could be fully converted to electrical en-
ergy, what would be the average power? (The mass of 1 m3 of
water is 1000 kg.)

130 A spring with spring constant k � 200 N/m is suspended
vertically with its upper end fixed to the ceiling and its lower
end at position y � 0. A block of weight 20 N is attached to the
lower end, held still for a moment, and then released. What are
(a) the kinetic energy K, (b) the change (from the initial value)
in the gravitational potential energy �Ug, and (c) the change in
the elastic potential energy �Ue of the spring–block system when
the block is at y � �5.0 cm? What are (d) K, (e) �Ug, and (f) �Ue

when y � �10 cm, (g) K, (h) �Ug, and (i) �Ue when y � �15 cm,
and (j) K, (k) �Ug, and (l) �Ue when y � �20 cm?
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energy of the snowball–Earth system change as the snowball
moves from the launch point to the point of maximum height? (c)
What is that maximum height?

116 A 68 kg sky diver falls at a constant terminal speed of
59 m/s. (a) At what rate is the gravitational potential energy of the
Earth–sky diver system being reduced? (b) At what rate is the sys-
tem’s mechanical energy being reduced?

117 A 20 kg block on a horizontal surface is attached to a hori-
zontal spring of spring constant k � 4.0 kN/m. The block is pulled
to the right so that the spring is stretched 10 cm beyond its relaxed
length, and the block is then released from rest.The frictional force
between the sliding block and the surface has a magnitude of 80 N.
(a) What is the kinetic energy of the block when it has moved
2.0 cm from its point of release? (b) What is the kinetic energy of
the block when it first slides back through the point at which the
spring is relaxed? (c) What is the maximum kinetic energy attained
by the block as it slides from its point of release to the point at
which the spring is relaxed?

118 Resistance to the motion of an automobile consists of road
friction, which is almost independent of speed, and air drag, which
is proportional to speed-squared. For a certain car with a weight of
12 000 N, the total resistant force F is given by F � 300 � 1.8v2,
with F in newtons and v in meters per second. Calculate the power
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(in horsepower) required to accelerate the car at 0.92 m/s2 when
the speed is 80 km/h.

119 A 50 g ball is thrown from a window with an initialSSM

velocity of 8.0 m/s at an angle of 30� above the horizontal. Using
energy methods, determine (a) the kinetic energy of the ball at the
top of its flight and (b) its speed when it is 3.0 m below the window.
Does the answer to (b) depend on either (c) the mass of the ball or
(d) the initial angle?

120 A spring with a spring constant of 3200 N/m is initially
stretched until the elastic potential energy of the spring is 1.44 J.
(U � 0 for the relaxed spring.) What is �U if the initial stretch is
changed to (a) a stretch of 2.0 cm, (b) a compression of 2.0 cm, and
(c) a compression of 4.0 cm?

121 A locomotive with a power capability of 1.5 MW can
accelerate a train from a speed of 10 m/s to 25 m/s in 6.0 min. (a)
Calculate the mass of the train. Find (b) the speed of the train and
(c) the force accelerating the train as functions of time (in seconds)
during the 6.0 min interval. (d) Find the distance moved by the
train during the interval.

122 A 0.42 kg shuffleboard disk is initially at rest when a
player uses a cue to increase its speed to 4.2 m/s at constant ac-
celeration. The acceleration takes place over a 2.0 m distance, at
the end of which the cue loses contact with the disk. Then the
disk slides an additional 12 m before stopping. Assume that the
shuffleboard court is level and that the force of friction on the
disk is constant. What is the increase in the thermal energy of the
disk – court system (a) for that additional 12 m and (b) for the
entire 14 m distance? (c) How much work is done on the disk by
the cue?

123 A river descends 15 m through rapids. The speed of the wa-
ter is 3.2 m/s upon entering the rapids and 13 m/s upon leaving.
What percentage of the gravitational potential energy of the 
water–Earth system is transferred to kinetic energy during the de-
scent? (Hint: Consider the descent of, say, 10 kg of water.)

SSM



131 Fasten one end of a vertical spring to a ceiling, attach a cab-
bage to the other end, and then slowly lower the cabbage until the
upward force on it from the spring balances the gravitational force
on it. Show that the loss of gravitational potential energy of the
cabbage–Earth system equals twice the gain in the spring’s poten-
tial energy.

132 The maximum force you can exert on an object with one of
your back teeth is about 750 N. Suppose that as you gradually bite
on a clump of licorice, the licorice resists compression by one of
your teeth by acting like a spring for which k � 2.5 � 105 N/m. Find
(a) the distance the licorice is compressed by your tooth and
(b) the work the tooth does on the licorice during the compression.
(c) Plot the magnitude of your force versus the compression 
distance. (d) If there is a potential energy associated with this com-
pression, plot it versus compression distance.

In the 1990s the pelvis of a particular Triceratops dinosaur was
found to have deep bite marks. The shape of the marks suggested
that they were made by a Tyrannosaurus rex dinosaur. To test the
idea, researchers made a replica of a T. rex tooth from bronze and
aluminum and then used a hydraulic press to gradually drive the
replica into cow bone to the depth seen in the Triceratops bone. A
graph of the force required versus depth of penetration is given in
Fig. 8-71 for one trial; the required force increased with depth be-
cause, as the nearly conical tooth penetrated the bone, more of the
tooth came in contact with the bone. (e) How much work was done
by the hydraulic press—and thus presumably by the T. rex—in
such a penetration? (f) Is there a potential energy associated with
this penetration? (The large biting force and energy expenditure

attributed to the T. rex by this research suggest that the animal was
a predator and not a scavenger.)

133 Conservative force F(x)
acts on a particle that moves
along an x axis. Figure 8-72
shows how the potential energy
U(x) associated with force F(x)
varies with the position of the
particle, (a) Plot F(x) for the
range 0 � x � 6 m. (b) The me-
chanical energy E of the system
is 4.0 J. Plot the kinetic energy
K(x) of the particle directly on
Fig. 8-72.

134 Figure 8-73a shows a mol-
ecule consisting of two atoms of
masses m and M (with m M)
and separation r. Figure 8-73b
shows the potential energy U(r)
of the molecule as a function of
r. Describe the motion of the
atoms (a) if the total mechanical
energy E of the two-atom sys-
tem is greater than zero (as is
E1), and (b) if E is less than zero
(as is E2). For E1 � 1 � 10�19 J
and r � 0.3 nm, find (c) the po-
tential energy of the system, (d)
the total kinetic energy of the
atoms, and (e) the force (magni-
tude and direction) acting on
each atom. For what values of r
is the force (f) repulsive, (g) at-
tractive, and (h) zero?

135 Repeat Problem 83, but now with the block accelerated up a
frictionless plane inclined at 5.0� to the horizontal.

136 A spring with spring constant k � 620 N/m is placed in a ver-
tical orientation with its lower end supported by a horizontal sur-
face. The upper end is depressed 25 cm, and a block with a weight
of 50 N is placed (unattached) on the depressed spring. The system
is then released from rest. Assume that the gravitational potential
energy Ug of the block is zero at the release point (y � 0) and cal-
culate the kinetic energy K of the block for y equal to (a) 0,
(b) 0.050 m, (c) 0.10 m, (d) 0.15 m, and (e) 0.20 m. Also, (f) how far
above its point of release does the block rise?
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What Is Physics?
Every mechanical engineer who is hired as a courtroom expert witness to recon-
struct a traffic accident uses physics. Every dance trainer who coaches a ballerina
on how to leap uses physics. Indeed, analyzing complicated motion of any sort re-
quires simplification via an understanding of physics. In this chapter we discuss
how the complicated motion of a system of objects, such as a car or a ballerina,
can be simplified if we determine a special point of the system—the center of
mass of that system.

Here is a quick example. If you toss a ball into the air without much spin on the
ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat
moves differently, along paths of many different shapes, you cannot represent the
bat as a particle. Instead, it is a system of particles each of which follows its own path
through the air. However, the bat has one special point—the center of mass—that
does move in a simple parabolic path. The other parts of the bat move around the
center of mass. (To locate the center of mass, balance the bat on an outstretched fin-
ger; the point is above your finger, on the bat’s central axis.)

You cannot make a career of flipping baseball bats into the air, but you can
make a career of advising long-jumpers or dancers on how to leap properly into
the air while either moving their arms and legs or rotating their torso. Your
starting point would be to determine the person’s center of mass because of its
simple motion.

C H A P T E R  9

Center of Mass and Linear Momentum

9-1 CENTER OF MASS 

After reading this module, you should be able to . . .

9.01 Given the positions of several particles along an axis or
a plane, determine the location of their center of mass.

9.02 Locate the center of mass of an extended, symmetric
object by using the symmetry.

9.03 For a two-dimensional or three-dimensional extended ob-
ject with a uniform distribution of mass, determine the center
of mass by (a) mentally dividing the object into simple geomet-
ric figures, each of which can be replaced by a particle at its
center and (b) finding the center of mass of those particles.

● The center of mass of a system of n particles is defined to be the point whose coordinates are given by

or

where M is the total mass of the system.
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2159-1 CENTER OF MASS

The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

Here we discuss how to determine where the center of mass of a system of parti-
cles is located.We start with a system of only a few particles, and then we consider
a system of a great many particles (a solid body, such as a baseball bat). Later in
the chapter, we discuss how the center of mass of a system moves when external
forces act on the system.

Systems of Particles
Two Particles. Figure 9-2a shows two particles of masses m1 and m2 separated by dis-
tance d.We have arbitrarily chosen the origin of an x axis to coincide with the particle
of mass m1.We define the position of the center of mass (com) of this two-particle sys-
tem to be

(9-1)

Suppose, as an example, that m2 � 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom � 0. If m1 � 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom � d. If m1 � m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

We are not required to place the origin of the coordinate system on one of
the particles. Figure 9-2b shows a more generalized situation, in which the coordi-
nate system has been shifted leftward. The position of the center of mass is now
defined

as (9-2)

Note that if we put x1 � 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center

xcom �
m1x1 � m2x2

m1 � m2
.

xcom � 1
2d,

xcom �
m2

m1 � m2
d.

Figure 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center 
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic 
path, but all other points of the bat 
follow more complicated curved paths.
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(1) all of the system’s mass were concentrated there and (2) all external forces
were applied there.

Figure 9-2 (a) Two particles of masses m1 and m2 are separated by distance d. The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles. The position of
the center of mass is calculated from Eq. 9-2. The location of the center of mass with
respect to the particles is the same in both cases.

x

y

xcom

x1 d
com

m1 m2

x2

(b)

x

y

xcom

d
com

m1 m2

(a)

This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.



of mass is still the same distance from each particle. The com is a property of the
physical particles, not the coordinate system we happen to use.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M � m1 � m2.)
Many Particles. We can extend this equation to a more general situation in

which n particles are strung out along the x axis.Then the total mass is M � m1 �
m2 � � mn, and the location of the center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
Three Dimensions. If the particles are distributed in three dimensions, the cen-

ter of mass must be identified by three coordinates. By extension of Eq. 9-4, they are

(9-5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector (it points from the origin to the particle):

(9-6)

Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

(9-7)

If you are a fan of concise notation, the three scalar equations of Eq. 9-5 can now
be replaced by a single vector equation,

(9-8)

where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
y, and z components.The scalar relations of Eq. 9-5 result.

Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms)
that we can best treat it as a continuous distribution of matter. The “particles”
then become differential mass elements dm, the sums of Eq. 9-5 become inte-
grals, and the coordinates of the center of mass are defined as

(9-9)

where M is now the mass of the object.The integrals effectively allow us to use Eq.
9-5 for a huge number of particles, an effort that otherwise would take many years.

Evaluating these integrals for most common objects (such as a television set or
a moose) would be difficult, so here we consider only uniform objects. Such objects
have uniform density, or mass per unit volume; that is, the density r (Greek letter

xcom �
1
M

� x dm,    ycom �
1
M

� y dm,    zcom �
1
M

� z dm,

rcom
: �

1
M �

n

i�1
miri

:,

rcom
: � xcomî � ycomĵ � zcomk̂.

ri
: � xi î � yi ĵ � zi k̂.

xcom �
1
M �

n

i�1
mixi,    ycom �

1
M �

n

i�1
miyi,    zcom �

1
M �

n

i�1
mizi.

�
1
M �

n

i�1
mi xi .

xcom �
m1x1 � m2 x2 � m3x3 � 
 
 
 � mnxn

M


 
 


xcom �
m1x1 � m2x2

M
,
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rho) is the same for any given element of an object as for the whole object. From
Eq. 1-8, we can write

(9-10)

where dV is the volume occupied by a mass element dm, and V is the total vol-
ume of the object. Substituting dm � (M /V) dV from Eq. 9-10 into Eq. 9-9 gives

(9-11)

Symmetry as a Shortcut. You can bypass one or more of these integrals if
an object has a point, a line, or a plane of symmetry. The center of mass of such
an object then lies at that point, on that line, or in that plane. For example, the
center of mass of a uniform sphere (which has a point of symmetry) is at the
center of the sphere (which is the point of symmetry). The center of mass of a
uniform cone (whose axis is a line of symmetry) lies on the axis of the cone. The
center of mass of a banana (which has a plane of symmetry that splits it into two
equal parts) lies somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no
dough at the com of a doughnut, and no iron at the com of a horseshoe.

xcom �
1
V
� x dV,  ycom �

1
V
� y dV,  zcom �

1
V
� z dV.

r �
dm
dV

�
M
V

,
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sides (Fig. 9-3). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)

In Fig. 9-3, the center of mass is located by the position vec-
tor , which has components xcom and ycom. If we had
chosen some other orientation of the coordinate system,
these coordinates would be different but the location of the
com relative to the particles would be the same.

r:com

� 58 cm.

�
(1.2 kg)(0) � (2.5 kg)(0) � (3.4 kg)(120 cm)

7.1 kg

ycom �
1
M �

3

i�1
miyi �

m1y1 � m2y2 � m3y3

M

� 83 cm

�
(1.2 kg)(0) � (2.5 kg)(140 cm) � (3.4 kg)(70 cm)

7.1 kg

xcom �
1
M �

3

i�1
mixi �

m1x1 � m2x2 � m3x3

M

Sample Problem 9.01 com of three particles

Three particles of masses m1 � 1.2 kg, m2 � 2.5 kg, and
m3 � 3.4 kg form an equilateral triangle of edge length
a � 140 cm.Where is the center of mass of this system?

KEY IDEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
origin and the x axis coincides with one of the triangle’s

Figure 9-3 Three particles form an equilateral triangle of edge
length a. The center of mass is located by the position vector .r:com

y

x0
50 100 150

50

100

150

ycom

xcomm1

m2

m3

rcom

a a 

0

This is the position
vector rcom for the
com (it points from
the origin to the com).

Additional examples, video, and practice available at WileyPLUS
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Center Location 
Plate of Mass of com Mass

P comP xP � ? mP

S comS xS � �R mS

C comC xC � 0 mC � mS � mP

Assume that mass mS of disk S is concentrated in a parti-
cle at xS � �R, and mass mP is concentrated in a particle
at xP (Fig. 9-4d). Next we use Eq. 9-2 to find the center of
mass xS�P of the two-particle system:

(9-12)

Next note that the combination of disk S and plate P is
composite plate C. Thus, the position xS�P of comS�P must
coincide with the position xC of comC, which is at the origin; so
xS�P � xC � 0. Substituting this into Eq. 9-12, we get

(9-13)

We can relate these masses to the face areas of S and P by
noting that

mass � density � volume
� density � thickness � area.

Then

Because the plate is uniform, the densities and thicknesses
are equal; we are left with

Substituting this and xS � �R into Eq. 9-13, we have

(Answer)xP � 1
3R.

�
pR2

p(2R)2 � pR2 �
1
3

.

mS

mP
�

areaS

areaP
�

areaS

areaC � areaS

mS

mP
�

densityS

densityP
�

thicknessS

thicknessP
�

areaS

areaP
.

xP � �xS
mS

mP
.

xS�P �
mSxS � mPxP

mS � mP
.

Sample Problem 9.02 com of plate with missing piece

This sample problem has lots of words to read, but they will
allow you to calculate a com using easy algebra instead of
challenging integral calculus. Figure 9-4a shows a uniform
metal plate P of radius 2R from which a disk of radius R has
been stamped out (removed) in an assembly line.The disk is
shown in Fig. 9-4b. Using the xy coordinate system shown,
locate the center of mass comP of the remaining plate.

KEY IDEAS

(1) Let us roughly locate the center of plate P by using sym-
metry. We note that the plate is symmetric about the x axis
(we get the portion below that axis by rotating the upper
portion about the axis). Thus, comP must be on the x axis.
The plate (with the disk removed) is not symmetric about
the y axis. However, because there is somewhat more mass
on the right of the y axis, comP must be somewhat to the
right of that axis. Thus, the location of comP should be
roughly as indicated in Fig. 9-4a.

(2) Plate P is an extended solid body, so in principle we
can use Eqs. 9-11 to find the actual coordinates of the center
of mass of plate P. Here we want the xy coordinates of the
center of mass because the plate is thin and uniform. If it
had any appreciable thickness, we would just say that the
center of mass is midway across the thickness. Still, using
Eqs. 9-11 would be challenging because we would need a
function for the shape of the plate with its hole, and then we
would need to integrate the function in two dimensions.

(3) Here is a much easier way: In working with centers
of mass, we can assume that the mass of a uniform object (as
we have here) is concentrated in a particle at the object’s
center of mass.Thus we can treat the object as a particle and
avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk S)
back into place (Fig. 9-4c) to form the original composite
plate (call it plate C). Because of its circular symmetry, the
center of mass comS for disk S is at the center of S, at x �
�R (as shown). Similarly, the center of mass comC for com-
posite plate C is at the center of C, at the origin (as shown).
We then have the following:

Additional examples, video, and practice available at WileyPLUS

Checkpoint 1
The figure shows a uniform square plate from which four identical
squares at the corners will be removed. (a) Where is the center of mass of
the plate originally? Where is it after the removal of (b) square 1; (c)
squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 2, and 3; (f) all four
squares? Answer in terms of quadrants, axes, or points (without calcula-
tion, of course).

y

x

1 2

4 3
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A

The com of the composite
plate is the same as the
com of the two pieces.

Plate P

2R

R

y

x

y

y

x

comP

comC

comS

Disk S

Composite plate
C = S + P

(a)

(b)

(c)

(d) x
comPcomCcomS

Disk particle Plate particle

Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.

Here too, assume the
mass is concentrated
as a particle at the
center of mass.

Here too.

Here are those
three particles.

Figure 9-4 (a) Plate P is a metal plate of radius 2R, with a circular hole of radius R.The center of mass of P is at point comP. (b) Disk S.
(c) Disk S has been put back into place to form a composite plate C. The center of mass comS of disk S and the center of mass comC

of plate C are shown. (d) The center of mass comS�P of the combination of S and P coincides with comC, which is at x � 0.



Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left. You already have an intuitive sense that some-
thing continues to move forward.

What continues to move forward, its steady motion completely unaf-
fected by the collision, is the center of mass of the two-ball system. If you fo-
cus on this point — which is always halfway between these bodies because
they have identical masses — you can easily convince yourself by trial at a bil-
liard table that this is so. No matter whether the collision is glancing, head-on,
or somewhere in between, the center of mass continues to move forward, as if
the collision had never occurred. Let us look into this center-of-mass motion
in more detail.

Motion of a System’s com. To do so, we replace the pair of billiard balls with
a system of n particles of (possibly) different masses. We are interested not in the
individual motions of these particles but only in the motion of the center of mass
of the system. Although the center of mass is just a point, it moves like a particle
whose mass is equal to the total mass of the system; we can assign a position, a ve-
locity, and an acceleration to it. We state (and shall prove next) that the vector
equation that governs the motion of the center of mass of such a system of parti-
cles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

F
:

net � Ma:com
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9-2 NEWTON’S SECOND LAW FOR A SYSTEM OF PARTICLES

After reading this module, you should be able to . . .

9.04 Apply Newton’s second law to a system of particles by re-
lating the net force (of the forces acting on the particles) to
the acceleration of the system’s center of mass.

9.05 Apply the constant-acceleration equations to the motion
of the individual particles in a system and to the motion of
the system’s center of mass.

9.06 Given the mass and velocity of the particles in a system,
calculate the velocity of the system’s center of mass.

9.07 Given the mass and acceleration of the particles in a
system, calculate the acceleration of the system’s center
of mass.

9.08 Given the position of a system’s center of mass as a func-
tion of time, determine the velocity of the center of mass.

9.09 Given the velocity of a system’s center of mass as a
function of time, determine the acceleration of the center
of mass.

9.10 Calculate the change in the velocity of a com by integrat-
ing the com’s acceleration function with respect to time.

9.11 Calculate a com’s displacement by integrating the
com’s velocity function with respect to time.

9.12 When the particles in a two-particle system move with-
out the system’s com moving, relate the displacements of
the particles and the velocities of the particles.

● The motion of the center of mass of any system of particles
is governed by Newton’s second law for a system of parti-
cles, which is

.F
:

net � M a:com

Here is the net force of all the external forces acting on
the system, M is the total mass of the system, and is the
acceleration of the system’s center of mass.

a:com

F
:

net

Learning Objectives

Key Idea



for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x � Macom, x Fnet, y � Macom, y Fnet, z � Macom, z. (9-15)

Billiard Balls. Now we can go back and examine the behavior of the billiard
balls. Once the cue ball has begun to roll, no net external force acts on the (two-
ball) system. Thus, because � 0, Eq. 9-14 tells us that � 0 also. Because
acceleration is the rate of change of velocity, we conclude that the velocity of the
center of mass of the system of two balls does not change.When the two balls col-
lide, the forces that come into play are internal forces, on one ball from the other.
Such forces do not contribute to the net force , which remains zero. Thus, the
center of mass of the system, which was moving forward before the collision,
must continue to move forward after the collision, with the same speed and in the
same direction.

Solid Body. Equation 9-14 applies not only to a system of particles but also
to a solid body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass
of the bat and is the gravitational force on the bat. Equation 9-14 then tells us
that In other words, the center of mass of the bat moves as if the bat
were a single particle of mass M, with force acting on it.

Exploding Bodies. Figure 9-5 shows another interesting case. Suppose that at
a fireworks display, a rocket is launched on a parabolic path. At a certain point, it
explodes into fragments. If the explosion had not occurred, the rocket would have
continued along the trajectory shown in the figure. The forces of the explosion are
internal to the system (at first the system is just the rocket, and later it is its frag-
ments); that is, they are forces on parts of the system from other parts. If we ignore
air drag, the net external force acting on the system is the gravitational force on
the system, regardless of whether the rocket explodes. Thus, from Eq. 9-14, the ac-
celeration of the center of mass of the fragments (while they are in flight) re-
mains equal to This means that the center of mass of the fragments follows the
same parabolic trajectory that the rocket would have followed had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she
raises her arms and stretches her legs out horizontally as soon as her feet leave the

g:.
a:com

F
:

net

F
:

g

a:com � g:.
F
:

net

F
:

net

a:comF
:

net

a:comF
:

net

a:com

F
:

net

(Fnet
:

� ma:)
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Figure 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
of mass of the fragments would continue to
follow the original parabolic path, until
fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.



stage (Fig. 9-6). These actions shift her center of mass upward through her body.
Although the shifting center of mass faithfully follows a parabolic path across the
stage, its movement relative to the body decreases the height that is attained by her
head and torso, relative to that of a normal jump.The result is that the head and torso
follow a nearly horizontal path,giving an illusion that the dancer is floating.

Proof of Equation 9-14
Now let us prove this important equation. From Eq. 9-8 we have, for a system of n
particles,

(9-16)

in which M is the system’s total mass and is the vector locating the position of
the system’s center of mass.

Differentiating Eq. 9-16 with respect to time gives

(9-17)

Here is the velocity of the ith particle, and is the
velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to

(9-18)

Here is the acceleration of the ith particle, and is
the acceleration of the center of mass. Although the center of mass is just a geo-
metrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton’s second law, is equal to the resultant force that acts on
the ith particle.Thus, we can rewrite Eq. 9-18 as

(9-19)

Among the forces that contribute to the right side of Eq. 9-19 will be forces that
the particles of the system exert on each other (internal forces) and forces
exerted on the particles from outside the system (external forces). By Newton’s
third law, the internal forces form third-law force pairs and cancel out in the sum
that appears on the right side of Eq. 9-19. What remains is the vector sum of
all the external forces that act on the system. Equation 9-19 then reduces to
Eq. 9-14, the relation that we set out to prove.

Ma:com � F1
:

� F2
:

� F3
:

� 
 
 
 � Fn
:

.

Fi
:

miai
:

a:com (� d v:com /dt)a:i (� d v:i/dt)

Ma:com � m1a1
: � m2a2

: � m3a3
: � 
 
 
 � mnan

: .
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(� d ri
: /dt)

Mv:com � m1v1
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Path of head 

Path of center of mass 

Figure 9-6 A grand jeté. (Based on The Physics of Dance, by Kenneth Laws, Schirmer
Books, 1984.)
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Checkpoint 2
Two skaters on frictionless ice hold opposite ends of a pole of negligible mass.An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel.Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Sample Problem 9.03 Motion of the com of three particles

If the particles in a system all move together, the com moves
with them—no trouble there. But what happens when they
move in different directions with different accelerations?
Here is an example.

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 � 6.0 N, F2 � 12 N, and F3 � 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY IDEAS

The position of the center of mass is marked by a dot in the
figure. We can treat the center of mass as if it were a real
particle,with a mass equal to the system’s total mass M � 16 kg.
We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

�
�6.0 N � (12 N) cos 45� � 14 N

16 kg
� 1.03 m/s2.

acom, x �
F 1x � F 2x � F 3x

M

a:com.
a:com,

F
:

net.a:com

F
:

net

a:com

a:com �
F1
:

� F2
:

� F3
:

M
.

F1
:

� F2
:

� F3
:

� Ma:com

F
:

net � Ma:com

(F
:

net � ma:)

Figure 9-7 (a) Three particles, initially at rest in the positions shown,
are acted on by the external forces shown.The center of mass (com)
of the system is marked. (b) The forces are now transferred to the
center of mass of the system, which behaves like a particle with a
mass M equal to the total mass of the system.The net external force

and the acceleration of the center of mass are shown.a:comF
:

net
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F2 Fnet

acom

The com of the system
will move as if all the
mass were there and
the net force acted there.

Additional examples, video, and practice available at WileyPLUS

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)� � tan�1
acom, y

acom, x
� 27�.

� 1.16 m/s2 � 1.2 m/s2

acom � 2(acom, x)2 � (acom, y)2

a:com

�
0 � (12 N) sin 45� � 0

16 kg
� 0.530 m/s2.

acom, y �
F 1y � F 2y � F 3y

M



Linear Momentum
Here we discuss only a single particle instead of a system of particles, in order to
define two important quantities. Then we shall extend those definitions to sys-
tems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is of-
ten dropped, but it serves to distinguish from angular momentum, which is intro-
duced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction. Fromv:p:

p:
v:

p: � mv:

p:
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9-3 LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.13 Identify that momentum is a vector quantity and thus has
both magnitude and direction and also components.

9.14 Calculate the (linear) momentum of a particle as the
product of the particle’s mass and velocity.

9.15 Calculate the change in momentum (magnitude and di-
rection) when a particle changes its speed and direction of
travel.

9.16 Apply the relationship between a particle’s momentum
and the (net) force acting on the particle.

9.17 Calculate the momentum of a system of particles as the
product of the system’s total mass and its center-of-mass
velocity.

9.18 Apply the relationship between a system’s center-of-
mass momentum and the net force acting on the system.

● For a single particle, we define a quantity called its linear
momentum as

,

which is a vector quantity that has the same direction as the
particle’s velocity. We can write Newton’s second law in

p: � mv:

p: terms of this momentum:

● For a system of particles these relations become

and F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

Learning Objectives

Key Ideas

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Module 9-5, this last fact can be an extremely power-
ful tool in solving problems.

p:
p:.

F
:

net

F
:

net �
dp:

dt
.

Eq. 9-22, the SI unit for momentum is the kilogram-meter per second (kg 
m/s).
Force and Momentum. Newton expressed his second law of motion in terms

of momentum:



Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.

F
:

net � ma:F
:

net � dp:/dt

F
:

net �
dp:

dt
�

d
dt

 (mv:) � m
dv:

dt
� ma:.

p:

2259-3 LINEAR MOMENTUM

Checkpoint 3
The figure gives the magnitude p of the linear mo-
mentum versus time t for a particle moving along
an axis.A force directed along the axis acts on the
particle.(a) Rank the four regions indicated ac-
cording to the magnitude of the force,greatest
first. (b) In which region is the particle slowing?

The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

P
:

� Mv:com

� m1v:1 � m2v:2 � m3v:3 � 
 
 
 � mnv:n.

P
:

� p:1 � p:2 � p:3 � 
 
 
 � p:n

P
:

,

The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

Force and Momentum. If we take the time derivative of Eq. 9-25 (the veloc-
ity can change but not the mass), we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system.This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change. Again, this fact gives us an extremely powerful tool
for solving problems.

P
:

P
:

F
:

net

F
:

net � dp:/dt
F
:

net

F
:

net �
dP

:

dt

dP
:

dt
� M

dv:com

dt
� Ma:com.

p

t

1

2

3

4
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9-4 COLLISION AND IMPULSE

After reading this module, you should be able to . . .

9.19 Identify that impulse is a vector quantity and thus has both
magnitude and direction and also components.

9.20 Apply the relationship between impulse and momentum
change.

9.21 Apply the relationship between impulse, average force,
and the time interval taken by the impulse.

9.22 Apply the constant-acceleration equations to relate im-
pulse to average force.

9.23 Given force as a function of time, calculate the impulse (and
thus also the momentum change) by integrating the function.

9.24 Given a graph of force versus time, calculate the im-
pulse (and thus also the momentum change) by graphical
integration.

9.25 In a continuous series of collisions by projectiles, calcu-
late the average force on the target by relating it to the rate
at which mass collides and to the velocity change experi-
enced by each projectile.

● Applying Newton’s second law in momentum form to a
particle-like body involved in a collision leads to the
impulse–linear momentum theorem:

,

where is the change in the body’s linear momen-p:f � p:i � �p:
p:f � p:i � �p: � J

:

● When a steady stream of bodies, each with mass m and
speed v, collides with a body whose position is fixed, the aver-
age force on the fixed body is

where n/�t is the rate at which the bodies collide with the
fixed body, and �v is the change in velocity of each colliding
body. This average force can also be written as

where �m/�t is the rate at which mass collides with the fixed
body. The change in velocity is �v � �v if the bodies stop
upon impact and �v � �2v if they bounce directly backward
with no change in their speed.

Favg � �
�m
�t

�v,

Favg � �
n
�t

�p � �
n
�t

m �v,

Learning Objectives

Key Ideas

tum, and is the impulse due to the force exerted on the
body by the other body in the collision:

● If Favg is the average magnitude of during the collisionF
:

(t)

J
:

� �tf

ti

F
:

(t) dt.

F
:

(t)J
:

and �t is the duration of the collision, then for one-dimensional
motion

J � Favg �t.

Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force that
varies during the collision and changes the linear momentum of the ball. Thatp:

F
:
(t)

p:

The collision of a ball with a bat collapses
part of the ball.
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change is related to the force by Newton’s second law written in the form 
By rearranging this second-law expression, we see that, in time interval dt, the
change in the ball’s momentum is

(9-28)dp: � F
:

(t) dt.

F
:

� dp:/dt.



We can find the net change in the ball’s momentum due to the collision if we inte-
grate both sides of Eq. 9-28 from a time ti just before the collision to a time tf just
after the collision:

(9-29)

The left side of this equation gives us the change in momentum:
The right side, which is a measure of both the magnitude and the duration of the
collision force, is called the impulse of the collision:

(impulse defined). (9-30)

Thus, the change in an object’s momentum is equal to the impulse on the object:

(linear momentum–impulse theorem). (9-31)

This expression can also be written in the vector form

(9-32)

and in such component forms as

�px � Jx (9-33)

and (9-34)

Integrating the Force. If we have a function for we can evaluate (and
thus the change in momentum) by integrating the function. If we have a plot of 
versus time t, we can evaluate by finding the area between the curve and the t
axis, such as in Fig. 9-9a. In many situations we do not know how the force varies
with time but we do know the average magnitude Favg of the force and the duration
�t (� tf � ti) of the collision. Then we can write the magnitude of the impulse as

J � Favg �t. (9-35)

The average force is plotted versus time as in Fig. 9-9b. The area under that curve
is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because
both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any
instant, Newton’s third law tells us that the force on the bat has the same
magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this
means that the impulse on the bat has the same magnitude but the opposite
direction as the impulse on the ball.

J
:

F
:

J
:

F
:

(t),

pfx � pix � �tf

ti

F x dt.

p:f � p:i � J
:

�p: � J
:

J
:

� �tf

ti

F
:

(t) dt

J
:

p:f � p:i � �p:.

�tf

ti

dp: � �tf

ti

F
:
(t) dt.
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Figure 9-8 Force acts on a ball as the
ball and a bat collide.

F
:

(t)

x

Bat Ball

F (t)

Figure 9-9 (a) The curve shows the magni-
tude of the time-varying force F(t) that acts
on the ball in the collision of Fig. 9-8. The
area under the curve is equal to the magni-
tude of the impulse on the ball in the col-
lision. (b) The height of the rectangle repre-
sents the average force Favg acting on the
ball over the time interval �t.The area within
the rectangle is equal to the area under the
curve in (a) and thus is also equal to the
magnitude of the impulse in the collision.J

:

J
:

ti

F

J
F(t)

tf
Δt

Δt

t

ti

F

Favg

tf

t

J

(a)

(b)

The impulse in the collision
is equal to the area under
the curve.

The average force gives
the same area under the
curve.

Checkpoint 4
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he
landed on bare ground, the stopping time would have been 10 times shorter and the
collision lethal. Does the presence of the snow increase, decrease, or leave unchanged
the values of (a) the paratrooper’s change in momentum, (b) the impulse stopping the
paratrooper, and (c) the force stopping the paratrooper?

Series of Collisions
Now let’s consider the force on a body when it undergoes a series of identical, re-
peated collisions. For example, as a prank, we might adjust one of those machines
that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision
would produce a force on the wall, but that is not the force we are seeking. We



want the average force Favg on the wall during the bombardment—that is, the av-
erage force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and
linear momenta moves along an x axis and collides with a target body that ismv:,
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Figure 9-10 A steady stream of projectiles,
with identical linear momenta, collides
with a target, which is fixed in place. The
average force Favg on the target is to the
right and has a magnitude that depends on
the rate at which the projectiles collide
with the target or, equivalently, the rate at
which mass collides with the target.

xTarget 

v

Projectiles

fixed in place. Let n be the number of projectiles that collide in a time interval �t.
Because the motion is along only the x axis, we can use the components of the
momenta along that axis. Thus, each projectile has initial momentum mv and
undergoes a change �p in linear momentum because of the collision. The total
change in linear momentum for n projectiles during interval �t is n �p. The
resulting impulse on the target during �t is along the x axis and has the same
magnitude of n �p but is in the opposite direction. We can write this relation in
component form as

J � �n �p, (9-36)

where the minus sign indicates that J and �p have opposite directions.
Average Force. By rearranging Eq. 9-35 and substituting Eq. 9-36, we find

the average force Favg acting on the target during the collisions:

(9-37)

This equation gives us Favg in terms of n/�t, the rate at which the projectiles
collide with the target, and �v, the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9-37 we can
substitute, for �v,

�v � vf � vi � 0 � v � �v, (9-38)

where vi (� v) and vf (� 0) are the velocities before and after the collision,
respectively. If, instead, the projectiles bounce (rebound) directly backward from
the target with no change in speed, then vf � �v and we can substitute

�v � vf � vi � �v � v � �2v. (9-39)

In time interval �t, an amount of mass �m � nm collides with the target.
With this result, we can rewrite Eq. 9-37 as

(9-40)

This equation gives the average force Favg in terms of �m/�t, the rate at which
mass collides with the target. Here again we can substitute for �v from Eq. 9-38
or 9-39 depending on what the projectiles do.

F avg � �
�m
�t

�v.

F avg �
J

�t
� �

n
�t

�p � �
n
�t

m �v.

J
:

Checkpoint 5
The figure shows an overhead view of a ball bouncing from a vertical wall without any
change in its speed. Consider the change in the ball’s linear momentum. (a) Is �px

positive, negative, or zero? (b) Is �py positive, negative, or zero? (c) What is the direc-
tion of ?�p:

�p:

θ θ 

y

x
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Impulse: The impulse is then

(Answer)

which means the impulse magnitude is

The angle of is given by

(Answer)

which a calculator evaluates as 75.4�. Recall that the physi-
cally correct result of an inverse tangent might be the
displayed answer plus 180�. We can tell which is correct here
by drawing the components of (Fig. 9-11c). We find that u
is actually 75.4� � 180� � 255.4�, which we can write as

u � �105�. (Answer)

(b) The collision lasts for 14 ms. What is the magnitude of
the average force on the driver during the collision?

KEY IDEA

From Eq. 9-35 (J � Favg �t), the magnitude Favg of the aver-
age force is the ratio of the impulse magnitude J to the dura-
tion �t of the collision.

Calculations: We have

. (Answer)

Using F � ma with m � 80 kg, you can show that the magni-
tude of the driver’s average acceleration during the collision
is about 3.22 � 103 m/s2 � 329g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the
chances of a fatality by designing and building racetrack
walls with more “give,” so that a collision lasts longer. For
example, if the collision here lasted 10 times longer and the
other data remained the same, the magnitudes of the aver-
age force and average acceleration would be 10 times less
and probably survivable.

� 2.583 � 105 N � 2.6 � 105 N

F avg �
J

�t
�

3616 kg 
m/s
0.014 s

J
:

u � tan�1
Jy

Jx
,

J
:

J � 2J x
2 � J y

2 � 3616 kg 
m/s � 3600 kg 
m/s.

J
:

� (�910î � 3500 ĵ) kg 
m/s,

Sample Problem 9.04 Two-dimensional impulse, race car–wall collision

Figure 9-11a is an overhead view of
the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
speed vi � 70 m/s along a straight line at 30� from the wall.
Just after the collision, he is traveling at speed vf � 50 m/s
along a straight line at 10� from the wall. His mass m is 80 kg.

(a) What is the impulse on the driver due to the collision?

KEY IDEAS

We can treat the driver as a particle-like body and thus apply
the physics of this module. However, we cannot calculate 
directly from Eq. 9-30 because we do not know anything about
the force on the driver during the collision. That is, we do
not have a function of or a plot for it and thus cannot
integrate to find . However, we can find from the change in
the driver’s linear momentum via Eq.9-32 .

Calculations: Figure 9-11b shows the driver’s momentum p:i

( J
:

� p:f � p:i)p:
J
:

J
:

F
:

(t)
F
:

(t)

J
:

J
:

Race car–wall collision.

Wall 

x

y

30° 
10° 

30° 

Path

(a)

x

y

10° 

(b)

pi

pf –105°
x

y

(c)

Jy

Jx

J

The impulse on the car
is equal to the change
in the momentum.

The collision
changes the 
momentum.

Figure 9-11 (a) Overhead
view of the path taken by a
race car and its driver as the
car slams into the racetrack
wall. (b) The initial momen-
tum and final momentum

of the driver. (c) The
impulse on the driver
during the collision.

J
:

p:
f

p:i

Additional examples, video, and practice available at WileyPLUS

before the collision (at angle 30� from the positive x direction)
and his momentum after the collision (at angle 10�). From
Eqs. 9-32 and 9-22 , we can write

(9-41)

We could evaluate the right side of this equation directly on
a vector-capable calculator because we know m is 80 kg,
is 50 m/s at �10�, and is 70 m/s at 30�. Instead, here we
evaluate Eq. 9-41 in component form.

x component: Along the x axis we have

Jx � m(vfx � vix)

� (80 kg)[(50 m/s) cos(�10�) � (70 m/s) cos 30�]

� �910 kg 
m/s.

y component: Along the y axis,

Jy � m(vfy � viy)

� (80 kg)[(50 m/s) sin(�10�) � (70 m/s) sin 30�]

� �3495 kg 
m/s � �3500 kg 
m/s.

v:i

v:f

J
:

� p:f � p:i � mv:f � mvi
: � m(v:f � v:i).

mv:)( p: �
�p:f



Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, which means that

(closed, isolated system). (9-42)

In words,

P
:

� constant

dP
:

/dt � 0
F
:

net � 0

J
:

F
:

net
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9-5 CONSERVATION OF LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.26 For an isolated system of particles, apply the conservation
of linear momenta to relate the initial momenta of the particles
to their momenta at a later instant.

9.27 Identify that the conservation of linear momentum can be
done along an individual axis by using components along
that axis, provided that there is no net external force com-
ponent along that axis.

● If a system is closed and isolated so that no net external
force acts on it, then the linear momentum must be constant
even if there are internal changes:

(closed, isolated system).P
:

� constant

P
:

● This conservation of linear momentum can also be written
in terms of the system’s initial momentum and its momentum
at some later instant:

(closed, isolated system),P
:

i � P
:

f

Learning Objectives

Key Ideas

If no net external force acts on a system of particles, the total linear momentum 
of the system cannot change.

P
:

This result is called the law of conservation of linear momentum and is an extremely
powerful tool in solving problems. In the homework we usually write the law as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample problems
of this module, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

�total linear momentum
at some initial time ti

� � �total linear momentum
at some later time tf �

P
:

i � P
:

f

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

In a homework problem, how can you know if linear momentum can be con-
served along, say, an x axis? Check the force components along that axis. If the net of
any such components is zero, then the conservation applies.As an example, suppose
that you toss a grapefruit across a room. During its flight, the only external force act-
ing on the grapefruit (which we take as the system) is the gravitational force ,
which is directed vertically downward. Thus, the vertical component of the linear

F
:

g



momentum of the grapefruit changes, but since no horizontal external force acts on
the grapefruit, the horizontal component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system. For ex-
ample, there are plenty of forces acting between the organs of your body, but they
do not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following modules we consider collisions.

2319-5 CONSERVATION OF LINEAR MOMENTUM

We can relate the  vMS to the known velocities with

.

In symbols, this gives us
vHS � vrel � vMS (9-47)

or vMS � vHS � vrel.

Substituting this expression for vMS into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mvi � 0.20M(vHS � vrel) � 0.80MvHS,
which gives us

vHS � vi � 0.20vrel,
or vHS � 2100 km/h � (0.20)(500 km/h)

� 2200 km/h. (Answer)

� velocity of
hauler relative

to Sun � � � velocity of
hauler relative

to module � � � velocity of
module relative

to Sun �

Sample Problem 9.05 One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b).The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed vrel between the hauler and the mod-
ule is 500 km/h.What then is the velocity of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler–module system is closed and isolated,
its total linear momentum is conserved; that is,

, (9-44)

where the subscripts i and f refer to values before and after
the ejection, respectively. (We need to be careful here:
Although the momentum of the system does not change, the
momenta of the hauler and module certainly do.)

Calculations: Because the motion is along a single axis,we can
write momenta and velocities in terms of their x components,
using a sign to indicate direction. Before the ejection, we have

Pi � Mvi. (9-45)

Let vMS be the velocity of the ejected module relative to the
Sun.The total linear momentum of the system after the ejec-
tion is then

Pf � (0.20M)vMS � (0.80M)vHS, (9-46)

where the first term on the right is the linear momentum of
the module and the second term is that of the hauler.

P
:

i � P
:

f

v:HS

v:i

Figure 9-12 (a) A space hauler, with a cargo module, moving at initial
velocity (b) The hauler has ejected the cargo module. Now the
velocities relative to the Sun are for the module and for the
hauler.

v:HSv:MS

v:i.

(a) (b)

Cargo module 

Hauler
0.20M

vMS vHSvi

0.80M

x x

The explosive separation can change the momentum
of the parts but not the momentum of the system.

Additional examples, video, and practice available at WileyPLUS

Checkpoint 6
An initially stationary device lying on a frictionless floor explodes into two pieces, which
then slide across the floor, one of them in the positive x direction. (a) What is the sum of
the momenta of the two pieces after the explosion? (b) Can the second piece move at an
angle to the x axis? (c) What is the direction of the momentum of the second piece?
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Calculations: Linear momentum is also conserved along
the x axis because there is no net external force acting on
the coconut and pieces along that axis.Thus we have

Pix � Pfx, (9-49)

where Pix � 0 because the coconut is initially at rest. To
get Pfx, we find the x components of the final momenta,
using the fact that piece A must have a mass of 0.50M
(� M � 0.20M � 0.30M):

pfA,x � �0.50MvfA,

pfB,x � 0.20MvfB,x � 0.20MvfB cos 50�,

pfC,x � 0.30MvfC,x � 0.30MvfC cos 80�.

Equation 9-49 for the conservation of momentum along the
x axis can now be written as

Pix � Pfx � pfA,x � pfB,x � pfC,x.

Then, with vfC � 5.0 m/s and vfB � 9.64 m/s, we have

0 � �0.50MvfA � 0.20M(9.64 m/s) cos 50�

� 0.30M(5.0 m/s) cos 80�,

from which we find

vfA � 3.0 m/s. (Answer)

Sample Problem 9.06 Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vfC � 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that
system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.
(We need to be careful here: Although the momentum of
the system does not change, the momenta of the pieces cer-
tainly do.)

Calculations: To get started, we superimpose an xy coordinate
system as shown in Fig. 9-13b, with the negative direction of the
x axis coinciding with the direction of The x axis is at 80�v:fA.

Additional examples, video, and practice available at WileyPLUS

Figure 9-13 Three pieces of an
exploded coconut move off in
three directions along a
frictionless floor. (a) An over-
head view of the event. (b) The
same with a two-dimensional
axis system imposed.

with the direction of and 50� with the direction of .
Linear momentum is conserved separately along each

axis. Let’s use the y axis and write

Piy � Pfy, (9-48)

where subscript i refers to the initial value (before the ex-
plosion), and subscript y refers to the y component of 
or .

The component Piy of the initial linear momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Pfy, we find the y component of the final linear
momentum of each piece, using the y-component version of
Eq. 9-22 ( py � mvy):

pfA,y � 0,

pfB,y � �0.20MvfB,y � �0.20MvfB sin 50�,

pfC,y � 0.30MvfC,y � 0.30MvfC sin 80�.

(Note that pfA,y � 0 because of our nice choice of axes.)
Equation 9-48 can now be written as

Piy � Pfy � pfA,y � pfB,y � pfC,y.

Then, with vfC � 5.0 m/s, we have

0 � 0 � 0.20MvfB sin 50� � (0.30M)(5.0 m/s) sin 80�,

from which we find

vfB � 9.64 m/s � 9.6 m/s. (Answer)

(b) What is the speed of piece A?

Pf
:

Pi
:

v:f Bv:f C

A

B

C

vfB

vfCvfA

100°

130°

(a)

B

C

vfB

vfC
vfA

80°

(b)

x

y

50°

A

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.



Momentum and Kinetic Energy in Collisions
In Module 9-4, we considered the collision of two particle-like bodies but focused
on only one of the bodies at a time. For the next several modules we switch our
focus to the system itself, with the assumption that the system is closed and iso-
lated. In Module 9-5, we discussed a rule about such a system: The total linear
momentum of the system cannot change because there is no net external force
to change it. This is a very powerful rule because it can allow us to determine the
results of a collision without knowing the details of the collision (such as how
much damage is done).

We shall also be interested in the total kinetic energy of a system of two col-
liding bodies. If that total happens to be unchanged by the collision, then the
kinetic energy of the system is conserved (it is the same before and after the
collision). Such a collision is called an elastic collision. In everyday collisions of
common bodies, such as two cars or a ball and a bat, some energy is always trans-
ferred from kinetic energy to other forms of energy, such as thermal energy or
energy of sound. Thus, the kinetic energy of the system is not conserved. Such a
collision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bod-
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision
between the ball and floor (or Earth) were elastic, the ball would lose no kinetic
energy because of the collision and would rebound to its original height.
However, the actual rebound height is somewhat short, showing that at least
some kinetic energy is lost in the collision and thus that the collision is somewhat
inelastic. Still, we might choose to neglect that small loss of kinetic energy to ap-
proximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic
energy of the system. The greatest loss occurs if the bodies stick together, in
which case the collision is called a completely inelastic collision. The collision of a
baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat
is completely inelastic because the putty sticks to the bat.

P
:
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After reading this module, you should be able to . . .

9.28 Distinguish between elastic collisions, inelastic collisions,
and completely inelastic collisions.

9.29 Identify a one-dimensional collision as one where the ob-
jects move along a single axis, both before and after the
collision.

9.30 Apply the conservation of momentum for an isolated
one-dimensional collision to relate the initial momenta of
the objects to their momenta after the collision.

9.31 Identify that in an isolated system, the momentum and
velocity of the center of mass are not changed even if the
objects collide.

● In an inelastic collision of two bodies, the kinetic energy of
the two-body system is not conserved. If the system is closed
and isolated, the total linear momentum of the system must
be conserved, which we can write in vector form as

,

where subscripts i and f refer to values just before and just
after the collision, respectively.

● If the motion of the bodies is along a single axis, the collision
is one-dimensional and we can write the equation in terms of

p:1i � p:2i � p:1f � p:2f

velocity components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f .

● If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final veloc-
ity V (because they are stuck together).

● The center of mass of a closed, isolated system of two col-
liding bodies is not affected by a collision. In particular, the ve-
locity of the center of mass cannot be changed by the
collision.

v:com

Learning Objectives

Key Ideas



Inelastic Collisions in One Dimension
One-Dimensional Inelastic Collision
Figure 9-14 shows two bodies just before and just after they have a one-
dimensional collision. The velocities before the collision (subscript i) and after
the collision (subscript f ) are indicated.The two bodies form our system, which is
closed and isolated.We can write the law of conservation of linear momentum for
this two-body system as

,

which we can symbolize as

(conservation of linear momentum). (9-50)

Because the motion is one-dimensional, we can drop the overhead arrows for
vectors and use only components along the axis, indicating direction with a sign.
Thus, from p � mv, we can rewrite Eq. 9-50 as

m1v1i � m2v2i � m1v1f � m2v2f. (9-51)

If we know values for, say, the masses, the initial velocities, and one of the final ve-
locities, we can find the other final velocity with Eq. 9-51.

One-Dimensional Completely Inelastic Collision
Figure 9-15 shows two bodies before and after they have a completely inelastic
collision (meaning they stick together).The body with mass m2 happens to be ini-
tially at rest (v2i � 0). We can refer to that body as the target and to the incoming
body as the projectile. After the collision, the stuck-together bodies move with
velocity V. For this situation, we can rewrite Eq. 9-51 as

m1v1i � (m1 � m2)V (9-52)

or . (9-53)

If we know values for, say, the masses and the initial velocity v1i of the projectile,
we can find the final velocity V with Eq. 9-53. Note that V must be less than v1i be-
cause the mass ratio m1/(m1 � m2) must be less than unity.

Velocity of the Center of Mass
In a closed, isolated system, the velocity of the center of mass of the system
cannot be changed by a collision because, with the system isolated, there is no net
external force to change it. To get an expression for , let us return to the v:com

v:com

V �
m1

m1 � m2
v1i

p:1i � p:2i � p:1f � p:2f

�total momentum P
:

i

before the collision� � �total momentum P
:

f

after the collision �
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Figure 9-14 Bodies 1 and 2 move along an
x axis, before and after they have an
inelastic collision.

m1 m2

Before

Body 1 Body 2 

x

v1i v2i

m1 m2

After
x

v1f v2f

Here is the generic setup
for an inelastic collision.

Figure 9-15 A completely inelastic collision between
two bodies. Before the collision, the body with mass
m2 is at rest and the body with mass m1 moves
directly toward it. After the collision, the stuck-
together bodies move with the same velocity .V

:

m1
Projectile

m2
Target 

x

x

V

v1i

After

Before

m1 + m2

v2i = 0 

In a completely inelastic
collision, the bodies
stick together.



two-body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25
, we can relate to the total linear momentum of that two-body

system by writing

. (9-54)

The total linear momentum is conserved during the collision; so it is given by
either side of Eq. 9-50. Let us use the left side to write

. (9-55)

Substituting this expression for in Eq. 9-54 and solving for give us

. (9-56)

The right side of this equation is a constant, and has that same constant value
before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the
center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the tar-
get, and its initial linear momentum in Eq. 9-56 is Body 1 is
the projectile, and its initial linear momentum in Eq. 9-56 is Note
that as the series of freeze-frames progresses to and then beyond the collision,
the center of mass moves at a constant velocity to the right. After the
collision, the common final speed V of the bodies is equal to because then
the center of mass travels with the stuck-together bodies.

v:com

p:1i � m1v:1i.
p:2i � m2v:2i � 0.

v:com

v:com �
P
:

m1 � m2
�

p:1i � p:2i

m1 � m2

v:comP
:

P
:

� p:1i � p:2i

P
:

P
:

� M v:com � (m1 � m2)v:com

P
:

v:com(P
:

� M v:com)
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x

m1

v1i v2i = 0 
m2

m1 + m2

V = vcom

Collision!

vcom

The com of the two
bodies is between
them and moves at a
constant velocity.

Here is the
incoming projectile.

The com moves at the
same velocity even after
the bodies stick together.

Here is the
stationary target.

Figure 9-16 Some freeze-frames of the two-body system
in Fig. 9-15, which undergoes a completely inelastic col-
lision. The system’s center of mass is shown in each
freeze-frame. The velocity of the center of mass is
unaffected by the collision. Because the bodies stick
together after the collision, their common velocity 
must be equal to .v:com

V
:

v:com

Checkpoint 7
Body 1 and body 2 are in a completely inelastic one-dimensional collision.What is
their final momentum if their initial momenta are, respectively, (a) 10 kg 
m/s and 0;
(b) 10 kg 
m/s and 4 kg 
m/s; (c) 10 kg 
m/s and �4 kg 
m/s?
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m

h

M

v

There are two events here.
The bullet collides with the
block. Then the bullet–block
system swings upward by
height h.

Figure 9-17 A ballistic
pendulum, used to
measure the speeds
of bullets.

Sample Problem 9.07 Conservation of momentum, ballistic pendulum

Here is an example of a common technique in physics. We
have a demonstration that cannot be worked out as a whole
(we don’t have a workable equation for it). So, we break it
up into steps that can be worked separately (we have equa-
tions for them).

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M � 5.4 kg, hanging from two long cords. A bullet of
mass m � 9.5 g is fired into the block, coming quickly to rest.
The block � bullet then swing upward, their center of mass
rising a vertical distance h � 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

KEY IDEAS

We can see that the bullet’s speed v must determine the rise
height h. However, we cannot use the conservation of mechan-
ical energy to relate these two quantities because surely energy
is transferred from mechanical energy to other forms (such as
thermal energy and energy to break apart the wood) as the
bullet penetrates the block. Nevertheless, we can split this com-
plicated motion into two steps that we can separately analyze:
(1) the bullet–block collision and (2) the bullet–block rise,
during which mechanical energy is conserved.

Reasoning step 1: Because the collision within the
bullet – block system is so brief, we can make two impor-
tant assumptions: (1) During the collision, the gravita-
tional force on the block and the force on the block from
the cords are still balanced. Thus, during the collision, the
net external impulse on the bullet–block system is zero.
Therefore, the system is isolated and its total linear momen-
tum is conserved:

(9-57)

(2) The collision is one-dimensional in the sense that the di-
rection of the bullet and block just after the collision is in the
bullet’s original direction of motion.

Because the collision is one-dimensional, the block is ini-
tially at rest,and the bullet sticks in the block,we use Eq.9-53 to
express the conservation of linear momentum. Replacing the
symbols there with the corresponding symbols here,we have

(9-58)

Reasoning step 2: As the bullet and block now swing up to-
gether, the mechanical energy of the bullet–block–Earth

V �
m

m � M
v.

� total momentum
before the collision� � � total momentum

after the collision�.

system is conserved:

(9-59)

(This mechanical energy is not changed by the force of the
cords on the block, because that force is always directed
perpendicular to the block’s direction of travel.) Let’s take the
block’s initial level as our reference level of zero gravitational
potential energy. Then conservation of mechanical energy
means that the system’s kinetic energy at the start of the swing
must equal its gravitational potential energy at the highest
point of the swing. Because the speed of the bullet and block
at the start of the swing is the speed V immediately after the
collision, we may write this conservation as

(9-60)

Combining steps: Substituting for V from Eq. 9-58 leads to

(9-61)

(Answer)

The ballistic pendulum is a kind of “transformer,” exchang-
ing the high speed of a light object (the bullet) for the low—
and thus more easily measurable—speed of a massive ob-
ject (the block).

� 630 m/s.

� � 0.0095 kg � 5.4 kg
0.0095 kg � 2(2)(9.8 m/s2)(0.063 m)

v �
m � M

m
22gh

1
2(m � M)V 2 � (m � M)gh.

� mechanical energy
at bottom � � �mechanical energy

at top �.



Elastic Collisions in One Dimension
As we discussed in Module 9-6, everyday collisions are inelastic but we can
approximate some of them as being elastic; that is, we can approximate that the
total kinetic energy of the colliding bodies is conserved and is not transferred to
other forms of energy:

. (9-62)

This means:

�total kinetic energy
before the collision� � �total kinetic energy

after the collision �
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After reading this module, you should be able to . . .

9.32 For isolated elastic collisions in one dimension, apply the
conservation laws for both the total energy and the net mo-
mentum of the colliding bodies to relate the initial values to
the values after the collision.

9.33 For a projectile hitting a stationary target, identify the re-
sulting motion for the three general cases: equal masses,
target more massive than projectile, projectile more mas-
sive than target.

● An elastic collision is a special type of collision in which
the kinetic energy of a system of colliding bodies is con-
served. If the system is closed and isolated, its linear mo-
mentum is also conserved. For a one-dimensional collision in
which body 2 is a target and body 1 is an incoming projec-
tile, conservation of kinetic energy and linear momentum

yield the following expressions for the velocities immediately
after the collision:

and v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

Learning Objectives

Key Idea

In an elastic collision, the kinetic energy of each colliding body may change, but 
the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool
can be approximated as being an elastic collision. If the collision is head-on
(the cue ball heads directly toward the object ball), the kinetic energy of the cue
ball can be transferred almost entirely to the object ball. (Still, the collision trans-
fers some of the energy to the sound you hear.)

Stationary Target
Figure 9-18 shows two bodies before and after they have a one-dimensional colli-
sion, like a head-on collision between pool balls. A projectile body of mass m1

and initial velocity v1i moves toward a target body of mass m2 that is initially at
rest (v2i � 0). Let’s assume that this two-body system is closed and isolated. Then
the net linear momentum of the system is conserved, and from Eq. 9-51 we can write
that conservation as

m1v1i � m1v1f � m2v2f (linear momentum). (9-63)

If the collision is also elastic, then the total kinetic energy is conserved and we
can write that conservation as

(kinetic energy). (9-64)

In each of these equations, the subscript i identifies the initial velocities and the
subscript f the final velocities of the bodies. If we know the masses of the bodies
and if we also know v1i, the initial velocity of body 1, the only unknown quantities
are v1f and v2f, the final velocities of the two bodies.With two equations at our dis-
posal, we should be able to find these two unknowns.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

Figure 9-18 Body 1 moves along an x axis
before having an elastic collision with
body 2, which is initially at rest. Both
bodies move along that axis after the
collision.

x

Before v1i

m1
Projectile

m2
Target 

v2i = 0 

x
After

v1f

m1 m2

v2f

Here is the generic setup
for an elastic collision with
a stationary target.



To do so, we rewrite Eq. 9-63 as

m1(v1i � v1f) � m2v2f (9-65)
and Eq. 9-64 as*

(9-66)

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain

(9-67)

and (9-68)

Note that v2f is always positive (the initially stationary target body with mass m2

always moves forward). From Eq. 9-67 we see that v1f may be of either sign (the
projectile body with mass m1 moves forward if m1 � m2 but rebounds if m1 � m2).

Let us look at a few special situations.

1. Equal masses If m1 � m2, Eqs. 9-67 and 9-68 reduce to

v1f � 0 and v2f � v1i,

which we might call a pool player’s result. It predicts that after a head-on colli-
sion of bodies with equal masses, body 1 (initially moving) stops dead in its
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In
head-on collisions, bodies of equal mass simply exchange velocities. This is
true even if body 2 is not initially at rest.

2. A massive target In Fig. 9-18, a massive target means that m2 m1. For
example, we might fire a golf ball at a stationary cannonball. Equations 9-67
and 9-68 then reduce to

(9-69)

This tells us that body 1 (the golf ball) simply bounces back along its incom-
ing path, its speed essentially unchanged. Initially stationary body 2 (the
cannonball) moves forward at a low speed, because the quantity in paren-
theses in Eq. 9-69 is much less than unity.All this is what we should expect.

3. A massive projectile This is the opposite case; that is, m1 m2. This time, we
fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

v1f � v1i and v2f � 2v1i. (9-70)

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice
the speed of the cannonball. Why twice the speed? Recall the collision de-
scribed by Eq. 9-69, in which the velocity of the incident light body (the golf
ball) changed from �v to �v, a velocity change of 2v. The same change in ve-
locity (but now from zero to 2v) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary
target, let us examine the situation in which both bodies are moving before they
undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as

m1v1i � m2v2i � m1v1f � m2v2f , (9-71)

�

v1f � �v1i and v2f � � 2m1

m2
�v1i.

�

v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

m1(v1i � v1f)(v1i � v1f) � m2v2f
2 .
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*In this step, we use the identity a2 � b2 � (a � b)(a � b). It reduces the amount of algebra needed to
solve the simultaneous equations Eqs. 9-65 and 9-66.



and the conservation of kinetic energy is written as

(9-72)

To solve these simultaneous equations for v1f and v2f , we first rewrite Eq. 9-71 as

m1(v1i � v1f) � �m2(v2i � v2f), (9-73)
and Eq. 9-72 as

m1(v1i � v1f)(v1i � v1f) � �m2(v2i � v2f)(v2i � v2f). (9-74)

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain

(9-75)

and (9-76)

Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we ex-
change those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the
same set of equations. Note also that if we set v2i � 0, body 2 becomes a stationary
target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 9-68, respectively.

v2f �
2m1

m1 � m2
v1i �

m2 � m1

m1 � m2
v2i.

v1f �
m1 � m2

m1 � m2
v1i �

2m2

m1 � m2
v2i

1
2m1v1i

2 � 1
2m2v2i

2 � 1
2m1v1f

2 � 1
2m2v2f

2 .
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Figure 9-19 Two bodies headed for a one-
dimensional elastic collision.

x
m1

v1i

m2

v2i

Here is the generic setup
for an elastic collision with
a moving target.

Checkpoint 8
What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg 
m/s and the final linear momentum of the projectile is (a)
2 kg 
m/s and (b) �2 kg 
m/s? (c) What is the final kinetic energy of the target if the
initial and final kinetic energies of the projectile are, respectively, 5 J and 2 J?

two reasons, we can apply Eqs. 9-67 and 9-68 to each of the
collisions.

Calculations: If we start with the first collision, we have too
many unknowns to make any progress: we do not know the
masses or the final velocities of the blocks. So, let’s start with
the second collision in which block 2 stops because of its col-
lision with block 3. Applying Eq. 9-67 to this collision, with
changes in notation, we have

where v2i is the velocity of block 2 just before the collision
and v2f is the velocity just afterward. Substituting v2f � 0
(block 2 stops) and then m3 � 6.0 kg gives us

(Answer)

With similar notation changes, we can rewrite Eq. 9-68 for
the second collision as

where v3f is the final velocity of block 3. Substituting m2 � m3

and the given v3f � 5.0 m/s, we find

v2i � v3f � 5.0 m/s.

v3f �
2m2

m2 � m3
v2i,

m2 � m3 � 6.00 kg.

v2f �
m2 � m3

m2 � m3
v2i,

Sample Problem 9.08 Chain reaction of elastic collisions

Figure 9-20 Block 1 collides with stationary block 2, which then
collides with stationary block 3.

In Fig. 9-20a, block 1 approaches a line of two stationary
blocks with a velocity of v1i � 10 m/s. It collides with block 2,
which then collides with block 3, which has mass m3 � 6.0 kg.
After the second collision, block 2 is again stationary and
block 3 has velocity v3f � 5.0 m/s (Fig. 9-20b).Assume that the
collisions are elastic. What are the masses of blocks 1 and 2?
What is the final velocity v1f of block 1?

KEY IDEAS

Because we assume that the collisions are elastic, we are to
conserve mechanical energy (thus energy losses to sound,
heating, and oscillations of the blocks are negligible).
Because no external horizontal force acts on the blocks, we
are to conserve linear momentum along the x axis. For these

(a)

(b)

v1i

v1f

v3f

m1 m2 m3

x

x



Collisions in Two Dimensions
When two bodies collide, the impulse between them determines the directions in
which they then travel. In particular, when the collision is not head-on, the bodies
do not end up traveling along their initial axis. For such two-dimensional
collisions in a closed, isolated system, the total linear momentum must still be
conserved:

. (9-77)

If the collision is also elastic (a special case), then the total kinetic energy is also
conserved:

K1i � K2i � K1f � K2f . (9-78)

Equation 9-77 is often more useful for analyzing a two-dimensional collision
if we write it in terms of components on an xy coordinate system. For example,
Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a
target body initially at rest.The impulses between the bodies have sent the bodies off
at angles u1 and u2 to the x axis,along which the projectile initially traveled. In this situ-

P
:

1i � P
:

2i � P
:

1f � P
:

2f
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which leads to

(Answer)

Finally, applying Eq. 9-67 to the first collision with this result
and the given v1i, we write

(Answer)�
1
3m2 � m2
1
3m2 � m2

(10 m/s) � �5.0 m/s.

v1f �
m1 � m2

m1 � m2
v1i,

m1 � 1
3m2 � 1

3(6.0 kg) � 2.0 kg.

Next, let’s reconsider the first collision, but we have to
be careful with the notation for block 2: its velocity v2f just
after the first collision is the same as its velocity v2i (� 5.0 m/s)
just before the second collision. Applying Eq. 9-68 to the
first collision and using the given v1i � 10 m/s, we have

5.0 m/s �
2m1

m1 � m2
 (10 m/s),

v2f �
2m1

m1 � m2
v1i,

9-8 COLLISIONS IN TWO DIMENSIONS

After reading this module, you should be able to . . .

9.34 For an isolated system in which a two-dimensional colli-
sion occurs, apply the conservation of momentum along
each axis of a coordinate system to relate the momentum
components along an axis before the collision to the momen-
tum components along the same axis after the collision.

9.35 For an isolated system in which a two-dimensional elastic
collision occurs, (a) apply the conservation of momentum
along each axis of a coordinate system to relate the momen-
tum components along an axis before the collision to the 
momentum components along the same axis after the colli-
sion and (b) apply the conservation of total kinetic energy to
relate the kinetic energies before and after the collision.

● If two bodies collide and their motion is not along a single axis
(the collision is not head-on), the collision is two-dimensional.
If the two-body system is closed and isolated, the law of con-
servation of momentum applies to the collision and can be
written as

.P
:

1i � P
:

2i � P
:

1f � P
:

2f

In component form, the law gives two equations that de-
scribe the collision (one equation for each of the two dimen-
sions). If the collision is also elastic (a special case), the
conservation of kinetic energy during the collision gives a
third equation:

K1i � K2i � K1f � K2f .

Learning Objectives

Key Idea

Figure 9-21 An elastic collision between two
bodies in which the collision is not head-
on. The body with mass m2 (the target) is
initially at rest.

x

y

θ2 

θ1 v1i

v2f

v1f

m1

m2

A glancing collision
that conserves
both momentum and
kinetic energy.



ation we would rewrite Eq.9-77 for components along the x axis as

m1v1i � m1v1f cos u1 � m2v2f cos u2, (9-79)
and along the y axis as

(9-80)

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of
speeds:

(kinetic energy). (9-81)

Equations 9-79 to 9-81 contain seven variables: two masses, m1 and m2; three
speeds, v1i, v1f , and v2f ; and two angles, u1 and u2. If we know any four of these
quantities, we can solve the three equations for the remaining three quantities.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

0 � �m1v1f sin u1 � m2v2f sin u2.
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Checkpoint 9
In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg 
m/s, a final
x component of momentum of 4 kg 
m/s, and a final y component of momentum of
�3 kg 
m/s. For the target, what then are (a) the final x component of momentum
and (b) the final y component of momentum?

9-9 SYSTEMS WITH VARYING MASS: A ROCKET

After reading this module, you should be able to . . .

9.36 Apply the first rocket equation to relate the rate at which
the rocket loses mass, the speed of the exhaust products rel-
ative to the rocket, the mass of the rocket, and the accelera-
tion of the rocket.

9.37 Apply the second rocket equation to relate the change in
the rocket’s speed to the relative speed of the exhaust
products and the initial and final mass of the rocket.

9.38 For a moving system undergoing a change in mass at a
given rate, relate that rate to the change in momentum.

● In the absence of external forces a rocket accelerates at an
instantaneous rate given by

Rvrel � Ma (first rocket equation),

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is

the fuel’s exhaust speed relative to the rocket. The term Rvrel

is the thrust of the rocket engine.

● For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf ,

(second rocket equation).vf � vi � vrel ln
Mi

Mf

Learning Objectives

Key Ideas

Systems with Varying Mass: A Rocket
So far, we have assumed that the total mass of the system remains constant.
Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launch-
ing pad is fuel, all of which will eventually be burned and ejected from the nozzle
of the rocket engine. We handle the variation of the mass of the rocket as the
rocket accelerates by applying Newton’s second law, not to the rocket alone but
to the rocket and its ejected combustion products taken together.The mass of this
system does not change as the rocket accelerates.

Finding the Acceleration
Assume that we are at rest relative to an inertial reference frame, watching a
rocket accelerate through deep space with no gravitational or atmospheric drag



242 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Figure 9-22 (a) An accelerating rocket of
mass M at time t, as seen from an inertial
reference frame. (b) The same but at time
t � dt. The exhaust products released dur-
ing interval dt are shown.

forces acting on it. For this one-dimensional motion, let M be the mass of the
rocket and v its velocity at an arbitrary time t (see Fig. 9-22a).

Figure 9-22b shows how things stand a time interval dt later. The rocket now
has velocity v � dv and mass M � dM, where the change in mass dM is a negative
quantity. The exhaust products released by the rocket during interval dt have
mass �dM and velocity U relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust
products released during interval dt. The system is closed and isolated, so the lin-
ear momentum of the system must be conserved during dt; that is,

Pi � Pf , (9-82)

where the subscripts i and f indicate the values at the beginning and end of time
interval dt. We can rewrite Eq. 9-82 as

Mv � �dM U � (M � dM)(v � dv), (9-83)

where the first term on the right is the linear momentum of the exhaust products
released during interval dt and the second term is the linear momentum of the
rocket at the end of interval dt.

Use Relative Speed. We can simplify Eq.9-83 by using the relative speed vrel be-
tween the rocket and the exhaust products,which is related to the velocities relative to
the frame with

.

In symbols, this means

(v � dv) � vrel � U,

or U � v � dv � vrel. (9-84)

Substituting this result for U into Eq. 9-83 yields, with a little algebra,

�dM vrel � M dv. (9-85)

Dividing each side by dt gives us

(9-86)

We replace dM/dt (the rate at which the rocket loses mass) by �R, where R is the
(positive) mass rate of fuel consumption, and we recognize that dv/dt is the accel-
eration of the rocket.With these changes, Eq. 9-86 becomes

Rvrel � Ma (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.
Note the left side of Eq. 9-87 has the dimensions of force (kg/s 
m/s �

kg 
m/s2 � N) and depends only on design characteristics of the rocket engine—
namely, the rate R at which it consumes fuel mass and the speed vrel with which that
mass is ejected relative to the rocket.We call this term Rvrel the thrust of the rocket
engine and represent it with T. Newton’s second law emerges if we write Eq. 9-87 as
T � Ma, in which a is the acceleration of the rocket at the time that its mass is M.

Finding the Velocity
How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85
we have

dv � �vrel
dM
M

.

�
dM
dt

vrel � M
dv
dt

.

�velocity of rocket
relative to frame � � � velocity of rocket

relative to products� � �velocity of products
relative to frame �

x

vM

System boundary

(a)

x

v + dvM + dM

System boundary

(b)

–dM

U

The ejection of mass from
the rocket's rear increases
the rocket's speed.



Integrating leads to

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the
integrals then gives

(second rocket equation) (9-88)

for the increase in the speed of the rocket during the change in mass from Mi to
Mf . (The symbol “ln” in Eq. 9-88 means the natural logarithm.) We see here the
advantage of multistage rockets, in which Mf is reduced by discarding successive
stages when their fuel is depleted. An ideal rocket would reach its destination
with only its payload remaining.

vf � vi � vrel ln 
Mi

Mf

�vf

vi

dv � �vrel �Mf

Mi

dM
M

,
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rocket’s mass. However, M decreases and a increases as fuel
is consumed. Because we want the initial value of a here, we
must use the intial value Mi of the mass.

Calculation: We find

(Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than . That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude Mig, which gives us 

(850 kg)(9.8 m/s2) � 8330 N.

Because the acceleration or thrust requirement is not met
(here T � 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.

g � 9.8 m/s2

a �
T
Mi

�
6440 N
850 kg

� 7.6 m/s2.

Sample Problem 9.09 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a system
is constant (fixed as a certain number). Here is an example of
a system (a rocket) that is losing mass.A rocket whose initial
mass Mi is 850 kg consumes fuel at the rate The
speed vrel of the exhaust gases relative to the rocket engine is
2800 m/s.What thrust does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption
rate R and the relative speed vrel at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

(Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magnitude a of
the resulting acceleration with , where M is theT � Ma

� 6440 N � 6400 N.

T � Rvrel � (2.3 kg/s)(2800 m/s)

R � 2.3 kg/s.

Additional examples, video, and practice available at WileyPLUS

Center of Mass The center of mass of a system of n particles is
defined to be the point whose coordinates are given by

(9-5)

or (9-8)

where M is the total mass of the system.

r:com �
1
M �

n

i�1
mi r:i ,

xcom �
1
M �

n

i�1
mi xi , ycom �

1
M �

n

i�1
mi yi , zcom �

1
M �

n

i�1
mi zi ,

Review & Summary

Newton’s Second Law for a System of Particles The
motion of the center of mass of any system of particles is governed
by Newton’s second law for a system of particles, which is

. (9-14)

Here is the net force of all the external forces acting on the sys-F
:

net

F
:

net � M a:com

tem, M is the total mass of the system, and is the acceleration
of the system’s center of mass.

a:com
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must be conserved (it is a constant), which we can write in vector
form as

, (9-50)

where subscripts i and f refer to values just before and just after the
collision, respectively.

If the motion of the bodies is along a single axis, the collision is
one-dimensional and we can write Eq. 9-50 in terms of velocity
components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f . (9-51)

If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final velocity V
(because they are stuck together).

Motion of the Center of Mass The center of mass of a
closed, isolated system of two colliding bodies is not affected by a
collision. In particular, the velocity of the center of mass can-
not be changed by the collision.

Elastic Collisions in One Dimension An elastic collision
is a special type of collision in which the kinetic energy of a system
of colliding bodies is conserved. If the system is closed and
isolated, its linear momentum is also conserved. For a one-
dimensional collision in which body 2 is a target and body 1 is an
incoming projectile, conservation of kinetic energy and linear
momentum yield the following expressions for the velocities
immediately after the collision:

(9-67)

and (9-68)

Collisions in Two Dimensions If two bodies collide and
their motion is not along a single axis (the collision is not head-on),
the collision is two-dimensional. If the two-body system is closed
and isolated, the law of conservation of momentum applies to the
collision and can be written as

. (9-77)

In component form, the law gives two equations that describe the
collision (one equation for each of the two dimensions). If the col-
lision is also elastic (a special case), the conservation of kinetic en-
ergy during the collision gives a third equation:

K1i � K2i � K1f � K2f . (9-78)

Variable-Mass Systems In the absence of external forces a
rocket accelerates at an instantaneous rate given by

Rvrel � Ma (first rocket equation), (9-87)

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is the fuel’s
exhaust speed relative to the rocket. The term Rvrel is the thrust of
the rocket engine. For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf,

(second rocket equation). (9-88)vf � vi � vrel ln
Mi

Mf

P
:

1i � P
:

2i � P
:

1f � P
:

2f

v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

v:com

p:1i � p:2i � p:1f � p:2f

tum, and is the impulse due to the force exerted on the body
by the other body in the collision:

(9-30)

If Favg is the average magnitude of during the collision and �t
is the duration of the collision, then for one-dimensional motion

J � Favg �t. (9-35)

When a steady stream of bodies, each with mass m and speed v, col-
lides with a body whose position is fixed, the average force on the
fixed body is

(9-37)

where n/�t is the rate at which the bodies collide with the fixed
body, and �v is the change in velocity of each colliding body. This
average force can also be written as

(9-40)

where �m/�t is the rate at which mass collides with the fixed body. In
Eqs. 9-37 and 9-40, �v � �v if the bodies stop upon impact and �v �
�2v if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated
so that no net external force acts on it, the linear momentum of
the system remains constant:

(closed, isolated system). (9-42)

This can also be written as

(closed, isolated system), (9-43)

where the subscripts refer to the values of at some initial time and
at a later time. Equations 9-42 and 9-43 are equivalent statements of
the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic
collision of two bodies, the kinetic energy of the two-body
system is not conserved (it is not a constant). If the system is
closed and isolated, the total linear momentum of the system

P
:

P
:

i � P
:

f

P
:

� constant

P
:

Favg � �
�m
�t

�v,

Favg � �
n
�t

�p � �
n
�t

m �v,

F
:

(t)

J
:

� �tf

ti

F
:

(t) dt.

F
:

(t)J
:

Linear Momentum and Newton’s Second Law For a sin-
gle particle, we define a quantity called its linear momentum as

, (9-22)

and can write Newton’s second law in terms of this momentum:

(9-23)

For a system of particles these relations become

and (9-25, 9-27)

Collision and Impulse Applying Newton’s second law in
momentum form to a particle-like body involved in a collision
leads to the impulse– linear momentum theorem:

, (9-31, 9-32)

where is the change in the body’s linear momen-p:f � p:i � �p:

p:f � p:i � �p: � J
:

F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

p: � mv:
p:
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Questions

1 Figure 9-23 shows an overhead
view of three particles on which ex-
ternal forces act.The magnitudes and
directions of the forces on two of the
particles are indicated. What are the
magnitude and direction of the force
acting on the third particle if the cen-
ter of mass of the three-particle sys-
tem is (a) stationary, (b) moving at a
constant velocity rightward, and (c) accelerating rightward?

2 Figure 9-24 shows an over-
head view of four particles of
equal mass sliding over a fric-
tionless surface at constant
velocity. The directions of the
velocities are indicated; their
magnitudes are equal. Consider
pairing the particles. Which
pairs form a system with a cen-
ter of mass that (a) is stationary,
(b) is stationary and at the ori-
gin,and (c) passes through the origin?

3 Consider a box that explodes into two pieces while moving with
a constant positive velocity along an x axis. If one piece, with mass
m1, ends up with positive velocity , then the second piece, with
mass m2, could end up with (a) a positive velocity (Fig. 9-25a), (b)
a negative velocity (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c).
Rank those three possible results for the second piece according to
the corresponding magnitude of , greatest first.v1

:

v2
:

v2
:

v1
:

boxes move over a frictionless confectioner’s counter. For each box,
is its linear momentum conserved along the x axis and the y axis?

6 Figure 9-28 shows four groups of three or four identical particles
that move parallel to either the x axis or the y axis, at identical speeds.
Rank the groups according to center-of-mass speed, greatest first.

y

1
5 N 

3 N 2

3
x

Figure 9-23 Question 1.

c d 

a

y (m)

2

–2 2 4 –4

–2

x (m)

b

Figure 9-24 Question 2.

v2 v2v1 v1

(b) (c)(a)

v1

Figure 9-25 Question 3.
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Figure 9-26 Question 4.
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Figure 9-27 Question 5.

4 Figure 9-26 shows graphs of force magnitude versus time for a
body involved in a collision. Rank the graphs according to the
magnitude of the impulse on the body, greatest first.

5 The free-body diagrams in Fig. 9-27 give, from overhead views,
the horizontal forces acting on three boxes of chocolates as the

y

x

(a)

y

x

(c)

y

x

(b)

y

x

(d)

Figure 9-28 Question 6.

7 A block slides along a frictionless floor and into a stationary sec-
ond block with the same mass. Figure 9-29 shows four choices for a
graph of the kinetic energies K of the blocks. (a) Determine which
represent physically impossible situations. Of the others, which best
represents (b) an elastic collision and (c) an inelastic collision?

K

t
(a)

K

t
(b)

K

t

(c)

K

t
(d)

Figure 9-29 Question 7.

8 Figure 9-30 shows a snapshot of
block 1 as it slides along an x axis on a
frictionless floor, before it undergoes
an elastic collision with stationary
block 2.The figure also shows three possible positions of the center of
mass (com) of the two-block system at the time of the snapshot. (Point
B is halfway between the centers of the two blocks.) Is block 1 station-
ary, moving forward, or moving backward after the collision if the com
is located in the snapshot at (a) A, (b) B, and (c) C?

1 2 A B C 

Figure 9-30 Question 8.



9 Two bodies have undergone an
elastic one-dimensional collision
along an x axis. Figure 9-31 is a graph
of position versus time for those
bodies and for their center of mass.
(a) Were both bodies initially moving,
or was one initially stationary? Which
line segment corresponds to the mo-
tion of the center of mass (b) before the collision and (c) after the col-
lision? (d) Is the mass of the body that was moving faster before the
collision greater than, less than, or equal to that of the other body?

10 Figure 9-32: A block on a horizontal floor is initially either
stationary, sliding in the positive direction of an x axis, or sliding in
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the negative direction of that axis. Then the block explodes into
two pieces that slide along the x axis. Assume the block and the
two pieces form a closed, isolated system. Six choices for a graph of
the momenta of the block and the pieces are given, all versus time
t. Determine which choices represent physically impossible situa-
tions and explain why.

11 Block 1 with mass m1 slides
along an x axis across a frictionless
floor and then undergoes an elastic
collision with a stationary block 2 with
mass m2. Figure 9-33 shows a plot of
position x versus time t of block 1 until
the collision occurs at position xc and
time tc. In which of the lettered regions
on the graph will the plot be contin-
ued (after the collision) if (a) m1 � m2

and (b) m1 � m2? (c) Along which of
the numbered dashed lines will the
plot be continued if m1 � m2?

12 Figure 9-34 shows four graphs of
position versus time for two bodies
and their center of mass. The two
bodies form a closed, isolated system
and undergo a completely inelastic,
one-dimensional collision on an x axis.
In graph 1, are (a) the two bodies and
(b) the center of mass moving in the
positive or negative direction of the x
axis? (c) Which of the graphs corre-
spond to a physically impossible situ-
ation? Explain.

x

t

1

2 3 
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6

Figure 9-31 Question 9.
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Figure 9-32 Question 10.
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Figure 9-33 Question 11.
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Figure 9-34 Question 12.

Module 9-1 Center of Mass
•1 A 2.00 kg particle has the xy coordinates (�1.20 m, 0.500 m),
and a 4.00 kg particle has the xy coordinates (0.600 m, �0.750 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates
must you place a 3.00 kg particle such that the center of mass of the
three-particle system has the coor-
dinates (�0.500 m, �0.700 m)?

•2 Figure 9-35 shows a three-par-
ticle system, with masses m1 � 3.0
kg, m2 � 4.0 kg, and m3 � 8.0 kg.
The scales on the axes are set by
xs � 2.0 m and ys � 2.0 m.What are
(a) the x coordinate and (b) the y
coordinate of the system’s center
of mass? (c) If m3 is gradually in-
creased, does the center of mass of the system shift toward or away
from that particle, or does it remain stationary?

••3 Figure 9-36 shows a  slab with dimensions d1 � 11.0 cm, d2 �
2.80 cm, and d3 � 13.0 cm. Half the slab consists of aluminum (den-

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

y (m)

x (m)

ys

0 xs

m1

m3

m2

Figure 9-35 Problem 2.

Aluminum

Iron Midpoint

2d1

d2

d1

d1

d 3

y

z

x

sity � 2.70 g/cm3) and half consists of iron (density � 7.85 g/cm3).
What are (a) the x coordinate, (b) the y coordinate, and (c) the z co-
ordinate of the slab’s center of mass?

Figure 9-36 Problem 3.
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••4 In Fig. 9-37, three uniform thin rods,
each of length L � 22 cm, form an in-
verted U. The vertical rods each have a
mass of 14 g; the horizontal rod has a
mass of 42 g. What are (a) the x coordi-
nate and (b) the y coordinate of the sys-
tem’s center of mass?

••5 What are (a) the x coordinate and
(b) the y coordinate of the center of mass
for the uniform plate shown in Fig. 9-38 if
L 5.0 cm?�

Module 9-2 Newton’s Second Law for a System of Particles
•9 A stone is dropped at t � 0. A second stone, with twice the
mass of the first, is dropped from the same point at
t � 100 ms. (a) How far below the release point is the center of
mass of the two stones at t � 300 ms? (Neither stone has yet
reached the ground.) (b) How fast is the center of mass of the two-
stone system moving at that time?

•10 A 1000 kg automobile is at rest at a traffic signal. At the in-
stant the light turns green, the automobile starts to move with a
constant acceleration of 4.0 m/s2. At the same instant a 2000 kg
truck, traveling at a constant speed of 8.0 m/s, overtakes and passes
the automobile. (a) How far is the com of the automobile– truck
system from the traffic light at t � 3.0 s? (b) What is the speed of
the com then?

•11 A big olive (m � 0.50 kg) lies at the origin of an xy
coordinate system, and a big Brazil nut (M � 1.5 kg) lies at the
point (1.0, 2.0) m. At t � 0, a force begins to
act on the olive, and a force begins to act on
the nut. In unit-vector notation, what is the displacement of the
center of mass of the olive–nut system at t � 4.0 s, with respect to
its position at t � 0?

•12 Two skaters, one with mass 65 kg and the other with mass
40 kg, stand on an ice rink holding a pole of length 10 m and neg-
ligible mass. Starting from the ends of the pole, the skaters pull
themselves along the pole until they meet. How far does the 40
kg skater move?

••13 A shell is shot with an initial velocity of 20 m/s, at
an angle of with the horizontal. At the top of the trajec-
tory, the shell explodes into two fragments of equal mass (Fig.
9-42). One fragment, whose speed immediately after the explo-
sion is zero, falls vertically. How far from the gun does the other
fragment land, assuming that the terrain is level and that air drag
is negligible?

�0 � 60�
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Figure 9-38 Problem 5.

••6 Figure 9-39 shows a cubical box that
has been constructed from uniform metal
plate of negligible thickness. The box is
open at the top and has edge length L �
40 cm. Find (a) the x coordinate, (b) the y
coordinate, and (c) the z coordinate of
the center of mass of the box.

•••7 In the ammonia (NH3) mole-
cule of Fig. 9-40, three hydrogen (H)
atoms form an equilateral triangle, with
the center of the triangle at distance d �
9.40 � 10�11 m from each hydrogen
atom. The nitrogen (N) atom is at the
apex of a pyramid, with the three hydro-
gen atoms forming the base. The nitro-
gen-to-hydrogen atomic mass ratio is
13.9, and the nitrogen-to-hydrogen dis-
tance is L � 10.14 � 10�11 m. What are
the (a) x and (b) y coordinates of the
molecule’s center of mass?

•••8 A uniform soda can of mass
0.140 kg is 12.0 cm tall and filled with
0.354 kg of soda (Fig. 9-41). Then small
holes are drilled in the top and bottom
(with negligible loss of metal) to drain
the soda. What is the height h of the
com of the can and contents (a) initially
and (b) after the can loses all the soda?
(c) What happens to h as the soda
drains out? (d) If x is the height of the
remaining soda at any given instant,
find x when the com reaches its lowest
point.
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Figure 9-42 Problem 13.

••14 In Figure 9-43, two particles are launched from the origin of
the coordinate system at time t � 0. Particle 1 of mass m1 � 5.00 g is
shot directly along the x axis on a frictionless floor, with constant
speed 10.0 m/s. Particle 2 of mass m2 � 3.00 g is shot with a velocity
of magnitude 20.0 m/s, at an upward angle such that it always stays
directly above particle 1. (a) What is the maximum height Hmax

reached by the com of the two-particle system? In unit-vector no-
tation, what are the (b) velocity and (c) acceleration of the com
when the com reaches Hmax?

Figure 9-43 Problem 14.
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••15 Figure 9-44 shows an arrangement with an air track, in which
a cart is connected by a cord to a hanging block. The cart has mass
m1 � 0.600 kg, and its center is initially at xy coordinates (�0.500
m, 0 m); the block has mass m2 � 0.400 kg, and its center is initially at
xy coordinates (0, �0.100 m).The mass of the cord and pulley are neg-
ligible. The cart is released from rest, and both cart and block move
until the cart hits the pulley. The friction between the cart and the air
track and between the pulley and its axle is negligible. (a) In unit-vec-
tor notation, what is the acceleration of the center of mass of the
cart–block system? (b) What is the velocity of the com as a function
of time t? (c) Sketch the path taken by the com. (d) If the path is
curved, determine whether it bulges upward to the right or downward
to the left, and if it is straight, find the angle between it and the x axis.

••21 A 0.30 kg softball has a velocity of 15 m/s at an angle of 35� be-
low the horizontal just before making contact with the bat.What is the
magnitude of the change in momentum of the ball while in contact
with the bat if the ball leaves with a velocity of (a) 20 m/s, vertically
downward,and (b) 20 m/s,horizontally back toward the pitcher?

••22 Figure 9-47 gives an overhead
view of the path taken by a 0.165 kg
cue ball as it bounces from a rail of a
pool table. The ball’s initial speed is
2.00 m/s, and the angle u1 is 30.0�.The
bounce reverses the y component of
the ball’s velocity but does not alter
the x component. What are (a) angle
u2 and (b) the change in the ball’s lin-
ear momentum in unit-vector nota-
tion? (The fact that the ball rolls is ir-
relevant to the problem.)

Module 9-4 Collision and Impulse
•23 Until his seventies, Henri LaMothe (Fig. 9-48) excited
audiences by belly-flopping from a height of 12 m into 30 cm of
water. Assuming that he stops just as he reaches the bottom of the
water and estimating his mass, find the magnitude of the impulse
on him from the water.

Figure 9-44 Problem 15.

y

x

m2

m1

•••16 Ricardo, of mass 80 kg, and Carmelita, who is lighter,
are enjoying Lake Merced at dusk in a 30 kg canoe.When the ca-
noe is at rest in the placid water, they exchange seats, which are
3.0 m apart and symmetrically lo-
cated with respect to the canoe’s
center. If the canoe moves 40 cm
horizontally relative to a pier post,
what is Carmelita’s mass?

•••17 In Fig. 9-45a, a 4.5 kg dog
stands on an 18 kg flatboat at dis-
tance D � 6.1 m from the shore. It
walks 2.4 m along the boat toward
shore and then stops. Assuming no
friction between the boat and the wa-
ter, find how far the dog is then from
the shore.(Hint: See Fig.9-45b.)

Module 9-3 Linear Momentum
•18 A 0.70 kg ball moving horizontally at 5.0 m/s strikes a vertical
wall and rebounds with speed 2.0 m/s.What is the magnitude of the
change in its linear momentum?

•19 A 2100 kg truck traveling north at 41 km/h turns east
and accelerates to 51 km/h. (a) What is the change in the truck’s
kinetic energy? What are the (b) magnitude and (c) direction of
the change in its momentum?

••20 At time t � 0, a ball is
struck at ground level and sent over
level ground.The momentum p ver-
sus t during the flight is given by Fig.
9-46 (with and

). At what initial
angle is the ball launched? (Hint:
Find a solution that does not
require you to read the time of the
low point of the plot.)

p1 � 4.0 kg 
m/s
p0 � 6.0 kg 
m/s
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Figure 9-48 Problem 23. Belly-flopping into 30 cm of water.

•24 In February 1955, a paratrooper fell 370 m from an air-
plane without being able to open his chute but happened to land in
snow, suffering only minor injuries. Assume that his speed at im-
pact was 56 m/s (terminal speed), that his mass (including gear)
was 85 kg, and that the magnitude of the force on him from the
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12.0 m/s and angle u1 � 35.0�. Just
after, it is traveling directly upward
with velocity of magnitude 10.0
m/s. The duration of the collision is
2.00 ms. What are the (a) magni-

v:2

snow was at the survivable limit of 1.2 � 105 N. What are (a) the
minimum depth of snow that would have stopped him safely and
(b) the magnitude of the impulse on him from the snow?

•25 A 1.2 kg ball drops vertically onto a floor, hitting with a
speed of 25 m/s. It rebounds with an initial speed of 10 m/s. (a)
What impulse acts on the ball during the contact? (b) If the ball is
in contact with the floor for 0.020 s, what is the magnitude of the
average force on the floor from the ball?

•26 In a common but dangerous prank, a chair is pulled away as
a person is moving downward to sit on it, causing the victim to land
hard on the floor. Suppose the victim falls by 0.50 m, the mass that
moves downward is 70 kg, and the collision on the floor lasts 0.082 s.
What are the magnitudes of the (a) impulse and (b) average force
acting on the victim from the floor during the collision?

•27 A force in the negative direction of an x axis is applied
for 27 ms to a 0.40 kg ball initially moving at 14 m/s in the positive
direction of the axis. The force varies in magnitude, and the im-
pulse has magnitude 32.4 N 
s.What are the ball’s (a) speed and (b)
direction of travel just after the force is applied? What are (c) the
average magnitude of the force and (d) the direction of the im-
pulse on the ball?

•28 In tae-kwon-do, a hand is slammed down onto a target
at a speed of 13 m/s and comes to a stop during the 5.0 ms collision.
Assume that during the impact the hand is independent of the arm
and has a mass of 0.70 kg. What are the magnitudes of the (a) im-
pulse and (b) average force on the hand from the target?

•29 Suppose a gangster sprays Superman’s chest with 3 g bullets
at the rate of 100 bullets/min, and the speed of each bullet is 500
m/s. Suppose too that the bullets rebound straight back with no
change in speed. What is the magnitude of the average force on
Superman’s chest?

••30 Two average forces. A steady stream of 0.250 kg snowballs is
shot perpendicularly into a wall at a speed of 4.00 m/s. Each ball
sticks to the wall. Figure 9-49 gives the magnitude F of the force on
the wall as a function of time t for two of the snowball impacts.
Impacts occur with a repetition time interval �tr � 50.0 ms, last a du-
ration time interval �td � 10 ms, and produce isosceles triangles on
the graph, with each impact reaching a force maximum Fmax � 200 N.
During each impact, what are the magnitudes of (a) the impulse and
(b) the average force on the wall? (c) During a time interval of many
impacts, what is the magnitude of the average force on the wall?

SSM

are the magnitudes of the (c) impulse
and (d) average force (assuming the
same stopping time)?

••32 A 5.0 kg toy car can move
along an x axis; Fig. 9-50 gives Fx of
the force acting on the car, which be-
gins at rest at time t � 0. The scale on
the Fx axis is set by In
unit-vector notation, what is at (a)
t 4.0 s and (b) t 7.0 s, and (c)
what is at t 9.0 s?

••33 Figure 9-51 shows a 0.300
kg baseball just before and just after
it collides with a bat. Just before, the
ball has velocity of magnitudev:1

�v:
��

p:
Fxs � 5.0 N.
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Figure 9-52 Problem 34. Lizard running across water.

••31 Jumping up before the elevator hits. After the cable
snaps and the safety system fails, an elevator cab free-falls from a
height of 36 m. During the collision at the bottom of the elevator
shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither the
passenger nor the cab rebounds.) What are the magnitudes of the (a)
impulse and (b) average force on the passenger during the collision?
If the passenger were to jump upward with a speed of 7.0 m/s relative
to the cab floor just before the cab hits the bottom of the shaft, what

tude and (b) direction (relative to the positive direction of the x
axis) of the impulse on the ball from the bat? What are the (c)
magnitude and (d) direction of the average force on the ball from
the bat?

••34 Basilisk lizards can run across the top of a water sur-
face (Fig. 9-52). With each step, a lizard first slaps its foot against
the water and then pushes it down into the water rapidly enough to
form an air cavity around the top of the foot. To avoid having to
pull the foot back up against water drag in order to complete the
step, the lizard withdraws the foot before water can flow into the
air cavity. If the lizard is not to sink, the average upward impulse
on the lizard during this full action of slap, downward push, and
withdrawal must match the downward impulse due to the gravita-
tional force. Suppose the mass of a basilisk lizard is 90.0 g, the mass
of each foot is 3.00 g, the speed of a foot as it slaps the water is
1.50 m/s, and the time for a single step is 0.600 s. (a) What is the
magnitude of the impulse on the lizard during the slap? (Assume
this impulse is directly upward.) (b) During the 0.600 s duration of
a step, what is the downward impulse on the lizard due to the gravi-
tational force? (c) Which action, the slap or the push, provides the
primary support for the lizard, or are they approximately equal in
their support?
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μ  = 0 μ L μ R

dRdL

Figure 9-57 Problem 44.

••35 Figure 9-53 shows an
approximate plot of force mag-
nitude F versus time t during the
collision of a 58 g Superball with
a wall. The initial velocity of the
ball is 34 m/s perpendicular to
the wall; the ball rebounds di-
rectly back with approximately
the same speed, also perpendi-
cular to the wall. What is Fmax,
the maximum magnitude of the
force on the ball from the wall during the collision?

••36 A 0.25 kg puck is initially stationary on an ice surface with
negligible friction. At time t � 0, a horizontal force begins to
move the puck. The force is given by � (12.0 � , with 
in newtons and t in seconds, and it acts until its magnitude is
zero. (a) What is the magnitude of the impulse on the puck from
the force between t � 0.500 s and t � 1.25 s? (b) What is the
change in momentum of the puck between t � 0 and the instant
at which F � 0?

••37 A soccer player kicks a soccer ball of mass 0.45 kg that
is initially at rest. The foot of the player is in contact with the ball
for 3.0 � 10�3 s, and the force of the kick is given by

F(t) � [(6.0 � 106)t � (2.0 � 109)t2] N

for 0 	 t 	 3.0 � 10�3 s, where t is in seconds. Find the magnitudes
of (a) the impulse on the ball due to the kick, (b) the average force
on the ball from the player’s foot during the period of contact,
(c) the maximum force on the ball from the player’s foot during the
period of contact, and (d) the ball’s velocity immediately after it
loses contact with the player’s foot.

••38 In the overhead view of Fig.
9-54, a 300 g ball with a speed v of
6.0 m/s strikes a wall at an angle u
of 30� and then rebounds with the
same speed and angle. It is in con-
tact with the wall for 10 ms. In unit-
vector notation, what are (a) the
impulse on the ball from the wall
and (b) the average force on the wall from the ball?
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locity that the explosion gives the rest of the rocket. (2) Next, at
time t � 0.80 s, block R is shot to the right with a speed of 3.00 m/s
relative to the velocity that block C then has. At t � 2.80 s, what
are (a) the velocity of block C and (b) the position of its center?

••42 An object, with mass m and speed v relative to an observer,
explodes into two pieces, one three times as massive as the other;
the explosion takes place in deep space. The less massive piece
stops relative to the observer. How much kinetic energy is added
to the system during the explosion, as measured in the observer’s
reference frame?

••43 In the Olympiad of 708 B.C., some athletes competing in
the standing long jump used handheld weights called halteres to
lengthen their jumps (Fig. 9-56).The weights were swung up in front
just before liftoff and then swung down and thrown backward dur-
ing the flight. Suppose a modern 78 kg long jumper similarly uses
two 5.50 kg halteres, throwing them horizontally to the rear at his
maximum height such that their horizontal velocity is zero rela-
tive to the ground. Let his liftoff velocity be m/s
with or without the halteres, and assume that he lands at the liftoff
level. What distance would the use of the halteres add to his range?  

v: � (9.5î � 4.0ĵ)

Module 9-5 Conservation of Linear Momentum
•39 A 91 kg man lying on a surface of negligible friction
shoves a 68 g stone away from himself, giving it a speed of 4.0 m/s.
What speed does the man acquire as a result?

•40 A space vehicle is traveling at 4300 km/h relative to Earth
when the exhausted rocket motor (mass 4m) is disengaged and
sent backward with a speed of 82 km/h relative to the command
module (mass m). What is the speed of the command module rel-
ative to Earth just after the separation?

••41 Figure 9-55 shows a two-ended “rocket” that is initially sta-
tionary on a frictionless floor, with its center at the origin of an x
axis.The rocket consists of a central block C (of mass M � 6.00 kg)
and blocks L and R (each of mass m � 2.00 kg) on the left and
right sides. Small explosions can
shoot either of the side blocks away
from block C and along the x axis.
Here is the sequence: (1) At time t �

0, block L is shot to the left with a
speed of 3.00 m/s relative to the ve-
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Figure 9-54 Problem 38.
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Figure 9-55 Problem 41.

••44 In Fig. 9-57, a stationary block explodes into two pieces L
and R that slide across a frictionless floor and then into regions with
friction, where they stop. Piece L, with a mass of 2.0 kg, encounters a
coefficient of kinetic friction mL � 0.40 and slides to a stop in distance
dL � 0.15 m. Piece R encounters a coefficient of kinetic friction mR �
0.50 and slides to a stop in distance dR � 0.25 m. What was the mass
of the block?
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Figure 9-56 Problem 43.
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Figure 9-53 Problem 35.

••45 A 20.0 kg body is moving through space in the
positive direction of an x axis with a speed of 200 m/s when, due
to an internal explosion, it breaks into three parts. One part, with a
mass of 10.0 kg, moves away from the point of explosion with
a speed of 100 m/s in the positive y direction. A second part, with a
mass of 4.00 kg, moves in the negative x direction with a speed of
500 m/s. (a) In unit-vector notation, what is the velocity of the third
part? (b) How much energy is released in the explosion? Ignore ef-
fects due to the gravitational force.

••46 A 4.0 kg mess kit sliding on a frictionless surface explodes
into two 2.0 kg parts: 3.0 m/s, due north, and 5.0 m/s, 30� north of
east.What is the original speed of the mess kit?

WWWSSM
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••47 A vessel at rest at the origin of an xy coordinate system ex-
plodes into three pieces. Just after the explosion, one piece, of mass
m, moves with velocity (�30 m/s) and a second piece, also of mass
m, moves with velocity (�30 m/s) . The third piece has mass 3m.
Just after the explosion, what are the (a) magnitude and (b) direc-
tion of the velocity of the third piece?

•••48 Particle A and particle B are held together with a com-
pressed spring between them. When they are released, the spring
pushes them apart, and they then fly off in opposite directions, free of
the spring. The mass of A is 2.00 times the mass of B, and the energy
stored in the spring was 60 J. Assume that the spring has negligible
mass and that all its stored energy is transferred to the particles.
Once that transfer is complete, what are the kinetic energies of (a)
particle A and (b) particle B?

Module 9-6 Momentum and Kinetic Energy in Collisions
•49 A bullet of mass 10 g strikes a ballistic pendulum of mass
2.0 kg. The center of mass of the pendulum rises a vertical distance
of 12 cm. Assuming that the bullet remains embedded in the pen-
dulum, calculate the bullet’s initial speed.

•50 A 5.20 g bullet moving at 672 m/s strikes a 700 g wooden
block at rest on a frictionless surface. The bullet emerges, traveling
in the same direction with its speed reduced to 428 m/s. (a) What is
the resulting speed of the block? (b) What is the speed of the
bullet–block center of mass?

••51 In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two
blocks at rest on a frictionless table.The bullet passes through block
1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). The
blocks end up with speeds v1 � 0.630 m/s and v2 � 1.40 m/s (Fig.
9-58b). Neglecting the material removed from block 1 by the bullet,
find the speed of the bullet as it (a) leaves and (b) enters block 1.

ĵ
î

collisions (CVC). (b) What percent of the original kinetic energy is
lost if the car hits a 300 kg camel? (c) Generally, does the percent
loss increase or decrease if the animal mass decreases?

••54 A completely inelastic collision occurs between two balls of
wet putty that move directly toward each other along a vertical
axis. Just before the collision, one ball, of mass 3.0 kg, is moving up-
ward at 20 m/s and the other ball, of mass 2.0 kg, is moving down-
ward at 12 m/s. How high do the combined two balls of putty rise
above the collision point? (Neglect air drag.)

••55 A 5.0 kg block with a speed of 3.0 m/s collides with a 10
kg block that has a speed of 2.0 m/s in the same direction.After the
collision, the 10 kg block travels in the original direction with a
speed of 2.5 m/s. (a) What is the velocity of the 5.0 kg block imme-
diately after the collision? (b) By how much does the total kinetic
energy of the system of two blocks change because of the colli-
sion? (c) Suppose, instead, that the 10 kg block ends up with a
speed of 4.0 m/s. What then is the change in the total kinetic en-
ergy? (d) Account for the result you obtained in (c).

••56 In the “before” part of Fig. 9-60, car A (mass 1100 kg) is
stopped at a traffic light when it is rear-ended by car B (mass
1400 kg). Both cars then slide with locked wheels until the fric-
tional force from the slick road (with a low mk of 0.13) stops them,
at distances dA � 8.2 m and dB � 6.1 m. What are the speeds of (a)
car A and (b) car B at the start of the sliding, just after the colli-
sion? (c) Assuming that linear momentum is conserved during
the collision, find the speed of car B just before the collision.
(d) Explain why this assumption may be invalid.

ILW

••52 In Fig. 9-59, a 10 g bullet
moving directly upward at 1000 m/s
strikes and passes through the cen-
ter of mass of a 5.0 kg block initially
at rest. The bullet emerges from the
block moving directly upward at 400
m/s. To what maximum height does
the block then rise above its initial
position?

••53 In Anchorage, collisions of a vehicle with a moose are so
common that they are referred to with the abbreviation MVC.
Suppose a 1000 kg car slides into a stationary 500 kg moose on a
very slippery road, with the moose being thrown through the wind-
shield (a common MVC result). (a) What percent of the original
kinetic energy is lost in the collision to other forms of energy? A
similar danger occurs in Saudi Arabia because of camel–vehicle
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Figure 9-58 Problem 51.
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Figure 9-59 Problem 52.

••57 In Fig. 9-61, a ball of mass
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Figure 9-61 Problem 57.

m � 60 g is shot with speed vi 22
m/s into the barrel of a spring gun of
mass M 240 g initially at rest on a
frictionless surface.The ball sticks in

�

�

the barrel at the point of maximum compression of the spring.
Assume that the increase in thermal energy due to friction be-
tween the ball and the barrel is negligible. (a) What is the speed of
the spring gun after the ball stops in the barrel? (b) What fraction
of the initial kinetic energy of the ball is stored in the spring?

•••58 In Fig. 9-62, block 2 (mass 1.0
kg) is at rest on a frictionless surface
and touching the end of an un-
stretched spring of spring constant
200 N/m.The other end of the spring
is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed v1 � 4.0
m/s, collides with block 2, and the two blocks stick together.When the
blocks momentarily stop, by what distance is the spring compressed?

1 2 
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Figure 9-62 Problem 58.
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•••59 In Fig. 9-63, block 1 (mass 2.0 kg) is moving rightward at
10 m/s and block 2 (mass 5.0 kg) is moving rightward at 3.0 m/s.
The surface is frictionless, and a spring with a spring constant of
1120 N/m is fixed to block 2.When the blocks collide, the compres-
sion of the spring is maximum at the instant the blocks have the
same velocity. Find the maximum compression.

ILW friction is 0.50; there they stop. How far into that region do (a)
block 1 and (b) block 2 slide?

••67 In Fig. 9-66, particle 1 of mass
m1 � 0.30 kg slides rightward along
an x axis on a frictionless floor with a
speed of 2.0 m/s.When it reaches x
0, it undergoes a one-dimensional
elastic collision with stationary parti-
cle 2 of mass m2 0.40 kg.When par-
ticle 2 then reaches a wall at xw 70 cm, it bounces from the wall
with no loss of speed. At what position on the x axis does particle 2
then collide with particle 1?

••68 In Fig. 9-67, block 1 of mass m1 slides from rest along a
frictionless ramp from height h 2.50 m and then collides with
stationary block 2, which has mass m2 � 2.00m1.After the collision,
block 2 slides into a region where the coefficient of kinetic friction
mk is 0.500 and comes to a stop in distance d within that region.
What is the value of distance d if the collision is (a) elastic and (b)
completely inelastic?

�

�
�

�

Module 9-7 Elastic Collisions in One Dimension
•60 In Fig. 9-64, block A (mass 1.6
kg) slides into block B (mass 2.4 kg),
along a frictionless surface. The direc-
tions of three velocities before (i) and
after ( f ) the collision are indicated;
the corresponding speeds are vAi

5.5 m/s, vBi 2.5 m/s, and vBf 4.9
m/s. What are the (a) speed and (b)
direction (left or right) of velocity

? (c) Is the collision elastic?

•61 A cart with mass 340 g
moving on a frictionless linear air track at an initial speed of 1.2 m/s
undergoes an elastic collision with an initially stationary cart of un-
known mass. After the collision, the first cart continues in its origi-
nal direction at 0.66 m/s. (a) What is the mass of the second cart?
(b) What is its speed after impact? (c) What is the speed of the two-
cart center of mass?

•62 Two titanium spheres approach each other head-on with the
same speed and collide elastically. After the collision, one of the
spheres, whose mass is 300 g, remains at rest. (a) What is the mass
of the other sphere? (b) What is the speed of the two-sphere center
of mass if the initial speed of each sphere is 2.00 m/s?

••63 Block 1 of mass m1 slides along a frictionless floor and into a
one-dimensional elastic collision with stationary block 2 of mass
m2 � 3m1. Prior to the collision, the center of mass of the two-
block system had a speed of 3.00 m/s. Afterward, what are the
speeds of (a) the center of mass and (b) block 2?

••64 A steel ball of mass 0.500 kg
is fastened to a cord that is 70.0 cm long
and fixed at the far end.The ball is then
released when the cord is horizontal
(Fig. 9-65). At the bottom of its path,
the ball strikes a 2.50 kg steel block ini-
tially at rest on a frictionless surface.
The collision is elastic. Find (a) the
speed of the ball and (b) the speed of
the block, both just after the collision.

••65 A body of mass 2.0 kg makes an elastic collision with
another body at rest and continues to move in the original
direction but with one-fourth of its original speed. (a) What is the
mass of the other body? (b) What is the speed of the two-body cen-
ter of mass if the initial speed of the 2.0 kg body was 4.0 m/s?

••66 Block 1, with mass m1 and speed 4.0 m/s, slides along an x
axis on a frictionless floor and then undergoes a one-dimensional
elastic collision with stationary block 2, with mass m2 � 0.40m1.The
two blocks then slide into a region where the coefficient of kinetic
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Figure 9-64 Problem 60.

Figure 9-65 Problem 64.

x (cm)
0 xw

1 2 

Figure 9-66 Problem 67.

•••69 A small ball of
mass m is aligned above a larger ball
of mass M � 0.63 kg (with a slight
separation, as with the baseball and
basketball of Fig. 9-68a), and the
two are dropped simultaneously
from a height of h � 1.8 m.
(Assume the radius of each ball is
negligible relative to h.) (a) If the
larger ball rebounds elastically
from the floor and then the small
ball rebounds elastically from the
larger ball, what value of m results
in the larger ball stopping when it
collides with the small ball? (b)
What height does the small ball
then reach (Fig. 9-68b)?

•••70 In Fig. 9-69, puck 1 of mass m1 � 0.20 kg is sent sliding
across a frictionless lab bench, to undergo a one-dimensional elas-
tic collision with stationary puck 2. Puck 2 then slides off the bench
and lands a distance d from the base of the bench. Puck 1 rebounds
from the collision and slides off the opposite edge of the bench,
landing a distance 2d from the base of the bench. What is the mass
of puck 2? (Hint: Be careful with signs.)
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Module 9-8 Collisions in Two Dimensions
••71 In Fig. 9-21, projectile particle 1 is an alpha particle and
target particle 2 is an oxygen nucleus. The alpha particle is scattered
at angle u1 64.0� and the oxygen nucleus recoils with speed 1.20 �
105 m/s and at angle u2 51.0�. In atomic mass units, the mass of the
alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u.
What are the (a) final and (b) initial speeds of the alpha particle?

••72 Ball B, moving in the positive direction of an x axis at speed
v, collides with stationary ball A at the origin. A and B have differ-
ent masses.After the collision, B moves in the negative direction of
the y axis at speed v/2. (a) In what direction does A move?
(b) Show that the speed of A cannot be determined from the given
information.

••73 After a completely inelastic collision, two objects of the same
mass and same initial speed move away together at half their initial
speed. Find the angle between the initial velocities of the objects.

••74 Two 2.0 kg bodies, A and B, collide. The velocities before the
collision are and m/s.After
the collision, What are (a) the final velocity
of B and (b) the change in the total kinetic energy (including sign)?

••75 A projectile proton with a speed of 500 m/s collides elasti-
cally with a target proton initially at rest. The two protons then
move along perpendicular paths, with the projectile path at 60�
from the original direction. After the collision, what are the speeds
of (a) the target proton and (b) the projectile proton?

Module 9-9 Systems with Varying Mass: A Rocket
•76 A 6090 kg space probe moving nose-first toward Jupiter at
105 m/s relative to the Sun fires its rocket engine, ejecting 80.0 kg
of exhaust at a speed of 253 m/s relative to the space probe.What is
the final velocity of the probe?

•77 In Fig. 9-70, two long barges are moving in the same
direction in still water, one with a speed of 10 km/h and the other
with a speed of 20 km/h. While they are passing each other, coal is
shoveled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving en-
gines of (a) the faster barge and (b) the slower barge if neither is to
change speed? Assume that the shoveling is always perfectly side-
ways and that the frictional forces between the barges and the water
do not depend on the mass of the barges.
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certain interval. What must be the rocket’s mass ratio (ratio of ini-
tial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed
(speed of the exhaust products relative to the rocket) and (b) 2.0
times the exhaust speed?

•79 A rocket that is in deep space and initially at rest
relative to an inertial reference frame has a mass of 2.55 105 kg,
of which 1.81 105 kg is fuel. The rocket engine is then fired for
250 s while fuel is consumed at the rate of 480 kg/s. The speed of
the exhaust products relative to the rocket is 3.27 km/s. (a) What is
the rocket’s thrust? After the 250 s firing, what are (b) the mass
and (c) the speed of the rocket?

Additional Problems
80 An object is tracked by a radar station and determined to have
a position vector given by � (3500 � 160t) � 2700 � 300 , with

in meters and t in seconds. The radar station’s x axis points east,
its y axis north, and its z axis vertically up. If the object is a 250 kg
meteorological missile, what are (a) its linear momentum, (b) its
direction of motion, and (c) the net force on it?

81 The last stage of a rocket, which is traveling at a speed of
7600 m/s, consists of two parts that are clamped together: a rocket
case with a mass of 290.0 kg and a payload capsule with a mass of
150.0 kg. When the clamp is released, a compressed spring causes
the two parts to separate with a relative speed of 910.0 m/s. What
are the speeds of (a) the rocket case and (b) the payload after they
have separated? Assume that all velocities are along the same line.
Find the total kinetic energy of the two parts (c) before and (d) after
they separate. (e) Account for the difference.

82 Pancake collapse of a tall
building. In the section of a tall
building shown in Fig. 9-71a, the in-
frastructure of any given floor K
must support the weight W of all
higher floors. Normally the infra-
structure is constructed with a
safety factor s so that it can with-
stand an even greater downward
force of sW. If, however, the support
columns between K and L suddenly
collapse and allow the higher floors to free-fall together onto floor
K (Fig. 9-71b), the force in the collision can exceed sW and, after a
brief pause, cause K to collapse onto floor J, which collapses on
floor I, and so on until the ground is reached. Assume that the
floors are separated by and have the same mass.Also as-
sume that when the floors above K free-fall onto K, the collision
lasts 1.5 ms. Under these simplified conditions, what value must the
safety factor s exceed to prevent pancake collapse of the building?

83 “Relative” is an important
word. In Fig. 9-72, block L of mass
mL � 1.00 kg and block R of mass
mR � 0.500 kg are held in place with
a compressed spring between them.
When the blocks are released, the spring sends them sliding across
a frictionless floor. (The spring has negligible mass and falls to the
floor after the blocks leave it.) (a) If the spring gives block L a re-
lease speed of 1.20 m/s relative to the floor, how far does block R
travel in the next 0.800 s? (b) If, instead, the spring gives block L a
release speed of 1.20 m/s relative to the velocity that the spring
gives block R, how far does block R travel in the next 0.800 s?

d � 4.0 m
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Figure 9-72 Problem 83.

•78 Consider a rocket that is in deep space and at rest relative to
an inertial reference frame. The rocket’s engine is to be fired for a
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84 Figure 9-73 shows an overhead
view of two particles sliding at constant
velocity over a frictionless surface. The
particles have the same mass and the
same initial speed v � 4.00 m/s, and they
collide where their paths intersect. An
x axis is arranged to bisect the angle be-
tween their incoming paths, such that
u � 40.0�. The region to the right of the
collision is divided into four lettered
sections by the x axis and four numbered dashed lines. In what re-
gion or along what line do the particles travel if the collision is (a)
completely inelastic, (b) elastic, and (c) inelastic? What are their fi-
nal speeds if the collision is (d) completely inelastic and (e) elastic?

85 Speed deamplifier. In Fig.
9-74, block 1 of mass m1 slides along
an x axis on a frictionless floor at
speed 4.00 m/s. Then it undergoes a
one-dimensional elastic collision
with stationary block 2 of mass m2 �
2.00m1. Next, block 2 undergoes a one-dimensional elastic collision
with stationary block 3 of mass m3 � 2.00m2. (a) What then is the
speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d)
the momentum of block 3 greater than, less than, or the same as
the initial values for block 1? 

origin with linear momentum (�6.4 � 10�23 kg 
m/s) . What are
the (a) magnitude and (b) direction of the linear momentum of the
daughter nucleus? (c) If the daughter nucleus has a mass of 5.8 �
10�26 kg, what is its kinetic energy?

91 A 75 kg man rides on a 39 kg cart moving at a velocity of 2.3 m/s.
He jumps off with zero horizontal velocity relative to the ground.
What is the resulting change in the cart’s velocity, including sign?

92 Two blocks of masses 1.0 kg and 3.0 kg are connected by a
spring and rest on a frictionless surface. They are given velocities
toward each other such that the 1.0 kg block travels initially at
1.7 m/s toward the center of mass, which remains at rest. What is
the initial speed of the other block?

93 A railroad freight car of mass 3.18 � 104 kg collides
with a stationary caboose car. They couple together, and 27.0% of
the initial kinetic energy is transferred to thermal energy, sound,
vibrations, and so on. Find the mass of the caboose.

94 An old Chrysler with mass 2400 kg is moving along a straight
stretch of road at 80 km/h. It is followed by a Ford with mass 1600
kg moving at 60 km/h. How fast is the center of mass of the two
cars moving?

95 In the arrangement of Fig. 9-21, billiard ball 1 moving at a
speed of 2.2 m/s undergoes a glancing collision with identical bil-
liard ball 2 that is at rest. After the collision, ball 2 moves at speed
1.1 m/s, at an angle of u2 � 60�.What are (a) the magnitude and (b)
the direction of the velocity of ball 1 after the collision? (c) Do the
given data suggest the collision is elastic or inelastic?

96 A rocket is moving away from the solar system at a speed of
6.0 � 103 m/s. It fires its engine, which ejects exhaust with a speed
of 3.0 � 103 m/s relative to the rocket. The mass of the rocket at
this time is 4.0 � 104 kg, and its acceleration is 2.0 m/s2. (a) What is
the thrust of the engine? (b) At what rate, in kilograms per second,
is exhaust ejected during the firing?
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The velocity of ball 1 has magnitude v0 � 10 m/s and is directed at
the contact point of balls 1 and 2. After the collision, what are the
(a) speed and (b) direction of the velocity of ball 2, the (c) speed
and (d) direction of the velocity of ball 3, and the (e) speed and (f)
direction of the velocity of ball 1? (Hint: With friction absent, each
impulse is directed along the line connecting the centers of the col-
liding balls, normal to the colliding surfaces.)

98 A 0.15 kg ball hits a wall with a velocity of (5.00 m/s) � (6.50
m/s) � (4.00 m/s) . It rebounds from the wall with a velocity of
(2.00 m/s) (3.50 m/s) ( 3.20 m/s) . What are
(a) the change in the ball’s momentum, (b) the im-
pulse on the ball, and (c) the impulse on the wall?

99 In Fig. 9-77, two identical containers of sugar
are connected by a cord that passes over a friction-
less pulley. The cord and pulley have negligible
mass, each container and its sugar together have a
mass of 500 g, the centers of the containers are sepa-
rated by 50 mm, and the containers are held fixed at
the same height. What is the horizontal distance be-
tween the center of container 1 and the center
of mass of the two-container system (a) initially and

k̂�ĵ �î �
k̂ĵ

î

97 The three balls in the
overhead view of Fig. 9-76 are
identical. Balls 2 and 3 touch
each other and are aligned per-
pendicular to the path of ball 1.

Figure 9-77
Problem 99.
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sion with stationary block 2 of mass m2 � 0.500m1. Next, block 2 un-
dergoes a one-dimensional elastic collision with stationary block 3
of mass m3 � 0.500m2. (a) What then is the speed of block 3? Are (b)
the speed, (c) the kinetic energy, and (d) the momentum of block 3
greater than, less than, or the same as the initial values for block 1?

87 A ball having a mass of 150 g strikes a wall with a speed of
5.2 m/s and rebounds with only 50% of its initial kinetic energy. (a)
What is the speed of the ball immediately after rebounding? (b)
What is the magnitude of the impulse on the wall from the ball? (c) If
the ball is in contact with the wall for 7.6 ms, what is the magnitude of
the average force on the ball from the wall during this time interval?

88 A spacecraft is separated into two parts by detonating the ex-
plosive bolts that hold them together. The masses of the parts are
1200 kg and 1800 kg; the magnitude of the impulse on each part
from the bolts is 300 N 
s. With what relative speed do the two
parts separate because of the detonation?

89 A 1400 kg car moving at 5.3 m/s is initially traveling
north along the positive direction of a y axis. After completing a
90� right-hand turn in 4.6 s, the inattentive operator drives into a
tree, which stops the car in 350 ms. In unit-vector notation, what is
the impulse on the car (a) due to the turn and (b) due to the colli-
sion? What is the magnitude of the average force that acts on the
car (c) during the turn and (d) during the collision? (e) What is the
direction of the average force during the turn?

90 A certain radioactive (parent) nucleus transforms to a dif-
ferent (daughter) nucleus by emitting an electron and a neutrino.
The parent nucleus was at rest at the origin of an xy coordinate sys-
tem. The electron moves away from the origin with linear momen-
tum (�1.2 � 10�22 kg 
m/s) ; the neutrino moves away from theî
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block 1 of mass m1 slides along an x
axis on a frictionless floor with a
speed of v1i 4.00 m/s. Then it under-
goes a one-dimensional elastic colli-
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(b) after 20 g of sugar is transferred from container 1 to container
2? After the transfer and after the containers are released, (c) in
what direction and (d) at what acceleration magnitude does the
center of mass move?

100 In a game of pool, the cue ball strikes another ball of the
same mass and initially at rest. After the collision, the cue ball
moves at 3.50 m/s along a line making an angle of 22.0� with the
cue ball’s original direction of motion, and the second ball has a
speed of 2.00 m/s. Find (a) the angle between the direction of mo-
tion of the second ball and the original direction of motion of the
cue ball and (b) the original speed of the cue ball. (c) Is kinetic en-
ergy (of the centers of mass, don’t consider the rotation) con-
served?

101 In Fig. 9-78, a 3.2 kg box of
running shoes slides on a horizontal
frictionless table and collides with a
2.0 kg box of ballet slippers initially
at rest on the edge of the table, at
height h � 0.40 m. The speed of the
3.2 kg box is 3.0 m/s just before the
collision. If the two boxes stick to-
gether because of packing tape on their
sides, what is their kinetic energy just before
they strike the floor?

102 In Fig. 9-79, an 80 kg man is on a lad-
der hanging from a balloon that has a total
mass of 320 kg (including the basket passen-
ger). The balloon is initially stationary rela-
tive to the ground. If the man on the ladder
begins to climb at 2.5 m/s relative to the lad-
der, (a) in what direction and (b) at what
speed does the balloon move? (c) If the man
then stops climbing, what is the speed of the
balloon?

103 In Fig. 9-80, block 1 of mass m1 � 6.6 kg
is at rest on a long frictionless table that is up
against a wall. Block 2 of mass m2 is placed
between block 1 and the wall and sent sliding
to the left, toward block 1, with constant
speed v2i. Find the value of m2 for which both
blocks move with the same velocity after block 2 has collided once
with block 1 and once with the wall.Assume all collisions are elastic
(the collision with the wall does not change the speed of block 2).

boat will initially touch the dock, as in Fig. 9-81; the boat can slide
through the water without significant resistance; both the car and
the boat can be approximated as uniform in their mass distribu-
tion. Determine what the width of the gap will be just as the car is
about to make the jump.

105 A 3.0 kg object moving at 8.0 m/s in the positive direc-
tion of an x axis has a one-dimensional elastic collision with an ob-
ject of mass M, initially at rest. After the collision the object of
mass M has a velocity of 6.0 m/s in the positive direction of the
axis.What is mass M?

106 A 2140 kg railroad flatcar, which can move with negligible
friction, is motionless next to a platform. A 242 kg sumo wrestler
runs at 5.3 m/s along the platform (parallel to the track) and then
jumps onto the flatcar. What is the speed of the flatcar if he then
(a) stands on it, (b) runs at 5.3 m/s relative to it in his original direc-
tion, and (c) turns and runs at 5.3 m/s relative to the flatcar oppo-
site his original direction?

107 A 6100 kg rocket is set for vertical firing from the
ground. If the exhaust speed is 1200 m/s, how much gas must be
ejected each second if the thrust (a) is to equal the magnitude of
the gravitational force on the rocket and (b) is to give the rocket an
initial upward acceleration of 21 m/s2?

108 A 500.0 kg module is attached to a 400.0 kg shuttle craft,
which moves at 1000 m/s relative to the stationary main spaceship.
Then a small explosion sends the module backward with speed
100.0 m/s relative to the new speed of the shuttle craft. As meas-
ured by someone on the main spaceship, by what fraction did the
kinetic energy of the module and shuttle craft increase because of
the explosion?

109 (a) How far is the center of mass of the Earth–Moon
system from the center of Earth? (Appendix C gives the masses of
Earth and the Moon and the distance between the two.) (b) What
percentage of Earth’s radius is that distance?

110 A 140 g ball with speed 7.8 m/s strikes a wall perpendicu-
larly and rebounds in the opposite direction with the same speed.
The collision lasts 3.80 ms. What are the magnitudes of the (a) im-
pulse and (b) average force on the wall from the ball during the
elastic collision?

111 A rocket sled with a mass of 2900 kg moves at 250 m/s
on a set of rails. At a certain point, a scoop on the sled dips into a
trough of water located between the tracks and scoops water into
an empty tank on the sled. By applying the principle of conserva-
tion of linear momentum, determine the speed of the sled after
920 kg of water has been scooped up. Ignore any retarding force on
the scoop.

112 A pellet gun fires ten 2.0 g pellets per second with a
speed of 500 m/s. The pellets are stopped by a rigid wall. What are
(a) the magnitude of the momentum of each pellet, (b) the ki-
netic energy of each pellet, and (c) the magnitude of the average
force on the wall from the stream of pellets? (d) If each pellet is
in contact with the wall for 0.60 ms, what is the magnitude of the
average force on the wall from each pellet during contact? (e)
Why is this average force so different from the average force cal-
culated in (c)?

113 A railroad car moves under a grain elevator at a constant
speed of 3.20 m/s. Grain drops into the car at the rate of 540 kg/min.
What is the magnitude of the force needed to keep the car moving
at constant speed if friction is negligible?
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104 The script for an action movie calls for a small race car (of
mass 1500 kg and length 3.0 m) to accelerate along a flattop boat
(of mass 4000 kg and length 14 m), from one end of the boat to the
other, where the car will then jump
the gap between the boat and a
somewhat lower dock. You are the
technical advisor for the movie. The
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Figure 9-81 Problem 104.



256 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

v

VJ

m

M

Figure 9-84 Problem 123.

114 Figure 9-82 shows a uniform square plate of edge length 
6d � 6.0 m from which a square piece of edge length 2d has been
removed.What are (a) the x coordinate and (b) the y coordinate of
the center of mass of the remaining piece?

rates the body into two parts, each of 4.0 kg, and increases the total
kinetic energy by 16 J. The forward part continues to move in the
original direction of motion. What are the speeds of (a) the rear
part and (b) the forward part?

121 An electron undergoes a one-dimensional elastic collision
with an initially stationary hydrogen atom. What percentage of the
electron’s initial kinetic energy is transferred to kinetic energy of
the hydrogen atom? (The mass of the hydrogen atom is 1840 times
the mass of the electron.)

122 A man (weighing 915 N) stands on a long railroad flatcar
(weighing 2415 N) as it rolls at 18.2 m/s in the positive direction of
an x axis, with negligible friction. Then the man runs along the flat-
car in the negative x direction at 4.00 m/s relative to the flatcar.
What is the resulting increase in the speed of the flatcar?

123 An unmanned space probe (of mass m and speed v relative to
the Sun) approaches the planet Jupiter (of mass M and speed VJ rel-
ative to the Sun) as shown in Fig. 9-84. The spacecraft rounds the
planet and departs in the opposite direction. What is its speed (in
kilometers per second), relative to the Sun, after this slingshot en-
counter, which can be analyzed as a collision? Assume v � 10.5 km/s
and VJ � 13.0 km/s (the orbital speed of Jupiter).The mass of Jupiter
is very much greater than the mass of the spacecraft (M m).�

115 At time t 0, force N acts on an
initially stationary particle of mass 2.00 10�3 kg and force

N acts on an initially stationary particle of
mass 4.00 10�3 kg. From time t 0 to t 2.00 ms, what are the
(a) magnitude and (b) angle (relative to the positive direction of
the x axis) of the displacement of the center of mass of the two-
particle system? (c) What is the kinetic energy of the center of
mass at t � 2.00 ms?

116 Two particles P and Q are released from rest 1.0 m apart. P has
a mass of 0.10 kg, and Q a mass of 0.30 kg. P and Q attract each other
with a constant force of 1.0 � 10�2 N. No external forces act on the
system. (a) What is the speed of the center of mass of P and Q when
the separation is 0.50 m? (b) At what distance from P’s original posi-
tion do the particles collide?

117 A collision occurs between a 2.00 kg particle traveling with
velocity and a 4.00 kg particle
traveling with velocity . The colli-
sion connects the two particles. What then is their velocity in (a)
unit-vector notation and as a (b) magnitude and (c) angle?

118 In the two-sphere arrangement of Fig. 9-20, assume that
sphere 1 has a mass of 50 g and an initial height of h1 � 9.0 cm, and
that sphere 2 has a mass of 85 g. After sphere 1 is released and col-
lides elastically with sphere 2, what height is reached by (a) sphere
1 and (b) sphere 2? After the next (elastic) collision, what height is
reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use
rounded-off values.)

119 In Fig. 9-83, block 1 slides along
an x axis on a frictionless floor with a
speed of 0.75 m/s. When it reaches sta-
tionary block 2, the two blocks undergo
an elastic collision. The following table
gives the mass and length of the (uni-
form) blocks and also the locations of their centers at time t � 0.
Where is the center of mass of the two-block system located (a) at 
t � 0, (b) when the two blocks first touch, and (c) at t � 4.0 s?

Block Mass (kg) Length (cm) Center at t � 0

1 0.25 5.0 x � �1.50 m
2 0.50 6.0 x � 0

120 A body is traveling at 2.0 m/s along the positive direction of
an x axis; no net force acts on the body. An internal explosion sepa-
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124 A 0.550 kg ball falls directly down onto concrete, hitting it
with a speed of 12.0 m/s and rebounding directly upward with a
speed of 3.00 m/s. Extend a y axis upward. In unit-vector notation,
what are (a) the change in the ball’s momentum, (b) the impulse
on the ball, and (c) the impulse on the concrete?

125 An atomic nucleus at rest at the origin of an xy coordinate
system transforms into three particles. Particle 1, mass 16.7 � 10�27

kg, moves away from the origin at velocity (6.00 � 106 m/s) ; particle
2, mass 8.35 � 10�27 kg, moves away at velocity (�8.00 � 106 m/s) .
(a) In unit-vector notation, what is the linear momentum of the
third particle, mass 11.7 � 10�27 kg? (b) How much kinetic energy
appears in this transformation?

126 Particle 1 of mass 200 g and speed 3.00 m/s undergoes a one-
dimensional collision with stationary particle 2 of mass 400 g.What
is the magnitude of the impulse on particle 1 if the collision is (a)
elastic and (b) completely inelastic?

127 During a lunar mission, it is necessary to increase the speed
of a spacecraft by 2.2 m/s when it is moving at 400 m/s relative to
the Moon. The speed of the exhaust products from the rocket en-
gine is 1000 m/s relative to the spacecraft. What fraction of the
initial mass of the spacecraft must be burned and ejected to accom-
plish the speed increase?

128 A cue stick strikes a stationary pool ball, with an average
force of 32 N over a time of 14 ms. If the ball has mass 0.20 kg, what
speed does it have just after impact?

ĵ
î

–1.50 m 0 
x

1 2

Figure 9-83 Problem 119.
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Rotation

10-1 ROTATIONAL VARIABLES

After reading this module, you should be able to . . .

10.01 Identify that if all parts of a body rotate around a fixed
axis locked together, the body is a rigid body. (This chapter
is about the motion of such bodies.)

10.02 Identify that the angular position of a rotating rigid body
is the angle that an internal reference line makes with a
fixed, external reference line. 

10.03 Apply the relationship between angular displacement
and the initial and final angular positions.

10.04 Apply the relationship between average angular veloc-
ity, angular displacement, and the time interval for that dis-
placement.

10.05 Apply the relationship between average angular accel-
eration, change in angular velocity, and the time interval for
that change.

10.06 Identify that counterclockwise motion is in the positive 
direction and clockwise motion is in the negative direction.

10.07 Given angular position as a function of time, calculate the
instantaneous angular velocity at any particular time and the
average angular velocity between any two particular times.

10.08 Given a graph of angular position versus time, deter-
mine the instantaneous angular velocity at a particular time
and the average angular velocity between any two particu-
lar times.

10.09 Identify instantaneous angular speed as the magnitude
of the instantaneous angular velocity.

10.10 Given angular velocity as a function of time, calculate
the instantaneous angular acceleration at any particular
time and the average angular acceleration between any
two particular times.

10.11 Given a graph of angular velocity versus time, deter-
mine the instantaneous angular acceleration at any partic-
ular time and the average angular acceleration between
any two particular times. 

10.12 Calculate a body’s change in angular velocity by 
integrating its angular acceleration function with respect
to time.

10.13 Calculate a body’s change in angular position by inte-
grating its angular velocity function with respect to time.

● To describe the rotation of a rigid body about a fixed axis,
called the rotation axis, we assume a reference line is fixed in
the body, perpendicular to that axis and rotating with the
body. We measure the angular position u of this line 
relative to a fixed direction. When u is measured in radians,

(radian measure),

where s is the arc length of a circular path of radius r and
angle u.

● Radian measure is related to angle measure in revolutions
and degrees by

1 rev � 360� � 2p rad.

● A body that rotates about a rotation axis, changing its angu-
lar position from u1 to u2, undergoes an angular displacement

�u � u2 � u1,

where �u is positive for counterclockwise rotation and nega-
tive for clockwise rotation.

● If a body rotates through an angular displacement �u in a
time interval �t, its average angular velocity vavg is

u �
s
r

The (instantaneous) angular velocity v of the body is

Both vavg and v are vectors, with directions given by a 
right-hand rule. They are positive for counterclockwise rota-
tion and negative for clockwise rotation. The magnitude of the
body’s angular velocity is the angular speed.

● If the angular velocity of a body changes from v1 to v2 in a
time interval �t � t2 � t1, the average angular acceleration
aavg of the body is

The (instantaneous) angular acceleration a of the body is

Both aavg and a are vectors.

a �
dv

dt
.

aavg �
v2 � v1

t2 � t1
�

�v

�t
.

v �
du

dt
.

vavg �
�u

�t
.

Key Ideas

Learning Objectives
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What Is Physics?
As we have discussed, one focus of physics is motion. However, so far we
have examined only the motion of translation, in which an object moves along
a straight or curved line, as in Fig. 10-1a. We now turn to the motion of rotation,
in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a
beverage can with a pull tab, and you pay to experience it every time you go to an
amusement park. Rotation is the key to many fun activities, such as hitting a long
drive in golf (the ball needs to rotate in order for the air to keep it aloft longer)
and throwing a curveball in baseball (the ball needs to rotate in order for the air
to push it left or right). Rotation is also the key to more serious matters, such as
metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the 
motion, just as we did for translation in Chapter 2. As we shall see, the vari-
ables for rotation are analogous to those for one-dimensional motion and, as
in Chapter 2, an important special situation is where the acceleration (here the
rotational acceleration) is constant. We shall also see that Newton’s second
law can be written for rotational motion, but we must use a new quantity
called torque instead of just force. Work and the work–kinetic energy
theorem can also be applied to rotational motion, but we must use a new quan-
tity called rotational inertia instead of just mass. In short, much of what we
have discussed so far can be applied to rotational motion with, perhaps, a few
changes.

Caution: In spite of this repetition of physics ideas, many students find this
and the next chapter very challenging. Instructors have a variety of reasons as
to why, but two reasons stand out: (1) There are a lot of symbols (with Greek

Figure 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed
direction and (b) pure rotation about a vertical axis.
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letters) to sort out. (2) Although you are very familiar with linear motion (you
can get across the room and down the road just fine), you are probably very
unfamiliar with rotation (and that is one reason why you are willing to pay so
much for amusement park rides). If a homework problem looks like a foreign
language to you, see if translating it into the one-dimensional linear motion of
Chapter 2 helps. For example, if you are to find, say, an angular distance, tem-
porarily delete the word angular and see if you can work the problem with the
Chapter 2 notation and ideas.

Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis.A rigid body is
a body that can rotate with all its parts locked together and without any change in
its shape. A fixed axis means that the rotation occurs about an axis that does not
move. Thus, we shall not examine an object like the Sun, because the parts of the
Sun (a ball of gas) are not locked together. We also shall not examine an object
like a bowling ball rolling along a lane, because the ball rotates about a moving
axis (the ball’s motion is a mixture of rotation and translation).

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed
axis, called the axis of rotation or the rotation axis. In pure rotation (angular
motion), every point of the body moves in a circle whose center lies on the axis of
rotation, and every point moves through the same angle during a particular time
interval. In pure translation (linear motion), every point of the body moves in a
straight line, and every point moves through the same linear distance during a
particular time interval.

We deal now—one at a time—with the angular equivalents of the linear
quantities position, displacement, velocity, and acceleration.

Angular Position
Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation
axis and rotating with the body. The angular position of this line is the angle of
the line relative to a fixed direction, which we take as the zero angular position.
In Fig. 10-3, the angular position u is measured relative to the positive direction of
the x axis. From geometry, we know that u is given by

(radian measure). (10-1)

Here s is the length of a circular arc that extends from the x axis (the zero angular
position) to the reference line, and r is the radius of the circle.

u �
s
r

Figure 10-2 A rigid body of arbitrary shape in pure rotation about the z axis of a coordinate
system. The position of the reference line with respect to the rigid body is arbitrary, but it is
perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

z

O

Reference line 

Rotation
axis

x

y

Body This reference line is part of the body 
and perpendicular to the rotation axis. 
We use it to measure the rotation of the
body relative to a fixed direction.

Figure 10-3 The rotating rigid body of
Fig. 10-2 in cross section, viewed from
above. The plane of the cross section is
perpendicular to the rotation axis, which
now extends out of the page, toward you.
In this position of the body, the reference
line makes an angle u with the x axis.

x

y

Reference

lin
e

θ
r

s

Rotation
axis

The body has rotated
counterclockwise
by angle   . This is the
positive direction.

θ

This dot means that 
the rotation axis is 
out toward you.



An angle defined in this way is measured in radians (rad) rather than in
revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a
pure number and thus has no dimension. Because the circumference of a circle of
radius r is 2pr, there are 2p radians in a complete circle:

(10-2)

and thus 1 rad � 57.3� � 0.159 rev. (10-3)

We do not reset u to zero with each complete rotation of the reference line about
the rotation axis. If the reference line completes two revolutions from the zero
angular position, then the angular position u of the line is u � 4p rad.

For pure translation along an x axis, we can know all there is to know
about a moving body if we know x(t), its position as a function of time.
Similarly, for pure rotation, we can know all there is to know about a rotating
body if we know u(t), the angular position of the body’s reference line as a
function of time.

Angular Displacement
If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the
angular position of the reference line from u1 to u2, the body undergoes an 
angular displacement �u given by

�u � u2 � u1. (10-4)

This definition of angular displacement holds not only for the rigid body as a
whole but also for every particle within that body.

Clocks Are Negative. If a body is in translational motion along an x axis, its
displacement �x is either positive or negative, depending on whether the body is
moving in the positive or negative direction of the axis. Similarly, the angular dis-
placement �u of a rotating body is either positive or negative, according to the
following rule:

1 rev � 360� �
2pr

r
� 2p rad,
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An angular displacement in the counterclockwise direction is positive, and one in
the clockwise direction is negative.

Checkpoint 1
A disk can rotate about its central axis like a merry-go-round.Which of the following
pairs of values for its initial and final angular positions, respectively, give a negative 
angular displacement: (a) �3 rad, �5 rad, (b) �3 rad, �7 rad, (c) 7 rad, �3 rad?

The phrase “clocks are negative” can help you remember this rule (they certainly
are negative when their alarms sound off early in the morning).

Angular Velocity
Suppose that our rotating body is at angular position u1 at time t1 and at 
angular position u2 at time t2 as in Fig. 10-4. We define the average angular velocity
of the body in the time interval �t from t1 to t2 to be

(10-5)

where �u is the angular displacement during �t (v is the lowercase  omega).

vavg �
u2 � u1

t2 � t1
�

�u

�t
,
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Figure 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position
u1 at time t1 and at angular position u2 at a later time t2. The quantity �u (� u2 � u1) is the
angular displacement that occurs during the interval �t (� t2 � t1). The body itself is not
shown.

x

y

Rotation axis O
θ 1

θ 2

Δ   θ 

At t2

At t1

Reference line

This change in the angle of the reference line 
(which is part of the body) is equal to the angular
displacement of the body itself during this 
time interval.

The (instantaneous) angular velocity v, with which we shall be most con-
cerned, is the limit of the ratio in Eq. 10-5 as �t approaches zero.Thus,

(10-6)

If we know u(t), we can find the angular velocity v by differentiation.
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole

but also for every particle of that body because the particles are all locked
together. The unit of angular velocity is commonly the radian per second (rad/s)
or the revolution per second (rev/s). Another measure of angular velocity was
used during at least the first three decades of rock: Music was produced by vinyl
(phonograph) records that were played on turntables at “ ” or “45 rpm,”
meaning at or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either
positive or negative, depending on its direction along the axis. Similarly, the angu-
lar velocity v of a rotating rigid body is either positive or negative, depending on
whether the body is rotating counterclockwise (positive) or clockwise (negative).
(“Clocks are negative” still works.) The magnitude of an angular velocity is called
the angular speed, which is also represented with v.

Angular Acceleration
If the angular velocity of a rotating body is not constant, then the body has an an-
gular acceleration. Let v2 and v1 be its angular velocities at times t2 and t1,
respectively.The average angular acceleration of the rotating body in the interval
from t1 to t2 is defined as

(10-7)

in which �v is the change in the angular velocity that occurs during the time
interval �t. The (instantaneous) angular acceleration a, with which we shall be
most concerned, is the limit of this quantity as �t approaches zero.Thus,

(10-8)

As the name suggests, this is the angular acceleration of the body at a given in-
stant. Equations 10-7 and 10-8 also hold for every particle of that body. The unit of
angular acceleration is commonly the radian per second-squared (rad/s2) or the
revolution per second-squared (rev/s2).

a � lim
�t:0

�v

�t
�

dv

dt
.

aavg �
v 2 � v 1

t2 � t1
�

�v

�t
,

331
3 rev/min

331
3 rpm

v � lim
�t:0

 
�u

�t
�

du

dt
.
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Calculations: To sketch the disk and its reference line at a
particular time, we need to determine u for that time. To do
so, we substitute the time into Eq. 10-9. For t � �2.0 s, we get

This means that at t � �2.0 s the reference line on the disk
is rotated counterclockwise from the zero position by angle
1.2 rad � 69� (counterclockwise because u is positive). Sketch
1 in Fig. 10-5b shows this position of the reference line.

Similarly, for t � 0, we find u � �1.00 rad � �57�,
which means that the reference line is rotated clockwise
from the zero angular position by 1.0 rad, or 57�, as shown
in sketch 3. For t � 4.0 s, we find u � 0.60 rad � 34�
(sketch 5). Drawing sketches for when the curve crosses
the t axis is easy, because then u � 0 and the reference line
is momentarily aligned with the zero angular position
(sketches 2 and 4).

(b) At what time tmin does u(t) reach the minimum 
value shown in Fig. 10-5b? What is that minimum value?

� 1.2 rad � 1.2 rad 
360�

2� rad
� 69�.

u � �1.00 � (0.600)(�2.0) � (0.250)(�2.0)2

Sample Problem 10.01 Angular velocity derived from angular position

The disk in Fig. 10-5a is rotating about its central axis like a
merry-go-round. The angular position u(t) of a reference
line on the disk is given by

u � �1.00 � 0.600t � 0.250t2, (10-9)

with t in seconds, u in radians, and the zero angular position
as indicated in the figure. (If you like, you can translate all
this into Chapter 2 notation by momentarily dropping the
word “angular” from “angular position” and replacing the
symbol u with the symbol x. What you then have is an equa-
tion that gives the position as a function of time, for the one-
dimensional motion of Chapter 2.)

(a) Graph the angular position of the disk versus time
from t � �3.0 s to t � 5.4 s. Sketch the disk and its angular
position reference line at t � �2.0 s, 0 s, and 4.0 s, and
when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the angular position 
u(t) of its reference line, which is given by Eq. 10-9 as a function
of time t. So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

A

Zero
angular
position

Reference
line

Rotation axis

(a)

(b)

2

0

–2
0 2 4 6

(rad)

(1) (2) (3) (4) (5)

t (s)

θ

–2

The angular position
of the disk is the angle
between these two lines.

Now, the disk is
at a zero angle.

θ

At t = −2 s, the disk
is at a positive
(counterclockwise)
angle. So, a positive
   value is plotted.

This is a plot of the angle
of the disk versus time.

Now, it is at a
negative (clockwise)
angle. So, a negative
   value is plotted.θ

It has reversed
its rotation and
is again at a
zero angle.

Now, it is
back at a
positive
angle.

Figure 10-5 (a) A rotating disk. (b) A plot of the disk’s angular position u(t). Five sketches indicate the angular position of the refer-
ence line on the disk for five points on the curve. (c) A plot of the disk’s angular velocity v(t). Positive values of v correspond to
counterclockwise rotation, and negative values to clockwise rotation.
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t � �3.0 s to t � 6.0 s. Sketch the disk and indicate the direc-
tion of turning and the sign of v at t � �2.0 s,4.0 s,and tmin.

KEY IDEA

From Eq. 10-6, the angular velocity v is equal to du/dt as
given in Eq. 10-10. So, we have

v � �0.600 � 0.500t. (10-11)

The graph of this function v(t) is shown in Fig. 10-5c.
Because the function is linear, the plot is a straight line. The
slope is 0.500 rad/s2 and the intercept with the vertical axis
(not shown) is �0.600 rad/s.

Calculations: To sketch the disk at t � �2.0 s, we substitute
that value into Eq. 10-11, obtaining

v � �1.6 rad/s. (Answer)

The minus sign here tells us that at t � �2.0 s, the disk is
turning clockwise (as indicated by the left-hand  sketch in
Fig. 10-5c).

Substituting t � 4.0 s into Eq. 10-11 gives us

v � 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning
counterclockwise (the right-hand sketch in Fig. 10-5c).

For tmin, we already know that du/dt � 0. So, we must
also have v � 0. That is, the disk momentarily stops when
the reference line reaches the minimum value of u in
Fig. 10-5b, as suggested by the center sketch in Fig. 10-5c. On
the graph of v versus t in Fig. 10-5c, this momentary stop is
the zero point where the plot changes from the negative
clockwise motion to the positive counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the
motion of the disk from t � �3.0 s to t � 6.0 s.

Description: When we first observe the disk at t � �3.0 s, it
has a positive angular position and is turning clockwise but
slowing. It stops at angular position u � �1.36 rad and then
begins to turn counterclockwise, with its angular position
eventually becoming positive again.

KEY IDEA

To find the extreme value (here the minimum) of a function,
we take the first derivative of the function and set the result
to zero.

Calculations: The first derivative of u(t) is

(10-10)

Setting this to zero and solving for t give us the time at
which u(t) is minimum:

tmin � 1.20 s. (Answer)

To get the minimum value of u, we next substitute tmin into
Eq. 10-9, finding

u � �1.36 rad � �77.9�. (Answer)

This minimum of u(t) (the bottom of the curve in Fig. 10-5b)
corresponds to the maximum clockwise rotation of the disk
from the zero angular position, somewhat more than is
shown in sketch 3.

(c) Graph the angular velocity v of the disk versus time from 

du

dt
� �0.600 � 0.500t.

(c)

2

0

–2
–2 0 2 4 6

(rad/s)ω

t (s)

negative ω zero ω positive ω

This is a plot of the angular
velocity of the disk versus time.

The angular velocity is
initially negative and slowing,
then momentarily zero during
reversal, and then positive and
increasing.

Additional examples, video, and
practice available at WileyPLUS
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Are Angular Quantities Vectors?
We can describe the position, velocity, and acceleration of a single particle by
means of vectors. If the particle is confined to a straight line, however, we do not
really need vector notation. Such a particle has only two directions available to it,
and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only
clockwise or counterclockwise as seen along the axis, and again we can select
between the two directions by means of plus and minus signs.The question arises:
“Can we treat the angular displacement, velocity, and acceleration of a rotating
body as vectors?” The answer is a qualified “yes” (see the caution below, in con-
nection with angular displacements).

Angular Velocities. Consider the angular velocity. Figure 10-6a shows a
vinyl record rotating on a turntable. The record has a constant angular speed

in the clockwise direction. We can represent its angular ve-
locity as a vector pointing along the axis of rotation, as in Fig. 10-6b. Here’s
how: We choose the length of this vector according to some convenient scale,
for example, with 1 cm corresponding to 10 rev/min. Then we establish a direc-
tion for the vector by using a right-hand rule, as Fig. 10-6c shows: Curl your
right hand about the rotating record, your fingers pointing in the direction of
rotation. Your extended thumb will then point in the direction of the angular
velocity vector. If the record were to rotate in the opposite sense, the right-

v:

v:
v (� 331

3 rev/min)

To evaluate the constant of integration C, we note that v �
5 rad/s at t � 0. Substituting these values in our expression
for v yields

,

so C � 5 rad/s.Then

. (Answer)

(b) Obtain an expression for the angular position u(t) of the
top.

KEY IDEA

By definition, v(t) is the derivative of u(t) with respect to
time. Therefore, we can find u(t) by integrating v(t) with 
respect to time.

Calculations: Since Eq. 10-6 tells us that

du � v dt,
we can write

(Answer)

where C� has been evaluated by noting that u � 2 rad at t � 0.

� 1
4 t5 � 2

3 t3 � 5t � 2,

� 1
4 t5 � 2

3 t3 � 5t � C�

u � � v dt � � (5
4 t4 � 2t2 � 5) dt

v � 5
4 t4 � 2t2 � 5

5 rad/s � 0 � 0 � C

Sample Problem 10.02 Angular velocity derived from angular acceleration

A child’s top is spun with angular acceleration

,

with t in seconds and a in radians per second-squared. At
t � 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position u � 2 rad.

(a) Obtain an expression for the angular velocity v(t) of the
top.That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration,which means that its angular velocity is changing.)

KEY IDEA

By definition, a(t) is the derivative of v(t) with respect to time.
Thus, we can find v(t) by integrating a(t) with respect to time.

Calculations: Equation 10-8 tells us

,

so .

From this we find

.v � �(5t3 � 4t) dt � 5
4t

4 � 4
2t

2 � C

� dv � �a dt

dv � a dt

a � 5t3 � 4t

Additional examples, video, and practice available at WileyPLUS
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hand rule would tell you that the angular velocity vector then points in the op-
posite direction.

It is not easy to get used to representing angular quantities as vectors. We in-
stinctively expect that something should be moving along the direction of a vec-
tor. That is not the case here. Instead, something (the rigid body) is rotating
around the direction of the vector. In the world of pure rotation, a vector defines
an axis of rotation, not a direction in which something moves. Nonetheless, the
vector also defines the motion. Furthermore, it obeys all the rules for vector
manipulation discussed in Chapter 3. The angular acceleration is another
vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such
situations, we need not consider vectors—we can represent angular velocity with
v and angular acceleration with a, and we can indicate direction with an implied
plus sign for counterclockwise or an explicit minus sign for clockwise.

Angular Displacements. Now for the caution: Angular displacements
(unless they are very small) cannot be treated as vectors. Why not? We can cer-
tainly give them both magnitude and direction, as we did for the angular veloc-
ity vector in Fig. 10-6. However, to be represented as a vector, a quantity must
also obey the rules of vector addition, one of which says that if you add two
vectors, the order in which you add them does not matter. Angular displace-
ments fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two
90� angular displacements, first in the order of Fig. 10-7a and then in the order
of Fig. 10-7b. Although the two angular displacements are identical, their order
is not, and the book ends up with different orientations. Here’s another exam-
ple. Hold your right arm downward, palm toward your thigh. Keeping your
wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizon-
tally until it points toward the right, and (3) then bring it down to your side.
Your palm faces forward. If you start over, but reverse the steps, which way
does your palm end up facing? From either example, we must conclude that
the addition of two angular displacements depends on their order and they
cannot be vectors.

a:

Figure 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector

, lying along the axis and pointing down, as shown. (c) We establish the direction of the
angular velocity vector as downward by using a right-hand rule. When the fingers of the
right hand curl around the record and point the way it is moving, the extended thumb
points in the direction of .v:

v:

z z z 

(a) (b) (c)

Axis Axis Axis 

ω 

Spindle

ω 

This right-hand rule
establishes the
direction of the
angular velocity
vector.

Figure 10-7 (a) From its initial position, at
the top, the book is given two successive
90� rotations, first about the (horizontal)
x axis and then about the (vertical) y axis.
(b) The book is given the same rotations,
but in the reverse order.
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Rotation with Constant Angular Acceleration
In pure translation, motion with a constant linear acceleration (for example, that
of a falling body) is an important special case. In Table 2-1, we displayed a series
of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important,
and a parallel set of equations holds for this case also. We shall not derive them
here, but simply write them from the corresponding linear equations, substituting
equivalent angular quantities for the linear ones.This is done in Table 10-1, which
lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear 
acceleration—the other equations in the Linear list can be derived from them.
Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular
acceleration, and the other equations in the Angular list can be derived from
them.To solve a simple problem involving constant angular acceleration, you can
usually use an equation from the Angular list (if you have the list). Choose
an equation for which the only unknown variable will be the variable requested
in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then
solve them as simultaneous equations whenever needed.

10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 

After reading this module, you should be able to . . .

10.14 For constant angular acceleration, apply the relation-
ships between angular position, angular displacement, 

Key Idea
● Constant angular acceleration (a � constant) is an important special case of rotational motion. The appropriate kinematic
equations are

v � v0 � at,

u � u0 � vt � 1
2 at2.

u � u0 � 1
2 (v0 � v)t,

v2 � v0
2 � 2a(u � u0),

u � u0 � v0t � 1
2at2,

Learning Objective

angular velocity, angular acceleration, and elapsed time 
(Table 10-1).

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular Equation
Number Equation Variable Equation Number

(2-11) v � v0 � at x � x0 u � u0 v � v0 � at (10-12)
(2-15) v v (10-13)
(2-16) t t (10-14)
(2-17) a a (10-15)
(2-18) v0 v0 (10-16)u � u0 � vt � 1

2at2x � x0 � vt � 1
2at2

u � u0 � 1
2(v0 � v)tx � x0 � 1

2(v0 � v)t

v2 � v0
2 � 2a(u � u0)v2 � v0

2 � 2a(x � x0)
u � u0 � v0t � 1

2at2x � x0 � v0 t � 1
2 at2

Checkpoint 2
In four situations, a rotating body has angular position u(t) given by (a) u � 3t � 4,
(b) u � �5t3 � 4t2 � 6, (c) u � 2/t2 � 4/t, and (d) u � 5t2 � 3.To which situations do
the angular equations of Table 10-1 apply?
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(We converted 5.0 rev to 10p rad to keep the units consis-
tent.) Solving this quadratic equation for t, we find

t � 32 s. (Answer)

Now notice something a bit strange. We first see the wheel
when it is rotating in the negative direction and through the
u � 0 orientation.Yet, we just found out that 32 s later it is at
the positive orientation of u � 5.0 rev. What happened in
that time interval so that it could be at a positive orientation?

(b) Describe the grindstone’s rotation between t � 0 and 
t � 32 s.

Description: The wheel is initially rotating in the negative
(clockwise) direction with angular velocity v0 � �4.6 rad/s,
but its angular acceleration a is positive. This initial opposi-
tion of the signs of angular velocity and angular accelera-
tion means that the wheel slows in its rotation in the nega-
tive direction, stops, and then reverses to rotate in the
positive direction. After the reference line comes back
through its initial orientation of u � 0, the wheel turns an
additional 5.0 rev by time t � 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for con-
stant angular acceleration, and again we need an equation
that contains only the desired unknown variable t. However,
now the equation must also contain the variable v, so that we
can set it to 0 and then solve for the corresponding time t. We
choose Eq. 10-12, which yields

(Answer)t �
v � v0

a
�

0 � (�4.6 rad/s)
0.35 rad/s2 � 13 s.

Sample Problem 10.03 Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceler-
ation a � 0.35 rad/s2. At time t � 0, it has an angular velocity
of v0 � �4.6 rad/s and a reference line on it is horizontal, at
the angular position u0 � 0.

(a) At what time after t � 0 is the reference line at the 
angular position u � 5.0 rev?

KEY IDEA

The angular acceleration is constant, so we can use the rota-
tion equations of Table 10-1.We choose Eq. 10-13,

,

because the only unknown variable it contains is the desired
time t.

Calculations: Substituting known values and setting u0 � 0
and u � 5.0 rev � 10p rad give us

.10p rad � (�4.6 rad/s)t � 1
2 (0.35 rad/s2)t2

u � u0 � v0t � 1
2 at2

Figure 10-8 A grindstone. At t � 0 the reference line (which we
imagine to be marked on the stone) is horizontal.

Axis

Reference
line

Zero angular
position

We measure rotation by using
this reference line.
Clockwise = negative
Counterclockwise = positive

rad/s, the angular displacement is u � u0 � 20.0 rev, and the
angular velocity at the end of that displacement is v � 2.00
rad/s. In addition to the angular acceleration a that we want,
both basic equations also contain time t, which we do not
necessarily want.

To eliminate the unknown t, we use Eq. 10-12 to write

which we then substitute into Eq. 10-13 to write

Solving for a, substituting known data, and converting
20 rev to 125.7 rad, we find

(Answer)� �0.0301 rad/s2.

a �
v2 � v0

2

2(u � u0)
�

(2.00 rad/s)2 � (3.40 rad/s)2

2(125.7 rad)

u � u0 � v0� v � v0

a � � 1
2 a� v � v0

a
 �

2

.

t �
v � v0

a
,

Sample Problem 10.04 Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating
cylinder found in amusement parks), you spot a passenger in
acute distress and decrease the angular velocity of the cylin-
der from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant angu-
lar acceleration. (The passenger is obviously more of a “trans-
lation person” than a “rotation person.”)

(a) What is the constant angular acceleration during this
decrease in angular speed?

KEY IDEA

Because the cylinder’s angular acceleration is constant, we
can relate it to the angular velocity and angular displacement
via the basic equations for constant angular acceleration
(Eqs. 10-12 and 10-13).

Calculations: Let’s first do a quick check to see if we can solve
the basic equations. The initial angular velocity is v0 � 3.40
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Relating the Linear and Angular Variables
In Module 4-5,we discussed uniform circular motion, in which a particle travels at con-
stant linear speed v along a circle and around an axis of rotation. When a rigid body,
such as a merry-go-round,rotates around an axis,each particle in the body moves in its
own circle around that axis. Since the body is rigid, all the particles make one revolu-
tion in the same amount of time;that is, they all have the same angular speed v.

However, the farther a particle is from the axis, the greater the circumference
of its circle is, and so the faster its linear speed v must be. You can notice this on a
merry-go-round. You turn with the same angular speed v regardless of your dis-
tance from the center, but your linear speed v increases noticeably if you move to
the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in
a rotating body to the angular variables u, v, and a for that body. The two sets of
variables are related by r, the perpendicular distance of the point from the
rotation axis. This perpendicular distance is the distance between the point and
the rotation axis, measured along a perpendicular to the axis. It is also the radius r
of the circle traveled by the point around the axis of rotation.

(b) How much time did the speed decrease take?

Calculation: Now that we know a, we can use Eq. 10-12 to
solve for t: (Answer)� 46.5 s.

t �
v � v0

a
�

2.00 rad/s � 3.40 rad/s
�0.0301 rad/s2

10-3 RELATING THE LINEAR AND ANGULAR VARIABLES

After reading this module, you should be able to . . .

10.15 For a rigid body rotating about a fixed axis, relate the angular
variables of the body (angular position, angular velocity, and an-
gular acceleration) and the linear variables of a particle on the
body (position, velocity, and acceleration) at any given radius.

10.16 Distinguish between tangential acceleration and radial
acceleration, and draw a vector for each in a sketch of a
particle on a body rotating about an axis, for both an in-
crease in angular speed and a decrease.

● A point in a rigid rotating body, at a perpendicular distance
r from the rotation axis, moves in a circle with radius r. If the
body rotates through an angle u, the point moves along an
arc with length s given by

s � ur (radian measure),

where u is in radians.

● The linear velocity of the point is tangent to the circle; the
point’s linear speed v is given by

v � vr (radian measure),

where v is the angular speed (in radians per second) of the body,
and thus also the point.

v:

● The linear acceleration of the point has both tangential
and radial components. The tangential component is

at � ar (radian measure),

where a is the magnitude of the angular acceleration (in radi-
ans per second-squared) of the body. The radial component
of is

(radian measure).

● If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure).T �
2pr

v
�

2p

v

ar �
v2

r
� v2r

a:

a:

Learning Objectives

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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The Position
If a reference line on a rigid body rotates through an angle u, a point within the
body at a position r from the rotation axis moves a distance s along a circular arc,
where s is given by Eq. 10-1:

s � ur (radian measure). (10-17)

This is the first of our linear–angular relations. Caution: The angle u here must be
measured in radians because Eq. 10-17 is itself the definition of angular measure
in radians.

The Speed
Differentiating Eq. 10-17 with respect to time—with r held constant—leads to

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the
point in question, and du/dt is the angular speed v of the rotating body. So

v � vr (radian measure). (10-18)

Caution: The angular speed v must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the

same angular speed v, points with greater radius r have greater linear speed v.
Figure 10-9a reminds us that the linear velocity is always tangent to the circular
path of the point in question.

If the angular speed v of the rigid body is constant, then Eq. 10-18 tells
us that the linear speed v of any point within it is also constant. Thus, each point
within the body undergoes uniform circular motion. The period of revolution T
for the motion of each point and for the rigid body itself is given by Eq. 4-35:

. (10-19)

This equation tells us that the time for one revolution is the distance 2pr traveled
in one revolution divided by the speed at which that distance is traveled.
Substituting for v from Eq. 10-18 and canceling r, we find also that

(radian measure). (10-20)

This equivalent equation says that the time for one revolution is the angular dis-
tance 2p rad traveled in one revolution divided by the angular speed (or rate) at
which that angle is traveled.

The Acceleration
Differentiating Eq. 10-18 with respect to time—again with r held constant—
leads to

(10-21)

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the
part of the linear acceleration that is responsible for changes in the magnitude v
of the linear velocity . Like , that part of the linear acceleration is tangent to
the path of the point in question. We call it the tangential component at of the lin-
ear acceleration of the point, and we write

at � ar (radian measure), (10-22)

v:v:

dv
dt

�
dv

dt
r.

T �
2p

v

T �
2pr

v

ds
dt

�
du

dt
r.

Figure 10-9 The rotating rigid body of Fig. 10-2,
shown in cross section viewed from above.
Every point of the body (such as P) moves
in a circle around the rotation axis. (a) The
linear velocity of every point is tangent to
the circle in which the point moves. (b) The
linear acceleration of the point has (in
general) two components: tangential at and
radial ar.

a:

v:

x

y

r

Rotation
axis

P

Circle
traveled by P

(a)

v

The velocity vector is
always tangent to this
circle around the
rotation axis.

x

y

ar

P

(b)

at

Rotation
axis

The acceleration always
has a radial (centripetal)
component and may have
a tangential component.
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where a � dv/dt. Caution: The angular acceleration a in Eq. 10-22 must be
expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path
has a radial component of linear acceleration, ar � v2/r (directed radially inward),
that is responsible for changes in the direction of the linear velocity . By substi-
tuting for v from Eq. 10-18, we can write this component as

(radian measure). (10-23)

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid
body has, in general, two components. The radially inward component ar (given
by Eq. 10-23) is present whenever the angular velocity of the body is not zero.
The tangential component at (given by Eq. 10-22) is present whenever the angu-
lar acceleration is not zero.

ar �
v2

r
� v2r

v:

Checkpoint 3
A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this
system (merry-go-round � cockroach) is constant, does the cockroach have (a) radial
acceleration and (b) tangential acceleration? If v is decreasing, does the cockroach
have (c) radial acceleration and (d) tangential acceleration?

and radial accelerations are the (perpendicular) compo-
nents of the (full) acceleration .

Calculations: Let’s go through the steps. We first find the
angular velocity by taking the time derivative of the given
angular position function and then substituting the given
time of t � 2.20 s:

v � (ct3) � 3ct2 (10-25)

� 3(6.39 � 10�2 rad/s3)(2.20 s)2

� 0.928 rad/s. (Answer)

From Eq. 10-18, the linear speed just then is

v � vr � 3ct2r (10-26)
� 3(6.39 � 10�2 rad/s3)(2.20 s)2(33.1 m)

� 30.7 m/s. (Answer)

du

dt
�

d
dt

a:

Sample Problem 10.05 Designing The Giant Ring, a large-scale amusement park ride

We are given the job of designing a large horizontal ring
that will rotate around a vertical axis and that will have a ra-
dius of r � 33.1 m (matching that of Beijing’s The Great
Observation Wheel, the largest Ferris wheel in the world).
Passengers will enter through a door in the outer wall of the
ring and then stand next to that wall (Fig. 10-10a).We decide
that for the time interval t � 0 to t � 2.30 s, the angular posi-
tion u(t) of a reference line on the ring will be given by

u � ct3, (10-24)

with c � 6.39 � 10�2 rad/s3. After t � 2.30 s, the angular
speed will be held constant until the end of the ride. Once
the ring begins to rotate, the floor of the ring will drop away
from the riders but the riders will not fall—indeed, they feel
as though they are pinned to the wall. For the time t � 2.20 s,
let’s determine a rider’s angular speed v, linear speed v, an-
gular acceleration a, tangential acceleration at, radial accel-
eration ar, and acceleration .

KEY IDEAS

(1) The angular speed v is given by Eq. 10-6 (v � du/dt).
(2) The linear speed v (along the circular path) is related to
the angular speed (around the rotation axis) by Eq. 10-18 
(v � vr). (3) The angular acceleration a is given by Eq. 10-8
(a � dv/dt). (4) The tangential acceleration at (along the cir-
cular path) is related to the angular acceleration (around
the rotation axis) by Eq. 10-22 (at � ar). (5) The radial accel-
eration ar is given Eq. 10-23 (ar � v2r). (6) The tangential

a:

u

a

ar

at

(b)(a)

Figure 10-10 (a) Overhead view of
a passenger ready to ride The
Giant Ring. (b) The radial and
tangential acceleration compo-
nents of the (full) acceleration.
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Additional examples, video, and practice available at WileyPLUS

The radial and tangential accelerations are perpendicu-
lar to each other and form the components of the rider’s 
acceleration (Fig. 10-10b). The magnitude of is given by

a � (10-29)

39.9 m/s2, (Answer)

or 4.1g (which is really exciting!). All these values are 
acceptable.

To find the orientation of , we can calculate the angle u
shown in Fig. 10-10b:

tan u �

However, instead of substituting our numerical results, let’s
use the algebraic results from Eqs. 10-27 and 10-28:

u � tan�1 . (10-30)

The big advantage of solving for the angle algebraically is that
we can then see that the angle (1) does not depend on the
ring’s radius and (2) decreases as t goes from 0 to 2.20 s. That
is, the acceleration vector swings toward being radially in-
ward because the radial acceleration (which depends on t4)
quickly dominates over the tangential acceleration (which
depends on only t).At our given time t � 2.20 s, we have

u �. (Answer)� tan�1 2
3(6.39 � 10�2 rad/s3)(2.20 s)3 � 44.4

a:

� 6ctr
9c2t4r � � tan�1� 2

3ct3 �

at

ar
.

a:

�

� 2(28.49 m/s2)2 � (27.91 m/s2)2

2a2
r � a2

t

a:a:

Although this is fast (111 km/h or 68.7 mi/h), such speeds are
common in amusement parks and not alarming because (as
mentioned in Chapter 2) your body reacts to accelerations but
not to velocities. (It is an accelerometer, not a speedometer.)
From Eq. 10-26 we see that the linear speed is increasing as the
square of the time (but this increase will cut off at t � 2.30 s).

Next, let’s tackle the angular acceleration by taking the
time derivative of Eq. 10-25:

a � (3ct2) � 6ct

� 6(6.39 � 10�2 rad/s3)(2.20 s) � 0.843 rad/s2. (Answer)

The tangential acceleration then follows from Eq. 10-22:

at � ar � 6ctr (10-27)

� 6(6.39 � 10�2 rad/s3)(2.20 s)(33.1 m)

� 27.91 m/s2 27.9 m/s2, (Answer)

or 2.8g (which is reasonable and a bit exciting). Equation 
10-27 tells us that the tangential acceleration is increasing
with time (but it will cut off at t � 2.30 s). From Eq. 10-23,
we write the radial acceleration as

ar � v2r.

Substituting from Eq. 10-25 leads us to

ar � (3ct2)2r � 9c2t4r (10-28)

� 9(6.39 � 10�2 rad/s3)2(2.20 s)4(33.1 m)

� 28.49 m/s2 28.5 m/s2, (Answer)

or 2.9g (which is also reasonable and a bit exciting).

�

�

dv

dt
�

d
dt

10-4 KINETIC ENERGY OF ROTATION

After reading this module, you should be able to . . .

10.17 Find the rotational inertia of a particle about a point.
10.18 Find the total rotational inertia of many particles moving

around the same fixed axis. 

10.19 Calculate the rotational kinetic energy of a 
body in terms of its rotational inertia and its angular 
speed.

● The kinetic energy K of a rigid body rotating about a fixed
axis is given by

(radian measure),K � 1
2Iv2

in which I is the rotational inertia of the body, defined as

for a system of discrete particles.

I � � miri
2

Learning Objectives

Key Idea

Kinetic Energy of Rotation
The rapidly rotating blade of a table saw certainly has kinetic energy due to that
rotation. How can we express the energy? We cannot apply the familiar formula

to the saw as a whole because that would give us the kinetic energy
only of the saw’s center of mass, which is zero.
K � 1

2 mv2
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Figure 10-11 A long rod is much easier to
rotate about (a) its central (longitudinal)
axis than about (b) an axis through its 
center and perpendicular to its length. The
reason for the difference is that the mass
is distributed closer to the rotation axis in
(a) than in (b).

Rotation
axis

(a)

(b)

Rod is easy to rotate
this way.

Harder this way.

Instead, we shall treat the table saw (and any other rotating rigid body) as a
collection of particles with different speeds. We can then add up the kinetic
energies of all the particles to find the kinetic energy of the body as a whole.
In this way we obtain, for the kinetic energy of a rotating body,

(10-31)

in which mi is the mass of the ith particle and vi is its speed.The sum is taken over
all the particles in the body.

The problem with Eq. 10-31 is that vi is not the same for all particles.We solve
this problem by substituting for v from Eq. 10-18 (v � vr), so that we have

(10-32)

in which v is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how

the mass of the rotating body is distributed about its axis of rotation. We call
that quantity the rotational inertia (or moment of inertia) I of the body with
respect to the axis of rotation. It is a constant for a particular rigid body and
a particular rotation axis. (Caution: That axis must always be specified if the
value of I is to be meaningful.)

We may now write

(rotational inertia) (10-33)

and substitute into Eq. 10-32, obtaining

(radian measure) (10-34)

as the expression we seek. Because we have used the relation v � vr in deriving
Eq. 10-34, v must be expressed in radian measure. The SI unit for I is the
kilogram–square meter (kg 
m2).

The Plan. If we have a few particles and a specified rotation axis, we find mr2

for each particle and then add the results as in Eq. 10-33 to get the total rotational in-
ertia I. If we want the total rotational kinetic energy, we can then substitute that I
into Eq. 10-34.That is the plan for a few particles, but suppose we have a huge num-
ber of particles such as in a rod. In the next module we shall see how to handle such
continuous bodies and do the calculation in only a few minutes.

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation,
is the angular equivalent of the formula , which gives the kinetic energyK � 1

2 Mvcom
2

K � 1
2 I�2

I � � mir i
2

K � � 1
2 mi(vri)2 � 1

2 �� miri
2�v2,

� � 1
2mivi

2,

K � 1
2 m1v2

1 � 1
2 m2v2

2 � 1
2 m3v2

3 � 
 
 


of a rigid body in pure translation. In both formulas there is a factor of . Where
mass M appears in one equation, I (which involves both mass and its distribution)
appears in the other. Finally, each equation contains as a factor the square of a
speed—translational or rotational as appropriate. The kinetic energies of transla-
tion and of rotation are not different kinds of energy. They are both kinetic energy,
expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves
not only its mass but also how that mass is distributed. Here is an example that
you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber,
or something similar), first around its central (longitudinal) axis (Fig. 10-11a)
and then around an axis perpendicular to the rod and through the center
(Fig. 10-11b). Both rotations involve the very same mass, but the first rotation is
much easier than the second. The reason is that the mass is distributed much
closer to the rotation axis in the first rotation. As a result, the rotational inertia
of the rod is much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller
rotational inertia means easier rotation.

1
2
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Checkpoint 4
The figure shows three small spheres that rotate
about a vertical axis.The perpendicular distance 
between the axis and the center of each sphere is
given. Rank the three spheres according to their 
rotational inertia about that axis, greatest first.

Rotation
axis

4 kg 
3 m 

2 m 

1 m 

9 kg 

36 kg 

10-5 CALCULATING THE ROTATIONAL INERTIA

After reading this module, you should be able to . . .

10.20 Determine the rotational inertia of a body if it is given in
Table 10-2.

10.21 Calculate the rotational inertia of a body by integration
over the mass elements of the body.

10.22 Apply the parallel-axis theorem for a rotation axis that is
displaced from a parallel axis through the center of mass of
a body.

● I is the rotational inertia of the body, defined as

for a system of discrete particles and defined as

for a body with continuously distributed mass. The r and ri in
these expressions represent the perpendicular distance from
the axis of rotation to each mass element in the body, and the
integration is carried out over the entire body so as to include
every mass element.

I � � r 2 dm

I � � miri
2

● The parallel-axis theorem relates the rotational inertia I of a
body about any axis to that of the same body about a parallel
axis through the center of mass:

I � Icom � Mh2.

Here h is the perpendicular distance between the two axes,
and Icom is the rotational inertia of the body about the axis
through the com. We can describe h as being the distance
the actual rotation axis has been shifted from the rotation axis
through the com.

Learning Objectives

Key Ideas

Calculating the Rotational Inertia
If a rigid body consists of a few particles, we can calculate its rotational inertia
about a given rotation axis with Eq. 10-33 ; that is, we can find the
product mr 2 for each particle and then sum the products. (Recall that r is the per-
pendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like
a Frisbee), using Eq. 10-33 would require a computer.Thus, instead, we replace the
sum in Eq. 10-33 with an integral and define the rotational inertia of the body as

(rotational inertia, continuous body). (10-35)

Table 10-2 gives the results of such integration for nine common body shapes and
the indicated axes of rotation.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a
given axis. In principle, we can always find I with the integration of Eq. 10-35.
However, there is a neat shortcut if we happen to already know the rotational in-
ertia Icom of the body about a parallel axis that extends through the body’s center
of mass. Let h be the perpendicular distance between the given axis and the axis

I � � r 2 dm

(I � � miri
2)
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Table 10-2 Some Rotational Inertias

Axis

Hoop about 
central axis 

Axis

Annular cylinder 
(or ring) about

central axis 

R

I = MR 2 (b)(a) I = M(R 1
2 + R 2

2)

R 2

R 1

Thin rod about 
axis through center

perpendicular to 
length

(e)
I = ML 2

L

Axis

AxisAxis

Hoop about any
diameter

Slab about
perpendicular
axis through 

center

(i)(h)
I = MR 2 I =    M(a 2 + b 2)

R

b
a

Axis

Solid cylinder 
(or disk) about 

central axis 

(c)
I = MR 2

R
L

Axis

Solid cylinder 
(or disk) about 

central diameter 

(d)
I = MR 2 + ML 2

R
L

Axis

Thin
spherical shell 

about any
diameter

(g)
I = MR 2

2R

Solid sphere 
about any
diameter

(f)
I = MR 2

2R

Axis

1__
2 1__

2

2__
5

1__
4

2__
3

1__
2

1__
12

1__
12

1__
12

Figure 10-12 A rigid body in cross section,
with its center of mass at O. The parallel-
axis theorem (Eq. 10-36) relates the 
rotational inertia of the body about an axis
through O to that about a parallel axis
through a point such as P, a distance h
from the body’s center of mass.

dm

r

P

h

a
b

x – a 

y – b 

com
O

Rotation axis 
through

center of mass 

Rotation axis 
through P

y

x

We need to relate the rotational inertia 
around the axis at P to that around the 
axis at the com.

through the center of mass (remember these two axes must be parallel).Then the
rotational inertia I about the given axis is

I � Icom � Mh2 (parallel-axis theorem). (10-36)

Think of the distance h as being the distance we have shifted the rotation axis
from being through the com.This equation is known as the parallel-axis theorem.
We shall now prove it.

Proof of the Parallel-Axis Theorem
Let O be the center of mass of the arbitrarily shaped body shown in cross section
in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O
perpendicular to the plane of the figure, and another axis through point P paral-
lel to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rota-
tional inertia of the body about the axis through P is then, from Eq. 10-35,

which we can rearrange as

(10-37)

From the definition of the center of mass (Eq. 9-9), the middle two integrals of
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)

I � � (x2 � y2) dm � 2a � x dm � 2b � y dm � � (a2 � b2) dm.

I � � r 2 dm � � [(x � a)2 � ( y � b)2] dm,
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and thus must each be zero. Because x2 � y2 is equal to R2, where R is the dis-
tance from O to dm, the first integral is simply Icom, the rotational inertia of the
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that
the last term in Eq. 10-37 is Mh2, where M is the body’s total mass. Thus,
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

Checkpoint 5
The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the object.
Rank the choices according to the rotational inertia
of the object about the axis, greatest first.

(1) (2) (3) (4)

left and L for the particle on the right. Now Eq. 10-33
gives us

I � m(0)2 � mL2 � mL2. (Answer)

Second technique: Because we already know Icom about an
axis through the center of mass and because the axis here is
parallel to that “com axis,” we can apply the parallel-axis
theorem (Eq. 10-36).We find

(Answer)� mL2.

I � Icom � Mh2 � 1
2 mL2 � (2m)(1

2 L)2

Sample Problem 10.06 Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia Icom about an axis through the
center of mass,perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find
the body’s rotational inertia Icom by using Eq. 10-33 rather
than by integration. That is, we find the rotational inertia of
each particle and then just add the results.

Calculations: For the two particles, each at perpendicular
distance from the rotation axis, we have

(Answer)

(b) What is the rotational inertia I of the body about an axis
through the left end of the rod and parallel to the first axis
(Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find I using
either of two techniques. The first is similar to the one used
in part (a). The other, more powerful one is to apply the 
parallel-axis theorem.

First technique: We calculate I as in part (a), except here
the perpendicular distance ri is zero for the particle on the

� 1
2 mL2.

I � � miri
2 � (m)(1

2 L)2 � (m)(1
2 L)2

1
2 L

Additional examples, video, and practice available at WileyPLUS

m m

(a)

LL

com

Rotation axis
through

center of mass 

m m

(b)

L

com

Rotation axis through 
end of rod 

1__
2

1__
2

Here the rotation axis is through the com.

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem.

Figure 10-13 A rigid body consisting of two particles of mass m
joined by a rod of negligible mass.
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Sample Problem 10.07 Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length
L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

KEY IDEAS

(1) The rod consists of a huge number of particles at a great
many different distances from the rotation axis. We certainly
don’t want to sum their rotational inertias individually. So, we
first write a general expression for the rotational inertia of a
mass element dm at distance r from the rotation axis: r2 dm.
(2) Then we sum all such rotational inertias by integrating the
expression (rather than adding them up one by one). From
Eq. 10-35, we write

(10-38)

(3) Because the rod is uniform and the rotation axis is at the
center, we are actually calculating the rotational inertia Icom

about the center of mass.

Calculations: We want to integrate with respect to coordinate
x (not mass m as indicated in the integral), so we must relate
the mass dm of an element of the rod to its length dx along the
rod. (Such an element is shown in Fig. 10-14.) Because the rod
is uniform, the ratio of mass to length is the same for all the el-
ements and for the rod as a whole.Thus, we can write

or dm �
M
L

dx.

element’s mass dm
element’s length dx

�
rod’s mass M
rod’s length L

I � � r 2 dm.

Figure 10-14 A uniform rod of length L
and mass M. An element of mass dm
and length dx is represented.

A

We can now substitute this result for dm and x for r in
Eq. 10-38.Then we integrate from end to end of the rod (from
x � �L/2 to x � L/2) to include all the elements.We find

(Answer)

(b) What is the rod’s rotational inertia I about a new rotation
axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find I by shifting the origin of the x axis to the left end
of the rod and then integrating from to . However,
here we shall use a more powerful (and easier) technique by
applying the parallel-axis theorem (Eq. 10-36), in which we
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that it
is parallel to the axis through the center of mass, then we
can use the parallel-axis theorem (Eq. 10-36). We know
from part (a) that Icom is . From Fig. 10-14, the perpen-
dicular distance h between the new rotation axis and the
center of mass is . Equation 10-36 then gives us

(Answer)

Actually, this result holds for any axis through the left
or right end that is perpendicular to the rod.

� 1
3 ML2.

I � Icom � Mh2 � 1
12 ML2 � (M)(1

2 L)2

1
2 L

1
12 ML2

x � Lx � 0

� 1
12 ML2.

�
M
3L 	x3


�L/2

�L/2

�
M
3L 	� L

2 �
3

� ��
L
2 �

3




I � �x��L/2

x��L/2
x2 � M

L � dx

Additional examples, video, and practice available at WileyPLUS

x

Rotation
axis

L__
2

L__
2

com M

We want the 
rotational inertia.

x

Rotation
axis

x dm

dx

First, pick any tiny element
and write its rotational
inertia as x2 dm.

x

x = −

Rotation
axis

Leftmost Rightmost

L__
2

x = L__
2

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.
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KEY IDEA

The released energy was equal to the rotational kinetic en-
ergy K of the rotor just as it reached the angular speed of
14 000 rev/min.

Calculations: We can find K with Eq. 10-34 , but
first we need an expression for the rotational inertia I. Because
the rotor was a disk that rotated like a merry-go-round, I is
given  in Table 10-2c .Thus,

The angular speed of the rotor was

Then, with Eq. 10-34, we find the (huge) energy release:

(Answer)� 2.1 � 107 J.

K � 1
2 Iv2 � 1

2(19.64 kg 
m2)(1.466 � 103 rad/s)2

� 1.466 � 103 rad/s.

v � (14 000 rev/min)(2p rad/rev)� 1 min
60 s �

I � 1
2 MR2 � 1

2 (272 kg)(0.38 m)2 � 19.64 kg 
m2.

(I � 1
2 MR2)

(K � 1
2 Iv2)

Sample Problem 10.08 Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, high-
speed rotation are first examined for the possibility of fail-
ure in a spin test system. In this system, a component is spun
up (brought up to high speed) while inside a cylindrical
arrangement of lead bricks and containment liner, all within
a steel shell that is closed by a lid clamped into place. If the
rotation causes the component to shatter, the soft lead
bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin
testing a sample of a solid steel rotor (a disk) of mass M �
272 kg and radius R � 38.0 cm. When the sample reached
an angular speed v of 14 000 rev/min, the test engineers
heard a dull thump from the test system, which was
located one floor down and one room over from them.
Investigating, they found that lead bricks had been thrown
out in the hallway leading to the test room, a door to the
room had been hurled into the adjacent parking lot, one
lead brick had shot from the test site through the wall of a
neighbor’s kitchen, the structural beams of the test build-
ing had been damaged, the concrete floor beneath the
spin chamber had been shoved downward by about 0.5
cm, and the 900 kg lid had been blown upward through
the ceiling and had then crashed back onto the test equip-
ment (Fig. 10-15). The exploding pieces had not pene-
trated the room of the test engineers only by luck.

How much energy was released in the explosion of the
rotor?

Figure 10-15 Some of the
destruction caused by
the explosion of a rap-
idly rotating steel disk.

C
ou

rt
es

y 
Te

st
 D

ev
ic

es
, I

nc
.

10-6 TORQUE

After reading this module, you should be able to . . .

10.23 Identify that a torque on a body involves a force and a
position vector, which extends from a rotation axis to the
point where the force is applied.

10.24 Calculate the torque by using (a) the angle between
the position vector and the force vector, (b) the line of ac-
tion and the moment arm of the force, and (c) the force
component perpendicular to the position vector.

10.25 Identify that a rotation axis must always be specified to
calculate a torque.

10.26 Identify that a torque is assigned a positive or negative
sign depending on the direction it tends to make the body 
rotate about a specified rotation axis: “clocks are negative.”

10.27 When more than one torque acts on a body about a 
rotation axis, calculate the net torque.

Learning Objectives

● Torque is a turning or twisting action on a body about a 
rotation axis due to a force . If is exerted at a point given
by the position vector relative to the axis, then the magni-
tude of the torque is

where Ft is the component of perpendicular to and 
f is the angle between and . The quantity is the r�F

:
r:

r:F
:

t � rFt � r�F � rF sin f,

r:
F
:

F
:

perpendicular distance between the rotation axis and
an extended line running through the vector. This line
is called the line of action of , and is called the
moment arm of . Similarly, r is the moment arm of Ft.

● The SI unit of torque is the newton-meter (N 
m). A 
torque t is positive if it tends to rotate a body at rest 
counterclockwise and negative if it tends to rotate the
body clockwise.

F
:

r�F
:

F
:

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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Checkpoint 6
The figure shows an overhead view of a meter stick that can pivot about the dot at the position
marked 20 (for 20 cm).All five forces on the stick are horizontal and have the same magnitude.
Rank the forces according to the magnitude of the torque they produce, greatest first.

0 20 40 
Pivot point

100

F1
F2

F3

F4

F5

Figure 10-16 (a) A force acts on a rigid
body, with a rotation axis perpendicular to
the page. The torque can be found with
(a) angle f, (b) tangential force compo-
nent Ft, or (c) moment arm .r�

F
:

(a)

(b)

(c)

O

P

φ FrFt

Rotation
axis

F

r

O

P

φ

Rotation
axis

φ
Line of
action of F

r
Moment arm
of F

F

r

O

P

φ

Rotation
axis

F

r

The torque due to this force
causes rotation around this axis 
(which extends out toward you).

You calculate the same torque by 
using this moment arm distance 
and the full force magnitude.

But actually only the tangential
component of the force causes
the rotation.

magnitude Ft � F sin f.This component does cause rotation.
Calculating Torques. The ability of to rotate the body depends not only

on the magnitude of its tangential component Ft, but also on just how far from O
the force is applied. To include both these factors, we define a quantity called
torque t as the product of the two factors and write it as

t � (r)(F sin f). (10-39)

Two equivalent ways of computing the torque are

t � (r)(F sin f) � rFt (10-40)

and (10-41)

where is the perpendicular distance between the rotation axis at O and an extendedr�

t � (r sin f)(F) � r�F,

F
:

Torque
A doorknob is located as far as possible from the door’s hinge line for a good rea-
son. If you want to open a heavy door, you must certainly apply a force, but that
is not enough.Where you apply that force and in what direction you push are also
important. If you apply your force nearer to the hinge line than the knob, or at
any angle other than 90� to the plane of the door, you must use a greater force
than if you apply the force at the knob and perpendicular to the door’s plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an
axis passing through O and perpendicular to the cross section. A force is
applied at point P, whose position relative to O is defined by a position vector .
The directions of vectors and make an angle f with each other. (For simplic-
ity, we consider only forces that have no component parallel to the rotation axis;
thus, is in the plane of the page.)

To determine how results in a rotation of the body around the rotation
axis, we resolve into two components (Fig. 10-16b). One component, called the
radial component Fr, points along . This component does not cause rotation,
because it acts along a line that extends through O. (If you pull on a door par-
allel to the plane of the door, you do not rotate the door.) The other compo-
nent of , called the tangential component Ft, is perpendicular to and hasr:F

:

r:
F
:

F
:

F
:

r:F
:

r:
F
:

line running through the vector (Fig. 10-16c). This extended line is called the line
of action of , and is called the moment arm of . Figure 10-16b shows that we
can describe r, the magnitude of ,as being the moment arm of the force component Ft.

Torque, which comes from the Latin word meaning “to twist,” may be loosely
identified as the turning or twisting action of the force . When you apply a force
to an object—such as a screwdriver or torque wrench—with the purpose of turn-
ing that object, you are applying a torque. The SI unit of torque is the newton-
meter (N 
m). Caution: The newton-meter is also the unit of work. Torque and
work, however, are quite different quantities and must not be confused. Work is
often expressed in joules (1 J � 1 N 
m), but torque never is.

Clocks Are Negative. In Chapter 11 we shall use vector notation for torques,
but here, with rotation around a single axis, we use only an algebraic sign. If a
torque would cause counterclockwise rotation, it is positive. If it would cause
clockwise rotation, it is negative. (The phrase “clocks are negative” from Module
10-1 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for
forces:When several torques act on a body, the net torque (or resultant torque) is
the sum of the individual torques.The symbol for net torque is tnet.

F
:

r:
F
:

r�F
:

F
:
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10-7 NEWTON’S SECOND LAW FOR ROTATION

After reading this module, you should be able to . . .

10.28 Apply Newton’s second law for rotation to relate the
net torque on a body to the body’s rotational inertia and 

rotational acceleration, all calculated relative to a specified 
rotation axis.

● The rotational analog of Newton’s second law is
tnet � Ia,

where tnet is the net torque acting on a particle or rigid body, 

I is the rotational inertia of the particle or body about the
rotation axis, and a is the resulting angular acceleration about
that axis.

Learning Objective

Key Idea

Newton’s Second Law for Rotation
A torque can cause rotation of a rigid body, as when you use a torque to rotate
a door. Here we want to relate the net torque tnet on a rigid body to the angular
acceleration a that torque causes about a rotation axis. We do so by analogy with
Newton’s second law (Fnet � ma) for the acceleration a of a body of mass m due
to a net force Fnet along a coordinate axis.We replace Fnet with tnet, m with I, and a
with a in radian measure, writing

tnet � Ia (Newton’s second law for rotation). (10-42)

Proof of Equation 10-42
We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17.
The rigid body there consists of a particle of mass m on one end of a massless rod
of length r. The rod can move only by rotating about its other end, around a rota-
tion axis (an axle) that is perpendicular to the plane of the page.Thus, the particle
can move only in a circular path that has the rotation axis at its center.

A force acts on the particle. However, because the particle can move
only along the circular path, only the tangential component Ft of the force (the
component that is tangent to the circular path) can accelerate the particle along
the path. We can relate Ft to the particle’s tangential acceleration at along the
path with Newton’s second law, writing

Ft � mat.

The torque acting on the particle is, from Eq. 10-40,

t � Ftr � matr.

From Eq. 10-22 (at � ar) we can write this as

t � m(ar)r � (mr 2)a. (10-43)

The quantity in parentheses on the right is the rotational inertia of the particle
about the rotation axis (see Eq. 10-33, but here we have only a single particle).
Thus, using I for the rotational inertia, Eq. 10-43 reduces to

t � Ia (radian measure). (10-44)

If more than one force is applied to the particle, Eq. 10-44 becomes

tnet � Ia (radian measure), (10-45)

which we set out to prove. We can extend this equation to any rigid body rotating
about a fixed axis, because any such body can always be analyzed as an assembly
of single particles.

F
:

Figure 10-17 A simple rigid body, free to
rotate about an axis through O, consists of
a particle of mass m fastened to the end of
a rod of length r and negligible mass. An
applied force causes the body to rotate.F

:

O
x

y

Rod

θ 

Rotation axis 

r

m
Fr

Ft

φ 

F

The torque due to the tangential
component of the force causes
an angular acceleration around
the rotation axis.
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Additional examples, video, and practice available at WileyPLUS

KEY IDEA 

Because the moment arm for is no longer zero, the torqueF
:

g

Checkpoint 7
The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is
to the left of the stick’s midpoint.Two horizontal forces, and , are applied to the stick. Only is
shown. Force is perpendicular to the stick and is applied at the right end. If the stick is not to turn,
(a) what should be the direction of , and (b) should F2 be greater than, less than, or equal to F1?F

:

2

F
:

2

F
:

1F
:

2F
:

1

F1

Pivot point 

Sample Problem 10.09 Using Newton’s second law for rotation in a basic judo hip throw

To throw an 80 kg opponent with a basic judo hip throw, you
intend to pull his uniform with a force and a moment arm
d1 � 0.30 m from a pivot point (rotation axis) on your right
hip (Fig. 10-18). You wish to rotate him about the pivot
point with an angular acceleration a of �6.0 rad/s2—that is,
with an angular acceleration that is clockwise in the figure.
Assume that his rotational inertia I relative to the pivot
point is 15 kg
m2.

(a) What must the magnitude of be if, before you throw
him, you bend your opponent forward to bring his center of
mass to your hip (Fig. 10-18a)?

KEY IDEA 

We can relate your pull on your opponent to the given an-
gular acceleration a via Newton’s second law for rotation
(tnet � Ia).

Calculations: As his feet leave the floor, we can assume that
only three forces act on him: your pull , a force on him
from you at the pivot point (this force is not indicated in Fig.
10-18), and the gravitational force .To use tnet � Ia, we need
the corresponding three torques,each about the pivot point.

From Eq. 10-41 (t � F), the torque due to your pull F
:

r�

F
:

g

N
:

F
:

F
:

F
:

F
:

Figure 10-18 A judo hip throw (a) correctly executed and (b) incor-
rectly executed.

Opponent's
 center of

mass

Moment arm d1
of your pull 

Pivot
on hip 

Moment arm d2
of gravitational 

force on 
opponent

Moment
arm d1

of your pull

FgFg

(a) (b)

F
F

is equal to � F, where is the moment arm and the
sign indicates the clockwise rotation this torque tends to
cause. The torque due to is zero, because acts at theN

:
N
:

r�d1d1

pivot point and thus has moment arm � 0.
To evaluate the torque due to , we can assume that 

acts at your opponent’s center of mass. With the center of
mass at the pivot point, has moment arm � 0 and thusr�F

:
g

F
:

gF
:

g

r�

ponent is due to your pull , and we can write tnet � Ia as

�d1F � Ia.
We then find

� 300 N. (Answer)

(b) What must the magnitude of be if your opponent 
remains upright before you throw him, so that has a mo-
ment arm d2 � 0.12 m (Fig. 10-18b)?

F
:

g

F
:

F �
�Ia

d1
�

�(15 kg 
m2)(�6.0 rad/s2)
0.30 m

F
:

the torque due to is zero. So, the only torque on your op-F
:

g

due to is now equal to d2mg and is positive because the
torque attempts counterclockwise rotation.

Calculations: Now we write tnet � Ia as

�d1F � d2mg � Ia,
which gives

From (a), we know that the first term on the right is equal to
300 N. Substituting this and the given data, we have

� 613.6 N 610 N. (Answer)

The results indicate that you will have to pull much harder if
you do not initially bend your opponent to bring his center
of mass to your hip. A good judo fighter knows this lesson
from physics. Indeed, physics is the basis of most of the mar-
tial arts, figured out after countless hours of trial and error
over the centuries.

�

F � 300 N �
(0.12 m)(80 kg)(9.8 m/s2)

0.30 m

F � �
Ia

d1
�

d2mg
d1

.

F
:

g
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Sample Problem 10.10 Newton’s second law, rotation, torque, disk

Figure 10-19a shows a uniform disk, with mass M � 2.5 kg
and radius R � 20 cm, mounted on a fixed horizontal axle.
A block with mass m � 1.2 kg hangs from a massless cord that
is wrapped around the rim of the disk. Find the acceleration of
the falling block, the angular acceleration of the disk, and the
tension in the cord.The cord does not slip, and there is no fric-
tion at the axle.

KEY IDEAS 

(1) Taking the block as a system, we can relate its accelera-
tion a to the forces acting on it with Newton’s second law
( ). (2) Taking the disk as a system, we can relate
its angular acceleration a to the torque acting on it with
Newton’s second law for rotation (tnet � Ia). (3) To combine
the motions of block and disk, we use the fact that the linear
acceleration a of the block and the (tangential) linear accel-
eration of the disk rim are equal. (To avoid confusion
about signs, let’s work with acceleration magnitudes and 
explicit algebraic signs.)

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-19b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
tical y axis (Fnet,y � may) as

T � mg � m(�a), (10-46)

where a is the magnitude of the acceleration (down the y
axis). However, we cannot solve this equation for a because
it also contains the unknown T.

Torque on disk: Previously, when we got stuck on the y axis,
we switched to the x axis. Here, we switch to the rotation of
the disk and use Newton’s second law in angular form. To
calculate the torques and the rotational inertia I, we take
the rotation axis to be perpendicular to the disk and through
its center, at point O in Fig. 10-19c.

The torques are then given by Eq. 10-40 (t � rFt). The
gravitational force on the disk and the force on the disk from
the axle both act at the center of the disk and thus at distance
r � 0, so their torques are zero.The force on the disk due to
the cord acts at distance r � R and is tangent to the rim of the
disk. Therefore, its torque is �RT, negative because the
torque rotates the disk clockwise from rest. Let a be the mag-
nitude of the negative (clockwise) angular acceleration. From
Table 10-2c, the rotational inertia I of the disk is . Thus
we can write the general equation tnet � Ia as

(10-47)�RT � 1
2 MR2(�a).

1
2MR2

T
:

F
:

g

T
:

at

F
:

net � m:a

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful
with this fact: Because the cord does not slip, the magnitude
a of the block’s linear acceleration and the magnitude at of
the (tangential) linear acceleration of the rim of the disk are
equal. Then, by Eq. 10-22 (at � ar) we see that here a �
a /R. Substituting this in Eq. 10-47 yields

(10-48)

Combining results: Combining Eqs. 10-46 and 10-48 leads to

. (Answer)

We then use Eq. 10-48 to find T:

(Answer)

As we should expect, acceleration a of the falling block is less
than g, and tension T in the cord (� 6.0 N) is less than the
gravitational force on the hanging block (� mg � 11.8 N).
We see also that a and T depend on the mass of the disk but
not on its radius.

As a check, we note that the formulas derived above
predict a � g and T � 0 for the case of a massless disk (M �
0). This is what we would expect; the block simply falls as a
free body. From Eq. 10-22, the magnitude of the angular ac-
celeration of the disk is

(Answer)a �
a
R

�
4.8 m/s2

0.20 m
� 24 rad/s2.

� 6.0 N.

T � 1
2 Ma � 1

2(2.5 kg)(4.8 m/s2)

� 4.8 m/s2

a � g
2m

M � 2m
� (9.8 m/s2)

(2)(1.2 kg)
2.5 kg � (2)(1.2 kg)

T � 1
2 Ma.

m

M

M R
O

Fg

(b)(a)

(c)

m

T

T

The torque due to the 
cord's pull on the rim 
causes an angular 
acceleration of the disk.

These two forces 
determine the block's 
(linear) acceleration.

We need to relate 
those two
accelerations.

y

Figure 10-19 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (c) An incomplete free-body 
diagram for the disk.

Additional examples, video, and practice available at WileyPLUS



282 CHAPTER 10 ROTATION

Work and Rotational Kinetic Energy
As we discussed in Chapter 7, when a force F causes a rigid body of mass m to ac-
celerate along a coordinate axis, the force does work W on the body. Thus, the
body’s kinetic energy can change. Suppose it is the only energy of the(K � 1

2 mv2)

10-8 WORK AND ROTATIONAL KINETIC ENERGY

After reading this module, you should be able to . . .

10.29 Calculate the work done by a torque acting on a rotat-
ing body by integrating the torque with respect to the an-
gle of rotation.

10.30 Apply the work–kinetic energy theorem to relate the
work done by a torque to the resulting change in the rota-
tional kinetic energy of the body.

10.31 Calculate the work done by a constant torque by relat-
ing the work to the angle through which the body rotates.

10.32 Calculate the power of a torque by finding the rate at
which work is done.

10.33 Calculate the power of a torque at any given instant by
relating it to the torque and the angular velocity at that instant.

● The equations used for calculating work and power in rota-
tional motion correspond to equations used for translational
motion and are

and P �
dW
dt

� tv.

W � �uf

ui

t du

● When t is constant, the integral reduces to

W � t(uf � ui).

● The form of the work – kinetic energy theorem used for 
rotating bodies is

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W.

Learning Objectives

Key Ideas

body that changes.Then we relate the change �K in kinetic energy to the work W
with the work–kinetic energy theorem (Eq. 7-10), writing

(work–kinetic energy theorem). (10-49)

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

(work, one-dimensional motion). (10-50)

This reduces to W � Fd when F is constant and the body’s displacement is d.
The rate at which the work is done is the power, which we can find with Eqs. 7-43
and 7-48,

(power, one-dimensional motion). (10-51)

Now let us consider a rotational situation that is similar. When a torque
accelerates a rigid body in rotation about a fixed axis, the torque does work W
on the body. Therefore, the body’s rotational kinetic energy can
change. Suppose that it is the only energy of the body that changes. Then we
can still relate the change �K in kinetic energy to the work W with the
work – kinetic energy theorem, except now the kinetic energy is a rotational 
kinetic energy:

(work–kinetic energy theorem). (10-52)

Here, I is the rotational inertia of the body about the fixed axis and vi and vf are
the angular speeds of the body before and after the work is done.

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W

(K � 1
2 I�2)

P �
dW
dt

� Fv

W � �xf

xi

F dx

�K � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2 � W
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Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

(work, rotation about fixed axis), (10-53)

where t is the torque doing the work W, and ui and uf are the body’s angular
positions before and after the work is done, respectively. When t is constant,
Eq. 10-53 reduces to

W � t(uf � ui) (work, constant torque). (10-54)

The rate at which the work is done is the power, which we can find with the rota-
tional equivalent of Eq. 10-51,

(power, rotation about fixed axis). (10-55)

Table 10-3 summarizes the equations that apply to the rotation of a rigid body
about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55
Let us again consider the situation of Fig. 10-17, in which force rotates a rigid
body consisting of a single particle of mass m fastened to the end of a massless
rod. During the rotation, force does work on the body. Let us assume that the
only energy of the body that is changed by is the kinetic energy. Then we can
apply the work–kinetic energy theorem of Eq. 10-49:

�K � Kf � Ki � W. (10-56)

Using and Eq. 10-18 (v � vr), we can rewrite Eq. 10-56 as

(10-57)

From Eq. 10-33, the rotational inertia for this one-particle body is I � mr2.
Substituting this into Eq. 10-57 yields

which is Eq. 10-52.We derived it for a rigid body with one particle, but it holds for
any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque t
on the body due to force . When the particle moves a distance ds along itsF

:

�K � 1
2 Ivf

2 � 1
2 �vi

2 � W,

�K � 1
2 mr 2vf

2 � 1
2 mr 2vi

2 � W.

K � 1
2 mv2

F
:

F
:

F
:

P �
dW
dt

� tv

W � �uf

ui

  t du

Table 10-3 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position x Angular position u
Velocity v � dx/dt Angular velocity v � du/dt
Acceleration a � dv/dt Angular acceleration a � dv/dt
Mass m Rotational inertia I
Newton’s second law Fnet � ma Newton’s second law tnet � Ia
Work W � � F dx Work W � � t du
Kinetic energy Kinetic energy K � 1

2 Iv2K � 1
2 mv2

Power (constant force) P � Fv Power (constant torque) P � tv
Work–kinetic energy theorem W � �K Work–kinetic energy theorem W � �K



284 CHAPTER 10 ROTATION

Sample Problem 10.11 Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-19 start from rest at time t � 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be �24 rad/s2. What is its rota-
tional kinetic energy K at t � 2.5 s?

KEY IDEA

We can find K with Eq. 10-34 We already know(K � 1
2 Iv2).

Calculations: First, we relate the change in the kinetic 
energy of the disk to the net work W done on the disk, using
the work–kinetic energy theorem of Eq. 10-52 (Kf � Ki � W).
With K substituted for Kf and 0 for Ki,we get

K � Ki � W � 0 � W � W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-53 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force on the disk from the cord, which isT

:

that , but we do not yet know v at t � 2.5 s.
However, because the angular acceleration a has the con-
stant value of �24 rad/s2, we can apply the equations for
constant angular acceleration in Table 10-1.

Calculations: Because we want v and know a and v0 (� 0),
we use Eq. 10-12:

v � v0 � at � 0 � at � at.

Substituting v � at and into Eq.10-34,we find

(Answer)

KEY IDEA

We can also get this answer by finding the disk’s kinetic 
energy from the work done on the disk.

� 90 J.
� 1

4 (2.5 kg)[(0.20 m)(�24 rad/s2)(2.5 s)]2

K � 1
2 Iv2 � 1

2(
1
2MR2)(at)2 � 1

4M(Rat)2

I � 1
2 MR2

I � 1
2 MR2

Additional examples, video, and practice available at WileyPLUS

circular path, only the tangential component Ft of the force accelerates the parti-
cle along the path. Therefore, only Ft does work on the particle. We write that
work dW as Ft ds. However, we can replace ds with r du, where du is the angle
through which the particle moves.Thus we have

dW � Ftr du. (10-58)

From Eq. 10-40, we see that the product Ftr is equal to the torque t, so we can
rewrite Eq. 10-58 as

dW � t du. (10-59)

The work done during a finite angular displacement from ui to uf is then

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis.
Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:

which is Eq. 10-55.

P �
dW
dt

� t 
du

dt
� tv,

W � �uf

ui

 t du,

equal to �TR. Because a is constant, this torque also must
be constant.Thus, we can use Eq. 10-54 to write

W � t(uf � ui) � �TR(uf � ui). (10-61)

Because a is constant, we can use Eq. 10-13 to find
uf � ui.With vi � 0, we have

.

Now we substitute this into Eq. 10-61 and then substitute the
result into Eq. 10-60. Inserting the given values T � 6.0 N
and a � �24 rad/s2, we have

(Answer)� 90 J.

� �1
2 (6.0 N)(0.20 m)(�24 rad/s2)(2.5 s)2

K � W � �TR(uf � ui) � �TR(1
2at2) � �1

2TRat2

uf � ui � vit � 1
2at2 � 0 � 1

2at2 � 1
2at2
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Angular Position To describe the rotation of a rigid body about
a fixed axis, called the rotation axis, we assume a reference line is
fixed in the body, perpendicular to that axis and rotating with the
body.We measure the angular position u of this line relative to a fixed
direction.When u is measured in radians,

(radian measure), (10-1)

where s is the arc length of a circular path of radius r and angle u.
Radian measure is related to angle measure in revolutions and de-
grees by

1 rev � 360� � 2p rad. (10-2)

Angular Displacement A body that rotates about a rotation
axis, changing its angular position from u1 to u2, undergoes an angu-
lar displacement

�u � u2 � u1, (10-4)

where �u is positive for counterclockwise rotation and negative for
clockwise rotation.

Angular Velocity and Speed If a body rotates through an
angular displacement �u in a time interval �t, its average angular
velocity vavg is

(10-5)

The (instantaneous) angular velocity v of the body is

(10-6)

Both vavg and v are vectors, with directions given by the right-hand
rule of Fig. 10-6. They are positive for counterclockwise rotation
and negative for clockwise rotation. The magnitude of the body’s
angular velocity is the angular speed.

Angular Acceleration If the angular velocity of a body
changes from v1 to v2 in a time interval �t � t2 � t1, the average
angular acceleration aavg of the body is

(10-7)

The (instantaneous) angular acceleration a of the body is

(10-8)

Both aavg and a are vectors.

The Kinematic Equations for Constant Angular Accel-
eration Constant angular acceleration (a � constant) is an im-
portant special case of rotational motion. The appropriate kine-
matic equations, given in Table 10-1, are

v � v0 � at, (10-12)

(10-13)

(10-14)

(10-15)

(10-16)

Linear and Angular Variables Related A point in a rigid
rotating body, at a perpendicular distance r from the rotation axis,

u � u0 � vt � 1
2 at2.

u � u0 � 1
2 (v0 � v)t,

v2 � v0
2 � 2a(u � u0),

u � u0 � v0t � 1
2at2,

a �
dv

dt
.

aavg �
v2 � v1

t2 � t1
�

�v

�t
.

v �
du

dt
.

vavg �
�u

�t
.

u �
s
r

Review & Summary

moves in a circle with radius r. If the body rotates through an angle u,
the point moves along an arc with length s given by

s � ur (radian measure), (10-17)
where u is in radians.

The linear velocity of the point is tangent to the circle; the
point’s linear speed v is given by

v � vr (radian measure), (10-18)

where v is the angular speed (in radians per second) of the body.
The linear acceleration of the point has both tangential and

radial components.The tangential component is

at � ar (radian measure), (10-22)

where a is the magnitude of the angular acceleration (in radians
per second-squared) of the body.The radial component of is

(radian measure). (10-23)

If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure). (10-19, 10-20)

Rotational Kinetic Energy and Rotational Inertia The ki-
netic energy K of a rigid body rotating about a fixed axis is given by

(radian measure), (10-34)

in which I is the rotational inertia of the body, defined as

(10-33)

for a system of discrete particles and defined as

(10-35)

for a body with continuously distributed mass. The r and ri in these
expressions represent the perpendicular distance from the axis of
rotation to each mass element in the body, and the integration is car-
ried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates
the rotational inertia I of a body about any axis to that of the same
body about a parallel axis through the center of mass:

I � Icom � Mh2. (10-36)

Here h is the perpendicular distance between the two axes, and
Icom is the rotational inertia of the body about the axis through the
com. We can describe h as being the distance the actual rotation
axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a ro-
tation axis due to a force . If is exerted at a point given by the po-
sition vector relative to the axis, then the magnitude of the torque is

(10-40, 10-41, 10-39)

where Ft is the component of perpendicular to and f is the an-
gle between and . The quantity is the perpendicular distance
between the rotation axis and an extended line running through
the vector. This line is called the line of action of , and is
called the moment arm of . Similarly, r is the moment arm of Ft.F

:
r�F

:
F
:

r�F
:

r:
r:F

:

t � rFt � r�F � rF sin f,

r:
F
:

F
:

I � � r 2 dm

I � � miri
2

K � 1
2Iv2

T �
2pr

v
�

2p

v

ar �
v2

r
� v2r

a:

a:

v:



8 Figure 10-25b shows an overhead view of a horizontal bar that
is rotated about the pivot point by two horizontal forces, and ,
with at angle f to the bar. Rank the following values of f accord-
ing to the magnitude of the angular acceleration of the bar, greatest
first: 90�, 70�, and 110�.

9 Figure 10-26 shows a uniform metal plate
that had been square before 25% of it was
snipped off. Three lettered points are indicated.
Rank them according to the rotational inertia of
the plate around a perpendicular axis through
them, greatest first.

F
:

2

F
:

2F
:

1
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angles during the rotation, which is
counterclockwise and at a constant
rate. However, we are to decrease the
angle u of without changing the
magnitude of . (a) To keep the an-
gular speed constant, should we in-
crease, decrease, or maintain the mag-
nitude of ? Do forces (b) and (c)

tend to rotate the disk clockwise or
counterclockwise?

6 In the overhead view of Fig. 10-24,
five forces of the same magnitude act
on a strange merry-go-round; it is a
square that can rotate about point P, at
midlength along one of the edges.
Rank the forces according to the mag-
nitude of the torque they create about
point P, greatest first.

7 Figure 10-25a is an overhead view
of a horizontal bar that can pivot; two horizontal forces act on the
bar, but it is stationary. If the angle between the bar and is nowF

:

2

F
:

2

F
:

1F
:

2

F
:

1

F
:

1

1 Figure 10-20 is a graph of the an-
gular velocity versus time for a disk
rotating like a merry-go-round. For a
point on the disk rim, rank the in-
stants a, b, c, and d according to the
magnitude of the (a) tangential and
(b) radial acceleration, greatest first.

2 Figure 10-21 shows plots of angu-
lar position u versus time t for three
cases in which a disk is rotated like a
merry-go-round. In each case, the ro-
tation direction changes at a certain
angular position uchange. (a) For each
case, determine whether uchange is
clockwise or counterclockwise from
u � 0, or whether it is at u � 0. For
each case, determine (b) whether 
v is zero before, after, or at t � 0
and (c) whether a is positive,negative,or zero.

3 A force is applied to the rim of a disk that can rotate like
a merry-go-round, so as to change its angular velocity. Its initial
and final angular velocities, respectively, for four situations are:
(a) �2 rad/s, 5 rad/s; (b) 2 rad/s, 5 rad/s; (c) �2 rad/s, �5 rad/s; and
(d) 2 rad/s, �5 rad/s. Rank the situations according to the work
done by the torque due to the force, greatest first.

4 Figure 10-22b is a graph of the angular position of the rotating
disk of Fig. 10-22a. Is the angular velocity of the disk positive, nega-
tive, or zero at (a) t � 1 s, (b) t � 2 s, and (c) t � 3 s? (d) Is the an-
gular acceleration positive or negative?

Questions
ω 

t
a b c d

Figure 10-20 Question 1.

1

2

3

0

–90° 

90° 
θ 

t

Figure 10-21 Question 2.

Rotation axis 

t (s)

   (rad) θ 

1 2 3 

(a) (b)

Figure 10-22 Question 4.

F1

θ 

F2

Figure 10-23 Question 5.

Figure 10-24 Question 6.

F5

F4

F3

F2

F1 P

Pivot point 
F1 F2

Pivot point 

(a) (b)

φ 

F1

F2

a

b

c
Figure 10-26

Question 9.

Figure 10-25 Questions 7 and 8.

The SI unit of torque is the newton-meter (N 
m). A torque t
is positive if it tends to rotate a body at rest counterclockwise and
negative if it tends to rotate the body clockwise.

Newton’s Second Law in Angular Form The rotational
analog of Newton’s second law is

tnet � Ia, (10-45)

where tnet is the net torque acting on a particle or rigid body, I is the ro-
tational inertia of the particle or body about the rotation axis, and a is
the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used
for calculating work and power in rotational motion correspond to

equations used for translational motion and are

(10-53)

and (10-55)

When t is constant, Eq. 10-53 reduces to

W � t(uf � ui). (10-54)

The form of the work–kinetic energy theorem used for rotating
bodies is

(10-52)�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W.

P �
dW
dt

� tv.

W � �uf

ui

t du

5 In Fig. 10-23, two forces and act on a disk that turns about
its center like a merry-go-round. The forces maintain the indicated

F
:

2F
:

1

decreased from 90� and the bar is still not to turn, should F2 be
made larger, made smaller, or left the same?
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10 Figure 10-27 shows three flat disks (of the same radius) that
can rotate about their centers like merry-go-rounds. Each disk con-
sists of the same two materials, one denser than the other (density is
mass per unit volume). In disks 1 and 3, the denser material forms
the outer half of the disk area. In disk 2, it forms the inner half of the
disk area. Forces with identical magnitudes are applied tangentially
to the disk, either at the outer edge or at the interface of the two ma-
terials, as shown. Rank the disks according to (a) the torque about
the disk center, (b) the rotational inertia about the disk center, and
(c) the angular acceleration of the disk, greatest first.

F

Denser

Disk 1 

Denser

Disk 3 

F F

Lighter

Disk 2 

Figure 10-27 Question 10.

11 Figure 10-28a shows a meter stick, half wood and half steel,
that is pivoted at the wood end at O.A force is applied to the  steel
end at a. In Fig. 10-28b, the stick is reversed and pivoted at the steel
end at O�, and the same force is applied at the wood end at a�. Is the
resulting angular acceleration of Fig. 10-28a greater than, less than, or
the same as that of Fig.10-28b?

F
:

R:
M:

1 m
26 kg

(a)

2 m
7 kg

(b)

3 m
3 kg

(c)

Module 10-1 Rotational Variables
•1 A good baseball pitcher can throw a baseball toward home
plate at 85 mi/h with a spin of 1800 rev/min. How many revolutions
does the baseball make on its way to home plate? For simplicity,
assume that the 60 ft path is a straight line.

•2 What is the angular speed of (a) the second hand, (b) the
minute hand, and (c) the hour hand of a smoothly running analog
watch? Answer in radians per second.

••3 When a slice of buttered toast is accidentally pushed
over the edge of a counter, it rotates as it falls. If the distance to the
floor is 76 cm and for rotation less than 1 rev, what are the (a)
smallest and (b) largest angular speeds that cause the toast to hit
and then topple to be butter-side down?

••4 The angular position of a point on a rotating wheel is given
by u � 2.0 � 4.0t2 � 2.0t3, where u is in radians and t is in seconds.At 
t � 0, what are (a) the point’s angular position and (b) its angular ve-
locity? (c) What is its angular velocity at t � 4.0 s? (d) Calculate its an-
gular acceleration at t � 2.0 s. (e) Is its angular acceleration constant?

••5 A diver makes 2.5 revolutions on the way from a 10-m-high
platform to the water. Assuming zero initial vertical velocity, find
the average angular velocity during the dive.

••6 The angular position of a point on the rim of a rotating wheel is
given by u � 4.0t � 3.0t2 � t3, where u is in radians and t is in seconds.
What are the angular velocities at (a) t � 2.0 s and (b) t � 4.0 s?
(c) What is the average angular acceleration for the time interval
that begins at t � 2.0 s and ends at t � 4.0 s? What are the instanta-
neous angular accelerations at (d) the beginning and (e) the end of
this time interval?

•••7 The wheel in Fig. 10-30 has eight equally spaced spokes and
a radius of 30 cm. It is mounted on a fixed axle and is spinning at 2.5
rev/s. You want to shoot a 20-cm-long arrow parallel to this axle and

ILW

through the wheel without hitting any
of the spokes. Assume that the arrow
and the spokes are very thin. (a) What
minimum speed must the arrow have?
(b) Does it matter where between the
axle and rim of the wheel you aim? If
so, what is the best location?

•••8 The angular acceleration of a
wheel is a � 6.0t4 � 4.0t2, with a in ra-

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Figure 10-30 Problem 7.

(b)(a)

O O´ áa

F FFigure 10-28
Question 11.

Figure 10-29 Question 12.

12 Figure 10-29 shows three disks,
each with a uniform distribution of
mass. The radii R and masses M are
indicated. Each disk can rotate
around its central axis (perpendicular
to the disk face and through the cen-
ter). Rank the disks according to their
rotational inertias calculated about
their central axes, greatest first.

dians per second-squared and t in seconds. At time t � 0, the wheel
has an angular velocity of �2.0 rad/s and an angular position of
�1.0 rad. Write expressions for (a) the angular velocity (rad/s) and
(b) the angular position (rad) as functions of time (s).

Module 10-2 Rotation with Constant Angular Acceleration
•9 A drum rotates around its central axis at an angular velocity
of 12.60 rad/s. If the drum then slows at a constant rate of 4.20
rad/s2, (a) how much time does it take and (b) through what angle
does it rotate in coming to rest?

•10 Starting from rest, a disk rotates about its central axis with
constant angular acceleration. In 5.0 s, it rotates 25 rad. During that
time, what are the magnitudes of (a) the angular acceleration and
(b) the average angular velocity? (c) What is the instantaneous an-
gular velocity of the disk at the end of the 5.0 s? (d) With the angu-
lar acceleration unchanged, through what additional angle will the
disk turn during the next 5.0 s?

•11 A disk, initially rotating at 120 rad/s, is slowed down 
with a constant angular acceleration of magnitude 4.0 rad/s2. (a) How
much time does the disk take to stop? (b) Through what angle does
the disk rotate during that time?

•12 The angular speed of an automobile engine is increased at a
constant rate from 1200 rev/min to 3000 rev/min in 12 s. (a) What is



a point on Earth’s surface at latitude 40� N? (Earth rotates about
that axis.) (b) What is the linear speed v of the point? What are
(c) v and (d) v for a point at the equator?

••26 The flywheel of a steam engine runs with a constant angular ve-
locity of 150 rev/min.When steam is shut off, the friction of the bearings
and of the air stops the wheel in 2.2 h. (a) What is the constant angular
acceleration, in revolutions per minute-squared, of the wheel during
the slowdown? (b) How many revolutions does the wheel make before
stopping? (c) At the instant the flywheel is turning at 75 rev/min, what
is the tangential component of the linear acceleration of a flywheel par-
ticle that is 50 cm from the axis of rotation? (d) What is the magnitude
of the net linear acceleration of the particle in (c)?

••27 A seed is on a turntable rotating at rev/min, 6.0 cm
from the rotation axis. What are (a) the seed’s acceleration and (b)
the least coefficient of static friction to avoid slippage? (c) If the
turntable had undergone constant angular acceleration from rest
in 0.25 s, what is the least coefficient to avoid slippage?

••28 In Fig. 10-31, wheel A of radius
rA � 10 cm is coupled by belt B to
wheel C of radius rC � 25 cm.The an-
gular speed of wheel A is increased
from rest at a constant rate of
1.6 rad/s2. Find the time needed for
wheel C to reach an angular speed of
100 rev/min, assuming the belt does
not slip. (Hint: If the belt does not slip, the linear speeds at the two
rims must be equal.)

••29 Figure 10-32 shows an early method of measuring the
speed of light that makes use of a rotating slotted wheel.A beam of

331
3

celeration (in revolutions per minute-squared) will increase the
wheel’s angular speed to 1000 rev/min in 60.0 s? (d) How many
revolutions does the wheel make during that 60.0 s?

•24 A vinyl record is played by rotating the record so that an ap-
proximately circular groove in the vinyl slides under a stylus.
Bumps in the groove run into the stylus, causing it to oscillate. The
equipment converts those oscillations to electrical signals and then
to sound. Suppose that a record turns at the rate of , the
groove being played is at a radius of 10.0 cm, and the bumps in the
groove are uniformly separated by 1.75 mm. At what rate (hits per
second) do the bumps hit the stylus?

••25 (a) What is the angular speed v about the polar axis ofSSM

331
3 rev/min
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its angular acceleration in revolutions per minute-squared? (b) How
many revolutions does the engine make during this 12 s interval?

••13 A flywheel turns through 40 rev as it slows from an
angular speed of 1.5 rad/s to a stop. (a) Assuming a constant angu-
lar acceleration, find the time for it to come to rest. (b) What is its
angular acceleration? (c) How much time is required for it to com-
plete the first 20 of the 40 revolutions?

••14 A disk rotates about its central axis starting from rest and
accelerates with constant angular acceleration. At one time it is ro-
tating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s.
Calculate (a) the angular acceleration, (b) the time required to
complete the 60 revolutions, (c) the time required to reach the
10 rev/s angular speed, and (d) the number of revolutions from rest
until the time the disk reaches the 10 rev/s angular speed.

••15 Starting from rest, a wheel has constant a = 3.0 rad/s2.
During a certain 4.0 s interval, it turns through 120 rad. How much
time did it take to reach that 4.0 s interval?

••16 A merry-go-round rotates from rest with an angular accel-
eration of 1.50 rad/s2. How long does it take to rotate through
(a) the first 2.00 rev and (b) the next 2.00 rev?

••17 At t � 0, a flywheel has an angular velocity of 4.7 rad/s, a
constant angular acceleration of �0.25 rad/s2, and a reference line
at u0 � 0. (a) Through what maximum angle umax will the reference
line turn in the positive direction? What are the (b) first and
(c) second times the reference line will be at ? At what
(d) negative time and (e) positive time will the reference line be
at 10.5 rad? (f) Graph u versus t, and indicate your answers.

•••18 A pulsar is a rapidly rotating neutron star that emits a radio
beam the way a lighthouse emits a light beam. We receive a radio
pulse for each rotation of the star.The period T of rotation is found
by measuring the time between pulses. The pulsar in the Crab neb-
ula has a period of rotation of T � 0.033 s that is increasing at the
rate of 1.26 � 10�5 s/y. (a) What is the pulsar’s angular acceleration
a? (b) If a is constant, how many years from now will the pulsar
stop rotating? (c) The pulsar originated in a supernova explosion
seen in the year 1054.Assuming constant a, find the initial T.

Module 10-3 Relating the Linear and Angular Variables
•19 What are the magnitudes of (a) the angular velocity, (b) the ra-
dial acceleration, and (c) the tangential acceleration of a spaceship
taking a circular turn of radius 3220 km at a speed of 29 000 km/h?

•20 An object rotates about a fixed axis, and the angular posi-
tion of a reference line on the object is given by u � 0.40e2t, where
u is in radians and t is in seconds. Consider a point on the object
that is 4.0 cm from the axis of rotation. At t � 0, what are the mag-
nitudes of the point’s (a) tangential component of acceleration
and (b) radial component of acceleration?

•21 Between 1911 and 1990, the top of the leaning bell
tower at Pisa, Italy, moved toward the south at an average rate of
1.2 mm/y. The tower is 55 m tall. In radians per second, what is the
average angular speed of the tower’s top about its base?

•22 An astronaut is tested in a centrifuge with radius 10 m and
rotating according to u � 0.30t2. At t � 5.0 s, what are the magni-
tudes of the (a) angular velocity, (b) linear velocity, (c) tangential
acceleration, and (d) radial acceleration?

•23 A flywheel with a diameter of 1.20 m is rotating
at an angular speed of 200 rev/min. (a) What is the angular speed
of the flywheel in radians per second? (b) What is the linear speed
of a point on the rim of the flywheel? (c) What constant angular ac-
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••41 In Fig. 10-37, two particles,
each with mass m 0.85 kg, are fas-
tened to each other, and to a rotation
axis at O, by two thin rods, each with
length d � 5.6 cm and mass M �
1.2 kg. The combination rotates
around the rotation axis with the an-
gular speed v � 0.30 rad/s. Measured
about O, what are the combination’s
(a) rotational inertia and (b) kinetic energy? 

••42 The masses and coordinates of four particles are as 
follows: 50 g, x � 2.0 cm, y � 2.0 cm; 25 g, x � 0, y � 4.0 cm; 25 g,
x � �3.0 cm, y � �3.0 cm; 30 g, x � �2.0 cm, y � 4.0 cm. What
are the rotational inertias of this collection about the (a) x, (b) y,
and (c) z axes? (d) Suppose that we symbolize the answers to (a)
and (b) as A and B, respectively. Then what is the answer to (c)
in terms of A and B?

�

L

O

light passes through one of the slots at the outside edge of the
wheel, travels to a distant mirror, and returns to the wheel just in
time to pass through the next slot in the wheel. One such slotted
wheel has a radius of 5.0 cm and 500 slots around its edge.
Measurements taken when the mirror is L � 500 m from the
wheel indicate a speed of light of 3.0 � 105 km/s. (a) What is the
(constant) angular speed of the wheel? (b) What is the linear
speed of a point on the edge of the wheel?

••30 A gyroscope flywheel of radius 2.83 cm is accelerated from
rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. (a) What is
the tangential acceleration of a point on the rim of the flywheel during
this spin-up process? (b) What is the radial acceleration of this point
when the flywheel is spinning at full speed? (c) Through what distance
does a point on the rim move during the spin-up?

••31 A disk, with a radius of 0.25 m, is to be rotated like a merry-
go-round through 800 rad, starting from rest, gaining angular speed
at the constant rate a1 through the first 400 rad and then losing an-
gular speed at the constant rate �a1 until it is again at rest.The mag-
nitude of the centripetal acceleration of any portion of the disk is
not to exceed 400 m/s2. (a) What is the least time required for the ro-
tation? (b) What is the corresponding value of a1?

••32 A car starts from rest and moves around a circular track of 
radius 30.0 m. Its speed increases at the constant rate of 0.500 m/s2.
(a) What is the magnitude of its net linear acceleration 15.0 s later?
(b) What angle does this net acceleration vector make with the
car’s velocity at this time?

Module 10-4 Kinetic Energy of Rotation
•33 Calculate the rota-
tional inertia of a wheel that has
a kinetic energy of 24 400 J when
rotating at 602 rev/min.

•34 Figure 10-33 gives angu-
lar speed versus time for a thin
rod that rotates around one
end. The scale on the v axis is
set by (a) What
is the magnitude of the rod’s an-
gular acceleration? (b) At t
4.0 s, the rod has a rotational ki-
netic energy of 1.60 J.What is its kinetic energy at t � 0?

Module 10-5 Calculating the Rotational Inertia
•35 Two uniform solid cylinders, each rotating about its cen-
tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg but
differ in radius.What is the rotational kinetic energy of (a) the smaller
cylinder, of radius 0.25 m, and (b) the larger cylinder, of radius 0.75 m?

•36 Figure 10-34a shows a disk that can rotate about an axis at

SSM
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vs � 6.0 rad/s.
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a radial distance h from the center of the disk. Figure 10-34b gives
the rotational inertia I of the disk about the axis as a function of that
distance h, from the center out to the edge of the disk. The scale on
the I axis is set by and What is
the mass of the disk?

•37 Calculate the rotational inertia of a meter stick, with
mass 0.56 kg, about an axis perpendicular to the stick and located
at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-35 shows three
0.0100 kg particles that have been
glued to a rod of length L � 6.00 cm
and negligible mass. The assembly
can rotate around a perpendicular
axis through point O at the left end.
If we remove one particle (that is,
33% of the mass), by what percent-
age does the rotational inertia of the assembly around the rotation
axis decrease when that removed particle is (a) the innermost one
and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel,
with an electric motor getting the flywheel up to its top speed of
200p rad/s. Suppose that one such flywheel is a solid, uniform
cylinder with a mass of 500 kg and a radius of 1.0 m. (a) What is the
kinetic energy of the flywheel after charging? (b) If the truck uses
an average power of 8.0 kW, for how many minutes can it operate
between chargings?

••40 Figure 10-36 shows an arrangement of 15 identical disks that
have been glued together in a rod-like shape of length L � 1.0000 m
and (total) mass M � 100.0 mg.The disks are uniform, and the disk
arrangement can rotate about a perpendicular axis through its cen-
tral disk at point O. (a) What is the rotational inertia of the
arrangement about that axis? (b) If we approximated the arrange-
ment as being a uniform rod of mass M and length L, what percent-
age error would we make in using the formula in Table 10-2e to cal-
culate the rotational inertia?

SSM
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••53 Figure 10-43 shows a uniform
disk that can rotate around its center like a
merry-go-round. The disk has a radius of
2.00 cm and a mass of 20.0 grams and is ini-
tially at rest. Starting at time t � 0, two
forces are to be applied tangentially to the
rim as indicated, so that at time t � 1.25 s
the disk has an angular velocity of 250
rad/s counterclockwise. Force 
has a magnitude of 0.100 N. What
is magnitude F2?

••54 In a judo foot-sweep
move, you sweep your opponent’s
left foot out from under him while
pulling on his gi (uniform) toward
that side. As a result, your oppo-
nent rotates around his right foot
and onto the mat. Figure 10-44
shows a simplified diagram of
your opponent as you face him,
with his left foot swept out. The
rotational axis is through point O.
The gravitational force on him
effectively acts at his center of
mass, which is a horizontal dis-
tance d � 28 cm from point O. His
mass is 70 kg, and his rotational in-
ertia about point O is 65 kg 
m2.What is the magnitude of his initial
angular acceleration about point O if your pull on his gi is (a) neg-
ligible and (b) horizontal with a magnitude of 300 N and applied at
height h � 1.4 m?

••55 In Fig. 10-45a, an irregularly shaped plastic plate with
uniform thickness and density (mass per unit volume) is to be
rotated around an axle that is perpendicular to the plate face
and through point O. The rotational inertia of the plate about

F
:

a

F
:

g

F
:

1

••43 The uniform solid
block in Fig. 10-38 has mass 0.172 kg
and edge lengths a � 3.5 cm, b � 8.4
cm, and c � 1.4 cm. Calculate its rota-
tional inertia about an axis through
one corner and perpendicular to the
large faces.

••44 Four identical particles of
mass 0.50 kg each are placed at the
vertices of a 2.0 m � 2.0 m square
and held there by four massless rods, which form the sides of the
square. What is the rotational inertia of this rigid body about an
axis that (a) passes through the midpoints of opposite sides and
lies in the plane of the square, (b) passes through the midpoint of
one of the sides and is perpendicular to the plane of the square,
and (c) lies in the plane of the square and passes through two di-
agonally opposite particles?

WWWSSM rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on
the pulley. (a) What is the magnitude of the acceleration of the
blocks? What are (b) tension and (c) tension ? (d) What is
the magnitude of the pulley’s angular acceleration? (e) What is
its rotational inertia? 

••52 In Fig. 10-42, a cylinder having a mass of 2.0 kg can rotate
about its central axis through point O. Forces are applied as shown:
F1 � 6.0 N, F2 � 4.0 N, F3 � 2.0 N, and F4 � 5.0 N. Also, r � 5.0 cm
and R � 12 cm. Find the (a) magnitude and (b) direction of the an-
gular acceleration of the cylinder. (During the rotation, the forces
maintain their same angles relative to the cylinder.) 
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Module 10-6 Torque
•45 The body in
Fig. 10-39 is pivoted at O, and
two forces act on it as shown. If
r1 � 1.30 m, r2 � 2.15 m, F1 �
4.20 N, F2 � 4.90 N, u1 � 75.0�,
and u2 � 60.0�, what is the net
torque about the pivot?

•46 The body in Fig. 10-40 is
pivoted at O. Three forces act
on it: FA � 10 N at point A, 8.0
m from O; FB � 16 N at B, 4.0
m from O; and FC � 19 N at C,
3.0 m from O. What is the net
torque about O?

•47 A small ball of mass
0.75 kg is attached to one end
of a 1.25-m-long massless rod,

SSM
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and the other end of the rod is hung from a pivot.When the resulting
pendulum is 30� from the vertical, what is the magnitude of the gravi-
tational torque calculated about the pivot?

•48 The length of a bicycle pedal arm is 0.152 m, and a down-
ward force of 111 N is applied to the pedal by the rider.What is the
magnitude of the torque about the pedal arm’s pivot when the arm
is at angle (a) 30�, (b) 90�, and (c) 180� with the vertical?

Module 10-7 Newton’s Second Law for Rotation
•49 During the launch from a board, a diver’s angular
speed about her center of mass changes from zero to 6.20 rad/s in 220
ms. Her rotational inertia about her center of mass is 12.0 kg 
m2.
During the launch, what are the magnitudes of (a) her average angu-
lar acceleration and (b) the average external
torque on her from the board?

•50 If a 32.0 N 
m torque on a wheel
causes angular acceleration 25.0 rad/s2,
what is the wheel’s rotational inertia?

••51 In Fig. 10-41, block 1 has mass
, block 2 has mass ,

and the pulley, which is mounted on a hor-
izontal axle with negligible friction, has
radius . When released fromR � 5.00 cm

m2 � 500 gm1 � 460 g

ILWSSM
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that axle is measured with the following
method. A circular disk of mass 0.500 kg and
radius 2.00 cm is glued to the plate, with its
center aligned with point O (Fig. 10-45b). A
string is wrapped around the edge of the disk
the way a string is wrapped around a top.
Then the string is pulled for 5.00 s. As a re-
sult, the disk and plate are rotated by a con-
stant force of 0.400 N that is applied by the
string tangentially to the edge of the disk.
The resulting angular speed is 114 rad/s.
What is the rotational inertia of the plate
about the axle?

••56 Figure 10-46 shows
particles 1 and 2, each of mass
m, fixed to the ends of a rigid
massless rod of length L1 �
L2, with L1 � 20 cm and L2 �
80 cm. The rod is held hori-
zontally on the fulcrum and then released. What are the magni-
tudes of the initial accelerations of (a) particle 1 and (b) particle 2?

•••57 A pulley, with a rotational inertia of 1.0 � 10�3 kg 
m2 about
its axle and a radius of 10 cm, is acted on by a force applied tangentially
at its rim.The force magnitude varies in time as F � 0.50t � 0.30t2,with
F in newtons and t in seconds.The pulley is initially at rest.At t � 3.0 s
what are its (a) angular acceleration and (b) angular speed?

Module 10-8 Work and Rotational Kinetic Energy
•58 (a) If R � 12 cm, M � 400 g, and m � 50 g in Fig. 10-19, find
the speed of the block after it has descended 50 cm starting from
rest. Solve the problem using energy conservation principles.
(b) Repeat (a) with R � 5.0 cm.

•59 An automobile crankshaft transfers energy from the engine
to the axle at the rate of 100 hp (� 74.6 kW) when rotating at a
speed of 1800 rev/min. What torque (in newton-meters) does the
crankshaft deliver?

•60 A thin rod of length 0.75 m and mass 0.42 kg is suspended
freely from one end. It is pulled to one side and then allowed to swing
like a pendulum, passing through its lowest position with angular
speed 4.0 rad/s. Neglecting friction and air resistance, find (a) the
rod’s kinetic energy at its lowest position and (b) how far above that
position the center of mass rises.

•61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, is
rotating at 280 rev/min. It must be brought to a stop in 15.0 s.
(a) How much work must be done to stop it? (b) What is the 
required average power?

••62 In Fig. 10-35, three 0.0100 kg particles have been glued to a
rod of length L � 6.00 cm and negligible mass and can rotate
around a perpendicular axis through point O at one end. How
much work is required to change the rotational rate (a) from 0 to
20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to
60.0 rad/s? (d) What is the slope of a plot of the assembly’s kinetic
energy (in joules) versus the square of its rotation rate (in radians-
squared per second-squared)?

••63 A meter stick is held vertically with one end on
the floor and is then allowed to fall. Find the speed of the other end
just before it hits the floor, assuming that the end on the floor does
not slip. (Hint: Consider the stick to be a thin rod and use the con-
servation of energy principle.)

ILWSSM

••64 A uniform cylinder of radius 10 cm and mass 20 kg is
mounted so as to rotate freely about a horizontal axis that is paral-
lel to and 5.0 cm from the central longitudinal axis of the cylinder.
(a) What is the rotational inertia of the cylinder about the axis of
rotation? (b) If the cylinder is released from rest with its central
longitudinal axis at the same height as the axis about which the
cylinder rotates, what is the angular speed of the cylinder as it
passes through its lowest position?

•••65 A tall, cylindrical chimney falls over when its base
is ruptured. Treat the chimney as a thin rod of length 55.0 m. At the
instant it makes an angle of 35.0� with the vertical as it falls, what
are (a) the radial acceleration of the top, and (b) the tangential ac-
celeration of the top. (Hint: Use energy considerations, not a torque.)
(c) At what angle u is the tangential acceleration equal to g?

•••66 A uniform spherical shell of mass M � 4.5 kg and radius 
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R � 8.5 cm can rotate about a vertical axis on frictionless bearings
(Fig. 10-47). A massless cord passes around the equator of the shell,
over a pulley of rotational inertia I � 3.0 � 10�3 kg 
m2 and radius
r � 5.0 cm, and is attached to a small object of mass m � 0.60 kg.
There is no friction on the pulley’s axle; the cord does not slip on
the pulley. What is the speed of the object when it has fallen 82 cm
after being released from rest? Use energy considerations.

M, R 

I, r 

m

•••67 Figure 10-48 shows a rigid as-
sembly of a thin hoop (of mass m and ra-
dius R � 0.150 m) and a thin radial rod
(of mass m and length L � 2.00R). The
assembly is upright, but if we give it a
slight nudge, it will rotate around a hori-
zontal axis in the plane of the rod and
hoop, through the lower end of the rod.
Assuming that the energy given to the
assembly in such a nudge is negligible,
what would be the assembly’s angular speed about the rotation axis
when it passes through the upside-down (inverted) orientation?

Additional Problems
68 Two uniform solid spheres have the same mass of 1.65 kg, but
one has a radius of 0.226 m and the other has a radius of 0.854 m.
Each can rotate about an axis through its center. (a) What is the
magnitude t of the torque required to bring the smaller sphere
from rest to an angular speed of 317 rad/s in 15.5 s? (b) What is the
magnitude F of the force that must be
applied tangentially at the sphere’s
equator to give that torque? What are
the corresponding values of (c) t and
(d) F for the larger sphere?

69 In Fig. 10-49, a small disk of radius 
r � 2.00 cm has been glued to the edge of
a larger disk of radius R � 4.00 cm so that

Figure 10-48 Problem 67.
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the disks lie in the same plane.The disks can be rotated around a per-
pendicular axis through point O at the center of the larger disk. The
disks both have a uniform density (mass per unit volume) of 1.40 �
103 kg/m3 and a uniform thickness of 5.00 mm. What is the rota-
tional inertia of the two-disk assembly about the rotation axis
through O?

70 A wheel, starting from rest, rotates with a constant angular
acceleration of 2.00 rad/s2. During a certain 3.00 s interval, it turns
through 90.0 rad. (a) What is the angular velocity of the wheel at
the start of the 3.00 s interval? (b) How long has the wheel been
turning before the start of the 3.00 s interval?

71 In Fig. 10-50, two 6.20 kg
blocks are connected by a massless
string over a pulley of radius 2.40 cm
and rotational inertia 7.40 � 10�4

kg 
m2. The string does not slip on
the pulley; it is not known whether
there is friction between the table and
the sliding block; the pulley’s axis is
frictionless. When this system is re-
leased from rest, the pulley turns through 0.130 rad in 91.0 ms and the
acceleration of the blocks is constant. What are (a) the magnitude of
the pulley’s angular acceleration, (b) the magnitude of either block’s
acceleration, (c) string tension T1,and (d) string tension T2?

72 Attached to each end of a thin steel rod of length 1.20 m and
mass 6.40 kg is a small ball of mass 1.06 kg. The rod is constrained
to rotate in a horizontal plane about a vertical axis through its mid-
point. At a certain instant, it is rotating at 39.0 rev/s. Because of fric-
tion, it slows to a stop in 32.0 s.Assuming a constant retarding torque
due to friction, compute (a) the angular acceleration, (b) the retard-
ing torque, (c) the total energy transferred from mechanical energy
to thermal energy by friction, and (d) the number of revolutions ro-
tated during the 32.0 s. (e) Now suppose that the retarding torque is
known not to be constant. If any of the quantities (a), (b), (c), and (d)
can still be computed without additional information, give its value.

73 A uniform helicopter rotor blade is 7.80 m long, has a mass of
110 kg, and is attached to the rotor axle by a single bolt. (a) What is
the magnitude of the force on the bolt from the axle when the ro-
tor is turning at 320 rev/min? (Hint: For this calculation the blade
can be considered to be a point mass at its center of mass. Why?)
(b) Calculate the torque that must be applied to the rotor to bring
it to full speed from rest in 6.70 s. Ignore air resistance. (The blade
cannot be considered to be a point mass for this calculation. Why
not? Assume the mass distribution of a uniform thin rod.) (c) How
much work does the torque do on the blade in order for the blade
to reach a speed of 320 rev/min?

74 Racing disks. Figure 10-51 shows
two disks that can rotate about their
centers like a merry-go-round. At
time t � 0, the reference lines of the
two disks have the same orientation.
Disk A is already rotating, with a con-
stant angular velocity of 9.5 rad/s.
Disk B has been stationary but now begins to rotate at a constant
angular acceleration of 2.2 rad/s2. (a) At what time t will the refer-
ence lines of the two disks momentarily have the same angular dis-
placement u? (b) Will that time t be the first time since t � 0 that
the reference lines are momentarily aligned?

75 A high-wire walker always attempts to keep his center of
mass over the wire (or rope). He normally carries a long, heavy pole
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to help: If he leans, say, to his right (his com moves to the right) and is
in danger of rotating around the wire, he moves the pole to his left
(its com moves to the left) to slow the rotation and allow himself
time to adjust his balance. Assume that the walker has a mass of
70.0 kg and a rotational inertia of about the wire.What is
the magnitude of his angular acceleration about the wire if his com is
5.0 cm to the right of the wire and (a) he carries no pole and (b) the
14.0 kg pole he carries has its com 10 cm to the left of the wire?

76 Starting from rest at t � 0, a wheel undergoes a constant an-
gular acceleration. When t � 2.0 s, the angular velocity of the
wheel is 5.0 rad/s. The acceleration continues until t � 20 s, when it
abruptly ceases. Through what angle does the wheel rotate in the
interval t � 0 to t � 40 s?

77 A record turntable rotating at slows down
and stops in 30 s after the motor is turned off. (a) Find its (con-
stant) angular acceleration in revolutions per minute-squared.
(b) How many revolutions does it make in this time?

78 A rigid body is made of three
identical thin rods, each with length
L � 0.600 m, fastened together in the
form of a letter H (Fig. 10-52). The
body is free to rotate about a hori-
zontal axis that runs along the length
of one of the legs of the H. The body
is allowed to fall from rest from a position in which the plane of the
H is horizontal. What is the angular speed of the body when the
plane of the H is vertical? 

79 (a) Show that the rotational inertia of a solid cylinder of
mass M and radius R about its central axis is equal to the rotational
inertia of a thin hoop of mass M and radius about its central
axis. (b) Show that the rotational inertia I of any given body of
mass M about any given axis is equal to the rotational inertia of an
equivalent hoop about that axis, if the hoop has the same mass M
and a radius k given by

The radius k of the equivalent hoop is called the radius of gyration
of the given body.

80 A disk rotates at constant angular acceleration, from angular
position u1 � 10.0 rad to angular position u2 � 70.0 rad in 6.00 s. Its
angular velocity at u2 is 15.0 rad/s. (a) What was its angular velocity
at u1? (b) What is the angular acceleration? (c) At what angular 
position was the disk initially at rest? (d) Graph u versus time t and
angular speed v versus t for the disk, from the beginning of the 
motion (let t � 0 then).

81 The thin uniform rod in Fig. 10-53 has
length 2.0 m and can pivot about a horizontal,
frictionless pin through one end. It is released
from rest at angle u � 40� above the horizontal.
Use the principle of conservation of energy to
determine the angular speed of the rod as it
passes through the horizontal position.

82 George Washington Gale Ferris, Jr., a
civil engineering graduate from Rensselaer Polytechnic Institute,
built the original Ferris wheel for the 1893 World’s Columbian
Exposition in Chicago. The wheel, an astounding engineering con-
struction at the time, carried 36 wooden cars, each holding up to 60
passengers, around a circle 76 m in diameter.The cars were loaded 6
at a time, and once all 36 cars were full, the wheel made a complete
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the rings are given in the following table. A tangential force of
magnitude 12.0 N is applied to the outer edge of the outer ring for
0.300 s.What is the change in the angular speed of the construction
during the time interval? 

Ring Mass (kg) Inner Radius (m) Outer Radius (m)

1 0.120 0.0160 0.0450
2 0.240 0.0900 0.1400

87 In Fig. 10-55, a wheel of ra-
dius 0.20 m is mounted on a friction-
less horizontal axle. A massless cord
is wrapped around the wheel and at-
tached to a 2.0 kg box that slides on
a frictionless surface inclined at an-
gle u � 20� with the horizontal. The
box accelerates down the surface at 2.0 m/s2. What is the rota-
tional inertia of the wheel about the axle?

88 A thin spherical shell has a radius of 1.90 m.An applied torque
of 960 N 
m gives the shell an angular acceleration of 6.20 rad/s2

about an axis through the center of the shell. What are (a) the rota-
tional inertia of the shell about that axis and (b) the mass of the shell?

89 A bicyclist of mass 70 kg puts all his mass on each downward-
moving pedal as he pedals up a steep road. Take the diameter of
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rotation at constant angular speed in about 2 min. Estimate the
amount of work that was required of the machinery to rotate the
passengers alone.

83 In Fig. 10-41, two blocks, of mass m1 � 400 g and m2 � 600 g, are
connected by a massless cord that is wrapped around a uniform disk
of mass M � 500 g and radius R � 12.0 cm.The disk can rotate with-
out friction about a fixed horizontal axis through its center; the cord
cannot slip on the disk.The system is released from rest. Find (a) the
magnitude of the acceleration of the blocks, (b) the tension T1 in the
cord at the left, and (c) the tension T2 in the cord at the right.

84 At 7�14 A.M. on June 30, 1908, a huge explosion

the circle in which the pedals rotate to be 0.40 m, and determine
the magnitude of the maximum torque he exerts about the rota-
tion axis of the pedals.

90 The flywheel of an engine is rotating at 25.0 rad/s. When the
engine is turned off, the flywheel slows at a constant rate and stops
in 20.0 s. Calculate (a) the angular acceleration of the flywheel,
(b) the angle through which the flywheel rotates in stopping, and
(c) the number of revolutions made by the flywheel in stopping.

91 In Fig. 10-19a, a wheel of radius 0.20 m is mounted on a fric-
tionless horizontal axis. The rotational inertia of the wheel about the
axis is 0.40 kg 
m2. A massless cord wrapped around the wheel’s cir-
cumference is attached to a 6.0 kg box. The system is released from
rest.When the box has a kinetic energy of 6.0 J,what are (a) the wheel’s
rotational kinetic energy and (b) the distance the box has fallen?

92 Our Sun is 2.3 � 104 ly (light-years) from the center of our
Milky Way galaxy and is moving in a circle around that center at a
speed of 250 km/s. (a) How long does it take the Sun to make one
revolution about the galactic center? (b) How many revolutions has
the Sun completed since it was formed about 4.5 � 109 years ago?

93 A wheel of radius 0.20 m
is mounted on a frictionless horizon-
tal axis. The rotational inertia of the
wheel about the axis is 0.050 kg 
m2.
A massless cord wrapped around
the wheel is attached to a 2.0 kg
block that slides on a horizontal frictionless surface. If a horizontal
force of magnitude P � 3.0 N is applied to the block as shown in
Fig. 10-56, what is the magnitude of the angular acceleration of the
wheel? Assume the cord does not slip on the wheel.

94 If an airplane propeller rotates at 2000 rev/min while the air-
plane flies at a speed of 480 km/h relative to the ground, what is the
linear speed of a point on the tip of the propeller, at radius 1.5 m, as
seen by (a) the pilot and (b) an observer on the ground? The plane’s
velocity is parallel to the propeller’s axis of rotation.

95 The rigid body shown in 
Fig. 10-57 consists of three particles
connected by massless rods. It is to be
rotated about an axis perpendicular
to its plane through point P. If M �
0.40 kg, a � 30 cm, and b � 50 cm,
how much work is required to take
the body from rest to an angular
speed of 5.0 rad/s?

96 Beverage engineering. The pull
tab was a major advance in the engi-
neering design of beverage contain-
ers. The tab pivots on a central bolt in the can’s top. When you pull
upward on one end of the tab, the other end presses downward on
a portion of the can’s top that has been scored. If you pull upward
with a 10 N force, what force magnitude acts on the scored section?
(You will need to examine a can with a pull tab.)

97 Figure 10-58 shows a propeller blade that rotates at
2000 rev/min about a perpendicular axis at point B. Point A is at
the outer tip of the blade, at radial distance
1.50 m. (a) What is the difference in the
magnitudes a of the centripetal acceleration
of point A and of a point at radial distance
0.150 m? (b) Find the slope of a plot of a
versus radial distance along the blade.
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86 Figure 10-54 shows a flat construction of
two circular rings that have a common center and
are held together by three rods of negligible mass.
The construction, which is initially at rest, can 
rotate around the common center (like a merry-
go-round), where another rod of negligible mass
lies. The mass, inner radius, and outer radius of

occurred above remote central Siberia, at latitude 61� N and lon-
gitude 102� E; the fireball thus created was the brightest flash
seen by anyone before nuclear weapons. The Tunguska Event,
which according to one chance witness “covered an enormous part
of the sky,” was probably the explosion of a stony asteroid about 140
m wide. (a) Considering only Earth’s rotation, determine how much
later the asteroid would have had to arrive to put the explosion
above Helsinki at longitude 25� E. This would have obliterated the
city. (b) If the asteroid had, instead, been a metallic asteroid, it could
have reached Earth’s surface. How much later would such an
asteroid have had to arrive to put the impact in the Atlantic Ocean
at longitude 20� W? (The resulting tsunamis would have wiped out
coastal civilization on both sides of the Atlantic.) 

85 A golf ball is launched at an angle of 20� to the horizontal,
with a speed of 60 m/s and a rotation rate of 90 rad/s. Neglecting air
drag, determine the number of revolutions the ball makes by the
time it reaches maximum height.
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98 A yo-yo-shaped device
mounted on a horizontal fric-
tionless axis is used to lift a 30 kg
box as shown in Fig. 10-59. The
outer radius R of the device is
0.50 m, and the radius r of the
hub is 0.20 m. When a constant
horizontal force of magni-
tude 140 N is applied to a rope
wrapped around the outside of
the device, the box, which is sus-
pended from a rope wrapped
around the hub, has an upward
acceleration of magnitude 0.80
m/s2.What is the rotational iner-
tia of the device about its axis of rotation?

99 A small ball with mass 1.30 kg is mounted on one end of a rod
0.780 m long and of negligible mass.The system rotates in a horizon-
tal circle about the other end of the rod at 5010 rev/min. (a) Calculate
the rotational inertia of the system about the axis of rotation. (b)
There is an air drag of 2.30 � 10�2 N on the ball, directed opposite its
motion. What torque must be applied to the system to keep it rotat-
ing at constant speed?

100 Two thin rods (each of mass 0.20
kg) are joined together to form a rigid
body as shown in Fig. 10-60. One of the
rods has length L1 � 0.40 m, and the
other has length L2 � 0.50 m. What is
the rotational inertia of this rigid body
about (a) an axis that is perpendicular
to the plane of the paper and passes
through the center of the shorter rod
and (b) an axis that is perpendicular to
the plane of the paper and passes
through the center of the longer rod?

101 In Fig. 10-61, four pul-
leys are connected by two
belts. Pulley A (radius 15 cm)
is the drive pulley, and it ro-
tates at 10 rad/s. Pulley B (ra-
dius 10 cm) is connected by
belt 1 to pulley A. Pulley B�
(radius 5 cm) is concentric with
pulley B and is rigidly attached
to it. Pulley C (radius 25 cm) is
connected by belt 2 to pulley B�.
Calculate (a) the linear speed of
a point on belt 1, (b) the angular

F
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and three connecting rods, with and
. The balls may be treated as particles, and the connecting

rods have negligible mass. Determine the rotational kinetic energy
of the object if it has an angular speed of 1.2 rad/s about (a) an axis
that passes through point P and is perpendicular to the plane of the
figure and (b) an axis that passes through point P, is perpendicular
to the rod of length 2L, and lies in the plane of the figure.

103 In Fig. 10-63, a thin uniform rod
(mass 3.0 kg, length 4.0 m) rotates
freely about a horizontal axis A that is
perpendicular to the rod and passes
through a point at distance d � 1.0 m
from the end of the rod. The kinetic
energy of the rod as it passes through
the vertical position is 20 J. (a) What is
the rotational inertia of the rod about
axis A? (b) What is the (linear) speed
of the end B of the rod as the rod
passes through the vertical position?
(c) At what angle u will the rod mo-
mentarily stop in its upward swing?

104 Four particles, each of mass,
0.20 kg, are placed at the vertices of a
square with sides of length 0.50 m. The
particles are connected by rods of neg-
ligible mass. This rigid body can rotate
in a vertical plane about a horizontal
axis A that passes through one of the
particles. The body is released from
rest with rod AB horizontal (Fig. 10-64).
(a) What is the rotational inertia of the
body about axis A? (b) What is the an-
gular speed of the body about axis A
when rod AB swings through the verti-
cal position?

105 Cheetahs running at top speed have been reported at an as-
tounding 114 km/h (about 71 mi/h) by observers driving alongside
the animals. Imagine trying to measure a cheetah’s speed by keeping
your vehicle abreast of the animal while also glancing at your
speedometer, which is registering 114 km/h. You keep the vehicle a
constant 8.0 m from the cheetah, but the noise of the vehicle causes
the cheetah to continuously veer away from you along a circular
path of radius 92 m. Thus, you travel along a circular path of radius
100 m. (a) What is the angular speed of you and the cheetah around
the circular paths? (b) What is the linear speed of the cheetah along
its path? (If you did not account for the circular motion, you would
conclude erroneously that the cheetah’s speed is 114 km/h, and that
type of error was apparently made in the published reports.)

106 A point on the rim of a 0.75-m-diameter grinding wheel
changes speed at a constant rate from 12 m/s to 25 m/s in 6.2 s.
What is the average angular acceleration of the wheel?

107 A pulley wheel that is 8.0 cm in diameter has a 5.6-m-long
cord wrapped around its periphery. Starting from rest, the wheel is
given a constant angular acceleration of 1.5 rad/s2. (a) Through
what angle must the wheel turn for the cord to unwind com-
pletely? (b) How long will this take?

108 A vinyl record on a turntable rotates at 33 rev/min.
(a) What is its angular speed in radians per second? What is the 
linear speed of a point on the record (b) 15 cm and (c) 7.4 cm from
the turntable axis?
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speed of pulley B, (c) the angular speed of pulley B�, (d) the linear
speed of a point on belt 2, and (e) the angular speed of pulley C. (Hint:
If the belt between two pulleys does not slip, the linear speeds at the
rims of the two pulleys must be equal.)

102 The rigid object shown in Fig. 10-62 consists of three balls
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11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED

After reading this module, you should be able to . . .

11.01 Identify that smooth rolling can be considered as a 
combination of pure translation and pure rotation.

11.02 Apply the relationship between the center-of-mass
speed and the angular speed of a body in smooth rolling.

● For a wheel of radius R rolling smoothly,

vcom � vR,

where vcom is the linear speed of the wheel’s center of mass
and v is the angular speed of the wheel about its center. 

● The wheel may also be viewed as rotating instantaneously
about the point P of the “road” that is in contact with the
wheel. The angular speed of the wheel about this point 
is the same as the angular speed of the wheel about 
its center.

Learning Objectives

Key Ideas

What Is Physics?
As we discussed in Chapter 10, physics includes the study of rotation. Arguably,
the most important application of that physics is in the rolling motion of wheels
and wheel-like objects. This applied physics has long been used. For example,
when the prehistoric people of Easter Island moved their gigantic stone statues
from the quarry and across the island, they dragged them over logs acting as
rollers. Much later, when settlers moved westward across America in the 1800s,
they rolled their possessions first by wagon and then later by train. Today, like it
or not, the world is filled with cars, trucks, motorcycles, bicycles, and other
rolling vehicles.

The physics and engineering of rolling have been around for so long that
you might think no fresh ideas remain to be developed. However, skateboards
and inline skates were invented and engineered fairly recently, to become huge
financial successes. Street luge is now catching on, and the self-righting Segway
(Fig. 11-1) may change the way people move around in large cities. Applying the
physics of rolling can still lead to surprises and rewards. Our starting point in
exploring that physics is to simplify rolling motion.

Rolling as Translation and Rotation Combined
Here we consider only objects that roll smoothly along a surface; that is, the
objects roll without slipping or bouncing on the surface. Figure 11-2 shows how
complicated smooth rolling motion can be: Although the center of the object
moves in a straight line parallel to the surface, a point on the rim certainly
does not. However, we can study this motion by treating it as a combination
of translation of the center of mass and rotation of the rest of the object around
that center.

Figure 11-1 The self-righting Segway Human
Transporter.

Justin Sullivan/Getty Images, Inc.



To see how we do this, pretend you are standing on a sidewalk watching the
bicycle wheel of Fig. 11-3 as it rolls along a street.As shown, you see the center of
mass O of the wheel move forward at constant speed vcom. The point P on the
street where the wheel makes contact with the street surface also moves forward
at speed vcom, so that P always remains directly below O.

During a time interval t, you see both O and P move forward by a distance s.
The bicycle rider sees the wheel rotate through an angle u about the center of the
wheel, with the point of the wheel that was touching the street at the beginning
of t moving through arc length s. Equation 10-17 relates the arc length s to the 
rotation angle u :

s � uR, (11-1)

where R is the radius of the wheel. The linear speed vcom of the center of the
wheel (the center of mass of this uniform wheel) is ds/dt. The angular speed v of
the wheel about its center is du/dt. Thus, differentiating Eq. 11-1 with respect to
time (with R held constant) gives us

vcom � vR (smooth rolling motion). (11-2)

A Combination. Figure 11-4 shows that the rolling motion of a wheel is a
combination of purely translational and purely rotational motions. Figure 11-4a
shows the purely rotational motion (as if the rotation axis through the center
were stationary): Every point on the wheel rotates about the center with angular
speed v. (This is the type of motion we considered in Chapter 10.) Every point on
the outside edge of the wheel has linear speed vcom given by Eq. 11-2. Figure 11-4b
shows the purely translational motion (as if the wheel did not rotate at all): Every
point on the wheel moves to the right with speed vcom.

The combination of Figs. 11-4a and 11-4b yields the actual rolling motion
of the wheel, Fig. 11-4c. Note that in this combination of motions, the portion
of the wheel at the bottom (at point P) is stationary and the portion at the top
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Figure 11-2 A time-exposure photo-
graph of a rolling disk. Small lights
have been attached to the disk, one
at its center and one at its edge.
The latter traces out a curve called
a cycloid.

Richard Megna/Fundamental Photographs
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Figure 11-4 Rolling motion of a wheel as a combination of purely rotational motion and
purely translational motion. (a) The purely rotational motion:All points on the wheel
move with the same angular speed v. Points on the outside edge of the wheel all move
with the same linear speed v � vcom.The linear velocities of two such points, at top (T)
and bottom (P) of the wheel, are shown. (b) The purely translational motion:All points on
the wheel move to the right with the same linear velocity . (c) The rolling motion of
the wheel is the combination of (a) and (b).
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Figure 11-3 The center of mass O of a rolling
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while the wheel rotates through angle u.
The point P at which the wheel makes 
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(at point T) is moving at speed 2vcom, faster than any other portion of the
wheel. These results are demonstrated in Fig. 11-5, which is a time exposure of
a rolling bicycle wheel. You can tell that the wheel is moving faster near its top
than near its bottom because the spokes are more blurred at the top than at
the bottom.

The motion of any round body rolling smoothly over a surface can be sepa-
rated into purely rotational and purely translational motions, as in Figs. 11-4a
and 11-4b.

Rolling as Pure Rotation
Figure 11-6 suggests another way to look at the rolling motion of a wheel—
namely, as pure rotation about an axis that always extends through the point
where the wheel contacts the street as the wheel moves. We consider the rolling
motion to be pure rotation about an axis passing through point P in Fig. 11-4c and
perpendicular to the plane of the figure. The vectors in Fig. 11-6 then represent
the instantaneous velocities of points on the rolling wheel.

Question: What angular speed about this new axis will a stationary observer as-
sign to a rolling bicycle wheel?
Answer: The same v that the rider assigns to the wheel as she or he observes it
in pure rotation about an axis through its center of mass.

To verify this answer, let us use it to calculate the linear speed of the top of the
rolling wheel from the point of view of a stationary observer. If we call the
wheel’s radius R, the top is a distance 2R from the axis through P in Fig. 11-6, so
the linear speed at the top should be (using Eq. 11-2)

vtop � (v)(2R) � 2(vR) � 2vcom,

in exact agreement with Fig. 11-4c. You can similarly verify the linear speeds
shown for the portions of the wheel at points O and P in Fig. 11-4c.
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Figure 11-5 A photograph of a rolling
bicycle wheel.The spokes near the
wheel’s top are more blurred than
those near the bottom because the top
ones are moving faster, as Fig. 11-4c
shows. Courtesy Alice Halliday

Checkpoint 1
The rear wheel on a clown’s bicycle has twice the radius of the front wheel. (a) When 
the bicycle is moving, is the linear speed at the very top of the rear wheel greater than,
less than, or the same as that of the very top of the front wheel? (b) Is the angular speed
of the rear wheel greater than, less than, or the same as that of the front wheel?

Figure 11-6 Rolling can be viewed as pure 
rotation, with angular speed v, about an
axis that always extends through P.The
vectors show the instantaneous linear 
velocities of selected points on the rolling
wheel.You can obtain the vectors by 
combining the translational and rotational
motions as in Fig. 11-4.

T

Rotation axis at P

O



The Kinetic Energy of Rolling
Let us now calculate the kinetic energy of the rolling wheel as measured by the
stationary observer. If we view the rolling as pure rotation about an axis through
P in Fig. 11-6, then from Eq. 10-34 we have

(11-3)

in which v is the angular speed of the wheel and IP is the rotational inertia of the
wheel about the axis through P. From the parallel-axis theorem of Eq. 10-36 
(I � Icom � Mh2), we have

IP � Icom � MR2, (11-4)

in which M is the mass of the wheel, Icom is its rotational inertia about an axis
through its center of mass, and R (the wheel’s radius) is the perpendicular
distance h. Substituting Eq. 11-4 into Eq. 11-3, we obtain

and using the relation vcom � vR (Eq. 11-2) yields

(11-5)

We can interpret the term as the kinetic energy associated with the
rotation of the wheel about an axis through its center of mass (Fig. 11-4a), and the
term as the kinetic energy associated with the translational motion of the
wheel’s center of mass (Fig. 11-4b).Thus, we have the following rule:

1
2Mvcom

2

1
2Icomv2

K � 1
2Icomv 2 � 1

2�v2
com.

K � 1
2Icomv 2 � 1

2�R 2v 2,

K � 1
2IPv 2,
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● A smoothly rolling wheel has kinetic energy

where Icom is the rotational inertia of the wheel about its cen-
ter of mass and M is the mass of the wheel. 

● If the wheel is being accelerated but is still rolling smoothly,
the acceleration of the center of mass is related to thea:com

K � 1
2Icomv2 � 1

2�v2
com,

angular acceleration a about the center with

acom � aR.

● If the wheel rolls smoothly down a ramp of angle u, its 
acceleration along an x axis extending up the ramp is

acom, x � �
g sin u

1 � Icom /MR2 .

Key Ideas

A rolling object has two types of kinetic energy: a rotational kinetic energy
due to its rotation about its center of mass and a translational kinetic(1

2Icomv2)
energy due to translation of its center of mass.(1

2Mvcom
2 )

11-2 FORCES AND KINETIC ENERGY OF ROLLING

After reading this module, you should be able to . . .

11.03 Calculate the kinetic energy of a body in smooth rolling as
the sum of the translational kinetic energy of the center of mass
and the rotational kinetic energy around the center of mass.

11.04 Apply the relationship between the work done on a
smoothly rolling object and the change in its kinetic energy.

11.05 For smooth rolling (and thus no sliding), conserve me-
chanical energy to relate initial energy values to the values
at a later point.

11.06 Draw a free-body diagram of an accelerating body that is
smoothly rolling on a horizontal surface or up or down a ramp.

11.07 Apply the relationship between the center-of-mass 
acceleration and the angular acceleration.

11.08 For smooth rolling of an object up or down a
ramp, apply the relationship between the object’s 
acceleration, its rotational inertia, and the angle of
the ramp.

Learning Objectives



The Forces of Rolling
Friction and Rolling
If a wheel rolls at constant speed, as in Fig. 11-3, it has no tendency to slide at the
point of contact P, and thus no frictional force acts there. However, if a net force
acts on the rolling wheel to speed it up or to slow it, then that net force causes ac-
celeration of the center of mass along the direction of travel. It also causes
the wheel to rotate faster or slower, which means it causes an angular
acceleration a.These accelerations tend to make the wheel slide at P.Thus, a fric-
tional force must act on the wheel at P to oppose that tendency.

If the wheel does not slide, the force is a static frictional force and the 
motion is smooth rolling.We can then relate the magnitudes of the linear acceler-
ation and the angular acceleration a by differentiating Eq. 11-2 with respect
to time (with R held constant). On the left side, dvcom/dt is acom, and on the right
side dv/dt is a. So, for smooth rolling we have

acom � aR (smooth rolling motion). (11-6)

If the wheel does slide when the net force acts on it, the frictional force that
acts at P in Fig. 11-3 is a kinetic frictional force The motion then is not smooth
rolling, and Eq. 11-6 does not apply to the motion. In this chapter we discuss only
smooth rolling motion.

Figure 11-7 shows an example in which a wheel is being made to rotate faster
while rolling to the right along a flat surface, as on a bicycle at the start of a race.
The faster rotation tends to make the bottom of the wheel slide to the left at
point P. A frictional force at P, directed to the right, opposes this tendency to
slide. If the wheel does not slide, that frictional force is a static frictional force 
(as shown), the motion is smooth rolling, and Eq. 11-6 applies to the motion.
(Without friction, bicycle races would be stationary and very boring.)

If the wheel in Fig. 11-7 were made to rotate slower, as on a slowing bicy-
cle, we would change the figure in two ways: The directions of the center-of-
mass acceleration and the frictional force at point P would now be to
the left.

Rolling Down a Ramp
Figure 11-8 shows a round uniform body of mass M and radius R rolling smoothly
down a ramp at angle u, along an x axis.We want to find an expression for the body’s

f
:

sa:com

f
:

s

f
:

k.

a:com

f
:

s

a:com
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Figure 11-7 A wheel rolls horizontally with-
out sliding while accelerating with linear
acceleration , as on a bicycle at the start
of a race.A static frictional force acts
on the wheel at P, opposing its tendency
to slide.

f
:

s

a:com

P fs

acom

Figure 11-8 A round uniform body of radius R rolls down a ramp.The forces that act on it
are the gravitational force F

:

g, a normal force F
:

N, and a frictional force f
:

s pointing up the
ramp. (For clarity, vector F

:

N has been shifted in the direction it points until its tail is at the
center of the body.)

R

Fg cos θ 

Fg

Fg sin θ 

θ θ 
P

xfs

FN Forces FN and Fg cos
merely balance.

θ

Forces Fg sin    and fs
determine the linear
acceleration down
the ramp.

θ The torque due to fs
determines the
angular acceleration
around the com.



acceleration acom,x down the ramp.We do this by using Newton’s second law in both
its linear version (Fnet � Ma) and its angular version (tnet � Ia).

We start by drawing the forces on the body as shown in Fig. 11-8:

1. The gravitational force on the body is directed downward. The tail of the
vector is placed at the center of mass of the body. The component along the
ramp is Fg sin u, which is equal to Mg sin u.

2. A normal force is perpendicular to the ramp. It acts at the point of
contact P, but in Fig. 11-8 the vector has been shifted along its direction until
its tail is at the body’s center of mass.

3. A static frictional force acts at the point of contact P and is directed up
the ramp. (Do you see why? If the body were to slide at P, it would slide down the
ramp.Thus, the frictional force opposing the sliding must be up the ramp.)

We can write Newton’s second law for components along the x axis in Fig. 11-8
(Fnet,x � max) as

fs � Mg sin u � Macom,x. (11-7)

This equation contains two unknowns, fs and acom,x. (We should not assume that fs

is at its maximum value fs,max. All we know is that the value of fs is just right for
the body to roll smoothly down the ramp, without sliding.)

We now wish to apply Newton’s second law in angular form to the body’s ro-
tation about its center of mass. First, we shall use Eq. 10-41 to write the
torques on the body about that point. The frictional force has moment arm R
and thus produces a torque Rfs, which is positive because it tends to rotate the
body counterclockwise in Fig. 11-8. Forces and have zero moment arms
about the center of mass and thus produce zero torques. So we can write the an-
gular form of Newton’s second law (tnet � Ia) about an axis through the body’s
center of mass as

Rfs � Icoma. (11-8)

This equation contains two unknowns, fs and a.
Because the body is rolling smoothly, we can use Eq. 11-6 (acom � aR) to relate

the unknowns acom,x and a. But we must be cautious because here acom,x is negative
(in the negative direction of the x axis) and a is positive (counterclockwise). Thus
we substitute �acom,x/R for a in Eq. 11-8.Then, solving for fs, we obtain

(11-9)

Substituting the right side of Eq. 11-9 for fs in Eq. 11-7, we then find

(11-10)

We can use this equation to find the linear acceleration acom,x of any body rolling
along an incline of angle u with the horizontal.

Note that the pull by the gravitational force causes the body to come down
the ramp, but it is the frictional force that causes the body to rotate and thus roll.
If you eliminate the friction (by, say, making the ramp slick with ice or grease) or
arrange for Mg sin u to exceed fs,max, then you eliminate the smooth rolling and
the body slides down the ramp.

acom,x � �
g sin u

1 � Icom/MR2 .

fs � �Icom
acom,x

R2 .

F
:

NF
:

g

f
:

s

(t � r�F )

f
:

s

F
:

N

F
:

g
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Checkpoint 2
Disks A and B are identical and roll across a floor with equal speeds.Then disk A rolls
up an incline, reaching a maximum height h, and disk B moves up an incline that is
identical except that it is frictionless. Is the maximum height reached by disk B greater
than, less than, or equal to h?
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Doing so, substituting for Icom (from Table 10-2f), and
then solving for vcom give us

� 4.10 m/s. (Answer)

Note that the answer does not depend on M or R.

(b) What are the magnitude and direction of the frictional
force on the ball as it rolls down the ramp?

KEY IDEA

Because the ball rolls smoothly, Eq. 11-9 gives the frictional
force on the ball.

Calculations: Before we can use Eq. 11-9, we need the
ball’s acceleration acom,x from Eq. 11-10:

Note that we needed neither mass M nor radius R to find
acom,x. Thus, any size ball with any uniform mass would have
this smoothly rolling acceleration down a 30.0� ramp.

We can now solve Eq. 11-9 as

(Answer)

Note that we needed mass M but not radius R. Thus, the
frictional force on any 6.00 kg ball rolling smoothly down
a 30.0� ramp would be 8.40 N regardless of the ball’s ra-
dius but would be larger for a larger mass.

� �2
5(6.00 kg)(�3.50 m/s2) � 8.40 N.

f s � �Icom
acom,x

R2 � �2
5MR2 acom,x

R2 � � 2
5Macom,x

� �
(9.8 m/s2) sin 30.0�

1 � 2
5

� �3.50 m/s2.

acom,x � �
g sin u

1 � Icom/MR2 � �
g sin u

1 � 2
5MR2/MR2

vcom � 2(10
7 )gh � 2(10

7 )(9.8 m/s2)(1.20 m)

2
5MR2

Sample Problem 11.01 Ball rolling down a ramp

A uniform ball, of mass M 6.00 kg and radius R, rolls
smoothly from rest down a ramp at angle u � 30.0� (Fig. 11-8).

(a) The ball descends a vertical height h � 1.20 m to reach the
bottom of the ramp.What is its speed at the bottom?

KEY IDEAS

The mechanical energy E of the ball–Earth system is con-
served as the ball rolls down the ramp.The reason is that the
only force doing work on the ball is the gravitational force, a
conservative force. The normal force on the ball from the
ramp does zero work because it is perpendicular to the
ball’s path. The frictional force on the ball from the ramp
does not transfer any energy to thermal energy because the
ball does not slide (it rolls smoothly).

Thus, we conserve mechanical energy (Ef � Ei):

Kf � Uf � Ki � Ui, (11-11)

where subscripts f and i refer to the final values (at the
bottom) and initial values (at rest), respectively.The gravita-
tional potential energy is initially Ui � Mgh (where M is the
ball’s mass) and finally Uf � 0. The kinetic energy is initially
Ki � 0. For the final kinetic energy Kf, we need an addi-
tional idea: Because the ball rolls, the kinetic energy in-
volves both translation and rotation, so we include them
both by using the right side of Eq. 11-5.

Calculations: Substituting into Eq. 11-11 gives us

(11-12)

where Icom is the ball’s rotational inertia about an axis
through its center of mass, vcom is the requested speed at the
bottom, and v is the angular speed there.

Because the ball rolls smoothly, we can use Eq. 11-2 to
substitute vcom/R for v to reduce the unknowns in Eq. 11-12.

(1
2Icomv2 � 1

2�vcom
2 ) � 0 � 0 � Mgh,

�

Additional examples, video, and practice available at WileyPLUS

11-3 THE YO-YO

After reading this module, you should be able to . . .

11.09 Draw a free-body diagram of a yo-yo moving up or
down its string.

11.10 Identify that a yo-yo is effectively an object that rolls
smoothly up or down a ramp with an incline angle of 90�.

11.11 For a yo-yo moving up or down its string, apply the rela-
tionship between the yo-yo’s acceleration and its rotational
inertia.

11.12 Determine the tension in a yo-yo’s string as the yo-yo
moves up or down its string.

● A yo-yo, which travels vertically up or down a string, can be treated as a wheel rolling along an inclined plane at angle u � 90�.

Learning Objectives

Key Idea



The Yo-Yo
A yo-yo is a physics lab that you can fit in your pocket. If a yo-yo rolls down its
string for a distance h, it loses potential energy in amount mgh but gains kinetic
energy in both translational and rotational forms. As it climbs
back up, it loses kinetic energy and regains potential energy.

In a modern yo-yo, the string is not tied to the axle but is looped around it.
When the yo-yo “hits” the bottom of its string, an upward force on the axle from
the string stops the descent. The yo-yo then spins, axle inside loop, with only
rotational kinetic energy. The yo-yo keeps spinning (“sleeping”) until you “wake
it” by jerking on the string, causing the string to catch on the axle and the yo-yo to
climb back up. The rotational kinetic energy of the yo-yo at the bottom of its
string (and thus the sleeping time) can be considerably increased by throwing the
yo-yo downward so that it starts down the string with initial speeds vcom and v in-
stead of rolling down from rest.

To find an expression for the linear acceleration acom of a yo-yo rolling down
a string, we could use Newton’s second law (in linear and angular forms) just as
we did for the body rolling down a ramp in Fig. 11-8. The analysis is the same ex-
cept for the following:

1. Instead of rolling down a ramp at angle u with the horizontal, the yo-yo rolls
down a string at angle u � 90� with the horizontal.

2. Instead of rolling on its outer surface at radius R, the yo-yo rolls on an axle of
radius R0 (Fig. 11-9a).

3. Instead of being slowed by frictional force , the yo-yo is slowed by the force
on it from the string (Fig. 11-9b).

The analysis would again lead us to Eq. 11-10. Therefore, let us just change the
notation in Eq. 11-10 and set u � 90� to write the linear acceleration as

(11-13)

where Icom is the yo-yo’s rotational inertia about its center and M is its mass. A 
yo-yo has the same downward acceleration when it is climbing back up.

acom � �
g

1 � Icom/MR2
0

,

T
:

f
:

s

(1
2Icomv2)(1

2Mvcom
2 )
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Figure 11-9 (a) A yo-yo, shown in cross 
section. The string, of assumed negligible
thickness, is wound around an axle of
radius R0. (b) A free-body diagram for the
falling yo-yo. Only the axle is shown.

Fg

(a) (b)

R

R0

R0

T

11-4 TORQUE REVISITED

After reading this module, you should be able to . . .

11.13 Identify that torque is a vector quantity.
11.14 Identify that the point about which a torque is 

calculated must always be specified.
11.15 Calculate the torque due to a force on a particle by 

taking the cross product of the particle’s position vector

and the force vector, in either unit-vector notation or 
magnitude-angle notation.

11.16 Use the right-hand rule for cross products to find the
direction of a torque vector.

● In three dimensions, torque is a vector quantity defined
relative to a fixed point (usually an origin); it is

where is a force applied to a particle and is a 
position vector locating the particle relative to the fixed 
point.

r:F
:

t: � r: � F
:

,

t: ● The magnitude of is given by

where f is the angle between and , is the component
of perpendicular to , and is the moment arm of . 

● The direction of is given by the right-hand rule for cross
products.

t:
F
:

r�r:F
:

F�r:F
:

t � rF sin f � rF� � r�F,

t:

Learning Objectives

Key Ideas



Torque Revisited
In Chapter 10 we defined torque t for a rigid body that can rotate around a fixed
axis. We now expand the definition of torque to apply it to an individual particle
that moves along any path relative to a fixed point (rather than a fixed axis). The
path need no longer be a circle, and we must write the torque as a vector that may
have any direction. We can calculate the magnitude of the torque with a formula
and determine its direction with the right-hand rule for cross products.

Figure 11-10a shows such a particle at point A in an xy plane.A single force 
in that plane acts on the particle, and the particle’s position relative to the origin
O is given by position vector .The torque acting on the particle relative to the
fixed point O is a vector quantity defined as

(torque defined). (11-14)

We can evaluate the vector (or cross) product in this definition of by using
the rules in Module 3-3. To find the direction of , we slide the vector (without
changing its direction) until its tail is at the origin O, so that the two vectors in the
vector product are tail to tail as in Fig. 11-10b. We then use the right-hand rule in
Fig. 3-19a, sweeping the fingers of the right hand from (the first vector in the
product) into (the second vector). The outstretched right thumb then gives the
direction of . In Fig. 11-10b, it is in the positive direction of the z axis.t:

F
:

r:

F
:

t:
t:

t: � r: � F
:

t:r:

F
:

t:
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Checkpoint 3
The position vector of a particle points along the positive direction of a z axis. If
the torque on the particle is (a) zero, (b) in the negative direction of x, and (c) in the 
negative direction of y, in what direction is the force causing the torque?

r:

To determine the magnitude of , we apply the general result of Eq. 3-27
(c � ab sin f), finding

t � rF sin f, (11-15)

where f is the smaller angle between the directions of and when the vectors
are tail to tail. From Fig. 11-10b, we see that Eq. 11-15 can be rewritten as

(11-16)

where is the component of perpendicular to r:. From Fig. 11-10c,
we see that Eq. 11-15 can also be rewritten as

(11-17)

where is the moment arm of (the perpendicular distance
between O and the line of action of F

:
).

F
:

r� (� r sin f)

t � r�F,

F
:

F� (�F sin f)

t � rF�,

F
:

r:

t:

Figure 11-10 Defining torque. (a) A force , lying in an xy plane, acts on a particle at point A. (b) This force produces a torque
on the particle with respect to the origin O. By the right-hand rule for vector (cross) products, the torque vector

points  in the positive direction of z. Its magnitude is given by in (b) and by in (c).r�FrF�

t:
 
(� r: � F

:
)

F
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φ

φ
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F

(= r × F)
F (redrawn, with

tail at origin)

(b)

O φ

τ

F

r

A

z

x

y

r
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τ



304 CHAPTER 11 ROLLING, TORQUE, AND ANGULAR MOMENTUM

the position vector are to see.) In Fig. 11-11d, the angle be-
tween the directions of and is 90� and the symbol �F

:

3r:

Sample Problem 11.02 Torque on a particle due to a force

In Fig. 11-11a, three forces, each of magnitude 2.0 N, act on a
particle. The particle is in the xz plane at point A given by
position vector , where r � 3.0 m and u � 30�. What is the
torque, about the origin O, due to each force?

KEY IDEA

Because the three force vectors do not lie in a plane, we
must use cross products, with magnitudes given by Eq. 11-15
(t � rF sin f) and directions given by the right-hand rule.

Calculations: Because we want the torques with respect to
the origin O, the vector required for each cross product
is the given position vector. To determine the angle f be-
tween  and each force, we shift the force vectors of Fig. 11-
11a, each in turn, so that their tails are at the origin. Figures
11-11b, c, and d, which are direct views of the xz plane, show
the shifted force vectors and , respectively. (Note
how much easier the angles between the force vectors and

F
:

3F
:

2,F
:

1,

r:

r:

r:

Figure 11-11 (a) A particle at point A is acted on by three forces, each parallel to a coordinate axis.The angle f (used in finding torque) is shown
(b) for and (c) for . (d) Torque t:3 is perpendicular to both and (force is directed into the plane of the figure). (e) The torques.F

:

3F
:

3r:F
:

2F
:

1

Additional examples, video, and practice available at WileyPLUS
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Cross   into 
Torque  3 is
in the xz plane.

F3.r
τ

A

means is directed into the page. (For out of the page, weF
:

3

would use �.)
Now, applying Eq. 11-15, we find 

t1 � rF1 sin f1 � (3.0 m)(2.0 N)(sin 150�) � 3.0 N 
m,

t2 � rF2 sin f2 � (3.0 m)(2.0 N)(sin 120�) � 5.2 N 
m,

and t3 � rF3 sin f3 � (3.0 m)(2.0 N)(sin 90�)

� 6.0 N 
m. (Answer)

Next, we use the right-hand rule, placing the fingers of
the right hand so as to rotate into through the smaller of
the two angles between their directions. The thumb points in
the direction of the torque.Thus t:1 is directed into the page in
Fig. 11-11b; t:2 is directed out of the page in Fig. 11-11c; and
t:3 is directed as shown in Fig. 11-11d. All three torque vec-
tors are shown in Fig. 11-11e.

F
:

r:
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11-5 ANGULAR MOMENTUM

After reading this module, you should be able to . . .

11.17 Identify that angular momentum is a vector quantity.
11.18 Identify that the fixed point about which an angular 

momentum is calculated must always be specified.
11.19 Calculate the angular momentum of a particle by taking

the cross product of the particle’s position vector and its

momentum vector, in either unit-vector notation or 
magnitude-angle notation.

11.20 Use the right-hand rule for cross products to find the
direction of an angular momentum vector.

● The angular momentum of a particle with linear momen-
tum , mass m, and linear velocity is a vector quantity
defined relative to a fixed point (usually an origin) as

● The magnitude of is given by

� r� p � r� mv,
� rp� � rmv�

� � rmv sin f

�
:

�
:

� r: � p: � m(r: � v:).

v:p:
�
: where f is the angle between and , and are 

the components of and perpendicular to , and is 
the perpendicular distance between the fixed point and 
the extension of . 

● The direction of is given by the right-hand rule: Position
your right hand so that the fingers are in the direction of .
Then rotate them around the palm to be in the direction of .
Your outstretched thumb gives the direction of .�

:
p:

r:
�
:

p:

r�r:v:p:
v�p�p:r:

Learning Objectives

Key Ideas

Angular Momentum
Recall that the concept of linear momentum and the principle of conservation
of linear momentum are extremely powerful tools. They allow us to predict
the outcome of, say, a collision of two cars without knowing the details of the col-
lision. Here we begin a discussion of the angular counterpart of , winding up in
Module 11-8 with the angular counterpart of the conservation principle, which
can lead to beautiful (almost magical) feats in ballet, fancy diving, ice skating, and
many other activities.

Figure 11-12 shows a particle of mass m with linear momentum as
it passes through point A in an xy plane. The angular momentum of this parti-
cle with respect to the origin O is a vector quantity defined as

(angular momentum defined), (11-18)

where is the position vector of the particle with respect to O. As the particle
moves relative to O in the direction of its momentum , position vector

rotates around O. Note carefully that to have angular momentum about O, the
particle does not itself have to rotate around O. Comparison of Eqs. 11-14 and 11-18
shows that angular momentum bears the same relation to linear momentum that
torque does to force. The SI unit of angular momentum is the kilogram-
meter-squared per second (kg 
m2/s), equivalent to the joule-second (J 
s).

Direction. To find the direction of the angular momentum vector in Fig. 11-
12, we slide the vector until its tail is at the origin O. Then we use the right-hand
rule for vector products, sweeping the fingers from into . The outstretched
thumb then shows that the direction of is in the positive direction of the z axis in
Fig. 11-12.This positive direction is consistent with the counterclockwise rotation of
position vector about the z axis, as the particle moves. (A negative direction of
would be consistent with a clockwise rotation of about the z axis.)

Magnitude. To find the magnitude of , we use the general result of Eq. 3-27
to write

(11-19)

where f is the smaller angle between and when these two vectors are tailp:r:

� � rmv sin f,

�
:

r:
�
:

r:

�
:

p:r:
p:

�
:

r:
p: (� mv:)

r:

�
:

� r: � p: � m(r: � v:)

�
:

p: (� mv:)

p:

p:

Figure 11-12 Defining angular momentum.A
particle passing through point A has linear
momentum , with the vector 
lying in an xy plane.The particle has angular
momentum with respect to the
origin O. By the right-hand rule, the angular
momentum vector points in the positive 
direction of z. (a) The magnitude of is
given by � . (b) The magni-� rp�� rmv�
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to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as

(11-20)

where is the component of perpendicular to and is the component
of perpendicular to . From Fig. 11-12b, we see that Eq. 11-19 can also be
rewritten as

(11-21)

where is the perpendicular distance between O and the extension of .
Important. Note two features here: (1) angular momentum has meaning

only with respect to a specified origin and (2) its direction is always perpendicu-
lar to the plane formed by the position and linear momentum vectors and .p:r:

p:r�

� � r�p � r�mv,

r:v:
v�r:p:p�

� � rp�� rmv�,
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Checkpoint 4
In part a of the figure, particles 1 and 2 move around point O in circles
with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight
lines at perpendicular distances of 4 m and 2 m from point O. Particle 5
moves directly away from O. All five particles have the same mass and
the same constant speed. (a) Rank the particles according to the magni-
tudes of their angular momentum about point O, greatest first. (b)
Which particles have negative angular momentum about point O? (a) (b)

O

2

1 3 

5

4

O

around O as particle 1 moves. Thus, the angular momen-
tum vector for particle 1 is

Similarly, the magnitude of is

and the vector product is into the page, which is the
negative direction, consistent with the clockwise rotation of

around O as particle 2 moves. Thus, the angular momen-
tum vector for particle 2 is

The net angular momentum for the two-particle system is

(Answer)

The plus sign means that the system’s net angular momen-
tum about point O is out of the page.

� �2.0 kg 
m2/s.

L � �1 � �2 � �10 kg 
m2/s � (�8.0 kg 
m2/s)

�2 � �8.0 kg 
m2/s.

r:2

r2
: � p2

:

� 8.0 kg 
m2/s,

�2 � r�2p2 � (4.0 m)(2.0 kg 
m/s)

�
:

2

�1 � �10 kg 
m2/s.

r:1

Sample Problem 11.03 Angular momentum of a two-particle system

Figure 11-13 shows an overhead view of two particles moving
at constant momentum along horizontal paths. Particle 1, with
momentum magnitude p1 � 5.0 kg 
m/s, has position vector 
and will pass 2.0 m from point O. Particle 2, with momentum
magnitude p2 � 2.0 kg 
m/s, has position vector and will pass
4.0 m from point O. What are the magnitude and direction of
the net angular momentum about point O of the two-
particle system?

KEY IDEA

To find , we can first find the individual angular momenta
and and then add them. To evaluate their magnitudes,

we can use any one of Eqs. 11-18 through 11-21. However,
Eq. 11-21 is easiest, because we are given the perpendicular
distances and and the momen-
tum magnitudes p1 and p2.

Calculations: For particle 1, Eq. 11-21 yields

To find the direction of vector , we use Eq. 11-18 and the
right-hand rule for vector products. For , the vector
product is out of the page, perpendicular to the plane of
Fig. 11-13. This is the positive direction, consistent with the
counterclockwise rotation of the particle’s position vector

r1
: � p1

:
�
:

1

� 10 kg 
m2/s.

�1 � r�1p1 � (2.0 m)(5.0 kg 
m/s)

r�2  (� 4.0 m)r�1  (� 2.0 m)

�
:

2�
:

1

L
:

L
:

r:2

r:1

Figure 11-13 Two particles pass
near point O.

r⊥1r⊥2

r2

r1

O
p2

p1

Additional examples, video, and practice available at WileyPLUS
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11-6 NEWTON’S SECOND LAW IN ANGULAR FORM

After reading this module, you should be able to . . .

11.21 Apply Newton’s second law in angular form to relate the torque acting on a particle to the resulting rate of change of the
particle’s angular momentum, all relative to a specified point.

● Newton’s second law for a particle can be written in angular form as

where is the net torque acting on the particle and is the angular momentum of the particle.�
:

t:net

t:net �
d�

:

dt
,

Learning Objective

Key Idea

Newton’s Second Law in Angular Form
Newton’s second law written in the form

(single particle) (11-22)

expresses the close relation between force and linear momentum for a single
particle. We have seen enough of the parallelism between linear and angular
quantities to be pretty sure that there is also a close relation between torque
and angular momentum. Guided by Eq. 11-22, we can even guess that it must be

(single particle). (11-23)

Equation 11-23 is indeed an angular form of Newton’s second law for a single particle:

t:net �
d�

:

dt

F
:

net �
dp:

dt

The (vector) sum of all the torques acting on a particle is equal to the time rate of
change of the angular momentum of that particle.

Equation 11-23 has no meaning unless the torques and the angular momentum
are defined with respect to the same point, usually the origin of the coordinate

system being used.

Proof of Equation 11-23
We start with Eq. 11-18, the definition of the angular momentum of a particle:

where is the position vector of the particle and is the velocity of the particle.
Differentiating* each side with respect to time t yields

(11-24)

However, is the acceleration of the particle, and is its velocity .
Thus, we can rewrite Eq. 11-24 as

d�
:

dt
� m(r: � a: � v: � v:).

v:dr:/dta:dv:/dt

d�
:

dt
� m �r: �

dv:

dt
�

dr:

dt
� v:�.

v:r:
�
:

� m(r: � v:),

�
:

t:

*In differentiating a vector product, be sure not to change the order of the two quantities (here and
) that form that product. (See Eq. 3-25.)v:

r:



308 CHAPTER 11 ROLLING, TORQUE, AND ANGULAR MOMENTUM

Checkpoint 5
The figure shows the position vector of a particle
at a certain instant, and four choices for the direc-
tion of a force that is to accelerate the particle.All
four choices lie in the xy plane. (a) Rank the
choices according to the magnitude of the time rate
of change they produce in the angular mo-
mentum of the particle about point O, greatest
first. (b) Which choice results in a negative rate of change about O?

(d�
:

/dt)

r:

xF1 O

y
F2

F3

F4

r

on a particle and the angular momentum of the particle
are calculated around the same point, then the torque is re-
lated to angular momentum by Eq. 11-23 ( ).

Calculations: In order to use Eq. 11-18 to find the angular
momentum about the origin, we first must find an expres-
sion for the particle’s velocity by taking a time derivative of
its position vector. Following Eq. 4-10 ( ), we write

,

with in meters per second.
Next, let’s take the cross product of and using the

template for cross products displayed in Eq. 3-27:

Here the generic is and the generic is . However,
because we really don’t want to do more work than
needed, let’s first just think about our substitutions into

v:b
:

r:a:

a: � b
:

� (aybz � byaz)î � (azbx � bzax)ĵ � (axby � bxay)k̂ .

v:r:
v:

� (�4.00t � 1.00)î

v: �
d
dt

((�2.00t2 � t)î � 5.00ĵ )

� dr:/dtv:

� d�
:

/dtt:

Sample Problem 11.04 Torque and the time derivative of angular momentum

Figure 11-14a shows a freeze-frame of a 0.500 kg particle
moving along a straight line with a position vector given by

,

with in meters and t in seconds, starting at t � 0. The posi-
tion vector points from the origin to the particle. In unit-vector 
notation, find expressions for the angular momentum of
the particle and the torque acting on the particle, both
with respect to (or about) the origin. Justify their algebraic
signs in terms of the particle’s motion.

KEY IDEAS 

(1) The point about which an angular momentum of a par-
ticle is to be calculated must always be specified. Here it is
the origin. (2) The angular momentum of a particle is
given by Eq. 11-18 . (3) The sign
associated with a particle’s angular momentum is set by the
sense of rotation of the particle’s position vector (around
the rotation axis) as the particle moves: clockwise is nega-
tive and counterclockwise is positive. (4) If the torque acting

(�
:

� r: � p: � m(r: � v:))
�
:

t:
�
:

r:
r: � (�2.00t2 � t)î � 5.00ĵ

Now (the vector product of any vector with itself is zero because the
angle between the two vectors is necessarily zero). Thus, the last term of this 
expression is eliminated and we then have

We now use Newton’s second law to replace with its equal, the
vector sum of the forces that act on the particle, obtaining

(11-25)

Here the symbol indicates that we must sum the vector products for all
the forces. However, from Eq. 11-14, we know that each one of those vector prod-
ucts is the torque associated with one of the forces.Therefore, Eq. 11-25 tells us that

This is Eq. 11-23, the relation that we set out to prove.

t:net �
d�

:

dt
.

r: � F
:

�

d�
:

dt
� r: � F

:

net � �(r: � F
:

).

ma:(F
:

net � ma:)

d�
:

dt
� m(r: � a:) � r: � ma:.

v: � v: � 0
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Figure 11-14 (a) A particle moving in a straight line, shown at time 
t � 0. (b) The position vector at t � 0, 1.00 s, and 2.00 s. (c) The first
step in applying the right-hand rule for cross products. (d) The sec-
ond step. (e) The angular momentum vector and the torque vector
are along the z axis, which extends out of the plane of the figure.

y (m)

5

(a)

v

x (m)

y (m)

t � 2 s t � 1 s t � 0

�10 �3
(b)

x (m)

r2

r1 r0

y

(c)

r

x

y

(d)

v

x

y

(e)

x
�

t

Both angular momentum
and torque point out of 
figure, in the positive z
direction.

Additional examples, video, and practice available at WileyPLUS

the generic cross product. Because lacks any z component
and because lacks any y or z component, the only nonzero
term in the generic cross product is the very last one .
So, let’s cut to the (mathematical) chase by writing

Note that, as always, the cross product produces a vector
that is perpendicular to the original vectors.

To finish up Eq. 11-18, we multiply by the mass, finding

(Answer)

The torque about the origin then immediately follows from
Eq. 11-23:

(Answer)

which is in the positive direction of the z axis.
Our result for tells us that the angular momentum is

in the positive direction of the z axis. To make sense of that
positive result in terms of the rotation of the position vector,

�
:

� 10.0k̂  kg �m2/s2 � 10.0k̂  N �m,

t: �
d
dt

(10.0t � 2.50)k̂ kg �m2/s

� (10.0t � 2.50)k̂  kg � m2/s.

�
:

� (0.500 kg)[(20.0t � 5.00)k̂  m2/s]

r: � v: � �(�4.00t � 1.00)(5.00)k̂ � (20.0t � 5.00)k̂  m2/s.

(�bxay)k̂
v:

r:

let’s evaluate that vector for several times:

t � 0,

t � 1.00 s,

t � 2.00 s,

By drawing these results as in Fig. 11-14b, we see that ro-
tates counterclockwise in order to keep up with the particle.
That is the positive direction of rotation. Thus, even though
the particle is moving in a straight line, it is still moving
counterclockwise around the origin and thus has a positive
angular momentum.

We can also make sense of the direction of by applying
the right-hand rule for cross products (here , or, if you
like, , which gives the same direction). For any mo-
ment during the particle’s motion, the fingers of the right
hand are first extended in the direction of the first vector in
the cross product ( ) as indicated in Fig. 11-14c. The orienta-
tion of the hand (on the page or viewing screen) is then ad-
justed so that the fingers can be comfortably rotated about
the palm to be in the direction of the second vector in the
cross product ( ) as indicated in Fig. 11-14d.The outstretched
thumb then points in the direction of the result of the cross
product. As indicated in Fig. 11-14e, the vector is in the posi-
tive direction of the z axis (which is directly out of the plane
of the figure), consistent with our previous result. Figure
11-14e also indicates the direction of , which is also in the
positive direction of the z axis because the angular momen-
tum is in that direction and is increasing in magnitude.

t:

v:

r:

mr: � v:
r: � v:

�
:

r:

�10.0î � 5.00ĵ mr:
2

�

�3.00î � 5.00ĵ mr:
1

�

5.00ĵ mr:
0

�



The Angular Momentum of a System of Particles
Now we turn our attention to the angular momentum of a system of particles with
respect to an origin. The total angular momentum of the system is the (vector)
sum of the angular momenta of the individual particles (here with label i):

(11-26)

With time, the angular momenta of individual particles may change because
of interactions between the particles or with the outside.We can find the resulting
change in by taking the time derivative of Eq. 11-26.Thus,

(11-27)

From Eq. 11-23, we see that is equal to the net torque on the ith
particle.We can rewrite Eq. 11-27 as

(11-28)

That is, the rate of change of the system’s angular momentum is equal to the
vector sum of the torques on its individual particles. Those torques include inter-
nal torques (due to forces between the particles) and external torques (due to
forces on the particles from bodies external to the system). However, the forces
between the particles always come in third-law force pairs so their torques sum to
zero. Thus, the only torques that can change the total angular momentum of
the system are the external torques acting on the system.

Net External Torque. Let represent the net external torque, the vector
sum of all external torques on all particles in the system. Then we can write
Eq. 11-28 as

(system of particles), (11-29)�:net �
dL

:

dt

�:net

L
:

L
:

dL
:

dt
� �

n

i�1
 �:net,i

.

�:net,id�
:

i /dt

dL
:

dt
� �

n

i�1

d�i
:

dt
.

L
:

L
:

� �
:

1 � �
:

2 � �
:

3 � � � � � �
:

n � �
n

i�1
�
:

i.

�
:

L
:
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11-7 ANGULAR MOMENTUM OF A RIGID BODY

After reading this module, you should be able to . . .

11.22 For a system of particles, apply Newton’s second law
in angular form to relate the net torque acting on the 
system to the rate of the resulting change in the system’s
angular momentum.

11.23 Apply the relationship between the angular momentum
of a rigid body rotating around a fixed axis and the body’s
rotational inertia and angular speed around that axis.

11.24 If two rigid bodies rotate about the same axis, calculate
their total angular momentum.

● The angular momentum of a system of particles is 
the vector sum of the angular momenta of the individual 
particles:

● The time rate of change of this angular momentum is equal
to the net external torque on the system (the vector sum of

L
:

� �
:

1 � �
:

2 � � � � � �
:

n � �
n

i�1
�
:

i.

L
:

the torques due to interactions of the particles of the system
with particles external to the system):

(system of particles).

● For a rigid body rotating about a fixed axis, the component
of its angular momentum parallel to the rotation axis is

L � Iv (rigid body, fixed axis).

t:net �
dL

:

dt

Learning Objectives

Key Ideas
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The net external torque acting on a system of particles is equal to the time
rate of change of the system’s total angular momentum .L

:
�:net

Equation 11-29 is analogous to (Eq. 9-27) but requires extra
caution: Torques and the system’s angular momentum must be measured relative
to the same origin. If the center of mass of the system is not accelerating relative
to an inertial frame, that origin can be any point. However, if it is accelerating,
then it must be the origin. For example, consider a wheel as the system of parti-
cles. If it is rotating about an axis that is fixed relative to the ground, then the ori-
gin for applying Eq. 11-29 can be any point that is stationary relative to the
ground. However, if it is rotating about an axis that is accelerating (such as when
it rolls down a ramp), then the origin can be only at its center of mass.

The Angular Momentum of a Rigid Body 
Rotating About a Fixed Axis
We next evaluate the angular momentum of a system of particles that form a rigid
body that rotates about a fixed axis. Figure 11-15a shows such a body.The fixed axis
of rotation is a z axis, and the body rotates about it with constant angular speed v.
We wish to find the angular momentum of the body about that axis.

We can find the angular momentum by summing the z components of the an-
gular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass el-
ement, of mass �mi, moves around the z axis in a circular path.The position of the
mass element is located relative to the origin O by position vector . The radius
of the mass element’s circular path is the perpendicular distance between the
element and the z axis.

The magnitude of the angular momentum of this mass element, with
respect to O, is given by Eq. 11-19:

where pi and vi are the linear momentum and linear speed of the mass element,
and 90	 is the angle between and . The angular momentum vector for the
mass element in Fig. 11-15a is shown in Fig. 11-15b; its direction must be perpen-
dicular to those of and .

The z Components. We are interested in the component of that is parallel
to the rotation axis, here the z axis.That z component is

The z component of the angular momentum for the rotating rigid body as a
whole is found by adding up the contributions of all the mass elements that make
up the body.Thus, because we may write

(11-30)

We can remove v from the summation here because it has the same value for all
points of the rotating rigid body.

The quantity in Eq. 11-30 is the rotational inertia I of the body
about the fixed axis (see Eq. 10-33).Thus Eq. 11-30 reduces to

L � Iv (rigid body, fixed axis). (11-31)

��mi r� i
2

� v � �
n

i�1
�mi r� i

2 �.

Lz � �
n

i�1
�iz � �

n

i�1
�mi vir�i � �

n

i�1
�mi(vr�i)r�i

v � vr�,

�iz � �i sin u � (ri sin u)(�mi vi) � r�i �mi vi.

�
:

i

p:ir:i

�
:

ip:ir:i

�i � (ri)( pi)(sin 90	) � (ri)(�mi vi),

�
:

i

r� i,
r:i

F
:

net � dP
:

/dt

Figure 11-15 (a) A rigid body rotates about a
z axis with angular speed v.A mass ele-
ment of mass �mi within the body moves
about the z axis in a circle with radius .
The mass element has linear momentum

and it is located relative to the origin
O by position vector . Here the mass 
element is shown when is parallel to the
x axis. (b) The angular momentum with
respect to O, of the mass element in (a).The
z component is also shown.�iz

�
:

i,
r�i

r:i

p:i,

r�i

θ 

z

x

y

Δ mi

r i

ri

pi

O

z

x

y

�i

θ 

θ 

�iz

O

(a)

(b)

which is Newton’s second law in angular form. It says:



Conservation of Angular Momentum
So far we have discussed two powerful conservation laws, the conservation of 
energy and the conservation of linear momentum. Now we meet a third law of
this type, involving the conservation of angular momentum. We start from 

We have dropped the subscript z, but you must remember that the angular
momentum defined by Eq. 11-31 is the angular momentum about the rotation
axis.Also, I in that equation is the rotational inertia about that same axis.

Table 11-1, which supplements Table 10-3, extends our list of corresponding
linear and angular relations.
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Checkpoint 6
In the figure, a disk, a
hoop, and a solid sphere
are made to spin about
fixed central axes (like a
top) by means of strings
wrapped around them, with the strings producing the same constant tangential force

on all three objects.The three objects have the same mass and radius, and they are
initially stationary. Rank the objects according to (a) their angular momentum about
their central axes and (b) their angular speed, greatest first, when the strings have
been pulled for a certain time t.

F
:

Disk Hoop Sphere

F F F

11-8 CONSERVATION OF ANGULAR MOMENTUM

After reading this module, you should be able to . . .

11.25 When no external net torque acts on a system along a specified axis, apply the conservation of angular momentum to 
relate the initial angular momentum value along that axis to the value at a later instant.

● The angular momentum of a system remains constant if the net external torque acting on the system is zero:

(isolated system)

or (isolated system).

This is the law of conservation of angular momentum. 

L
:

i � L
:

f

L
:

� a constant

L
:

Learning Objective

Key Idea

Table 11-1 More Corresponding Variables and Relations for Translational 
and Rotational Motiona

Translational Rotational

Force Torque
Linear momentum Angular momentum
Linear momentumb Angular momentumb L

:
(� � �

:

i)P
:

(� �p:i)
�
: 

(� r: � p:)p:
�:

 
(� r: � F

:
)F

:

Linear momentumb Angular momentumc L � Iv

Newton’s second lawb Newton’s second lawb

Conservation lawd Conservation lawd

aSee also Table 10-3.
bFor systems of particles, including rigid bodies.
cFor a rigid body about a fixed axis, with L being the component along that axis.
dFor a closed, isolated system.

L
:

� a constantP
:

� a constant

�:net �
dL

:

dt
F
:

net �
dP

:

dt

P
:

� Mv:com
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If the net external torque acting on a system is zero, the angular momentum of
the system remains constant, no matter what changes take place within the system.

L
:

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent
to three component equations corresponding to the conservation of angular 
momentum in three mutually perpendicular directions. Depending on the
torques acting on a system, the angular momentum of the system might be con-
served in only one or two directions but not in all directions:

Eq. 11-29 , which is Newton’s second law in angular form. If no (t:net � dL
:

/dt)
net external torque acts on the system, this equation becomes or

(isolated system). (11-32)

This result, called the law of conservation of angular momentum, can also be
written as

,

or (isolated system). (11-33)

Equations 11-32 and 11-33 tell us:

L
:

i � L
:

f

�net angular momentum
at some initial time t i

� � �net angular momentum
at some later time t f

�

L
:

� a constant

dL
:

/dt � 0,

If the component of the net external torque on a system along a certain axis is
zero, then the component of the angular momentum of the system along that axis
cannot change, no matter what changes take place within the system.

This is a powerful statement: In this situation we are concerned with only the initial
and final states of the system; we do not need to consider any intermediate state.

We can apply this law to the isolated body in Fig. 11-15, which rotates around
the z axis. Suppose that the initially rigid body somehow redistributes its mass
relative to that rotation axis, changing its rotational inertia about that axis.
Equations 11-32 and 11-33 state that the angular momentum of the body cannot
change. Substituting Eq. 11-31 (for the angular momentum along the rotational
axis) into Eq. 11-33, we write this conservation law as

Iivi � Ifvf. (11-34)

Here the subscripts refer to the values of the rotational inertia I and angular
speed v before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11-32 and
11-33 hold beyond the limitations of Newtonian mechanics. They hold for parti-
cles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of angular momentum
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that
can rotate freely about a vertical axis. The student, who has been set into
rotation at a modest initial angular speed vi, holds two dumbbells in his
outstretched hands. His angular momentum vector lies along the vertical ro-
tation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces
his rotational inertia from its initial value Ii to a smaller value If because he
moves mass closer to the rotation axis. His rate of rotation increases markedly,

L
:

Figure 11-16 (a) The student has a relatively
large rotational inertia about the rotation
axis and a relatively small angular speed.
(b) By decreasing his rotational inertia, the
student automatically increases his angular
speed.The angular momentum of the
rotating system remains unchanged.

L
:

L

Ii

If

Rotation axis 
(a)

(b)

iω 

fω

L
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from vi to vf.The student can then slow down by extending his arms once more,
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool,
and dumbbells.Thus, the angular momentum of that system about the rotation
axis must remain constant, no matter how the student maneuvers the dumb-
bells. In Fig. 11-16a, the student’s angular speed vi is relatively low and his ro-
tational inertia Ii is relatively high.According to Eq. 11-34, his angular speed in
Fig. 11-16b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-a-
half-somersault dive. As you should expect, her center of mass follows a para-
bolic path. She leaves the springboard with a definite angular momentum 
about an axis through her center of mass, represented by a vector pointing into
the plane of Fig. 11-17, perpendicular to the page. When she is in the air, no net
external torque acts on her about her center of mass, so her angular momentum
about her center of mass cannot change. By pulling her arms and legs into the
closed tuck position, she can considerably reduce her rotational inertia about the
same axis and thus, according to Eq. 11-34, considerably increase her angular
speed. Pulling out of the tuck position (into the open layout position) at the end
of the dive increases her rotational inertia and thus slows her rotation rate so she
can enter the water with little splash. Even in a more complicated dive involving
both twisting and somersaulting, the angular momentum of the diver must be
conserved, in both magnitude and direction, throughout the dive.

3. Long jump When an athlete takes off from the ground in a running long jump,
the forces on the launching foot give the athlete an angular momentum with a
forward rotation around a horizontal axis. Such rotation would not allow the
jumper to land properly: In the landing, the legs should be together and extended
forward at an angle so that the heels mark the sand at the greatest distance. Once
airborne, the angular momentum cannot change (it is conserved) because no ex-
ternal torque acts to change it. However, the jumper can shift most of the angular
momentum to the arms by rotating them in windmill fashion (Fig. 11-18). Then
the body remains upright and in the proper orientation for landing.

L
:

Figure 11-18 Windmill motion of the arms
during a long jump helps maintain body
orientation for a proper landing.

(a) (b)

θFigure 11-19 (a) Initial phase of a tour jeté:
large rotational inertia and small angular
speed. (b) Later phase: smaller rotational
inertia and larger angular speed.

Figure 11-17 The diver’s angular momentum
is constant throughout the dive, being

represented by the tail � of an arrow that
is perpendicular to the plane of the figure.
Note also that her center of mass (see the
dots) follows a parabolic path.

L
:

L

L

Her angular momentum
is fixed but she can still
control her spin rate.

4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting motion
on the floor with one foot while holding the other leg perpendicular to the
body (Fig. 11-19a).The angular speed is so small that it may not be perceptible
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Checkpoint 7
A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round.
If the beetle crawls toward the center of the disk, do the following (each relative to
the central axis) increase, decrease, or remain the same for the beetle–disk system:
(a) rotational inertia, (b) angular momentum, and (c) angular speed?

to the audience. As the performer ascends, the outstretched leg is brought
down and the other leg is brought up, with both ending up at angle u to the
body (Fig. 11-19b). The motion is graceful, but it also serves to increase the
rotation because bringing in the initially outstretched leg decreases the per-
former’s rotational inertia. Since no external torque acts on the airborne
performer, the angular momentum cannot change. Thus, with a decrease in
rotational inertia, the angular speed must increase. When the jump is well
executed, the performer seems to suddenly begin to spin and rotates 180	
before the initial leg orientations are reversed in preparation for the landing.
Once a leg is again outstretched, the rotation seems to vanish.

Sample Problem 11.05 Conservation of angular momentum, rotating wheel demo

Figure 11-20a shows a student, again sitting on a stool that
can rotate freely about a vertical axis. The student, initially
at rest, is holding a bicycle wheel whose rim is loaded with
lead and whose rotational inertia Iwh about its central axis is
1.2 kg �m2. (The rim contains lead in order to make the value
of Iwh substantial.)

The wheel is rotating at an angular speed vwh of 3.9
rev/s; as seen from overhead, the rotation is counterclock-
wise. The axis of the wheel is vertical, and the angular
momentum of the wheel points vertically upward.

The student now inverts the wheel (Fig. 11-20b) so that,
as seen from overhead, it is rotating clockwise. Its angular
momentum is now . The inversion results in the stu-
dent, the stool, and the wheel’s center rotating together as a
composite rigid body about the stool’s rotation axis, with ro-
tational inertia Ib � 6.8 kg �m2. (The fact that the wheel is
also rotating about its center does not affect the mass distri-
bution of this composite body; thus, Ib has the same value
whether or not the wheel rotates.) With what angular speed
vb and in what direction does the composite body rotate af-
ter the inversion of the wheel?

KEY IDEAS

1. The angular speed vb we seek is related to the final angu-
lar momentum of the composite body about the
stool’s rotation axis by Eq. 11-31 (L Iv).

2. The initial angular speed vwh of the wheel is related to the
angular momentum of the wheel’s rotation about its
center by the same equation.

3. The vector addition of and gives the total angular
momentum of the system of the student, stool, and
wheel.

4. As the wheel is inverted, no net external torque acts on

L
:

tot

L
:

whL
:

b

L
:

wh

�
L
:

b

�L
:

wh

L
:

wh

Figure 11-20 (a) A student holds a bicycle wheel rotating around a
vertical axis. (b) The student inverts the wheel, setting himself
into rotation. (c) The net angular momentum of the system must
remain the same in spite of the inversion.

Lb

wh

(a) (b)

Lwh
–Lwh

ω 
whω 

ω 

LbLwh –Lwh

= + 

(c)

Initial Final 

b

The student now has
angular momentum,
and the net of these
two vectors equals
the initial vector.

that system to change about any vertical axis.
(Torques due to forces between the student and the
wheel as the student inverts the wheel are internal to the
system.) So, the system’s total angular momentum is con-
served about any vertical axis, including the rotation axis
through the stool.

L
:

tot
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Calculations: The conservation of is represented with
vectors in Fig. 11-20c. We can also write this conservation in
terms of components along a vertical axis as

Lb,f � Lwh,f � Lb,i � Lwh,i, (11-35)

where i and f refer to the initial state (before inversion of
the wheel) and the final state (after inversion). Because
inversion of the wheel inverted the angular momentum 
vector of the wheel’s rotation, we substitute �Lwh,i for
Lwh,f. Then, if we set Lb,i � 0 (because the student,
the stool, and the wheel’s center were initially at rest),
Eq. 11-35 yields

Lb,f � 2Lwh,i.

L
:

tot

The rotational inertia of a disk rotating about its central
axis is given by Table 10-2c as . Substituting 6.00m for
the mass M, our disk here has rotational inertia

. (11-36)
(We don’t have values for m and R, but we shall continue
with physics courage.)

From Eq. 10-33, we know that the rotational inertia of
the cockroach (a particle) is equal to mr2. Substituting the
cockroach’s initial radius ( ) and final radius
( ), we find that its initial rotational inertia about the
rotation axis is

(11-37)

and its final rotational inertia about the rotation axis is

. (11-38)

So, the cockroach–disk system initially has the rotational
inertia

, (11-39)

and finally has the rotational inertia

. (11-40)

Next, we use Eq. 11-31 ( ) to write the fact that
the system’s final angular momentum Lf is equal to the sys-
tem’s initial angular momentum Li:

or .

After canceling the unknowns m and R, we come to

. (Answer)

Note that v decreased because part of the mass moved out-
ward, thus increasing that system’s rotational inertia.

vf � 1.37 rad/s

4.00mR2vf � 3.64mR2(1.50 rad/s)

Ifvf � Iivi

L � Iv

If � Id � Icf � 4.00mR2

Ii � Id � Ici � 3.64mR2

Icf � mR2

Ici � 0.64mR2

r � R
r � 0.800R

Id � 3.00mR2

1
2MR2

Sample Problem 11.06 Conservation of angular momentum, cockroach on disk

In Fig. 11-21, a cockroach with mass m rides on a disk of mass
6.00m and radius R. The disk rotates like a merry-go-round
around its central axis at angular speed The
cockroach is initially at radius , but then it crawls
out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

KEY IDEAS

(1) The cockroach’s crawl changes the mass distribution (and
thus the rotational inertia) of the cockroach–disk system.
(2) The angular momentum of the system does not change
because there is no external torque to change it. (The forces
and torques due to the cockroach’s crawl are internal to the
system.) (3) The magnitude of the angular momentum of a
rigid body or a particle is given by Eq. 11-31 ( ).

Calculations: We want to find the final angular speed. Our
key is to equate the final angular momentum Lf to the initial
angular momentum Li, because both involve angular speed.
They also involve rotational inertia I. So, let’s start by finding
the rotational inertia of the system of cockroach and disk
before and after the crawl.

L � Iv

r � 0.800R
vi � 1.50 rad/s.

Additional examples, video, and practice available at WileyPLUS

Figure 11-21 A cockroach rides at radius r on a disk rotating like a
merry-go-round.

Rotation axis

R
r

iω 

Using Eq. 11-31, we next substitute Ibvb for Lb,f and Iwhvwh

for Lwh,i and solve for vb, finding

(Answer)

This positive result tells us that the student rotates counter-
clockwise about the stool axis as seen from overhead. If the
student wishes to stop rotating, he has only to invert the
wheel once more.

�
(2)(1.2 kg �m2)(3.9 rev/s)

6.8 kg �m2 � 1.4 rev/s.


b �
2Iwh

Ib
vwh
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Precession of a Gyroscope
A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the
axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on a
support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by rotat-
ing downward about the tip of the support. Since the fall involves rotation, it is gov-
erned by Newton’s second law in angular form, which is given by Eq. 11-29:

(11-41)

This equation tells us that the torque causing the downward rotation (the fall)
changes the angular momentum of the gyroscope from its initial value of zero.
The torque is due to the gravitational force acting at the gyroscope’s center
of mass, which we take to be at the center of the wheel.The moment arm relative to
the support tip, located at O in Fig. 11-22a, is .The magnitude of is

t � Mgr sin 90	 � Mgr (11-42)

(because the angle between and is 90	), and its direction is as shown in
Fig. 11-22a.

A rapidly spinning gyroscope behaves differently. Assume it is released with
the shaft angled slightly upward. It first rotates slightly downward but then, while
it is still spinning about its shaft, it begins to rotate horizontally about a vertical
axis through support point O in a motion called precession.

Why Not Just Fall Over? Why does the spinning gyroscope stay aloft instead
of falling over like the nonspinning gyroscope? The clue is that when the spinning
gyroscope is released, the torque due to must change not an initial angular mo-
mentum of zero but rather some already existing nonzero angular momentum due
to the spin.

To see how this nonzero initial angular momentum leads to precession, we first
consider the angular momentum of the gyroscope due to its spin. To simplify the
situation, we assume the spin rate is so rapid that the angular momentum due to pre-
cession is negligible relative to . We also assume the shaft is horizontal when pre-
cession begins, as in Fig. 11-22b.The magnitude of is given by Eq. 11-31:

L � Iv, (11-43)

where I is the rotational moment of the gyroscope about its shaft and v is the an-
gular speed at which the wheel spins about the shaft. The vector points along
the shaft, as in Fig. 11-22b. Since is parallel to torque must be
perpendicular to .L

:
t:r:,L

:
L
:

L
:

L
:

L
:

Mg:

r:Mg:

t:r:

Mg:�:
L
:

t: �
dL

:

dt
.

Figure 11-22 (a) A nonspinning  gyroscope
falls by rotating in an xz plane because of
torque . (b) A rapidly spinning gyroscope,
with angular momentum precesses
around the z axis. Its precessional motion is
in the xy plane. (c) The change in
angular momentum leads to a rotation of 
about O.

L
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dL
:

/dt

L
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11-9 PRECESSION OF A GYROSCOPE

After reading this module, you should be able to . . .

11.26 Identify that the gravitational force acting on a spinning
gyroscope causes the spin angular momentum vector (and
thus the gyroscope) to rotate about the vertical axis in a
motion called precession.

11.27 Calculate the precession rate of a gyroscope.
11.28 Identify that a gyroscope’s precession rate is 

independent of the gyroscope’s mass.

● A spinning gyroscope can precess about a vertical axis through its support at the rate

where M is the gyroscope’s mass, r is the moment arm, I is the rotational inertia, and v is the spin rate.

� �
Mgr
Iv

,

Learning Objectives

Key Idea
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M, mass cancels from Eq. 11-46; thus � is independent of the mass.
Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle

to the horizontal. It holds as well for a spinning top, which is essentially a spinning
gyroscope at an angle to the horizontal.

According to Eq. 11-41, torque causes an incremental change in the 
angular momentum of the gyroscope in an incremental time interval dt ; that is,

(11-44)

However, for a rapidly spinning gyroscope, the magnitude of is fixed by
Eq. 11-43. Thus the torque can change only the direction of not its magnitude.

From Eq. 11-44 we see that the direction of is in the direction of per-
pendicular to . The only way that can be changed in the direction of 
without the magnitude L being changed is for to rotate around the z axis as
shown in Fig. 11-22c. maintains its magnitude, the head of the vector follows
a circular path, and is always tangent to that path. Since must always 
point along the shaft, the shaft must rotate about the z axis in the direction of .
Thus we have precession. Because the spinning gyroscope must obey Newton’s
law in angular form in response to any change in its initial angular momentum, it
must precess instead of merely toppling over.

Precession. We can find the precession rate � by first using Eqs. 11-44 and
11-42 to get the magnitude of :

dL � t dt � Mgr dt. (11-45)

As changes by an incremental amount in an incremental time interval dt, the shaft
and precess around the z axis through incremental angle df. (In Fig. 11-22c, angle
df is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45, we find that df is
given by

Dividing this expression by dt and setting the rate � � df/dt, we obtain

(precession rate). (11-46)

This result is valid under the assumption that the spin rate v is rapid. Note that �
decreases as v is increased. Note also that there would be no precession if the
gravitational force did not act on the gyroscope, but because I is a function ofMg:

� �
Mgr
Iv

df �
dL
L

�
Mgr dt

Iv
.

L
:

L
:

dL
:

t:
L
:

t:
L
:

L
:

L
:

t:L
:

L
:

t:,dL
:

L
:

,
L
:

dL
:

� t: dt.

dL
:

t:

Rolling Bodies For a wheel of radius R rolling smoothly,

vcom � vR, (11-2)

where vcom is the linear speed of the wheel’s center of mass and v is
the angular speed of the wheel about its center. The wheel may
also be viewed as rotating instantaneously about the point P of the
“road” that is in contact with the wheel. The angular speed of the
wheel about this point is the same as the angular speed of
the wheel about its center.The rolling wheel has kinetic energy

(11-5)

where Icom is the rotational inertia of the wheel about its center of
mass and M is the mass of the wheel. If the wheel is being accelerated
but is still rolling smoothly, the acceleration of the center of mass 
is related to the angular acceleration a about the center with

acom � aR. (11-6)

a:com

K � 1
2Icomv2 � 1

2�v2
com,

Review & Summary

If the wheel rolls smoothly down a ramp of angle u, its acceleration
along an x axis extending up the ramp is

(11-10)

Torque as a Vector In three dimensions, torque is a vector
quantity defined relative to a fixed point (usually an origin); it is

(11-14)

where is a force applied to a particle and is a position vector lo-
cating the particle relative to the fixed point.The magnitude of is 

(11-15, 11-16, 11-17)

where f is the angle between and is the component of 
perpendicular to and is the moment arm of . The direction
of is given by the right-hand rule.t:

F
:

r�r:,
F
:

F�r:,F
:

t � rF sin f � rF� � r�F,

t:
r:F

:

t: � r: � F
:

,

t:

acom, x � �
g sin u

1 � Icom /MR2 .
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Angular Momentum of a Particle The angular momentum
of a particle with linear momentum mass m, and linear velocity is
a vector quantity defined relative to a fixed point (usually an origin) as

(11-18)

The magnitude of is given by

(11-19)

(11-20)

(11-21)

where f is the angle between and and are the compo-
nents of and perpendicular to and is the perpendicular
distance between the fixed point and the extension of .The direc-
tion of is given by the right-hand rule for cross products.

Newton’s Second Law in Angular Form Newton’s second
law for a particle can be written in angular form as

(11-23)

where is the net torque acting on the particle and is the angu-
lar momentum of the particle.

Angular Momentum of a System of Particles The angu-
lar momentum of a system of particles is the vector sum of the
angular momenta of the individual particles:

(11-26)L
:

� �
:

1 � �
:

2 � � � � � �
:

n � �
n

i�1
�
:

i.

L
:

�
:

t:net

t:net �
d�

:

dt
,

�
:

p:
r�r:,v:p:

v�p�p:,r:

� r� p � r� mv,

� rp� � rmv�

� � rmv sin f

�
:

�
:

� r: � p: � m(r: � v:).

v:p:,
�
:

The time rate of change of this angular momentum is equal to the
net external torque on the system (the vector sum of the torques
due to interactions with particles external to the system):

(system of particles). (11-29)

Angular Momentum of a Rigid Body For a rigid body
rotating about a fixed axis, the component of its angular
momentum parallel to the rotation axis is

L � Iv (rigid body, fixed axis). (11-31)

Conservation of Angular Momentum The angular mo-
mentum of a system remains constant if the net external torque
acting on the system is zero:

(isolated system) (11-32)

or (isolated system). (11-33)

This is the law of conservation of angular momentum.

Precession of a Gyroscope A spinning gyroscope can pre-
cess about a vertical axis through its support at the rate

(11-46)

where M is the gyroscope’s mass, r is the moment arm, I is the rota-
tional inertia, and v is the spin rate.

� �
Mgr
Iv

,

L
:

i � L
:

f

L
:

� a constant

L
:

t:net �
dL

:

dt

1 Figure 11-23 shows three particles
of the same mass and the same constant
speed moving as indicated by the veloc-
ity vectors. Points a, b, c, and d form a
square, with point e at the center. Rank
the points according to the magnitude
of the net angular momentum of the
three-particle system when measured
about the points, greatest first.

2 Figure 11-24 shows two parti-
cles A and B at xyz coordinates
(1 m, 1 m, 0) and (1 m, 0, 1 m).
Acting on each particle are three
numbered forces, all of the same
magnitude and each directed paral-
lel to an axis. (a) Which of the
forces produce a torque about the
origin that is directed parallel to y?
(b) Rank the forces according to
the magnitudes of the torques they
produce on the particles about the ori-
gin, greatest first.

3 What happens to the initially sta-
tionary yo-yo in Fig. 11-25 if you pull it
via its string with (a) force (the line
of action passes through the point of
contact on the table, as indicated),
(b) force (the line of action passesF

:

1

F
:

2

above the point of contact), and (c) force (the line of action
passes to the right of the point of contact)?

4 The position vector of a particle relative to a certain point
has a magnitude of 3 m, and the force on the particle has a mag-
nitude of 4 N. What is the angle between the directions of and 
if the magnitude of the associated torque equals (a) zero and (b) 12
N �m?

5 In Fig. 11-26, three forces of the
same magnitude are applied to a par-
ticle at the origin ( acts directly into
the plane of the figure). Rank the
forces according to the magnitudes of
the torques they create about (a)
point P1, (b) point P2, and (c) point P3,
greatest first.

6 The angular momenta of a
particle in four situations are (1)

; (2) ; (3) ; (4) . In which situation
is the net torque on the particle (a) zero, (b) positive and con-
stant, (c) negative and increasing in magnitude (t 
 0), and (d)
negative and decreasing in magnitude (t 
 0)?

7 A rhinoceros beetle rides the rim of a horizontal disk rotating
counterclockwise like a merry-go-round. If the beetle then walks
along the rim in the direction of the rotation, will the magnitudes
of the following quantities (each measured about the rotation axis)
increase, decrease, or remain the same (the disk is still rotating in
the counterclockwise direction): (a) the angular momentum of the

� � 4/t� � 2� � �6t2� � 3t � 4

�(t)

F
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F
:
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F
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r:
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Figure 11-23 Question 1.
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Figure 11-25 Question 3.
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Figure 11-26 Question 5.
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ing to the magnitude of the angular momentum of the particle
measured about them, greatest first.

beetle–disk system, (b) the angular momentum and angular veloc-
ity of the beetle, and (c) the angular momentum and angular velocity
of the disk? (d) What are your answers if the beetle walks in the di-
rection opposite the rotation?

8 Figure 11-27 shows an overhead
view of a rectangular slab that can
spin like a merry-go-round about its
center at O. Also shown are seven
paths along which wads of bubble
gum can be thrown (all with the
same speed and mass) to stick onto
the stationary slab. (a) Rank the paths according to the angular
speed that the slab (and gum) will have after the gum sticks, great-
est first. (b) For which paths will the angular momentum of the slab
(and gum) about O be negative from
the view of Fig. 11-27?

9 Figure 11-28 gives the angular mo-
mentum magnitude L of a wheel ver-
sus time t. Rank the four lettered time
intervals according to the magnitude
of the torque acting on the wheel,
greatest first.

10 Figure 11-29 shows a particle moving at constant velocity 
and five points with their xy coordinates. Rank the points accord-

v:

11 A cannonball and a marble roll smoothly from rest down an
incline. Is the cannonball’s (a) time to the bottom and (b) transla-
tional kinetic energy at the bottom more than, less than, or the
same as the marble’s?

12 A solid brass cylinder and a solid wood cylinder have the
same radius and mass (the wood cylinder is longer). Released to-
gether from rest, they roll down an incline. (a) Which cylinder reaches
the bottom first, or do they tie? (b) The wood cylinder is then short-
ened to match the length of the brass cylinder, and the brass cylinder
is drilled out along its long (central) axis to match the mass of the
wood cylinder.Which cylinder now wins the race, or do they tie?

(–3, 1) (9, 1) 

x

(1, 3) c

a

b
d

e

(–1, –2) 

(4, –1) 

y

v

A B C D 

L

t

Figure 11-28 Question 9.

Figure 11-29 Question 10.

•5 A 1000 kg car has four 10 kg wheels. When the car is mov-
ing, what fraction of its total kinetic energy is due to rotation of the
wheels about their axles? Assume
that the wheels are uniform disks
of the same mass and size.Why do
you not need to know the radius
of the wheels?

••6 Figure 11-30 gives the speed
v versus time t for a 0.500 kg ob-
ject of radius 6.00 cm that rolls
smoothly down a 30	 ramp. The
scale on the velocity axis is set by
vs � 4.0 m/s. What is the rota-
tional inertia of the object?

••7 In Fig. 11-31, a solid cylin-
der of radius 10 cm and mass 12 kg
starts from rest and rolls without
slipping a distance L � 6.0 m down
a roof that is inclined at angle u �

30	. (a) What is the angular speed of
the cylinder about its center as it
leaves the roof? (b) The roof’s edge
is at height H � 5.0 m. How far hori-
zontally from the roof’s edge does
the cylinder hit the level ground?

ILW

ILW

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 11-1 Rolling as Translation and Rotation Combined
•1 A car travels at 80 km/h on a level road in the positive direction
of an x axis. Each tire has a diameter of 66 cm. Relative to a woman
riding in the car and in unit-vector notation, what are the velocity 
at the (a) center, (b) top, and (c) bottom of the tire and the magni-
tude a of the acceleration at the (d) center, (e) top, and (f) bottom
of each tire? Relative to a hitchhiker sitting next to the road and in
unit-vector notation, what are the velocity at the (g) center,
(h) top, and (i) bottom of the tire and the magnitude a of the
acceleration at the (j) center, (k) top, and (l) bottom of each tire?

•2 An automobile traveling at 80.0 km/h has tires of 75.0 cm di-
ameter. (a) What is the angular speed of the tires about their axles?
(b) If the car is brought to a stop uniformly in 30.0 complete turns
of the tires (without skidding), what is the magnitude of the angu-
lar acceleration of the wheels? (c) How far does the car move dur-
ing the braking?

Module 11-2 Forces and Kinetic Energy of Rolling
•3 A 140 kg hoop rolls along a horizontal floor so that the
hoop’s center of mass has a speed of 0.150 m/s. How much work
must be done on the hoop to stop it?

•4 A uniform solid sphere rolls down an incline. (a) What must be
the incline angle if the linear acceleration of the center of the
sphere is to have a magnitude of 0.10g? (b) If a frictionless block
were to slide down the incline at that angle, would its acceleration
magnitude be more than, less than, or equal to 0.10g? Why?

SSM

v:
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Figure 11-30 Problem 6.

Figure 11-31 Problem 7.
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bowling ball of radius R � 11 cm
along a lane. The ball (Fig. 11-38)
slides on the lane with initial speed
vcom,0 � 8.5 m/s and initial angular
speed v0 � 0. The coefficient of ki-
netic friction between the ball and the lane is 0.21. The kinetic fric-
tional force acting on the ball causes a linear acceleration of the
ball while producing a torque that causes an angular acceleration
of the ball. When speed vcom has decreased enough and angular
speed v has increased enough, the ball stops sliding and then rolls
smoothly. (a) What then is vcom in terms of v? During the sliding,
what are the ball’s (b) linear acceleration and (c) angular accelera-
tion? (d) How long does the ball slide? (e) How far does the ball
slide? (f) What is the linear speed of the ball when smooth rolling
begins?

•••16 Nonuniform cylindrical object. In Fig. 11-39, a cylindrical
object of mass M and radius R rolls smoothly from rest down a
ramp and onto a horizontal section. From there it rolls off the ramp
and onto the floor, landing a horizontal distance d � 0.506 m from
the end of the ramp. The initial height of the object is H � 0.90 m;
the end of the ramp is at height h � 0.10 m. The object consists of
an outer cylindrical shell (of a certain uniform density) that is
glued to a central cylinder (of a different uniform density). The ro-
tational inertia of the object can be expressed in the general form 
I � bMR2, but b is not 0.5 as it is for a cylinder of uniform density.
Determine b.

f
:

k

••8 Figure 11-32 shows the po-
tential energy U(x) of a solid
ball that can roll along an x axis.
The scale on the U axis is set by
Us � 100 J. The ball is uniform,
rolls smoothly, and has a mass of
0.400 kg. It is released at x � 7.0 m
headed in the negative direction
of the x axis with a mechanical
energy of 75 J. (a) If the ball can
reach x � 0 m, what is its speed
there, and if it cannot, what is its
turning point? Suppose, instead, it is headed in the positive direc-
tion of the x axis when it is released at x � 7.0 m with 75 J. (b) If
the ball can reach x � 13 m, what is
its speed there, and if it cannot, what
is its turning point?

••9 In Fig. 11-33, a solid ball
rolls smoothly from rest (starting at
height H � 6.0 m) until it leaves the
horizontal section at the end of the
track, at height h � 2.0 m. How far
horizontally from point A does the
ball hit the floor?   

••10 A hollow sphere of radius 0.15 m, with rotational inertia 
I � 0.040 kg �m2 about a line through its center of mass, rolls
without slipping up a surface inclined at 30	 to the horizontal. At
a certain initial position, the sphere’s total kinetic energy is 20 J.
(a) How much of this initial kinetic energy is rotational?
(b) What is the speed of the center of mass of the sphere at the
initial position? When the sphere has moved 1.0 m up the incline
from its initial position, what are (c) its total kinetic energy and
(d) the speed of its center of mass?

••11 In Fig. 11-34, a constant hori-
zontal force of magnitude 10 N is
applied to a wheel of mass 10 kg and
radius 0.30 m. The wheel rolls
smoothly on the horizontal surface,
and the acceleration of its center of
mass has magnitude 0.60 m/s2. (a) In
unit-vector notation, what is the fric-
tional force on the wheel? (b) What is the rotational inertia of the
wheel about the rotation axis through its center of mass?

F
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rolls smoothly from rest down a ramp and onto a circular loop of
radius 0.48 m. The initial height of the ball is h � 0.36 m. At the
loop bottom, the magnitude of the normal force on the ball is
2.00Mg. The ball consists of an outer spherical shell (of a certain
uniform density) that is glued to a central sphere (of a different
uniform density). The rotational inertia of the ball can be ex-
pressed in the general form I � bMR2, but b is not 0.4 as it is for a
ball of uniform density. Determine b.

•••14 In Fig. 11-37, a small, solid, uniform ball is to be shot
from point P so that it rolls smoothly along a horizontal path, up
along a ramp, and onto a plateau. Then it leaves the plateau hori-
zontally to land on a game board, at a horizontal distance d from
the right edge of the plateau. The vertical heights are h1 � 5.00
cm and h2 � 1.60 cm. With what speed must the ball be shot at
point P for it to land at d � 6.00 cm?

Figure 11-32 Problem 8.

Figure 11-33 Problem 9.
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•••15 A bowler throws a

Figure 11-39 Problem 16.
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Figure 11-38 Problem 15.

••12 In Fig. 11-35, a solid brass
ball of mass 0.280 g will roll
smoothly along a loop-the-loop
track when released from rest along
the straight section. The circular
loop has radius R � 14.0 cm, and the
ball has radius r � R. (a) What is h if
the ball is on the verge of leaving
the track when it reaches the top of
the loop? If the ball is released at
height h � 6.00R, what are the (b)
magnitude and (c) direction of the
horizontal force component acting
on the ball at point Q?

•••13 Nonuniform ball. In Fig. 11-
36, a ball of mass M and radius R
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position vector .What
are (a) the torque on the particle about
the origin, in unit-vector notation, and (b)
the angle between the directions of 
and ?

Module 11-5 Angular Momentum
•26 At the instant of Fig. 11-40, a 2.0 kg
particle P has a position vector of magni-
tude 3.0 m and angle u1 � 45	 and a velocity
vector of magnitude 4.0 m/s and angle
u2 � 30	. Force of magnitude 2.0 N andF

:
,

v:

r:

F
:

r:

r: � (3.0 m)î � (4.0 m)ĵ

(b) force with components F2x � 0, F2y � 2.0 N, F2z � 4.0 N?

••22 A particle moves through an xyz coordinate system while 
a force acts on the particle. When the particle has the position 
vector the force is given
by and the corresponding torque
about the origin is 
Determine Fx.

••23 Force acts on a pebble with position
vector relative to the origin. In unit-vec-
tor notation, what is the resulting torque on the pebble about (a)
the origin and (b) the point (2.0 m, 0, �3.0 m)?

••24 In unit-vector notation, what is the torque about the origin
on a jar of jalapeño peppers located at coordinates (3.0 m, �2.0 m,
4.0 m) due to (a) force (b)
force and (c) the vector
sum of and ? (d) Repeat part (c) for the torque about the
point with coordinates (3.0 m, 2.0 m, 4.0 m).

••25 Force acts on a particle withF
:

� (�8.0 N)î � (6.0 N)ĵSSM

F
:

2F
:

1

(5.0 N)k̂,F
:

2 � (�3.0 N)î � (4.0 N)ĵ �
(4.0 N)ĵ � (5.0 N)k̂,F

:

1 � (3.0 N)î �

r: � (0.50 m)ĵ � (2.0 m)k̂
F
:

� (2.0 N)î � (3.0 N)k̂

(2.00 N �m)ĵ � (1.00 N �m)k̂ .t: � (4.00 N �m)î �
F
:

� Fxî � (7.00 N)ĵ � (6.00 N)k̂
r: � (2.00 m)î � (3.00 m)ĵ � (2.00 m)k̂,

F
:
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Module 11-3 The Yo-Yo
•17 A yo-yo has a rotational inertia of 950 g �cm2 and
a mass of 120 g. Its axle radius is 3.2 mm, and its string is 120 cm
long. The yo-yo rolls from rest down to the end of the string.
(a) What is the magnitude of its linear acceleration? (b) How long
does it take to reach the end of the string? As it reaches the end of
the string, what are its (c) linear speed, (d) translational kinetic en-
ergy, (e) rotational kinetic energy, and (f) angular speed?

•18 In 1980, over San Francisco Bay, a large yo-yo was
released from a crane. The 116 kg yo-yo consisted of two uniform
disks of radius 32 cm connected by an axle of radius 3.2 cm. What
was the magnitude of the acceleration of the yo-yo during (a) its
fall and (b) its rise? (c) What was the tension in the cord on which
it rolled? (d) Was that tension near the cord’s limit of 52 kN?
Suppose you build a scaled-up version of the yo-yo (same shape
and materials but larger). (e) Will the magnitude of your yo-yo’s
acceleration as it falls be greater than, less than, or the same as that
of the San Francisco yo-yo? (f) How about the tension in the cord?

Module 11-4 Torque Revisited
•19 In unit-vector notation, what is the net torque about the ori-
gin on a flea located at coordinates (0, �4.0 m, 5.0 m) when forces

and act on the flea?

•20 A plum is located at coordinates (�2.0 m, 0, 4.0 m). In unit-
vector notation, what is the torque about the origin on the plum if
that torque is due to a force whose only component is (a) Fx �
6.0 N, (b) Fx � �6.0 N, (c) Fz � 6.0 N, and (d) Fz � �6.0 N?

•21 In unit-vector notation, what is the torque about the origin on
a particle located at coordinates (0, �4.0 m, 3.0 m) if that torque is
due to (a) force with components F1x � 2.0 N, F1y � F1z � 0, andF

:

1

F
:

F
:

2 � (�2.0 N)ĵF
:

1 � (3.0 N)k̂

SSM

that has position vector and velocity vector
. About the origin and in unit-vector nota-

tion, what are (a) the object’s angular momentum and (b) the
torque acting on the object?

•28 A 2.0 kg particle-like object moves in a plane with velocity
components vx � 30 m/s and vy � 60 m/s as it passes through the
point with (x, y) coordinates of (3.0, �4.0) m. Just then, in unit-
vector notation, what is its angular momentum relative to (a) the 
origin and (b) the point located  at (�2.0, �2.0) m?

•29 In the instant of Fig. 11-41,
two particles move in an xy plane.
Particle P1 has mass 6.5 kg and
speed v1 � 2.2 m/s, and it is at dis-
tance d1 � 1.5 m from point O.
Particle P2 has mass 3.1 kg and speed
v2 � 3.6 m/s, and it is at distance d2 �
2.8 m from point O. What are the
(a) magnitude and (b) direction of the
net angular momentum of the two particles about O?

••30 At the instant the displacement of a 2.00 kg object relative
to the origin is its veloc-
ity is and it is sub-
ject to a force Find (a) the
acceleration of the object, (b) the angular momentum of the object
about the origin, (c) the torque about the origin acting on the ob-
ject, and (d) the angle between the velocity of the object and the
force acting on the object.

••31 In Fig. 11-42, a 0.400 kg ball is
shot directly upward at initial speed 40.0
m/s. What is its angular momentum
about P, 2.00 m horizontally from the
launch point, when the ball is (a) at
maximum height and (b) halfway back
to the ground? What is the torque on the ball about P due to the
gravitational force when the ball is (c) at maximum height and
(d) halfway back to the ground?

Module 11-6 Newton’s Second Law in Angular Form
•32 A particle is acted on by two torques about the origin: �:1

(4.00 N)k̂.(8.00 N)ĵ �F
:

� (6.00 N)î �
(3.00 m/s)k̂v: � �(6.00 m/s)î � (3.00 m/s)ĵ �

d
:

� (2.00 m)î � (4.00 m) ĵ � (3.00 m)k̂,

ILW

v: � (�5.0î � 5.0k̂) m/s
r: � (2.0î � 2.0k̂) m

Figure 11-40
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has a magnitude of 2.0 N �m and is directed in the positive direc-
tion of the x axis, and has a magnitude of 4.0 N �m and is 
directed in the negative direction of the y axis. In unit-vector 
notation, find where is the angular momentum of the
particle about the origin.

•33 At time t 0, a 3.0 kg particle with velocity�ILWWWWSSM

�
:

d�
:

/dt,

t:2

angle u3 � 30	, acts on P. All three vectors lie in the xy plane.
About the origin, what are the (a) magnitude and (b) direction of
the angular momentum of P and the (c) magnitude and (d) direc-
tion of the torque acting on P?

•27 At one instant, force acts on a 0.25 kg objectF
:

� 4.0ĵ NSSM

is at x 3.0 m, y 8.0 m. It is pulled
by a 7.0 N force in the negative x direction.About the origin, what are
(a) the particle’s angular momentum, (b) the torque acting on the par-
ticle,and (c) the rate at which the angular momentum is changing?

•34 A particle is to move in an xy plane, clockwise around the
origin as seen from the positive side of the z axis. In unit-vector nota-
tion, what torque acts on the particle if the magnitude of its angular
momentum about the origin is (a) 4.0 kg �m2/s, (b) 4.0t2 kg �m2/s,
(c) and (d) 4.0/t2 kg �m2/s?4.02t kg �m2/s,

��m/s)ĵv: � (5.0 m/s)î � (6.0



323PROBLEMS

Module 11-8 Conservation of Angular Momentum
•43 In Fig. 11-47, two skaters, each
of mass 50 kg, approach each other
along parallel paths separated by
3.0 m. They have opposite velocities
of 1.4 m/s each. One skater carries
one end of a long pole of negligible
mass, and the other skater grabs the
other end as she passes. The skaters
then rotate around the center of the pole. Assume that the friction
between skates and ice is negligible. What are (a) the radius of the
circle, (b) the angular speed of the skaters, and (c) the kinetic energy
of the two-skater system? Next, the skaters pull along the pole until
they are separated by 1.0 m. What then are (d) their angular speed
and (e) the kinetic energy of the system? (f) What provided the en-
ergy for the increased kinetic energy?

•44 A Texas cockroach of mass 0.17 kg runs counterclockwise
around the rim of a lazy Susan (a circular disk mounted on a vertical
axle) that has radius 15 cm, rotational inertia 5.0 � 10�3 kg �m2, and
frictionless bearings. The cockroach’s speed (relative to the ground)
is 2.0 m/s, and the lazy Susan turns clockwise with angular speed v0 �
2.8 rad/s. The cockroach finds a bread crumb on the rim and, of
course, stops. (a) What is the angular speed of the lazy Susan after the
cockroach stops? (b) Is mechanical energy conserved as it stops?

•45 A man stands on a platform that is rotating (with-
out friction) with an angular speed of 1.2 rev/s; his arms are
outstretched and he holds a brick in each hand. The rotational iner-
tia of the system consisting of the man, bricks, and platform about
the central vertical axis of the platform is 6.0 kg �m2. If by moving the
bricks the man decreases the rotational inertia of the system to 2.0
kg �m2, what are (a) the resulting angular speed of the platform and
(b) the ratio of the new kinetic energy of the system to the original
kinetic energy? (c) What source provided the added kinetic energy?

•46 The rotational inertia of a collapsing spinning star drops to 
its initial value. What is the ratio of the new rotational kinetic en-
ergy to the initial rotational kinetic energy?

1
3
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•37 In Fig. 11-44, three particles
of mass m 23 g are fastened to
three rods of length d � 12 cm and
negligible mass. The rigid assembly
rotates around point O at the angu-
lar speed v � 0.85 rad/s. About O,
what are (a) the rotational inertia
of the assembly, (b) the magnitude
of the angular momentum of the middle particle, and (c) the mag-
nitude of the angular momentum of the asssembly?

•38 A sanding disk with rotational inertia 1.2 � 10�3 kg �m2 is
attached to an electric drill whose motor delivers a torque of mag-
nitude 16 N �m about the central axis of the disk. About that axis
and with the torque applied for 33 ms, what is the magnitude of the
(a) angular momentum and (b) angular velocity of the disk?

•39 The angular momentum of a flywheel having a rota-
tional inertia of 0.140 kg m2 about its central axis decreases from
3.00 to 0.800 kg �m2/s in 1.50 s. (a) What is the magnitude of the av-
erage torque acting on the flywheel about its central axis during
this period? (b) Assuming a constant angular acceleration, through
what angle does the flywheel turn? (c) How much work is done on
the wheel? (d) What is the average power of the flywheel?

••40 A disk with a rotational inertia of rotates like
a merry-go-round while undergoing a time-dependent torque
given by . At
time 1.00 s, its angular momen-
tum is . What is its an-
gular momentum at s?

••41 Figure 11-45 shows a rigid
structure consisting of a circular
hoop of radius R and mass m, and a
square made of four thin bars, each
of length R and mass m. The rigid
structure rotates at a constant speed
about a vertical axis, with a period of

t � 3.00
5.00 kg �m2/s

t �
(5.00 � 2.00t) N �mt �

7.00 kg �m2

�

SSM

�

••35 At time t, the vector gives the
position of a 3.0 kg particle relative to the origin of an xy coordinate
system ( is in meters and t is in seconds). (a) Find an expression for
the torque acting on the particle relative to the origin. (b) Is the
magnitude of the particle’s angular momentum relative to the origin
increasing, decreasing, or unchanging?

Module 11-7 Angular Momentum of a Rigid Body 
•36 Figure 11-43 shows three rotating, uniform disks that are cou-
pled by belts.One belt runs around the rims of disks A and C.Another
belt runs around a central hub on disk A and the rim of disk B. The
belts move smoothly without slippage on the rims and hub.Disk A has
radius R; its hub has radius 0.5000R; disk B has radius 0.2500R; and
disk C has radius 2.000R. Disks B and C have the same density (mass
per unit volume) and thickness.What is the ratio of the magnitude of
the angular momentum of disk C to that of disk B?

r:

r: � 4.0t2 î � (2.0t � 6.0t2)ĵ rotation of 2.5 s. Assuming R � 0.50 m and m � 2.0 kg, calculate
(a) the structure’s rotational inertia about the axis of rotation and
(b) its angular momentum about that axis.

••42 Figure 11-46 gives the torque t that acts on an initially stationary
disk that can rotate about its center like a merry-go-round. The scale
on the t axis is set by ts � 4.0 N�m.What is the angular momentum of
the disk about the rotation axis at times (a) t � 7.0 s and (b) t � 20 s?
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•47 A track is mounted on a
large wheel that is free to turn with
negligible friction about a vertical
axis (Fig. 11-48). A toy train of mass
m is placed on the track and, with the
system initially at rest, the train’s
electrical power is turned on. The train reaches speed 0.15 m/s with
respect to the track. What is the wheel’s angular speed if its mass is
1.1m and its radius is 0.43 m? (Treat it as a hoop, and neglect the
mass of the spokes and hub.)

•48 A Texas cockroach walks from
the center of a circular disk (that ro-
tates like a merry-go-round without
external torques) out to the edge at
radius R. The angular speed of the
cockroach–disk system for the walk is
given in Fig. 11-49 (va = 5.0 rad/s and
vb = 6.0 rad/s). After reaching R,
what fraction of the rotational inertia
of the disk does the cockroach have?

•49 Two disks are mounted (like a merry-go-round) on low-
friction bearings on the same axle and can be brought together so
that they couple and rotate as one unit. The first disk, with rota-
tional inertia 3.30 kg �m2 about its central axis, is set spinning coun-
terclockwise at 450 rev/min. The second disk, with rotational inertia
6.60 kg �m2 about its central axis, is set spinning counterclockwise
at 900 rev/min.They then couple together. (a) What is their angular
speed after coupling? If instead the second disk is set spinning
clockwise at 900 rev/min, what are their (b) angular speed and
(c) direction of rotation after they couple together?

•50 The rotor of an electric motor has rotational inertia Im �
2.0 � 10�3 kg � m2 about its central axis. The motor is used to
change the orientation of the space probe in which it is mounted.
The motor axis is mounted along the central axis of the probe; the
probe has rotational inertia Ip � 12 kg �m2 about this axis.
Calculate the number of revolutions of the rotor required to turn
the probe through 30	 about its central axis.

•51 A wheel is rotating freely at angular speed
800 rev/min on a shaft whose rotational inertia is negligible. A sec-
ond wheel, initially at rest and with twice the rotational inertia of the
first, is suddenly coupled to the same shaft. (a) What is the angular
speed of the resultant combination of the shaft and two wheels?
(b) What fraction of the original rotational kinetic energy is lost?

••52 A cockroach of mass m lies on the rim of a uniform disk of
mass 4.00m that can rotate freely about its center like a merry-go-
round. Initially the cockroach and disk rotate together with an angu-
lar velocity of 0.260 rad/s. Then the cockroach walks halfway to the
center of the disk. (a) What then is the angular velocity of the cock-
roach–disk system? (b) What is the ratio K /K0 of the new kinetic en-
ergy of the system to its initial kinetic energy? (c) What accounts for
the change in the kinetic energy?

••53 In Fig. 11-50 (an overhead
view), a uniform thin rod of length
0.500 m and mass 4.00 kg can rotate
in a horizontal plane about a verti-
cal axis through its center. The rod is
at rest when a 3.00 g bullet traveling
in the rotation plane is fired into one
end of the rod. In the view from

ILWSSM

SSM above, the bullet’s path makes angle u � 60.0	 with the rod (Fig. 11-
50). If the bullet lodges in the rod and the angular velocity of the rod
is 10 rad/s immediately after the collision, what is the bullet’s speed
just before impact?

••54 Figure 11-51 shows an
overhead view of a ring that can 
rotate about its center like a merry-
go-round. Its outer radius R2 is
0.800 m, its inner radius R1 is R2/2.00,
its mass M is 8.00 kg, and the mass of
the crossbars at its center is neg-
ligible. It initially rotates at an angu-
lar speed of 8.00 rad/s with a cat of
mass m � M/4.00 on its outer edge, at
radius R2. By how much does the cat increase the kinetic energy of
the cat–ring system if the cat crawls to the inner edge, at radius R1?

••55 A horizontal vinyl record of mass 0.10 kg and radius 0.10 m
rotates freely about a vertical axis through its center with an angu-
lar speed of 4.7 rad/s and a rotational inertia of 5.0 � 10�4 kg �m2.
Putty of mass 0.020 kg drops vertically onto the record from above
and sticks to the edge of the record. What is the angular speed of
the record immediately afterwards?

••56 In a long jump, an athlete leaves the ground with an
initial angular momentum that tends to rotate her body forward,
threatening to ruin her landing. To counter this tendency, she rotates
her outstretched arms to “take up” the angular momentum (Fig. 11-
18). In 0.700 s, one arm sweeps through 0.500 rev and the other arm
sweeps through 1.000 rev.Treat each arm as a thin rod of mass 4.0 kg
and length 0.60 m, rotating around one end. In the athlete’s reference
frame, what is the magnitude of the total angular momentum of the
arms around the common rotation axis through the shoulders?

••57 A uniform disk of mass 10m and radius 3.0r can rotate
freely about its fixed center like a merry-go-round. A smaller uni-
form disk of mass m and radius r lies on top of the larger disk,
concentric with it. Initially the two disks rotate together with an an-
gular velocity of 20 rad/s.Then a slight disturbance causes the smaller
disk to slide outward across the larger disk, until the outer edge of the
smaller disk catches on the outer edge of the larger disk. Afterward,
the two disks again rotate together (without further sliding). (a) What
then is their angular velocity about the center of the larger disk? (b)
What is the ratio K /K0 of the new kinetic energy of the two-disk sys-
tem to the system’s initial kinetic energy?

••58 A horizontal platform in the shape of a circular disk rotates on
a frictionless bearing about a vertical axle through the center of the
disk. The platform has a mass of 150 kg, a radius of 2.0 m, and a rota-
tional inertia of 300 kg �m2 about the axis of rotation.A 60 kg student
walks slowly from the rim of the platform toward the center. If the an-
gular speed of the system is 1.5 rad/s when the student starts at the
rim,what is the angular speed when she is 0.50 m from the center?

••59 Figure 11-52 is an overhead
view of a thin uniform rod of length
0.800 m and mass M rotating horizon-
tally at angular speed 20.0 rad/s about
an axis through its center. A particle
of mass M/3.00 initially attached to
one end is ejected from the rod and travels along a path that is per-
pendicular to the rod at the instant of ejection. If the particle’s speed
vp is 6.00 m/s greater than the speed of the rod end just after ejec-
tion, what is the value of vp?
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••60 In Fig. 11-53, a 1.0 g bullet is fired
into a 0.50 kg block attached to the end
of a 0.60 m nonuniform rod of mass
0.50 kg. The block–rod–bullet system
then rotates in the plane of the figure,
about a fixed axis at A. The rotational
inertia of the rod alone about that axis
at A is 0.060 kg �m2. Treat the block as a
particle. (a) What then is the rotational
inertia of the block–rod–bullet system
about point A? (b) If the angular speed
of the system about A just after impact
is 4.5 rad/s, what is the bullet’s speed
just before impact?

••61 The uniform rod (length 0.60 m,
mass 1.0 kg) in Fig. 11-54 rotates in the
plane of the figure about an axis through
one end, with a rotational inertia of 0.12
kg �m2. As the rod swings through its
lowest position, it collides with a 0.20 kg
putty wad that sticks to the end of the
rod. If the rod’s angular speed just before
collision is 2.4 rad/s, what is the angular
speed of the rod–putty system immedi-
ately after collision?

•••62 During a jump to his partner, an aerialist is to

tangent to the outer edge of the merry-go-round, as shown. What is
the angular speed of the merry-go-round just after the ball is caught?

•••64 A ballerina begins a tour jeté (Fig. 11-19a) with angu-
lar speed and a rotational inertia consisting of two parts:

for her leg extended outward at angle 
to her body and for the rest of her body (pri-
marily her trunk). Near her maximum height she holds both legs at
angle to her body and has angular speed (Fig. 11-19b).
Assuming that has not changed, what is the ratio ?

•••65 Two 2.00 kg balls are attached to the ends of a
thin rod of length 50.0 cm and negli-
gible mass.The rod is free to rotate in
a vertical plane without friction
about a horizontal axis through its
center.With the rod initially horizon-
tal (Fig. 11-57), a 50.0 g wad of wet
putty drops onto one of the balls, hit-
ting it with a speed of 3.00 m/s and then sticking to it. (a) What is the
angular speed of the system just after the putty wad hits? (b) What is
the ratio of the kinetic energy of the system after the collision to that
of the putty wad just before? (c) Through what angle will the system
rotate before it momentarily stops?
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Figure 11-58 Problem 66.

Figure 11-59 Problem 67.

•••63 In Fig. 11-56, a 30 kg child
stands on the edge of a stationary
merry-go-round of radius 2.0 m.
The rotational inertia of the merry-
go-round about its rotation axis is
150 kg �m2. The child catches a ball
of mass 1.0 kg thrown by a friend.
Just before the ball is caught, it has a
horizontal velocity of magnitude
12 m/s, at angle f � 37	 with a line

v:

Figure 11-56 Problem 63.

φ 

Child

Ball

v

make a quadruple somersault lasting a time t � 1.87 s. For the first
and last quarter-revolution, he is in the extended orientation
shown in Fig. 11-55, with rotational inertia I1 � 19.9 kg �m2 around
his center of mass (the dot). During the rest of the flight he is in a
tight tuck, with rotational inertia I2 � 3.93 kg �m2.What must be his
angular speed v2 around his center of mass during the tuck?

•••66 In Fig. 11-58, a small 50 g
block slides down a frictionless sur-
face through height h � 20 cm and
then sticks to a uniform rod of mass
100 g and length 40 cm.The rod pivots
about point O through angle u
before momentarily stopping. Find u.

•••67 Figure 11-59 is an over-
head view of a thin uniform rod of
length 0.600 m and mass M rotating
horizontally at 80.0 rad/s counter-
clockwise about an axis through its center. A particle of mass
M/3.00 and traveling horizontally at speed 40.0 m/s hits the rod
and sticks. The particle’s path is perpendicular to the rod at the
instant of the hit, at a distance d from the rod’s center. (a) At
what value of d are rod and particle stationary after the hit?
(b) In which direction do rod and particle rotate if d is greater
than this value?

Module 11-9 Precession of a Gyroscope
••68 A top spins at 30 rev/s about an axis that makes an angle of
30	 with the vertical.The mass of the top is 0.50 kg, its rotational in-
ertia about its central axis is 5.0 � 10�4 kg �m2, and its center of
mass is 4.0 cm from the pivot point. If the spin is clockwise from an
overhead view, what are the (a) precession rate and (b) direction of
the precession as viewed from overhead?

••69 A certain gyroscope consists of a uniform disk with a 50 cm
radius mounted at the center of an axle that is 11 cm long and of
negligible mass. The axle is horizontal and supported at one end. If
the spin rate is 1000 rev/min, what is the precession rate?

Rotation axis Particle 

d
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Additional Problems
70 A uniform solid ball rolls smoothly along a floor, then up a
ramp inclined at 15.0	. It momentarily stops when it has rolled
1.50 m along the ramp.What was its initial speed?

71 In Fig. 11-60, a constant
horizontal force of magnitude 12
N is applied to a uniform solid cylin-
der by fishing line wrapped around
the cylinder.The mass of the cylinder
is 10 kg, its radius is 0.10 m, and the
cylinder rolls smoothly on the hori-
zontal surface. (a) What is the mag-
nitude of the acceleration of the center of mass of the cylinder? (b)
What is the magnitude of the angular acceleration of the cylinder
about the center of mass? (c) In unit-vector notation, what is the
frictional force acting on the cylinder?

72 A thin-walled pipe rolls along the floor.What is the ratio of its
translational kinetic energy to its rotational kinetic energy about
the central axis parallel to its length?

73 A 3.0 kg toy car moves along an x axis with a velocity
given by with t in seconds. For t 0, what are
(a) the angular momentum of the car and (b) the torque on
the car, both calculated about the origin? What are (c) and (d) 
about the point (2.0 m, 5.0 m, 0)? What are (e) and (f) about
the point (2.0 m, �5.0 m, 0)?

74 A wheel rotates clockwise about its central axis with an angu-
lar momentum of 600 kg �m2/s. At time t � 0, a torque of magni-
tude 50 N �m is applied to the wheel to reverse the rotation. At
what time t is the angular speed zero?

75 In a playground, there is a small merry-go-round of
radius 1.20 m and mass 180 kg. Its radius of gyration (see Problem
79 of Chapter 10) is 91.0 cm.A child of mass 44.0 kg runs at a speed
of 3.00 m/s along a path that is tangent to the rim of the initially
stationary merry-go-round and then jumps on. Neglect friction be-
tween the bearings and the shaft of the merry-go-round. Calculate
(a) the rotational inertia of the merry-go-round about its axis of
rotation, (b) the magnitude of the angular momentum of the run-
ning child about the axis of rotation of the merry-go-round, and
(c) the angular speed of the merry-go-round and child after the
child has jumped onto the merry-go-round.

76 A uniform block of granite in the shape of a book has face di-
mensions of 20 cm and 15 cm and a thickness of 1.2 cm. The density
(mass per unit volume) of granite is 2.64 g/cm3. The block rotates
around an axis that is perpendicular to its face and halfway between
its center and a corner. Its angular momentum about that axis is
0.104 kg �m2/s. What is its rotational kinetic energy about that axis?

77 Two particles, each of mass 2.90 � 10�4 kg and speed
5.46 m/s, travel in opposite directions along parallel lines separated
by 4.20 cm. (a) What is the magnitude L of the angular momentum
of the two-particle system around a point midway between the two
lines? (b) Is the value different for a different location of the
point? If the direction of either particle is reversed, what are the
answers for (c) part (a) and (d) part (b)?

78 A wheel of radius 0.250 m, moving initially at 43.0 m/s, rolls to
a stop in 225 m. Calculate the magnitudes of its (a) linear accelera-
tion and (b) angular acceleration. (c) Its rotational inertia is 0.155
kg �m2 about its central axis. Find the magnitude of the torque
about the central axis due to friction on the wheel.
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79 Wheels A and B in Fig. 11-61 are
connected by a belt that does not slip.
The radius of B is 3.00 times the radius
of A. What would be the ratio of the
rotational inertias IA/IB if the two
wheels had (a) the same angular mo-
mentum about their central axes and
(b) the same rotational kinetic energy?

80 A 2.50 kg particle that is moving horizontally over a floor
with velocity (�3.00 m/s)ĵ undergoes a completely inelastic colli-
sion with a 4.00 kg particle that is moving horizontally over the
floor with velocity (4.50 m/s)î. The collision occurs at xy coordi-
nates (�0.500 m, �0.100 m). After the collision and in unit-vector
notation, what is the angular momentum of the stuck-together par-
ticles with respect to the origin?

81 A uniform wheel
of mass 10.0 kg and radius
0.400 m is mounted rigidly
on a massless axle through
its center (Fig. 11-62). The
radius of the axle is 0.200
m, and the rotational inertia
of the wheel–axle combi-
nation about its central axis
is 0.600 kg �m2. The wheel is
initially at rest at the top of a surface that is inclined at angle u �
30.0	 with the horizontal; the axle rests on the surface while the
wheel extends into a groove in the surface without touching the
surface. Once released, the axle rolls down along the surface
smoothly and without slipping. When the wheel–axle combination
has moved down the surface by 2.00 m, what are (a) its rotational
kinetic energy and (b) its translational kinetic energy?

82 A uniform rod rotates in a horizontal plane about a vertical axis
through one end.The rod is 6.00 m long, weighs 10.0 N, and rotates at
240 rev/min. Calculate (a) its rotational inertia about the axis of rota-
tion and (b) the magnitude of its angular momentum about that axis.

83 A solid sphere of weight 36.0 N rolls up an incline at an angle
of 30.0	. At the bottom of the incline the center of mass of the
sphere has a translational speed of 4.90 m/s. (a) What is the kinetic
energy of the sphere at the bottom of the incline? (b) How far does
the sphere travel up along the incline? (c) Does the answer to
(b) depend on the sphere’s mass?

84 Suppose that the yo-yo in Problem 17, instead of rolling
from rest, is thrown so that its initial speed down the string is
1.3 m/s. (a) How long does the yo-yo take to reach the end of
the string? As it reaches the end of the string, what are its (b) total
kinetic energy, (c) linear speed, (d) translational kinetic energy,
(e) angular speed, and (f) rotational kinetic energy?

85 A girl of mass M stands on the rim of a frictionless merry-
go-round of radius R and rotational inertia I that is not moving. She
throws a rock of mass m horizontally in a direction that is tangent to
the outer edge of the merry-go-round.The speed of the rock, relative
to the ground, is v. Afterward, what are (a) the angular speed of the
merry-go-round and (b) the linear speed of the girl?

86 A body of radius R and mass m is rolling smoothly with speed
v on a horizontal surface. It then rolls up a hill to a maximum
height h. (a) If h � 3v2/4g, what is the body’s rotational inertia
about the rotational axis through its center of mass? (b) What
might the body be?
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What Is Physics?
Human constructions are supposed to be stable in spite of the forces that act on them.
A building, for example, should be stable in spite of the gravitational force and wind
forces on it, and a bridge should be stable in spite of the gravitational force pulling it
downward and the repeated jolting it receives from cars and trucks.

One focus of physics is on what allows an object to be stable in spite of any
forces acting on it. In this chapter we examine the two main aspects of stability:
the equilibrium of the forces and torques acting on rigid objects and the elasticity
of nonrigid objects, a property that governs how such objects can deform. When
this physics is done correctly, it is the subject of countless articles in physics and
engineering journals; when it is done incorrectly, it is the subject of countless
articles in newspapers and legal journals.

Equilibrium
Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding
with constant velocity across a frictionless surface, (3) the rotating blades of a
ceiling fan, and (4) the wheel of a bicycle that is traveling along a straight path at
constant speed. For each of these four objects,

C H A P T E R  1 2

Equilibrium and Elasticity

12-1 EQUILIBRIUM

After reading this module, you should be able to . . .

12.01 Distinguish between equilibrium and static equilibrium.
12.02 Specify the four conditions for static equilibrium.

12.03 Explain center of gravity and how it relates to center of
mass.

12.04 For a given distribution of particles, calculate the coor-
dinates of the center of gravity and the center of mass.

Key Ideas

Learning Objectives
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● A rigid body at rest is said to be in static equilibrium. For
such a body, the vector sum of the external forces acting on it
is zero:

(balance of forces).

If all the forces lie in the xy plane, this vector equation is
equivalent to two component equations:

Fnet,x � 0 and Fnet,y � 0 (balance of forces).

● Static equilibrium also implies that the vector sum of the
external torques acting on the body about any point is zero, or

(balance of torques).t:net � 0

F
:

net � 0

If the forces lie in the xy plane, all torque vectors are parallel
to the z axis, and the balance-of-torques equation is equiva-
lent to the single component equation

tnet,z � 0 (balance of torques).

● The gravitational force acts individually on each element of
a body. The net effect of all individual actions may be found by
imagining an equivalent total gravitational force acting at
the center of gravity. If the gravitational acceleration is the
same for all the elements of the body, the center of gravity is
at the center of mass.

g:
F
:

g



1. The linear momentum of its center of mass is constant.

2. Its angular momentum about its center of mass, or about any other point, is
also constant.

We say that such objects are in equilibrium. The two requirements for
equilibrium are then

. (12-1)

Our concern in this chapter is with situations in which the constants in
Eq. 12-1 are zero; that is, we are concerned largely with objects that are not mov-
ing in any way—either in translation or in rotation—in the reference frame
from which we observe them. Such objects are in static equilibrium. Of the four
objects mentioned near the beginning of this module, only one—the book rest-
ing on the table—is in static equilibrium.

The balancing rock of Fig. 12-1 is another example of an object that, for the
present at least, is in static equilibrium. It shares this property with countless
other structures, such as cathedrals, houses, filing cabinets, and taco stands, that
remain stationary over time.

As we discussed in Module 8-3, if a body returns to a state of static equilib-
rium after having been displaced from that state by a force, the body is said to be
in stable static equilibrium. A marble placed at the bottom of a hemispherical
bowl is an example. However, if a small force can displace the body and end the
equilibrium, the body is in unstable static equilibrium.

A Domino. For example, suppose we balance a domino with the domino’s
center of mass vertically above the supporting edge, as in Fig. 12-2a. The torque
about the supporting edge due to the gravitational force F

:

g on the domino is
zero because the line of action of F

:

g is through that edge. Thus, the domino is in
equilibrium. Of course, even a slight force on it due to some chance distur-
bance ends the equilibrium. As the line of action of F

:

g moves to one side of
the supporting edge (as in Fig. 12-2b), the torque due to F

:

g increases the rota-
tion of the domino. Therefore, the domino in Fig. 12-2a is in unstable static
equilibrium.

The domino in Fig. 12-2c is not quite as unstable. To topple this domino,
a force would have to rotate it through and then beyond the balance position of
Fig. 12-2a, in which the center of mass is above a supporting edge. A slight force
will not topple this domino, but a vigorous flick of the finger against the domino
certainly will. (If we arrange a chain of such upright dominos, a finger flick
against the first can cause the whole chain to fall.)

A Block. The child’s square block in Fig. 12-2d is even more stable because
its center of mass would have to be moved even farther to get it to pass above a
supporting edge. A flick of the finger may not topple the block. (This is why you

P
:

� a constant  and  L
:

� a constant

L
:

P
:
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Figure 12-1 A balancing rock.Although its
perch seems precarious, the rock is in static
equilibrium.

Kanwarjit Singh Boparai/Shutterstock

Figure 12-2 (a) A domino balanced on one
edge,with its center of mass vertically above
that edge.The gravitational force F

:

g on the
domino is directed through the supporting
edge.(b) If the domino is rotated even slightly
from the balanced orientation, then causes
a torque that increases the rotation. (c) A
domino upright on a narrow side is
somewhat more stable than the domino in
(a). (d) A square block is even more stable.

F
:

g
BBcom

Supporting
edge

(a) (b) (c) (d)

Fg Fg
Fg

Fg

To tip the block, the center of mass must
pass over the supporting edge.



never see a chain of toppling square blocks.) The worker in Fig. 12-3 is like both
the domino and the square block: Parallel to the beam, his stance is wide and he is
stable; perpendicular to the beam, his stance is narrow and he is unstable (and at
the mercy of a chance gust of wind).

The analysis of static equilibrium is very important in engineering practice.The
design engineer must isolate and identify all the external forces and torques that
may act on a structure and, by good design and wise choice of materials, ensure that
the structure will remain stable under these loads. Such analysis is necessary to en-
sure, for example, that bridges do not collapse under their traffic and wind loads and
that the landing gear of aircraft will function after the shock of rough landings.

The Requirements of Equilibrium
The translational motion of a body is governed by Newton’s second law in its
linear momentum form, given by Eq. 9-27 as

(12-2)

If the body is in translational equilibrium—that is, if is a constant—then 
� 0 and we must have

(balance of forces). (12-3)

The rotational motion of a body is governed by Newton’s second law in its
angular momentum form, given by Eq. 11-29 as

(12-4)

If the body is in rotational equilibrium—that is, if is a constant—then � 0
and we must have

(balance of torques). (12-5)

Thus, the two requirements for a body to be in equilibrium are as follows:

t:net � 0

dL
:

/dtL
:

t:net �
dL

:

dt
.

F
:

net � 0

dP
:

/dt
P
:

F
:

net �
dP

:

dt
.
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Figure 12-3 A construction worker balanced
on a steel beam is in static equilibrium but
is more stable parallel to the beam than per-
pendicular to it.

Robert Brenner/PhotoEdit

1. The vector sum of all the external forces that act on the body must be zero.

2. The vector sum of all external torques that act on the body, measured about any
possible point, must also be zero.

These requirements obviously hold for static equilibrium. They also hold for the
more general equilibrium in which and are constant but not zero.

Equations 12-3 and 12-5, as vector equations, are each equivalent to three
independent component equations, one for each direction of the coordinate axes:

Balance of Balance of
forces torques

Fnet,x � 0 tnet,x � 0
Fnet,y � 0 tnet,y � 0 (12-6)
Fnet,z � 0 tnet,z � 0

The Main Equations. We shall simplify matters by considering only situations in
which the forces that act on the body lie in the xy plane. This means that the only
torques that can act on the body must tend to cause rotation around an axis parallel to

L
:

P
:



the z axis.With this assumption, we eliminate one force equation and two torque equa-
tions from Eqs.12-6, leaving

Fnet,x � 0 (balance of forces), (12-7)

Fnet,y � 0 (balance of forces), (12-8)

tnet,z � 0 (balance of torques). (12-9)

Here, tnet,z is the net torque that the external forces produce either about the
z axis or about any axis parallel to it.

A hockey puck sliding at constant velocity over ice satisfies Eqs. 12-7, 12-8,
and 12-9 and is thus in equilibrium but not in static equilibrium. For static equilib-
rium, the linear momentum of the puck must be not only constant but also
zero; the puck must be at rest on the ice. Thus, there is another requirement for
static equilibrium:

P
:
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3. The linear momentum of the body must be zero.P
:

Checkpoint 1
The figure gives six overhead views of a uniform rod on which two or more forces act 
perpendicularly to the rod. If the magnitudes of the forces are adjusted properly (but kept
nonzero), in which situations can the rod be in static equilibrium?

(a) (b) (c)

(d) (e) (f)

The Center of Gravity
The gravitational force on an extended body is the vector sum of the gravita-
tional forces acting on the individual elements (the atoms) of the body. Instead of
considering all those individual elements, we can say that

The gravitational force on a body effectively acts at a single point, called the
center of gravity (cog) of the body.

F
:

g

Here the word “effectively” means that if the gravitational forces on the individual
elements were somehow turned off and the gravitational force at the center of
gravity were turned on, the net force and the net torque (about any point) acting on
the body would not change.

Until now, we have assumed that the gravitational force acts at the center
of mass (com) of the body. This is equivalent to assuming that the center of grav-
ity is at the center of mass. Recall that, for a body of mass M, the force is equal
to , where is the acceleration that the force would produce if the body wereg:Mg:

F
:

g

F
:

g

F
:

g



Proof
First, we consider the individual elements of the body. Figure 12-4a shows an
extended body, of mass M, and one of its elements, of mass mi. A gravitational
force acts on each such element and is equal to The subscript on 
means is the gravitational acceleration at the location of the element i (it can be
different for other elements).

For the body in Fig. 12-4a, each force F
:

gi acting on an element produces a
torque ti on the element about the origin O, with a moment arm xi. Using Eq. 10-
41 (t � r�F ) as a guide, we can write each torque ti as

ti � xiFgi. (12-10)

The net torque on all the elements of the body is then

tnet � ti � xiFgi. (12-11)

Next, we consider the body as a whole. Figure 12-4b shows the gravitational
force acting at the body’s center of gravity. This force produces a torque t on
the body about O, with moment arm xcog.Again using Eq. 10-41, we can write this
torque as

t � xcogFg. (12-12)

The gravitational force F
:

g on the body is equal to the sum of the gravitational
forces F

:

gi on all its elements, so we can substitute �Fgi for Fg in Eq. 12-12 to write

t � xcog Fgi. (12-13)

Now recall that the torque due to force F
:

g acting at the center of gravity
is equal to the net torque due to all the forces F

:

gi acting on all the elements of
the body. (That is how we defined the center of gravity.) Thus, t in Eq. 12-13 is
equal to tnet in Eq. 12-11. Putting those two equations together, we can write

xcog Fgi � xiFgi.

Substituting migi for Fgi gives us

xcog migi � ximigi. (12-14)

Now here is a key idea: If the accelerations gi at all the locations of the elements
are the same, we can cancel gi from this equation to write

xcog mi � ximi. (12-15)

The sum �mi of the masses of all the elements is the mass M of the body.
Therefore, we can rewrite Eq. 12-15 as

(12-16)xcog �
1
M �ximi.

��
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If is the same for all elements of a body, then the body’s center of gravity (cog)
is coincident with the body’s center of mass (com).

g:

This is approximately true for everyday objects because varies only a little
along Earth’s surface and decreases in magnitude only slightly with altitude.
Thus, for objects like a mouse or a moose, we have been justified in assuming that
the gravitational force acts at the center of mass. After the following proof, we
shall resume that assumption.

g:

O
x

y

xcog

cog

(b)

Line of
actionMoment

arm

Fg

O
x

y

mi

xi

(a)

Line of 
action

Fgi

Moment
arm

Figure 12-4 (a) An element of mass mi in an
extended body.The gravitational force F

:

gi

on the element has moment arm xi about
the origin O of the coordinate system. (b)
The gravitational force F

:

g on a body is said
to act at the center of gravity (cog) of the
body. Here F

:

g has moment arm xcog about
origin O.

to fall freely. In the proof that follows, we show that



Some Examples of Static Equilibrium
Here we examine several sample problems involving static equilibrium. In
each, we select a system of one or more objects to which we apply the equa-
tions of equilibrium (Eqs. 12-7, 12-8, and 12-9). The forces involved in the equi-
librium are all in the xy plane, which means that the torques involved are par-
allel to the z axis. Thus, in applying Eq. 12-9, the balance of torques, we select
an axis parallel to the z axis about which to calculate the torques. Although
Eq. 12-9 is satisfied for any such choice of axis, you will see that certain choices
simplify the application of Eq. 12-9 by eliminating one or more unknown force
terms.
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12-2 SOME EXAMPLES OF STATIC EQUILIBRIUM
Learning Objectives

origin (about which to calculate torques) can simplify the
calculations by eliminating one or more unknown forces
from the torque equation.

● A rigid body at rest is said to be in static equilibrium. For
such a body, the vector sum of the external forces acting on it
is zero:

(balance of forces).

If all the forces lie in the xy plane, this vector equation is
equivalent to two component equations:

Fnet,x � 0 and Fnet,y � 0 (balance of forces).

F
:

net � 0

● Static equilibrium also implies that the vector sum of the
external torques acting on the body about any point is zero, or

(balance of torques).

If the forces lie in the xy plane, all torque vectors are parallel
to the z axis, and the balance-of-torques equation is equiva-
lent to the single component equation

tnet,z � 0 (balance of torques).

t:net � 0

After reading this module, you should be able to . . . 

12.05 Apply the force and torque conditions for static
equilibrium.

12.06 Identify that a wise choice about the placement of the

Key Ideas

Checkpoint 2
The figure gives an overhead view of a uniform rod in static equilibrium. (a) Can you
find the magnitudes of unknown forces and by balancing the forces? (b) If you
wish to find the magnitude of force by using a balance of torques equation, where
should you place a rotation axis to eliminate from the equation? (c) The magnitude
of turns out to be 65 N.What then is the magnitude of ?F

:

1F
:

2

F
:

1

F
:

2

F
:

2F
:

1

20 N dd2d4d

10 N 30 N 

F2

F1

The right side of this equation gives the coordinate xcom of the body’s center of
mass (Eq. 9-4).We now have what we sought to prove. If the acceleration of grav-
ity is the same at all locations of the elements in a body, then the coordinates of
the body’s com and cog are identical:

xcog � xcom. (12-17)
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Additional examples, video, and practice available at WileyPLUS

which gives us

� 15.44 N � 15 N. (Answer)

Now, solving Eq. 12-18 for Fl and substituting this result, we find

Fl � (M � m)g � Fr

� (2.7 kg � 1.8 kg)(9.8 m/s2) � 15.44 N

� 28.66 N � 29 N. (Answer)

Notice the strategy in the solution: When we wrote an equa-
tion for the balance of force components,we got stuck with two
unknowns. If we had written an equation for the balance of
torques around some arbitrary axis, we would have again got-
ten stuck with those two unknowns. However, because we
chose the axis to pass through the point of application of one of
the unknown forces, here l, we did not get stuck. Our choice
neatly eliminated that force from the torque equation,allowing
us to solve for the other unknown force magnitude Fr.Then we
returned to the equation for the balance of force components
to find the remaining unknown force magnitude.

F
:

� 1
4(2.7 kg)(9.8 m/s2) � 1

2(1.8 kg)(9.8 m/s2)

Fr � 1
4Mg � 1

2mg

In Fig. 12-5a, a uniform beam, of length L and mass 
m � 1.8 kg, is at rest on two scales. A uniform block, with
mass M � 2.7 kg, is at rest on the beam, with its center a dis-
tance L/4 from the beam’s left end.What do the scales read?

KEY IDEAS

The first steps in the solution of any problem about static equi-
librium are these: Clearly define the system to be analyzed
and then draw a free-body diagram of it, indicating all the
forces on the system. Here, let us choose the system as the
beam and block taken together.Then the forces on the system
are shown in the free-body diagram of Fig. 12-5b. (Choosing
the system takes experience, and often there can be more than
one good choice.) Because the system is in static equilibrium,
we can apply the balance of forces equations (Eqs. 12-7 and
12-8) and the balance of torques equation (Eq. 12-9) to it.

Calculations: The normal forces on the beam from the scales
are F

:

l on the left and F
:

r on the right.The scale readings that we
want are equal to the magnitudes of those forces. The gravita-
tional force F

:

g,beam on the beam acts at the beam’s center of
mass and is equal to Similarly, the gravitational force F

:

g,block

on the block acts at the block’s center of mass and is equal to
However, to simplify Fig. 12-5b, the block is repre-

sented by a dot within the boundary of the beam and vector
F
:

g,block is drawn with its tail on that dot. (This shift of the
vector F

:

g,block along its line of action does not alter the
torque due to F

:

g,block about any axis perpendicular to the figure.)
The forces have no x components, so Eq. 12-7 

(Fnet,x � 0) provides no information. For the y components,
Eq. 12-8 (Fnet,y � 0) gives us

Fl � Fr � Mg � mg � 0. (12-18)

This equation contains two unknowns, the forces Fl

and F r, so we also need to use Eq. 12-9, the balance of
torques equation. We can apply it to any rotation axis per-
pendicular to the plane of Fig. 12-5. Let us choose a rota-
tion axis through the left end of the beam. We shall also
use our general rule for assigning signs to torques: If a
torque would cause an initially stationary body to rotate
clockwise about the rotation axis, the torque is negative. If
the rotation would be counterclockwise, the torque is posi-
tive. Finally, we shall write the torques in the form r�F,
where the moment arm r� is 0 for L/4 for L/2 for 
and L for .

We now can write the balancing equation (tnet,z 0) as

(0)(Fl) (L/4)(Mg) (L/2)(mg) (L)(Fr) 0,����

�
F
:

r

mg:,Mg:,Fl
:

,

Mg:.

mg:.
Figure 12-5 (a) A beam of mass m supports a block of mass M.
(b) A free-body diagram, showing the forces that act on the
system beam � block.
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(b)

Block Beam

L
4

L
2

(a)

Block
Beam

Scale Scale 

m
M

L
L
4

System

Fl

Fr

Fg,beam = mg

Fg,block = Mg

The vertical forces balance
but that is not enough.

We must also balance
torques, with a wise
choice of rotation axis.

Sample Problem 12.01 Balancing a horizontal beam
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magnitude F of the net force. Because we know Tc, we apply
the force balancing equations to the beam.

Calculations: For the horizontal balance, we can rewrite 
Fnet,x � 0 as

Fh � Tc � 0, (12-20)

and so Fh � Tc � 6093 N.

For the vertical balance, we write Fnet,y � 0 as

Fv � mg � Tr � 0.

Substituting Mg for Tr and solving for Fv, we find that

Fv � (m � M)g � (85 kg � 430 kg)(9.8 m/s2)

� 5047 N.

From the Pythagorean theorem, we now have

(Answer)

Note that F is substantially greater than either the combined
weights of the safe and the beam, 5000 N, or the tension in
the horizontal wire, 6100 N.

� 2(6093 N)2 � (5047 N)2 � 7900 N.

F � 2F 2
h � Fv

2

Sample Problem 12.02 Balancing a leaning boom

Figure 12-6a shows a safe (mass M � 430 kg) hanging  by a
rope (negligible mass) from a boom (a � 1.9 m and b �
2.5 m) that consists of a uniform hinged beam (m � 85 kg)
and horizontal cable (negligible mass).

(a) What is the tension Tc in the cable? In other words, what is
the magnitude of the force on the beam from the cable?

KEY IDEAS

The system here is the beam alone, and the forces on it are
shown in the free-body diagram of Fig. 12-6b. The force
from the cable is . The gravitational force on the beam
acts at the beam’s center of mass (at the beam’s center) and
is represented by its equivalent The vertical component
of the force on the beam from the hinge is , and the hori-
zontal component of the force from the hinge is . The
force from the rope supporting the safe is . Because beam,
rope, and safe are stationary, the magnitude of is equal toT

:

r

T
:

r

F
:

h

F
:

v

mg:.

T
:

c

T
:

c

Additional examples, video, and practice available at WileyPLUS

the weight of the safe: Tr � Mg. We place the origin O of an
xy coordinate system at the hinge. Because the system is in
static equilibrium, the balancing equations apply to it.

Calculations: Let us start with Eq. 12-9 (tnet,z � 0). Note
that we are asked for the magnitude of force and not of
forces and acting at the hinge, at point O. To eliminate

and from the torque calculation, we should calculate
torques about an axis that is perpendicular to the figure at
point O.Then and will have moment arms of zero.The
lines of action for , , and are dashed in Fig. 12-6b.
The corresponding moment arms are a, b, and b/2.

Writing torques in the form of r�F and using our rule about
signs for torques, the balancing equation tnet,z � 0 becomes

(12-19)

Substituting Mg for Tr and solving for Tc, we find that

� 6093 N � 6100 N. (Answer)

(b) Find the magnitude F of the net force on the beam from
the hinge.

KEY IDEA

Now we want the horizontal component Fh and vertical
component Fv so that we can combine them to get the

�
(9.8 m/s2)(2.5 m)(430 kg � 85/2 kg)

1.9 m

Tc �
gb(M � 1

2m)
a

(a)(Tc) � (b)(Tr) � (1
2b)(mg) � 0.

mg:T
:

rT
:

c

F
:

vF
:

h

F
:

vF
:

h

F
:

vF
:

h

T
:

c

Figure 12-6 (a)
A heavy safe is
hung from a
boom consisting
of a horizontal
steel cable and a
uniform beam.
(b) A free-body
diagram for the
beam.
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θ 

O

M

Tc

Tr

Fv

Fh

Here is the
wise choice of
rotation axis.
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line extending through the force vector), so that its tail is on
the dot. (The shift does not alter a torque due to about
any axis perpendicular to the figure.Thus, the shift does not af-
fect the torque balancing equation that we shall be using.)

The only force on the ladder from the wall is the hori-
zontal force (there cannot be a frictional force along a
frictionless wall, so there is no vertical force on the ladder
from the wall). The force F

:

p on the ladder from the pave-
ment has two components: a horizontal component F

:

px that
is a static frictional force and a vertical component F

:

py that is
a normal force.

To apply the balancing equations, let’s start with the
torque balancing of Eq. 12-9 (tnet,z � 0). To choose an axis
about which to calculate the torques, note that we have
unknown forces ( and F

:

p) at the two ends of the ladder. To
eliminate, say, F

:

p from the calculation, we place the axis at
point O, perpendicular to the figure (Fig. 12-7b). We also
place the origin of an xy coordinate system at O.We can find
torques about O with any of Eqs. 10-39 through 10-41, but
Eq. 10-41 (t � r�F) is easiest to use here. Making a wise
choice about the placement of the origin can make our torque
calculation much easier.

To find the moment arm r� of the horizontal force w
from the wall, we draw a line of action through that vector

F
:

F
:

w

F
:

w

Mg:

Sample Problem 12.03 Balancing a leaning ladder

In Fig. 12-7a, a ladder of length L � 12 m and mass m �
45 kg leans against a slick wall (that is, there is no friction
between the ladder and the wall). The ladder’s upper end is
at height h � 9.3 m above the pavement on which the lower
end is supported (the pavement is not frictionless). The 
ladder’s center of mass is L/3 from the lower end, along the
length of the ladder. A firefighter of mass M � 72 kg climbs
the ladder until her center of mass is L/2 from the lower
end. What then are the magnitudes of the forces on the lad-
der from the wall and the pavement?

KEY IDEAS

First, we choose our system as being the firefighter and lad-
der, together, and then we draw the free-body diagram of
Fig. 12-7b to show the forces acting on the system. Because
the system is in static equilibrium, the balancing equations
for both forces and torques (Eqs. 12-7 through 12-9) can be
applied to it.

Calculations: In Fig. 12-7b, the firefighter is represented with
a dot within the boundary of the ladder. The gravitational
force on her is represented with its equivalent expression 
and that vector has been shifted along its line of action (the

Mg:,

A
System

Fire-
fighter

com

Ladder
com

Frictionless

h

L

(a)

Fire-
fighter

Ladder

a/2
(b)

y

x

mg

Mg

O

a/3a

Fpx

Fpy

Fw Here are all
the forces.

Figure 12-7 (a) A firefighter climbs halfway up a ladder that is leaning against a frictionless
wall.The pavement beneath the ladder is not frictionless. (b) A free-body diagram, showing
the forces that act on the firefighter � ladder system.The origin O of a coordinate system is
placed at the point of application of the unknown force F

:

p (whose vector components F
:

px and
F
:

py are shown). (Figure 12-7 continues on following page.)
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Figure 12-7 (Continued from previous page)
(c) Calculating the torques. (d) Balancing
the forces. In WileyPLUS, this figure is
available as an animation with voiceover.

(it is the horizontal dashed line shown in Fig. 12-7c). Then r�

is the perpendicular distance between O and the line of ac-
tion. In Fig. 12-7c, r� extends along the y axis and is equal to
the height h.We similarly draw lines of action for the gravita-
tional force vectors and and see that their moment
arms extend along the x axis. For the distance a shown in Fig.
12-7a, the moment arms are a/2 (the firefighter is halfway up
the ladder) and a/3 (the ladder’s center of mass is one-third of
the way up the ladder), respectively.The moment arms for 
and are zero because the forces act at the origin.Fpy

:
Fpx
:

mg:Mg:

Then Eq. 12-21 gives us

� 407 N � 410 N. (Answer)

Now we need to use the force balancing equations and
Fig. 12-7d.The equation Fnet,x � 0 gives us

Fw � Fpx � 0,

so Fpx � Fw � 410 N. (Answer)

The equation Fnet,y � 0 gives us

Fpy � Mg � mg � 0,

so Fpy � (M � m)g � (72 kg � 45 kg)(9.8 m/s2)

� 1146.6 N � 1100 N. (Answer)

�
(9.8 m/s2)(7.58 m)(72/2 kg � 45/3 kg)

9.3 m

Fw �
ga(M/2 � m/3)

h

Now, with torques written in the form r�F, the balancing
equation tnet,z � 0 becomes

�(h)(Fw) � (a/2)(Mg) � (a/3)(mg)

� (0)(Fpx) � (0)(Fpy) � 0. (12-21)

(A positive torque corresponds to counterclockwise rotation
and a negative torque corresponds to clockwise rotation.)

Using the Pythagorean theorem for the right triangle
made by the ladder in Fig. 11-7a, we find that

.a � 1L2 � h2 � 7.58 m

y

x

mg

Mg

O

Fpy

y

xO
Fpx

Fw

(c)

(d )

y

xO
Fpx

Fpy

y

xO

h

Fw

y

x

Mg

O

a/2 a/3

y

x

mg

O

Choosing the 
rotation axis
here eliminates
the torques
due to these 
forces.

This moment
arm is
perpendicular
to the
line of action.

These horizontal
forces balance.

These
vertical
forces
balance.

Here
too.

Here
too.
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which gives us

Dividing this new result for the normal force at the right by
the original result and then substituting for d, we obtain

Substituting the values of h � 60 m, R � 9.8 m, and u � 5.5	
leads to

Thus, our simple model predicts that, although the tilt is
modest, the normal force on the tower’s southern wall has
increased by about 30%. One danger to the tower is that the
force may cause the southern wall to buckle and explode
outward. The cause of the leaning is the compressible soil
beneath the tower, which worsened with each rainfall.
Recently engineers have stabilized the tower and partially
reversed the leaning by installing a drainage system.

F�NR

FNR
� 1.29.

F�NR

FNR
�

R � d
R

� 1 �
d
R

� 1 �
0.5h tan u

R
.

F�NR �
(R � d)

2R
mg.

Sample Problem 12.04 Balancing the leaning Tower of Pisa

Let’s assume that the Tower of Pisa is a uniform hollow
cylinder of radius R � 9.8 m and height h � 60 m. The
center of mass is located at height h/2, along the cylin-
der’s central axis. In Fig. 12-8a, the cylinder is upright. In
Fig. 12-8b, it leans rightward (toward the tower’s south-
ern wall) by u � 5.5	, which shifts the com by a distance d.
Let’s assume that the ground exerts only two forces on
the tower. A normal force acts on the left (northern)
wall, and a normal force acts on the right (southern)
wall. By what percent does the magnitude FNR increase
because of the leaning?

KEY IDEA

Because the tower is still standing, it is in equilibrium and
thus the sum of torques calculated around any point must
be zero.

Calculations: Because we want to calculate FNR on the
right side and do not know or want FNL on the left side, we
use a pivot point on the left side to calculate torques. The
forces on the upright tower are represented in Fig. 12-8c.
The gravitational force , taken to act at the com, has a
vertical line of action and a moment arm of R (the per-
pendicular distance from the pivot to the line of action).
About the pivot, the torque associated with this force
would tend to create clockwise rotation and thus is nega-
tive. The normal force on the southern wall also has a
vertical line of action, and its moment arm is 2R. About
the pivot, the torque associated with this force would
tend to create counterclockwise rotation and thus is posi-
tive. We now can write the torque-balancing equation
(tnet,z � 0) as

�(R)(mg) � (2R)(FNR) � 0,

which yields

We should have been able to guess this result: With the
center of mass located on the central axis (the cylinder’s
line of symmetry), the right side supports half the cylin-
der’s weight.

In Fig. 12-8b, the com is shifted rightward by distance

The only change in the balance of torques equation is that
the moment arm for the gravitational force is now R � d
and the normal force at the right has a new magnitude 
(Fig. 12-8d).Thus, we write

�(R � d)(mg) � (2R)(F�NR) � 0,

F�NR

d � 1
2h tan u.

FNR � 1
2 mg.

FNR
:

mg:

FNR
:
FNL
:

Figure 12-8 A cylinder modeling the Tower of Pisa: (a) upright and
(b) leaning, with the center of mass shifted rightward. The forces
and moment arms to find torques about a pivot at point O for
the cylinder (c) upright and (d) leaning.

Additional examples, video, and practice available at WileyPLUS
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Indeterminate Structures
For the problems of this chapter, we have only three independent equations at
our disposal, usually two balance of forces equations and one balance-of-torques
equation about a given rotation axis. Thus, if a problem has more than three
unknowns, we cannot solve it.

Consider an unsymmetrically loaded car. What are the forces—all different—
on the four tires? Again, we cannot find them because we have only three inde-
pendent equations. Similarly, we can solve an equilibrium problem for a table
with three legs but not for one with four legs. Problems like these, in which there
are more unknowns than equations, are called indeterminate.

Yet solutions to indeterminate problems exist in the real world. If you rest
the tires of the car on four platform scales, each scale will register a definite read-
ing, the sum of the readings being the weight of the car. What is eluding us in our
efforts to find the individual forces by solving equations?

The problem is that we have assumed — without making a great point of
it — that the bodies to which we apply the equations of static equilibrium are
perfectly rigid. By this we mean that they do not deform when forces are ap-
plied to them. Strictly, there are no such bodies. The tires of the car, for ex-
ample, deform easily under load until the car settles into a position of static
equilibrium.

We have all had experience with a wobbly restaurant table, which we usually
level by putting folded paper under one of the legs. If a big enough elephant sat
on such a table, however, you may be sure that if the table did not collapse, it
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12-3 ELASTICITY
Learning Objectives

12.10 For shearing, apply the equation that relates stress to
strain and the shear modulus.

12.11 For hydraulic stress, apply the equation that relates
fluid pressure to strain and the bulk modulus.

● Three elastic moduli are used to describe the elastic behav-
ior (deformations) of objects as they respond to forces that act
on them. The strain (fractional change in length) is linearly re-
lated to the applied stress (force per unit area) by the proper
modulus, according to the general stress–strain relation

stress � modulus � strain.

● When an object is under tension or compression, the
stress–strain relation is written as

where �L/L is the tensile or compressive strain of the object,
F is the magnitude of the applied force causing the strain,
A is the cross-sectional area over which is applied (per-
pendicular to A), and E is the Young’s modulus for the ob-
ject. The stress is F/A.

F
:

F
:

F
A

� E
�L
L

,

● When an object is under a shearing stress, the stress–strain
relation is written as

where �x/L is the shearing strain of the object, �x is the
displacement of one end of the object in the direction of the
applied force , and G is the shear modulus of the object.
The stress is F/A.

● When an object undergoes hydraulic compression due to a
stress exerted by a surrounding fluid, the stress–strain relation
is written as

where p is the pressure (hydraulic stress) on the object due
to the fluid, �V/V (the strain) is the absolute value of the frac-
tional change in the object’s volume due to that pressure, and
B is the bulk modulus of the object.

p � B
�V
V

,

F
:

F
A

� G
�x
L

,

After reading this module, you should be able to . . . 

12.07 Explain what an indeterminate situation is.
12.08 For tension and compression, apply the equation that

relates stress to strain and Young’s modulus.
12.09 Distinguish between yield strength and ultimate strength.

Key Ideas



would deform just like the tires of a car. Its legs would all touch the floor,
the forces acting upward on the table legs would all assume definite (and differ-
ent) values as in Fig. 12-9, and the table would no longer wobble. Of course, we
(and the elephant) would be thrown out onto the street but, in principle, how do
we find the individual values of those forces acting on the legs in this or similar
situations where there is deformation?

To solve such indeterminate equilibrium problems, we must supplement
equilibrium equations with some knowledge of elasticity, the branch of physics
and engineering that describes how real bodies deform when forces are applied
to them.
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Checkpoint 3
A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that 
exert upward forces and on the bar.The figure shows four arrangements for the
wires.Which arrangements, if any, are indeterminate (so that we cannot solve for nu-
merical values of and )?F

:

2F
:

1

F
:

2F
:

1

10 N 10 N

10 N 10 N

d d

d
d/2

(a) (b)

(c) (d)

F1 F1

F1 F2

F2 F2

F2F1

com

FgF1

F2

F3

F4

Figure 12-9 The table is an indeterminate
structure.The four forces on the table legs
differ from one another in magnitude and
cannot be found from the laws of static
equilibrium alone.

Elasticity
When a large number of atoms come together to form a metallic solid, such as an
iron nail, they settle into equilibrium positions in a three-dimensional lattice, a
repetitive arrangement in which each atom is a well-defined equilibrium distance
from its nearest neighbors. The atoms are held together by interatomic forces
that are modeled as tiny springs in Fig. 12-10. The lattice is remarkably rigid,
which is another way of saying that the “interatomic springs” are extremely stiff.
It is for this reason that we perceive many ordinary objects, such as metal ladders,
tables, and spoons, as perfectly rigid. Of course, some ordinary objects, such as gar-
den hoses or rubber gloves, do not strike us as rigid at all. The atoms that make up
these objects do not form a rigid lattice like that of Fig. 12-10 but are aligned in long,
flexible molecular chains, each chain being only loosely bound to its neighbors.

All real “rigid” bodies are to some extent elastic, which means that we can
change their dimensions slightly by pulling, pushing, twisting, or compressing
them. To get a feeling for the orders of magnitude involved, consider a vertical
steel rod 1 m long and 1 cm in diameter attached to a factory ceiling. If you hang
a subcompact car from the free end of such a rod, the rod will stretch but only by
about 0.5 mm, or 0.05%. Furthermore, the rod will return to its original length
when the car is removed.

If you hang two cars from the rod, the rod will be permanently stretched and
will not recover its original length when you remove the load. If you hang three
cars from the rod, the rod will break. Just before rupture, the elongation of the

Figure 12-10 The atoms of a metallic solid are
distributed on a repetitive three-dimensional
lattice.The springs represent interatomic
forces.



rod will be less than 0.2%. Although deformations of this size seem small, they
are important in engineering practice. (Whether a wing under load will stay on an
airplane is obviously important.)

Three Ways. Figure 12-11 shows three ways in which a solid might change
its dimensions when forces act on it. In Fig. 12-11a, a cylinder is stretched. In
Fig. 12-11b, a cylinder is deformed by a force perpendicular to its long axis,
much as we might deform a pack of cards or a book. In Fig. 12-11c, a solid ob-
ject placed in a fluid under high pressure is compressed uniformly on all sides.
What the three deformation types have in common is that a stress, or deform-
ing force per unit area, produces a strain, or unit deformation. In Fig. 12-11, ten-
sile stress (associated with stretching) is illustrated in (a), shearing stress in (b),
and hydraulic stress in (c).

The stresses and the strains take different forms in the three situations of
Fig. 12-11, but—over the range of engineering usefulness—stress and strain are
proportional to each other.The constant of proportionality is called a modulus of
elasticity, so that

stress � modulus � strain. (12-22)

In a standard test of tensile properties, the tensile stress on a test cylinder
(like that in Fig. 12-12) is slowly increased from zero to the point at which the
cylinder fractures, and the strain is carefully measured and plotted. The result is a
graph of stress versus strain like that in Fig. 12-13. For a substantial range of
applied stresses, the stress–strain relation is linear, and the specimen recovers its
original dimensions when the stress is removed; it is here that Eq. 12-22 applies. If
the stress is increased beyond the yield strength Sy of the specimen, the specimen
becomes permanently deformed. If the stress continues to increase, the specimen
eventually ruptures, at a stress called the ultimate strength Su.

Tension and Compression
For simple tension or compression, the stress on the object is defined as F/A,
where F is the magnitude of the force applied perpendicularly to an area A on
the object. The strain, or unit deformation, is then the dimensionless quantity
�L/L, the fractional (or sometimes percentage) change in a length of the speci-
men. If the specimen is a long rod and the stress does not exceed the yield
strength, then not only the entire rod but also every section of it experiences
the same strain when a given stress is applied. Because the strain is dimension-
less, the modulus in Eq. 12-22 has the same dimensions as the stress — namely,
force per unit area.
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Figure 12-11 (a) A cylinder subject to tensile stress stretches by an amount �L. (b) A cylinder
subject to shearing stress deforms by an amount �x, somewhat like a pack of playing cards
would. (c) A solid sphere subject to uniform hydraulic stress from a fluid shrinks in volume
by an amount �V.All the deformations shown are greatly exaggerated.

L

Figure 12-12 A test specimen used to deter-
mine a stress–strain curve such as that of
Fig.12-13.The change �L that occurs in a
certain length L is measured in a tensile
stress–strain test.

Figure 12-13 A stress–strain curve for a steel
test specimen such as that of Fig. 12-12.
The specimen deforms permanently when
the stress is equal to the yield strength of
the specimen’s material. It ruptures when the
stress is equal to the ultimate strength of the
material.
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Figure 12-14 A strain gage of overall dimen-
sions 9.8 mm by 4.6 mm. The gage is fas-
tened with adhesive to the object whose
strain is to be measured; it experiences
the same strain as the object. The electri-
cal resistance of the gage varies with the
strain, permitting strains up to 3% to be
measured.

Courtesy Micro Measurements, a Division
of Vishay Precision Group, Raleigh, NC

Table 12-1 Some Elastic Properties of Selected Materials of Engineering Interest

Young’s Ultimate Yield
Density r Modulus E Strength Su Strength Sy

Material (kg/m3) (109 N/m2) (106 N/m2) (106 N/m2)

Steela 7860 200 400 250
Aluminum 2710 70 110 95
Glass 2190 65 50b —
Concretec 2320 30 40b —
Woodd 525 13 50b —
Bone 1900 9b 170b —
Polystyrene 1050 3 48 —

aStructural steel (ASTM-A36). bIn compression.
cHigh strength dDouglas fir.

The modulus for tensile and compressive stresses is called the Young’s modulus
and is represented in engineering practice by the symbol E. Equation 12-22 becomes

(12-23)

The strain �L/L in a specimen can often be measured conveniently with a strain
gage (Fig. 12-14), which can be attached directly to operating machinery with an
adhesive. Its electrical properties are dependent on the strain it undergoes.

Although the Young’s modulus for an object may be almost the same for tension
and compression, the object’s ultimate strength may well be different for the two types
of stress.Concrete, for example, is very strong in compression but is so weak in tension
that it is almost never used in that manner.Table 12-1 shows the Young’s modulus and
other elastic properties for some materials of engineering interest.

Shearing
In the case of shearing, the stress is also a force per unit area, but the force vector
lies in the plane of the area rather than perpendicular to it. The strain is the
dimensionless ratio �x/L, with the quantities defined as shown in Fig. 12-11b.The
corresponding modulus, which is given the symbol G in engineering practice, is
called the shear modulus. For shearing, Eq. 12-22 is written as

(12-24)

Shearing occurs in rotating shafts under load and in bone fractures due to bending.

Hydraulic Stress
In Fig. 12-11c, the stress is the fluid pressure p on the object, and, as you will see in
Chapter 14, pressure is a force per unit area. The strain is �V/V, where V is the
original volume of the specimen and �V is the absolute value of the change in vol-
ume.The corresponding modulus, with symbol B, is called the bulk modulus of the
material. The object is said to be under hydraulic compression, and the pressure
can be called the hydraulic stress. For this situation, we write Eq. 12-22 as

(12-25)

The bulk modulus is 2.2 � 109 N/m2 for water and 1.6 � 1011 N/m2 for
steel. The pressure at the bottom of the Pacific Ocean, at its average depth 
of about 4000 m, is 4.0 � 107 N/m2. The fractional compression �V/V of a volume 
of water due to this pressure is 1.8%; that for a steel object is only about 0.025%. In
general, solids—with their rigid atomic lattices—are less compressible than 
liquids, in which the atoms or molecules are less tightly coupled to their neighbors.

p � B
�V
V

.

F
A

� G
�x
L
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� 2.2 � 108 N/m2. (Answer)

The yield strength for structural steel is 2.5 � 108 N/m2, so
this rod is dangerously close to its yield strength.

We find the value of Young’s modulus for steel in
Table 12 -1.Then from Eq. 12-23 we find the elongation:

� 8.9 � 10�4 m � 0.89 mm. (Answer)
For the strain, we have

� 1.1 � 10�3 � 0.11%. (Answer)

�L
L

�
8.9 � 10�4 m

0.81 m

�L �
(F/A)L

E
�

(2.2 � 108 N/m2)(0.81 m)
2.0 � 1011 N/m2

stress �
F
A

�
F

pR2 �
6.2 � 104 N

(p)(9.5 � 10�3 m)2

Sample Problem 12.05 Stress and strain of elongated rod

One end of a steel rod of radius R � 9.5 mm and length 
L � 81 cm is held in a vise. A force of magnitude 
F � 62 kN is then applied perpendicularly to the end face
(uniformly across the area) at the other end, pulling di-
rectly away from the vise. What are the stress on the rod
and the elongation �L and strain of the rod?

KEY IDEAS

(1) Because the force is perpendicular to the end face and
uniform, the stress is the ratio of the magnitude F of the
force to the area A. The ratio is the left side of Eq. 12 -23.
(2) The elongation �L is related to the stress and Young’s
modulus E by Eq. 12-23 (F/A � E �L/L). (3) Strain is the
ratio of the elongation to the initial length L.

Calculations: To find the stress, we write

mation gives us

(12-27)

We cannot solve this equation because it has two unknowns,
F4 and F3.

To get a second equation containing F4 and F3, we can use
a vertical y axis and then write the balance of vertical forces
(Fnet,y � 0) as

3F3 � F4 � Mg � 0, (12-28)

where Mg is equal to the magnitude of the gravitational force
on the system. (Three legs have force on them.) To solve
the simultaneous equations 12-27 and 12-28 for, say, F3, we
first use Eq. 12-28 to find that F4 � Mg � 3F3. Substituting
that into Eq. 12-27 then yields, after some algebra,

� 548 N � 5.5 � 102 N. (Answer)

From Eq. 12-28 we then find

F4 � Mg � 3F3 � (290 kg)(9.8 m/s2) � 3(548 N)

� 1.2 kN. (Answer)

You can show that the three short legs are each compressed
by 0.42 mm and the single long leg by 0.92 mm.

�
(5.0 � 10�4 m)(10�4 m2)(1.3 � 1010 N/m2)

(4)(1.00 m)

�
(290 kg)(9.8 m/s2)

4

F3 �
Mg
4

�
dAE
4L

F
:

3

F4L
AE

�
F3L
AE

� d.

Sample Problem 12.06 Balancing a wobbly table

A table has three legs that are 1.00 m in length and a fourth
leg that is longer by d � 0.50 mm, so that the table wobbles
slightly. A steel cylinder with mass M � 290 kg is placed
on the table (which has a mass much less than M) so that
all four legs are compressed but unbuckled and the table
is level but no longer wobbles. The legs are wooden cylin-
ders with cross-sectional area A � 1.0 cm2; Young’s mod-
ulus is E � 1.3 � 1010 N/m2.What are the magnitudes of the
forces on the legs from the floor?

KEY IDEAS

We take the table plus steel cylinder as our system. The situ-
ation is like that in Fig. 12-9, except now we have a steel
cylinder on the table. If the tabletop remains level, the legs
must be compressed in the following ways: Each of the short
legs must be compressed by the same amount (call it �L3)
and thus by the same force of magnitude F3. The single long
leg must be compressed by a larger amount �L4 and thus by
a force with a larger magnitude F4. In other words, for a
level tabletop, we must have

�L4 � �L3 � d. (12-26)

From Eq. 12-23, we can relate a change in length to the
force causing the change with �L � FL/AE, where L is the
original length of a leg.We can use this relation to replace �L4

and �L3 in Eq. 12-26. However, note that we can approximate
the original length L as being the same for all four legs.

Calculations: Making those replacements and that approxi-

Additional examples, video, and practice available at WileyPLUS
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Static Equilibrium A rigid body at rest is said to be in static
equilibrium. For such a body, the vector sum of the external forces
acting on it is zero:

(balance of forces). (12-3)

If all the forces lie in the xy plane, this vector equation is equiva-
lent to two component equations:

Fnet,x � 0 and Fnet,y � 0 (balance of forces). (12-7, 12-8)

Static equilibrium also implies that the vector sum of the external
torques acting on the body about any point is zero, or

(balance of torques). (12-5)

If the forces lie in the xy plane, all torque vectors are parallel to the
z axis, and Eq. 12-5 is equivalent to the single component equation

tnet,z � 0 (balance of torques). (12-9)

Center of Gravity The gravitational force acts individually on
each element of a body. The net effect of all individual actions may
be found by imagining an equivalent total gravitational force 
acting at the center of gravity. If the gravitational acceleration is
the same for all the elements of the body, the center of gravity is at
the center of mass.

Elastic Moduli Three elastic moduli are used to describe the
elastic behavior (deformations) of objects as they respond to
forces that act on them. The strain (fractional change in length) is
linearly related to the applied stress (force per unit area) by the
proper modulus, according to the general relation

stress � modulus � strain. (12-22)

g:
F
:

g

t:net � 0

F
:

net � 0

Review & Summary

Tension and Compression When an object is under tension
or compression, Eq. 12-22 is written as

(12-23)

where �L/L is the tensile or compressive strain of the object, F is
the magnitude of the applied force causing the strain, A is the
cross-sectional area over which is applied (perpendicular to A,
as in Fig. 12-11a), and E is the Young’s modulus for the object. The
stress is F/A.

Shearing When an object is under a shearing stress, Eq. 12-22 is
written as

(12-24)

where �x/L is the shearing strain of the object, �x is the
displacement of one end of the object in the direction of the ap-
plied force (as in Fig. 12-11b), and G is the shear modulus of the
object.The stress is F/A.

Hydraulic Stress When an object undergoes hydraulic com-
pression due to a stress exerted by a surrounding fluid, Eq. 12-22 is
written as

(12-25)

where p is the pressure (hydraulic stress) on the object due to the
fluid, �V/V (the strain) is the absolute value of the fractional
change in the object’s volume due to that pressure, and B is the
bulk modulus of the object.

p � B
�V
V

,

F
:

F
A

� G
�x
L

,

F
:

F
:

F
A

� E
�L
L

,

Questions

1 Figure 12-15 shows three situations in which the same
horizontal rod is supported by a hinge on a wall at one end and a
cord at its other end. Without written calculation, rank the situa-
tions according to the magnitudes of (a) the force on the rod
from the cord, (b) the vertical force on the rod from the hinge,
and (c) the horizontal force on the rod from the hinge, greatest
first.

compared to that of the safe.(a) Rank the positions according to
the force on post A due to the safe, greatest compression first,
greatest tension last, and indicate where, if anywhere, the force is
zero. (b) Rank them according to the force on post B.

3 Figure 12-17 shows four overhead views of rotating uniform
disks that are sliding across a frictionless floor. Three forces, of
magnitude F, 2F, or 3F, act on each disk, either at the rim, at the
center, or halfway between rim and center.The force vectors rotate
along with the disks, and, in the “snapshots” of Fig. 12-17, point left
or right.Which disks are in equilibrium?

50° 50° 

(1) (2) (3)

Figure 12-15 Question 1.

2 In Fig. 12-16, a rigid beam is at-
tached to two posts that are fas-
tened to a floor.A small but heavy
safe is placed at the six positions
indicated, in turn.Assume that the
mass of the beam is negligible

1 2 3 4 5 6 

A B 

Figure 12-16 Question 2.

(a) (b) (c) (d)

F

3F
2F

2F

F

F F 

F

2F

2F

F

F

Figure 12-17 Question 3.

4 A ladder leans against a frictionless wall but is prevented from
falling because of friction between it and the ground. Suppose
you shift the base of the ladder toward the wall. Determine
whether the following become larger, smaller, or stay the same (in



magnitude): (a) the normal force on the ladder from the ground,
(b) the force on the ladder from the wall, (c) the static frictional
force on the ladder from the ground, and (d) the maximum value
fs,max of the static frictional force.

5 Figure 12-18 shows a mobile of toy penguins hanging from a
ceiling. Each crossbar is horizontal, has negligible mass, and ex-
tends three times as far to the right of the wire supporting it as to
the left. Penguin 1 has mass m1 � 48 kg. What are the masses of
(a) penguin 2, (b) penguin 3, and (c) penguin 4?
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What is the tension in the short cord
labeled with T?

9 In Fig. 12-22, a vertical rod is
hinged at its lower end and attached
to a cable at its upper end.A horizon-
tal force is to be applied to the rod
as shown. If the point at which the
force is applied is moved up the rod,
does the tension in the cable increase,
decrease, or remain the same?

10 Figure 12-23 shows a horizon-
tal block that is suspended by two
wires, A and B, which are identical
except for their original lengths. The
center of mass of the block is closer
to wire B than to wire A. (a)
Measuring torques about the
block’s center of mass, state whether
the magnitude of the torque due to wire A is greater than, less
than, or equal to the magnitude of the torque due to wire B. (b)
Which wire exerts more force on the block? (c) If the wires are now
equal in length, which one was originally shorter (before the block
was suspended)?

11 The table gives the initial lengths of three rods and the
changes in their lengths when forces are applied to their ends to
put them under strain. Rank the rods according to their strain,
greatest first.

Initial Length Change in Length

Rod A 2L0 �L0

Rod B 4L0 2�L0

Rod C 10L0 4�L0

12 A physical therapist gone wild has constructed the (station-
ary) assembly of massless pulleys and cords seen in Fig. 12-24.
One long cord wraps around all the pulleys, and shorter cords
suspend pulleys from the ceiling or weights from the pulleys.
Except for one, the weights (in newtons) are indicated. (a) What
is that last weight? (Hint: When a cord loops halfway around a
pulley as here, it pulls on the pulley with a net force that is twice
the tension in the cord.) (b) What is the tension in the short cord
labeled T?

F
:

a

1 2

3 4 

6 Figure 12-19 shows an overhead
view of a uniform stick on which
four forces act. Suppose we choose
a rotation axis through point O, cal-
culate the torques about that axis
due to the forces, and find that these
torques balance. Will the torques
balance if, instead, the rotation axis is chosen to be at (a) point A
(on the stick), (b) point B (on line with the stick), or (c) point C
(off to one side of the stick)? (d) Suppose, instead, that we find
that the torques about point O do not balance. Is there another
point about which the torques will balance?

7 In Fig. 12-20, a stationary 5 kg rod AC is held
against a wall by a rope and friction between rod
and wall.The uniform rod is 1 m long, and angle

. (a) If you are to find the magnitude of
the force on the rod from the rope with a sin-
gle equation,at what labeled point should a rota-
tion axis be placed? With that choice of axis and
counterclockwise torques positive, what is the
sign of (b) the torque due to the rod’s weight
and (c) the torque due to the pull on the rod
by the rope? (d) Is the magnitude of greater
than, less than,or equal to the magnitude of ?

8 Three piñatas hang from the
(stationary) assembly of massless
pulleys and cords seen in Fig. 12-21.
One long cord runs from the ceiling
at the right to the lower pulley at
the left, looping halfway around all
the pulleys. Several shorter cords
suspend pulleys from the ceiling or
piñatas from the pulleys. The
weights (in newtons) of two piñatas
are given. (a) What is the weight of
the third piñata? (Hint: A cord that
loops halfway around a pulley pulls
on the pulley with a net force that
is twice the tension in the cord.) (b)

tw

tr

tr

tw

T
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u � 30	

O A

C

B

Figure 12-19 Question 6.

θ 

B C A

D

Figure 12-20
Question 7.

Fa

Figure 12-22 Question 9.

com

A B 

Figure 12-23 Question 10.

Figure 12-18 Question 5.

T

10

17

Figure 12-21 Question 8.

T

5 34

6
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15
23

Figure 12-24 Question 12.
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•7 A 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long.
He places one end on the ground 2.5 m from a wall, rests the upper
end against a cracked window, and climbs the ladder. He is 3.0 m up
along the ladder when the window breaks. Neglect friction between
the ladder and window and assume that the base of the ladder does
not slip. When the window is on the verge of breaking, what are (a)
the magnitude of the force on the window from the ladder, (b) the
magnitude of the force on the ladder from the ground, and (c) the
angle (relative to the horizontal) of that force on the ladder?

•8 A physics Brady Bunch, whose weights in newtons are
indicated in Fig. 12-27, is balanced on a seesaw.What is the number
of the person who causes the largest torque about the rotation axis
at fulcrum f directed (a) out of the page and (b) into the page?

Module 12-1 Equilibrium
•1 Because g varies so little over the extent of
most structures, any structure’s center of gravity
effectively coincides with its center of mass.
Here is a fictitious example where g varies more
significantly. Figure 12-25 shows an array of
six particles, each with mass m, fixed to the edge
of a rigid structure of negligible mass. The dis-
tance between adjacent particles along the edge
is 2.00 m.The following table gives the value of g
(m/s2) at each particle’s location. Using the
coordinate system shown, find (a) the x coordi-
nate xcom and (b) the y coordinate ycom of the center of mass of the
six-particle system.Then find (c) the x coordinate xcog and (d) the y
coordinate ycog of the center of gravity of the six-particle system.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Particle g Particle g

1 8.00 4 7.40
2 7.80 5 7.60
3 7.60 6 7.80

Module 12-2 Some Examples of Static Equilibrium
•2 An automobile with a mass of 1360 kg has 3.05 m between the
front and rear axles. Its center of gravity is located 1.78 m behind
the front axle. With the automobile on level ground, determine the
magnitude of the force from the ground on (a) each front wheel
(assuming equal forces on the front wheels) and (b) each rear
wheel (assuming equal forces on the rear wheels).

•3 In Fig. 12-26, a uniform sphere
of mass m 0.85 kg and radius r 4.2 cm is
held in place by a massless rope attached to a
frictionless wall a distance L 8.0 cm above
the center of the sphere. Find (a) the tension
in the rope and (b) the force on the sphere from
the wall.

•4 An archer’s bow is drawn at its midpoint
until the tension in the string is equal to the
force exerted by the archer. What is the angle
between the two halves of the string?

•5 A rope of negligible mass is stretched
horizontally between two supports that are 3.44 m
apart. When an object of weight 3160 N is hung at the center of the
rope, the rope is observed to sag by 35.0 cm. What is the tension in
the rope?

•6 A scaffold of mass 60 kg and length 5.0 m is supported in a
horizontal position by a vertical cable at each end. A window
washer of mass 80 kg stands at a point 1.5 m from one end. What is
the tension in (a) the nearer cable and (b) the farther cable?

ILW

�

��

WWWSSM

3 4 

2 5 

1 6 

y

x

Figure 12-25
Problem 1.

L

r

Figure 12-26
Problem 3.

4 3 2 1 0 1 2 3 4 meters 

220 330 440 560  560 440 330 220 newtons

1 2 3 4  5 6 7 8 

f

Figure 12-27 Problem 8.

•9 A meter stick balances horizontally on a knife-edge at the
50.0 cm mark. With two 5.00 g coins stacked over the 12.0 cm
mark, the stick is found to balance at the 45.5 cm mark. What is the
mass of the meter stick?

•10 The system in Fig. 12-28 is in
equilibrium, with the string in the
center exactly horizontal. Block A
weighs 40 N, block B weighs 50 N,
and angle f is 35°. Find (a) tension
T1, (b) tension T2, (c) tension T3, and
(d) angle u.

•11 Figure 12-29 shows a
diver of weight 580 N standing at the
end of a diving board with a length
of L � 4.5 m and negligible mass.
The board is fixed to two pedestals
(supports) that are separated by dis-
tance d � 1.5 m. Of the forces acting
on the board, what are the (a) magni-
tude and (b) direction (up or down)
of the force from the left pedestal
and the (c) magnitude and (d) direc-
tion (up or down) of the force from
the right pedestal? (e) Which
pedestal (left or right) is being
stretched, and (f) which pedestal is being compressed?

SSM

SSM

T2

T3T1
θ φ 

A B

Figure 12-28 Problem 10.

d

L

Figure 12-29 Problem 11.



•12 In Fig. 12-30, trying to get his car out of mud, a man ties one
end of a rope around the front bumper and the other end tightly
around a utility pole 18 m away. He then pushes sideways on the
rope at its midpoint with a force of 550 N, displacing the center of
the rope 0.30 m, but the car barely moves.What is the magnitude of
the force on the car from the rope? (The rope stretches somewhat.)
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•17 In Fig. 12-34, a uniform beam of
weight 500 N and length 3.0 m is sus-
pended horizontally. On the left it is
hinged to a wall; on the right it is sup-
ported by a cable bolted to the wall at
distance D above the beam. The least
tension that will snap the cable is 1200
N. (a) What value of D corresponds to
that tension? (b) To prevent the cable
from snapping, should D be increased
or decreased from that value?

•18 In Fig. 12-35, horizontal scaf-
fold 2, with uniform mass m2 30.0
kg and length L2 � 2.00 m, hangs
from horizontal scaffold 1, with uni-
form mass m1 � 50.0 kg. A 20.0 kg
box of nails lies on scaffold 2, cen-
tered at distance d � 0.500 m from
the left end. What is the tension T in
the cable indicated?

•19 To crack a certain nut in a nut-
cracker, forces with magnitudes of at
least 40 N must act on its shell from
both sides. For the nutcracker of Fig.
12-36, with distances L � 12 cm and
d � 2.6 cm, what are the force com-
ponents F� (perpendicular to the
handles) corresponding to that 40 N?

•20 A bowler holds a bowling ball
(M � 7.2 kg) in the palm of his hand
(Fig. 12 -37). His upper arm is vertical; his lower arm (1.8 kg) is
horizontal. What is the magnitude of (a) the force of the biceps
muscle on the lower arm and (b) the force between the bony
structures at the elbow contact point?

�

F

Figure 12-30 Problem 12.

•13 Figure 12-31 shows the
anatomical structures in the
lower leg and foot that are
involved in standing on tip-
toe, with the heel raised
slightly off the floor so that
the foot effectively contacts
the floor only at point P.
Assume distance a � 5.0 cm,
distance b � 15 cm, and the
person’s weight W � 900 N.
Of the forces acting on the
foot, what are the (a) magni-
tude and (b) direction (up or down) of the force at point A from
the calf muscle and the (c) magnitude and (d) direction (up or
down) of the force at point B from the lower leg bones?

•14 In Fig. 12-32, a horizontal
scaffold, of length 2.00 m and uni-
form mass 50.0 kg, is suspended
from a building by two cables. The
scaffold has dozens of paint cans
stacked on it at various points. The total mass of the paint cans is
75.0 kg. The tension in the cable at the right is 722 N. How far
horizontally from that cable is the center of mass of the system of
paint cans?

•15 Forces , , and act on the structure of Fig. 12-33,
shown in an overhead view.We wish to put the structure in equilib-
rium by applying a fourth force, at a point such as P. The fourth
force has vector components and .We are given that a � 2.0 m,F

:

vF
:

h

F
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3F
:

2F
:

1ILW

Figure 12-32 Problem 14.

a b
P

A
B

Lower leg bones 

Calf muscle 

Figure 12-31 Problem 13.

b � 3.0 m, c � 1.0 m, F1 � 20 N, F2 � 10 N, and F3 � 5.0 N. Find (a)
Fh, (b) Fv, and (c) d.

y

x
O

d

b a

a

P
c

F1 F2

F3

Fh

Fv

Figure 12-33 Problem 15.

•16 A uniform cubical crate is 0.750 m on each side and weighs
500 N. It rests on a floor with one edge against a very small, fixed
obstruction. At what least height above the floor must a horizontal
force of magnitude 350 N be applied to the crate to tip it?

Cable

Beam

D

Figure 12-34 Problem 17.

T = ? 1

2

d d d
L2

Figure 12-35 Problem 18.
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Figure 12-36 Problem 19.

Biceps

Lower arm
(forearm plus 
hand) center 

of mass 

Elbow
contact
point

M

33 cm 
15 cm

4.0 cm

Figure 12-37 Problem 20.

••21 The system in Fig. 12-38 is
in equilibrium. A concrete block of
mass 225 kg hangs from the end of
the uniform strut of mass 45.0 kg. A
cable runs from the ground, over
the top of the strut, and down to the
block, holding the block in place.
For angles f � 30.0° and u � 45.0°,
find (a) the tension T in the cable
and the (b) horizontal and (c) verti-
cal components of the force on the strut from the hinge.

ILW

θ 
φ 

T

Hinge

Strut

Figure 12-38 Problem 21.



••22 In Fig. 12-39, a 55 kg
rock climber is in a lie-back climb
along a fissure, with hands pulling on
one side of the fissure and feet
pressed against the opposite side.
The fissure has width w � 0.20 m,
and the center of mass of the climber
is a horizontal distance d � 0.40 m
from the fissure. The coefficient of
static friction between hands and
rock is m1 � 0.40, and between boots
and rock it is m2 � 1.2. (a) What is the
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feet–ground contact point. If he is on the
verge of sliding, what is the coefficient of
static friction between feet and ground?

••27 In Fig. 12-44, a 15 kg block is
held in place via a pulley system. The
person’s upper arm is vertical; the fore-
arm is at angle u � 30° with the horizon-
tal. Forearm and hand together have a
mass of 2.0 kg, with a center of mass at dis-
tance d1 � 15 cm from the contact point of
the forearm bone and the upper-arm bone
(humerus). The triceps muscle pulls verti-
cally upward on the forearm at distance d2 � 2.5 cm behind that
contact point. Distance d3 is 35 cm. What are the (a) magnitude and
(b) direction (up or down) of the force on the forearm from the tri-
ceps muscle and the (c) magnitude and (d) direction (up or down) of
the force on the forearm from the humerus?
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Figure 12-39 Problem 22.

Figure 12-40 Problem  23.
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Figure 12-41 Problem 24.

If the climber encounters wet rock, so
that m1 and m2 are reduced, what hap-
pens to (c) the answer to (a) and (d)
the answer to (b)?

••23 In Fig. 12-40, one end of a
uniform beam of weight 222 N is
hinged to a wall; the other end is sup-
ported by a wire that makes angles 
u � 30.0° with both wall and beam.
Find (a) the tension in the wire and the
(b) horizontal and (c) vertical compo-
nents of the force of the hinge on the
beam.

••24 In Fig. 12 -41, a climber
with a weight of 533.8 N is held by a
belay rope connected to her climbing
harness and belay device; the force of
the rope on her has a line of action
through her center of mass. The indi-
cated angles are u � 40.0° and f �
30.0°. If her feet are on the verge of
sliding on the vertical wall, what is the
coefficient of static friction between
her climbing shoes and the wall?

••25 In Fig. 12-42, whatWWWSSM
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••28 In Fig. 12-45, suppose the
length L of the uniform bar is 3.00 m
and its weight is 200 N. Also, let the
block’s weight W � 300 N and the an-
gle u � 30.0°. The wire can withstand
a maximum tension of 500 N. (a) What
is the maximum possible distance x
before the wire breaks? With the
block placed at this maximum x, what
are the (b) horizontal and (c) vertical
components of the force on the bar
from the hinge at A?

••29 A door has a height of 2.1 m
along a y axis that extends vertically
upward and a width of 0.91 m along an
x axis that extends outward from the
hinged edge of the door.A hinge 0.30 m
from the top and a hinge 0.30 m from
the bottom each support half the door’s
mass, which is 27 kg. In unit-vector
notation, what are the forces on the
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Figure 12-45
Problems 28 and 34.

door at (a) the top hinge and (b) the
bottom hinge?

••30 In Fig. 12-46, a 50.0 kg uniform

least horizontal pull by the hands and push by the feet that
will keep the climber stable? (b) For the horizontal pull of
(a), what must be the vertical distance h between hands and feet?

••26 In Fig. 12-43, a climber leans out against a vertical
ice wall that has negligible friction. Distance a is 0.914 m and dis-
tance L is 2.10 m. His center of mass is distance d � 0.940 m from the

dv
Cable

Hinge
Rod

L

dh

L

Figure 12-46 Problem 30.

square sign, of edge length L � 2.00 m, is
hung from a horizontal rod of length
dh � 3.00 m and negligible mass. A ca-
ble is attached to the end of the rod

magnitude of (constant) force ap-
plied horizontally at the axle of the
wheel is necessary to raise the wheel
over a step obstacle of height 
h � 3.00 cm? The wheel’s radius is r �
6.00 cm, and its mass is m � 0.800 kg.

F
:



and to a point on the wall at distance dv � 4.00 m above the point
where the rod is hinged to the wall. (a) What is the tension in the
cable? What are the (b) magnitude and (c) direction (left or right)
of the horizontal component of the force on the rod from the wall,
and the (d) magnitude and (e) direction (up or down) of the verti-
cal component of this force?

••31 In Fig. 12-47, a
nonuniform bar is suspended
at rest in a horizontal position
by two massless cords. One
cord makes the angle u �
36.9° with the vertical; the
other makes the angle f �
53.1° with the vertical. If the
length L of the bar is 6.10 m,
compute the distance x from
the left end of the bar to its center of mass.

••32 In Fig. 12-48, the driver of a car on a horizontal road makes
an emergency stop by applying the brakes so that all four wheels
lock and skid along the road. The coefficient of kinetic friction be-
tween tires and road is 0.40. The separation between the front and
rear axles is L � 4.2 m, and the center of mass of the car is located
at distance d � 1.8 m behind the front axle and distance h � 0.75 m
above the road. The car weighs 11 kN. Find the magnitude of (a)
the braking acceleration of the car, (b) the normal force on each
rear wheel, (c) the normal force on each front wheel, (d) the brak-
ing force on each rear wheel, and (e) the braking force on each
front wheel. (Hint: Although the car is not in translational equilib-
rium, it is in rotational equilibrium.)
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the beam at distance y from the lower end. The beam remains
vertical because of a cable attached at the upper end, at angle u
with the horizontal. Figure 12-49b gives the tension T in the cable
as a function of the position of the applied force given as a fraction
y/L of the beam length. The scale of the T axis is set by Ts � 600 N.
Figure 12-49c gives the magnitude Fh of the horizontal force on the
beam from the hinge, also as a function of y/L. Evaluate (a) angle u
and (b) the magnitude of .

••34 In Fig. 12-45, a thin horizontal bar AB of negligible weight
and length L is hinged to a vertical wall at A and supported at B
by a thin wire BC that makes an angle u with the horizontal. A
block of weight W can be moved anywhere along the bar; its posi-
tion is defined by the distance x from the wall to its center of
mass. As a function of x, find (a) the tension in the wire, and the
(b) horizontal and (c) vertical components of the force on the bar
from the hinge at A.

••35 A cubical box is filled with sand and weighs 890
N. We wish to “roll” the box by pushing horizontally on one of the
upper edges. (a) What minimum force is required? (b) What mini-
mum coefficient of static friction between box and floor is re-
quired? (c) If there is a more efficient way to roll the box, find the
smallest possible force that would have to be applied directly to
the box to roll it. (Hint: At the onset of tipping, where is the normal
force located?)

••36 Figure 12-50 shows a 70 kg climber
hanging by only the crimp hold of one hand on
the edge of a shallow horizontal ledge in a
rock wall. (The fingers are pressed down to
gain purchase.) Her feet touch the rock wall
at distance H � 2.0 m directly below her
crimped fingers but do not provide any sup-
port. Her center of mass is distance a � 0.20
m from the wall. Assume that the force from
the ledge supporting her fingers is equally
shared by the four fingers. What are the values
of the (a) horizontal component Fh and (b)
vertical component Fv of the force on each
fingertip?

••37 In Fig. 12-51, a uniform plank, with a
length L of 6.10 m and a weight of 445 N, rests
on the ground and against a frictionless roller at
the top of a wall of height h � 3.05 m.The plank
remains in equilibrium for any value of u � 70°
but slips if u � 70°. Find the coefficient of static
friction between the plank and the ground.
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••33 Figure 12-49a shows a vertical uniform beam of length L
that is hinged at its lower end. A horizontal force is applied toF
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••38 In Fig. 12-52, uniform beams A
and B are attached to a wall with hinges
and loosely bolted together (there is
no torque of one on the other). Beam
A has length LA � 2.40 m and mass
54.0 kg; beam B has mass 68.0 kg.The
two hinge points are separated by dis-
tance d � 1.80 m. In unit-vector nota-
tion, what is the force on (a) beam A
due to its hinge, (b) beam A due to
the bolt, (c) beam B due to its hinge,
and (d) beam B due to the bolt?

•••39 For the stepladder shown in
Fig. 12-53, sides AC and CE are each
2.44 m long and hinged at C. Bar BD
is a tie-rod 0.762 m long, halfway up.
A man weighing 854 N climbs 1.80 m
along the ladder. Assuming that the
floor is frictionless and neglecting the
mass of the ladder, find (a) the tension
in the tie-rod and the magnitudes of
the forces on the ladder from the floor
at (b) A and (c) E. (Hint: Isolate parts
of the ladder in applying the equilib-
rium conditions.)

•••40 Figure 12-54a shows a horizon-
tal uniform beam of mass mb and
length L that is supported on the left
by a hinge attached to a wall and on the right by a cable at angle u with
the horizontal. A package of mass mp is positioned on the beam at a
distance x from the left end. The total mass is mb � mp � 61.22 kg.
Figure 12-54b gives the tension T in the cable as a function of the
package’s position given as a fraction x/L of the beam length. The
scale of the T axis is set by Ta � 500 N and Tb � 700 N. Evaluate (a)
angle u, (b) mass mb, and (c) mass mp.
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be 0.53. How far (in percent) up the ladder must the firefighter go
to put the ladder on the verge of sliding?

Module 12-3 Elasticity
•43 A horizontal aluminum rod 4.8 cm in diameter
projects 5.3 cm from a wall.A 1200 kg object is suspended from the
end of the rod. The shear modulus of aluminum is 3.0 � 1010 N/m2.
Neglecting the rod’s mass, find (a) the shear stress on the rod and
(b) the vertical deflection of the end of the rod.

•44 Figure 12-55 shows the
stress–strain curve for a material.
The scale of the stress axis is set by
s � 300, in units of 106 N/m2. What
are (a) the Young’s modulus and (b)
the approximate yield strength for
this material?

••45 In Fig. 12-56, a lead brick rests
horizontally on cylinders A and B.
The areas of the top faces of the cylin-
ders are related by AA � 2AB; the
Young’s moduli of the cylinders
are related by EA � 2EB. The cylin-
ders had identical lengths before the
brick was placed on them. What
fraction of the brick’s mass is sup-
ported (a) by cylinder A and (b) by
cylinder B? The horizontal distances
between the center of mass of the
brick and the centerlines of the
cylinders are dA for cylinder A and
dB for cylinder B. (c) What is the ratio dA/dB?

••46 Figure 12-57 shows an approximate plot of stress ver-
sus strain for a spider-web thread, out to the point of breaking at a
strain of 2.00. The vertical axis scale is set by values a � 0.12
GN/m2, b � 0.30 GN/m2, and c � 0.80 GN/m2. Assume that the
thread has an initial length of 0.80 cm, an initial cross-sectional area of
8.0 � 10�12 m2, and (during stretching) a constant volume. The
strain on the thread is the ratio of the change in the thread’s
length to that initial length, and the stress on the thread is the ra-
tio of the collision force to that initial cross-sectional area.
Assume that the work done on the thread by the collision force is
given by the area under the curve on the graph. Assume also that
when the single thread snares a flying insect, the insect’s kinetic
energy is transferred to the stretching of the thread. (a) How
much kinetic energy would put the thread on the verge of break-
ing? What is the kinetic energy of (b) a fruit fly of mass 6.00 mg
and speed 1.70 m/s and (c) a bumble bee of mass 0.388 g and
speed 0.420 m/s? Would (d) the fruit fly and (e) the bumble bee
break the thread?
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•••41 A crate, in the form of a cube with edge lengths of 1.2 m, con-
tains a piece of machinery; the center of mass of the crate and its
contents is located 0.30 m above the crate’s geometrical center. The
crate rests on a ramp that makes an angle u with the horizontal.As u
is increased from zero, an angle will be reached at which the crate
will either tip over or start to slide down the ramp. If the coefficient
of static friction ms between ramp and crate is 0.60, (a) does the crate
tip or slide and (b) at what angle u does this occur? If ms � 0.70,
(c) does the crate tip or slide and (d) at what angle u does this occur?
(Hint: At the onset of tipping, where is the normal force located?)

•••42 In Fig. 12-7 and the associated sample problem, let the co-
efficient of static friction ms between the ladder and the pavement



••47 A tunnel of length L � 150 m, height H � 7.2 m, and width
5.8 m (with a flat roof) is to be constructed at distance d � 60 m
beneath the ground. (See Fig. 12-58.) The tunnel roof is to be sup-
ported entirely by square steel columns, each with a cross-sectional
area of 960 cm2. The mass of 1.0 cm3 of the ground material is 2.8 g.
(a) What is the total weight of the ground material the columns must
support? (b) How many columns are needed to keep the compres-
sive stress on each column at one-half its ultimate strength?
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are forced against rigid walls at distances rA � 7.0 cm and rB � 4.0 cm
from the axle. Initially the stoppers touch the walls without being
compressed. Then force of magnitude 220 N is applied perpendi-
cular to the rod at a distance R � 5.0 cm from the axle. Find the mag-
nitude of the force compressing (a) stopper A and (b) stopper B.
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Figure 12-58 Problem 47.

••48 Figure 12-59 shows the
stress versus strain plot for an
aluminum wire that is stretched
by a machine pulling in opposite
directions at the two ends of the
wire. The scale of the stress axis is
set by s � 7.0, in units of
107 N/m2. The wire has an initial
length of 0.800 m and an initial
cross-sectional area of 2.00 � 10�6

m2. How much work does the force
from the machine do on the wire to produce a strain of 1.00 � 10�3?

••49 In Fig. 12-60, a 103 kg uni-
form log hangs by two steel wires,
A and B, both of radius 1.20 mm.
Initially, wire A was 2.50 m long
and 2.00 mm shorter than wire B.
The log is now horizontal. What
are the magnitudes of the forces
on it from (a) wire A and (b) wire
B? (c) What is the ratio dA/dB?

•••50 Figure 12-61 rep-
resents an insect caught at the mid-
point of a spider-web thread. The
thread breaks under a stress of 
8.20 � 108 N/m2 and a strain of
2.00. Initially, it was horizontal
and had a length of 2.00 cm and a
cross-sectional area of 8.00 �
10�12 m2. As the thread was stretched under the weight of the in-
sect, its volume remained constant. If the weight of the insect
puts the thread on the verge of breaking, what is the insect’s
mass? (A spider’s web is built to break if a potentially harmful in-
sect, such as a bumble bee, becomes snared in the web.)

•••51 Figure 12-62 is an overhead view of a rigid rod that turns
about a vertical axle until the identical rubber stoppers A and B
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Additional Problems
52 After a fall, a 95 kg rock climber finds himself dangling from
the end of a rope that had been 15 m long and 9.6 mm in diameter
but has stretched by 2.8 cm. For the rope, calculate (a) the strain,
(b) the stress, and (c) the Young’s modulus.

53 In Fig. 12-63, a rectangular
slab of slate rests on a bedrock sur-
face inclined at angle u � 26°. The
slab has length L � 43 m, thickness
T � 2.5 m, and width W � 12 m, and
1.0 cm3 of it has a mass of 3.2 g. The
coefficient of static friction between
slab and bedrock is 0.39. (a)
Calculate the component of the
gravitational force on the slab parallel to the bedrock surface. (b)
Calculate the magnitude of the static frictional force on the slab.
By comparing (a) and (b), you can see that the slab is in danger of
sliding. This is prevented only by chance protrusions of bedrock.
(c) To stabilize the slab, bolts are to be driven perpendicular to the
bedrock surface (two bolts are shown). If each bolt has a cross-
sectional area of 6.4 cm2 and will snap under a shearing stress of
3.6 � 108 N/m2, what is the minimum number of bolts needed?
Assume that the bolts do not affect the normal force.

54 A uniform ladder whose length
is 5.0 m and whose weight is 400 N
leans against a frictionless vertical
wall. The coefficient of static friction
between the level ground and the
foot of the ladder is 0.46. What is the
greatest distance the foot of the lad-
der can be placed from the base of
the wall without the ladder immedi-
ately slipping?

55 In Fig. 12-64, block A
(mass 10 kg) is in equilibrium, but it
would slip if block B (mass 5.0 kg)
were any heavier. For angle u � 30°,
what is the coefficient of static fric-
tion between block A and the sur-
face below it?

56 Figure 12-65a shows a uniform ramp between two buildings
that allows for motion between the buildings due to strong winds.
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At its left end, it is hinged to the building wall; at its right end, it has
a roller that can roll along the building wall. There is no vertical
force on the roller from the building, only a horizontal force with
magnitude Fh. The horizontal distance between the buildings is
D � 4.00 m. The rise of the ramp is h � 0.490 m. A man walks
across the ramp from the left. Figure 12-65b gives Fh as a function
of the horizontal distance x of the man from the building at the
left. The scale of the Fh axis is set by a � 20 kN and b � 25 kN.
What are the masses of (a) the ramp and (b) the man?
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60 In Fig. 12-69, a package of mass
m hangs from a short cord that is tied
to the wall via cord 1 and to the ceil-
ing via cord 2. Cord 1 is at angle f �
40° with the horizontal; cord 2 is at an-
gle u. (a) For what value of u is the
tension in cord 2 minimized? (b) In
terms of mg, what is the minimum ten-
sion in cord 2?

61 The force in Fig. 12-70
keeps the 6.40 kg block and the pulleys in
equilibrium. The pulleys have negligible
mass and friction. Calculate the tension T in
the upper cable. (Hint: When a cable wraps
halfway around a pulley as here, the magni-
tude of its net force on the pulley is twice
the tension in the cable.)

62 A mine elevator is supported by a sin-
gle steel cable 2.5 cm in diameter. The total
mass of the elevator cage and occupants is
670 kg. By how much does the cable stretch
when the elevator hangs by (a) 12 m of ca-
ble and (b) 362 m of cable? (Neglect the
mass of the cable.)

63 Four bricks of length L, identi-
cal and uniform, are stacked on top of one
another (Fig. 12-71) in such a way that
part of each extends beyond the
one beneath. Find, in terms of
L, the maximum values of
(a) a1, (b) a2, (c) a3, (d)
a4, and (e) h, such
that the stack is
in equilibrium,
on the verge of
falling.
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57 In Fig. 12-66, a 10 kg sphere
is supported on a frictionless plane
inclined at angle u � 45° from the
horizontal. Angle f is 25°. Cal-
culate the tension in the cable.

58 In Fig. 12-67a, a uniform 40.0 kg
beam is centered over two rollers.
Vertical lines across the beam mark
off equal lengths.Two of the lines are
centered over the rollers; a 10.0 kg
package of tamales is centered over
roller B.What are the magnitudes of
the forces on the beam from (a)
roller A and (b) roller B? The beam
is then rolled to the left until the
right-hand end is centered over
roller B (Fig. 12-67b). What now are
the magnitudes of the forces on the
beam from (c) roller A and (d)
roller B? Next, the beam is rolled to
the right. Assume that it has a
length of 0.800 m. (e) What hori-
zontal distance between the pack-
age and roller B puts the beam on
the verge of losing contact with
roller A?

59 In Fig. 12-68, an 817 kg
construction bucket is suspended
by a cable A that is attached at O
to two other cables B and C, mak-
ing angles u1 � 51.0° and u2 � 66.0°
with the horizontal. Find the ten-
sions in (a) cable A, (b) cable B,
and (c) cable C. (Hint: To avoid
solving two equations in two un-
knowns, position the axes as
shown in the figure.)
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64 In Fig. 12-72, two identical, uni-
form, and frictionless spheres, each of
mass m, rest in a rigid rectangular con-
tainer.A line connecting their centers is
at 45° to the horizontal. Find the
magnitudes of the forces on the spheres
from (a) the bottom of the container,
(b) the left side of the container,
(c) the right side of the container, and
(d) each other. (Hint: The force of one
sphere on the other is directed along
the center–center line.)

65 In Fig. 12-73, a uniform beam
with a weight of 60 N and a length of
3.2 m is hinged at its lower end, and
a horizontal force of magnitude
50 N acts at its upper end. The beam
is held vertical by a cable that makes
angle u � 25° with the ground and is
attached to the beam at height h �
2.0 m. What are (a) the tension in
the cable and (b) the force on the
beam from the hinge in unit-vector
notation?
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66 A uniform beam is 5.0 m long
and has a mass of 53 kg. In Fig. 12-
74, the beam is supported in a hori-
zontal position by a hinge and a ca-
ble, with angle u � 60°. In unit-vector
notation,what is the force on the beam
from the hinge?

67 A solid copper cube has an edge
length of 85.5 cm. How much stress must be applied to the cube to
reduce the edge length to 85.0 cm? The bulk modulus of copper is
1.4 � 1011 N/m2.

68 A construction worker at-
tempts to lift a uniform beam off the
floor and raise it to a vertical posi-
tion. The beam is 2.50 m long and
weighs 500 N.At a certain instant the
worker holds the beam momentarily
at rest with one end at distance d �
1.50 m above the floor, as shown in
Fig. 12-75, by exerting a force on
the beam, perpendicular to the
beam. (a) What is the magnitude P?
(b) What is the magnitude of the (net) force of the floor on the
beam? (c) What is the minimum value the coefficient of static
friction between beam and floor can have in order for the beam
not to slip at this instant?

69 In Fig. 12-76, a uniform rod of mass m is
hinged to a building at its lower end, while its upper
end is held in place by a rope attached to the wall. If
angle u1 � 60°, what value must angle u2 have so
that the tension in the rope is equal to mg/2?

70 A 73 kg man stands on a level bridge of
length L. He is at distance L/4 from one end. The
bridge is uniform and weighs 2.7 kN. What are the
magnitudes of the vertical forces on the bridge from
its supports at (a) the end farther from him and (b) the nearer end?

71 A uniform cube of side length 8.0 cm rests on a horizon-
tal floor. The coefficient of static friction between cube and floor is
m. A horizontal pull is applied perpendicular to one of the verti-
cal faces of the cube, at a distance 7.0 cm above the floor on the
vertical midline of the cube face. The magnitude of is gradually
increased. During that increase, for what values of m will the cube
eventually (a) begin to slide and (b) begin to tip? (Hint: At the
onset of tipping, where is the normal force located?)

72 The system in Fig. 12-77 is in equilibrium.The angles are u1 � 60°
and u2 � 20°, and the ball has mass M � 2.0 kg.What is the tension
in (a) string ab and (b) string bc?

P
:

P
:

SSM

SSM

P
:

352 CHAPTER 12 EQUILIBRIUM AND ELASTICITY

73 A uniform ladder is 10 m
long and weighs 200 N. In 
Fig. 12-78, the ladder leans against
a vertical, frictionless wall at height
h � 8.0 m above the ground. A
horizontal force is applied to the
ladder at distance d � 2.0 m from
its base (measured along the lad-
der). (a) If force magnitude F � 50
N, what is the force of the ground
on the ladder, in unit-vector nota-
tion? (b) If F � 150 N, what is the
force of the ground on the ladder,
also in unit-vector notation? (c) Suppose the coefficient of static
friction between the ladder and the ground is 0.38; for what mini-
mum value of the force magnitude F will the base of the ladder
just barely start to move toward the wall?

74 A pan balance is made up of a rigid, massless rod with a hang-
ing pan attached at each end. The rod is supported at and free to
rotate about a point not at its center. It is balanced by unequal
masses placed in the two pans.When an unknown mass m is placed
in the left pan, it is balanced by a mass m1 placed in the right pan;
when the mass m is placed in the right pan, it is balanced by a mass
m2 in the left pan. Show that 

75 The rigid square frame in 
Fig. 12-79 consists of the four side bars
AB, BC, CD, and DA plus two diago-
nal bars AC and BD, which pass each
other freely at E. By means of the turn-
buckle G, bar AB is put under tension,
as if its ends were subject to horizontal,
outward forces of magnitude 535 N.
(a) Which of the other bars are in ten-
sion? What are the magnitudes of (b)
the forces causing the tension in those bars and (c) the forces caus-
ing compression in the other bars? (Hint: Symmetry considera-
tions can lead to considerable simplification in this problem.)

76 A gymnast with mass 46.0 kg
stands on the end of a uniform bal-
ance beam as shown in Fig. 12-80.The
beam is 5.00 m long and has a mass of
250 kg (excluding the mass of the two
supports). Each support is 0.540 m
from its end of the beam. In unit-vec-
tor notation, what are the forces on
the beam due to (a) support 1 and
(b) support 2?

77 Figure 12-81 shows a 300 kg
cylinder that is horizontal. Three
steel wires support the cylinder
from a ceiling. Wires 1 and 3 are at-
tached at the ends of the cylinder,
and wire 2 is attached at the cen-
ter. The wires each have a cross-
sectional area of 2.00 � 10�6 m2.
Initially (before the cylinder was put in place) wires 1 and 3
were 2.0000 m long and wire 2 was 6.00 mm longer than that.
Now (with the cylinder in place) all three wires have been
stretched. What is the tension in (a) wire 1 and (b) wire 2?
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78 In Fig. 12-82, a uniform beam of
length 12.0 m is supported by a hori-
zontal cable and a hinge at angle u �
50.0°. The tension in the cable is 400
N. In unit-vector notation, what are
(a) the gravitational force on the
beam and (b) the force on the beam
from the hinge?

79 Four bricks of length L,
identical and uniform, are stacked
on a table in two ways, as shown in
Fig. 12-83 (compare with Problem
63). We seek to maximize the over-
hang distance h in both arrangements. Find the optimum distances
a1, a2, b1, and b2, and calculate h for the two arrangements.
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the loop with the rope hanging vertically when the child’s father
pulls on the child with a horizontal force and displaces the child
to one side. Just before the child is released from rest, the rope
makes an angle of 15	 with the vertical and the tension in the
rope is 280 N. (a) How much does the child weigh? (b) What is
the magnitude of the (horizontal) force of the father on the child
just before the child is released? (c) If the maximum horizontal
force the father can exert on the child is 93 N, what is the maxi-
mum angle with the vertical the rope can make while the father is
pulling horizontally?

85 Figure 12-85a shows details of a finger in the crimp hold
of the climber in Fig. 12-50. A tendon that runs from muscles in
the forearm is attached to the far bone in the finger. Along the
way, the tendon runs through several guiding sheaths called pul-
leys. The A2 pulley is attached to the first finger bone; the A4 pul-
ley is attached to the second finger bone. To pull the finger toward
the palm, the forearm muscles pull the tendon through the pul-
leys, much like strings on a marionette can be pulled to move parts
of the marionette. Figure 12-85b is a simplified diagram of the sec-
ond finger bone, which has length d. The tendon’s pull on the
bone acts at the point where the tendon enters the A4 pulley, at
distance d/3 along the bone. If the force components on each of
the four crimped fingers in Fig. 12-50 are Fh � 13.4 N and Fv �
162.4 N, what is the magnitude of ? The result is probably tolera-
ble, but if the climber hangs by only one or two fingers, the A2 and
A4 pulleys can be ruptured, a common ailment among rock
climbers.
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86 A trap door in a ceiling is 0.91 m square, has a mass of 11 kg,
and is hinged along one side, with a catch at the opposite side. If
the center of gravity of the door is 10 cm toward the hinged side
from the door’s center, what are the magnitudes of the forces ex-
erted by the door on (a) the catch and (b) the hinge?

87 A particle is acted on by forces given, in newtons, by �F
:

1

80 A cylindrical aluminum rod, with an initial length of 0.8000
m and radius 1000.0 mm, is clamped in place at one end and then
stretched by a machine pulling parallel to its length at its other
end. Assuming that the rod’s density (mass per unit volume)
does not change, find the force magnitude that is required of the
machine to decrease the radius to 999.9 mm. (The yield strength
is not exceeded.)

81 A beam of length L is carried by three men, one man at one
end and the other two supporting the beam between them on a
crosspiece placed so that the load of the beam is equally divided
among the three men. How far from the beam’s free end is the
crosspiece placed? (Neglect the mass of the crosspiece.)

82 If the (square) beam in Fig. 12-6a and the associated sample
problem is of Douglas fir, what must be its thickness to keep the
compressive stress on it to of its ultimate strength? 

83 Figure 12-84 shows a stationary arrangement of two crayon
boxes and three cords. Box A has a mass of 11.0 kg and is on a
ramp at angle u � 30.0°; box B has a mass of 7.00 kg and hangs on a
cord. The cord connected to box A is parallel to the ramp, which is
frictionless. (a) What is the tension in the upper cord, and (b) what
angle does that cord make with the horizontal?
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Figure 12-85 Problem 85.

84 A makeshift swing is constructed by making a loop in one end
of a rope and tying the other end to a tree limb. A child is sitting in

8.40 � 5.70 and � 16.0 � 4.10 . (a) What are the x component
and (b) y component of the force that balances the sum of theseF

:

3

 ĵ îF
:

2 ĵ î

forces? (c) What angle does have relative to the �x axis?

88 The leaning Tower of Pisa is 59.1 m high and 7.44 m in diame-
ter.The top of the tower is displaced 4.01 m from the vertical.Treat
the tower as a uniform, circular cylinder. (a) What additional dis-
placement, measured at the top, would bring the tower to the verge
of toppling? (b) What angle would the tower then make with the
vertical?
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What Is Physics?
One of the long-standing goals of physics is to understand the gravitational
force—the force that holds you to Earth, holds the Moon in orbit around Earth,
and holds Earth in orbit around the Sun. It also reaches out through the whole of
our Milky Way galaxy, holding together the billions and billions of stars in the
Galaxy and the countless molecules and dust particles between stars. We are
located somewhat near the edge of this disk-shaped collection of stars and other
matter, 2.6 � 104 light-years (2.5 � 1020 m) from the galactic center, around
which we slowly revolve.

The gravitational force also reaches across intergalactic space, holding
together the Local Group of galaxies, which includes, in addition to the Milky
Way, the Andromeda Galaxy (Fig. 13-1) at a distance of 2.3 � 106 light-years
away from Earth, plus several closer dwarf galaxies, such as the Large Magellanic
Cloud.The Local Group is part of the Local Supercluster of galaxies that is being
drawn by the gravitational force toward an exceptionally massive region of space
called the Great Attractor. This region appears to be about 3.0 � 108 light-years
from Earth, on the opposite side of the Milky Way. And the gravitational force is
even more far-reaching because it attempts to hold together the entire universe,
which is expanding.

C H A P T E R  1 3

Gravitation

13-1 NEWTON’S LAW OF GRAVITATION

After reading this module, you should be able to . . .

13.01 Apply Newton’s law of gravitation to relate the gravita-
tional force between two particles to their masses and
their separation.

13.02 Identify that a uniform spherical shell of matter attracts
a particle that is outside the shell as if all the shell’s mass
were concentrated as a particle at its center.

13.03 Draw a free-body diagram to indicate the gravitational
force on a particle due to another particle or a uniform,
spherical distribution of matter.

Key Ideas

Learning Objectives

354

● Any particle in the universe attracts any other particle with a
gravitational force whose magnitude is

(Newton’s law of gravitation),

where m1 and m2 are the masses of the particles, r is their
separation, and G (� 6.67 � 10�11 N �m2/kg2) is the gravita-
tional constant.

F � G
m1m2

r2

● The gravitational force between extended bodies is found
by adding (integrating) the individual forces on individual par-
ticles within the bodies. However, if either of the bodies is a
uniform spherical shell or a spherically symmetric solid, the
net gravitational force it exerts on an external object may be
computed as if all the mass of the shell or body were located
at its center.
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Figure 13-1 The Andromeda Galaxy.
Located 2.3 � 106 light-years from us, and
faintly visible to the naked eye, it is very
similar to our home galaxy, the Milky Way.

Courtesy NASA

This force is also responsible for some of the most mysterious structures in
the universe: black holes. When a star considerably larger than our Sun burns
out, the gravitational force between all its particles can cause the star to collapse
in on itself and thereby to form a black hole.The gravitational force at the surface
of such a collapsed star is so strong that neither particles nor light can escape
from the surface (thus the term “black hole”). Any star coming too near a black
hole can be ripped apart by the strong gravitational force and pulled into the
hole. Enough captures like this yields a supermassive black hole. Such mysterious
monsters appear to be common in the universe. Indeed, such a monster lurks at
the center of our Milky Way galaxy—the black hole there, called Sagittarius A*,
has a mass of about 3.7 � 106 solar masses.The gravitational force near this black
hole is so strong that it causes orbiting stars to whip around the black hole, com-
pleting an orbit in as little as 15.2 y.

Although the gravitational force is still not fully understood, the starting
point in our understanding of it lies in the law of gravitation of Isaac Newton.

Newton’s Law of Gravitation
Before we get to the equations, let’s just think for a moment about something
that we take for granted. We are held to the ground just about right, not so
strongly that we have to crawl to get to school (though an occasional exam may
leave you crawling home) and not so lightly that we bump our heads on the ceil-
ing when we take a step. It is also just about right so that we are held to the
ground but not to each other (that would be awkward in any classroom) or to the
objects around us (the phrase “catching a bus” would then take on a new mean-
ing). The attraction obviously depends on how much “stuff” there is in ourselves
and other objects: Earth has lots of “stuff” and produces a big attraction but an-
other person has less “stuff” and produces a smaller (even negligible) attraction.
Moreover, this “stuff” always attracts other “stuff,” never repelling it (or a hard
sneeze could put us into orbit).

In the past people obviously knew that they were being pulled downward
(especially if they tripped and fell over), but they figured that the downward
force was unique to Earth and unrelated to the apparent movement of astro-
nomical bodies across the sky. But in 1665, the 23-year-old Isaac Newton recog-
nized that this force is responsible for holding the Moon in its orbit. Indeed he
showed that every body in the universe attracts every other body. This tendency
of bodies to move toward one another is called gravitation, and the “stuff” that
is involved is the mass of each body. If the myth were true that a falling apple
inspired Newton to his law of gravitation, then the attraction is between the
mass of the apple and the mass of Earth. It is appreciable because the mass of
Earth is so large, but even then it is only about 0.8 N. The attraction between
two people standing near each other on a bus is (thankfully) much less (less than
1 mN) and imperceptible.

The gravitational attraction between extended objects such as two people
can be difficult to calculate. Here we shall focus on Newton’s force law between
two particles (which have no size). Let the masses be m1 and m2 and r be their
separation. Then the magnitude of the gravitational force acting on each due to
the presence of the other is given by

(Newton’s law of gravitation). (13-1)

G is the gravitational constant:

G � 6.67 � 10�11 N �m2/kg2

� 6.67 � 10�11 m3/kg �s2. (13-2)

F � G
m1m2

r2



356 CHAPTER 13 GRAVITATION

Figure 13-3 The apple pulls up on Earth
just as hard as Earth pulls down on the
apple.

F = 0.80 N 

F = 0.80 N 

A uniform spherical shell of matter attracts a particle that is outside the shell as if
all the shell’s mass were concentrated at its center.

Checkpoint 1
A particle is to be placed, in turn, outside four objects, each of mass m: (1) a large uni-
form solid sphere, (2) a large uniform spherical shell, (3) a small uniform solid sphere,
and (4) a small uniform shell. In each situation, the distance between the particle and
the center of the object is d. Rank the objects according to the magnitude of the gravi-
tational force they exert on the particle, greatest first.

Earth can be thought of as a nest of such shells, one within another and each shell at-
tracting a particle outside Earth’s surface as if the mass of that shell were at the cen-
ter of the shell. Thus, from the apple’s point of view, Earth does behave like a parti-
cle, one that is located at the center of Earth and has a mass equal to that of Earth.

Third-Law Force Pair. Suppose that, as in Fig. 13-3, Earth pulls down on an
apple with a force of magnitude 0.80 N. The apple must then pull up on Earth
with a force of magnitude 0.80 N, which we take to act at the center of Earth. In
the language of Chapter 5, these forces form a force pair in Newton’s third law.
Although they are matched in magnitude, they produce different accelerations
when the apple is released. The acceleration of the apple is about 9.8 m/s2, the fa-
miliar acceleration of a falling body near Earth’s surface. The acceleration of
Earth, however, measured in a reference frame attached to the center of mass of
the apple–Earth system, is only about 1 � 10�25 m/s2.

In Fig. 13-2a, is the gravitational force acting on particle 1 (mass m1) due to
particle 2 (mass m2). The force is directed toward particle 2 and is said to be an
attractive force because particle 1 is attracted toward particle 2. The magnitude
of the force is given by Eq. 13-1. We can describe as being in the positive direc-
tion of an r axis extending radially from particle 1 through particle 2 (Fig. 13-2b).
We can also describe by using a radial unit vector r̂ (a dimensionless vector of
magnitude 1) that is directed away from particle 1 along the r axis (Fig. 13-2c).
From Eq. 13-1, the force on particle 1 is then

(13-3)

The gravitational force on particle 2 due to particle 1 has the same magnitude
as the force on particle 1 but the opposite direction. These two forces form a
third-law force pair, and we can speak of the gravitational force between the two
particles as having a magnitude given by Eq. 13-1. This force between two parti-
cles is not altered by other objects, even if they are located between the particles.
Put another way, no object can shield either particle from the gravitational force
due to the other particle.

The strength of the gravitational force—that is, how strongly two particles
with given masses at a given separation attract each other—depends on the
value of the gravitational constant G. If G—by some miracle—were suddenly
multiplied by a factor of 10, you would be crushed to the floor by Earth’s
attraction. If G were divided by this factor, Earth’s attraction would be so weak
that you could jump over a building.

Nonparticles. Although Newton’s law of gravitation applies strictly to particles,
we can also apply it to real objects as long as the sizes of the objects are small relative
to the distance between them. The Moon and Earth are far enough apart so that, to
a good approximation,we can treat them both as particles—but what about an apple
and Earth? From the point of view of the apple, the broad and level Earth, stretching
out to the horizon beneath the apple,certainly does not look like a particle.

Newton solved the apple–Earth problem with the shell theorem:

F
:

� G
m1m2

r2 r̂ .

F
:

F
:

F
:

(b)

F
1

2 r

Draw the vector with 
its tail on particle 1 
to show the pulling.

(c)

A unit vector points 
along the radial axis.

r1

2 r

ˆ

rF
1

2

(a)

This is the pull on
particle 1 due to
particle 2.

Figure 13-2 (a) The gravitational force 
on particle 1 due to particle 2 is an at-
tractive force because particle 1 is at-
tracted to particle 2. (b) Force is di-
rected along a radial coordinate axis r
extending from particle 1 through par-
ticle 2. (c) is in the direction of a unit
vector r̂ along the r axis.
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13-2 GRAVITATION AND THE PRINCIPLE OF SUPERPOSITION 

After reading this module, you should be able to . . .

13.04 If more than one gravitational force acts on a particle,
draw a free-body diagram showing those forces, with the
tails of the force vectors anchored on the particle.

13.05 If more than one gravitational force acts on a particle,
find the net force by adding the individual forces as
vectors.

● Gravitational forces obey the principle of superposition;
that is, if n particles interact, the net force on a particle
labeled particle 1 is the sum of the forces on it from all the
other particles taken one at a time:

in which the sum is a vector sum of the forces on
particle 1 from particles 2, 3, . . . , n.

F
:

1 i

F
:

1,net � �
n

i�2
F
:

1i,

F
:

1,net

● The gravitational force on a particle from an extended
body is found by first dividing the body into units of differential
mass dm, each of which produces a differential force on
the particle, and then integrating over all those units to find
the sum of those forces:

F
:

1 � �dF
:

.

dF
:

F
:

1

Learning Objectives

Key Ideas

Gravitation and the Principle of Superposition
Given a group of particles, we find the net (or resultant) gravitational force on
any one of them from the others by using the principle of superposition. This is a
general principle that says a net effect is the sum of the individual effects. Here,
the principle means that we first compute the individual gravitational forces that
act on our selected particle due to each of the other particles.We then find the net
force by adding these forces vectorially, just as we have done when adding forces
in earlier chapters.

Let’s look at two important points in that last (probably quickly read) sen-
tence. (1) Forces are vectors and can be in different directions, and thus we must
add them as vectors, taking into account their directions. (If two people pull on
you in the opposite direction, their net force on you is clearly different than if
they pull in the same direction.) (2) We add the individual forces. Think how im-
possible the world would be if the net force depended on some multiplying factor
that varied from force to force depending on the situation, or if the presence of
one force somehow amplified the magnitude of another force. No, thankfully, the
world requires only simple vector addition of the forces.

For n interacting particles, we can write the principle of superposition for the
gravitational forces on particle 1 as

1,net � 12 � 13 � 14 � 15 � � � � � 1n. (13-4)

Here 1,net is the net force on particle 1 due to the other particles and, for exam-
ple, 13 is the force on particle 1 from particle 3. We can express this equation
more compactly as a vector sum:

(13-5)

Real Objects. What about the gravitational force on a particle from a real (ex-
tended) object? This force is found by dividing the object into parts small enough to
treat as particles and then using Eq. 13-5 to find the vector sum of the forces on the
particle from all the parts. In the limiting case, we can divide the extended object
into differential parts each of mass dm and each producing a differential force dF

:
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Force 12 is directed in the positive direction of the y axis (Fig.
13-4b) and has only the y component F12. Similarly, 13 is di-
rected in the negative direction of the x axis and has only the x
component �F13 (Fig. 13-4c). (Note something important:We
draw the force diagrams with the tail of a force vector an-
chored on the particle experiencing the force. Drawing them
in other ways invites errors, especially on exams.)

To find the net force 1,net on particle 1, we must add
the two forces as vectors (Figs. 13-4d and e).We can do so on
a vector-capable calculator. However, here we note that
�F13 and F12 are actually the x and y components of 1,net.
Therefore, we can use Eq. 3-6 to find first the magnitude and
then the direction of 1,net.The magnitude is

� 4.1 � 10�6 N. (Answer)

Relative to the positive direction of the x axis, Eq. 3-6 gives
the direction of 1,net as

Is this a reasonable direction (Fig. 13-4f)? No, because the 
direction of 1,net must be between the directions of 12 and

13. Recall from Chapter 3 that a calculator displays only
one of the two possible answers to a tan�1 function. We find
the other answer by adding 180°:

�76° � 180° � 104°, (Answer)

which is a reasonable direction for 1,net (Fig. 13-4g).F
:

F
:

F
:

F
:

� � tan�1 F12

�F13
� tan�1 4.00 � 10�6 N

�1.00 � 10�6 N
� �76	.

F
:

� 2(4.00 � 10�6 N)2 � (�1.00 � 10�6 N)2

F1,net � 2(F12)2 � (�F13)2
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Sample Problem 13.01 Net gravitational force, 2D, three particles

Figure 13-4a shows an arrangement of three particles, parti-
cle 1 of mass m1 � 6.0 kg and particles 2 and 3 of mass m2 �
m3 � 4.0 kg, and distance a � 2.0 cm. What is the net gravi-
tational force 1,net on particle 1 due to the other particles?

KEY IDEAS

(1) Because we have particles, the magnitude of the gravita-
tional force on particle 1 due to either of the other particles is
given by Eq. 13-1 (F � Gm1m2/r2). (2) The direction of either
gravitational force on particle 1 is toward the particle responsi-
ble for it. (3) Because the forces are not along a single axis, we
cannot simply add or subtract their magnitudes or their compo-
nents to get the net force. Instead, we must add them as vectors.

Calculations: From Eq. 13-1, the magnitude of the force 12

on particle 1 from particle 2 is

(13-7)

� 4.00 � 10�6 N.

Similarly, the magnitude of force 13 on particle 1 from 
particle 3 is

(13-8)

� 1.00 � 10�6 N.

�
(6.67 � 10�11 m3/kg �s2)(6.0 kg)(4.0 kg)

(0.040 m)2

F13 �
Gm1m3

(2a)2

F
:

�
(6.67 � 10�11 m3/kg �s2)(6.0 kg)(4.0 kg)

(0.020 m)2

F12 �
Gm1m2

a2

F
:

F
:

Additional examples, video, and practice available at WileyPLUS

on the particle. In this limit, the sum of Eq. 13-5 becomes an integral and we have

(13-6)

in which the integral is taken over the entire extended object and we drop the
subscript “net.” If the extended object is a uniform sphere or a spherical shell, we
can avoid the integration of Eq. 13-6 by assuming that the object’s mass is
concentrated at the object’s center and using Eq. 13-1.

F
:

1 � �dF
:

,

Checkpoint 2
The figure shows four arrangements of three particles
of equal masses. (a) Rank the arrangements according
to the magnitude of the net gravitational force on the
particle labeled m, greatest first. (b) In arrangement 2, is
the direction of the net force closer to the line of length
d or to the line of length D?

d

D

m

(1)

m
d

D

(2) (3) (4)

d D
m

m D

d
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A

(a)

m3

m2

2a
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m1 m1
x

y

(b)

x x

y

F12

m1
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y

F13

m1

(d)

x
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F1,net

F13

F12

m1

(e)
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y

F1,net

F13

F12

(f )

x

y y

(g)

x

–76°

104°

This is the force
(pull) on particle 1
due to particle 2.

We want the forces
(pulls) on particle 1,
not the forces on
the other particles.

This is one way to
show the net force
on particle 1. Note
the head-to-tail
arrangement.

This is another way,
also a head-to-tail
arrangement.

A calculator's inverse
tangent can give this
for the angle.

But this is the
correct angle.

This is the force
(pull) on particle 1
due to particle 3.

Figure 13-4 (a) An arrangement of three particles.The force on particle 1 due to (b) particle 2
and (c) particle 3. (d)–(g) Ways to combine the forces to get the net force magnitude and orientation.
In WileyPLUS, this figure is available as an animation with voiceover.

13-3 GRAVITATION NEAR EARTH’S SURFACE

After reading this module, you should be able to . . .

13.06 Distinguish between the free-fall acceleration and the
gravitational acceleration.

13.07 Calculate the gravitational acceleration near but out-
side a uniform, spherical astronomical body.

13.08 Distinguish between measured weight and the magni-
tude of the gravitational force.

● The gravitational acceleration ag of a particle (of mass m) is
due solely to the gravitational force acting on it. When the
particle is at distance r from the center of a uniform, spheri-
cal body of mass M, the magnitude F of the gravitational
force on the particle is given by Eq. 13-1. Thus, by Newton’s
second law,

F � mag,
which gives

.

● Because Earth’s mass is not distributed uniformly, because
the planet is not perfectly spherical, and because it rotates,
the actual free-fall acceleration of a particle near Earth dif-
fers slightly from the gravitational acceleration , and the par-
ticle’s weight (equal to mg) differs from the magnitude of the
gravitational force on it.

a:g

g:

ag �
GM

r2

Learning Objectives

Key Ideas
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Figure 13-5 The density of Earth as a func-
tion of distance from the center.The limits
of the solid inner core, the largely liquid
outer core, and the solid mantle are shown,
but the crust of Earth is too thin to show
clearly on this plot.
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Gravitation Near Earth’s Surface
Let us assume that Earth is a uniform sphere of mass M. The magnitude of the
gravitational force from Earth on a particle of mass m, located outside Earth a
distance r from Earth’s center, is then given by Eq. 13-1 as

. (13-9)

If the particle is released, it will fall toward the center of Earth, as a result of the
gravitational force , with an acceleration we shall call the gravitational accelera-
tion g. Newton’s second law tells us that magnitudes F and ag are related by

F � mag. (13-10)

Now, substituting F from Eq. 13-9 into Eq. 13-10 and solving for ag, we find

. (13-11)

Table 13-1 shows values of ag computed for various altitudes above Earth’s
surface. Notice that ag is significant even at 400 km.

Since Module 5-1, we have assumed that Earth is an inertial frame by ne-
glecting its rotation.This simplification has allowed us to assume that the free-fall
acceleration g of a particle is the same as the particle’s gravitational acceleration
(which we now call ag). Furthermore, we assumed that g has the constant value
9.8 m/s2 any place on Earth’s surface. However, any g value measured at a given
location will differ from the ag value calculated with Eq. 13-11 for that location
for three reasons: (1) Earth’s mass is not distributed uniformly, (2) Earth is not a
perfect sphere, and (3) Earth rotates. Moreover, because g differs from ag, the
same three reasons mean that the measured weight mg of a particle differs from
the magnitude of the gravitational force on the particle as given by Eq. 13-9. Let
us now examine those reasons.

1. Earth’s mass is not uniformly distributed. The density (mass per unit volume)
of Earth varies radially as shown in Fig. 13-5, and the density of the crust
(outer section) varies from region to region over Earth’s surface.Thus, g varies
from region to region over the surface.

2. Earth is not a sphere. Earth is approximately an ellipsoid, flattened at the
poles and bulging at the equator. Its equatorial radius (from its center point
out to the equator) is greater than its polar radius (from its center point out
to either north or south pole) by 21 km. Thus, a point at the poles is closer to
the dense core of Earth than is a point on the equator. This is one reason the
free-fall acceleration g increases if you were to measure it while moving at sea
level from the equator toward the north or south pole. As you move, you are
actually getting closer to the center of Earth and thus, by Newton’s law of
gravitation, g increases.

3. Earth is rotating. The rotation axis runs through the north and south poles of
Earth. An object located on Earth’s surface anywhere except at those poles
must rotate in a circle about the rotation axis and thus must have a centripetal
acceleration directed toward the center of the circle. This centripetal accelera-
tion requires a centripetal net force that is also directed toward that center.

To see how Earth’s rotation causes g to differ from ag, let us analyze a simple
situation in which a crate of mass m is on a scale at the equator. Figure 13-6a
shows this situation as viewed from a point in space above the north pole.

Figure 13-6b, a free-body diagram for the crate, shows the two forces on
the crate, both acting along a radial r axis that extends from Earth’s center. The
normal force on the crate from the scale is directed outward, in the positive
direction of the r axis. The gravitational force, represented with its equivalent
m g, is directed inward. Because it travels in a circle about the center of Eartha:

F
:

N

ag �
GM

r2

a:
F
:

F � G
Mm

r2

Table 13-1 Variation of ag with Altitude

Altitude ag Altitude
(km) (m/s2) Example

Mean Earth 
0 9.83 surface
8.8 9.80 Mt. Everest

Highest crewed 
36.6 9.71 balloon

Space shuttle 
400 8.70 orbit

Communications
35 700 0.225 satellite
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as Earth turns, the crate has a centripetal acceleration directed toward
Earth’s center. From Eq. 10-23 (ar � v2r), we know this acceleration is equal to
v2R, where v is Earth’s angular speed and R is the circle’s radius (approxi-
mately Earth’s radius). Thus, we can write Newton’s second law for forces
along the r axis (Fnet,r � mar) as

FN � mag � m(�v2R). (13-12)

The magnitude FN of the normal force is equal to the weight mg read on the scale.
With mg substituted for FN, Eq. 13-12 gives us

mg � mag � m(v2R), (13-13)
which says

Thus, the measured weight is less than the magnitude of the gravitational force
on the crate, because of Earth’s rotation.

Acceleration Difference. To find a corresponding expression for g and ag, we
cancel m from Eq. 13-13 to write

g � ag � v2R, (13-14)
which says

Thus, the measured free-fall acceleration is less than the gravitational accelera-
tion because of Earth’s rotation.

Equator. The difference between accelerations g and ag is equal to v2R and
is greatest on the equator (for one reason, the radius of the circle traveled by the
crate is greatest there). To find the difference, we can use Eq. 10-5 (v � �u/�t)
and Earth’s radius R � 6.37 � 106 m. For one rotation of Earth, u is 2p rad and
the time period �t is about 24 h. Using these values (and converting hours to sec-
onds), we find that g is less than ag by only about 0.034 m/s2 (small compared to
9.8 m/s2). Therefore, neglecting the difference in accelerations g and ag is often
justified. Similarly, neglecting the difference between weight and the magnitude
of the gravitational force is also often justified.

� free-fall
acceleration� � �gravitational

acceleration� � � centripetal
acceleration�.

�measured
weight � � � magnitude of

gravitational force� � � mass times
centripetal acceleration�.

a:

Figure 13-6 (a) A crate sitting on a scale at Earth’s equator, as seen by an observer
positioned on Earth’s rotation axis at some point above the north pole. (b) A free-body
diagram for the crate, with a radial r axis extending from Earth’s center.The gravitational
force on the crate is represented with its equivalent m g.The normal force on the crate
from the scale is . Because of Earth’s rotation, the crate has a centripetal acceleration 
that is directed toward Earth’s center.

a:F
:

N

a:

North
pole

R

Scale

Crate

(a)

Two forces act
on this crate.

mag

r

(b)

Crate

a

FN

The normal force
is upward.

The gravitational
force is downward.

The net 
force is
toward
the center.
So, the 
crate's
acceleration
is too.
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13-4 GRAVITATION INSIDE EARTH
Learning Objectives

13.10 Calculate the gravitational force that is exerted on a
particle at a given radius inside a nonrotating uniform
sphere of matter.

● A uniform shell of matter exerts no net gravitational force on
a particle located inside it.

● The gravitational force on a particle inside a uniform
solid sphere, at a distance r from the center, is due only to
mass Mins in an “inside sphere” with that radius r:

Mins � 4
3p r3r �

M
R3 r3,

F
:

where r is the solid sphere’s density, R is its radius, and M is
its mass. We can assign this inside mass to be that of a parti-
cle at the center of the solid sphere and then apply Newton’s
law of gravitation for particles. We find that the magnitude of
the force acting on mass m is

F �
GmM

R3 r.

After reading this module, you should be able to . . . 

13.09 Identify that a uniform shell of matter exerts no net
gravitational force on a particle located inside it.

Key Ideas

where the ME value is taken from Appendix C. This result
means that the gravitational acceleration of the astronaut’s
feet toward Earth is slightly greater than the gravitational
acceleration of her head toward Earth. This difference in
acceleration (often called a tidal effect) tends to stretch her
body, but the difference is so small that she would never even
sense the stretching, much less suffer pain from it.

(b) If the astronaut is now “feet down” at the same orbital
radius r � 6.77 � 106 m about a black hole of mass Mh �
1.99 � 1031 kg (10 times our Sun’s mass), what is the dif-
ference between the gravitational acceleration at her feet
and at her head? The black hole has a mathematical sur-
face (event horizon) of radius Rh � 2.95 � 104 m. Nothing,
not even light, can escape from that surface or anywhere
inside it. Note that the astronaut is well outside the sur-
face (at r � 229Rh).

Calculations: We again have a differential change dr in r
between the astronaut’s feet and head, so we can again use
Eq. 13-16. However, now we substitute Mh � 1.99 � 1031 kg
for ME.We find

� �14.5 m/s2. (Answer)

This means that the gravitational acceleration of the astro-
naut’s feet toward the black hole is noticeably larger than
that of her head. The resulting tendency to stretch her body
would be bearable but quite painful. If she drifted closer 
to the black hole, the stretching tendency would increase
drastically.

dag � �2
(6.67 � 10�11 m3/kg �s2)(1.99 � 1031 kg)

(6.77 � 106 m)3  (1.70 m)

Sample Problem 13.02 Difference in acceleration at head and feet

(a) An astronaut whose height h is 1.70 m floats “feet down”
in an orbiting space shuttle at distance r � 6.77 � 106 m away
from the center of Earth. What is the difference between the
gravitational acceleration at her feet and at her head?

KEY IDEAS

We can approximate Earth as a uniform sphere of mass ME.
Then, from Eq. 13-11, the gravitational acceleration at any dis-
tance r from the center of Earth is

(13-15)

We might simply apply this equation twice, first with r
6.77 � 106 m for the location of the feet and then with 
r � 6.77 � 106 m � 1.70 m for the location of the head.
However, a calculator may give us the same value for ag twice,
and thus a difference of zero, because h is so much smaller
than r. Here’s a more promising approach: Because we have
a differential change dr in r between the astronaut’s feet and
head, we should differentiate Eq. 13-15 with respect to r.

Calculations: The differentiation gives us

(13-16)

where dag is the differential change in the gravitational 
acceleration due to the differential change dr in r. For the
astronaut, dr � h and r � 6.77 � 106 m. Substituting data
into Eq. 13-16, we find

� �4.37 � 10�6 m/s2, (Answer)

dag � �2
(6.67 � 10�11 m3/kg �s2)(5.98 � 1024 kg)

(6.77 � 106 m)3  (1.70 m)

dag � �2
GME

r3 dr,

�

ag �
GME

r2 .

Additional examples, video, and practice available at WileyPLUS
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Gravitation Inside Earth
Newton’s shell theorem can also be applied to a situation in which a particle is
located inside a uniform shell, to show the following:

A uniform shell of matter exerts no net gravitational force on a particle located
inside it.

Caution: This statement does not mean that the gravitational forces on the par-
ticle from the various elements of the shell magically disappear. Rather, it
means that the sum of the force vectors on the particle from all the elements
is zero.

If Earth’s mass were uniformly distributed, the gravitational force acting
on a particle would be a maximum at Earth’s surface and would decrease as
the particle moved outward, away from the planet. If the particle were to move
inward, perhaps down a deep mine shaft, the gravitational force would change
for two reasons. (1) It would tend to increase because the particle would 
be moving closer to the center of Earth. (2) It would tend to decrease because
the thickening shell of material lying outside the particle’s radial position
would not exert any net force on the particle.

To find an expression for the gravitational force inside a uniform Earth, let’s
use the plot in Pole to Pole, an early science fiction story by George Griffith.Three
explorers attempt to travel by capsule through a naturally formed (and, of course,
fictional) tunnel directly from the south pole to the north pole. Figure 13-7 shows
the capsule (mass m) when it has fallen to a distance r from Earth’s center.At that
moment, the net gravitational force on the capsule is due to the mass Mins inside
the sphere with radius r (the mass enclosed by the dashed outline), not the mass
in the outer spherical shell (outside the dashed outline). Moreover, we can assume
that the inside mass Mins is concentrated as a particle at Earth’s center. Thus, we
can write Eq. 13-1, for the magnitude of the gravitational force on the capsule, as

(13-17)

Because we assume a uniform density r, we can write this inside mass in
terms of Earth’s total mass M and its radius R:

Solving for Mins we find

(13-18)

Substituting the second expression for Mins into Eq. 13-17 gives us the magnitude
of the gravitational force on the capsule as a function of the capsule’s distance r
from Earth’s center:

(13-19)

According to Griffith’s story, as the capsule approaches Earth’s center, the gravita-
tional force on the explorers becomes alarmingly large and, exactly at the center, it
suddenly but only momentarily disappears. From Eq. 13-19 we see that, in fact, the
force magnitude decreases linearly as the capsule approaches the center, until it is
zero at the center.At least Griffith got the zero-at-the-center detail correct.

F �
GmM

R3 r.

Mins � 4
3pr3r �

M
R3 r3.

r �
Mins
4
3pr3 �

M
4
3pR3 .

density �
inside mass

inside volume
�

total mass
total volume

,

F �
GmMins

r2 .

m

r

Mins

Figure 13-7 A capsule of mass m falls from
rest through a tunnel that connects Earth’s
south and north poles.When the capsule is
at distance r from Earth’s center, the por-
tion of Earth’s mass that is contained in a
sphere of that radius is Mins.
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● The gravitational potential energy U(r) of a system of two
particles, with masses M and m and separated by a distance
r, is the negative of the work that would be done by the gravi-
tational force of either particle acting on the other if the sepa-
ration between the particles were changed from infinite (very
large) to r. This energy is

(gravitational potential energy).

● If a system contains more than two particles, its total
gravitational potential energy U is the sum of the terms rep-

U � �
GMm

r

resenting the potential energies of all the pairs. As an 
example, for three particles, of masses m1, m2, and m3,

● An object will escape the gravitational pull of an astronomi-
cal body of mass M and radius R (that is, it will reach an infi-
nite distance) if the object’s speed near the body’s surface is
at least equal to the escape speed, given by

v � A
2GM

R
.

U � �� Gm1m2

r12
�

Gm1m3

r13
�

Gm2m3

r23
�.

Key Ideas

Equation 13-19 can also be written in terms of the force vector and the
capsule’s position vector along a radial axis extending from Earth’s center.
Letting K represent the collection of constants in Eq. 13-19, we can rewrite the
force in vector form as

� �K , (13-20)

in which we have inserted a minus sign to indicate that and have opposite 
directions. Equation 13-20 has the form of Hooke’s law (Eq. 7-20, � �k ).
Thus, under the idealized conditions of the story, the capsule would oscillate like a
block on a spring, with the center of the oscillation at Earth’s center. After the cap-
sule had fallen from the south pole to Earth’s center, it would travel from the center
to the north pole (as Griffith said) and then back again, repeating the cycle forever.

For the real Earth, which certainly has a nonuniform distribution of mass
(Fig. 13-5), the force on the capsule would initially increase as the capsule de-
scends. The force would then reach a maximum at a certain depth, and only then
would it begin to decrease as the capsule further descends.

d
:

F
:

r:F
:

r:F
:

r:
F
:

13-5 GRAVITATIONAL POTENTIAL ENERGY

After reading this module, you should be able to . . .

13.11 Calculate the gravitational potential energy of a system
of particles (or uniform spheres that can be treated as
particles).

13.12 Identify that if a particle moves from an initial point to
a final point while experiencing a gravitational force, the
work done by that force (and thus the change in gravita-
tional potential energy) is independent of which path is
taken.

13.13 Using the gravitational force on a particle near an as-
tronomical body (or some second body that is fixed in

place), calculate the work done by the force when the
body moves.

13.14 Apply the conservation of mechanical energy (includ-
ing gravitational potential energy) to a particle moving rela-
tive to an astronomical body (or some second body that is
fixed in place).

13.15 Explain the energy requirements for a particle to es-
cape from an astronomical body (usually assumed to be a
uniform sphere).

13.16 Calculate the escape speed of a particle in leaving an
astronomical body.

Learning Objectives

Gravitational Potential Energy
In Module 8-1, we discussed the gravitational potential energy of a particle–
Earth system. We were careful to keep the particle near Earth’s surface, so that
we could regard the gravitational force as constant.We then chose some reference
configuration of the system as having a gravitational potential energy of zero.
Often, in this configuration the particle was on Earth’s surface. For particles not
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on Earth’s surface, the gravitational potential energy decreased when the separa-
tion between the particle and Earth decreased.

Here, we broaden our view and consider the gravitational potential energy U
of two particles, of masses m and M, separated by a distance r. We again choose a
reference configuration with U equal to zero. However, to simplify the equations,
the separation distance r in the reference configuration is now large enough to be
approximated as infinite. As before, the gravitational potential energy decreases
when the separation decreases. Since U � 0 for r � �, the potential energy is neg-
ative for any finite separation and becomes progressively more negative as the
particles move closer together.

With these facts in mind and as we shall justify next, we take the gravitational
potential energy of the two-particle system to be

(gravitational potential energy). (13-21)

Note that U(r) approaches zero as r approaches infinity and that for any finite
value of r, the value of U(r) is negative.

Language. The potential energy given by Eq. 13-21 is a property of the sys-
tem of two particles rather than of either particle alone. There is no way to di-
vide this energy and say that so much belongs to one particle and so much to
the other. However, if as is true for Earth (mass M) and a baseball
(mass m), we often speak of “the potential energy of the baseball.” We can get
away with this because, when a baseball moves in the vicinity of Earth, changes
in the potential energy of the baseball – Earth system appear almost entirely as
changes in the kinetic energy of the baseball, since changes in the kinetic en-
ergy of Earth are too small to be measured. Similarly, in Module 13-7 we shall
speak of “the potential energy of an artificial satellite” orbiting Earth, because
the satellite’s mass is so much smaller than Earth’s mass. When we speak of the
potential energy of bodies of comparable mass, however, we have to be careful
to treat them as a system.

Multiple Particles. If our system contains more than two particles, we con-
sider each pair of particles in turn, calculate the gravitational potential energy of
that pair with Eq. 13-21 as if the other particles were not there, and then alge-
braically sum the results.Applying Eq. 13-21 to each of the three pairs of Fig. 13-8,
for example, gives the potential energy of the system as

. (13-22)

Proof of Equation 13-21
Let us shoot a baseball directly away from Earth along the path in Fig. 13-9. We
want to find an expression for the gravitational potential energy U of the ball at
point P along its path, at radial distance R from Earth’s center. To do so, we first
find the work W done on the ball by the gravitational force as the ball travels
from point P to a great (infinite) distance from Earth. Because the gravitational
force (r) is a variable force (its magnitude depends on r), we must use the tech-
niques of Module 7-5 to find the work. In vector notation, we can write

(13-23)

The integral contains the scalar (or dot) product of the force (r) and the differential
displacement vector d along the ball’s path.We can expand that product as

(r) �d � F(r) dr cos f, (13-24)

where f is the angle between the directions of (r) and d . When we substituter:F
:

r:F
:

r:
F
:

W � ��

R
F
:

(r) � d r:.

F
:

U � �� Gm1m2

r12
�

Gm1m3

r13
�

Gm2m3

r23
�

M � m,

U � �
GMm

r

Figure 13-8 A system consisting of three par-
ticles.The gravitational potential energy of
the system is the sum of the gravitational
potential energies of all three pairs of 
particles.

m2m1

m3

r12

r13 r23

This pair has
potential energy.

Here too.

Here too.

Figure 13-9 A baseball is shot directly away
from Earth, through point P at radial dis-
tance R from Earth’s center.The gravita-
tional force on the ball and a differential
displacement vector d are shown, both di-
rected along a radial r axis.

r:
F
:

M

P

r

dr

R

F

Work is done
as the baseball
moves upward.
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180° for f and Eq. 13-1 for F(r), Eq. 13-24 becomes

where M is Earth’s mass and m is the mass of the ball.
Substituting this into Eq. 13-23 and integrating give us

(13-25)

where W is the work required to move the ball from point P (at distance R) to
infinity. Equation 8-1 (�U � �W) tells us that we can also write that work in terms
of potential energies as

U� � U � �W.

Because the potential energy U� at infinity is zero, U is the potential energy at P,
and W is given by Eq. 13-25, this equation becomes

Switching R to r gives us Eq. 13-21, which we set out to prove.

Path Independence
In Fig. 13-10, we move a baseball from point A to point G along a path consisting
of three radial lengths and three circular arcs (centered on Earth). We are inter-
ested in the total work W done by Earth’s gravitational force on the ball as it
moves from A to G. The work done along each circular arc is zero, because the
direction of is perpendicular to the arc at every point. Thus, W is the sum of
only the works done by along the three radial lengths.

Now, suppose we mentally shrink the arcs to zero. We would then be moving
the ball directly from A to G along a single radial length. Does that change W?
No. Because no work was done along the arcs, eliminating them does not change
the work. The path taken from A to G now is clearly different, but the work done
by is the same.

We discussed such a result in a general way in Module 8-1. Here is the point:
The gravitational force is a conservative force. Thus, the work done by the grav-
itational force on a particle moving from an initial point i to a final point f is
independent of the path taken between the points. From Eq. 8-1, the change �U
in the gravitational potential energy from point i to point f is given by

�U � Uf � Ui � �W. (13-26)

Since the work W done by a conservative force is independent of the actual path
taken, the change �U in gravitational potential energy is also independent of the
path taken.

Potential Energy and Force
In the proof of Eq. 13-21, we derived the potential energy function U(r) from the
force function (r). We should be able to go the other way—that is, to start from
the potential energy function and derive the force function. Guided by Eq. 8-22
(F(x) � �dU(x)/dx), we can write

(13-27)� �
GMm

r2 .

F � �
dU
dr

� �
d
dr ��

GMm
r �

F
:

F
:

F
:

F
:

F
:

U � W � �
GMm

R
.

� 0 �
GMm

R
� �

GMm
R

,

W � �GMm ��

R

1
r2 dr � 	 GMm

r 

�

R

F
:

(r) � dr: � �
GMm

r2 dr,

Figure 13-10 Near Earth, a baseball is moved
from point A to point G along a path
consisting of radial lengths and circular arcs.
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G
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Actual path
from A to G
is irrelevant.
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This is Newton’s law of gravitation (Eq. 13-1). The minus sign indicates that the
force on mass m points radially inward, toward mass M.

Escape Speed
If you fire a projectile upward, usually it will slow, stop momentarily, and return
to Earth. There is, however, a certain minimum initial speed that will cause it to
move upward forever, theoretically coming to rest only at infinity. This minimum
initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (or some
other astronomical body or system) with escape speed v. The projectile has a
kinetic energy K given by mv2 and a potential energy U given by Eq. 13-21:

in which M is the mass of the planet and R is its radius.
When the projectile reaches infinity, it stops and thus has no kinetic energy.

It also has no potential energy because an infinite separation between two bod-
ies is our zero-potential-energy configuration. Its total energy at infinity is
therefore zero. From the principle of conservation of energy, its total energy at
the planet’s surface must also have been zero, and so

This yields (13-28)

Note that v does not depend on the direction in which a projectile is fired
from a planet. However, attaining that speed is easier if the projectile is fired in
the direction the launch site is moving as the planet rotates about its axis. For
example, rockets are launched eastward at Cape Canaveral to take advantage of
the Cape’s eastward speed of 1500 km/h due to Earth’s rotation.

Equation 13-28 can be applied to find the escape speed of a projectile from
any astronomical body, provided we substitute the mass of the body for M and
the radius of the body for R.Table 13-2 shows some escape speeds.

v � A
2GM

R
.

K � U � 1
2 mv2 � ��

GMm
R � � 0.

U � �
GMm

R
,

1
2

Table 13-2 Some Escape Speeds

Body Mass (kg) Radius (m) Escape Speed (km/s)

Ceresa 1.17 � 1021 3.8 � 105 0.64
Earth’s moona 7.36 � 1022 1.74 � 106 2.38
Earth 5.98 � 1024 6.37 � 106 11.2
Jupiter 1.90 � 1027 7.15 � 107 59.5
Sun 1.99 � 1030 6.96 � 108 618
Sirius Bb 2 � 1030 1 � 107 5200
Neutron starc 2 � 1030 1 � 104 2 � 105

aThe most massive of the asteroids.
bA white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
cThe collapsed core of a star that remains after that star has exploded in a supernova event.

Checkpoint 3
You move a ball of mass m away from a sphere of mass M. (a) Does the gravitational
potential energy of the system of ball and sphere increase or decrease? (b) Is positive
work or negative work done by the gravitational force between the ball and the sphere?
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13-6 PLANETS AND SATELLITES: KEPLER’S LAWS

After reading this module, you should be able to . . .

13.17 Identify Kepler’s three laws.
13.18 Identify which of Kepler’s laws is equivalent to the law

of conservation of angular momentum.
13.19 On a sketch of an elliptical orbit, identify the semimajor

axis, the eccentricity, the perihelion, the aphelion, and the
focal points.

13.20 For an elliptical orbit, apply the relationships between
the semimajor axis, the eccentricity, the perihelion, and the
aphelion.

13.21 For an orbiting natural or artificial satellite, apply
Kepler’s relationship between the orbital period and radius
and the mass of the astronomical body being orbited.

● The motion of satellites, both natural and artificial, is gov-
erned by Kepler’s laws:

1. The law of orbits. All planets move in elliptical orbits with
the Sun at one focus.

2. The law of areas. A line joining any planet to the Sun
sweeps out equal areas in equal time intervals. (This
statement is equivalent to conservation of angular
momentum.)

3. The law of periods. The square of the period T of any
planet is proportional to the cube of the semimajor axis a
of its orbit. For circular orbits with radius r,

(law of periods),

where M is the mass of the attracting body—the Sun in the
case of the solar system. For elliptical planetary orbits, the
semimajor axis a is substituted for r.

T 2 � � 4� 2

GM �r3

Learning Objectives

Key Ideas

tially at distance 10RE and finally at distance RE, where RE is
Earth’s radius (6.37 � 106 m). Substituting Eq. 13-21 for U
and for K, we rewrite Eq. 13-29 as

Rearranging and substituting known values, we find

� (12 � 103 m/s)2

� 2.567 � 108 m2/s2,

and                   vf � 1.60 � 104 m/s � 16 km/s. (Answer)

At this speed, the asteroid would not have to be par-
ticularly large to do considerable damage at impact. If it
were only 5 m across, the impact could release about as
much energy as the nuclear explosion at Hiroshima.
Alarmingly, about 500 million asteroids of this size are
near Earth’s orbit, and in 1994 one of them apparently
penetrated Earth’s atmosphere and exploded 20 km
above the South Pacific (setting off nuclear-explosion
warnings on six military satellites).

�
2(6.67 � 10�11 m3/kg �s2)(5.98 � 1024 kg)

6.37 � 106 m 
 0.9

v2
f � v2

i �
2GM

RE
�1 �

1
10 �

1
2mv2

f �
GMm

RE
� 1

2mv2
i �

GMm
10RE

.

1
2mv2

Sample Problem 13.03 Asteroid falling from space, mechanical energy

An asteroid, headed directly toward Earth, has a speed of
12 km/s relative to the planet when the asteroid is 10 Earth
radii from Earth’s center. Neglecting the effects of Earth’s
atmosphere on the asteroid, find the asteroid’s speed vf

when it reaches Earth’s surface.

KEY IDEAS

Because we are to neglect the effects of the atmosphere on
the asteroid, the mechanical energy of the asteroid–Earth
system is conserved during the fall. Thus, the final mechani-
cal energy (when the asteroid reaches Earth’s surface) is
equal to the initial mechanical energy.With kinetic energy K
and gravitational potential energy U, we can write this as

Kf � Uf � Ki � Ui. (13-29)

Also, if we assume the system is isolated, the system’s lin-
ear momentum must be conserved during the fall. Therefore,
the momentum change of the asteroid and that of Earth must
be equal in magnitude and opposite in sign. However, because
Earth’s mass is so much greater than the asteroid’s mass, the
change in Earth’s speed is negligible relative to the change in
the asteroid’s speed. So, the change in Earth’s kinetic energy is
also negligible.Thus, we can assume that the kinetic energies in
Eq.13-29 are those of the asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 � 1024 kg). The asteroid is ini-

Additional examples, video, and practice available at WileyPLUS
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Planets and Satellites: Kepler’s Laws
The motions of the planets, as they seemingly wander against the background of
the stars, have been a puzzle since the dawn of history. The “loop-the-loop”
motion of Mars, shown in Fig. 13-11, was particularly baffling. Johannes Kepler
(1571–1630), after a lifetime of study, worked out the empirical laws that govern
these motions. Tycho Brahe (1546–1601), the last of the great astronomers to
make observations without the help of a telescope, compiled the extensive data
from which Kepler was able to derive the three laws of planetary motion that
now bear Kepler’s name. Later, Newton (1642–1727) showed that his law of
gravitation leads to Kepler’s laws.

In this section we discuss each of Kepler’s three laws. Although here we
apply the laws to planets orbiting the Sun, they hold equally well for satellites,
either natural or artificial, orbiting Earth or any other massive central body.

1. THE LAW OF ORBITS:All planets move in elliptical orbits,with the Sun at one focus.

Figure 13-12 shows a planet of mass m moving in such an orbit around the Sun,
whose mass is M. We assume that so that the center of mass of the
planet–Sun system is approximately at the center of the Sun.

The orbit in Fig. 13-12 is described by giving its semimajor axis a and its
eccentricity e, the latter defined so that ea is the distance from the center of the
ellipse to either focus F or F9. An eccentricity of zero corresponds to a circle, in
which the two foci merge to a single central point.The eccentricities of the plane-
tary orbits are not large; so if the orbits are drawn to scale, they look circular.The
eccentricity of the ellipse of Fig. 13-12, which has been exaggerated for clarity, is
0.74.The eccentricity of Earth’s orbit is only 0.0167.

M � m,

Figure 13-11 The path seen from Earth for the
planet Mars as it moved against a back-
ground of the constellation Capricorn during
1971.The planet’s position on four days is
marked. Both Mars and Earth are moving in
orbits around the Sun so that we see the
position of Mars relative to us; this relative
motion sometimes results in an apparent
loop in the path of Mars.

July 26 
September 4 

June 6 October 14 

2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out
equal areas in the plane of the planet’s orbit in equal time intervals; that is, the
rate dA/dt at which it sweeps out area A is constant.

Figure 13-12 A planet of mass m moving in 
an elliptical orbit around the Sun.The Sun,
of mass M, is at one focus F of the ellipse.
The other focus is F9, which is located in
empty space. The semimajor axis a of the
ellipse, the perihelion (nearest the Sun) 
distance Rp, and the aphelion (farthest
from the Sun) distance Ra are also shown.

RaRp

M

m

a

ea ea
F F' 

θ 

r

The Sun is at
one of the two
focal points.Qualitatively, this second law tells us that the planet will move most slowly when

it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it
turns out, Kepler’s second law is totally equivalent to the law of conservation of
angular momentum. Let us prove it.

The area of the shaded wedge in Fig. 13-13a closely approximates the area
swept out in time �t by a line connecting the Sun and the planet, which are
separated by distance r. The area �A of the wedge is approximately the area of

Figure 13-13 (a) In time �t, the line r connecting the planet to the Sun moves through an 
angle �u, sweeping out an area �A (shaded). (b) The linear momentum of the planet 
and the components of .p:

p:

M

θ 

θ Δ ΔA
r

θ r Δ

M

θ
r

p⊥

pr

(a) (b)

SunSun

p

The planet sweeps out 
this area.

These are the 
two momentum 
components.
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Table 13-3 Kepler’s Law of Periods for the
Solar System

Semimajor T2/a3

Axis Period (10�34

Planet a (1010 m) T (y) y2/m3)

Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99
Pluto 590 248 2.99

Checkpoint 4
Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger 
circular orbit.Which satellite has (a) the longer period and (b) the greater speed?

a triangle with base r �u and height r. Since the area of a triangle is one-half of the
base times the height, �A � r 2�u. This expression for �A becomes more exact1

2

3. THE LAW OF PERIODS: The square of the period of any planet is propor-
tional to the cube of the semimajor axis of its orbit.

To see this, consider the circular orbit of Fig. 13-14, with radius r (the radius of
a circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s
second law (F � ma) to the orbiting planet in Fig. 13-14 yields

(13-33)

Here we have substituted from Eq. 13-1 for the force magnitude F and used
Eq. 10-23 to substitute v2r for the centripetal acceleration. If we now use Eq. 10-20
to replace v with 2p/T, where T is the period of the motion, we obtain Kepler’s
third law:

(law of periods). (13-34)

The quantity in parentheses is a constant that depends only on the mass M of the
central body about which the planet orbits.

Equation 13-34 holds also for elliptical orbits, provided we replace r with
a, the semimajor axis of the ellipse. This law predicts that the ratio T 2/a3 has es-
sentially the same value for every planetary orbit around a given massive
body. Table 13-3 shows how well it holds for the orbits of the planets of the 
solar system.

T 2 � � 4p 2

GM �r 3

GMm
r2 � (m)(v2r).

Figure 13-14 A planet of mass m moving
around the Sun in a circular orbit of radius r.

θ 
M

r

m

as �t (hence �u) approaches zero. The instantaneous rate at which area is being
swept out is then

(13-30)

in which v is the angular speed of the line connecting Sun and planet, as the line
rotates around the Sun.

Figure 13-13b shows the linear momentum of the planet, along with the radial
and perpendicular components of . From Eq. 11-20 the magnitude of
the angular momentum of the planet about the Sun is given by the product of r
and the component of perpendicular to r. Here, for a planet of mass m,

(13-31)

where we have replaced with its equivalent vr (Eq. 10-18). Eliminating r2v
between Eqs. 13-30 and 13-31 leads to

(13-32)

If dA/dt is constant, as Kepler said it is, then Eq. 13-32 means that L must also be
constant—angular momentum is conserved. Kepler’s second law is indeed
equivalent to the law of conservation of angular momentum.

dA
dt

�
L

2m
.

v�

� mr2v,

L � rp� � (r)(mv�) � (r)(mvr)

p:p�,
L
:

(L � rp�),p:
p:

dA
dt

� 1
2r2 du

dt
� 1

2r2v,
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Ra � 2a � Rp

� (2)(2.7 � 1012 m) � 8.9 � 1010 m
� 5.3 � 1012 m. (Answer)

Table 13-3 shows that this is a little less than the semimajor
axis of the orbit of Pluto. Thus, the comet does not get far-
ther from the Sun than Pluto.

(b) What is the eccentricity e of the orbit of comet Halley?

KEY IDEA

We can relate e, a, and Rp via Fig. 13-12, in which we see that
ea � a � Rp.

Calculation: We have

(13-36)

(Answer)

This tells us that, with an eccentricity approaching unity, this
orbit must be a long thin ellipse.

� 1 �
8.9 � 1010 m
2.7 � 1012 m

� 0.97.

e �
a � Rp

a
� 1 �

Rp

a

Sample Problem 13.04 Kepler’s law of periods, Comet Halley

Comet Halley orbits the Sun with a period of 76 years and, in
1986, had a distance of closest approach to the Sun, its peri-
helion distance Rp, of 8.9 � 1010 m. Table 13-3 shows that this
is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance Ra?

KEY IDEAS

From Fig. 13-12, we see that Ra � Rp � 2a, where a is the semi-
major axis of the orbit. Thus, we can find Ra if we first find a.
We can relate a to the given period via the law of periods 
(Eq. 13-34) if we simply substitute the semimajor axis a for r.

Calculations: Making that substitution and then solving for
a, we have

. (13-35)

If we substitute the mass M of the Sun, 1.99 � 1030 kg, and
the period T of the comet, 76 years or 2.4 � 109 s, into 
Eq. 13-35, we find that a � 2.7 � 1012 m. Now we have

a � � GMT 2

4p 2 �
1/3

Additional examples, video, and practice available at WileyPLUS

● When a planet or satellite with mass m moves in a circular
orbit with radius r, its potential energy U and kinetic energy K
are given by

U � �
GMm

r
 and K �

GMm
2r

.

The mechanical energy E � K � U is then

For an elliptical orbit of semimajor axis a,

E � �
GMm

2a
.

E � �
GMm

2r
.

Key Ideas

13-7 SATELLITES: ORBITS AND ENERGY

After reading this module, you should be able to . . .

13.22 For a satellite in a circular orbit around an astronomical
body, calculate the gravitational potential energy, the kinetic
energy, and the total energy.

13.23 For a satellite in an elliptical orbit, calculate the total
energy.

Learning Objectives

Satellites: Orbits and Energy
As a satellite orbits Earth in an elliptical path, both its speed, which fixes its kinetic
energy K, and its distance from the center of Earth, which fixes its gravitational po-
tential energy U, fluctuate with fixed periods. However, the mechanical energy E of
the satellite remains constant. (Since the satellite’s mass is so much smaller than
Earth’s mass, we assign U and E for the Earth–satellite system to the satellite alone.)
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Figure 13-16 The variation of kinetic energy
K, potential energy U, and total energy E
with radius r for a satellite in a circular or-
bit. For any value of r, the values of U and
E are negative, the value of K is positive,
and E � �K.As r : �, all three energy
curves approach a value of zero.

Energy

r0

K(r)

E(r)

U(r)

This is a plot of a
satellite's energies
versus orbit radius.

The kinetic energy
is positive.

The potential energy
and total energy
are negative.

Checkpoint 5
In the figure here, a space shuttle is initially in a cir-
cular orbit of radius r about Earth.At point P,
the pilot briefly fires a forward-pointing thruster
to decrease the shuttle’s kinetic energy K and me-
chanical energy E. (a) Which of the dashed ellipti-
cal orbits shown in the figure will the shuttle then
take? (b) Is the orbital period T of the shuttle (the
time to return to P) then greater than, less than, or
the same as in the circular orbit?                       

r

P

1
2

The potential energy of the system is given by Eq. 13-21:

(with U � 0 for infinite separation). Here r is the radius of the satellite’s orbit,
assumed for the time being to be circular, and M and m are the masses of Earth
and the satellite, respectively.

To find the kinetic energy of a satellite in a circular orbit, we write Newton’s
second law (F � ma) as

(13-37)

where v2/r is the centripetal acceleration of the satellite.Then, from Eq. 13-37, the
kinetic energy is

(13-38)

which shows us that for a satellite in a circular orbit,

(circular orbit). (13-39)

The total mechanical energy of the orbiting satellite is

or (circular orbit). (13-40)

This tells us that for a satellite in a circular orbit, the total energy E is the negative of
the kinetic energy K:

E � �K (circular orbit). (13-41)

For a satellite in an elliptical orbit of semimajor axis a, we can substitute a for r in
Eq. 13-40 to find the mechanical energy:

(elliptical orbit). (13-42)

Equation 13-42 tells us that the total energy of an orbiting satellite de-
pends only on the semimajor axis of its orbit and not on its eccentricity e. For
example, four orbits with the same semimajor axis are shown in Fig. 13-15; the
same satellite would have the same total mechanical energy E in all four or-
bits. Figure 13-16 shows the variation of K, U, and E with r for a satellite mov-
ing in a circular orbit about a massive central body. Note that as r is increased,
the kinetic energy (and thus also the orbital speed) decreases.

E � �
GMm

2a

E � �
GMm

2r

E � K � U �
GMm

2r
�

GMm
r

K � �
U
2

K � 1
2mv2 �

GMm
2r

,

GMm
r2 � m

v2

r
,

U � �
GMm

r

Figure 13-15 Four orbits with different eccen-
tricities e about an object of mass M.All
four orbits have the same semimajor axis a
and thus correspond to the same total me-
chanical energy E.

e = 0
0.5

0.8

0.9M
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KEY IDEA

On the launchpad, the ball is not in orbit and thus Eq. 13-40
does not apply. Instead, we must find E0 � K0 � U0, where
K0 is the ball’s kinetic energy and U0 is the gravitational po-
tential energy of the ball–Earth system.

Calculations: To find U0, we use Eq. 13-21 to write

� �4.51 � 108 J � �451 MJ.

The kinetic energy K0 of the ball is due to the ball’s motion
with Earth’s rotation.You can show that K0 is less than 1 MJ,
which is negligible relative to U0. Thus, the mechanical en-
ergy of the ball on the launchpad is

E0 � K0 � U0 � 0 � 451 MJ � �451 MJ. (Answer)

The increase in the mechanical energy of the ball from
launchpad to orbit is

�E � E � E0 � (�214 MJ) � (�451 MJ)

� 237 MJ. (Answer)

This is worth a few dollars at your utility company.
Obviously the high cost of placing objects into orbit is not
due to their required mechanical energy.

� �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(7.20 kg)

6.37 � 106 m

U 0 � �
GMm

R

Sample Problem 13.05 Mechanical energy of orbiting bowling ball

A playful astronaut releases a bowling ball, of mass m
7.20 kg, into circular orbit about Earth at an altitude h of
350 km.

(a) What is the mechanical energy E of the ball in its orbit?

KEY IDEA

We can get E from the orbital energy, given by Eq. 13-40 
(E � �GMm /2r), if we first find the orbital radius r. (It is
not simply the given altitude.)

Calculations: The orbital radius must be

r � R � h � 6370 km � 350 km � 6.72 � 106 m,

in which R is the radius of Earth. Then, from Eq. 13-40 with
Earth mass M � 5.98 � 1024 kg, the mechanical energy is

� �2.14 � 108 J � �214 MJ. (Answer)

(b) What is the mechanical energy E0 of the ball on the
launchpad at the Kennedy Space Center (before launch)?
From there to the orbit, what is the change �E in the ball’s
mechanical energy?

� �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(7.20 kg)

(2)(6.72 � 106 m)

E � �
GMm

2r

�

ence of the initial circular orbit to the initial period of the or-
bit. Thus, just after the thruster is fired, the kinetic energy is

� 1.0338 � 1011 J.

� 1
2(4.50 � 103 kg)(0.96)2 � 2p (8.00 � 106 m)

7.119 � 103 s �
2

K � 1
2mv2 � 1

2m(0.96v0)2 � 1
2m(0.96)2� 2pr

T0
�

2

Sample Problem 13.06 Transforming a circular orbit into an elliptical orbit

A spaceship of mass m 4.50 103 kg is in a circular Earth
orbit of radius r � 8.00 � 106 m and period T0 � 118.6 min �
7.119 � 103 s when a thruster is fired in the forward direction
to decrease the speed to 96.0% of the original speed.What is
the period T of the resulting elliptical orbit (Fig. 13-17)?

KEY IDEAS

(1) The orbit of an elliptical orbit is related to the semima-
jor axis a by Kepler’s third law, written as Eq. 13-34 ( �
4p2r3/GM) but with a replacing r. (2) The semimajor axis a
is related to the total mechanical energy E of the ship by
Eq. 13-42 (E � �GMm/2a), in which Earth’s mass is M �
5.98 � 1024 kg. (3) The potential energy of the ship at radius
r from Earth’s center is given by Eq. 13-21 (U � �GMm/r).

Calculations: Looking over the Key Ideas, we see that we
need to calculate the total energy E to find the semimajor
axis a, so that we can then determine the period of the ellipti-
cal orbit. Let’s start with the kinetic energy, calculating it just
after the thruster is fired. The speed v just then is 96% of the
initial speed v0, which was equal to the ratio of the circumfer-

T 2

��

Figure 13-17 At point P a
thruster is fired, changing a
ship’s orbit from circular to
elliptical.

rM

P
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Einstein and Gravitation
Principle of Equivalence
Albert Einstein once said: “I was . . . in the patent office at Bern when all of a
sudden a thought occurred to me: ‘If a person falls freely, he will not feel his
own weight.’ I was startled. This simple thought made a deep impression on me.
It impelled me toward a theory of gravitation.”

Thus Einstein tells us how he began to form his general theory of relativity.
The fundamental postulate of this theory about gravitation (the gravitating of
objects toward each other) is called the principle of equivalence, which says that
gravitation and acceleration are equivalent. If a physicist were locked up in a
small box as in Fig. 13-18, he would not be able to tell whether the box was at

(b)(a)

aa

Additional examples, video, and practice available at WileyPLUS

13-8 EINSTEIN AND GRAVITATION

After reading this module, you should be able to . . .

13.24 Explain Einstein’s principle of equivalence.
13.25 Identify Einstein’s model for gravitation as being due to

the curvature of spacetime.

● Einstein pointed out that gravitation and acceleration are equivalent. This principle of equivalence led him to a theory of gravi-
tation (the general theory of relativity) that explains gravitational effects in terms of a curvature of space.

Learning Objectives

Key Idea

Just after the thruster is fired, the ship is still at orbital
radius r, and thus its gravitational potential energy is

We can now find the semimajor axis by rearranging Eq. 13-42,
substituting a for r, and then substituting in our energy results:

� 7.418 � 106 m.

� �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(4.50 � 103 kg)

2(1.0338 � 1011 J � 2.2436 � 1011 J)

a � �
GMm

2E
� �

GMm
2(K � U)

� �2.2436 � 1011 J.

� �
(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg)(4.50 � 103 kg)

8.00 � 106 m

U � �
GMm

r

OK, one more step to go. We substitute a for r in Eq. 13-34
and then solve for the period T, substituting our result for a:

(Answer)

This is the period of the elliptical orbit that the ship takes af-
ter the thruster is fired. It is less than the period T0 for the cir-
cular orbit for two reasons. (1) The orbital path length is now
less. (2) The elliptical path takes the ship closer to Earth
everywhere except at the point of firing (Fig. 13-17). The re-
sulting decrease in gravitational potential energy increases
the kinetic energy and thus also the speed of the ship.

� 6.356 � 103 s � 106 min.

� � 4p2(7.418 � 106 m)3

(6.67 � 10�11 N �m2/kg2)(5.98 � 1024 kg) �
1/2

T � � 4p2a3

GM �
1/2

Figure 13-18 (a) A physicist in a box rest-
ing on Earth sees a cantaloupe falling
with acceleration a � 9.8 m/s2. (b) If he
and the box accelerate in deep space at
9.8 m/s2, the cantaloupe has the same
acceleration relative to him. It is not
possible, by doing experiments within
the box, for the physicist to tell which
situation he is in. For example, the plat-
form scale on which he stands reads
the same weight in both situations.
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Figure 13-19 (a) Two objects moving along lines of longitude toward the south pole converge
because of the curvature of Earth’s surface. (b) Two objects falling freely near Earth move
along lines that converge toward the center of Earth because of the curvature of space
near Earth. (c) Far from Earth (and other masses), space is flat and parallel paths remain
parallel. Close to Earth, the parallel paths begin to converge because space is curved by
Earth’s mass.

Earth

Converging
paths

Flat space 
far from 
Earth

Parallel paths 

Curved space 
near Earth 

S

N

Equator

(a) (b) (c)S

C

rest on Earth (and subject only to Earth’s gravitational force), as in Fig. 13-18a,
or accelerating through interstellar space at 9.8 m/s2 (and subject only to the
force producing that acceleration), as in Fig. 13-18b. In both situations he would
feel the same and would read the same value for his weight on a scale. Moreover,
if he watched an object fall past him, the object would have the same acceleration
relative to him in both situations.

Curvature of Space
We have thus far explained gravitation as due to a force between masses. Einstein
showed that, instead, gravitation is due to a curvature of space that is caused by
the masses. (As is discussed later in this book, space and time are entangled, so
the curvature of which Einstein spoke is really a curvature of spacetime, the
combined four dimensions of our universe.)

Picturing how space (such as vacuum) can have curvature is difficult. An
analogy might help: Suppose that from orbit we watch a race in which two boats
begin on Earth’s equator with a separation of 20 km and head due south 
(Fig. 13-19a). To the sailors, the boats travel along flat, parallel paths. However,
with time the boats draw together until, nearer the south pole, they touch. The
sailors in the boats can interpret this drawing together in terms of a force acting
on the boats. Looking on from space, however, we can see that the boats draw 
together simply because of the curvature of Earth’s surface. We can see this 
because we are viewing the race from “outside” that surface.

Figure 13-19b shows a similar race: Two horizontally separated apples are
dropped from the same height above Earth. Although the apples may appear to
travel along parallel paths, they actually move toward each other because they
both fall toward Earth’s center. We can interpret the motion of the apples in
terms of the gravitational force on the apples from Earth. We can also interpret
the motion in terms of a curvature of the space near Earth, a curvature due to the
presence of Earth’s mass. This time we cannot see the curvature because we
cannot get “outside” the curved space, as we got “outside” the curved Earth in
the boat example. However, we can depict the curvature with a drawing like Fig.
13-19c; there the apples would move along a surface that curves toward Earth
because of Earth’s mass.

When light passes near Earth, the path of the light bends slightly because of
the curvature of space there, an effect called gravitational lensing. When light
passes a more massive structure, like a galaxy or a black hole having large mass,
its path can be bent more. If such a massive structure is between us and a quasar
(an extremely bright, extremely distant source of light), the light from the quasar
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The Law of Gravitation Any particle in the universe attracts
any other particle with a gravitational force whose magnitude is

(Newton’s law of gravitation), (13-1)

where m1 and m2 are the masses of the particles, r is their separation,
and G (� 6.67 � 10�11 N �m2/kg2) is the gravitational constant.

Gravitational Behavior of Uniform Spherical Shells
The gravitational force between extended bodies is found by
adding (integrating) the individual forces on individual particles
within the bodies. However, if either of the bodies is a uniform
spherical shell or a spherically symmetric solid, the net gravita-
tional force it exerts on an external object may be computed as if
all the mass of the shell or body were located at its center.

Superposition Gravitational forces obey the principle of su-
perposition; that is, if n particles interact, the net force on a
particle labeled particle 1 is the sum of the forces on it from all the
other particles taken one at a time:

(13-5)

in which the sum is a vector sum of the forces on particle
1 from particles 2, 3, . . . , n. The gravitational force on aF

:

1

F
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1 i

F
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1,net � �
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F
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1i,

F
:

1,net

F � G
m1m2

r2

Review & Summary

particle from an extended body is found by dividing the body into
units of differential mass dm, each of which produces a differential
force on the particle, and then integrating to find the sum of
those forces:

(13-6)

Gravitational Acceleration The gravitational acceleration ag

of a particle (of mass m) is due solely to the gravitational force acting
on it. When the particle is at distance r from the center of a uniform,
spherical body of mass M, the magnitude F of the gravitational force
on the particle is given by Eq. 13-1.Thus, by Newton’s second law,

F � mag, (13-10)
which gives

. (13-11)

Free-Fall Acceleration and Weight Because Earth’s mass
is not distributed uniformly, because the planet is not perfectly
spherical, and because it rotates, the actual free-fall acceleration 
of a particle near Earth differs slightly from the gravitational accel-
eration and the particle’s weight (equal to mg) differs from the
magnitude of the gravitational force on it as calculated by
Newton’s law of gravitation (Eq. 13-1).

a:g,

g:

ag �
GM

r2

F
:

1 � �dF
:

.

dF
:

can bend around the massive structure and toward us (Fig. 13-20a).Then, because
the light seems to be coming to us from a number of slightly different directions
in the sky, we see the same quasar in all those different directions. In some situa-
tions, the quasars we see blend together to form a giant luminous arc, which is
called an Einstein ring (Fig. 13-20b).

Should we attribute gravitation to the curvature of spacetime due to the
presence of masses or to a force between masses? Or should we attribute it to
the actions of a type of fundamental particle called a graviton, as conjectured in
some modern physics theories? Although our theories about gravitation have
been enormously successful in describing everything from falling apples to plane-
tary and stellar motions, we still do not fully understand it on either the cosmo-
logical scale or the quantum physics scale.

Paths of light
from quasar
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Figure 13-20 (a) Light from a distant quasar
follows curved paths around a galaxy or
a large black hole because the mass of the
galaxy or black hole has curved the adja-
cent space. If the light is detected, it ap-
pears to have originated along the back-
ward extensions of the final paths (dashed
lines). (b) The Einstein ring known as
MG1131�0456 on the computer screen of a
telescope.The source of the light (actually,
radio waves, which are a form of invisible
light) is far behind the large, unseen galaxy
that produces the ring; a portion of the
source appears as the two bright spots seen
along the ring.
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Gravitation Within a Spherical Shell A uniform shell of
matter exerts no net gravitational force on a particle located inside
it. This means that if a particle is located inside a uniform solid
sphere at distance r from its center, the gravitational force exerted
on the particle is due only to the mass that lies inside a sphere of
radius r (the inside sphere).The force magnitude is given by

(13-19)

where M is the sphere’s mass and R is its radius.

Gravitational Potential Energy The gravitational potential
energy U(r) of a system of two particles, with masses M and m and
separated by a distance r, is the negative of the work that would be
done by the gravitational force of either particle acting on the other
if the separation between the particles were changed from infinite
(very large) to r.This energy is

(gravitational potential energy). (13-21)

Potential Energy of a System If a system contains more
than two particles, its total gravitational potential energy U is the
sum of the terms representing the potential energies of all the pairs.
As an example, for three particles, of masses m1, m2, and m3,

(13-22)

Escape Speed An object will escape the gravitational pull of
an astronomical body of mass M and radius R (that is, it will reach
an infinite distance) if the object’s speed near the body’s surface is
at least equal to the escape speed, given by

(13-28)v � A
2GM

R
.

U � �� Gm1m2

r12
�

Gm1m3

r13
�

Gm2m3

r23
�.

U � �
GMm

r

F �
GmM

R3 r,

Kepler’s Laws The motion of satellites, both natural and artifi-
cial, is governed by these laws:

1. The law of orbits. All planets move in elliptical orbits with the
Sun at one focus.

2. The law of areas. A line joining any planet to the Sun sweeps
out equal areas in equal time intervals. (This statement is equiv-
alent to conservation of angular momentum.)

3. The law of periods. The square of the period T of any planet is
proportional to the cube of the semimajor axis a of its orbit. For
circular orbits with radius r,

(law of periods), (13-34)

where M is the mass of the attracting body—the Sun in the case
of the solar system. For elliptical planetary orbits, the semi-
major axis a is substituted for r.

Energy in Planetary Motion When a planet or satellite with
mass m moves in a circular orbit with radius r, its potential energy
U and kinetic energy K are given by

(13-21, 13-38)

The mechanical energy E � K � U is then

(13-40)

For an elliptical orbit of semimajor axis a,

(13-42)

Einstein’s View of Gravitation Einstein pointed out that gravi-
tation and acceleration are equivalent. This principle of equivalence
led him to a theory of gravitation (the general theory of relativity) that
explains gravitational effects in terms of a curvature of space.

E � �
GMm

2a
.

E � �
GMm

2r
.

U � �
GMm

r
 and K �

GMm
2r

.

T 2 � � 4p 2

GM �r 3

Questions

1 In Fig. 13-21, a central particle of
mass M is surrounded by a square ar-
ray of other particles, separated by ei-
ther distance d or distance d/2 along
the perimeter of the square.What are
the magnitude and direction of the
net gravitational force on the central
particle due to the other particles?

2 Figure 13-22 shows three
arrangements of the same identical
particles, with three of them placed
on a circle of radius 0.20 m and the
fourth one placed at the center of
the circle. (a) Rank the arrange-
ments according to the magnitude of
the net gravitational force on the
central particle due to the other
three particles, greatest first. (b)
Rank them according to the gravitational potential energy of the
four-particle system, least negative first.

3 In Fig. 13-23, a central particle is surrounded by two circular

M

M

M
2M

7M

3M

5M

4M

4M

5M

7M

2M

Figure 13-21 Question 1.

(a) (b) (c)

Figure 13-22 Question 2.

rings of particles, at radii r and R,
with R 
 r. All the particles have
mass m. What are the magnitude
and direction of the net gravita-
tional force on the central particle
due to the particles in the rings?

4 In Fig. 13-24, two particles, of
masses m and 2m, are fixed in place
on an axis. (a) Where on the axis can
a third particle of mass 3m be placed
(other than at infinity) so that the
net gravitational force on it from the
first two particles is zero: to the left
of the first two particles, to their
right, between them but closer to
the more massive particle, or be-
tween them but closer to the less
massive particle? (b) Does the an-
swer change if the third particle has, instead, a mass of 16m? (c) Is
there a point off the axis (other than infinity) at which the net force
on the third particle would be zero?

Figure 13-23 Question 3.

Figure 13-24 Question 4.

m 2m
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a

b

16 h 

c

d

24 h 

e

f

48 h 

Figure 13-30 Question 11.

a 2m m b c 

d d d d

Figure 13-31 Question 12.

Module 13-1 Newton’s Law of Gravitation
•1 A mass M is split into two parts, m and M � m, which are
then separated by a certain distance. What ratio m/M maximizes
the magnitude of the gravitational force between the parts?

ILW

5 Figure 13-25 shows three situations involving a point particle P
with mass m and a spherical shell with a uniformly distributed
mass M. The radii of the shells are given. Rank the situations ac-
cording to the magnitude of the gravitational force on particle P
due to the shell, greatest first.

Figure 13-25 Question 5.

R
2R R/2

PP

P

(a) (b) (c)

d

R1 R2 R4
r

ag

R3

1

2

3

4

Figure 13-27 Question 8.

9 Figure 13-28 shows three parti-
cles initially fixed in place, with B
and C identical and positioned sym-
metrically about the y axis, at dis-
tance d from A. (a) In what direction
is the net gravitational force F

:

net on
A? (b) If we move C directly away
from the origin, does F

:

net change in
direction? If so, how and what is the
limit of the change?

10 Figure 13-29 shows six paths by
which a rocket orbiting a moon might
move from point a to point b. Rank the
paths according to (a) the correspon-
ding change in the gravitational poten-
tial energy of the rocket–moon system
and (b) the net work done on the
rocket by the gravitational force from
the moon,greatest first.

11 Figure 13-30 shows three uniform spherical planets that are
identical in size and mass. The periods of rotation T for the planets
are given, and six lettered points are indicated—three points are
on the equators of the planets and three points are on the north
poles. Rank the points according to the value of the free-fall accel-
eration g at them, greatest first.

Figure 13-28 Question 9.

y

CB

d d 

A
x

θ θ 
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2
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5

6
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4

Figure 13-29 Question 10.

6 In Fig. 13-26, three particles are
fixed in place. The mass of B is
greater than the mass of C. Can a
fourth particle (particle D) be placed
somewhere so that the net gravita-
tional force on particle A from parti-
cles B, C, and D is zero? If so, in
which quadrant should it be placed
and which axis should it be near?

7 Rank the four systems of equal-
mass particles shown in Checkpoint 2
according to the absolute value of the gravitational potential energy
of the system, greatest first.

8 Figure 13-27 gives the gravitational acceleration ag for four planets
as a function of the radial distance r from the center of the planet, start-
ing at the surface of the planet (at radius R1, R2, R3, or R4). Plots 1 and 2
coincide for r � R2;plots 3 and 4 coincide for r � R4.Rank the four plan-
ets according to (a) mass and (b) mass per unit volume,greatest first.

y

x

d
d

A C 

B

Figure 13-26 Question 6.

12 In Fig. 13-31, a particle of mass m (which is not shown) is to
be moved from an infinite distance to one of the three possible
locations a, b, and c. Two other particles, of masses m and 2m, are
already fixed in place on the axis, as shown. Rank the three pos-
sible locations according to the work done by the net gravita-
tional force on the moving particle due to the fixed particles,
greatest first.

•2 Moon effect. Some people believe that the Moon con-
trols their activities. If the Moon moves from being directly on the
opposite side of Earth from you to being directly overhead, by
what percent does (a) the Moon’s gravitational pull on you

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems



20.0 cm is formed by four spheres of masses
m1 � 5.00 g, m2 � 3.00 g, m3 � 1.00 g, and
m4 � 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass m5 � 2.50 g?

•7 One dimension. In Fig. 13-33, two
point particles are fixed on an x axis sepa-
rated by distance d. Particle A has mass mA

and particle B has mass 3.00mA. A third
particle C, of mass 75.0mA, is to be placed
on the x axis and near particles A and B. In
terms of distance d, at what x coordinate
should C be placed so that the net gravita-
tional force on particle A from particles B
and C is zero?

•8 In Fig. 13-34, three 5.00 kg spheres are lo-
cated at distances d1 � 0.300 m and d2 � 0.400
m.What are the (a) magnitude and (b) direction (relative to the positive
direction of the x axis) of the net gravitational force on sphere B due to
spheres A and C?

increase and (b) your weight (as measured on a scale) decrease?
Assume that the Earth–Moon (center-to-center) distance is 
3.82 � 108 m and Earth’s radius is 6.37 � 106 m.

•3 What must the separation be between a 5.2 kg particle
and a 2.4 kg particle for their gravitational attraction to have
a magnitude of 2.3 � 10�12 N?

•4 The Sun and Earth each exert a gravitational force on the
Moon. What is the ratio FSun/FEarth of these two forces? (The aver-
age Sun–Moon distance is equal to the Sun–Earth distance.)

•5 Miniature black holes. Left over from the big-bang beginning
of the universe, tiny black holes might still wander through the 
universe. If one with a mass of 1 � 1011 kg (and a radius of only 
1 � 10�16 m) reached Earth, at what distance from your head
would its gravitational pull on you match that of Earth’s?

Module 13-2 Gravitation and the Principle of Superposition
•6 In Fig. 13-32, a square of edge length

SSM

fixed in place at x ��0.20 m on the x axis and particle B, with a
mass of 1.0 kg, is fixed in place at the origin. Particle C (not shown)
can be moved along the x axis, between particle B and x � �.
Figure 13-37b shows the x component Fnet,x of the net gravitational
force on particle B due to particles A and C, as a function of posi-
tion x of particle C. The plot actually extends to the right, ap-
proaching an asymptote of �4.17 � 10�10 N as x : �.What are the
masses of (a) particle A and (b) particle C?
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tance d, at what (a) x coordinate and (b) y coordinate should parti-
cle D be placed so that the net gravitational force on particle A
from particles B, C, and D is zero?

••11 As seen in Fig. 13-36, two
spheres of mass m and a third sphere
of mass M form an equilateral trian-
gle, and a fourth sphere of mass m4 is
at the center of the triangle. The net
gravitational force on that central
sphere from the three other spheres is
zero. (a) What is M in terms of m? (b)
If we double the value of m4, what
then is the magnitude of the net gravi-
tational force on the central sphere?

••12 In Fig. 13-37a, particle A is

m1

m3 m4

m5

m2

y

x

Figure 13-32
Problem 6.

y

x
d

A B 

Figure 13-33
Problem 7.

Figure 13-34 Problem 8.
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Figure 13-36
Problem 11.
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Figure 13-37 Problem 12.

••13 Figure 13-38 shows a spherical
hollow inside a lead sphere of radius
R � 4.00 cm; the surface of the hol-
low passes through the center of the
sphere and “touches” the right
side of the sphere. The mass of the
sphere before hollowing was M �
2.95 kg. With what gravitational
force does the hollowed-out lead sphere attract a small sphere
of mass m � 0.431 kg that lies at a distance d � 9.00 cm from
the center of the lead sphere, on the straight line connecting the
centers of the spheres and of the hollow?

••14 Three point particles are
fixed in position in an xy plane. Two of
them, particle A of mass 6.00 g and par-
ticle B of mass 12.0 g, are shown in Fig.
13-39, with a separation of dAB � 0.500
m at angle u � 30°. Particle C, with mass
8.00 g, is not shown. The net gravita-
tional force acting on particle A due to
particles B and C is 2.77 � 10�14 N at
an angle of �163.8° from the positive direction of the x axis. What
are (a) the x coordinate and (b) the y coordinate of particle C?

•••15 Three dimensions. Three point particles are fixed in place
in an xyz coordinate system. Particle A, at the origin, has mass mA.

mR

d

Figure 13-38 Problem 13.

y

x
A

B
dAB

θ 

Figure 13-39 Problem 14.

•9 We want to position a space probe along a line that
extends directly toward the Sun in order to monitor solar flares. How
far from Earth’s center is the point on the
line where the Sun’s gravitational pull on
the probe balances Earth’s pull?

••10 Two dimensions. In Fig. 13-35,
three point particles are fixed in place in
an xy plane. Particle A has mass mA, par-
ticle B has mass 2.00mA, and particle C
has mass 3.00mA. A fourth particle D,
with mass 4.00mA, is to be placed near
the other three particles. In terms of dis-

WWWSSM
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x

B
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d
1.5d

Figure 13-35 Problem 10.
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6345 km 

25 km 

3490 km 

Core, 1.93    1024 kg 

Mantle, 4.01    1024 kg 

Crust, 3.94    1022 kg 

Figure 13-42 Problem 27.

Particle B, at xyz coordinates (2.00d, 1.00d, 2.00d), has mass 2.00mA,
and particle C, at coordinates (�1.00d, 2.00d, �3.00d), has mass
3.00mA. A fourth particle D, with mass 4.00mA, is to be placed near
the other particles. In terms of distance d, at what (a) x, (b) y, and (c) z
coordinate should D be placed so that the net gravitational force on
A from B, C, and D is zero?

•••16 In Fig. 13-40, a particle

shells, when the particle is located at radial distance (a) a, (b) b,
and (c) c.

••25 A solid sphere has a uniformly distributed mass of 1.0 � 104

kg and a radius of 1.0 m.What is the magnitude of the gravitational
force due to the sphere on a particle of mass m when the particle is
located at a distance of (a) 1.5 m and (b) 0.50 m from the center of
the sphere? (c) Write a general expression for the magnitude
of the gravitational force on the particle at a distance r � 1.0 m
from the center of the sphere.

••26 A uniform solid sphere of radius R produces a gravitational
acceleration of ag on its surface.At what distance from the sphere’s
center are there points (a) inside and (b) outside the sphere where
the gravitational acceleration is ag/3?

••27 Figure 13-42 shows, not to scale, a cross section through
the interior of Earth. Rather than being uniform throughout,
Earth is divided into three zones: an outer crust, a mantle, and an
inner core. The dimensions of these zones and the masses con-
tained within them are shown on the figure. Earth has a total
mass of 5.98 � 1024 kg and a radius of 6370 km. Ignore rotation
and assume that Earth is spherical. (a) Calculate ag at the sur-
face. (b) Suppose that a bore hole (the Mohole) is driven to the
crust – mantle interface at a depth of 25.0 km; what would be the
value of ag at the bottom of the hole? (c) Suppose that Earth
were a uniform sphere with the same total mass and size. What
would be the value of ag at a depth of 25.0 km? (Precise mea-
surements of ag are sensitive probes of the interior structure of
Earth, although results can be clouded by local variations in
mass distribution.)

of mass m1 � 0.67 kg is a dis-
tance d � 23 cm from one end of
a uniform rod with length L �
3.0 m and mass M � 5.0 kg.What
is the magnitude of the gravita-
tional force F

:
on the particle from the rod?

Module 13-3 Gravitation Near Earth’s Surface
•17 (a) What will an object weigh on the Moon’s surface if it
weighs 100 N on Earth’s surface? (b) How many Earth radii must
this same object be from the center of Earth if it is to weigh the
same as it does on the Moon?

•18 Mountain pull. A large mountain can slightly affect the
direction of “down” as determined by a plumb line. Assume that
we can model a mountain as a sphere of radius R � 2.00 km and
density (mass per unit volume) 2.6 � 103 kg/m3. Assume also that
we hang a 0.50 m plumb line at a distance of 3R from the sphere’s
center and such that the sphere pulls horizontally on the lower
end. How far would the lower end move toward the sphere?

•19 At what altitude above Earth’s surface would the
gravitational acceleration be 4.9 m/s2?

•20 Mile-high building. In 1956, Frank Lloyd Wright proposed
the construction of a mile-high building in Chicago. Suppose the
building had been constructed. Ignoring Earth’s rotation, find
the change in your weight if you were to ride an elevator from the
street level, where you weigh 600 N, to the top of the building.

••21 Certain neutron stars (extremely dense stars) are
believed to be rotating at about 1 rev/s. If such a star has a radius of
20 km, what must be its minimum mass so that material on its sur-
face remains in place during the rapid rotation?

••22 The radius Rh and mass Mh of a black hole are related by
Rh � 2GMh/c2, where c is the speed of light. Assume that the gravi-
tational acceleration ag of an object at a distance ro � 1.001Rh from
the center of a black hole is given by Eq. 13-11 (it is, for large black
holes). (a) In terms of Mh, find ag at ro. (b) Does ag at ro increase or de-
crease as Mh increases? (c) What is ag at ro for a very large black hole
whose mass is 1.55 � 1012 times the solar mass of 1.99 � 1030 kg?
(d) If an astronaut of height 1.70 m is at ro with her feet down, what is
the difference in gravitational acceleration between her head and
feet? (e) Is the tendency to stretch the astronaut severe?

••23 One model for a certain planet has a core of radius R and mass
M surrounded by an outer shell of inner radius R, outer radius 2R,
and mass 4M. If M � 4.1 � 1024 kg and 
R � 6.0 � 106 m, what is the gravitational
acceleration of a particle at points (a) R
and (b) 3R from the center of the planet?

Module 13-4 Gravitation Inside Earth
•24 Two concentric spherical shells with
uniformly distributed masses M1 and M2

are situated as shown in Fig. 13-41. Find
the magnitude of the net gravitational
force on a particle of mass m, due to the

ILW

SSM

Figure 13-40 Problem 16.

d L
dr

r dm

m1

••28 Assume a planet is a uniform sphere of radius R that
(somehow) has a narrow radial tunnel through its center
(Fig. 13-7). Also assume we can position an apple anywhere
along the tunnel or outside the sphere. Let FR be the magnitude
of the gravitational force on the apple when it is located at
the planet’s surface. How far
from the surface is there a point
where the magnitude is FR if
we move the apple (a) away
from the planet and (b) into
the tunnel?

Module 13-5 Gravitational
Potential Energy
•29 Figure 13-43 gives the po-
tential energy function U(r) of a
projectile, plotted outward from
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a

Figure 13-41 Problem 24. Figure 13-43 Problems 29 and 34.

0

–1

–2

–3

–4

–5

r
Rs

U
 (

10
9

J)



of 5.0 � 1023 kg, a radius of 3.0 � 106 m, and no
atmosphere. A 10 kg space probe is to be
launched vertically from its surface. (a) If the probe is launched
with an initial energy of 5.0 � 107 J, what will be its kinetic energy
when it is 4.0 � 106 m from the center of Zero? (b) If the probe is
to achieve a maximum distance of 8.0 � 106 m from the center of
Zero, with what initial kinetic energy must it be launched from the
surface of Zero?

••37 The three spheres in Fig. 13-45, with masses mA � 80 g,
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Module 13-6 Planets and Satellites: Kepler’s Laws
•43 (a) What linear speed must an Earth satellite have to be in
a circular orbit at an altitude of 160 km above Earth’s surface?
(b) What is the period of revolution?

•44 A satellite is put in a circular orbit about Earth with a radius
equal to one-half the radius of the Moon’s orbit. What is its period
of revolution in lunar months? (A lunar month is the period of rev-
olution of the Moon.)

•45 The Martian satellite Phobos travels in an approximately cir-
cular orbit of radius 9.4 � 106 m with a period of 7 h 39 min.
Calculate the mass of Mars from this information.

•46 The first known collision between space debris and a func-
tioning satellite occurred in 1996: At an altitude of 700 km, a year-
old French spy satellite was hit by a piece of an Ariane rocket. A
stabilizing boom on the satellite was demolished, and the satellite

the surface of a planet of radius Rs. What least kinetic energy is re-
quired of a projectile launched at the surface if the projectile is to
“escape” the planet?

•30 In Problem 1, what ratio m/M gives the least gravitational
potential energy for the system?

•31 The mean diameters of Mars and Earth are 6.9 � 103 kmSSM

••38 In deep space, sphere A of mass 20 kg is located at the origin
of an x axis and sphere B of mass 10 kg is located on the axis at x �
0.80 m. Sphere B is released from rest while sphere A is held at the
origin. (a) What is the gravitational potential energy of the two-
sphere system just as B is released? (b) What is the kinetic energy
of B when it has moved 0.20 m toward A?

1.0 � 1010 m. They each have a mass of 1.0 � 1030 kg and a radius
of 1.0 � 105 m. They are initially at rest with respect to each other.
As measured from that rest frame, how fast are they moving when
(a) their separation has decreased to one-half its initial value and
(b) they are about to collide?

••42 Figure 13-46a shows a particle A that can be moved
along a y axis from an infinite distance to the origin.That origin lies
at the midpoint between particles B and C, which have identical
masses, and the y axis is a perpendicular bisector between them.
Distance D is 0.3057 m. Figure 13-46b shows the potential energy
U of the three-particle system as a function of the position of parti-
cle A along the y axis. The curve actually extends rightward and ap-
proaches an asymptote of �2.7 � 10�11 J as y : �. What are the
masses of (a) particles B and C and (b) particle A?

and 1.3 � 104 km, respectively. The mass of Mars is 0.11 times
Earth’s mass. (a) What is the ratio of the mean density (mass per
unit volume) of Mars to that of Earth? (b) What is the value of the
gravitational acceleration on Mars? (c) What is the escape speed
on Mars?

•32 (a) What is the gravitational potential energy of the two-
particle system in Problem 3? If you triple the separation between
the particles, how much work is done (b) by the gravitational force
between the particles and (c) by you?

•33 What multiple of the energy needed to escape from Earth gives
the energy needed to escape from (a) the Moon and (b) Jupiter?

•34 Figure 13-43 gives the potential energy function U(r) of
a projectile, plotted outward from the surface of a planet of
radius Rs. If the projectile is launched radially outward from the
surface with a mechanical energy of �2.0 � 109 J, what are (a) its
kinetic energy at radius r � 1.25Rs and (b) its turning point (see
Module 8-3) in terms of Rs?

••35 Figure 13-44 shows four particles, each
of mass 20.0 g, that form a square with an edge
length of d � 0.600 m. If d is reduced to 0.200 m,
what is the change in the gravitational potential
energy of the four-particle system?

••36 Zero, a hypothetical planet, has a mass

d

d

Figure 13-44
Problem 35.

L

d d
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B C

Figure 13-45 Problem 37.

mB � 10 g, and mC � 20 g, have their centers on a common line,
with L � 12 cm and d � 4.0 cm. You move sphere B along the line
until its center-to-center separation from C is d � 4.0 cm. How
much work is done on sphere B (a) by you and (b) by the net gravi-
tational force on B due to spheres A and C?

Figure 13-46 Problem 42.
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••39 (a) What is the escape speed on a spherical asteroid
whose radius is 500 km and whose gravitational acceleration at the
surface is 3.0 m/s2? (b) How far from the surface will a particle go if
it leaves the asteroid’s surface with a radial speed of 1000 m/s? (c)
With what speed will an object hit the asteroid if it is dropped from
1000 km above the surface?

••40 A projectile is shot directly away from Earth’s surface.
Neglect the rotation of Earth. What multiple of Earth’s radius RE

gives the radial distance a projectile reaches if (a) its initial speed is
0.500 of the escape speed from Earth and (b) its initial kinetic en-
ergy is 0.500 of the kinetic energy required to escape Earth? (c)
What is the least initial mechanical energy required at launch if the
projectile is to escape Earth?

••41 Two neutron stars are separated by a distance ofSSM

SSM
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Name a (108 m) T (days)

Io 4.22 1.77
Europa 6.71 3.55
Ganymede 10.7 7.16
Callisto 18.8 16.7

Figure 13-48 Problem 56. A tiny moon (at right) orbits
asteroid 243 Ida.

Courtesy NASA
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Figure 13-49 Problem 58.

(a) Plot log a (y axis) against log T (x axis) and show that you get a
straight line. (b) Measure the slope of the line and compare it with
the value that you expect from Kepler’s third law. (c) Find the mass
of Jupiter from the intercept of this line with the y axis.

••56 In 1993 the spacecraft Galileo sent an image (Fig. 13-48) of 
asteroid 243 Ida and a tiny orbiting moon (now known as Dactyl), the
first confirmed example of an asteroid–moon system. In the image,
the moon, which is 1.5 km wide, is 100 km from the center of the as-
teroid, which is 55 km long.Assume the moon’s orbit is circular with a
period of 27 h. (a) What is the mass of the asteroid? (b) The volume
of the asteroid, measured from the Galileo images, is 14 100 km3.
What is the density (mass per unit volume) of the asteroid?

was sent spinning out of control. Just before the collision and in
kilometers per hour, what was the speed of the rocket piece rela-
tive to the satellite if both were in circular orbits and the collision
was (a) head-on and (b) along perpendicular paths?

•47 The Sun, which is 2.2 � 1020 m from the center
of the Milky Way galaxy, revolves around that center once every
2.5 � 108 years. Assuming each star in the Galaxy has a mass equal
to the Sun’s mass of 2.0 � 1030 kg, the stars are distributed uni-
formly in a sphere about the galactic center, and the Sun is at the
edge of that sphere, estimate the number of stars in the Galaxy.

•48 The mean distance of Mars from the Sun is 1.52 times that of
Earth from the Sun. From Kepler’s law of periods, calculate the
number of years required for Mars to make one revolution around
the Sun; compare your answer with the value given in Appendix C.

•49 A comet that was seen in April 574 by Chinese astronomers
on a day known by them as the Woo Woo day was spotted again in
May 1994. Assume the time between observations is the period of
the Woo Woo day comet and its eccentricity is 0.9932. What are (a)
the semimajor axis of the comet’s orbit and (b) its greatest distance
from the Sun in terms of the mean orbital radius RP of Pluto?

•50 An orbiting satellite stays over a certain spot on the
equator of (rotating) Earth.What is the altitude of the orbit (called
a geosynchronous orbit)?

•51 A satellite, moving in an elliptical orbit, is 360 km above
Earth’s surface at its farthest point and 180 km above at its closest point.
Calculate (a) the semimajor axis and (b) the eccentricity of the orbit.

•52 The Sun’s center is at one focus of Earth’s orbit. How far
from this focus is the other focus, (a) in meters and (b) in terms of
the solar radius, 6.96 � 108 m? The eccentricity  is 0.0167, and the
semimajor axis is 1.50 � 1011 m.

••53 A 20 kg satellite has a circular orbit with a period of 2.4 h
and a radius of 8.0 � 106 m around a planet of unknown mass. If
the magnitude of the gravitational acceleration on the surface of
the planet is 8.0 m/s2, what is the radius of the planet?

••54 Hunting a black hole.
Observations of the light from a
certain star indicate that it is part of
a binary (two-star) system.This visi-
ble star has orbital speed v � 270
km/s, orbital period T � 1.70 days,
and approximate mass m1 � 6Ms,
where Ms is the Sun’s mass, 1.99 �
1030 kg.Assume that the visible star
and its companion star, which is
dark and unseen, are both in circu-
lar orbits (Fig. 13-47). What integer
multiple of Ms gives the approxi-
mate mass m2 of the dark star?

••55 In 1610, Galileo used his telescope to discover four moons
around Jupiter, with these mean orbital radii a and periods T:

SSM

WWWSSM

Figure 13-47 Problem 54.

O
m1 m2r2r1

••57 In a certain binary-star system, each star has the same
mass as our Sun, and they revolve about their center of mass. The
distance between them is the same as the distance between Earth
and the Sun.What is their period of revolution in years?

•••58 The presence of an unseen planet orbiting a distant star
can sometimes be inferred from the motion of the star as we see
it. As the star and planet orbit the center of mass of the
star–planet system, the star moves toward and away from us with
what is called the line of sight velocity, a motion that can be de-
tected. Figure 13-49 shows a graph of the line of sight velocity ver-
sus time for the star 14 Herculis. The star’s mass is believed to be
0.90 of the mass of our Sun.Assume that only one planet orbits the
star and that our view is along the plane of the orbit.Then approxi-
mate (a) the planet’s mass in terms of Jupiter’s mass mJ and (b) the
planet’s orbital radius in terms of Earth’s orbital radius rE.

ILW

•••59 Three identical stars of mass M form an equilateral triangle
that rotates around the triangle’s center as the stars move in a com-
mon circle about that center. The triangle has edge length L. What
is the speed of the stars?
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Module 13-7 Satellites: Orbits and Energy
•60 In Fig. 13-50, two satellites, A and B,
both of mass m � 125 kg, move in the
same circular orbit of radius r � 7.87 � 106

m around Earth but in opposite senses of
rotation and therefore on a collision
course. (a) Find the total mechanical en-
ergy EA � EB of the two satellites �
Earth system before the collision. (b) If
the collision is completely inelastic so that
the wreckage remains as one piece of tan-
gled material (mass � 2m), find the total
mechanical energy immediately after the collision. (c) Just after the
collision, is the wreckage falling directly toward Earth’s center or or-
biting around Earth?

•61 (a) At what height above Earth’s surface is the energy re-
quired to lift a satellite to that height equal to the kinetic energy
required for the satellite to be in orbit at that height? (b) For
greater heights, which is greater, the energy for lifting or the kinetic
energy for orbiting?

•62 Two Earth satellites, A and B, each of mass m, are to be
launched into circular orbits about Earth’s center. Satellite A is
to orbit at an altitude of 6370 km. Satellite B is to orbit at an
altitude of 19 110 km. The radius of Earth RE is 6370 km. (a) What
is the ratio of the potential energy of satellite B to that of satel-
lite A, in orbit? (b) What is the ratio of the kinetic energy of
satellite B to that of satellite A, in orbit? (c) Which satellite has
the greater total energy if each has a mass of 14.6 kg? (d) By
how much?

•63 An asteroid, whose mass is 2.0 � 10�4 times the
mass of Earth, revolves in a circular orbit around the Sun at a dis-
tance that is twice Earth’s distance from the Sun. (a) Calculate the
period of revolution of the asteroid in years. (b) What is the ratio of
the kinetic energy of the asteroid to the kinetic energy of Earth?

•64 A satellite orbits a planet of unknown mass in a circle of ra-
dius 2.0 � 107 m. The magnitude of the gravitational force on the
satellite from the planet is F � 80 N. (a) What is the kinetic energy
of the satellite in this orbit? (b) What would F be if the orbit radius
were increased to 3.0 � 107 m?

••65 A satellite is in a circular Earth orbit of radius r. The area A
enclosed by the orbit depends on r2 because A � pr2. Determine
how the following properties of the satellite depend on r : (a) pe-
riod, (b) kinetic energy, (c) angular momentum, and (d) speed.

••66 One way to attack a satellite in Earth orbit is to launch a
swarm of pellets in the same orbit as the satellite but in the oppo-
site direction. Suppose a satellite in a circular orbit 500 km above
Earth’s surface collides with a pellet having mass 4.0 g. (a) What is
the kinetic energy of the pellet in the reference frame of the satel-
lite just before the collision? (b) What is the ratio of this kinetic en-
ergy to the kinetic energy of a 4.0 g bullet from a modern army ri-
fle with a muzzle speed of 950 m/s?

•••67 What are (a) the speed and (b) the period of a 220 kg satel-
lite in an approximately circular orbit 640 km above the surface of
Earth? Suppose the satellite loses mechanical energy at the aver-
age rate of 1.4 � 105 J per orbital revolution. Adopting the reason-
able approximation that the satellite’s orbit becomes a “circle of
slowly diminishing radius,” determine the satellite’s (c) altitude, (d)
speed, and (e) period at the end of its 1500th revolution. (f) What

WWWSSM

is the magnitude of the average retarding force on the satellite? Is
angular momentum around Earth’s center conserved for (g) the
satellite and (h) the satellite–Earth system (assuming that system
is isolated)?

•••68 Two small spaceships, each with mass m � 2000 kg, are in
the circular Earth orbit of Fig. 13-51, at an altitude h of 400 km.
Igor, the commander of one of the ships, arrives at any fixed point
in the orbit 90 s ahead of Picard, the
commander of the other ship. What
are the (a) period T0 and (b) speed
v0 of the ships? At point P in
Fig. 13-51, Picard fires an instanta-
neous burst in the forward direction,
reducing his ship’s speed by 1.00%.
After this burst, he follows the ellip-
tical orbit shown dashed in the fig-
ure. What are the (c) kinetic 
energy and (d) potential energy of
his ship immediately after the burst?
In Picard’s new elliptical orbit, what are (e) the total 
energy E, (f) the semimajor axis a, and (g) the orbital period T?
(h) How much earlier than Igor will Picard return to P?

Module 13-8 Einstein and Gravitation
•69 In Fig. 13-18b, the scale on which the 60 kg physicist stands
reads 220 N. How long will the cantaloupe take to reach the floor if
the physicist drops it (from rest relative to himself) at a height of
2.1 m above the floor?

Additional Problems
70 The radius Rh of a black hole is the radius of a mathemati-
cal sphere, called the event horizon, that is centered on the black
hole. Information from events inside the event horizon cannot
reach the outside world. According to Einstein’s general theory of
relativity, Rh � 2GM/c2, where M is the mass of the black hole and
c is the speed of light.

Suppose that you wish to study a black hole near it, at a radial
distance of 50Rh. However, you do not want the difference in gravi-
tational acceleration between your feet and your head to exceed
10 m/s2 when you are feet down (or head down) toward the black
hole. (a) As a multiple of our Sun’s mass MS, approximately what is
the limit to the mass of the black hole you can tolerate at the given
radial distance? (You need to estimate your height.) (b) Is the limit
an upper limit (you can tolerate smaller masses) or a lower limit
(you can tolerate larger masses)?

71 Several planets (Jupiter, Saturn,
Uranus) are encircled by rings, perhaps
composed of material that failed to form
a satellite. In addition, many galaxies con-
tain ring-like structures. Consider a ho-
mogeneous thin ring of mass M and
outer radius R (Fig. 13-52). (a) What
gravitational attraction does it exert on
a particle of mass m located on the
ring’s central axis a distance x from the
ring center? (b) Suppose the particle falls from rest as a result
of the attraction of the ring of matter. What is the speed with
which it passes through the center of the ring?

72 A typical neutron star may have a mass equal to that of the
Sun but a radius of only 10 km. (a) What is the gravitational accelera-
tion at the surface of such a star? (b) How fast would an object be
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Figure 13-50
Problem 60.
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Problem 71.
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moving if it fell from rest through a distance of 1.0 m on such a star?
(Assume the star does not rotate.)

73 Figure 13-53 is a graph of the kinetic energy K of an asteroid
versus its distance r from Earth’s center, as the asteroid falls di-
rectly in toward that center. (a) What is the (approximate) mass of
the asteroid? (b) What is its speed at r � 1.945 � 107 m?

80 The fastest possible rate of rotation of a planet is that for which the
gravitational force on material at the equator just barely provides the
centripetal force needed for the rotation. (Why?) (a) Show that the
corresponding shortest period of rotation is

where r is the uniform density (mass per unit volume) of the
spherical planet. (b) Calculate the rotation period assuming a
density of 3.0 g/cm3, typical of many planets, satellites, and
asteroids. No astronomical object has ever been found to be
spinning with a period shorter than that determined by this
analysis.

81 In a double-star system, two stars of mass 3.0 � 1030 kgSSM
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Figure 13-53 Problem 73.

74 The mysterious visitor that appears in the enchanting
story The Little Prince was said to come from a planet that “was
scarcely any larger than a house!” Assume that the mass per unit
volume of the planet is about that of Earth and that the planet does
not appreciably spin. Approximate (a) the free-fall acceleration on
the planet’s surface and (b) the escape speed from the planet.

75 The masses and coordinates of three spheres are asILW

follows: 20 kg, x � 0.50 m, y � 1.0 m; 40 kg, x � �1.0 m, y � �1.0 m;
60 kg, x � 0 m, y � �0.50 m. What is the magnitude of the gravita-
tional force on a 20 kg sphere located at the origin due to these
three spheres?

76 A very early, simple satellite consisted of an inflated
spherical aluminum balloon 30 m in diameter and of mass 
20 kg. Suppose a meteor having a mass of 7.0 kg passes within 3.0
m of the surface of the satellite.What is the magnitude of the gravi-
tational force on the meteor from the satellite at the closest ap-
proach?

77 Four uniform spheres, with masses mA � 40 kg, mB � 35 kg,

SSM

mC � 200 kg, and mD � 50 kg, have (x, y) coordinates of (0, 50 cm),
(0, 0), (�80 cm, 0), and (40 cm, 0), respectively. In unit-vector nota-
tion, what is the net gravitational force on sphere B due to the
other spheres?

78 (a) In Problem 77, remove sphere A and calculate the gravi-
tational potential energy of the remaining three-particle system.
(b) If A is then put back in place, is the potential energy of the
four-particle system more or less than that of the system in (a)?
(c) In (a), is the work done by you to remove A positive or nega-
tive? (d) In (b), is the work done by
you to replace A positive or negative?

79 A certain triple-star system
consists of two stars, each of mass m, re-
volving in the same circular orbit of ra-
dius r around a central star of mass M
(Fig. 13-54).The two orbiting stars are al-
ways at opposite ends of a diameter of
the orbit. Derive an expression for the
period of revolution of the stars.

SSM
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Figure 13-54
Problem 79.

orbits a planet of mass M � 9.50 � 1025 kg, in a circular orbit of ra-
dius r � 4.20 � 107 m. What are (a) the period of the orbit and (b)
the speed of the shuttle craft? Janeway briefly fires a forward-
pointing thruster, reducing her speed by 2.00%. Just then, what are
(c) the speed, (d) the kinetic energy, (e) the gravitational potential
energy, and (f) the mechanical energy of the shuttle craft? (g)
What is the semimajor axis of the elliptical orbit now taken by the
craft? (h) What is the difference between the period of the original
circular orbit and that of the new elliptical orbit? (i) Which orbit
has the smaller period?

84 Consider a pulsar, a collapsed star of extremely high density,
with a mass M equal to that of the Sun (1.98 � 1030 kg), a radius R
of only 12 km, and a rotational period T of 0.041 s. By what per-
centage does the free-fall acceleration g differ from the gravita-
tional acceleration ag at the equator of this spherical star?

85 A projectile is fired vertically from Earth’s surface with an
initial speed of 10 km/s. Neglecting air drag, how far above the sur-
face of Earth will it go?

86 An object lying on Earth’s equator is accelerated (a) toward the
center of Earth because Earth rotates, (b) toward the Sun because
Earth revolves around the Sun in an almost circular orbit, and
(c) toward the center of our galaxy because the Sun moves around
the galactic center. For the latter, the period is 2.5 � 108 y and the
radius is 2.2 � 1020 m. Calculate these three accelerations as multi-
ples of g � 9.8 m/s2.

87 (a) If the legendary apple of Newton could be released from
rest at a height of 2 m from the surface of a neutron star with a
mass 1.5 times that of our Sun and a radius of 20 km, what would be
the apple’s speed when it reached the surface of the star? (b) If the
apple could rest on the surface of the star, what would be the approxi-
mate difference between the gravitational acceleration at the top and
at the bottom of the apple? (Choose a reasonable size for an apple;
the answer indicates that an apple would never survive near a neu-
tron star.)

ILW

each rotate about the system’s center of mass at radius 1.0 � 1011 m.
(a) What is their common angular speed? (b) If a meteoroid
passes through the system’s center of mass perpendicular to
their orbital plane, what minimum speed must it have at the
center of mass if it is to escape to “infinity” from the two-star
system?

82 A satellite is in elliptical orbit with a period of 8.00 � 104 s
about a planet of mass 7.00 � 1024 kg. At aphelion, at radius 4.5 �
107 m, the satellite’s angular speed is 7.158 � 10�5 rad/s. What is its
angular speed at perihelion?

83 In a shuttle craft of mass m � 3000 kg, Captain JanewaySSM
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nitrocellulose to a speed of 11 km/s along the gun barrel’s length of
220 m. (a) In g units, what is the average acceleration of the capsule
and astronauts in the gun barrel? (b) Is that acceleration tolerable
or deadly to the astronauts?

A modern version of such gun-launched spacecraft (although
without passengers) has been proposed. In this modern version,
called the SHARP (Super High Altitude Research Project) gun,
ignition of methane and air shoves a piston along the gun’s tube,
compressing hydrogen gas that then launches a rocket. During this
launch, the rocket moves 3.5 km and reaches a speed of 7.0 km/s.
Once launched, the rocket can be fired to gain additional speed. (c)
In g units, what would be the average acceleration of the rocket
within the launcher? (d) How much additional speed is needed
(via the rocket engine) if the rocket is to orbit Earth at an altitude
of 700 km?

97 An object of mass m is initially held in place at radial distance
r � 3RE from the center of Earth, where RE is the radius of Earth.
Let ME be the mass of Earth. A force is applied to the object to
move it to a radial distance r � 4RE, where it again is held in place.
Calculate the work done by the applied force during the move by
integrating the force magnitude.

98 To alleviate the traffic congestion between two cities such as
Boston and Washington, D.C., engineers have proposed building a
rail tunnel along a chord line connecting the cities (Fig. 13-55). A
train, unpropelled by any engine and starting from rest, would fall
through the first half of the tunnel and then move up the second
half.Assuming Earth is a uniform sphere and ignoring air drag and
friction, find the city-to-city travel time.

closest and farthest distances are 1.47 � 108 km and 1.52 � 108 km
respectively. Determine the corresponding variations in (a) total
energy, (b) gravitational potential energy, (c) kinetic energy, and
(d) orbital speed. (Hint: Use conservation of energy and conserva-
tion of angular momentum.)

90 A 50 kg satellite circles planet Cruton every 6.0 h. The magni-
tude of the gravitational force exerted on the satellite by Cruton is
80 N. (a) What is the radius of the orbit? (b) What is the kinetic en-
ergy of the satellite? (c) What is the mass of planet Cruton?

91 We watch two identical astronomical bodies A and B, each of
mass m, fall toward each other from rest because of the gravita-
tional force on each from the other. Their initial center-to-center
separation is Ri. Assume that we are in an inertial reference frame
that is stationary with respect to the center of mass of this two-
body system. Use the principle of conservation of mechanical
energy (Kf � Uf � Ki � Ui) to find the following when the center-
to-center separation is 0.5Ri: (a) the total kinetic energy of the sys-
tem, (b) the kinetic energy of each body, (c) the speed of each body
relative to us, and (d) the speed of body B relative to body A.

Next assume that we are in a reference frame attached to
body A (we ride on the body). Now we see body B fall from rest to-
ward us. From this reference frame, again use Kf � Uf � Ki � Ui to
find the following when the center-to-center separation is 0.5Ri: (e)
the kinetic energy of body B and (f) the speed of body B relative
to body A. (g) Why are the answers to (d) and (f) different? Which
answer is correct?

92 A 150.0 kg rocket moving radially outward from Earth has a
speed of 3.70 km/s when its engine shuts off 200 km above Earth’s
surface. (a) Assuming negligible air drag acts on the rocket, find
the rocket’s kinetic energy when the rocket is 1000 km above
Earth’s surface. (b) What maximum height above the surface is
reached by the rocket?

93 Planet Roton, with a mass of 7.0 � 1024 kg and a radius of 1600
km, gravitationally attracts a meteorite that is initially at rest relative
to the planet, at a distance great enough to take as infinite.The mete-
orite falls toward the planet. Assuming the planet is airless, find the
speed of the meteorite when it reaches the planet’s surface.

94 Two 20 kg spheres are fixed in place on a y axis, one at 
y � 0.40 m and the other at y � �0.40 m. A 10 kg ball is then
released from rest at a point on the x axis that is at a great dis-
tance (effectively infinite) from the spheres. If the only forces
acting on the ball are the gravitational forces from the spheres,
then when the ball reaches the (x, y) point (0.30 m, 0), what are
(a) its kinetic energy and (b) the net force on it from the spheres,
in unit-vector notation?

95 Sphere A with mass 80 kg is located at the origin of an xy coordi-
nate system; sphere B with mass 60 kg is located at coordinates 
(0.25 m, 0); sphere C with mass 0.20 kg is located in the first quadrant
0.20 m from A and 0.15 m from B. In unit-vector notation, what is the
gravitational force on C due to A and B?

96 In his 1865 science fiction novel From the Earth to the
Moon, Jules Verne described how three astronauts are shot to the
Moon by means of a huge gun. According to Verne, the aluminum
capsule containing the astronauts is accelerated by ignition of

99 A thin rod with mass M � 5.00 kg is bent
in a semicircle of radius R � 0.650 m (Fig. 13-56).
(a) What is its gravitational force (both magni-
tude and direction on a particle with mass 
m � 3.0 � 10�3 kg at P, the center of curva-
ture? (b) What would be the force on the parti-
cle if the rod were a complete circle?

100 In Fig. 13-57, identical blocks with identical
masses m � 2.00 kg hang from strings of different
lengths on a balance at Earth’s surface. The strings
have negligible mass and differ in length by h �
5.00 cm. Assume Earth is spherical with a uniform
density r � 5.50 g/cm3.What is the difference in the
weight of the blocks due to one being closer to
Earth than the other?

101 A spaceship is on a straight-line path between Earth and the
Moon. At what distance from Earth is the net gravitational force
on the spaceship zero?

Train

Figure 13-55 Problem 98.
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h

Figure 13-56
Problem 99.

Figure 13-57
Problem 100.

88 With what speed would mail pass through the center of Earth
if falling in a tunnel through the center?

89 The orbit of Earth around the Sun is almost circular: TheSSM
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Fluids

14-1 FLUIDS, DENSITY, AND PRESSURE

After reading this module, you should be able to . . .

14.01 Distinguish fluids from solids.
14.02 When mass is uniformly distributed, relate density to

mass and volume.

14.03 Apply the relationship between hydrostatic
pressure, force, and the surface area over which that 
force acts.

● The density r of any material is defined as the material’s
mass per unit volume:

Usually, where a material sample is much larger than atomic 
dimensions, we can write this as

● A fluid is a substance that can flow; it conforms to the
boundaries of its container because it cannot withstand

r �
m
V

.

r �
�m
�V

.

shearing stress. It can, however, exert a force perpendicular
to its surface. That force is described in terms of pressure p:

in which �F is the force acting on a surface element of
area �A. If the force is uniform over a flat area, this can be
written as

● The force resulting from fluid pressure at a particular point
in a fluid has the same magnitude in all directions. 

p �
F
A

.

p �
�F
�A

,

Learning Objectives

Key Ideas

What Is Physics?
The physics of fluids is the basis of hydraulic engineering, a branch of engineering
that is applied in a great many fields. A nuclear engineer might study the fluid
flow in the hydraulic system of an aging nuclear reactor, while a medical engineer
might study the blood flow in the arteries of an aging patient. An environmental
engineer might be concerned about the drainage from waste sites or the efficient
irrigation of farmlands. A naval engineer might be concerned with the dangers
faced by a deep-sea diver or with the possibility of a crew escaping from a
downed submarine.An aeronautical engineer might design the hydraulic systems
controlling the wing flaps that allow a jet airplane to land. Hydraulic engineering
is also applied in many Broadway and Las Vegas shows, where huge sets are
quickly put up and brought down by hydraulic systems.

Before we can study any such application of the physics of fluids, we must
first answer the question “What is a fluid?”

What Is a Fluid?
A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the
boundaries of any container in which we put them. They do so because a fluid
cannot sustain a force that is tangential to its surface. (In the more formal
language of Module 12-3, a fluid is a substance that flows because it cannot
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withstand a shearing stress. It can, however, exert a force in the direction perpen-
dicular to its surface.) Some materials, such as pitch, take a long time to conform
to the boundaries of a container, but they do so eventually; thus, we classify even
those materials as fluids.

You may wonder why we lump liquids and gases together and call them fluids.
After all (you may say), liquid water is as different from steam as it is from ice.
Actually, it is not. Ice, like other crystalline solids, has its constituent atoms organ-
ized in a fairly rigid three-dimensional array called a crystalline lattice. In neither
steam nor liquid water, however, is there any such orderly long-range arrangement.

Density and Pressure
When we discuss rigid bodies, we are concerned with particular lumps of matter,
such as wooden blocks, baseballs, or metal rods. Physical quantities that we find
useful, and in whose terms we express Newton’s laws, are mass and force. We
might speak, for example, of a 3.6 kg block acted on by a 25 N force.

With fluids, we are more interested in the extended substance and in properties
that can vary from point to point in that substance. It is more useful to speak of
density and pressure than of mass and force.

Density
To find the density r of a fluid at any point, we isolate a small volume element �V
around that point and measure the mass �m of the fluid contained within that 
element.The density is then

(14-1)

In theory, the density at any point in a fluid is the limit of this ratio as the volume 
element �V at that point is made smaller and smaller. In practice, we assume that
a fluid sample is large relative to atomic dimensions and thus is “smooth” (with
uniform density), rather than “lumpy” with atoms. This assumption allows us to
write the density in terms of the mass m and volume V of the sample:

(uniform density). (14-2)

Density is a scalar property; its SI unit is the kilogram per cubic meter.
Table 14-1 shows the densities of some substances and the average densities of
some objects. Note that the density of a gas (see Air in the table) varies consid-
erably with pressure, but the density of a liquid (see Water) does not; that is,
gases are readily compressible but liquids are not.

Pressure
Let a small pressure-sensing device be suspended inside a fluid-filled vessel, as
in Fig. 14-1a. The sensor (Fig. 14-1b) consists of a piston of surface area �A
riding in a close-fitting cylinder and resting against a spring. A readout arrange-
ment allows us to record the amount by which the (calibrated) spring is
compressed by the surrounding fluid, thus indicating the magnitude �F of the
force that acts normal to the piston.We define the pressure on the piston as

(14-3)

In theory, the pressure at any point in the fluid is the limit of this ratio as the surface
area �A of the piston, centered on that point, is made smaller and smaller. However,
if the force is uniform over a flat area A (it is evenly distributed over every point of

p �
�F
�A

.

r �
m
V

r �
�m
�V

.

Table 14-1 Some Densities

Material or Object             Density (kg/m3)

Interstellar space 10�20

Best laboratory vacuum 10�17

Air: 20	C and 1 atm pressure             1.21
20	C and 50 atm                           60.5

Styrofoam 1 � 102

Ice 0.917 � 103

Water: 20	C and 1 atm 0.998 � 103

20	C and 50 atm 1.000 � 103

Seawater: 20	C and 1 atm 1.024 � 103

Whole blood 1.060 � 103

Iron  7.9 � 103

Mercury (the metal,
not the planet) 13.6 � 103

Earth: average 5.5 � 103

core 9.5 � 103

crust 2.8 � 103

Sun: average 1.4 � 103

core 1.6 � 105

White dwarf star (core)                        1010

Uranium nucleus                                    3 � 1017

Neutron star (core)                                1018

Figure 14-1 (a) A fluid-filled vessel con-
taining a small pressure sensor, shown
in (b).The pressure is measured by the 
relative position of the movable piston in
the sensor.

(a)

(b)

Pressure
sensor

Vacuum

Δ

ΔA

F



the area), we can write Eq. 14-3 as

(pressure of uniform force on flat area), (14-4)

where F is the magnitude of the normal force on area A.
We find by experiment that at a given point in a fluid at rest, the pressure p

defined by Eq. 14-4 has the same value no matter how the pressure sensor is
oriented. Pressure is a scalar, having no directional properties. It is true that
the force acting on the piston of our pressure sensor is a vector quantity, but
Eq. 14-4 involves only the magnitude of that force, a scalar quantity.

The SI unit of pressure is the newton per square meter, which is given a spe-
cial name, the pascal (Pa). In metric countries, tire pressure gauges are calibrated
in kilopascals. The pascal is related to some other common (non-SI) pressure
units as follows:

1 atm � 1.01 � 105 Pa � 760 torr � 14.7 lb/in.2.

The atmosphere (atm) is, as the name suggests, the approximate average pressure
of the atmosphere at sea level. The torr (named for Evangelista Torricelli, who 
invented the mercury barometer in 1674) was formerly called the millimeter of
mercury (mm Hg).The pound per square inch is often abbreviated psi.Table 14-2
shows some pressures.

p �
F
A
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Table 14-2 Some Pressures

Pressure (Pa)

Center of the Sun 2 � 1016

Center of Earth 4 � 1011

Highest sustained 
laboratory pressure 1.5 � 1010

Deepest ocean trench 
(bottom)           1.1 � 108

Spike heels on a dance floor              106

Automobile tirea 2 � 105

Atmosphere at sea level 1.0 � 105

Normal blood systolic 
pressurea,b 1.6 � 104

Best laboratory vacuum                   10�12

aPressure in excess of atmospheric pressure.
bEquivalent to 120 torr on the physician’s 
pressure gauge.

Sample Problem 14.01 Atmospheric pressure and force

A living room has floor dimensions of 3.5 m and 4.2 m and a
height of 2.4 m.

(a) What does the air in the room weigh when the air pres-
sure is 1.0 atm?

KEY IDEAS

(1) The air’s weight is equal to mg, where m is its mass.
(2) Mass m is related to the air density r and the air volume
V by Eq. 14-2 (r � m/V).

Calculation: Putting the two ideas together and taking the
density of air at 1.0 atm from Table 14-1, we find

mg � (rV)g

� (1.21 kg/m3)(3.5 m � 4.2 m � 2.4 m)(9.8 m/s2)

� 418 N � 420 N. (Answer)

This is the weight of about 110 cans of Pepsi.

Additional examples, video, and practice available at WileyPLUS

14-2 FLUIDS AT REST

After reading this module, you should be able to . . .

14.04 Apply the relationship between the hydrostatic pressure,
fluid density, and the height above or below a reference level.

14.05 Distinguish between total pressure (absolute pressure)
and gauge pressure.

Learning Objectives

(b) What is the magnitude of the atmosphere’s downward
force on the top of your head, which we take to have an area
of 0.040 m2?

KEY IDEA

When the fluid pressure p on a surface of area A is uniform,
the fluid force on the surface can be obtained from Eq. 14-4
(p � F/A).

Calculation: Although air pressure varies daily, we can 
approximate that p � 1.0 atm.Then Eq. 14-4 gives

� 4.0 � 103 N. (Answer)

This large force is equal to the weight of the air column from
the top of your head to the top of the atmosphere.

F � pA � (1.0 atm)� 1.01 � 105 N/m2

1.0 atm �(0.040 m2)
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y1

y2

y = 0

y

mg

y1

y2 Level 2, p2

y = 0

y

F2

y1

y2

Level 1, p1

y = 0

y

F1

Sample

y1

y2

Air

Water

y = 0

y

(a)

Three forces act on this sample of water.

This upward force is due to the water 
pressure pushing on the bottom surface. Gravity pulls downward on the sample.

Sample

mg

(e) F1

F2

The three forces
balance.

This downward force is due to the water 
pressure pushing on the top surface.

(d)(c)

(b)

A

Figure 14-2 (a) A tank of water in which a sample of water is contained in an imaginary cylinder of horizontal base area A.
(b)–(d) Force acts at the top surface of the cylinder; force acts at the bottom surface of the cylinder; the gravitational
force on the water in the cylinder is represented by . (e) A free-body diagram of the water sample. In WileyPLUS, this 
figure is available as an animation with voiceover.

mg:
F
:

2F
:

1

● Pressure in a fluid at rest varies with vertical position y. For
y measured positive upward,

p2 � p1 � rg(y1 � y2).

If h is the depth of a fluid sample below some reference level
at which the pressure is p0, this equation becomes

p � p0 � rgh,

where p is the pressure in the sample.

● The pressure in a fluid is the same for all points at the same
level.

● Gauge pressure is the difference between the actual pres-
sure (or absolute pressure) at a point and the atmospheric
pressure.

Key Ideas

Fluids at Rest
Figure 14-2a shows a tank of water—or other liquid—open to the atmosphere.
As every diver knows, the pressure increases with depth below the air–water
interface. The diver’s depth gauge, in fact, is a pressure sensor much like that of
Fig. 14-1b. As every mountaineer knows, the pressure decreases with altitude as
one ascends into the atmosphere.The pressures encountered by the diver and the
mountaineer are usually called hydrostatic pressures, because they are due to flu-
ids that are static (at rest). Here we want to find an expression for hydrostatic
pressure as a function of depth or altitude.

Let us look first at the increase in pressure with depth below the water’s
surface. We set up a vertical y axis in the tank, with its origin at the air–water
interface and the positive direction upward. We next consider a water sample con-



Figure 14-3 The pressure p increases with
depth h below the liquid surface according
to Eq. 14-8.

p

h

Level 1 

Level 2 

Air

Liquid

y = 0 

y

p0

The pressure at a point in a fluid in static equilibrium depends on the depth of
that point but not on any horizontal dimension of the fluid or its container.
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tained in an imaginary right circular cylinder of horizontal base (or face) area A,
such that y1 and y2 (both of which are negative numbers) are the depths below the
surface of the upper and lower cylinder faces, respectively.

Figure 14-2e is a free-body diagram for the water in the cylinder.The water is
in static equilibrium; that is, it is stationary and the forces on it balance. Three
forces act on it vertically: Force acts at the top surface of the cylinder and is
due to the water above the cylinder (Fig. 14-2b). Force acts at the bottom sur-
face of the cylinder and is due to the water just below the cylinder (Fig. 14-2c).
The gravitational force on the water is m , where m is the mass of the water in the
cylinder (Fig. 14-2d).The balance of these forces is written as

F2 � F1 � mg. (14-5)

To involve pressures, we use Eq. 14-4 to write

F1 � p1A and F2 � p2A. (14-6)

The mass m of the water in the cylinder is, from Eq. 14-2, m � rV, where the
cylinder’s volume V is the product of its face area A and its height y1 � y2.Thus, m
is equal to rA(y1 � y2). Substituting this and Eq. 14-6 into Eq. 14-5, we find

p2A � p1A � rAg(y1 � y2)

or p2 � p1 � rg(y1 � y2). (14-7)

This equation can be used to find pressure both in a liquid (as a function of
depth) and in the atmosphere (as a function of altitude or height). For the former,
suppose we seek the pressure p at a depth h below the liquid surface. Then we
choose level 1 to be the surface, level 2 to be a distance h below it (as in Fig. 14-3),
and p0 to represent the atmospheric pressure on the surface.We then substitute

y1 � 0, p1 � p0 and y2 � �h, p2 � p

into Eq. 14-7, which becomes

p � p0 � rgh (pressure at depth h). (14-8)

Note that the pressure at a given depth in the liquid depends on that depth but
not on any horizontal dimension.

g:

F
:

2

F
:

1

Thus, Eq. 14-8 holds no matter what the shape of the container. If the bottom 
surface of the container is at depth h, then Eq. 14-8 gives the pressure p there.

In Eq. 14-8, p is said to be the total pressure, or absolute pressure, at level 2.
To see why, note in Fig. 14-3 that the pressure p at level 2 consists of two contribu-
tions: (1) p0, the pressure due to the atmosphere, which bears down on the liquid,
and (2) rgh, the pressure due to the liquid above level 2, which bears down on
level 2. In general, the difference between an absolute pressure and an atmo-
spheric pressure is called the gauge pressure (because we use a gauge to measure
this pressure difference). For Fig. 14-3, the gauge pressure is rgh.

Equation 14-7 also holds above the liquid surface: It gives the atmospheric pres-
sure at a given distance above level 1 in terms of the atmospheric pressure p1 at level 1
(assuming that the atmospheric density is uniform over that distance). For example, to
find the atmospheric pressure at a distance d above level 1 in Fig.14-3,we substitute

y1 � 0, p1 � p0 and y2 � d, p2 � p.

Then with r � rair, we obtain
p � p0 � rairgd.
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Checkpoint 1
The figure shows four
containers of olive oil.
Rank them according
to the pressure at
depth h, greatest first.

h

(a) (b) (c) (d)

ascends, the external pressure on him decreases, until it is
atmospheric pressure p0 at the surface. His blood pressure
also decreases, until it is normal. However, because he does
not exhale, the air pressure in his lungs remains at the value it
had at depth L. At the surface, the pressure difference �p is

�p � p � p0 � rgL,

� 0.95 m. (Answer)

This is not deep! Yet, the pressure difference of 9.3 kPa
(about 9% of atmospheric pressure) is sufficient to rupture
the diver’s lungs and force air from them into the depres-
surized blood, which then carries the air to the heart,
killing the diver. If the diver follows instructions and grad-
ually exhales as he ascends, he allows the pressure in his
lungs to equalize with the external pressure, and then there
is no danger.

L �
�p
�g

�
9300 Pa

(998 kg/m3)(9.8 m/s2)

Sample Problem 14.02 Gauge pressure on a scuba diver

A novice scuba diver practicing in a swimming pool takes
enough air from his tank to fully expand his lungs before
abandoning the tank at depth L and swimming to the sur-
face, failing to exhale during his ascent. At the surface, the
difference �p between the external pressure on him and the
air pressure in his lungs is 9.3 kPa. From what depth does he
start? What potentially lethal danger does he face?

KEY IDEA

The pressure at depth h in a liquid of density r is given by 
Eq. 14-8 (p � p0 � rgh), where the gauge pressure rgh is
added to the atmospheric pressure p0.

Calculations: Here, when the diver fills his lungs at depth L,
the external pressure on him (and thus the air pressure within
his lungs) is greater than normal and given by Eq. 14-8 as

p � p0 � rgL,

where r is the water’s density (998 kg/m3, Table 14-1). As he

Equating these two expressions and solving for the un-
known density yield

� 915 kg/m3. (Answer)

Note that the answer does not depend on the atmospheric
pressure p0 or the free-fall acceleration g.

rx � rw
l

l � d
� (998 kg/m3)

135 mm
135 mm � 12.3 mm

The U-tube in Fig. 14-4 contains two liquids in static equilib-
rium: Water of density rw (� 998 kg/m3) is in the right arm,
and oil of unknown density rx is in the left. Measurement gives
l � 135 mm and d � 12.3 mm. What is the density of the oil?

KEY IDEAS

(1) The pressure pint at the level of the oil–water interface in
the left arm depends on the density rx and height of the oil
above the interface. (2) The water in the right arm at the
same level must be at the same pressure pint. The reason is
that, because the water is in static equilibrium, pressures at
points in the water at the same level must be the same.

Calculations: In the right arm, the interface is a distance l
below the free surface of the water, and we have, from Eq. 14-8,

pint � p0 � rwgl (right arm).

In the left arm, the interface is a distance l � d below the free
surface of the oil, and we have,again from Eq.14-8,

pint � p0 � rxg(l � d) (left arm).

Additional examples, video, and practice available at WileyPLUS

Figure 14-4 The oil in the left arm stands higher than the water.

Interface

Water

Oil

l

d

This much oil
balances... ... this much

water.

Sample Problem 14.03 Balancing of pressure in a U-tube

so



392 CHAPTER 14 FLUIDS

Figure 14-6 An open-tube manometer, con-
nected to measure the gauge pressure of
the gas in the tank on the left.The right arm
of the U-tube is open to the atmosphere.

Tank

Manometer

Level 2 

Level 1 

p0

h

pg

Measuring Pressure
The Mercury Barometer

Figure 14-5a shows a very basic mercury barometer, a device used to
measure the pressure of the atmosphere. The long glass tube is filled
with mercury and inverted with its open end in a dish of mercury, as
the figure shows. The space above the mercury column contains only
mercury vapor, whose pressure is so small at ordinary temperatures
that it can be neglected.

We can use Eq. 14-7 to find the atmospheric pressure p0 in terms
of the height h of the mercury column.We choose level 1 of Fig. 14-2 to
be that of the air–mercury interface and level 2 to be that of the top of
the mercury column, as labeled in Fig. 14-5a.We then substitute

y1 � 0, p1 � p0 and y2 � h, p2 � 0

into Eq. 14-7, finding that
p0 � rgh, (14-9)

where r is the density of the mercury.
For a given pressure, the height h of the mercury column does not

depend on the cross-sectional area of the vertical tube. The fanciful
mercury barometer of Fig. 14-5b gives the same reading as that of Fig. 14-5a; all
that counts is the vertical distance h between the mercury levels.

Equation 14-9 shows that, for a given pressure, the height of the column of
mercury depends on the value of g at the location of the barometer and on the
density of mercury, which varies with temperature. The height of the column (in
millimeters) is numerically equal to the pressure (in torr) only if the barometer is
at a place where g has its accepted standard value of 9.80665 m/s2 and the
temperature of the mercury is 0°C. If these conditions do not prevail (and they
rarely do), small corrections must be made before the height of the mercury
column can be transformed into a pressure.

The Open-Tube Manometer
An open-tube manometer (Fig. 14-6) measures the gauge pressure pg of a gas. It
consists of a U-tube containing a liquid, with one end of the tube connected to the
vessel whose gauge pressure we wish to measure and the other end open to the
atmosphere.We can use Eq. 14-7 to find the gauge pressure in terms of the height
h shown in Fig. 14-6. Let us choose levels 1 and 2 as shown in Fig. 14-6.With 

y1 � 0, p1 � p0 and y2 � �h, p2 � p

substituted into Eq. 14-7, we find that

pg � p � p0 � rgh, (14-10)

where r is the liquid’s density. The gauge pressure pg is directly proportional to h.

14-3 MEASURING PRESSURE

After reading this module, you should be able to . . .

14.06 Describe how a barometer can measure atmospheric
pressure.

14.07 Describe how an open-tube manometer can measure
the gauge pressure of a gas.

Learning Objectives

● A mercury barometer can be used to measure atmospheric
pressure.

● An open-tube manometer can be used to measure the
gauge pressure of a confined gas.

Key Ideas

Level 1 

p0

y

Level 2 

h

p ≈ 0 

h

p0

p ≈ 0 

(a) (b)

Figure 14-5 (a) A mercury barometer. (b)
Another mercury barometer.The distance
h is the same in both cases.
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The gauge pressure can be positive or negative, depending on whether 
p 
 p0 or p � p0. In inflated tires or the human circulatory system, the 
(absolute) pressure is greater than atmospheric pressure, so the gauge pressure is a
positive quantity, sometimes called the overpressure. If you suck on a straw to pull
fluid up the straw, the (absolute) pressure in your lungs is actually less than atmo-
spheric pressure.The gauge pressure in your lungs is then a negative quantity.

14-4 PASCAL’S PRINCIPLE

14-4 PASCAL’S PRINCIPLE

After reading this module, you should be able to . . .

14.08 Identify Pascal’s principle.
14.09 For a hydraulic lift, apply the relationship between the

input area and displacement and the output area and 
displacement.

Learning Objectives

● Pascal’s principle states that a change in the pressure applied to an enclosed fluid is transmitted undiminished to every por-
tion of the fluid and to the walls of the containing vessel. 

Key Idea

Pascal’s Principle
When you squeeze one end of a tube to get toothpaste out the other end, you are
watching Pascal’s principle in action.This principle is also the basis for the Heimlich
maneuver, in which a sharp pressure increase properly applied to the abdomen is
transmitted to the throat, forcefully ejecting food lodged there. The principle was
first stated clearly in 1652 by Blaise Pascal (for whom the unit of pressure is named):

Figure 14-7 Lead shot (small balls of lead)
loaded onto the piston create a pressure pext

at the top of the enclosed (incompressible)
liquid. If pext is increased, by adding more
lead shot, the pressure increases by the same
amount at all points within the liquid.

Lead shot 

Piston

P p

h

pext

Liquid

A change in the pressure applied to an enclosed incompressible fluid is transmit-
ted undiminished to every portion of the fluid and to the walls of its container.

Demonstrating Pascal’s Principle
Consider the case in which the incompressible fluid is a liquid contained in a tall
cylinder, as in Fig. 14-7.The cylinder is fitted with a piston on which a container of
lead shot rests.The atmosphere, container, and shot exert pressure pext on the pis-
ton and thus on the liquid.The pressure p at any point P in the liquid is then

p � pext � rgh. (14-11)

Let us add a little more lead shot to the container to increase pext by an amount
�pext. The quantities r, g, and h in Eq. 14-11 are unchanged, so the pressure
change at P is

�p � �pext. (14-12)

This pressure change is independent of h, so it must hold for all points within the
liquid, as Pascal’s principle states.

Pascal’s Principle and the Hydraulic Lever
Figure 14-8 shows how Pascal’s principle can be made the basis of a hydraulic lever.
In operation, let an external force of magnitude Fi be directed downward on the left-
hand (or input) piston, whose surface area is Ai.An incompressible liquid in the de-
vice then produces an upward force of magnitude Fo on the right-hand (or output)
piston, whose surface area is Ao. To keep the system in equilibrium, there must be a
downward force of magnitude Fo on the output piston from an external load (not

di

Input

Ai
do

Oil

Ao

Output

Fi

Fo
A small input 
force produces ...

... a large output
force.

Figure 14-8 A hydraulic arrangement that
can be used to magnify a force .The work
done is, however, not magnified and is the
same for both the input and output forces.

F
:

i
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14-5 ARCHIMEDES’ PRINCIPLE

After reading this module, you should be able to . . .

14.10 Describe Archimedes’ principle.
14.11 Apply the relationship between the buoyant force on a

body and the mass of the fluid displaced by the body.
14.12 For a floating body, relate the buoyant force to the

gravitational force.

14.13 For a floating body, relate the gravitational force to the
mass of the fluid displaced by the body.

14.14 Distinguish between apparent weight and actual weight.
14.15 Calculate the apparent weight of a body that is fully or

partially submerged.

Learning Objectives

● Archimedes’ principle states that when a body is fully or
partially submerged in a fluid, the fluid pushes upward with a
buoyant force with magnitude

Fb � mfg,

where mf is the mass of the fluid that has been  pushed out of
the way by the body.

● When a body floats in a fluid, the magnitude Fb of the
(upward) buoyant force on the body is equal to the magnitude
Fg of the (downward) gravitational force on the body. 

● The apparent weight of a body on which a buoyant force
acts is related to its actual weight by

weightapp � weight � Fb.

Key Ideas

shown).The force applied on the left and the downward force from the load onF
:

oF
:

i

With a hydraulic lever, a given force applied over a given distance can be 
transformed to a greater force applied over a smaller distance.

the right produce a change �p in the pressure of the liquid that is given by

,

so . (14-13)

Equation 14-13 shows that the output force Fo on the load must be greater than
the input force Fi if Ao 
 Ai, as is the case in Fig. 14-8.

If we move the input piston downward a distance di, the output piston moves
upward a distance do, such that the same volume V of the incompressible liquid is
displaced at both pistons.Then

V � Aidi � Aodo,
which we can write as

. (14-14)

This shows that, if Ao 
 Ai (as in Fig. 14-8), the output piston moves a smaller
distance than the input piston moves.

From Eqs. 14-13 and 14-14 we can write the output work as

(14-15)

which shows that the work W done on the input piston by the applied force is
equal to the work W done by the output piston in lifting the load placed on it.

The advantage of a hydraulic lever is this:

W � Fo do � �Fi
Ao

Ai
� �di

Ai

Ao
� � Fi di,

do � di
Ai

Ao

Fo � Fi
Ao

Ai

�p �
Fi

Ai
�

Fo

Ao

The product of force and distance remains unchanged so that the same work is
done. However, there is often tremendous advantage in being able to exert the
larger force. Most of us, for example, cannot lift an automobile directly but can
with a hydraulic jack, even though we have to pump the handle farther than
the automobile rises and in a series of small strokes.
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The upward buoyant
force on this sack of
water equals the
weight of the water.

Figure 14-9 A thin-walled plastic sack of water
is in static equilibrium in the pool.The gravita-
tional force on the sack must be balanced by
a net upward force on it from the surrounding
water.

(a) (b)

Fb The buoyant force 
is due to the 
pressure of the
surrounding water.

Stone
Fb

Fg

The net force is 
downward, so the 
stone accelerates
downward.

(c)

Wood
Fb

Fg

The net force 
is upward, so the 
wood accelerates
upward.

Figure 14-10 (a) The water surrounding the hole in the water pro-
duces a net upward buoyant force on whatever fills the hole.
(b) For a stone of the same volume as the hole, the gravita-
tional force exceeds the buoyant force in magnitude. (c) For a
lump of wood of the same volume, the gravitational force is
less than the buoyant force in magnitude.

the magnitude mfg of the gravitational force on the sack of water: Fb � mfg.F
:

g
(Subscript f refers to fluid, here the water.) In words, the magnitude of the buoyant
force is equal to the weight of the water in the sack.

In Fig. 14-10b, we have replaced the sack of water with a stone that exactly fills
the hole in Fig. 14-10a.The stone is said to displace the water, meaning that the stone
occupies space that would otherwise be occupied by water.We have changed nothing
about the shape of the hole, so the forces at the hole’s surface must be the same as
when the water-filled sack was in place. Thus, the same upward buoyant force that
acted on the water-filled sack now acts on the stone; that is, the magnitude Fb of the
buoyant force is equal to mfg, the weight of the water displaced by the stone.

Unlike the water-filled sack, the stone is not in static equilibrium. The down-
ward gravitational force on the stone is greater in magnitude than the upward
buoyant force (Fig. 14-10b).The stone thus accelerates downward, sinking.

Let us next exactly fill the hole in Fig. 14-10a with a block of lightweight
wood, as in Fig. 14-10c. Again, nothing has changed about the forces at the hole’s
surface, so the magnitude Fb of the buoyant force is still equal to mfg, the weight

F
:

g

Archimedes’ Principle
Figure 14-9 shows a student in a swimming pool, manipulating a very thin plastic
sack (of negligible mass) that is filled with water. She finds that the sack and its
contained water are in static equilibrium, tending neither to rise nor to sink.
The downward gravitational force on the contained water must be balanced
by a net upward force from the water surrounding the sack.

This net upward force is a buoyant force . It exists because the pressure in
the surrounding water increases with depth below the surface. Thus, the pressure
near the bottom of the sack is greater than the pressure near the top, which
means the forces on the sack due to this pressure are greater in magnitude near
the bottom of the sack than near the top. Some of the forces are represented in
Fig. 14-10a, where the space occupied by the sack has been left empty. Note that the
force vectors drawn near the bottom of that space (with upward components) have
longer lengths than those drawn near the top of the sack (with downward compo-
nents). If we vectorially add all the forces on the sack from the water, the horizontal
components cancel and the vertical components add to yield the upward buoyant
force on the sack. (Force is shown to the right of the pool in Fig. 14-10a.)

Because the sack of water is in static equilibrium, the magnitude of is equal toF
:

b

F
:

bF
:

b

F
:

b

F
:

g
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When a body floats in a fluid, the magnitude Fb of the buoyant force on the body
is equal to the magnitude Fg of the gravitational force on the body.

When a body floats in a fluid, the magnitude Fg of the gravitational force on the
body is equal to the weight mfg of the fluid that has been displaced by the body.

of the displaced water. Like the stone, the block is not in static equilibrium.
However, this time the gravitational force is lesser in magnitude than the
buoyant force (as shown to the right of the pool), and so the block accelerates 
upward, rising to the top surface of the water.

Our results with the sack, stone, and block apply to all fluids and are summarized
in Archimedes’ principle:

F
:

g

When a body is fully or partially submerged in a fluid, a buoyant force from the
surrounding fluid acts on the body. The force is directed upward and has a magni-
tude equal to the weight mfg of the fluid that has been displaced by the body.

F
:

b

The buoyant force on a body in a fluid has the magnitude

Fb � mfg (buoyant force), (14-16)

where mf is the mass of the fluid that is displaced by the body.

Floating
When we release a block of lightweight wood just above the water in a pool, the block
moves into the water because the gravitational force on it pulls it downward. As the
block displaces more and more water, the magnitude Fb of the upward buoyant force
acting on it increases. Eventually, Fb is large enough to equal the magnitude Fg of the
downward gravitational force on the block, and the block comes to rest.The block is
then in static equilibrium and is said to be floating in the water. In general,

We can write this statement as

Fb � Fg (floating). (14-17)

From Eq. 14-16, we know that Fb � mfg. Thus,

We can write this statement as

Fg � mfg (floating). (14-18)

In other words, a floating body displaces its own weight of fluid.

Apparent Weight in a Fluid
If we place a stone on a scale that is calibrated to measure weight, then the
reading on the scale is the stone’s weight. However, if we do this underwater,
the upward buoyant force on the stone from the water decreases the reading.
That reading is then an apparent weight. In general, an apparent weight is related
to the actual weight of a body and the buoyant force on the body by

which we can write as

weightapp � weight � Fb (apparent weight). (14-19)

�apparent
weight � � �actual

weight� � �magnitude of
buoyant force�,
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If, in some test of strength, you had to lift a heavy stone, you could do it more
easily with the stone underwater. Then your applied force would need to exceed
only the stone’s apparent weight, not its larger actual weight.

The magnitude of the buoyant force on a floating body is equal to the body’s
weight. Equation 14-19 thus tells us that a floating body has an apparent weight of
zero—the body would produce a reading of zero on a scale. For example, when as-
tronauts prepare to perform a complex task in space, they practice the task floating
underwater, where their suits are adjusted to give them an apparent weight of zero.

14-5 ARCHIMEDES’ PRINCIPLE

Checkpoint 2
A penguin floats first in a fluid of density r0, then in a fluid of density 0.95r0, and then
in a fluid of density 1.1r0. (a) Rank the densities according to the magnitude of the
buoyant force on the penguin, greatest first. (b) Rank the densities according to the
amount of fluid displaced by the penguin, greatest first.

Sample Problem 14.04 Floating, buoyancy, and density

In Fig. 14-11, a block of density floats face
down in a fluid of density . The block has
height .

(a) By what depth h is the block submerged?

KEY IDEAS

(1) Floating requires that the upward buoyant force on the
block match the downward gravitational force on the block.
(2) The buoyant force is equal to the weight of the fluid
displaced by the submerged portion of the block.

Calculations: From Eq. 14-16, we know that the buoyant
force has the magnitude , where is the mass of
the fluid displaced by the block’s submerged volume 
From Eq. 14-2 , we know that the mass of the dis-
placed fluid is We don’t know but if we symbol-
ize the block’s face length as L and its width as W, then from
Fig. 14-11 we see that the submerged volume must be

. If we now combine our three expressions, we
find that the upward buoyant force has magnitude

(14-20)

Similarly, we can write the magnitude of the gravita-
tional force on the block, first in terms of the block’s mass
m, then in terms of the block’s density r and (full) volume V,
and then in terms of the block’s dimensions L, W, and H
(the full height):

. (14-21)

The floating block is stationary. Thus, writing Newton’s
second law for components along a vertical y axis with the
positive direction upward , we have

Fb � Fg � m(0),

(Fnet,y � may)

Fg � mg � rVg � rfLWHg

Fg

Fb � mf g � rfVf g � rfLWhg.

Vf � LWh

Vfmf � rfVf .
(r � m/V)

Vf .
mfFb � mf g

mf g

H � 6.0 cm
rf � 1200 kg/m3

r � 800 kg/m3

or from Eqs. 14-20 and 14-21,

which gives us

. (Answer)

(b) If the block is held fully submerged and then released,
what is the magnitude of its acceleration?

Calculations: The gravitational force on the block is the
same but now, with the block fully submerged, the volume
of the displaced water is (The full height of
the block is used.) This means that the value of is now
larger, and the block will no longer be stationary but will 
accelerate upward. Now Newton’s second law yields

,

or ,

where we inserted for the mass m of the block. Solv-
ing for a leads to

(Answer)� 4.9 m/s2.

a � � rf

r � 1�g � � 1200 kg/m3

800 kg/m3 � 1� (9.8 m/s2)

rLWH

rfLWHg � rLWHg � rLWHa

Fb � Fg � ma

Fb

V � LWH.

� 4.0 cm

h �
r
rf

H �
800 kg/m3

 1200 kg/m3  (6.0 cm)

rfLWhg � rLWHg � 0,

hH

Floating means
that the buoyant
force matches the
gravitational force.

Figure 14-11 Block of height H floats
in a fluid, to a depth of h.

Additional examples, video, and practice available at WileyPLUS

Floating means
that the buoyant
force matches the
gravitational force.
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Ideal Fluids in Motion
The motion of real fluids is very complicated and not yet fully understood.
Instead, we shall discuss the motion of an ideal fluid, which is simpler to handle
mathematically and yet provides useful results. Here are four assumptions that
we make about our ideal fluid; they all are concerned with flow:

1. Steady flow In steady (or laminar) flow, the velocity of the moving fluid at any
fixed point does not change with time. The gentle flow of water near the center
of a quiet stream is steady; the flow in a chain of rapids is not. Figure 14-12 shows
a transition from steady flow to nonsteady (or nonlaminar or turbulent) flow
for a rising stream of smoke. The speed of the smoke particles increases as
they rise and, at a certain critical speed, the flow changes from steady to non-
steady.

2. Incompressible flow We assume, as for fluids at rest, that our ideal fluid is 
incompressible; that is, its density has a constant, uniform value.

3. Nonviscous flow Roughly speaking, the viscosity of a fluid is a measure of how
resistive the fluid is to flow. For example, thick honey is more resistive to flow than
water, and so honey is said to be more viscous than water. Viscosity is the fluid
analog of friction between solids; both are mechanisms by which the kinetic en-
ergy of moving objects can be transferred to thermal energy. In the absence of fric-
tion, a block could glide at constant speed along a horizontal surface. In the same
way, an object moving through a nonviscous fluid would experience no viscous
drag force—that is, no resistive force due to viscosity; it could move at constant
speed through the fluid.The British scientist Lord Rayleigh noted that in an ideal
fluid a ship’s propeller would not work, but, on the other hand, in an ideal fluid a
ship (once set into motion) would not need a propeller!

4. Irrotational flow Although it need not concern us further, we also assume
that the flow is irrotational. To test for this property, let a tiny grain of dust
move with the fluid.Although this test body may (or may not) move in a circu-
lar path, in irrotational flow the test body will not rotate about an axis through
its own center of mass. For a loose analogy, the motion of a Ferris wheel is ro-
tational; that of its passengers is irrotational.

We can make the flow of a fluid visible by adding a tracer. This might
be a dye injected into many points across a liquid stream (Fig. 14-13) or smoke

● An ideal fluid is incompressible and lacks viscosity, and its
flow is steady and irrotational. 

● A streamline is the path followed by an individual fluid particle.

● A tube of flow is a bundle of streamlines. 

● The flow within any tube of flow obeys the equation of continuity:

RV � Av � a constant,

in which RV is the volume flow rate, A is the cross-sectional
area of the tube of flow at any point, and v is the speed of the
fluid at that point. 

● The mass flow rate Rm is

Rm � rRV � rAv � a constant.

Key Ideas

Figure 14-12 At a certain point, the rising flow
of smoke and heated gas changes from
steady to turbulent.

Will McIntyre/Photo Researchers, Inc.

14-6 THE EQUATION OF CONTINUITY

After reading this module, you should be able to . . .

14.16 Describe steady flow, incompressible flow, nonviscous
flow, and irrotational flow.

14.17 Explain the term streamline.
14.18 Apply the equation of continuity to relate the 

cross-sectional area and flow speed at one point in a tube
to those quantities at a different point.

14.19 Identify and calculate volume flow rate.
14.20 Identify and calculate mass flow rate.

Learning Objectives
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particles added to a gas flow (Fig. 14-12). Each bit of a tracer follows a stream-
line, which is the path that a tiny element of the fluid would take as the fluid
flows. Recall from Chapter 4 that the velocity of a particle is always tangent to
the path taken by the particle. Here the particle is the fluid element, and its ve-
locity is always tangent to a streamline (Fig. 14-14). For this reason, two
streamlines can never intersect; if they did, then an element arriving at
their intersection would have two different velocities simultaneously — an 
impossibility.

The Equation of Continuity
You may have noticed that you can increase the speed of the water emerging
from a garden hose by partially closing the hose opening with your thumb.
Apparently the speed v of the water depends on the cross-sectional area A
through which the water flows.

Here we wish to derive an expression that relates v and A for the steady flow
of an ideal fluid through a tube with varying cross section, like that in Fig. 14-15.
The flow there is toward the right, and the tube segment shown (part of a longer
tube) has length L.The fluid has speeds v1 at the left end of the segment and v2 at
the right end. The tube has cross-sectional areas A1 at the left end and A2 at the
right end. Suppose that in a time interval �t a volume �V of fluid enters the tube
segment at its left end (that volume is colored purple in Fig. 14-15).Then, because
the fluid is incompressible, an identical volume �V must emerge from the right
end of the segment (it is colored green in Fig. 14-15).

v:

Courtesy D. H. Peregrine, University of Bristol

Figure 14-13 The steady flow
of a fluid around a cylin-
der, as revealed by a dye
tracer that was injected
into the fluid upstream of
the cylinder.

Streamline

Fluid
element

v

Figure 14-14 A fluid element traces out a
streamline as it moves.The velocity vector
of the element is tangent to the streamline
at every point.

Figure 14-15 Fluid flows from left to right at a steady
rate through a tube segment of length L. The fluid’s
speed is v1 at the left side and v2 at the right side.The
tube’s cross-sectional area is A1 at the left side and
A2 at the right side. From time t in (a) to time t � �t
in (b), the amount of fluid shown in purple enters at
the left side and the equal amount of fluid shown in
green emerges at the right side.

L

v1

A1

A2

v2

(a) Time t

L

(b) Time t + Δt

The volume flow per
second here must
match ...

... the volume flow
per second here.
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Figure 14-16 Fluid flows at a constant speed v
through a tube. (a) At time t, fluid element e
is about to pass the dashed line. (b) At time
t � �t, element e is a distance �x � v �t
from the dashed line.

ve

ve

(a) Time t

(b) Time t + Δt

Δ x

A1

A2

The volume 
flow per
second here 
must match ...

... the volume flow
per second here.

Figure 14-17 A tube of flow is defined by the
streamlines that form the boundary of the
tube.The volume flow rate must be the same
for all cross sections of the tube of flow.

Checkpoint 3
The figure shows a pipe and
gives the volume flow rate
(in cm3/s) and the direction of
flow for all but one section.
What are the volume flow
rate and the direction of flow
for that section?

4 8 

2 5 
6

4

We can use this common volume �V to relate the speeds and areas. To do
so, we first consider Fig. 14-16, which shows a side view of a tube of uniform
cross-sectional area A. In Fig. 14-16a, a fluid element e is about to pass through
the dashed line drawn across the tube width. The element’s speed is v, so dur-
ing a time interval �t, the element moves along the tube a distance �x � v �t.
The volume �V of fluid that has passed through the dashed line in that time 
interval �t is

�V � A �x � Av �t. (14-22)

Applying Eq. 14-22 to both the left and right ends of the tube segment in
Fig. 14-15, we have

�V � A1v1 �t � A2v2 �t

or A1v1 � A2v2 (equation of continuity). (14-23)

This relation between speed and cross-sectional area is called the equation of
continuity for the flow of an ideal fluid. It tells us that the flow speed increases
when we decrease the cross-sectional area through which the fluid flows.

Equation 14-23 applies not only to an actual tube but also to any so-called
tube of flow, or imaginary tube whose boundary consists of streamlines. Such
a tube acts like a real tube because no fluid element can cross a streamline;
thus, all the fluid within a tube of flow must remain within its boundary.
Figure 14-17 shows a tube of flow in which the cross-sectional area increases
from area A1 to area A2 along the flow direction. From Eq. 14-23 we know
that, with the increase in area, the speed must decrease, as is indicated by the
greater spacing between streamlines at the right in Fig. 14-17. Similarly, you
can see that in Fig. 14-13 the speed of the flow is greatest just above and just
below the cylinder.

We can rewrite Eq. 14-23 as

RV � Av � a constant (volume flow rate, equation of continuity), (14-24)

in which RV is the volume flow rate of the fluid (volume past a given point per
unit time). Its SI unit is the cubic meter per second (m3/s). If the density r of the
fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow
rate Rm (mass per unit time):

Rm � rRV � rAv � a constant (mass flow rate). (14-25)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25
says that the mass that flows into the tube segment of Fig. 14-15 each second must
be equal to the mass that flows out of that segment each second.
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Figure 14-18 As water falls from a tap, its speed in-
creases. Because the volume flow rate must be the
same at all horizontal cross sections of the stream,
the stream must “neck down” (narrow).

h

A0

A

The volume flow per
second here must
match ...

... the volume flow
per second here.

KEY IDEA

The volume flow rate through the higher cross section must
be the same as that through the lower cross section.

Calculations: From Eq. 14-24, we have

A0v0 � Av, (14-26)

where v0 and v are the water speeds at the levels correspon-
ding to A0 and A. From Eq. 2-16 we can also write, because
the water is falling freely with acceleration g,

(14-27)

Eliminating v between Eqs. 14-26 and 14-27 and solving for
v0, we obtain

� 0.286 m/s � 28.6 cm/s.

From Eq. 14-24, the volume flow rate RV is then

RV � A0v0 � (1.2 cm2)(28.6 cm/s)

� 34 cm3/s. (Answer)

� A
(2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

(1.2 cm2)2 � (0.35 cm2)2

v0 � A
2ghA2

A2
0 � A2

v2 � v2
0 � 2gh.

Sample Problem 14.05 A water stream narrows as it falls

Figure 14-18 shows how the stream of water emerging from a
faucet “necks down” as it falls. This change in the horizontal
cross-sectional area is characteristic of any laminar (non-
turbulant) falling stream because the gravitational force 
increases the speed of the stream. Here the indicated cross-
sectional areas are A0 � 1.2 cm2 and A � 0.35 cm2. The two
levels are separated by a vertical distance h � 45 mm. What
is the volume flow rate from the tap? 

Additional examples, video, and practice available at WileyPLUS

14-7 BERNOULLI’S EQUATION

After reading this module, you should be able to . . .

14.21 Calculate the kinetic energy density in terms of a fluid’s
density and flow speed.

14.22 Identify the fluid pressure as being a type of energy
density.

14.23 Calculate the gravitational potential energy density.

14.24 Apply Bernoulli’s equation to relate the total energy
density at one point on a streamline to the value at another
point.

14.25 Identify that Bernoulli's equation is a statement of the
conservation of energy.

Learning Objectives

● Applying the principle of conservation of mechanical energy to the flow of an ideal fluid leads to Bernoulli’s equation:

p � rv2 � rgy � a constant

along any tube of flow.

1
2

Key Idea

Bernoulli’s Equation
Figure 14-19 represents a tube through which an ideal fluid is flowing at a steady
rate. In a time interval �t, suppose that a volume of fluid �V, colored purple in
Fig. 14-19, enters the tube at the left (or input) end and an identical volume,
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Figure 14-19 Fluid flows at a steady rate
through a length L of a tube, from the
input end at the left to the output end at
the right. From time t in (a) to time t � �t
in (b), the amount of fluid shown in
purple enters the input end and the
equal amount shown in green emerges
from the output end.

p1

L

Input

v1

y1

(a)

(b)

y

v2

p2

y2

y

x

t

t + Δt

x

Output

*For irrotational flow (which we assume), the constant in Eq. 14-29 has the same value for all
points within the tube of flow; the points do not have to lie along the same streamline. Similarly,
the points 1 and 2 in Eq. 14-28 can lie anywhere within the tube of flow.

If the speed of a fluid element increases as the element travels along a horizontal
streamline, the pressure of the fluid must decrease, and conversely.

colored green in Fig. 14-19, emerges at the right (or output) end. The emerging
volume must be the same as the entering volume because the fluid is incompress-
ible, with an assumed constant density r.

Let y1, v1, and p1 be the elevation, speed, and pressure of the fluid entering at
the left, and y2, v2, and p2 be the corresponding quantities for the fluid emerging
at the right. By applying the principle of conservation of energy to the fluid, we
shall show that these quantities are related by

(14-28)

In general, the term is called the fluid’s kinetic energy density (kinetic en-
ergy per unit volume).We can also write Eq. 14-28 as

(Bernoulli’s equation). (14-29)

Equations 14-28 and 14-29 are equivalent forms of Bernoulli’s equation,
after Daniel Bernoulli, who studied fluid flow in the 1700s.* Like the equation of
continuity (Eq. 14-24), Bernoulli’s equation is not a new principle but simply 
the reformulation of a familiar principle in a form more suitable to fluid 
mechanics. As a check, let us apply Bernoulli’s equation to fluids at rest, by put-
ting v1 � v2 � 0 in Eq. 14-28.The result is Eq. 14-7:

p2 � p1 � rg(y1 � y2).

A major prediction of Bernoulli’s equation emerges if we take y to be a
constant (y � 0, say) so that the fluid does not change elevation as it flows. Equation
14-28 then becomes

(14-30)
which tells us that:

p1� 1
2rv2

1 � p2 � 1
2rv2

2,

p � 1
2rv2 � rgy � a constant

1
2rv2

p1 � 1
2rv2

1 � rgy1 � p2 � 1
2rv2

2 � rgy2.

Put another way, where the streamlines are relatively close together (where the
velocity is relatively great), the pressure is relatively low, and conversely.

The link between a change in speed and a change in pressure makes sense
if you consider a fluid element that travels through a tube of various widths.
Recall that the element’s speed in the narrower regions is fast and its speed in the
wider regions is slow. By Newton’s second law, forces (or pressures) must cause
the changes in speed (the accelerations). When the element nears a narrow re-
gion, the higher pressure behind it accelerates it so that it then has a greater
speed in the narrow region. When it nears a wide region, the higher pressure
ahead of it decelerates it so that it then has a lesser speed in the wide region.

Bernoulli’s equation is strictly valid only to the extent that the fluid is ideal. If
viscous forces are present, thermal energy will be involved, which here we neglect.

Proof of Bernoulli’s Equation
Let us take as our system the entire volume of the (ideal) fluid shown in 
Fig. 14-19.We shall apply the principle of conservation of energy to this system as
it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid
lying between the two vertical planes separated by a distance L in Fig. 14-19 does
not change its properties during this process; we need be concerned only with
changes that take place at the input and output ends.
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First, we apply energy conservation in the form of the work–kinetic energy
theorem,

W � �K, (14-31)

which tells us that the change in the kinetic energy of our system must equal the
net work done on the system. The change in kinetic energy results from the
change in speed between the ends of the tube and is

, (14-32)

in which �m (� r �V) is the mass of the fluid that enters at the input end and
leaves at the output end during a small time interval �t.

The work done on the system arises from two sources. The work Wg done by
the gravitational force on the fluid of mass �m during the vertical lift of
the mass from the input level to the output level is

Wg � ��m g(y2 � y1)

� �rg �V(y2 � y1). (14-33)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering
fluid into the tube and by the system (at the output end) to push forward the fluid
that is located ahead of the emerging fluid. In general, the work done by a force
of magnitude F, acting on a fluid sample contained in a tube of area A to move
the fluid through a distance �x, is

F �x � ( pA)(�x) � p(A �x) � p �V.

The work done on the system is then p1 �V, and the work done by the system
is �p2 �V.Their sum Wp is

Wp � �p2 �V � p1 �V

� �( p2 � p1) �V. (14-34)

The work–kinetic energy theorem of Eq. 14-31 now becomes

W � Wg � Wp � �K.

Substituting from Eqs. 14-32, 14-33, and 14-34 yields

.

This, after a slight rearrangement, matches Eq. 14-28, which we set out to prove.

�rg �V(y2 � y1) � �V(p2 � p1) � 1
2r �V(v2

2 � v2
1)

(�m g:)

� 1
2r �V(v2

2 � v2
1)

�K � 1
2�m v2

2 � 1
2�m v2

1

Checkpoint 4
Water flows smoothly through the pipe shown in the figure, descending in the process.
Rank the four numbered sections of pipe according to (a) the volume flow rate RV

through them, (b) the flow speed v through them, and (c) the water pressure p within
them, greatest first.

1

Flow

2

3
4

Sample Problem 14.06 Bernoulli principle of fluid through a narrowing pipe

Ethanol of density r 791 kg/m3 flows smoothly through
a horizontal pipe that tapers (as in Fig. 14-15) in cross-
sectional area from A1 � 1.20 � 10�3 m2 to A2 � A1/2.

� The pressure difference between the wide and narrow 
sections of pipe is 4120 Pa. What is the volume flow rate
RV of the ethanol?
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KEY IDEAS

(1) Because the fluid flowing through the wide section of
pipe must entirely pass through the narrow section, the vol-
ume flow rate RV must be the same in the two sections.Thus,
from Eq. 14-24,

RV � v1A1 � v2A2. (14-35)

However, with two unknown speeds, we cannot evaluate this
equation for RV. (2) Because the flow is smooth, we can ap-
ply Bernoulli’s equation. From Eq. 14-28, we can write

, (14-36)

where subscripts 1 and 2 refer to the wide and narrow
sections of pipe, respectively, and y is their common eleva-
tion. This equation hardly seems to help because it does not
contain the desired RV and it contains the unknown speeds
v1 and v2.

Calculations: There is a neat way to make Eq. 14-36 work for
us:First,we can use Eq.14-35 and the fact that A2 � A1/2 to write

and . (14-37)v2 �
RV

A2
�

2RV

A1
v1 �

RV

A1

p1 � 1
2rv2

1 � rgy � p2 � 1
2rv2

2 � rgy

Sample Problem 14.07 Bernoulli principle for a leaky water tank

In the old West, a desperado fires a bullet into an open water
tank (Fig. 14-20), creating a hole a distance h below the water
surface.What is the speed v of the water exiting the tank?

KEY IDEAS

(1) This situation is essentially that of water moving (down-
ward) with speed v0 through a wide pipe (the tank) of cross-
sectional area A and then moving (horizontally) with speed v
through a narrow pipe (the hole) of cross-sectional area a. (2)
Because the water flowing through the wide pipe must en-
tirely pass through the narrow pipe, the volume flow rate RV

must be the same in the two “pipes.” (3) We can also relate v
to v0 (and to h) through Bernoulli’s equation (Eq. 14-28).

Calculations: From Eq. 14-24,

RV � av � Av0

and thus

Because a A, we see that v0 v.To apply Bernoulli’s equa-
tion, we take the level of the hole as our reference level for
measuring elevations (and thus gravitational potential en-
ergy). Noting that the pressure at the top of the tank and at
the bullet hole is the atmospheric pressure p0 (because both
places are exposed to the atmosphere), we write Eq. 14-28 as

(14-39)p0 � 1
2rv2

0 � rgh � p0 � 1
2rv2 � rg(0).

��

v0 �
a
A

v.

h
p0

y = 0 

p0

Figure 14-20 Water pours
through a hole in a water
tank, at a distance h below
the water surface. The pres-
sure at the water surface and
at the hole is atmospheric
pressure p0.

(Here the top of the tank is represented by the left side of
the equation and the hole by the right side. The zero on the
right indicates that the hole is at our reference level.)
Before we solve Eq. 14-39 for v, we can use our result that
v0 v to simplify it: We assume that , and thus the term

in Eq. 14-39, is negligible relative to the other terms,
and we drop it. Solving the remaining equation for v then
yields

(Answer)

This is the same speed that an object would have when
falling a height h from rest.

v � 12gh.

1
2rv2

0

v2
0�

Additional examples, video, and practice available at WileyPLUS

Then we can substitute these expressions into Eq. 14-36 to
eliminate the unknown speeds and introduce the desired vol-
ume flow rate.Doing this and solving for RV yield

. (14-38)

We still have a decision to make: We know that the
pressure difference between the two sections is 4120 Pa, but
does that mean that p1 � p2 is 4120 Pa or �4120 Pa? We
could guess the former is true, or otherwise the square root
in Eq. 14-38 would give us an imaginary number. However,
let’s try some reasoning. From Eq. 14-35 we see that speed
v2 in the narrow section (small A2) must be greater than
speed v1 in the wider section (larger A1). Recall that if the
speed of a fluid increases as the fluid travels along a hori-
zontal path (as here), the pressure of the fluid must
decrease. Thus, p1 is greater than p2, and p1 � p2 � 4120 Pa.
Inserting this and known data into Eq. 14-38 gives

� 2.24 � 10�3 m3/s. (Answer)

RV � 1.20 � 10�3 m2A
(2)(4120 Pa)

(3)(791 kg/m3)

RV � A1A
2( p1 � p2)

3r
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Density The density r of any material is defined as the material’s
mass per unit volume:

(14-1)

Usually, where a material sample is much larger than atomic 
dimensions, we can write Eq. 14-1 as

(14-2)

Fluid Pressure A fluid is a substance that can flow; it conforms
to the boundaries of its container because it cannot withstand shear-
ing stress. It can, however, exert a force perpendicular to its surface.
That force is described in terms of pressure p:

(14-3)

in which �F is the force acting on a surface element of area �A. If the
force is uniform over a flat area,Eq.14-3 can be written as

(14-4)

The force resulting from fluid pressure at a particular point in a
fluid has the same magnitude in all directions. Gauge pressure is the
difference between the actual pressure (or absolute pressure) at a
point and the atmospheric pressure.

Pressure Variation with Height and Depth Pressure in a fluid
at rest varies with vertical position y. For y measured positive upward,

p2 � p1 � rg(y1 � y2). (14-7)

The pressure in a fluid is the same for all points at the same level. If
h is the depth of a fluid sample below some reference level at which
the pressure is p0, then the pressure in the sample is

p � p0 � rgh. (14-8)

p �
F
A

.

p �
�F
�A

,

r �
m
V

.

r �
�m
�V

.

Review & Summary
Pascal’s Principle A change in the pressure applied to an en-
closed fluid is transmitted undiminished to every portion of the
fluid and to the walls of the containing vessel.

Archimedes’ Principle When a body is fully or partially sub-
merged in a fluid, a buoyant force from the surrounding fluid
acts on the body. The force is directed upward and has a magni-
tude given by

Fb � mfg, (14-16)

where mf is the mass of the fluid that has been displaced by the body
(that is, the fluid that has been pushed out of the way by the body).

When a body floats in a fluid, the magnitude Fb of the (upward)
buoyant force on the body is equal to the magnitude Fg of the (down-
ward) gravitational force on the body. The apparent weight of a body
on which a buoyant force acts is related to its actual weight by

weightapp � weight � Fb. (14-19)

Flow of Ideal Fluids An ideal fluid is incompressible and
lacks viscosity, and its flow is steady and irrotational. A streamline
is the path followed by an individual fluid particle.A tube of flow is
a bundle of streamlines.The flow within any tube of flow obeys the
equation of continuity:

RV � Av � a constant, (14-24)

in which RV is the volume flow rate, A is the cross-sectional area of
the tube of flow at any point, and v is the speed of the fluid at that
point.The mass flow rate Rm is

Rm � rRV � rAv � a constant. (14-25)

Bernoulli’s Equation Applying the principle of conservation
of mechanical energy to the flow of an ideal fluid leads to
Bernoulli’s equation along any tube of flow:

p � rv2 � rgy � a constant. (14-29)1
2

F
:

b

1 We fully submerge an irregular 3 kg lump of material in a cer-
tain fluid. The fluid that would have been in the space now occu-
pied by the lump has a mass of 2 kg. (a) When we release the lump,
does it move upward, move downward, or remain in place? (b) If
we next fully submerge the lump in a less dense fluid and again re-
lease it, what does it do?

2 Figure 14-21 shows four situations in which a red liquid and a gray
liquid are in a U-tube. In one situation the liquids cannot be in static
equilibrium. (a) Which situation is that? (b) For the other three sit-

Questions

(1) (2) (3) (4) 

Figure 14-21 Question 2.

uations, assume static equilibrium. For each of them, is the density
of the red liquid greater than, less than, or equal to the density of
the gray liquid?

3 A boat with an anchor on board floats in a swimming
pool that is somewhat wider than the boat. Does the pool water
level move up, move down, or remain the same if the anchor is
(a) dropped into the water or (b) thrown onto the surrounding
ground? (c) Does the water level in the pool move upward,
move downward, or remain the
same if, instead, a cork is dropped
from the boat into the water,
where it floats?

4 Figure 14-22 shows a tank filled
with water. Five horizontal floors
and ceilings are indicated; all have
the same area and are located at
distances L, 2L, or 3L below the
top of the tank. Rank them accord-
ing to the force on them due to the
water, greatest first. Figure 14-22 Question 4.

a

b

e

d
c



water flows smoothly toward the right. The radii of the pipe sec-
tions are indicated. In which arrangements is the net work done on
a unit volume of water moving from the leftmost section to the
rightmost section (a) zero, (b) positive, and (c) negative?

8 A rectangular block is pushed
face-down into three liquids, in
turn. The apparent weight Wapp of
the block versus depth h in the
three liquids is plotted in Fig. 14-26.
Rank the liquids according to their
weight per unit volume, greatest
first.

9 Water flows smoothly in a hor-
izontal pipe. Figure 14-27 shows
the kinetic energy K of a water el-
ement as it moves along an x axis
that runs along the pipe. Rank the
three lettered sections of the pipe
according to the pipe radius, great-
est first.

10 We have three containers with different liquids. The gauge
pressure pg versus depth h is plotted in Fig. 14-28 for the liquids.
In each container, we will fully submerge a rigid plastic bead.
Rank the plots according to the magnitude of the buoyant force
on the bead, greatest first.

2.00R 2.00RR

(1)

3.00R R 2.00R

(2)

2.00R 3.00RR

(3)

R R 3.00R

(4)

5 The teapot effect. Water
poured slowly from a teapot spout
can double back under the spout for
a considerable distance (held there
by atmospheric pressure) before
detaching and falling. In Fig. 14-23,
the four points are at the top or bot-
tom of the water layers, inside or
outside. Rank those four points ac-
cording to the gauge pressure in the water there, most positive first.

6 Figure 14-24 shows three identical open-top containers filled to
the brim with water; toy ducks float in two of them. Rank the contain-
ers and contents according to their weight,greatest first.

Figure 14-24 Question 6.

(a) (b) (c)

Figure 14-25 Question 7.

Figure 14-26 Question 8.

Wapp

h

a

b

c
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Water
flow

d c

b
a

Spout

Figure 14-23 Question 5.

K

xA B C 

Figure 14-27 Question 9.

pg

h

a
b

c

Figure 14-28 Question 10.

Module 14-1 Fluids, Density, and Pressure
•1 A fish maintains its depth in fresh water by adjusting the
air content of porous bone or air sacs to make its average density
the same as that of the water. Suppose that with its air sacs col-
lapsed, a fish has a density of 1.08 g/cm3. To what fraction of its ex-
panded body volume must the fish inflate the air sacs to reduce its
density to that of water?

•2 A partially evacuated airtight container has a tight-fitting lid
of surface area 77 m2 and negligible mass. If the force required to
remove the lid is 480 N and the atmospheric pressure is 1.0 � 105

Pa, what is the internal air pressure?

•3 Find the pressure increase in the fluid in a syringe when a
nurse applies a force of 42 N to the syringe’s circular piston, which
has a radius of 1.1 cm.

SSM

ILW

•4 Three liquids that will not mix are poured into a cylindrical con-
tainer.The volumes and densities of the liquids are 0.50 L, 2.6 g/cm3;
0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3. What is the force on the 
bottom of the container due to these liquids? One liter � 1 L �
1000 cm3. (Ignore the contribution due to the atmosphere.)

•5 An office window has dimensions 3.4 m by 2.1 m. As a
result of the passage of a storm, the outside air pressure drops to
0.96 atm, but inside the pressure is held at 1.0 atm. What net force
pushes out on the window?

•6 You inflate the front tires on your car to 28 psi.Later,you measure
your blood pressure, obtaining a reading of 120/80, the readings being
in mm Hg.In metric countries (which is to say,most of the world), these
pressures are customarily reported in kilopascals (kPa). In kilopascals,
what are (a) your tire pressure and (b) your blood pressure?

SSM

7 Figure 14-25 shows four arrangements of pipes through which

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems
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tion against a maximum pressure difference (between inside and
outside the chest cavity) of 0.050 atm.What is the difference in dmax

for fresh water and the water of the Dead Sea (the saltiest natural
water in the world, with a density of 1.5 � 103 kg/m3)?

•13 At a depth of 10.9 km, the Challenger Deep in the
Marianas Trench of the Pacific Ocean is the deepest site in any
ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached
the Challenger Deep in the bathyscaph Trieste. Assuming that
seawater has a uniform density of 1024 kg/m3, approximate the
hydrostatic pressure (in atmospheres) that the Trieste had to
withstand. (Even a slight defect in the Trieste structure would
have been disastrous.)

•14 Calculate the hydrostatic difference in blood pressure be-
tween the brain and the foot in a person of height 1.83 m. The den-
sity of blood is 1.06 � 103 kg/m3.

•15 What gauge pressure must a machine produce in order to suck
mud of density 1800 kg/m3 up a tube by a height of 1.5 m?

•16 Snorkeling by humans
and elephants. When a person
snorkels, the lungs are connected
directly to the atmosphere through
the snorkel tube and thus are at at-
mospheric pressure. In atmo-
spheres, what is the difference 
between this internal air pressure
and the water pressure against the
body if the length of the snorkel
tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably
lethal situation)? In the latter, the pressure difference causes
blood vessels on the walls of the lungs to rupture, releasing blood
into the lungs. As depicted in Fig. 14-31, an elephant can safely
snorkel through its trunk while swimming with its lungs 4.0 m be-
low the water surface because the membrane around its lungs
contains connective tissue that holds and protects the blood ves-
sels, preventing rupturing.

•17 Crew members attempt to escape from a dam-
aged submarine 100 m below the surface. What force must be ap-
plied to a pop-out hatch, which is 1.2 m by 0.60 m, to push it out at
that depth? Assume that the density of the ocean water is 1024
kg/m3 and the internal air pressure is at 1.00 atm.

•18 In Fig. 14-32, an open tube of length
L 1.8 m and cross-sectional area A �
4.6 cm2 is fixed to the top of a cylindrical bar-
rel of diameter D � 1.2 m and height H �
1.8 m. The barrel and tube are filled with
water (to the top of the tube). Calculate
the ratio of the hydrostatic force on the
bottom of the barrel to the gravitational
force on the water contained in the barrel.
Why is that ratio not equal to 1.0? (You need
not consider the atmospheric pressure.)

••19 A large aquarium of height 5.00
m is filled with fresh water to a depth of
2.00 m. One wall of the aquarium consists
of thick plastic 8.00 m wide. By how much
does the total force on that wall increase
if the aquarium is next filled to a depth of
4.00 m?

�

SSM

�p

••7 In 1654 Otto von Guericke, in-
ventor of the air pump, gave a
demonstration before the noble-
men of the Holy Roman Empire in
which two teams of eight horses
could not pull apart two evacuated
brass hemispheres. (a) Assuming
the hemispheres have (strong) thin
walls, so that R in Fig. 14-29 may be considered both the inside
and outside radius, show that the force required to pull apart
the hemispheres has magnitude F � pR2 �p, where �p is the dif-
ference between the pressures outside and inside the sphere.
(b) Taking R as 30 cm, the inside pressure as 0.10 atm, and the out-
side pressure as 1.00 atm, find the force magnitude the teams of
horses would have had to exert to pull apart the hemispheres.
(c) Explain why one team of horses could have proved the
point just as well if the hemispheres were attached to a sturdy wall.

Module 14-2 Fluids at Rest
•8 The bends during flight. Anyone who scuba dives is 
advised not to fly within the next 24 h because the air mixture
for diving can introduce nitrogen to the bloodstream. Without 
allowing the nitrogen to come out of solution slowly, any sudden
air-pressure reduction (such as during airplane ascent) can result
in the nitrogen forming bubbles in the blood, creating the bends,
which can be painful and even fatal. Military special operation
forces are especially at risk. What is the change in pressure on
such a special-op soldier who must scuba dive at a depth of 20 m
in seawater one day and parachute at an altitude of 7.6 km the
next day? Assume that the average air density within the altitude
range is 0.87 kg/m3.

•9 Blood pressure in Argentinosaurus. (a) If this long-
necked, gigantic sauropod had a head height of 21 m and a heart
height of 9.0 m, what (hydrostatic) gauge pressure in its blood
was required at the heart such that the blood pressure at the
brain was 80 torr (just enough to perfuse the brain with blood)?
Assume the blood had a density of . (b) What
was the blood pressure (in torr or mm Hg) at the feet?

•10 The plastic tube in Fig. 14-30 has a
cross-sectional area of 5.00 cm2. The tube is
filled with water until the short arm (of
length d � 0.800 m) is full. Then the short arm
is sealed and more water is gradually poured
into the long arm. If the seal will pop off when
the force on it exceeds 9.80 N, what total
height of water in the long arm will put the seal
on the verge of popping?

•11 Giraffe bending to drink. In a giraffe with its head 2.0 m
above its heart, and its heart 2.0 m above its feet, the (hydrostatic)
gauge pressure in the blood at its heart is 250 torr.Assume that the gi-
raffe stands upright and the blood density is . In torr
(or mm Hg), find the (gauge) blood pressure (a) at the brain (the
pressure is enough to perfuse the brain with blood, to keep the giraffe
from fainting) and (b) at the feet (the pressure must be countered by
tight-fitting skin acting like a pressure stocking). (c) If the giraffe
were to lower its head to drink from a pond without splaying its legs
and moving slowly, what would be the increase in the blood pressure
in the brain? (Such action would probably be lethal.)

•12 The maximum depth dmax that a diver can snorkel is set
by the density of the water and the fact that human lungs can func-

1.06 � 103 kg/m3

1.06 � 103 kg/m3

F
:

R

FF

Figure 14-29 Problem 7.

d

Figure 14-30
Problems 10

and 81.

Figure 14-31 Problem 16.

D

L

H

A

SUITABLE FOR

WATER

FRESH

DRINKING

Figure 14-32
Problem 18.



at depth D � 35.0 m behind the ver-
tical upstream face of a dam of
width W � 314 m. Find (a) the net
horizontal force on the dam from
the gauge pressure of the water and
(b) the net torque due to that force
about a horizontal line through O
parallel to the (long) width of the dam.This torque tends to rotate the
dam around that line, which would cause the dam to fail. (c) Find the
moment arm of the torque.

Module 14-3 Measuring Pressure
•25 In one observation, the column in a mercury barometer (as is
shown in Fig. 14-5a) has a measured height h of 740.35 mm. The tem-
perature is �5.0	C, at which temperature the density of mercury r is
1.3608 � 104 kg/m3.The free-fall acceleration g at the site of the barom-
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eter is 9.7835 m/s2.What is the atmospheric pressure at that site in pas-
cals and in torr (which is the common unit for barometer readings)?

•26 To suck lemonade of density 1000 kg/m3 up a straw to a maxi-
mum height of 4.0 cm, what minimum gauge pressure (in atmo-
spheres) must you produce in your lungs?

••27 What would be the height of the atmosphere if the
air density (a) were uniform and (b) decreased linearly to zero
with height? Assume that at sea level the air pressure is 1.0 atm
and the air density is 1.3 kg/m3.

Module 14-4 Pascal’s Principle
•28 A piston of cross-sectional
area a is used in a hydraulic press to
exert a small force of magnitude f on
the enclosed liquid. A connecting
pipe leads to a larger piston of cross-
sectional area A (Fig. 14-36). (a) What
force magnitude F will the larger pis-
ton sustain without moving? (b) If
the piston diameters are 3.80 cm and
53.0 cm, what force magnitude on the small piston will balance a 20.0
kN force on the large piston?

••29 In Fig. 14-37, a spring of spring
constant 3.00 � 104 N/m is between a
rigid beam and the output piston of a
hydraulic lever. An empty container
with negligible mass sits on the input
piston.The input piston has area Ai, and
the output piston has area 18.0Ai.
Initially the spring is at its rest length.
How many kilograms of sand must be
(slowly) poured into the container to compress the spring by 5.00 cm?

Module 14-5 Archimedes’ Principle
•30 A 5.00 kg object is released from rest while fully submerged
in a liquid. The liquid displaced by the submerged object has a
mass of 3.00 kg. How far and in what direction does the object
move in 0.200 s, assuming that it moves freely and that the drag
force on it from the liquid is negligible?

•31 A block of wood floats in fresh water with two-thirds of its
volume V submerged and in oil with 0.90V submerged. Find the den-
sity of (a) the wood and (b) the oil.

•32 In Fig. 14-38, a cube of edge
length L � 0.600 m and mass 450 kg
is suspended by a rope in an open
tank of liquid of density 1030 kg/m3.
Find (a) the magnitude of the total
downward force on the top of the
cube from the liquid and the atmo-
sphere, assuming atmospheric pres-
sure is 1.00 atm, (b) the magnitude
of the total upward force on the bot-
tom of the cube, and (c) the tension
in the rope. (d) Calculate the magnitude of the buoyant force on
the cube using Archimedes’ principle. What relation exists among
all these quantities?

•33 An iron anchor of density 7870 kg/m3 appears 200 N
lighter in water than in air. (a) What is the volume of the anchor?
(b) How much does it weigh in air?

•34 A boat floating in fresh water displaces water weighing

SSM

SSM

SSM

••20 The L-shaped fish tank shown in 
Fig. 14-33 is filled with water and is open at
the top. If d � 5.0 m, what is the (total)
force exerted by the water (a) on face A
and (b) on face B?

••21 Two identical cylindrical ves-
sels with their bases at the same level each
contain a liquid of density 1.30 � 103

kg/m3. The area of each base is 4.00 cm2,
but in one vessel the liquid height is 0.854
m and in the other it is 1.560 m. Find the
work done by the gravitational force in
equalizing the levels when the two vessels are connected.

••22 g-LOC in dogfights.When a pilot takes a tight turn at high
speed in a modern fighter airplane, the blood pressure at the brain
level decreases, blood no longer perfuses the brain, and the blood in
the brain drains. If the heart maintains the (hydrostatic) gauge pressure
in the aorta at 120 torr (or mm Hg) when the pilot undergoes a hori-
zontal centripetal acceleration of 4g, what is the blood pressure (in
torr) at the brain, 30 cm radially inward from the heart? The perfusion
in the brain is small enough that the vision switches to black and white
and narrows to “tunnel vision” and the pilot can undergo g-LOC (“g-
induced loss of consciousness”).Blood density is .

••23 In analyzing certain geo-
logical features, it is often appro-
priate to assume that the pressure
at some horizontal level of com-
pensation, deep inside Earth, is the
same over a large region and is
equal to the pressure due to the
gravitational force on the overly-
ing material. Thus, the pressure on
the level of compensation is given
by the fluid pressure formula. This
model requires, for one thing, that
mountains have roots of continen-
tal rock extending into the denser
mantle (Fig. 14-34). Consider a mountain of height H � 6.0 km
on a continent of thickness T � 32 km. The continental rock has
a density of 2.9 g /cm3, and beneath this rock the mantle has a
density of 3.3 g /cm3. Calculate the depth D of the root. (Hint: Set
the pressure at points a and b equal; the depth y of the level of
compensation will cancel out.)

•••24 In Fig. 14-35, water stands

1.06 � 103 kg/m3

SSM

Figure 14-36 Problem 28.
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Figure 14-37 Problem 29.
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Figure 14-34 Problem 23.
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35.6 kN. (a) What is the weight of the water this boat displaces
when floating in salt water of density 1.10 � 103 kg/m3? (b) What is
the difference between the volume of fresh water displaced and
the volume of salt water displaced?

•35 Three children, each of weight 356 N,
make a log raft by lashing together logs of
diameter 0.30 m and length 1.80 m. How
many logs will be needed to keep them
afloat in fresh water? Take the den-
sity of the logs to be 800 kg/m3.

••36 In Fig. 14-39a, a rectan-
gular block is gradually pushed
face-down into a liquid. The block
has height d; on the bottom and
top the face area is A � 5.67 cm2.
Figure 14-39b gives the apparent
weight Wapp of the block as a func-
tion of the depth h of its lower
face. The scale on the vertical axis
is set by Ws � 0.20 N. What is the
density of the liquid?

••37 A hollow spherical iron shell floats almost completely sub-
merged in water.The outer diameter is 60.0 cm,and the density of iron
is 7.87 g/cm3. Find the inner diameter.

••38 A small solid ball is 
released from rest while fully sub-
merged in a liquid and then its kinetic
energy is measured when it has moved
4.0 cm in the liquid. Figure 14-40 gives
the results after many liquids are used:
The kinetic energy K is plotted versus
the liquid density rliq, and Ks � 1.60 J
sets the scale on the vertical axis.
What are (a) the density and (b) the volume of the ball?

••39 A hollow sphere of inner radius 8.0 cm and outer
radius 9.0 cm floats half-submerged in a liquid of density 800 kg/m3.
(a) What is the mass of the sphere? (b) Calculate the density of the
material of which the sphere is made.

••40 Lurking alligators.An al-
ligator waits for prey by floating with
only the top of its head exposed, so
that the prey cannot easily see it.
One way it can adjust the extent of
sinking is by controlling the size of its
lungs. Another way may be by swallowing stones (gastrolithes) that
then reside in the stomach. Figure 14-41 shows a highly simplified
model (a “rhombohedron gater”) of mass 130 kg that roams with its
head partially exposed.The top head surface has area 0.20 m2. If the
alligator were to swallow stones with a total mass of 1.0% of its body
mass (a typical amount), how far would it sink?

••41 What fraction of the volume of an iceberg (density 917 kg/m3)
would be visible if the iceberg floats (a) in the ocean (salt water, den-
sity 1024 kg/m3) and (b) in a river (fresh water, density 1000 kg/m3)?
(When salt water freezes to form ice, the salt is excluded. So, an ice-
berg could provide fresh water to a community.)

••42 A flotation device is in the shape of a right cylinder, with a
height of 0.500 m and a face area of 4.00 m2 on top and bottom, and
its density is 0.400 times that of fresh water. It is initially held fully
submerged in fresh water, with its top face at the water surface.Then
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it is allowed to ascend gradually until it begins to float. How much
work does the buoyant force do on the device during the ascent?

••43 When researchers find a rea-
sonably complete fossil of a di-
nosaur, they can determine the mass
and weight of the living dinosaur
with a scale model sculpted from
plastic and based on the dimensions
of the fossil bones. The scale of the
model is 1/20; that is, lengths are 1/20
actual length, areas are (1/20)2 actual
areas, and volumes are (1/20)3 actual
volumes. First, the model is suspended from one arm of a balance
and weights are added to the other arm until equilibrium is
reached. Then the model is fully submerged in water and enough
weights are removed from the second arm to reestablish equilib-
rium (Fig. 14-42). For a model of a particular T. rex fossil, 637.76 g
had to be removed to reestablish equilibrium. What was the vol-
ume of (a) the model and (b) the actual T. rex? (c) If the density of
T. rex was approximately the density of water, what was its mass?

••44 A wood block (mass 3.67 kg, density 600 kg/m3) is  fitted
with lead (density 1.14 � 104 kg/m3) so that it floats in water with
0.900 of its volume submerged. Find the lead mass if the lead is fit-
ted to the block’s (a) top and (b) bottom.

••45 An iron casting containing a number of cavities weighs
6000 N in air and 4000 N in water. What is the total cavity volume
in the casting? The density of solid iron is 7.87 g/cm3.

••46 Suppose that you release a small ball from rest at a depth
of 0.600 m below the surface in a pool of water. If the density of the
ball is 0.300 that of water and if the drag force on the ball from the
water is negligible, how high above the water surface will the ball
shoot as it emerges from the water? (Neglect any transfer of en-
ergy to the splashing and waves produced by the emerging ball.)

••47 The volume of air space in the passenger compartment of an
1800 kg car is 5.00 m3. The volume of the motor and front wheels is
0.750 m3,and the volume of the rear wheels,gas tank,and trunk is 0.800
m3; water cannot enter these two regions. The car rolls into a lake. (a)
At first, no water enters the passenger compartment. How much of the
car, in cubic meters, is below the water surface with the car floating
(Fig. 14-43)? (b) As water slowly enters, the car sinks. How many cubic
meters of water are in the car as it disappears below the water surface?
(The car,with a heavy load in the trunk,remains horizontal.)

Figure 14-43 Problem 47.

Figure 14-42 Problem 43.

•••48 Figure 14-44 shows an iron ball suspended by thread of
negligible mass from an upright cylinder that
floats partially submerged in water. The cylin-
der has a height of 6.00 cm, a face area of 12.0
cm2 on the top and bottom, and a density of
0.30 g/cm3, and 2.00 cm of its height is above
the water surface.What is the radius of the iron
ball?

Figure 14-44
Problem 48.



with water to a depth D � 0.30 m. A hole of cross-sectional area
A � 6.5 cm2 in the bottom of the tank allows water to drain out. (a)
What is the drainage rate in cubic meters per second? (b) At what
distance below the bottom of the tank is the cross-sectional area of
the stream equal to one-half the area of the hole?

•58 The intake in Fig. 14-47 has
cross-sectional area of 0.74 m2 and
water flow at 0.40 m/s. At the outlet,
distance D � 180 m below the in-
take, the cross-sectional area is
smaller than at the intake and the
water flows out at 9.5 m/s into
equipment. What is the pressure dif-
ference between inlet and outlet?

•59 Water is moving with a speed of 5.0 m/s through a pipe
with a cross-sectional area of 4.0 cm2. The water gradually descends
10 m as the pipe cross-sectional area increases to 8.0 cm2. (a) What
is the speed at the lower level? (b) If the pressure at the upper level
is 1.5 � 105 Pa, what is the pressure at the lower level?

•60 Models of torpedoes are sometimes tested in a horizontal pipe of
flowing water, much as a wind tunnel is used to test model airplanes.
Consider a circular pipe of internal diameter 25.0 cm and a torpedo
model aligned along the long axis of the pipe.The model has a 5.00 cm
diameter and is to be tested with water flowing past it at 2.50 m/s. (a)
With what speed must the water flow in the part of the pipe that is
unconstricted by the model? (b) What will the pressure difference be
between the constricted and unconstricted parts of the pipe?

•61 A water pipe having a 2.5 cm inside diameter carries wa-
ter into the basement of a house at a speed of 0.90 m/s and a pres-
sure of 170 kPa. If the pipe tapers to 1.2 cm and rises to the second
floor 7.6 m above the input point, what are the (a) speed and
(b) water pressure at the second floor?

••62 A pitot tube (Fig. 14-48) is used to determine the air-
speed of an airplane. It consists of an outer tube with a number of
small holes B (four are shown) that allow air into the tube; that
tube is connected to one arm of a U-tube. The other arm of the 
U-tube is connected to hole A at the front end of the device, which
points in the direction the plane is headed. At A the air becomes
stagnant so that vA � 0.At B, however, the speed of the air presum-
ably equals the airspeed v of the plane. (a) Use Bernoulli’s equation
to show that

,

where r is the density of the liquid in the U-tube and h is the differ-
ence in the liquid levels in that tube. (b) Suppose that the tube con-
tains alcohol and the level difference h is 26.0 cm. What is the
plane’s speed relative to the air? The density of the air is 1.03 kg/m3

and that of alcohol is 810 kg/m3.

v � A
2rgh
rair
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Module 14-6 The Equation of Continuity
•49 Canal effect. Figure 14-45
shows an anchored barge that ex-
tends across a canal by distance

and into the water by dis-
tance . The canal has a
width , a water depth

, and a uniform water-flow
speed . Assume that the
flow around the barge is uniform. As
the water passes the bow, the water
level undergoes a dramatic dip
known as the canal effect. If the dip
has depth , what is the water speed alongside the boat
through the vertical cross sections at (a) point a and (b) point b?
The erosion due to the speed increase is a common concern to hy-
draulic engineers.

•50 Figure 14-46 shows two
sections of an old pipe system
that runs through a hill, with
distances dA � dB � 30 m and
D � 110 m. On each side of
the hill, the pipe radius is
2.00 cm. However, the radius of the pipe inside the hill is no longer
known.To determine it, hydraulic engineers first establish that water
flows through the left and right sections at 2.50 m/s. Then they re-
lease a dye in the water at point A and find that it takes 88.8 s to
reach point B. What is the average radius of the pipe within the hill?

•51 A garden hose with an internal diameter of 1.9 cm is
connected to a (stationary) lawn sprinkler that consists merely of
a container with 24 holes, each 0.13 cm in diameter. If the water
in the hose has a speed of 0.91 m/s, at what speed does it leave the
sprinkler holes?

•52 Two streams merge to form a river. One stream has a width
of 8.2 m, depth of 3.4 m, and current speed of 2.3 m/s. The other
stream is 6.8 m wide and 3.2 m deep, and flows at 2.6 m/s. If the
river has width 10.5 m and speed 2.9 m/s, what is its depth?

••53 Water is pumped steadily out of a flooded basement at
5.0 m/s through a hose of radius 1.0 cm, passing through a window
3.0 m above the waterline.What is the pump’s power?

••54 The water flowing through a 1.9 cm (inside diameter) pipe
flows out through three 1.3 cm pipes. (a) If the flow rates in the
three smaller pipes are 26, 19, and 11 L/min, what is the flow rate in
the 1.9 cm pipe? (b) What is the ratio of the speed in the 1.9 cm pipe
to that in the pipe carrying 26 L/min?

Module 14-7 Bernoulli’s Equation
•55 How much work is done by pressure in forcing 1.4 m3 of
water through a pipe having an internal diameter of 13 mm if the
difference in pressure at the two ends of the pipe is 1.0 atm?

•56 Suppose that two tanks, 1 and 2, each with a large opening at
the top, contain different liquids.A small hole is made in the side of
each tank at the same depth h below the liquid surface, but the
hole in tank 1 has half the cross-sectional area of the hole in tank 2.
(a) What is the ratio r1/r2 of the densities of the liquids if the mass
flow rate is the same for the two holes? (b) What is the ratio
RV1/RV2 of the volume flow rates from the two tanks? (c) At one in-
stant, the liquid in tank 1 is 12.0 cm above the hole. If the tanks are
to have equal volume flow rates, what height above the hole must
the liquid in tank 2 be just then?
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h � 0.80 m

vi � 1.5 m/s
H � 14 m

D � 55 m
b � 12 m

d � 30 m

•57 A cylindrical tank with a large diameter is filledSSM
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Figure 14-45 Problem 49.

Figure 14-47 Problem 58.
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••63 A pitot tube (see Problem 62) on a high-altitude aircraft
measures a differential pressure of 180 Pa. What is the aircraft’s
airspeed if the density of the air is 0.031 kg/m3?

••64 In Fig. 14-49, water flows
through a horizontal pipe and then out
into the atmosphere at a speed v1 � 15
m/s. The diameters of the left and right
sections of the pipe are 5.0 cm and 3.0
cm. (a) What volume of water flows
into the atmosphere during a 10 min period? In the left section of the
pipe, what are (b) the speed v2 and (c) the gauge pressure?

••65 A venturi meter is used to measure the flow
speed of a fluid in a pipe. The meter is connected between two
sections of the pipe (Fig. 14-50); the cross-sectional area A of the
entrance and exit of the meter matches the pipe’s cross-sectional
area. Between the entrance and exit, the fluid flows from the
pipe with speed V and then through a narrow “throat” of cross-
sectional area a with speed v. A manometer connects the wider
portion of the meter to the narrower portion. The change in the
fluid’s speed is accompanied by a change �p in the fluid’s pressure,
which causes a height difference h of the liquid in the two arms of
the manometer. (Here �p means pressure in the throat minus pres-
sure in the pipe.) (a) By applying Bernoulli’s equation and the
equation of continuity to points 1 and 2 in Fig. 14-50, show that

,

where r is the density of the fluid. (b) Suppose that the fluid is
fresh water, that the cross-sectional areas are 64 cm2 in the pipe
and 32 cm2 in the throat, and that the pressure is 55 kPa in the pipe
and 41 kPa in the throat. What is the rate of water flow in cubic
meters per second?

V � A
2a2 �p

�(a2 � A2)

WWWSSM

opening. (a) Find the magnitude of the
frictional force between plug and pipe
wall. (b) The plug is removed. What
water volume exits the pipe in 3.0 h?

••68 Fresh water flows horizontally
from pipe section 1 of cross-sectional
area A1 into pipe section 2 of cross-sec-
tional area A2. Figure 14-52 gives a plot
of the pressure difference p2 � p1 versus
the inverse area squared that
would be expected for a volume flow
rate of a certain value if the water flow
were laminar under all circumstances.
The scale on the vertical axis is set by
Δps � 300 kN/m2. For the conditions
of the figure, what are the values of
(a) A2 and (b) the volume flow rate?

••69 A liquid of density 900 kg/m3

flows through a horizontal pipe that
has a cross-sectional area of 1.90 � 10�2 m2 in region A and a

A�2
1

cross-sectional area of 9.50 � 10�2 m2 in region B. The pressure
difference between the two regions is 7.20 � 103 Pa. What are (a)
the volume flow rate and (b) the mass flow rate?

••70 In Fig. 14-53, water flows
steadily from the left pipe section
(radius r1 � 2.00R), through the mid-
dle section (radius R), and into the
right section (radius r3 � 3.00R). The
speed of the water in the middle sec-
tion is 0.500 m/s. What is the net work done on 0.400 m3 of the wa-
ter as it moves from the left section to the right section?

••71 Figure 14-54 shows a stream of
water flowing through a hole at depth
h � 10 cm in a tank holding water to
height H � 40 cm. (a) At what dis-
tance x does the stream strike the
floor? (b) At what depth should a sec-
ond hole be made to give the same
value of x? (c) At what depth should a
hole be made to maximize x?

•••72 A very simplified schem-
atic of the rain drainage system for a home is shown in Fig. 14-55.
Rain falling on the slanted roof runs off into gutters around the
roof edge; it then drains through downspouts (only one is
shown) into a main drainage pipe M below the basement, which
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Figure 14-49 Problem 64.
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••66 Consider the venturi tube of Problem 65 and Fig. 14-50
without the manometer. Let A equal 5a. Suppose the pressure p1 at A
is 2.0 atm. Compute the values of (a) the speed V at A and (b) the
speed v at a that make the pressure p2 at a equal to zero. (c) Compute
the corresponding volume flow rate if the diameter at A is 5.0 cm.
The phenomenon that occurs at a when p2 falls to nearly zero is
known as cavitation.The water vaporizes into small bubbles.

••67 In Fig. 14-51, the fresh water behind a reservoir damILW

has depth D 15 m. A horizontal pipe 4.0 cm in diameter passes
through the dam at depth d � 6.0 m. A plug secures the pipe

�

Floor
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w
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M

Figure 14-55 Problem 72.

carries the water to an
even larger pipe below the
street. In Fig. 14-55, a floor
drain in the basement is
also connected to drain-
age pipe M. Suppose the
following apply:

(1) the downspouts have
height h1 � 11 m, (2) the
floor drain has height h2 �
1.2 m, (3) pipe M has radius
3.0 cm, (4) the house has
side width w � 30 m and
front length L � 60 m,(5) all



the water striking the roof goes through pipe M, (6) the initial speed
of the water in a downspout is negligible, and (7) the wind speed is
negligible (the rain falls vertically).

At what rainfall rate, in centimeters per hour, will water from
pipe M reach the height of the floor drain and threaten to flood
the basement?

Additional Problems
73 About one-third of the body of a person floating in the
Dead Sea will be above the waterline. Assuming that the human
body density is 0.98 g/cm3, find the density of the water in the
Dead Sea. (Why is it so much greater than 1.0 g/cm3?)

74 A simple open U-tube contains mercury. When 11.2 cm of
water is poured into the right arm of the tube, how high above its
initial level does the mercury rise in the left arm?

75 If a bubble in sparkling water accelerates upward at the
rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass?
Assume that the drag force on the bubble is negligible.

76 Suppose that your body has a uniform density of 0.95
times that of water. (a) If you float in a swimming pool, what frac-
tion of your body’s volume is above the water surface?

Quicksand is a fluid produced when water is forced up into
sand, moving the sand grains away from one another so they are no
longer locked together by friction. Pools of quicksand can form when
water drains underground from hills into valleys where there are
sand pockets. (b) If you float in a deep pool of quicksand that has a
density 1.6 times that of water, what fraction of your body’s volume is
above the quicksand surface? (c) Are you unable to breathe?

77 A glass ball of radius 2.00 cm sits at the bottom of a container
of milk that has a density of 1.03 g/cm3. The normal force on the
ball from the container’s lower surface has magnitude 9.48 � 10�2 N.
What is the mass of the ball?

78 Caught in an avalanche, a skier is fully submerged in
flowing snow of density 96 kg/m3. Assume that the average density
of the skier, clothing, and skiing equipment is 1020 kg/m3. What
percentage of the gravitational force on the skier is offset by the
buoyant force from the snow?

79 An object hangs from a spring balance. The balance registers
30 N in air, 20 N when this object is immersed in water, and 24 N
when the object is immersed in another liquid of unknown den-
sity.What is the density of that other liquid?

80 In an experiment, a rectangular block with height h is allowed
to float in four separate liquids. In the first liquid, which is water, it
floats fully submerged. In liquids A, B, and C, it floats with heights
h/2, 2h/3, and h/4 above the liquid surface, respectively. What are
the relative densities (the densities relative to that of water) of
(a) A, (b) B, and (c) C?

81 Figure 14-30 shows a modified U-tube: the right arm is
shorter than the left arm. The open end of the right arm is height
d � 10.0 cm above the laboratory bench. The radius throughout
the tube is 1.50 cm. Water is gradually poured into the open end of
the left arm until the water begins to flow out the open end of the
right arm. Then a liquid of density 0.80 g/cm3 is gradually added to
the left arm until its height in that arm is 8.0 cm (it does not mix
with the water). How much water flows out of the right arm?

82 What is the acceleration of a rising hot-air balloon if the ratio
of the air density outside the balloon to that inside is 1.39? Neglect
the mass of the balloon fabric and the basket.

SSM

412 CHAPTER 14 FLUIDS

83 Figure 14-56 shows a
siphon, which is a device for
removing liquid from a container.
Tube ABC must initially be filled,
but once this has been done, liquid
will flow through the tube until the
liquid surface in the container is
level with the tube opening at A.
The liquid has density 1000 kg/m3

and negligible viscosity. The dis-
tances shown are h1 � 25 cm, d �
12 cm, and h2 � 40 cm. (a) With
what speed does the liquid emerge
from the tube at C? (b) If the at-
mospheric pressure is 1.0 � 105 Pa,
what is the pressure in the liquid at
the topmost point B? (c) Theoretically, what is the greatest possi-
ble height h1 that a siphon can lift water?

84 When you cough, you expel air at high speed through the
trachea and upper bronchi so that the air will remove excess mucus
lining the pathway.You produce the high speed by this procedure:You
breathe in a large amount of air, trap it by closing the glottis (the nar-
row opening in the larynx), increase the air pressure by contracting
the lungs, partially collapse the trachea and upper bronchi to narrow
the pathway, and then expel the air through the pathway by suddenly
reopening the glottis. Assume that during the expulsion the volume
flow rate is 7.0 � 10�3 m3/s. What multiple of 343 m/s (the speed of
sound vs) is the airspeed through the trachea if the trachea diameter
(a) remains its normal value of 14 mm and (b) contracts to 5.2 mm?

85 A tin can has a total volume of 1200 cm3

and a mass of 130 g. How many grams of lead
shot of density 11.4 g/cm3 could it carry with-
out sinking in water?

86 The tension in a string holding a solid
block below the surface of a liquid (of density
greater than the block) is T0 when the container
(Fig. 14-57) is at rest. When the container is
given an upward acceleration of 0.250g, what
multiple of T0 gives the tension in the string?

87 What is the minimum area (in square meters) of the top sur-
face of an ice slab 0.441 m thick floating on fresh water that will
hold up a 938 kg automobile? Take the densities of ice and fresh
water to be 917 kg/m3 and 998 kg/m3, respectively.

88 A 8.60 kg sphere of radius 6.22 cm is at a depth of 2.22 km in
seawater that has an average density of 1025 kg/m3. What are the
(a) gauge pressure, (b) total pressure, and (c) corresponding total
force compressing the sphere’s surface? What are (d) the magni-
tude of the buoyant force on the sphere and (e) the magnitude of
the sphere’s acceleration if it is free to move? Take atmospheric
pressure to be 1.01 � 105 Pa.

89 (a) For seawater of density 1.03 g/cm3, find the weight of wa-
ter on top of a submarine at a depth of 255 m if the horizontal
cross-sectional hull area is 2200.0 m2. (b) In atmospheres, what wa-
ter pressure would a diver experience at this depth?

90 The sewage outlet of a house constructed on a slope is 6.59 m be-
low street level. If the sewer is 2.16 m below street level, find the mini-
mum pressure difference that must be created by the sewage pump to
transfer waste of average density 1000.00 kg/m3 from outlet to sewer.
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Figure 14-56 Problem 83.

Figure 14-57
Problem 86.
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Oscillations

15-1 SIMPLE HARMONIC MOTION

After reading this module, you should be able to . . .

15.01 Distinguish simple harmonic motion from other types of
periodic motion.

15.02 For a simple harmonic oscillator, apply the relationship
between position x and time t to calculate either if given a
value for the other.

15.03 Relate period T, frequency f, and angular frequency v.
15.04 Identify (displacement) amplitude xm, phase constant

(or phase angle) f, and phase vt � f.
15.05 Sketch a graph of the oscillator’s position x versus time

t, identifying amplitude xm and period T.
15.06 From a graph of position versus time, velocity versus

time, or acceleration versus time, determine the amplitude
of the plot and the value of the phase constant f.

15.07 On a graph of position x versus time t describe the ef-
fects of changing period T, frequency f, amplitude xm, or
phase constant f.

15.08 Identify the phase constant f that corresponds to the
starting time (t � 0) being set when a particle in SHM is
at an extreme point or passing through the center point.

15.09 Given an oscillator’s position x(t) as a function of time,
find its velocity v(t) as a function of time, identify the veloc-
ity amplitude vm in the result, and calculate the velocity at
any given time.

15.10 Sketch a graph of an oscillator’s velocity v versus time t,
identifying the velocity amplitude vm.

15.11 Apply the relationship between velocity amplitude vm,
angular frequency v, and (displacement) amplitude xm.

15.12 Given an oscillator’s velocity v(t) as a function of time,
calculate its acceleration a(t) as a function of time, identify
the acceleration amplitude am in the result, and calculate
the acceleration at any given time.

15.13 Sketch a graph of an oscillator’s acceleration a versus
time t, identifying the acceleration amplitude am.

15.14 Identify that for a simple harmonic oscillator the acceler-
ation a at any instant is always given by the product of a
negative constant and the displacement x just then.

15.15 For any given instant in an oscillation, apply the relation-
ship between acceleration a, angular frequency v, and dis-
placement x.

15.16 Given data about the position x and velocity v at one 
instant, determine the phase vt � f and phase constant f.

15.17 For a spring–block oscillator, apply the relationships be-
tween spring constant k and mass m and either period T or
angular frequency v.

15.18 Apply Hooke’s law to relate the force F on a simple har-
monic oscillator at any instant to the displacement x of the
oscillator at that instant.

● The frequency f of periodic, or oscillatory, motion is the
number of oscillations per second. In the SI system, it is
measured in hertz: 1 Hz � 1 s�1.
● The period T is the time required for one complete oscilla-
tion, or cycle. It is related to the frequency by T � 1/f.
● In simple harmonic motion (SHM), the displacement x(t) of a
particle from its equilibrium position is described by the equation

x � xm cos(vt � f) (displacement),

in which xm is the amplitude of the displacement, vt � f is
the phase of the motion, and f is the phase constant. The
angular frequency v is related to the period and frequency of
the motion by v � 2p/T � 2pf.

● Differentiating x(t) leads to equations for the particle’s
SHM velocity and acceleration as functions of time:

v � �vxm sin(vt � f) (velocity)

and a � �v2xm cos(vt � f) (acceleration).

In the velocity function, the positive quantity vxm is the veloc-
ity amplitude vm. In the acceleration function, the positive
quantity v2xm is the acceleration amplitude am.

● A particle with mass m that moves under the influence of a
Hooke’s law restoring force given by F � �kx is a linear sim-
ple harmonic oscillator with

(angular frequency)

and (period).T � 2pA
m
k

v � A
k
m

Key Ideas

Learning Objectives
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What Is Physics?
Our world is filled with oscillations in which objects move back and forth repeat-
edly. Many oscillations are merely amusing or annoying, but many others are
dangerous or financially important. Here are a few examples: When a bat hits a
baseball, the bat may oscillate enough to sting the batter’s hands or even to break
apart.When wind blows past a power line, the line may oscillate (“gallop” in elec-
trical engineering terms) so severely that it rips apart, shutting off the power
supply to a community. When an airplane is in flight, the turbulence of the air
flowing past the wings makes them oscillate, eventually leading to metal fatigue
and even failure.When a train travels around a curve, its wheels oscillate horizon-
tally (“hunt” in mechanical engineering terms) as they are forced to turn in new
directions (you can hear the oscillations).

When an earthquake occurs near a city, buildings may be set oscillating so
severely that they are shaken apart.When an arrow is shot from a bow, the feathers
at the end of the arrow manage to snake around the bow staff without hitting it be-
cause the arrow oscillates. When a coin drops into a metal collection plate, the coin
oscillates with such a familiar ring that the coin’s denomination can be determined
from the sound. When a rodeo cowboy rides a bull, the cowboy oscillates wildly as
the bull jumps and turns (at least the cowboy hopes to be oscillating).

The study and control of oscillations are two of the primary goals of both
physics and engineering. In this chapter we discuss a basic type of oscillation
called simple harmonic motion.

Heads Up. This material is quite challenging to most students. One reason is
that there is a truckload of definitions and symbols to sort out, but the main reason
is that we need to relate an object’s oscillations (something that we can see or even
experience) to the equations and graphs for the oscillations. Relating the real, visi-
ble motion to the abstraction of an equation or graph requires a lot of hard work.

Simple Harmonic Motion
Figure 15-1 shows a particle that is oscillating about the origin of an x axis, repeat-
edly going left and right by identical amounts.The frequency f of the oscillation is
the number of times per second that it completes a full oscillation (a cycle) and
has the unit of hertz (abbreviated Hz), where

1 hertz � 1 Hz � 1 oscillation per second � 1 s�1. (15-1)

The time for one full cycle is the period T of the oscillation, which is

. (15-2)

Any motion that repeats at regular intervals is called periodic motion or har-
monic motion. However, here we are interested in a particular type of periodic
motion called simple harmonic motion (SHM). Such motion is a sinusoidal func-
tion of time t. That is, it can be written as a sine or a cosine of time t. Here we
arbitrarily choose the cosine function and write the displacement (or position) of
the particle in Fig. 15-1 as

x(t) � xm cos(vt � f) (displacement), (15-3)

in which xm, v, and f are quantities that we shall define.
Freeze-Frames. Let’s take some freeze-frames of the motion and then arrange

them one after another down the page (Fig. 15-2a). Our first freeze-frame is at t � 0
when the particle is at its rightmost position on the x axis. We label that coordi-
nate as xm (the subscript means maximum); it is the symbol in front of the cosine

T �
1
f

+xm–xm

x

0
Figure 15-1 A particle repeatedly oscillates
left and right along an x axis, between
extreme points xm and �xm.
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A particle oscillates left
and right in simple
harmonic motion.

Rotating the figure reveals
that the motion forms a
cosine function.

This is a graph of the motion,
with the period T indicated.

The speed is zero at
extreme points.

The speed is greatest
at x = 0.

The speed 
is zero at the 
extreme points.

The speed is greatest
at the midpoint.

Figure 15-2 (a) A sequence of “freeze-frames” (taken at equal time intervals) showing the position of a par-
ticle as it oscillates back and forth about the origin of an x axis, between the limits �xm and �xm. (b) The
vector arrows are scaled to indicate the speed of the particle.The speed is maximum when the particle is at
the origin and zero when it is at �xm. If the time t is chosen to be zero when the particle is at �xm, then the
particle returns to �xm at t � T, where T is the period of the motion.The motion is then repeated. (c)
Rotating the figure reveals the motion forms a cosine function of time, as shown in (d). (e) The speed (the
slope) changes.

A
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function in Eq. 15-3. In the next freeze-frame, the particle is a bit to the left of xm.
It continues to move in the negative direction of x until it reaches the leftmost po-
sition, at coordinate �xm. Thereafter, as time takes us down the page through
more freeze-frames, the particle moves back to xm and thereafter repeatedly os-
cillates between xm and �xm. In Eq. 15-3, the cosine function itself oscillates be-
tween �1 and �l.The value of xm determines how far the particle moves in its os-
cillations and is called the amplitude of the oscillations (as labeled in the handy
guide of Fig. 15-3).

Figure 15-2b indicates the velocity of the particle with respect to time, in the se-
ries of freeze-frames. We’ll get to a function for the velocity soon, but for now just
notice that the particle comes to a momentary stop at the extreme points and has
its greatest speed (longest velocity vector) as it passes through the center point.

Mentally rotate Fig. 15-2a counterclockwise by 90	, so that the freeze-frames
then progress rightward with time. We set time t � 0 when the particle is at xm.
The particle is back at xm at time t � T (the period of the oscillation), when it
starts the next cycle of oscillation. If we filled in lots of the intermediate freeze-
frames and drew a line through the particle positions, we would have the cosine
curve shown in Fig. 15-2d. What we already noted about the speed is displayed in
Fig. 15-2e. What we have in the whole of Fig. 15-2 is a transformation of what we
can see (the reality of an oscillating particle) into the abstraction of a graph. (In
WileyPLUS the transformation of Fig. 15-2 is available as an animation with
voiceover.) Equation 15-3 is a concise way to capture the motion in the abstrac-
tion of an equation.

More Quantities. The handy guide of Fig. 15-3 defines more quantities
about the motion. The argument of the cosine function is called the phase of the
motion. As it varies with time, the value of the cosine function varies. The con-
stant f is called the phase angle or phase constant. It is in the argument only be-
cause we want to use Eq. 15-3 to describe the motion regardless of where the par-
ticle is in its oscillation when we happen to set the clock time to 0. In Fig. 15-2, we set
t � 0 when the particle is at xm. For that choice, Eq. 15-3 works just fine if we also
set f � 0. However, if we set t � 0 when the particle happens to be at some other
location, we need a different value of f. A few values are indicated in Fig. 15-4.
For example, suppose the particle is at its leftmost position when we happen to
start the clock at t � 0.Then Eq. 15-3 describes the motion if f � p rad.To check,
substitute t � 0 and f � p rad into Eq. 15-3. See, it gives x � �xm just then. Now
check the other examples in Fig. 15-4.

The quantity v in Eq. 15-3 is the angular frequency of the motion.To relate it
to the frequency f and the period T, let’s first note that the position x(t) of the
particle must (by definition) return to its initial value at the end of a period. That
is, if x(t) is the position at some chosen time t, then the particle must return to that
same position at time t � T. Let’s use Eq. 15-3 to express this condition, but let’s
also just set f � 0 to get it out of the way. Returning to the same position can
then be written as

xm cos vt � xm cos v(t � T). (15-4)

The cosine function first repeats itself when its argument (the phase, remember)
has increased by 2p rad. So, Eq. 15-4 tells us that

v(t � T) � vt � 2p

or vT � 2p.

Thus, from Eq. 15-2 the angular frequency is

(15-5)

The SI unit of angular frequency is the radian per second.

v �
2p

�
� 2pf.

Figure 15-3 A handy guide to the quantities
in Eq. 15-3 for simple harmonic motion.

Displacement
at time t

Amplitude

Angular
frequency

Time

Phase
constant
or phase 
angle

Phase

x(t) = xm cos( t +   ) ω φ 

0

+xm–xm 0

p rad

p rad3
2

1
2
p rad

Figure 15-4 Values of f corresponding to
the position of the particle at time t � 0.
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We’ve had a lot of quantities here, quantities that we could experimentally
change to see the effects on the particle’s SHM. Figure 15-5 gives some examples.
The curves in Fig. 15-5a show the effect of changing the amplitude. Both curves
have the same period. (See how the “peaks” line up?) And both are for f � 0. (See
how the maxima of the curves both occur at t � 0?) In Fig. 15-5b, the two curves
have the same amplitude xm but one has twice the period as the other (and thus half
the frequency as the other). Figure 15-5c is probably more difficult to understand.
The curves have the same amplitude and same period but one is shifted relative to
the other because of the different f values. See how the one with f � 0 is just a reg-
ular cosine curve? The one with the negative f is shifted rightward from it.That is a
general result: negative f values shift the regular cosine curve rightward and posi-
tive f values shift it leftward. (Try this on a graphing calculator.)
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φ = 0

φ = – _
4
π

This negative value
shifts the cosine
curve rightward.

This zero gives a
regular cosine curve.

Figure 15-5 In all three cases, the blue curve is obtained
from Eq. 15-3 with f � 0. (a) The red curve differs from
the blue curve only in that the red-curve amplitude x�m is
greater (the red-curve extremes of displacement are high-
er and lower). (b) The red curve differs from the blue
curve only in that the red-curve period is T� � T/2 (the red
curve is compressed horizontally). (c) The red curve dif-
fers from the blue curve only in that for the red curve 
f � �p/4 rad rather than zero (the negative value of f
shifts the red curve to the right).

Checkpoint 1
A particle undergoing simple harmonic oscillation of period T (like that in Fig. 15-2) is
at �xm at time t � 0. Is it at �xm, at �xm, at 0, between �xm and 0, or between 0 and
�xm when (a) t � 2.00T, (b) t � 3.50T, and (c) t � 5.25T?

The Velocity of SHM
We briefly discussed velocity as shown in Fig. 15-2b, finding that it varies in magni-
tude and direction as the particle moves between the extreme points (where the
speed is momentarily zero) and through the central point (where the speed is maxi-
mum). To find the velocity v(t) as a function of time, let’s take a time derivative of
the position function x(t) in Eq. 15-3:

or v(t) � �vxm sin(vt � f) (velocity). (15-6)

The velocity depends on time because the sine function varies with time,
between the values of �1 and �1. The quantities in front of the sine function

v(t) �
dx(t)

dt
�

d
dt

 [xm cos(vt � f)]
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determine the extent of the variation in the velocity, between �vxm and �vxm.
We say that vxm is the velocity amplitude vm of the velocity variation. When the
particle is moving rightward through x � 0, its velocity is positive and the magni-
tude is at this greatest value. When it is moving leftward through x � 0, its veloc-
ity is negative and the magnitude is again at this greatest value. This variation
with time (a negative sine function) is displayed in the graph of Fig. 15-6b for a
phase constant of f � 0, which corresponds to the cosine function for the dis-
placement versus time shown in Fig. 15-6a.

Recall that we use a cosine function for x(t) regardless of the particle’s posi-
tion at t � 0.We simply choose an appropriate value of f so that Eq. 15-3 gives us
the correct position at t � 0. That decision about the cosine function leads us to a
negative sine function for the velocity in Eq. 15-6, and the value of f now gives
the correct velocity at t � 0.

The Acceleration of SHM
Let’s go one more step by differentiating the velocity function of Eq. 15-6 with
respect to time to get the acceleration function of the particle in simple harmonic
motion:

or a(t) � �v2xm cos(vt � f) (acceleration). (15-7)

We are back to a cosine function but with a minus sign out front. We know the
drill by now.The acceleration varies because the cosine function varies with time,
between �1 and �1. The variation in the magnitude of the acceleration is set by
the acceleration amplitude am, which is the product v2xm that multiplies the co-
sine function.

Figure 15-6c displays Eq. 15-7 for a phase constant f � 0, consistent with
Figs. 15-6a and 15-6b. Note that the acceleration magnitude is zero when the 
cosine is zero, which is when the particle is at x � 0. And the acceleration mag-
nitude is maximum when the cosine magnitude is maximum, which is when the
particle is at an extreme point, where it has been slowed to a stop so that its 
motion can be reversed. Indeed, comparing Eqs. 15-3 and 15-7 we see an extremely
neat relationship:

a(t) � �v2x(t). (15-8)

This is the hallmark of SHM: (1) The particle’s acceleration is always oppo-
site its displacement (hence the minus sign) and (2) the two quantities are al-
ways related by a constant (v2). If you ever see such a relationship in an oscil-
lating situation (such as with, say, the current in an electrical circuit, or the
rise and fall of water in a tidal bay), you can immediately say that the motion
is SHM and immediately identify the angular frequency v of the motion. In a
nutshell:

a(t) �
dv(t)

dt
�

d
dt

 [�vxm sin(vt � f)]

In SHM, the acceleration a is proportional to the displacement x but opposite in
sign, and the two quantities are related by the square of the angular frequency v.

Checkpoint 2
Which of the following relationships between a particle’s acceleration a and its
position x indicates simple harmonic oscillation: (a) a � 3x2, (b) a � 5x, (c) a � �4x,
(d) a � �2/x? For the SHM, what is the angular frequency (assume the unit of rad/s)?

Figure 15-6 (a) The displacement x(t) of a
particle oscillating in SHM with phase
angle f equal to zero. The period T marks
one complete oscillation. (b) The velocity
v(t) of the particle. (c) The acceleration
a(t) of the particle.
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Figure 15-7 A linear simple harmonic oscil-
lator. The surface is frictionless. Like the
particle of Fig. 15-2, the block moves in
simple harmonic motion once it has been
either pulled or pushed away from the
x � 0 position and released. Its displace-
ment is then given by Eq. 15-3.

k

x

–xm x = 0 +xm

m

Simple harmonic motion is the motion of a particle when the force acting on it is
proportional to the particle’s displacement but in the opposite direction.

The Force Law for Simple Harmonic Motion
Now that we have an expression for the acceleration in terms of the displacement
in Eq. 15-8, we can apply Newton’s second law to describe the force responsible
for SHM:

F � ma � m(�v2x) � �(mv2)x. (15-9)

The minus sign means that the direction of the force on the particle is opposite the di-
rection of the displacement of the particle.That is, in SHM the force is a restoring force
in the sense that it fights against the displacement,attempting to restore the particle to
the center point at x � 0. We’ve seen the general form of Eq. 15-9 back in Chapter 8
when we discussed a block on a spring as in Fig.15-7.There we wrote Hooke’s law,

F � �kx, (15-10)

for the force acting on the block. Comparing Eqs. 15-9 and 15-10, we can now re-
late the spring constant k (a measure of the stiffness of the spring) to the mass of
the block and the resulting angular frequency of the SHM:

k � mv2. (15-11)

Equation 15-10 is another way to write the hallmark equation for SHM.

Checkpoint 3
Which of the following relationships between the force F on a particle and the parti-
cle’s position x gives SHM: (a) F � �5x, (b) F � �400x2, (c) F � 10x, (d) F � 3x2?

The block–spring system of Fig. 15-7 is called a linear simple harmonic oscillator
(linear oscillator, for short), where linear indicates that F is proportional to x to
the first power (and not to some other power).

If you ever see a situation in which the force in an oscillation is always pro-
portional to the displacement but in the opposite direction, you can immediately
say that the oscillation is SHM. You can also immediately identify the associated
spring constant k. If you know the oscillating mass, you can then determine the
angular frequency of the motion by rewriting Eq. 15-11 as

(angular frequency). (15-12)

(This is usually more important than the value of k.) Further, you can determine
the period of the motion by combining Eqs. 15-5 and 15-12 to write

(period). (15-13)

Let’s make a bit of physical sense of Eqs. 15-12 and 15-13. Can you see that a
stiff spring (large k) tends to produce a large v (rapid oscillations) and thus a
small period T? Can you also see that a large mass m tends to result in a small v
(sluggish oscillations) and thus a large period T?

Every oscillating system, be it a diving board or a violin string, has some
element of “springiness” and some element of “inertia” or mass. In Fig. 15-7, these
elements are separated: The springiness is entirely in the spring, which we assume
to be massless, and the inertia is entirely in the block, which we assume to be rigid.
In a violin string, however, the two elements are both within the string.

T � 2pA
m
k

v � A
k
m
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Additional examples, video, and practice available at WileyPLUS

This maximum speed occurs when the oscillating block is
rushing through the origin; compare Figs. 15-6a and 15-6b,
where you can see that the speed is a maximum whenever
x � 0.

(d) What is the magnitude am of the maximum acceleration
of the block?

KEY IDEA

The magnitude am of the maximum acceleration is the accel-
eration amplitude v2xm in Eq. 15-7.

Calculation: So, we have

am � v2xm � (9.78 rad/s)2(0.11 m)

� 11 m/s2. (Answer)

This maximum acceleration occurs when the block is at the
ends of its path, where the block has been slowed to a stop
so that its motion can be reversed. At those extreme
points, the force acting on the block has its maximum mag-
nitude; compare Figs. 15-6a and 15-6c, where you can see
that the magnitudes of the displacement and acceleration
are maximum at the same times, when the speed is zero, as
you can see in Fig. 15-6b.

(e) What is the phase constant f for the motion?

Calculations: Equation 15-3 gives the displacement of the
block as a function of time. We know that at time t � 0,
the block is located at x � xm. Substituting these initial
conditions, as they are called, into Eq. 15-3 and canceling xm

give us
1 � cos f. (15-14)

Taking the inverse cosine then yields

f � 0 rad. (Answer)

(Any angle that is an integer multiple of 2p rad also satisfies
Eq. 15-14; we chose the smallest angle.)

(f) What is the displacement function x(t) for the
spring–block system?

Calculation: The function x(t) is given in general form by
Eq. 15-3. Substituting known quantities into that equation
gives us

x(t) � xm cos(vt � f)

� (0.11 m) cos[(9.8 rad/s)t � 0]

� 0.11 cos(9.8t), (Answer)

where x is in meters and t is in seconds.

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance 
x � 11 cm from its equilibrium position at x � 0 on a fric-
tionless surface and released from rest at t � 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

KEY IDEA

The block–spring system forms a linear simple harmonic 
oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:

� 9.8 rad/s. (Answer)

The frequency follows from Eq. 15-5, which yields

(Answer)

The period follows from Eq. 15-2, which yields

(Answer)

(b) What is the amplitude of the oscillation?

KEY IDEA

With no friction involved, the mechanical energy of the spring–
block system is conserved.

Reasoning: The block is released from rest 11 cm from its
equilibrium position, with zero kinetic energy and the
elastic potential energy of the system at a maximum. Thus,
the block will have zero kinetic energy whenever it is
again 11 cm from its equilibrium position, which means it
will never be farther than 11 cm from that position. Its
maximum displacement is 11 cm:

xm � 11 cm. (Answer)

(c) What is the maximum speed vm of the oscillating block,
and where is the block when it has this speed?

KEY IDEA

The maximum speed vm is the velocity amplitude vxm in Eq.15-6.

Calculation: Thus, we have

vm � vxm � (9.78 rad/s)(0.11 m)

� 1.1 m/s. (Answer)

T �
1
f

�
1

1.56 Hz
� 0.64 s � 640 ms.

f �
v

2p
�

9.78 rad/s
2p rad

� 1.56 Hz � 1.6 Hz.

v � A
k
m

� A
65 N/m
0.68 kg

� 9.78 rad/s

Sample Problem 15.01 Block–spring SHM, amplitude, acceleration, phase constant
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Calculations: We know v and want f and xm. If we divide
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns
and reduce the other to a single trig function:

Solving for tan f, we find

� �0.461.

This equation has two solutions:

f � �25	 and f � 180	 � (�25	) � 155	.

Normally only the first solution here is displayed by a calcu-
lator, but it may not be the physically possible solution. To
choose the proper solution, we test them both by using them
to compute values for the amplitude xm. From Eq. 15-15, we
find that if f � �25	, then

We find similarly that if f � 155	, then xm � 0.094 m.
Because the amplitude of SHM must be a positive constant,
the correct phase constant and amplitude here are

f � 155	 and xm � 0.094 m � 9.4 cm. (Answer)

xm �
x(0)

cos f
�

�0.0850 m
cos(�25	)

� �0.094 m.

tan f � �
v(0)

vx(0)
� �

�0.920 m/s
(23.5 rad/s)(�0.0850 m)

v(0)
x(0)

�
�vxm sin f

xm cos f
� �v tan f.

Sample Problem 15.02 Finding SHM phase constant from displacement and velocity

At t � 0, the displacement x(0) of the block in a linear oscil-
lator like that of Fig. 15-7 is �8.50 cm. (Read x(0) as “x at
time zero.”) The block’s velocity v(0) then is �0.920 m/s,
and its acceleration a(0) is �47.0 m/s2.

(a) What is the angular frequency v of this system?

KEY IDEA

With the block in SHM, Eqs. 15-3, 15-6, and 15-7 give its dis-
placement, velocity, and acceleration, respectively, and each
contains v.

Calculations: Let’s substitute t � 0 into each to see
whether we can solve any one of them for v.We find

x(0) � xm cos f, (15-15)

v(0) � �vxm sin f, (15-16)

and a(0) � �v2xm cos f. (15-17)

In Eq. 15-15, v has disappeared. In Eqs. 15-16 and 15-17, we
know values for the left sides, but we do not know xm and f.
However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim-
inate both xm and f and can then solve for v as

� 23.5 rad/s. (Answer)

(b) What are the phase constant f and amplitude xm?

v � A�
a(0)
x(0)

� A�
47.0 m/s2

�0.0850 m

Additional examples, video, and practice available at WileyPLUS

15-2 ENERGY IN SIMPLE HARMONIC MOTION

After reading this module, you should be able to . . .

15.19 For a spring–block oscillator, calculate the kinetic energy
and elastic potential energy at any given time.

15.20 Apply the conservation of energy to relate the total en-
ergy of a spring–block oscillator at one instant to the total
energy at another instant. 

15.21 Sketch a graph of the kinetic energy, potential energy,
and total energy of a spring–block oscillator, first as a func-
tion of time and then as a function of the oscillator’s position.

15.22 For a spring–block oscillator, determine the block’s po-
sition when the total energy is entirely kinetic energy and
when it is entirely potential energy.

● A particle in simple harmonic motion has, at any time, ki-
netic energy K mv2 and potential energy U kx2. If no1

2�1
2�

friction is present, the mechanical energy E K U
remains constant even though K and U change.

��

Learning Objectives

Key Ideas

Energy in Simple Harmonic Motion
Let’s now examine the linear oscillator of Chapter 8, where we saw that the energy
transfers back and forth between kinetic energy and potential energy, while the sum
of the two—the mechanical energy E of the oscillator—remains constant. The 
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Figure 15-8 (a) Potential energy U(t), kinet-
ic energy K(t), and mechanical energy E
as functions of time t for a linear harmon-
ic oscillator. Note that all energies are
positive and that the potential energy and
the kinetic energy peak twice during
every period. (b) Potential energy U(x),
kinetic energy K(x), and mechanical energy
E as functions of position x for a linear 
harmonic oscillator with amplitude xm.
For x � 0 the energy is all kinetic, and for 
x � �xm it is all potential.
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As time changes, the
energy shifts between
the two types, but the
total is constant.

As position changes, the
energy shifts between
the two types, but the
total is constant.

Checkpoint 4
In Fig. 15-7, the block has a kinetic energy of 3 J and the spring has an elastic potential
energy of 2 J when the block is at x � �2.0 cm. (a) What is the kinetic energy when
the block is at x � 0? What is the elastic potential energy when the block is at (b)
x � �2.0 cm and (c) x � �xm?

(a) What is the total mechanical energy E of the spring–
block system?

KEY IDEA

The mechanical energy E (the sum of the kinetic energy
of the block and the potential energy of

the spring) is constant throughout the motion of the oscillator.
Thus, we can evaluate E at any point during the motion.

Calculations: Because we are given amplitude xm of the os-
cillations, let’s evaluate E when the block is at position x � xm,

U � 1
2kx2K � 1

2mv2

Sample Problem 15.03 SHM potential energy, kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti-sway
devices to prevent them from oscillating in a wind. The de-
vice might be a block oscillating at the end of a spring and
on a lubricated track. If the building sways, say, eastward,
the block also moves eastward but delayed enough so that
when it finally moves, the building is then moving back
westward. Thus, the motion of the oscillator is out of step
with the motion of the building.

Suppose the block has mass m � 2.72 � 105 kg and is de-
signed to oscillate at frequency f � 10.0 Hz and with ampli-
tude xm � 20.0 cm.

potential energy of a linear oscillator like that of Fig. 15-7 is associated entirely
with the spring. Its value depends on how much the spring is stretched or com-
pressed—that is, on x(t).We can use Eqs. 8-11 and 15-3 to find

(15-18)

Caution: A function written in the form cos2 A (as here) means (cos A)2 and is not
the same as one written cos A2, which means cos(A2).

The kinetic energy of the system of Fig. 15-7 is associated entirely with the
block. Its value depends on how fast the block is moving—that is, on v(t). We can
use Eq. 15-6 to find

(15-19)

If we use Eq. 15-12 to substitute k /m for v2, we can write Eq. 15-19 as

(15-20)

The mechanical energy follows from Eqs. 15-18 and 15-20 and is

E � U � K

For any angle a,
cos2 a � sin2 a � 1.

Thus, the quantity in the square brackets above is unity and we have

(15-21)

The mechanical energy of a linear oscillator is indeed constant and independent of
time. The potential energy and kinetic energy of a linear oscillator are shown as
functions of time t in Fig. 15-8a and as functions of displacement x in Fig. 15-8b. In
any oscillating system, an element of springiness is needed to store the potential en-
ergy and an element of inertia is needed to store the kinetic energy.

E � U � K � 1
2 kx2

m.

� 1
2kx2

m [cos2(vt � f) � sin2(vt � f)].

� 1
2kx2

m cos2(vt � f) � 1
2kx2

m sin2(vt � f)

K(t) � 1
2 mv2 � 1

2kx2
m sin2(vt � f).

K(t) � 1
2 mv2 � 1

2 mv2x2
m sin2(vt � f).

U(t) � 1
2 kx2 � 1

2kx2
m cos2(vt � f).
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An Angular Simple Harmonic Oscillator
Figure 15-9 shows an angular version of a simple harmonic oscillator; the element
of springiness or elasticity is associated with the twisting of a suspension wire
rather than the extension and compression of a spring as we previously had. The
device is called a torsion pendulum, with torsion referring to the twisting.

If we rotate the disk in Fig. 15-9 by some angular displacement u from its rest
position (where the reference line is at u � 0) and release it, it will oscillate about
that position in angular simple harmonic motion. Rotating the disk through an
angle u in either direction introduces a restoring torque given by

t � �ku. (15-22)

Here k (Greek kappa) is a constant, called the torsion constant, that depends on
the length, diameter, and material of the suspension wire.

Comparison of Eq. 15-22 with Eq. 15-10 leads us to suspect that Eq. 15-22 is
the angular form of Hooke’s law, and that we can transform Eq. 15-13, which
gives the period of linear SHM, into an equation for the period of angular SHM:
We replace the spring constant k in Eq. 15-13 with its equivalent, the constant

Additional examples, video, and practice available at WileyPLUS

15-3 AN ANGULAR SIMPLE HARMONIC OSCILLATOR

After reading this module, you should be able to . . .

15.23 Describe the motion of an angular simple harmonic
oscillator.

15.24 For an angular simple harmonic oscillator, apply the re-
lationship between the torque t and the angular displace-
ment u (from equilibrium).

15.25 For an angular simple harmonic oscillator, apply the re-
lationship between the period T (or frequency f ), the rota-
tional inertia I, and the torsion constant k.

15.26 For an angular simple harmonic oscillator at any instant,
apply the relationship between the angular acceleration a, the
angular frequency v, and the angular displacement u.

Learning Objectives

where it has velocity v � 0. However, to evaluate U at that
point, we first need to find the spring constant k. From
Eq. 15-12 and Eq.15-5 ,we find

We can now evaluate E as

(Answer)� 2.147 � 107 J � 2.1 � 107 J.

� 0 � 1
2(1.073 � 109 N/m)(0.20 m)2

E � K � U � 1
2mv2 � 1

2kx2

� 1.073 � 109 N/m.

� (2.72 � 105 kg)(2p)2(10.0 Hz)2

k � mv2 � m(2pf )2

(v � 2pf )(v � 2k/m)

(b) What is the block’s speed as it passes through the equi-
librium point?

Calculations: We want the speed at x � 0, where the 
potential energy is and the mechanical energy
is entirely kinetic energy. So, we can write

or v � 12.6 m/s. (Answer)

Because E is entirely kinetic energy, this is the maximum
speed vm.

2.147 � 107 J � 1
2(2.72 � 105 kg)v2 � 0,

E � K � U � 1
2mv2 � 1

2kx2

U � 1
2kx2 � 0

● A torsion pendulum consists of an object suspended on a wire. When the wire is twisted and then released, the object oscil-
lates in angular simple harmonic motion with a period given by

where I is the rotational inertia of the object about the axis of rotation and k is the torsion constant of the wire.

T � 2pA
I
k

 ,

Key Idea

Figure 15-9 A torsion pendulum is an angular
version of a linear simple harmonic oscilla-
tor. The disk oscillates in a horizontal plane;
the reference line oscillates with angular
amplitude um. The twist in the suspension
wire stores potential energy as a spring does
and provides the restoring torque.

– mθ 

+ mθ 
0

Suspension wire 

Fixed end 

Reference line 
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The constant k, which is a property of the wire, is the same for
both figures; only the periods and the rotational inertias differ.

Let us square each of these equations, divide the second
by the first, and solve the resulting equation for Ib.The result is

� 6.12 � 10�4 kg �m2. (Answer)

Ib � Ia
T 2

b

T 2
a

� (1.73 � 10�4 kg �m2)
(4.76 s)2

(2.53 s)2

Ta � 2pA
Ia

k
  and  Tb � 2pA

Ib

k
.

Sample Problem 15.04 Angular simple harmonic oscillator, rotational inertia, period

Figure 15-10a shows a thin rod whose length L is 12.4 cm and
whose mass m is 135 g, suspended at its midpoint from a long
wire. Its period Ta of angular SHM is measured to be 2.53 s.
An irregularly shaped object, which we call object X, is then
hung from the same wire, as in Fig. 15-10b, and its period Tb is
found to be 4.76 s. What is the rotational inertia of object X
about its suspension axis?

KEY IDEA

The rotational inertia of either the rod or object X is related
to the measured period by Eq. 15-23.

Calculations: In Table 10-2e, the rotational inertia of a thin
rod about a perpendicular axis through its midpoint is given as

mL2.Thus, we have, for the rod in Fig. 15-10a,

Ia � mL2 � ( )(0.135 kg)(0.124 m)2

� 1.73 � 10�4 kg �m2.

Now let us write Eq. 15-23 twice, once for the rod and once
for object X:

1
12

1
12

1
12

Figure 15-10 Two torsion pen-
dulums, consisting of (a) a
wire and a rod and (b) the
same wire and an irregularly
shaped object.

Suspension
wire

Rod

L

Object X(a) (b)

Additional examples, video, and practice available at WileyPLUS

15-4 PENDULUMS, CIRCULAR MOTION

After reading this module, you should be able to . . .

15.27 Describe the motion of an oscillating simple pendulum.
15.28 Draw a free-body diagram of a pendulum bob with the

pendulum at angle u to the vertical.
15.29 For small-angle oscillations of a simple pendulum, relate

the period T (or frequency f ) to the pendulum’s length L.
15.30 Distinguish between a simple pendulum and a physical

pendulum.
15.31 For small-angle oscillations of a physical pendulum, re-

late the period T (or frequency f ) to the distance h be-
tween the pivot and the center of mass.

15.32 For an angular oscillating system, determine the angu-
lar frequency v from either an equation relating torque t
and angular displacement u or an equation relating angular
acceleration a and angular displacement u.

15.33 Distinguish between a pendulum’s angular frequency
v (having to do with the rate at which cycles are com-
pleted) and its du/dt (the rate at which its angle with the
vertical changes).

15.34 Given data about the angular position u and rate of
change du/dt at one instant, determine the phase constant f
and amplitude um.

15.35 Describe how the free-fall acceleration can be mea-
sured with a simple pendulum.

15.36 For a given physical pendulum, determine the location
of the center of oscillation and identify the meaning of that
phrase in terms of a simple pendulum.

15.37 Describe how simple harmonic motion is related to uni-
form circular motion.

Learning Objectives

k of Eq. 15-22, and we replace the mass m in Eq. 15-13 with its equivalent, the
rotational inertia I of the oscillating disk.These replacements lead to

(torsion pendulum). (15-23)T � 2p A
�

k
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Pendulums
We turn now to a class of simple harmonic oscillators in which the springiness is
associated with the gravitational force rather than with the elastic properties of
a twisted wire or a compressed or stretched spring.

The Simple Pendulum
If an apple swings on a long thread, does it have simple harmonic motion? If so,
what is the period T ? To answer, we consider a simple pendulum, which consists
of a particle of mass m (called the bob of the pendulum) suspended from one end
of an unstretchable, massless string of length L that is fixed at the other end, as in
Fig. 15-11a.The bob is free to swing back and forth in the plane of the page, to the
left and right of a vertical line through the pendulum’s pivot point.

The Restoring Torque. The forces acting on the bob are the force from the
string and the gravitational force g, as shown in Fig. 15-11b, where the string makes
an angle with the vertical. We resolve g into a radial component Fg cos and a
component Fg sin that is tangent to the path taken by the bob.This tangential com-
ponent produces a restoring torque about the pendulum’s pivot point because the
component always acts opposite the displacement of the bob so as to bring the bob
back toward its central location. That location is called the equilibrium position
( ) because the pendulum would be at rest there were it not swinging.

From Eq. 10-41 , we can write this restoring torque as

t � �L(Fg sin u), (15-24)

where the minus sign indicates that the torque acts to reduce u and L is the moment
arm of the force component Fg sin u about the pivot point. Substituting Eq. 15-24 into
Eq.10-44 (t � Ia) and then substituting mg as the magnitude of Fg,we obtain

�L(mg sin u) � Ia, (15-25)

where I is the pendulum’s rotational inertia about the pivot point and a is its
angular acceleration about that point.

We can simplify Eq. 15-25 if we assume the angle u is small, for then we can
approximate sin u with u (expressed in radian measure). (As an example, if u �
5.00	 � 0.0873 rad, then sin u � 0.0872, a difference of only about 0.1%.) With
that approximation and some rearranging, we then have

(15-26)

This equation is the angular equivalent of Eq. 15-8, the hallmark of SHM. It tells
us that the angular acceleration a of the pendulum is proportional to the angular
displacement u but opposite in sign. Thus, as the pendulum bob moves to the
right, as in Fig. 15-11a, its acceleration to the left increases until the bob stops and

a � �
mgL

I
u.

(t � r�F)
u � 0

u
uF

:
u

F
:

T
:

● A simple pendulum consists of a rod of negligible mass that
pivots about its upper end, with a particle (the bob) attached
at its lower end. If the rod swings through only small angles,
its motion is approximately simple harmonic motion with a pe-
riod given by

(simple pendulum),

where I is the particle’s rotational inertia about the pivot, m is
the particle’s mass, and L is the rod’s length.

T � 2pA
I

mgL

● A physical pendulum has a more complicated distribution
of mass. For small angles of swinging, its motion is simple
harmonic motion with a period given by

(physical pendulum),

where I is the pendulum’s rotational inertia about the pivot, m
is the pendulum’s mass, and h is the distance between the
pivot and the pendulum’s center of mass.

● Simple harmonic motion corresponds to the projection of
uniform circular motion onto a diameter of the circle.

T � 2pA
I

mgh

Key Ideas

Figure 15-11 (a) A simple pendulum. (b) The
forces acting on the bob are the gravitational
force g and the force from the string.
The tangential component Fg sin u of the
gravitational force is a restoring force that
tends to bring the pendulum back to its cen-
tral position.

T
:

F
:

θ L

θ 
θ Fg sin 

θ Fg cos 
m

s = Lθ 

L

m

(a)

(b)

Pivot
point

T

Fg

This
component
merely
pulls on 
the string.

This
component
brings the 
bob back 
to center.
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Figure 15-12 A physical pendulum. The
restoring torque is hFg sin u. When u � 0,
center of mass C hangs directly below
pivot point O.

begins moving to the left. Then, when it is to the left of the equilibrium position,
its acceleration to the right tends to return it to the right, and so on, as it swings
back and forth in SHM. More precisely, the motion of a simple pendulum swing-
ing through only small angles is approximately SHM. We can state this 
restriction to small angles another way: The angular amplitude um of the motion
(the maximum angle of swing) must be small.

Angular Frequency. Here is a neat trick. Because Eq. 15-26 has the same
form as Eq. 15-8 for SHM, we can immediately identify the pendulum’s angular
frequency as being the square root of the constants in front of the displacement:

.

In the homework problems you might see oscillating systems that do not seem to
resemble pendulums. However, if you can relate the acceleration (linear or angu-
lar) to the displacement (linear or angular), you can then immediately identify
the angular frequency as we have just done here.

Period. Next, if we substitute this expression for v into Eq. 15-5 ( ),
we see that the period of the pendulum may be written as

(15-27)

All the mass of a simple pendulum is concentrated in the mass m of the particle-
like bob, which is at radius L from the pivot point. Thus, we can use Eq. 10-33 
(I � mr2) to write I � mL2 for the rotational inertia of the pendulum.
Substituting this into Eq. 15-27 and simplifying then yield

(simple pendulum, small amplitude). (15-28)

We assume small-angle swinging in this chapter.

The Physical Pendulum
A real pendulum, usually called a physical pendulum, can have a complicated
distribution of mass. Does it also undergo SHM? If so, what is its period?

Figure 15-12 shows an arbitrary physical pendulum displaced to one side
by angle u. The gravitational force g acts at its center of mass C, at a distance h
from the pivot point O. Comparison of Figs. 15-12 and 15-11b reveals only one
important difference between an arbitrary physical pendulum and a simple
pendulum. For a physical pendulum the restoring component Fg sin u of the grav-
itational force has a moment arm of distance h about the pivot point, rather than
of string length L. In all other respects, an analysis of the physical pendulum
would duplicate our analysis of the simple pendulum up through Eq. 15-27.
Again (for small um), we would find that the motion is approximately SHM.

If we replace L with h in Eq. 15-27, we can write the period as

(physical pendulum, small amplitude). (15-29)

As with the simple pendulum, I is the rotational inertia of the pendulum about O.
However, now I is not simply mL2 (it depends on the shape of the physical pen-
dulum), but it is still proportional to m.

A physical pendulum will not swing if it pivots at its center of mass.
Formally, this corresponds to putting h � 0 in Eq. 15-29. That equation then pre-
dicts T : �, which implies that such a pendulum will never complete one swing.

T � 2p A
I

mgh

F
:

T � 2p A
L
g

T � 2p A
I

mgL
.

v � 2p/T

v � A
mgL

I

θ h

θ 

θ θ Fg sin 
Fg cos 

O

C

Fg

This component 
brings the 
pendulum
back to center.
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Corresponding to any physical pendulum that oscillates about a given pivot
point O with period T is a simple pendulum of length L0 with the same period T.
We can find L0 with Eq. 15-28.The point along the physical pendulum at distance
L0 from point O is called the center of oscillation of the physical pendulum for the
given suspension point.

Measuring g
We can use a physical pendulum to measure the free-fall acceleration g at a par-
ticular location on Earth’s surface. (Countless thousands of such measurements
have been made during geophysical prospecting.)

To analyze a simple case, take the pendulum to be a uniform rod of length L,
suspended from one end. For such a pendulum, h in Eq. 15-29, the distance
between the pivot point and the center of mass, is L. Table 10-2e tells us that the
rotational inertia of this pendulum about a perpendicular axis through its center
of mass is mL2. From the parallel-axis theorem of Eq. 10-36 (I � Icom � Mh2),
we then find that the rotational inertia about a perpendicular axis through one
end of the rod is

I � Icom � mh2 � mL2 � m( L)2 � mL2. (15-30)

If we put h � L and I � mL2 in Eq. 15-29 and solve for g, we find

. (15-31)

Thus, by measuring L and the period T, we can find the value of g at the pendu-
lum’s location. (If precise measurements are to be made, a number of refine-
ments are needed, such as swinging the pendulum in an evacuated chamber.)

g �
8p2L
3T 2

1
3

1
2

1
3

1
2

1
12

1
12

1
2

Checkpoint 5
Three physical pendulums, of masses m0, 2m0, and 3m0, have the same shape and size
and are suspended at the same point. Rank the masses according to the periods of the
pendulums, greatest first.

Sample Problem 15.05 Physical pendulum, period and length

In Fig. 15-13a, a meter stick swings about a pivot point at
one end, at distance h from the stick’s center of mass.

(a) What is the period of oscillation T?

KEY IDEA

The stick is not a simple pendulum because its mass is not
concentrated in a bob at the end opposite the pivot point—
so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is
given by Eq. 15-29, for which we need the rotational 
inertia I of the stick about the pivot point. We can treat
the stick as a uniform rod of length L and mass m. Then
Eq. 15-30 tells us that I � mL2, and the distance h in1

3

Figure 15-13 (a) A meter stick suspended from one end as a 
physical pendulum. (b) A simple pendulum whose length L0 is
chosen so that the periods of the two pendulums are equal.
Point P on the pendulum of (a) marks the center of oscillation.

P

C

h

L0

(a) (b)

O

Eq. 15-29 is L. Substituting these quantities into Eq. 15-29,1
2
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we find

(15-32)

(15-33)

(Answer)

Note the result is independent of the pendulum’s mass m.

(b) What is the distance L0 between the pivot point O of the
stick and the center of oscillation of the stick?

Calculations: We want the length L0 of the simple pendu-

� 2pA
(2)(1.00 m)

(3)(9.8 m/s2)
� 1.64 s.

� 2p A
2L
3g

T � 2p A
I

mgh
� 2pA

1
3 mL2

mg(1
2L)

Additional examples, video, and practice available at WileyPLUS

Simple Harmonic Motion and Uniform Circular Motion
In 1610, Galileo, using his newly constructed telescope, discovered the four prin-
cipal moons of Jupiter. Over weeks of observation, each moon seemed to him to
be moving back and forth relative to the planet in what today we would call
simple harmonic motion; the disk of the planet was the midpoint of the motion.
The record of Galileo’s observations, written in his own hand, is actually still
available. A. P. French of MIT used Galileo’s data to work out the position of the
moon Callisto relative to Jupiter (actually, the angular distance from Jupiter as
seen from Earth) and found that the data approximates the curve shown in Fig.
15-14. The curve strongly suggests Eq. 15-3, the displacement function for simple
harmonic motion.A period of about 16.8 days can be measured from the plot, but
it is a period of what exactly? After all, a moon cannot possibly be oscillating back
and forth like a block on the end of a spring, and so why would Eq. 15-3 have
anything to do with it?

Actually, Callisto moves with essentially constant speed in an essentially cir-
cular orbit around Jupiter. Its true motion—far from being simple harmonic—
is uniform circular motion along that orbit.What Galileo saw—and what you can
see with a good pair of binoculars and a little patience—is the projection of this
uniform circular motion on a line in the plane of the motion. We are led by
Galileo’s remarkable observations to the conclusion that simple harmonic

lum (drawn in Fig. 15-13b) that has the same period as the
physical pendulum (the stick) of Fig. 15-13a. Setting Eqs.
15-28 and 15-33 equal yields

(15-34)

You can see by inspection that

L0 � L (15-35)

� ( )(100 cm) � 66.7 cm. (Answer)

In Fig. 15-13a, point P marks this distance from suspension
point O. Thus, point P is the stick’s center of oscillation for
the given suspension point. Point P would be different for a
different suspension choice.

2
3

2
3

� 2p A
2L
3g

.T � 2pA
L0

g

Figure 15-14 The angle between Jupiter and its moon Callisto as seen from Earth. Galileo’s 1610
measurements approximate this curve, which suggests simple harmonic motion. At Jupiter’s
mean distance from Earth, 10 minutes of arc corresponds to about 2 � 106 km. (Based on A. P.
French, Newtonian Mechanics, W. W. Norton & Company, New York, 1971, p. 288.)
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motion is uniform circular motion viewed edge-on. In more formal language:

ω
ω

ω

O

y

x
φ

P'

Pv(t)

φ
xm

t +

t +

v

This relates the
velocities of
P and P´.

O

y

x

P'

Pa(t)

2xm

t + φω

ω
a

This relates the
accelerations of
P and P´.

O

y

x
   t + φω

x m

P'

Px(t)

P´ is a particle
moving in a circle.

P is a projection
moving in SHM.

(b) (c)(a)

Figure 15-15 (a) A reference particle P� moving with uniform circular motion in a reference
circle of radius xm. Its projection P on the x axis executes simple harmonic motion. (b) The
projection of the velocity of the reference particle is the velocity of SHM. (c) The projec-
tion of the radial acceleration of the reference particle is the acceleration of SHM.a:

v:

Simple harmonic motion is the projection of uniform circular motion on a diame-
ter of the circle in which the circular motion occurs.

Figure 15-15a gives an example. It shows a reference particle P� moving in
uniform circular motion with (constant) angular speed v in a reference circle. The
radius xm of the circle is the magnitude of the particle’s position vector. At any
time t, the angular position of the particle is vt � f, where f is its angular posi-
tion at t � 0.

Position. The projection of particle P� onto the x axis is a point P, which we
take to be a second particle. The projection of the position vector of particle P�
onto the x axis gives the location x(t) of P. (Can you see the x component in the
triangle in Fig. 15-5a?) Thus, we find

x(t) � xm cos(vt � f), (15-36)

which is precisely Eq. 15-3. Our conclusion is correct. If reference particle P�
moves in uniform circular motion, its projection particle P moves in simple
harmonic motion along a diameter of the circle.

Velocity. Figure 15-15b shows the velocity of the reference particle. From
Eq. 10-18 (v r), the magnitude of the velocity vector is xm; its projection on
the x axis is

v(t) � �vxm sin(vt � f), (15-37)

which is exactly Eq. 15-6.The minus sign appears because the velocity component
of P in Fig. 15-15b is directed to the left, in the negative direction of x. (The minus
sign is consistent with the derivative of Eq. 15-36 with respect to time.)

Acceleration. Figure 15-15c shows the radial acceleration of the reference
particle. From Eq. 10-23 (ar r), the magnitude of the radial acceleration vec-
tor is 2xm; its projection on the x axis is

a(t) � �v2xm cos(vt � f), (15-38)

which is exactly Eq. 15-7.Thus, whether we look at the displacement, the velocity,
or the acceleration, the projection of uniform circular motion is indeed simple
harmonic motion.

v
� v2

a:

v� v
v:
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15-5 DAMPED SIMPLE HARMONIC MOTION

After reading this module, you should be able to . . .

15.38 Describe the motion of a damped simple harmonic oscil-
lator and sketch a graph of the oscillator’s position as a func-
tion of time.

15.39 For any particular time, calculate the position of a
damped simple harmonic oscillator.

15.40 Determine the amplitude of a damped simple harmonic
oscillator at any given time.

15.41 Calculate the angular frequency of a damped simple
harmonic oscillator in terms of the spring constant, the
damping constant, and the mass, and approximate the 
angular frequency when the damping constant is small.

15.42 Apply the equation giving the (approximate) total 
energy of a damped simple harmonic oscillator as a func-
tion of time.

● The mechanical energy E in a real oscillating system de-
creases during the oscillations because external forces, such
as a drag force, inhibit the oscillations and transfer mechani-
cal energy to thermal energy. The real oscillator and its motion
are then said to be damped.

● If the damping force is given by d � �b , where is the
velocity of the oscillator and b is a damping constant, then the
displacement of the oscillator is given by

x(t) � xm e�bt/2m cos(v�t � f),

v:v:F
:

where v�, the angular frequency of the damped oscillator, is
given by

● If the damping constant is small (b � ), then v� � v,
where v is the angular frequency of the undamped oscillator.
For small b, the mechanical energy E of the oscillator is given by

E(t) � kx2
m e�bt/m.1

2

1km

�� � A
k
m

�
b2

4m2 .

Learning Objectives

Key Ideas

Figure 15-16 An idealized damped simple
harmonic oscillator. A vane immersed in a
liquid exerts a damping force on the block
as the block oscillates parallel to the x axis.

Springiness, k 

Rigid support 

Mass m

Damping, b

Vane

x Damped Simple Harmonic Motion
A pendulum will swing only briefly underwater, because the water exerts on the
pendulum a drag force that quickly eliminates the motion. A pendulum swinging
in air does better, but still the motion dies out eventually, because the air exerts
a drag force on the pendulum (and friction acts at its support point), transferring
energy from the pendulum’s motion.

When the motion of an oscillator is reduced by an external force, the oscil-
lator and its motion are said to be damped. An idealized example of a damped
oscillator is shown in Fig. 15-16, where a block with mass m oscillates vertically on
a spring with spring constant k. From the block, a rod extends to a vane (both
assumed massless) that is submerged in a liquid.As the vane moves up and down,
the liquid exerts an inhibiting drag force on it and thus on the entire oscillating
system. With time, the mechanical energy of the block–spring system decreases,
as energy is transferred to thermal energy of the liquid and vane.

Let us assume the liquid exerts a damping force that is proportional to the
velocity of the vane and block (an assumption that is accurate if the vane
moves slowly). Then, for force and velocity components along the x axis in Fig.
15-16, we have

Fd � �bv, (15-39)

where b is a damping constant that depends on the characteristics of both the
vane and the liquid and has the SI unit of kilogram per second. The minus sign
indicates that opposes the motion.F

:

d

v:
F
:

d

Damped Oscillations. The force on the block from the spring is Fs � �kx.
Let us assume that the gravitational force on the block is negligible relative to Fd

and Fs. Then we can write Newton’s second law for components along the x axis
(Fnet,x � max) as

�bv � kx � ma. (15-40)
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Substituting dx/dt for v and d2x/dt 2 for a and rearranging give us the differential
equation

. (15-41)

The solution of this equation is

x(t) � xm e�bt/2m cos(v�t � f), (15-42)

where xm is the amplitude and v� is the angular frequency of the damped oscilla-
tor.This angular frequency is given by

(15-43)

If b � 0 (there is no damping), then Eq. 15-43 reduces to Eq. 15-12 ( )
for the angular frequency of an undamped oscillator, and Eq. 15-42 reduces to
Eq. 15-3 for the displacement of an undamped oscillator. If the damping constant
is small but not zero (so that b � ), then v� � v.

Damped Energy. We can regard Eq. 15-42 as a cosine function whose amplitude,
which is xm e�bt/2m, gradually decreases with time, as Fig. 15-17 suggests. For an un-
damped oscillator, the mechanical energy is constant and is given by Eq. 15-21 (E �

kx2
m). If the oscillator is damped, the mechanical energy is not constant but decreases

with time. If the damping is small, we can find E(t) by replacing xm in Eq. 15-21 with 
xm e�bt/2m, the amplitude of the damped oscillations.By doing so,we find that

E(t) � kx2
me�bt/m, (15-44)

which tells us that, like the amplitude, the mechanical energy decreases exponen-
tially with time.

1
2

1
2

1km

v � 1k/m

v� � A
k
m

�
b2

4m2 .

m
d2x
dt2 � b

dx
dt

� kx � 0

Figure 15-17 The displacement function x(t) for the damped oscillator of Fig. 15-16. The ampli-
tude, which is xm e�bt/2m, decreases exponentially with time.

t (s) 0 1 2 3 4 5 6 

+xm

–xm
xme–bt/2m

xme–bt/2m

x(t)

x

Checkpoint 6
Here are three sets of values for the spring constant, damping constant, and mass
for the damped oscillator of Fig. 15-16. Rank the sets according to the time re-
quired for the mechanical energy to decrease to one-fourth of its initial value,
greatest first.

Set 1 2k0 b0 m0

Set 2 k0 6b0 4m0

Set 3 3k0 3b0 m0
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on the left side.Thus,

� 5.0 s. (Answer)

Because T � 0.34 s, this is about 15 periods of oscillation.

(c) How long does it take for the mechanical energy to drop
to one-half its initial value?

KEY IDEA

From Eq. 15-44, the mechanical energy at time t is kx2
m e�bt/m.

Calculations: The mechanical energy has the value 
kx2

m at t � 0.Thus, we must find the value of t for which

.

If we divide both sides of this equation by kx2
m and solve for

t as we did above, we find

(Answer)

This is exactly half the time we calculated in (b), or about
7.5 periods of oscillation. Figure 15-17 was drawn to illus-
trate this sample problem.

t �
�m ln 1

2

b
�

�(0.25 kg)(ln 1
2)

0.070 kg/s
� 2.5 s.

1
2

1
2kx2

m e�bt/m � 1
2(

1
2kx2

m)

1
2

1
2

t �
�2m ln 1

2

b
�

�(2)(0.25 kg)(ln 1
2)

0.070 kg/s

Sample Problem 15.06 Damped harmonic oscillator, time to decay, energy

For the damped oscillator of Fig. 15-16, m � 250 g, k �
85 N/m, and b � 70 g/s.

(a) What is the period of the motion?

KEY IDEA

Because b � � 4.6 kg/s, the period is approximately
that of the undamped oscillator.

Calculation: From Eq. 15-13, we then have

(Answer)

(b) How long does it take for the amplitude of the damped
oscillations to drop to half its initial value?

KEY IDEA

The amplitude at time t is displayed in Eq. 15-42 as xm e�bt/2m.

Calculations: The amplitude has the value xm at t � 0.Thus,
we must find the value of t for which

xm e�bt/2m � xm.

Canceling xm and taking the natural logarithm of the equa-
tion that remains, we have ln on the right side and

ln(e�bt/2m) � �bt/2m

1
2

1
2

T � 2p A
m
k

� 2p A
0.25 kg
85 N/m

� 0.34 s.

1km

Additional examples, video, and practice available at WileyPLUS

15-6 FORCED OSCILLATIONS AND RESONANCE

After reading this module, you should be able to . . .

15.43 Distinguish between natural angular frequency v and
driving angular frequency vd.

15.44 For a forced oscillator, sketch a graph of the oscillation
amplitude versus the ratio vd/v of driving angular fre-

quency to natural angular frequency, identify the approxi-
mate location of resonance, and indicate the effect of in-
creasing the damping constant.

15.45 For a given natural angular frequency v, identify the ap-
proximate driving angular frequency vd that gives resonance.

● If an external driving force with angular frequency vd acts
on an oscillating system with natural angular frequency v, the
system oscillates with angular frequency vd.

● The velocity amplitude vm of the system is greatest when

vd � v,

a condition called resonance. The amplitude xm of the system
is (approximately) greatest under the same condition.

Learning Objectives

Key Ideas

Forced Oscillations and Resonance
A person swinging in a swing without anyone pushing it is an example of free
oscillation. However, if someone pushes the swing periodically, the swing has
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forced, or driven, oscillations. Two angular frequencies are associated with a sys-
tem undergoing driven oscillations: (1) the natural angular frequency v of the
system, which is the angular frequency at which it would oscillate if it were
suddenly disturbed and then left to oscillate freely, and (2) the angular frequency
vd of the external driving force causing the driven oscillations.

We can use Fig. 15-16 to represent an idealized forced simple harmonic oscil-
lator if we allow the structure marked “rigid support” to move up and down at
a variable angular frequency vd. Such a forced oscillator oscillates at the angular
frequency vd of the driving force, and its displacement x(t) is given by

x(t) � xm cos(vdt � f), (15-45)

where xm is the amplitude of the oscillations.
How large the displacement amplitude xm is depends on a complicated

function of vd and v. The velocity amplitude vm of the oscillations is easier to
describe: it is greatest when

vd � v (resonance), (15-46)

a condition called resonance. Equation 15-46 is also approximately the condition
at which the displacement amplitude xm of the oscillations is greatest.Thus, if you
push a swing at its natural angular frequency, the displacement and velocity
amplitudes will increase to large values, a fact that children learn quickly by trial
and error. If you push at other angular frequencies, either higher or lower, the
displacement and velocity amplitudes will be smaller.

Figure 15-18 shows how the displacement amplitude of an oscillator de-
pends on the angular frequency vd of the driving force, for three values of
the damping coefficient b. Note that for all three the amplitude is approxi-
mately greatest when vd/v � 1 (the resonance condition of Eq. 15-46). The
curves of Fig. 15-18 show that less damping gives a taller and narrower reso-
nance peak.

Examples. All mechanical structures have one or more natural angular fre-
quencies, and if a structure is subjected to a strong external driving force that
matches one of these angular frequencies, the resulting oscillations of the struc-
ture may rupture it. Thus, for example, aircraft designers must make sure that
none of the natural angular frequencies at which a wing can oscillate matches the
angular frequency of the engines in flight. A wing that flaps violently at certain
engine speeds would obviously be dangerous.

Resonance appears to be one reason buildings in Mexico City collapsed in
September 1985 when a major earthquake (8.1 on the Richter scale) occurred
on the western coast of Mexico. The seismic waves from the earthquake should
have been too weak to cause extensive damage when they reached Mexico
City about 400 km away. However, Mexico City is largely built on an ancient
lake bed, where the soil is still soft with water. Although the amplitude of the
seismic waves was small in the firmer ground en route to Mexico City, their
amplitude substantially increased in the loose soil of the city. Acceleration am-
plitudes of the waves were as much as 0.20g, and the angular frequency was
(surprisingly) concentrated around 3 rad/s. Not only was the ground severely
oscillated, but many intermediate-height buildings had resonant angular fre-
quencies of about 3 rad/s. Most of those buildings collapsed during the shaking
(Fig. 15-19), while shorter buildings (with higher resonant angular frequen-
cies) and taller buildings (with lower resonant angular frequencies) remained
standing.

During a 1989 earthquake in the San Francisco–Oakland area, a similar
resonant oscillation collapsed part of a freeway, dropping an upper deck
onto a lower deck. That section of the freeway had been constructed on a
loosely structured mudfill.

Figure 15-18 The displacement amplitude xm

of a forced oscillator varies as the angular
frequency vd of the driving force is varied.
The curves here correspond to three val-
ues of the damping constant b.

A
m
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e

0.6 0.8 1.0 1.2 1.4 
ω d/ω 

b = 50 g/s 
(least
damping)

b = 70 g/s

b = 140 g/s 

Figure 15-19 In 1985, buildings of intermedi-
ate height collapsed in Mexico City as a
result of an earthquake far from the city.
Taller and shorter buildings remained
standing.

John T. Barr/Getty Images, Inc.
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Frequency The frequency f of periodic, or oscillatory, motion is
the number of oscillations per second. In the SI system, it is mea-
sured in hertz:

1 hertz � 1 Hz � 1 oscillation per second � 1 s�1. (15-1)

Period The period T is the time required for one complete oscil-
lation, or cycle. It is related to the frequency by

(15-2)

Simple Harmonic Motion In simple harmonic motion (SHM),
the displacement x(t) of a particle from its equilibrium position is
described by the equation

x � xm cos(vt � f) (displacement), (15-3)

in which xm is the amplitude of the displacement, vt � f is the
phase of the motion, and f is the phase constant. The angular fre-
quency v is related to the period and frequency of the motion by

(angular frequency). (15-5)

Differentiating Eq. 15-3 leads to equations for the particle’s SHM
velocity and acceleration as functions of time:

v � �vxm sin(vt � f) (velocity) (15-6)

and a � �v2xm cos(vt � f) (acceleration). (15-7)

In Eq. 15-6, the positive quantity vxm is the velocity amplitude vm

of the motion. In Eq. 15-7, the positive quantity v2xm is the acceler-
ation amplitude am of the motion.

The Linear Oscillator A particle with mass m that moves un-
der the influence of a Hooke’s law restoring force given by F �
�kx exhibits simple harmonic motion with

(angular frequency) (15-12)

and (period). (15-13)

Such a system is called a linear simple harmonic oscillator.

Energy A particle in simple harmonic motion has, at any time,
kinetic energy K mv2 and potential energy U kx2. If no fric-
tion is present, the mechanical energy E K U remains con-
stant even though K and U change.

��

1
2�1

2�

T � 2pA
m
k

v � A
k
m

v �
2p

T
� 2p f

T �
1
f

.

Review & Summary

Pendulums Examples of devices that undergo simple
harmonic motion are the torsion pendulum of Fig. 15-9, the simple
pendulum of Fig. 15-11, and the physical pendulum of Fig. 15-12.
Their periods of oscillation for small oscillations are, respectively,

(torsion pendulum), (15-23)

(simple pendulum), (15-28)

(physical pendulum). (15-29)

Simple Harmonic Motion and Uniform Circular Motion
Simple harmonic motion is the projection of uniform circular
motion onto the diameter of the circle in which the circular motion
occurs. Figure 15-15 shows that all parameters of circular motion
(position, velocity, and acceleration) project to the corresponding
values for simple harmonic motion.

Damped Harmonic Motion The mechanical energy E in a real
oscillating system decreases during the oscillations because external
forces, such as a drag force, inhibit the oscillations and transfer me-
chanical energy to thermal energy. The real oscillator and its motion
are then said to be damped. If the damping force is given by d �
�b , where is the velocity of the oscillator and b is a damping con-
stant, then the displacement of the oscillator is given by

x(t) � xm e�bt/2m cos(v�t � f), (15-42)

where v�, the angular frequency of the damped oscillator, is
given by

(15-43)

If the damping constant is small (b � ), then v� � v, where v
is the angular frequency of the undamped oscillator. For small b,
the mechanical energy E of the oscillator is given by

E(t) � kx2
m e�bt/m. (15-44)

Forced Oscillations and Resonance If an external 
driving force with angular frequency vd acts on an oscillating sys-
tem with natural angular frequency v, the system oscillates with
angular frequency vd. The velocity amplitude vm of the system is
greatest when

vd � v, (15-46)

a condition called resonance. The amplitude xm of the system is
(approximately) greatest under the same condition.

1
2

1km

v� � A
k
m

�
b2

4m2 .

v:v:
F
:

T � 2p 2I/mgh

T � 2p 2L/g

T � 2p 2I/k

Questions

1 Which of the following describe f for the SHM of Fig. 15-20a:

(a) �p � f � �p/2,

(b) p � f � 3p/2,

(c) �3p/2 � f � �p?

2 The velocity v(t) of a particle undergoing SHM is graphed in
Fig. 15-20b. Is the particle momentarily stationary, headed toward
�xm, or headed toward �xm at (a) point A on the graph and (b)
point B? Is the particle at �xm, at �xm, at 0, between �xm and 0, or
between 0 and �xm when its velocity is represented by (c) point A

and (d) point B? Is the speed of the particle increasing or decreas-
ing at (e) point A and (f) point B?

x

t

v

t

A

B

(a) (b)

Figure 15-20 Questions 1 and 2.
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11 In Fig. 15-28, a spring–block
system is put into SHM in two ex-
periments. In the first, the block is
pulled from the equilibrium position
through a displacement d1 and then
released. In the second, it is pulled
from the equilibrium position
through a greater displacement d2 and then released. Are the
(a) amplitude, (b) period, (c) frequency, (d) maximum kinetic en-
ergy, and (e) maximum potential energy in the second experiment
greater than, less than, or the same as those in the first experiment?

12 Figure 15-29 gives, for three situations, the displacements x(t)
of a pair of simple harmonic oscillators (A and B) that are identical
except for phase. For each pair, what phase shift (in radians and in
degrees) is needed to shift the curve for A to coincide with the
curve for B? Of the many possible answers, choose the shift with
the smallest absolute magnitude.

QUESTIONS

3 The acceleration a(t) of a parti-
cle undergoing SHM is graphed in
Fig. 15-21. (a) Which of the labeled
points corresponds to the particle
at �xm? (b) At point 4, is the veloc-
ity of the particle positive, negative,
or zero? (c) At point 5, is the parti-
cle at �xm, at �xm, at 0, between
�xm and 0, or between 0 and �xm?

4 Which of the following relationships between the acceleration
a and the displacement x of a particle involve SHM: (a) a � 0.5x,
(b) a � 400x2, (c) a � �20x, (d) a � �3x2?

5 You are to complete Fig. 15-22a
so that it is a plot of velocity v versus
time t for the spring–block oscillator
that is shown in Fig. 15-22b for t � 0.
(a) In Fig. 15-22a, at which lettered
point or in what region between the
points should the (vertical) v axis in-
tersect the t axis? (For example,
should it intersect at point A, or
maybe in the region between points
A and B?) (b) If the block’s veloc-
ity is given by v � �vm sin(vt � f),
what is the value of f? Make it pos-
itive, and if you cannot specify the
value (such as �p/2 rad), then give
a range of values (such as between
0 and p/2 rad).

6 You are to complete Fig. 15-23a
so that it is a plot of acceleration a
versus time t for the spring–block
oscillator that is shown in Fig. 15-
23b for t � 0. (a) In Fig. 15-23a, at
which lettered point or in what re-
gion between the points should the
(vertical) a axis intersect the t axis?
(For example, should it intersect at
point A, or maybe in the region be-
tween points A and B?) (b) If the
block’s acceleration is given by a �
�am cos(vt � f), what is the value
of f? Make it positive, and if you cannot specify the value (such as
�p/2 rad), then give a range of values (such as between 0 and p/2).

7 Figure 15-24 shows
the x(t) curves for three
experiments involving a
particular spring–box
system oscillating in
SHM. Rank the curves
according to (a) the sys-
tem’s angular frequency,
(b) the spring’s poten-
tial energy at time t � 0,
(c) the box’s kinetic en-
ergy at t � 0, (d) the
box’s speed at t � 0, and (e) the box’s maximum kinetic energy, great-
est first.

8 Figure 15-25 shows plots of the kinetic energy K versus
position x for three harmonic oscillators that have the same mass.

Rank the plots according to (a) the
corresponding spring constant and
(b) the corresponding period of the
oscillator, greatest first.

9 Figure 15-26 shows three physical
pendulums consisting of identical uni-
form spheres of the same mass that
are rigidly connected by identical rods
of negligible mass. Each pendulum is
vertical and can pivot about suspen-
sion point O. Rank the pendulums ac-
cording to their period of oscillation,
greatest first.

10 You are to build the oscillation
transfer device shown in Fig. 15-27. It
consists of two spring–block systems
hanging from a flexible rod. When
the spring of system 1 is stretched
and then released, the resulting SHM
of system 1 at frequency f1 oscillates
the rod. The rod then exerts a driving force on system 2, at the same
frequency f1.You can choose from four springs with spring constants
k of 1600, 1500, 1400, and 1200 N/m, and four blocks with masses m of
800, 500, 400, and 200 kg. Mentally determine which spring should go
with which block in each of the two systems to maximize the ampli-
tude of oscillations in system 2.

Figure 15-21 Question 3.
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Figure 15-22 Question 5.
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Figure 15-23 Question 6.

Figure 15-24 Question 7.
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Figure 15-27 Question 10.
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are attached to a block of mass 0.245 kg. What is the frequency of
oscillation on the frictionless floor?

•12 What is the phase constant for
the harmonic oscillator with the veloc-
ity function v(t) given in Fig. 15-32 if
the position function x(t) has the form
x � xm cos(vt � f)? The vertical axis
scale is set by vs � 4.0 cm/s.

•13 An oscillator consists of a
block of mass 0.500 kg connected to
a spring. When set into oscillation with amplitude 35.0 cm, the os-
cillator repeats its motion every 0.500 s. Find the (a) period, (b)
frequency, (c) angular frequency, (d) spring constant, (e) maxi-
mum speed, and (f) magnitude of the maximum force on the
block from the spring.

••14 A simple harmonic oscillator consists of a block of mass
2.00 kg attached to a spring of spring constant 100 N/m. When
t � 1.00 s, the position and velocity of the block are x � 0.129
m and v � 3.415 m/s. (a) What is the amplitude of the oscilla-
tions? What were the (b) position and (c) velocity of the block
at t � 0 s?

••15 Two particles oscillate in simple harmonic motion along
a common straight-line segment of length A. Each particle has a pe-
riod of 1.5 s, but they differ in phase by p/6 rad. (a) How far apart
are they (in terms of A) 0.50 s after the lagging particle leaves one
end of the path? (b) Are they then moving in the same direction,
toward each other, or away from each other?

••16 Two particles execute simple harmonic motion of the same
amplitude and frequency along close parallel lines. They pass each
other moving in opposite directions each time their displacement
is half their amplitude.What is their phase difference?

••17 An oscillator consists of a block attached to a spring (k �
400 N/m). At some time t, the position (measured from the sys-
tem’s equilibrium location), velocity, and acceleration of the block
are x � 0.100 m, v � �13.6 m/s, and a � �123 m/s2. Calculate (a) the
frequency of oscillation, (b) the mass of the block, and (c) the am-
plitude of the motion.

••18 At a certain harbor, the tides cause the ocean surface to
rise and fall a distance d (from highest level to lowest level) in
simple harmonic motion, with a period of 12.5 h. How long does
it take for the water to fall a distance 0.250d from its highest
level?

••19 A block rides on a piston (a squat cylindrical piece) that is
moving vertically with simple harmonic motion. (a) If the SHM
has period 1.0 s, at what amplitude of motion will the block and
piston separate? (b) If the piston has an amplitude of 5.0 cm,
what is the maximum frequency for which the block and piston
will be in contact continuously?

••20 Figure 15-33a is a partial graph of the position function
x(t) for a simple harmonic oscillator with an angular frequency of

ILW

SSM

SSM

Module 15-1 Simple Harmonic Motion
•1 An object undergoing simple harmonic motion takes 0.25 s to
travel from one point of zero velocity to the next such point. The
distance between those points is 36 cm. Calculate the (a) period,
(b) frequency, and (c) amplitude of the motion.

•2 A 0.12 kg body undergoes simple harmonic motion of ampli-
tude 8.5 cm and period 0.20 s. (a) What is the magnitude of the
maximum force acting on it? (b) If the oscillations are produced by
a spring, what is the spring constant?

•3 What is the maximum acceleration of a platform that
oscillates at amplitude 2.20 cm and frequency 6.60 Hz?

•4 An automobile can be considered to be mounted on four identical
springs as far as vertical oscillations are concerned.The springs of a cer-
tain car are adjusted so that the oscillations have a frequency of 3.00
Hz. (a) What is the spring constant of each spring if the mass of the car
is 1450 kg and the mass is evenly distributed over the springs? (b) What
will be the oscillation frequency if five passengers, averaging 73.0 kg
each,ride in the car with an even distribution of mass?

•5 In an electric shaver, the blade moves back and forth over
a distance of 2.0 mm in simple harmonic motion, with frequency
120 Hz. Find (a) the amplitude, (b) the maximum blade speed, and
(c) the magnitude of the maximum blade acceleration.

•6 A particle with a mass of 1.00 kg is oscillating with
simple harmonic motion with a period of 1.00 s and a maxi-
mum speed of 1.00 103 m/s. Calculate (a) the angular frequency
and (b) the maximum displacement of the particle.

•7 A loudspeaker produces a musical sound by means of the
oscillation of a diaphragm whose amplitude is limited to 1.00 . (a)
At what frequency is the magnitude a of the diaphragm’s acceleration
equal to g? (b) For greater frequencies, is a greater than or less than g?

•8 What is the phase constant for
the harmonic oscillator with the po-
sition function x(t) given in Fig. 15-
30 if the position function has the
form x xm cos( )? The ver-
tical axis scale is set by xs 6.0 cm.

•9 The position function x �
(6.0 m) cos[(3p rad/s)t � p/3 rad]
gives the simple harmonic motion
of a body. At t � 2.0 s, what are the
(a) displacement, (b) velocity, (c)
acceleration, and (d) phase of the motion? Also, what are the (e)
frequency and (f) period of the motion?

•10 An oscillating block–spring system takes 0.75 s to begin re-
peating its motion. Find (a) the pe-
riod, (b) the frequency in hertz, and
(c) the angular frequency in radians
per second.

•11 In Fig. 15-31, two identical
springs of spring constant 7580 N/m

�
vt � f�

mm
SSM

	
	 10�5

	 10�20

SSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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surface. The coefficient of static
friction between the two blocks is
0.40. What amplitude of simple har-
monic motion of the spring–blocks
system puts the smaller block on
the verge of slipping over the larger block?

Module 15-2 Energy in Simple Harmonic Motion
•27 When the displacement in SHM is one-half the ampli-
tude xm, what fraction of the total energy is (a) kinetic energy and
(b) potential energy? (c) At what displacement, in terms of the am-
plitude, is the energy of the system half kinetic energy and half po-
tential energy?

•28 Figure 15-38 gives the one-
dimensional potential energy well
for a 2.0 kg particle (the function
U(x) has the form bx2 and the ver-
tical axis scale is set by Us � 2.0 J).
(a) If the particle passes through
the equilibrium position with a ve-
locity of 85 cm/s, will it be turned
back before it reaches x � 15 cm?
(b) If yes, at what position, and if
no, what is the speed of the parti-
cle at x � 15 cm?

•29 Find the mechanical energy of a block–spring system
with a spring constant of 1.3 N/cm and an amplitude of 2.4 cm.

•30 An oscillating block–spring system has a mechanical energy of
1.00 J, an amplitude of 10.0 cm, and a maximum speed of 1.20 m/s.
Find (a) the spring constant, (b) the mass of the block, and (c) the
frequency of oscillation.

•31 A 5.00 kg object on a horizontal frictionless surface is at-
tached to a spring with k 1000 N/m. The object is displaced from
equilibrium 50.0 cm horizontally and given an initial velocity of 10.0
m/s back toward the equilibrium position.What are (a) the motion’s
frequency, (b) the initial potential energy of the block–spring sys-
tem, (c) the initial kinetic energy, and (d) the motion’s amplitude?

•32 Figure 15-39 shows the ki-
netic energy K of a simple
harmonic oscillator versus its po-
sition x. The vertical axis scale is
set by Ks � 4.0 J. What is the
spring constant?

••33 A block of mass M � 5.4
kg, at rest on a horizontal
frictionless table, is attached to a
rigid support by a spring of con-
stant k � 6000 N/m. A bullet of
mass m � 9.5 g and velocity of
magnitude 630 m/s strikes and is
embedded in the block (Fig. 15-
40). Assuming the compression of
the spring is negligible until the
bullet is embedded, determine (a)
the speed of the block immedi-
ately after the collision and (b)
the amplitude of the resulting simple harmonic motion.

v:
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1.20 rad/s; Fig. 15-33b is a par-
tial graph of the corresponding
velocity function v(t). The ver-
tical axis scales are set by xs �
5.0 cm and vs � 5.0 cm/s. What
is the phase constant of the
SHM if the position function
x(t) is in the general form x �
xm cos(vt � f)?

••21 In Fig. 15-31, two
springs are attached to a block
that can oscillate over a fric-
tionless floor. If the left spring
is removed, the block oscil-
lates at a frequency of 30 Hz.
If, instead, the spring on the
right is removed, the block os-
cillates at a frequency of 45
Hz. At what frequency does
the block oscillate with both
springs attached?

••22 Figure 15-34 shows
block 1 of mass 0.200 kg slid-
ing to the right over a friction-
less elevated surface at a
speed of 8.00 m/s. The block
undergoes an elastic collision
with stationary block 2, which
is attached to a spring of spring
constant 1208.5 N/m. (Assume
that the spring does not affect the collision.) After the collision,
block 2 oscillates in SHM with a period of 0.140 s, and block 1
slides off the opposite end of the elevated surface, landing a dis-
tance d from the base of that surface after falling height h � 4.90
m. What is the value of d?

••23 A block is on a horizontal surface (a shake
table) that is moving back and forth horizontally with simple har-
monic motion of frequency 2.0 Hz. The coefficient of static friction
between block and surface is 0.50. How great can the amplitude of
the SHM be if the block is not to slip along the surface?

•••24 In Fig. 15-35, two springs are
joined and connected to a block of
mass 0.245 kg that is set oscillating
over a frictionless floor. The springs
each have spring constant k �
6430 N/m. What is the frequency of
the oscillations?

•••25 In Fig. 15-36, a block
weighing 14.0 N, which can slide
without friction on an incline at an-
gle 40.0
, is connected to the
top of the incline by a massless
spring of unstretched length 0.450
m and spring constant 120 N/m. (a)
How far from the top of the incline
is the block’s equilibrium point? (b)
If the block is pulled slightly down the incline and released, what is
the period of the resulting oscillations?

•••26 In Fig. 15-37, two blocks (m � 1.8 kg and M � 10 kg) and

u �
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a spring (k 200 N/m) are ar-
ranged on a horizontal, frictionless

�
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••34 In Fig. 15-41, block 2 of
mass 2.0 kg oscillates on the end of a
spring in SHM with a period of 20
ms. The block’s position is given by
x � (1.0 cm) cos(vt � p/2). Block 1
of mass 4.0 kg slides toward block 2
with a velocity of magnitude 6.0 m/s, directed along the spring’s
length. The two blocks undergo a completely inelastic collision at
time t � 5.0 ms. (The duration of the collision is much less than
the period of motion.) What is the amplitude of the SHM after the
collision?

••35 A 10 g particle undergoes SHM with an amplitude of 2.0 mm,
a maximum acceleration of magnitude 8.0 	 103 m/s2, and an
unknown phase constant f. What are (a) the period of the motion,
(b) the maximum speed of the particle, and (c) the total mechani-
cal energy of the oscillator? What is the magnitude of the force on
the particle when the particle is at (d) its maximum displacement
and (e) half its maximum displacement?

••36 If the phase angle for a block–spring system in SHM is p/6
rad and the block’s position is given by x � xm cos(vt � f), what is
the ratio of the kinetic energy to the potential energy at time t � 0?

•••37 A massless spring hangs from the ceiling with a small ob-
ject attached to its lower end. The object is initially held at rest in a
position yi such that the spring is at its rest length. The object is
then released from yi and oscillates up and down, with its lowest
position being 10 cm below yi. (a) What is the frequency of the os-
cillation? (b) What is the speed of the object when it is 8.0 cm be-
low the initial position? (c) An object of mass 300 g is attached to
the first object, after which the system oscillates with half the origi-
nal frequency. What is the mass of the first object? (d) How far be-
low yi is the new equilibrium (rest) position with both objects at-
tached to the spring?

Module 15-3 An Angular Simple Harmonic Oscillator
•38 A 95 kg solid sphere with a 15 cm radius is suspended by a
vertical wire.A torque of 0.20 N �m is required to rotate the sphere
through an angle of 0.85 rad and then maintain that orientation.
What is the period of the oscillations that result when the sphere is
then released?

••39 The balance wheel of an old-fashioned watch
oscillates with angular amplitude p rad and period 0.500 s. Find
(a) the maximum angular speed of the wheel, (b) the angular speed
at displacement p/2 rad, and (c) the magnitude of the angular 
acceleration at displacement p/4 rad.

Module 15-4 Pendulums, Circular Motion
•40 A physical pendulum consists of a meter stick that is piv-
oted at a small hole drilled through
the stick a distance d from the 50
cm mark. The period of oscillation
is 2.5 s. Find d.

•41 In Fig. 15-42, the pendu-
lum consists of a uniform disk with
radius r � 10.0 cm and mass 500 g
attached to a uniform rod with
length L � 500 mm and mass 270
g. (a) Calculate the rotational iner-
tia of the pendulum about the
pivot point. (b) What is the dis-
tance between the pivot point and

SSM

ILW
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the center of mass of the pendulum? (c) Calculate the period of
oscillation.

•42 Suppose that a simple pendulum consists of a small 60.0 g
bob at the end of a cord of negligible mass. If the angle u between
the cord and the vertical is given by

u � (0.0800 rad) cos[(4.43 rad/s)t � f],

what are (a) the pendulum’s length and (b) its maximum kinetic
energy?

•43 (a) If the physical pendulum of Fig. 15-13 and the associated
sample problem is inverted and suspended at point P, what is its
period of oscillation? (b) Is the period now greater than, less than,
or equal to its previous value?

•44 A physical pendulum consists of two me-
ter-long sticks joined together as shown in Fig.
15-43. What is the pendulum’s period of oscilla-
tion about a pin inserted through point A at the
center of the horizontal stick?

•45 A performer seated on a trapeze is
swinging back and forth with a period of 8.85 s.
If she stands up, thus raising the center of mass of
the trapeze � performer system by 35.0 cm, what will be the new pe-
riod of the system? Treat trapeze � performer as a simple pendulum.

•46 A physical pendulum has a center of oscillation at distance
2L/3 from its point of suspension. Show that the distance be-
tween the point of suspension and the center of oscillation for a
physical pendulum of any form is I/mh, where I and h have the
meanings in Eq. 15-29 and m is the mass of the pendulum.

•47 In Fig. 15-44, a physical pendulum
consists of a uniform solid disk (of radius
R � 2.35 cm) supported in a vertical plane
by a pivot located a distance d � 1.75 cm
from the center of the disk.The disk is dis-
placed by a small angle and released.
What is the period of the resulting simple
harmonic motion?

••48 A rectangular block, with face

1 2 k

Figure 15-41 Problem 34.

L

r

Figure 15-42 Problem 41.

A

Figure 15-43
Problem 44.

Pivot
d

R

lengths a � 35 cm and b � 45 cm, is to be
suspended on a thin horizontal rod running through a narrow hole in
the block. The block is then to be set swinging about the rod like a
pendulum, through small angles so that it is in SHM. Figure 15-45
shows one possible position of the hole, at distance r from the block’s
center, along a line connecting the center with a corner. (a) Plot the
period versus distance r along that
line such that the minimum in the
curve is apparent. (b) For what value
of r does that minimum occur? There
is a line of points around the block’s
center for which the period of swing-
ing has the same minimum value. (c)
What shape does that line make?

••49 The angle of the pendulum
of Fig. 15-11b is given by u �

um cos[(4.44 rad/s)t � f]. If at t � 0,
u � 0.040 rad and du/dt � �0.200
rad/s, what are (a) the phase con-

Figure 15-44
Problem 47.

Figure 15-45 Problem 48.

a

b

r

stant f and (b) the maximum angle um? (Hint: Don’t confuse the
rate du/dt at which u changes with the v of the SHM.)



lengths d � 6.00 cm and is mounted on an axle
through its center. A spring (k � 1200 N/m) con-
nects the cube’s upper corner to a rigid wall.
Initially the spring is at its rest length. If the cube
is rotated 3
 and released, what is the period of
the resulting SHM?

••53 In the overhead view of Fig. 15-
48, a long uniform rod of mass 0.600 kg is free to
rotate in a horizontal plane about a
vertical axis through its center. A
spring with force constant k � 1850
N/m is connected horizontally be-
tween one end of the rod and a
fixed wall. When the rod is in equi-
librium, it is parallel to the wall.
What is the period of the small os-
cillations that result when the rod is rotated slightly and released?

••54 In Fig. 15-49a, a metal plate is mounted on an axle through
its center of mass.A spring with k 2000 N/m connects a wall with a
point on the rim a distance r � 2.5 cm from the center of mass.
Initially the spring is at its rest length. If the plate is rotated by 7
 and
released, it rotates about the axle in SHM, with its angular position
given by Fig.15-49b.The horizontal axis scale is set by ts � 20 ms.What
is the rotational inertia of the plate about its center of mass?

�
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gives the least period? (b) What is
that least period?

••52 The 3.00 kg cube in Fig. 15-47 has edge

length L � 1.85 m oscillates as a
physical pendulum. (a) What value
of distance x between the stick’s
center of mass and its pivot point O

••51 In Fig. 15-46, a stick of
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••50 A thin uniform rod (mass � 0.50 kg) swings about an
axis that passes through one end of the rod and is perpendicu-
lar to the plane of the swing. The
rod swings with a period of 1.5 s
and an angular amplitude of 10
.
(a) What is the length of the rod?
(b) What is the maximum kinetic
energy of the rod as it swings?

sen to minimize the period and then L is increased, does the pe-
riod increase, decrease, or remain the same? (c) If, instead, m is in-
creased without L increasing, does
the period increase, decrease, or re-
main the same?

L/2 

O

L/2 

x

Figure 15-46 Problem 51.

•••56 In Fig. 15-50, a 2.50 kg disk
of diameter D � 42.0 cm is sup-
ported by a rod of length L � 76.0
cm and negligible mass that is piv-
oted at its end. (a) With the massless
torsion spring unconnected, what is
the period of oscillation? (b) With
the torsion spring connected, the rod
is vertical at equilibrium.What is the
torsion constant of the spring if the
period of oscillation has been de-
creased by 0.500 s?

Module 15-5 Damped Simple Harmonic Motion
•57 The amplitude of a lightly damped oscillator decreases by
3.0% during each cycle.What percentage of the mechanical energy
of the oscillator is lost in each cycle?

•58 For the damped oscillator system shown in Fig. 15-16, with 
m � 250 g, k � 85 N/m, and b � 70 g/s, what is the ratio of the oscil-
lation amplitude at the end of 20 cycles to the initial oscillation
amplitude?

•59 For the damped oscillator system shown in Fig.
15-16, the block has a mass of 1.50 kg and the spring constant is
8.00 N/m. The damping force is given by �b(dx/dt), where b � 230
g/s. The block is pulled down 12.0 cm and released. (a) Calculate
the time required for the amplitude of the resulting oscillations to
fall to one-third of its initial value. (b) How many oscillations are
made by the block in this time?

••60 The suspension system of a 2000 kg automobile “sags” 10 cm
when the chassis is placed on it. Also, the oscillation amplitude
decreases by 50% each cycle. Estimate the values of (a) the
spring constant k and (b) the damping constant b for the spring
and shock absorber system of one wheel, assuming each wheel
supports 500 kg.

Module 15-6 Forced Oscillations and Resonance
•61 For Eq. 15-45, suppose the amplitude xm is given by

where Fm is the (constant) amplitude of the external oscillating
force exerted on the spring by the rigid support in Fig. 15-16. At
resonance, what are the (a) amplitude and (b) velocity amplitude
of the oscillating object?

•62 Hanging from a horizontal beam are nine simple pendulums
of the following lengths: (a) 0.10, (b) 0.30, (c) 0.40, (d) 0.80, (e) 1.2,
(f) 2.8, (g) 3.5, (h) 5.0, and (i) 6.2 m. Suppose the beam undergoes
horizontal oscillations with angular frequencies in the range from
2.00 rad/s to 4.00 rad/s. Which of the pendulums will be (strongly)
set in motion?

••63 A 1000 kg car carrying four 82 kg people travels over a
“washboard” dirt road with corrugations 4.0 m apart. The car
bounces with maximum amplitude when its speed is 16 km/h.
When the car stops, and the people get out, by how much does the
car body rise on its suspension?

xm �
Fm

[m2(v2
d � v2)2 � b2v 2

d]1/2 ,
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Figure 15-48 Problem 53.

•••55 A pendulum is formed by pivoting a long thin rod
about a point on the rod. In a series of experiments, the period is
measured as a function of the distance x between the pivot point
and the rod’s center. (a) If the rod’s length is L � 2.20 m and its
mass is m � 22.1 g, what is the minimum period? (b) If x is cho-

Figure 15-50 Problem 56.
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Figure 15-53 Problems 77 and 78.
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Additional Problems
64 Although California is known for earthquakes, it has
large regions dotted with precariously balanced rocks that would
be easily toppled by even a mild earthquake. Apparently no major
earthquakes have occurred in those regions. If an earthquake were
to put such a rock into sinusoidal oscillation (parallel to the
ground) with a frequency of 2.2 Hz, an oscillation amplitude of 1.0
cm would cause the rock to topple. What would be the magnitude
of the maximum acceleration of the oscillation, in terms of g?

65 A loudspeaker diaphragm is oscillating in simple harmonic
motion with a frequency of 440 Hz and a maximum displacement
of 0.75 mm. What are the (a) angular frequency, (b) maximum
speed, and (c) magnitude of the maximum acceleration?

66 A uniform spring with k � 8600 N/m is cut into pieces 1 and 2
of unstretched lengths L1 � 7.0 cm and L2 � 10 cm. What are
(a) k1 and (b) k2? A block attached to the original spring as in
Fig. 15-7 oscillates at 200 Hz. What is the oscillation frequency of
the block attached to (c) piece 1 and (d) piece 2?

67 In Fig. 15-51, three 10 000 kg
ore cars are held at rest on a mine
railway using a cable that is parallel
to the rails, which are inclined at an-
gle u � 30
. The cable stretches 15
cm just before the coupling between
the two lower cars breaks, detaching
the lowest car.Assuming that the ca-
ble obeys Hooke’s law, find the (a)
frequency and (b) amplitude of the
resulting oscillations of the remain-
ing two cars.

68 A 2.00 kg block hangs from a
spring.A 300 g body hung below the block stretches the spring 2.00 cm
farther.(a) What is the spring constant? (b) If the 300 g body is removed
and the block is set into oscillation,find the period of the motion.

69 In the engine of a locomotive, a cylindrical piece known
as a piston oscillates in SHM in a cylinder head (cylindrical cham-
ber) with an angular frequency of 180 rev/min. Its stroke (twice the
amplitude) is 0.76 m.What is its maximum speed?

70 A wheel is free to rotate about its fixed axle. A spring is at-
tached to one of its spokes a distance r from the axle, as shown in Fig.
15-52. (a) Assuming that the wheel is a hoop of mass m and radius R,
what is the angular frequency v of
small oscillations of this system in
terms of m, R, r, and the spring con-
stant k? What is v if (b) r � R and (c)
r � 0?

71 A 50.0 g stone is attached to
the bottom of a vertical spring and
set vibrating. If the maximum speed
of the stone is 15.0 cm/s and the pe-
riod is 0.500 s, find the (a) spring
constant of the spring, (b) amplitude of the motion, and (c) fre-
quency of oscillation.

72 A uniform circular disk whose radius R is 12.6 cm is suspended
as a physical pendulum from a point on its rim. (a) What is its pe-
riod? (b) At what radial distance r � R is there a pivot point that
gives the same period?

73 A vertical spring stretches 9.6 cm when a 1.3 kg blockSSM

SSM

is hung from its end. (a) Calculate the spring constant. This block
is then displaced an additional 5.0 cm downward and released
from rest. Find the (b) period, (c) frequency, (d) amplitude, and
(e) maximum speed of the resulting SHM.

74 A massless spring with spring constant 19 N/m hangs vertically.
A body of mass 0.20 kg is attached to its free end and then released.
Assume that the spring was unstretched before the body was re-
leased. Find (a) how far below the initial position the body descends,
and the (b) frequency and (c) amplitude of the resulting SHM.

75 A 4.00 kg block is suspended from a spring with k � 500 N/m.A
50.0 g bullet is fired into the block from directly below with a speed of
150 m/s and becomes embedded in the block. (a) Find the amplitude
of the resulting SHM. (b) What percentage of the original kinetic en-
ergy of the bullet is transferred to mechanical energy of the oscillator?

76 A 55.0 g block oscillates in SHM on the end of a spring with 
k � 1500 N/m according to x � xm cos(vt � f). How long does
the block take to move from position �0.800xm to (a) position
�0.600xm and (b) position �0.800xm?

77 Figure 15-53 gives the position of a 20 g block oscillating
in SHM on the end of a spring. The horizontal axis scale is set
by ts � 40.0 ms. What are (a) the maximum kinetic energy of the
block and (b) the number of times per second that maximum is
reached? (Hint: Measuring a slope will probably not be very ac-
curate. Find another approach.)

78 Figure 15-53 gives the position x(t) of a block oscillating in SHM
on the end of a spring (ts � 40.0 ms).What are (a) the speed and (b) the
magnitude of the radial acceleration of a particle in the corresponding
uniform circular motion?

79 Figure 15-54 shows the kinetic
energy K of a simple pendulum versus
its angle u from the vertical.The verti-
cal axis scale is set by Ks � 10.0 mJ.
The pendulum bob has mass 0.200 kg.
What is the length of the pendulum?

80 A block is in SHM on the end
of a spring, with position given by
x � xm cos(vt � f). If f � p/5 rad,
then at t � 0 what percentage of the
total mechanical energy is potential energy?

81 A simple harmonic oscillator consists of a 0.50 kg block at-
tached to a spring. The block slides back and forth along a straight
line on a frictionless surface with equilibrium point x � 0. At t � 0
the block is at x � 0 and moving in the positive x direction.A graph
of the magnitude of the net force on the block as a function of itsF
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position is shown in Fig. 15-55.
The vertical scale is set by Fs �
75.0 N. What are (a) the ampli-
tude and (b) the period of the
motion, (c) the magnitude of the
maximum acceleration, and (d)
the maximum kinetic energy?

82 A simple pendulum of
length 20 cm and mass 5.0 g is
suspended in a race car traveling with constant speed 70 m/s
around a circle of radius 50 m. If the pendulum undergoes small
oscillations in a radial direction about its equilibrium position,
what is the frequency of oscillation?

83 The scale of a spring balance that reads from 0 to 15.0 kg is
12.0 cm long. A package suspended from the balance is found to
oscillate vertically with a frequency of 2.00 Hz. (a) What is the
spring constant? (b) How much does the package weigh?

84 A 0.10 kg block oscillates back and forth along a straight line
on a frictionless horizontal surface. Its displacement from the ori-
gin is given by

x � (10 cm) cos[(10 rad/s)t � p/2 rad].

(a) What is the oscillation frequency? (b) What is the maxi-
mum speed acquired by the block? (c) At what value of x does
this occur? (d) What is the magnitude of the maximum accel-
eration of the block? (e) At what value of x does this occur?
(f ) What force, applied to the block by the spring, results in the
given oscillation?

85 The end point of a spring oscillates with a period of 2.0 s when
a block with mass m is attached to it. When this mass is increased
by 2.0 kg, the period is found to be 3.0 s. Find m.

86 The tip of one prong of a tuning fork undergoes SHM of fre-
quency 1000 Hz and amplitude 0.40 mm. For this tip, what is the
magnitude of the (a) maximum acceleration, (b) maximum veloc-
ity, (c) acceleration at tip displacement 0.20 mm, and (d) velocity at
tip displacement 0.20 mm?

87 A flat uniform circular disk has a mass of 3.00 kg and a radius
of 70.0 cm. It is suspended in a horizontal plane by a vertical wire at-
tached to its center. If the disk is rotated 2.50 rad about the wire, a
torque of 0.0600 N �m is required to maintain that orientation.
Calculate (a) the rotational inertia of the disk about the wire, (b) the
torsion constant, and (c) the angular frequency of this torsion pendu-
lum when it is set oscillating.

88 A block weighing 20 N oscillates at one end of a vertical
spring for which k � 100 N/m; the other end of the spring is at-
tached to a ceiling. At a certain instant the spring is stretched
0.30 m beyond its relaxed length (the length when no object is at-
tached) and the block has zero velocity. (a) What is the net force on
the block at this instant? What are the (b) amplitude and (c) period
of the resulting simple harmonic motion? (d) What is the maxi-
mum kinetic energy of the block as it oscillates?

89 A 3.0 kg particle is in simple harmonic motion in one
dimension and moves according to the equation

x � (5.0 m) cos[(p/3 rad/s)t � p/4 rad],

with t in seconds. (a) At what value of x is the potential energy of the
particle equal to half the total energy? (b) How long does the parti-
cle take to move to this position x from the equilibrium position?

90 A particle executes linear SHM with frequency 0.25 Hz about
the point x � 0. At t � 0, it has displacement x � 0.37 cm and zero
velocity. For the motion, determine the (a) period, (b) angular
frequency, (c) amplitude, (d) displacement x(t), (e) velocity v(t),
(f) maximum speed, (g) magnitude of the maximum acceleration,
(h) displacement at t � 3.0 s, and (i) speed at t � 3.0 s.

91 What is the frequency of a simple pendulum 2.0 m long
(a) in a room, (b) in an elevator accelerating upward at a rate of
2.0 m/s2, and (c) in free fall?

92 A grandfather clock has a pen-
dulum that consists of a thin brass disk
of radius r � 15.00 cm and mass 1.000
kg that is attached to a long thin rod of
negligible mass. The pendulum swings
freely about an axis perpendicular to
the rod and through the end of the rod
opposite the disk, as shown in Fig.
15-56. If the pendulum is to have a pe-
riod of 2.000 s for small oscillations at a
place where g � 9.800 m/s2, what must
be the rod length L to the nearest tenth
of a millimeter?

93 A 4.00 kg block hangs from a
spring, extending it 16.0 cm from its
unstretched position. (a) What is the spring constant? (b) The
block is removed, and a 0.500 kg body is hung from the same
spring. If the spring is then stretched and released, what is its pe-
riod of oscillation?

94 What is the phase constant for
SMH with a(t) given in Fig. 15-57 if
the position function x(t) has the form
x � xm cos(vt � f) and as � 4.0 m/s2?

95 An engineer has an odd-shaped
10 kg object and needs to find its rota-
tional inertia about an axis through its
center of mass.The object is supported
on a wire stretched along the desired
axis. The wire has a torsion constant
k � 0.50 N �m. If this torsion pendulum oscillates through 20 cycles in
50 s, what is the rotational inertia of the object?

96 A spider can tell when its web has captured, say, a fly
because the fly’s thrashing causes the web threads to oscillate. A
spider can even determine the size of the fly by the frequency of
the oscillations. Assume that
a fly oscillates on the cap-
ture thread on which it is
caught like a block on a
spring. What is the ratio of
oscillation frequency for a
fly with mass m to a fly with
mass 2.5m?

97 A torsion pendulum
consists of a metal disk with
a wire running through its
center and soldered in place.
The wire is mounted verti-
cally on clamps and pulled
taut. Figure 15-58a gives the
magnitude t of the torque
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face is attached to a horizontal spring with k � 480 N/m. Let x be
the displacement of the block from the position at which the spring
is unstretched. At t � 0 the block passes through x � 0 with a
speed of 5.2 m/s in the positive x direction. What are the (a) fre-
quency and (b) amplitude of the block’s motion? (c) Write an ex-
pression for x as a function of time.

102 A simple harmonic oscillator consists of an 0.80 kg block at-
tached to a spring (k � 200 N/m). The block slides on a horizontal
frictionless surface about the equilibrium point x � 0 with a total
mechanical energy of 4.0 J. (a) What is the amplitude of the oscilla-
tion? (b) How many oscillations does the block complete in 10 s?
(c) What is the maximum kinetic energy attained by the block? (d)
What is the speed of the block at x � 0.15 m?

103 A block sliding on a horizontal frictionless surface is
attached to a horizontal spring with a spring constant of 600 N/m.
The block executes SHM about its equilibrium position with a pe-
riod of 0.40 s and an amplitude of 0.20 m. As the block slides
through its equilibrium position, a 0.50 kg putty wad is dropped
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needed to rotate the disk about its center (and thus twist the
wire) versus the rotation angle u. The vertical axis scale is set by
ts � 4.0 	 10�3 N �m. The disk is rotated to u � 0.200 rad and then
released. Figure 15-58b shows the resulting oscillation in terms of
angular position u versus time t. The horizontal axis scale is set by
ts � 0.40 s. (a) What is the rotational inertia of the disk about
its center? (b) What is the maximum angular speed du/dt of the
disk? (Caution: Do not confuse the (constant) angular frequency
of the SHM with the (varying) angular speed of the rotating disk,
even though they usually have the same symbol v. Hint: The po-
tential energy U of a torsion pendulum is equal to ku2, analogous
to U � kx2 for a spring.)

98 When a 20 N can is hung from the bottom of a vertical spring, it
causes the spring to stretch 20 cm. (a) What is the spring constant? (b)
This spring is now placed horizontally on a frictionless table. One end
of it is held fixed,and the other end is attached to a 5.0 N can.The can is
then moved (stretching the spring) and released from rest.What is the
period of the resulting oscillation?

99 For a simple pendulum, find the angular amplitude um at
which the restoring torque required for simple harmonic motion
deviates from the actual restoring torque by 1.0%. (See
“Trigonometric Expansions” in Appendix E.)

100 In Fig. 15-59, a solid cylinder
attached to a horizontal spring (k �
3.00 N/m) rolls without slipping
along a horizontal surface. If the sys-
tem is released from rest when the
spring is stretched by 0.250 m, find
(a) the translational kinetic energy
and (b) the rotational kinetic energy of the cylinder as it passes
through the equilibrium position. (c) Show that under these condi-
tions the cylinder’s center of mass executes simple harmonic mo-
tion with period

T � 2p

where M is the cylinder mass. (Hint: Find the time derivative of the
total mechanical energy.)

101 A 1.2 kg block sliding on a horizontal frictionless sur-SSM

A
3M
2k

,

1
2

1
2

vertically onto the block. If the putty wad sticks to the block, de-
termine (a) the new period of the motion and (b) the new ampli-
tude of the motion.

104 A damped harmonic oscillator consists of a block (m �
2.00 kg), a spring (k � 10.0 N/m), and a damping force (F � �bv).
Initially, it oscillates with an amplitude of 25.0 cm; because of
the damping, the amplitude falls to three-fourths of this initial
value at the completion of four oscillations. (a) What is the
value of b? (b) How much energy has been “lost” during these
four oscillations?

105 A block weighing 10.0 N is attached to the lower end of a
vertical spring (k � 200.0 N/m), the other end of which is attached
to a ceiling. The block oscillates vertically and has a kinetic energy
of 2.00 J as it passes through the point at which the spring is
unstretched. (a) What is the period of the oscillation? (b) Use the
law of conservation of energy to determine the maximum distance
the block moves both above and below the point at which the
spring is unstretched. (These are not necessarily the same.)
(c) What is the amplitude of the oscillation? (d) What is the maxi-
mum kinetic energy of the block as it oscillates?

106 A simple harmonic oscillator consists of a block attached
to a spring with k � 200 N/m. The block slides on a frictionless
surface, with equilibrium point x � 0 and amplitude 0.20 m.
A graph of the block’s velocity v as a function of time t is shown
in Fig. 15-60. The horizontal scale is set by ts � 0.20 s. What are (a)
the period of the SHM, (b) the block’s mass, (c) its displacement
at t � 0, (d) its acceleration at t � 0.10 s, and (e) its maximum ki-
netic energy?
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Figure 15-61 Problem 108.

107 The vibration frequencies of atoms in solids at normal temper-
atures are of the order of 1013 Hz. Imagine the atoms to be connected
to one another by springs. Suppose that a single silver atom in a solid
vibrates with this frequency and that all the other atoms are at rest.
Compute the effective spring constant. One mole of silver (6.02 	
1023 atoms) has a mass of 108 g.

108 Figure 15-61 shows that if we hang a block on the end of a
spring with spring constant k, the spring is stretched by distance 
h � 2.0 cm. If we pull down on the block a short distance and
then release it, it oscillates vertically with a certain frequency.
What length must a simple pendulum have to swing with that
frequency?
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109 The physical pendulum in Fig.
15-62 has two possible pivot points A
and B. Point A has a fixed position
but B is adjustable along the length
of the pendulum as indicated by the
scaling. When suspended from A, the
pendulum has a period of T � 1.80 s.
The pendulum is then suspended
from B, which is moved until the
pendulum again has that period.
What is the distance L between A
and B?

110 A common device for enter-
taining a toddler is a jump seat that
hangs from the horizontal portion of a
doorframe via elastic cords (Fig. 15-63).
Assume that only one cord is on each
side in spite of the more realistic
arrangement shown. When a child is
placed in the seat, they both descend by a distance ds as the cords
stretch (treat them as springs). Then the seat is pulled down an ex-
tra distance dm and released, so that the child oscillates vertically,
like a block on the end of a spring. Suppose you are the safety engi-
neer for the manufacturer of the seat. You do not want the magni-
tude of the child’s acceleration to exceed 0.20g for fear of hurting
the child’s neck. If dm � 10 cm, what value of ds corresponds to that
acceleration magnitude?

112 In Fig. 15-64, a
2500 kg demolition
ball swings from the
end of a crane. The
length of the swinging
segment of cable is
17 m. (a) Find the pe-
riod of the swinging,
assuming that the sys-
tem can be treated as
a simple pendulum.
(b) Does the period
depend on the ball’s
mass?

113 The cen-
ter of oscillation of a
physical pendulum
has this interesting property: If an impulse (assumed horizontal
and in the plane of oscillation) acts at the center of oscillation, no
oscillations are felt at the point of support. Baseball players (and
players of many other sports) know that unless the ball hits the bat
at this point (called the “sweet spot” by athletes), the oscillations
due to the impact will sting their hands. To prove this property, let
the stick in Fig. 15-13a simulate a baseball bat. Suppose that a hori-
zontal force (due to impact with the ball) acts toward the right
at P, the center of oscillation. The batter is assumed to hold the
bat at O, the pivot point of the stick. (a) What acceleration does the
point O undergo as a result of ? (b) What angular acceleration is
produced by about the center of mass of the stick? (c) As a re-
sult of the angular acceleration in (b), what linear acceleration
does point O undergo? (d) Considering the magnitudes and direc-
tions of the accelerations in (a) and (c), convince yourself that P is
indeed the “sweet spot.”

114 A (hypothetical) large slingshot is stretched 2.30 m to
launch a 170 g projectile with speed sufficient to escape from
Earth (11.2 km/s). Assume the elastic bands of the slingshot obey
Hooke’s law. (a) What is the spring constant of the device if all the
elastic potential energy is converted to kinetic energy? (b)
Assume that an average person can exert a force of 490 N. How
many people are required to stretch the elastic bands?

115 What is the length of a simple pendulum whose full swing
from left to right and then back again takes 3.2 s?

116 A 2.0 kg block is attached to the end of a spring with a spring
constant of 350 N/m and forced to oscillate by an applied force F �
(15 N) sin(vdt), where vd � 35 rad/s. The damping constant is b �
15 kg/s.At t � 0, the block is at rest with the spring at its rest length.
(a) Use numerical integration to plot the displacement of the block
for the first 1.0 s. Use the motion near the end of the 1.0 s interval to
estimate the amplitude, period, and angular frequency. Repeat the
calculation for (b) and (c) vd � 20 rad/s.vd � 1k/m

F
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F
:

F
:

Figure 15-63 Problem 110.

Figure 15-64 Problem 112.
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Figure 15-62 Problem 109.

111 A 2.0 kg block executes SHM while attached to a horizontal
spring of spring constant 200 N/m. The maximum speed of the
block as it slides on a horizontal frictionless surface is 3.0 m/s.What
are (a) the amplitude of the block’s motion, (b) the magnitude of
its maximum acceleration, and (c) the magnitude of its minimum
acceleration? (d) How long does the block take to complete 7.0 cy-
cles of its motion?
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Waves—I

16-1 TRANSVERSE WAVES

After reading this module, you should be able to . . .

16.01 Identify the three main types of waves.

16.02 Distinguish between transverse waves and longitudi-
nal waves.

16.03 Given a displacement function for a traverse wave,
determine amplitude , angular wave number k, angular
frequency v, phase constant f, and direction of travel,
and calculate the phase kx � vt � f and the displace-
ment at any given time and position.

16.04 Given a displacement function for a traverse
wave, calculate the time between two given displace-
ments.

16.05 Sketch a graph of a transverse wave as a function
of position, identifying amplitude , wavelength l, where
the slope is greatest, where it is zero, and where the
string elements have positive velocity, negative velocity,
and zero velocity.

16.06 Given a graph of displacement versus time for 
a transverse wave, determine amplitude and
period T.

ym

ym

ym

16.07 Describe the effect on a transverse wave of changing
phase constant f.

16.08 Apply the relation between the wave speed v, the
distance traveled by the wave, and the time required for
that travel.

16.09 Apply the relationships between wave speed v,
angular frequency v, angular wave number k, wavelength
l, period T, and frequency f.

16.10 Describe the motion of a string element as a trans-
verse wave moves through its location, and identify
when its transverse speed is zero and when it is maxi-
mum.

16.11 Calculate the transverse velocity u(t) of a string
element as a transverse wave moves through its location.

16.12 Calculate the transverse acceleration a(t) of a 
string element as a transverse wave moves through its
location.

16.13 Given a graph of displacement, transverse velocity,
or transverse acceleration, determine the phase con-
stant f.

Key Ideas

Learning Objectives

444

● Mechanical waves can exist only in material media and are
governed by Newton’s laws. Transverse mechanical waves,
like those on a stretched string, are waves in which the
particles of the medium oscillate perpendicular to the wave’s
direction of travel. Waves in which the particles of the
medium oscillate parallel to the wave’s direction of travel are
longitudinal waves.

● A sinusoidal wave moving in the positive direction of an
x axis has the mathematical form

y(x, t) � ym sin(kx � vt),

where ym is the amplitude (magnitude of the maximum dis-
placement) of the wave, k is the angular wave number, v is
the angular frequency, and kx � vt is the phase. The wave-
length l is related to k by

k �
2p

l
.

● The period T and frequency f of the wave are related to v by

● The wave speed v (the speed of the wave along the string) is
related to these other parameters by

● Any function of the form

y(x, t) � h(kx � vt)

can represent a traveling wave with a wave speed as given
above and a wave shape given by the mathematical form of h.
The plus sign denotes a wave traveling in the negative
direction of the x axis, and the minus sign a wave traveling in
the positive direction.

v �
v

k
�

l

T
� lf.

v

2p
� f �

1
T

.
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What Is Physics?
One of the primary subjects of physics is waves. To see how important waves are
in the modern world, just consider the music industry. Every piece of music you
hear, from some retro-punk band playing in a campus dive to the most eloquent
concerto playing on the web, depends on performers producing waves and your
detecting those waves. In between production and detection, the information
carried by the waves might need to be transmitted (as in a live performance on
the web) or recorded and then reproduced (as with CDs, DVDs, or the other
devices currently being developed in engineering labs worldwide). The 
financial importance of controlling music waves is staggering, and the rewards to
engineers who develop new control techniques can be rich.

This chapter focuses on waves traveling along a stretched string, such as on
a guitar. The next chapter focuses on sound waves, such as those produced by
a guitar string being played. Before we do all this, though, our first job is to
classify the countless waves of the everyday world into basic types.

Types of Waves
Waves are of three main types:

1. Mechanical waves. These waves are most familiar because we encounter them
almost constantly; common examples include water waves, sound waves, and
seismic waves. All these waves have two central features: They are governed
by Newton’s laws, and they can exist only within a material medium, such as
water, air, and rock.

2. Electromagnetic waves. These waves are less familiar, but you use them
constantly; common examples include visible and ultraviolet light, radio and
television waves, microwaves, x rays, and radar waves. These waves require no
material medium to exist. Light waves from stars, for example, travel through
the vacuum of space to reach us. All electromagnetic waves travel through a
vacuum at the same speed c � 299 792 458 m/s.

3. Matter waves. Although these waves are commonly used in modern technol-
ogy, they are probably very unfamiliar to you. These waves are associated
with electrons, protons, and other fundamental particles, and even atoms and
molecules. Because we commonly think of these particles as constituting
matter, such waves are called matter waves.

Much of what we discuss in this chapter applies to waves of all kinds.
However, for specific examples we shall refer to mechanical waves.

Transverse and Longitudinal Waves
A wave sent along a stretched, taut string is the simplest mechanical wave. If you
give one end of a stretched string a single up-and-down jerk, a wave in the form
of a single pulse travels along the string. This pulse and its motion can occur
because the string is under tension.When you pull your end of the string upward,
it begins to pull upward on the adjacent section of the string via tension between
the two sections. As the adjacent section moves upward, it begins to pull the next
section upward, and so on. Meanwhile, you have pulled down on your end of the
string. As each section moves upward in turn, it begins to be pulled back
downward by neighboring sections that are already on the way down. The net
result is that a distortion in the string’s shape (a pulse, as in Fig. 16-1a) moves
along the string at some velocity .v:

Figure 16-1 (a) A single pulse is sent along 
a stretched string.A typical string element
(marked with a dot) moves up once and
then down as the pulse passes.The ele-
ment’s motion is perpendicular to the
wave’s direction of travel, so the pulse is a
transverse wave. (b) A sinusoidal wave is
sent along the string.A typical string 
element moves up and down continuously
as the wave passes.This too is a transverse
wave.

y

x

y

x

(a)

(b)

Sinusoidal
wave

Pulse
v

v
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If you move your hand up and down in continuous simple harmonic motion, a
continuous wave travels along the string at velocity . Because the motion of your
hand is a sinusoidal function of time, the wave has a sinusoidal shape at any given in-
stant, as in Fig. 16-1b; that is, the wave has the shape of a sine curve or a cosine curve.

We consider here only an “ideal” string, in which no friction-like forces
within the string cause the wave to die out as it travels along the string. In
addition, we assume that the string is so long that we need not consider a wave
rebounding from the far end.

One way to study the waves of Fig. 16-1 is to monitor the wave forms (shapes of
the waves) as they move to the right. Alternatively, we could monitor the motion of
an element of the string as the element oscillates up and down while a wave passes
through it. We would find that the displacement of every such oscillating string ele-
ment is perpendicular to the direction of travel of the wave, as indicated in Fig. 16-1b.
This motion is said to be transverse, and the wave is said to be a transverse wave.

Longitudinal Waves. Figure 16-2 shows how a sound wave can be produced
by a piston in a long, air-filled pipe. If you suddenly move the piston rightward
and then leftward, you can send a pulse of sound along the pipe. The rightward
motion of the piston moves the elements of air next to it rightward, changing the
air pressure there. The increased air pressure then pushes rightward on the
elements of air somewhat farther along the pipe. Moving the piston leftward
reduces the air pressure next to it. As a result, first the elements nearest the
piston and then farther elements move leftward. Thus, the motion of the air and
the change in air pressure travel rightward along the pipe as a pulse.

If you push and pull on the piston in simple harmonic motion, as is being
done in Fig. 16-2, a sinusoidal wave travels along the pipe. Because the motion of
the elements of air is parallel to the direction of the wave’s travel, the motion
is said to be longitudinal, and the wave is said to be a longitudinal wave. In this
chapter we focus on transverse waves, and string waves in particular; in
Chapter 17 we focus on longitudinal waves, and sound waves in particular.

Both a transverse wave and a longitudinal wave are said to be traveling
waves because they both travel from one point to another, as from one end of the
string to the other end in Fig. 16-1 and from one end of the pipe to the other end
in Fig. 16-2. Note that it is the wave that moves from end to end, not the material
(string or air) through which the wave moves.

Wavelength and Frequency
To completely describe a wave on a string (and the motion of any element along
its length), we need a function that gives the shape of the wave. This means that
we need a relation in the form 

y � h(x, t), (16-1)

in which y is the transverse displacement of any string element as a function h of
the time t and the position x of the element along the string. In general, a sinu-
soidal shape like the wave in Fig. 16-1b can be described with h being either a sine
or cosine function; both give the same general shape for the wave. In this chapter
we use the sine function.

Sinusoidal Function. Imagine a sinusoidal wave like that of Fig. 16-1b traveling
in the positive direction of an x axis. As the wave sweeps through succeeding ele-
ments (that is, very short sections) of the string, the elements oscillate parallel to the y
axis.At time t, the displacement y of the element located at position x is given by

y(x, t) � ym sin(kx � vt). (16-2)

Because this equation is written in terms of position x, it can be used to find the
displacements of all the elements of the string as a function of time. Thus, it can
tell us the shape of the wave at any given time.

v:

Figure 16-2 A sound wave is set up in an air-
filled pipe by moving a piston back and
forth. Because the oscillations of an ele-
ment of the air (represented by the dot) are
parallel to the direction in which the wave
travels, the wave is a longitudinal wave.

Airv
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The names of the quantities in Eq. 16-2 are displayed in Fig. 16-3 and defined
next. Before we discuss them, however, let us examine Fig. 16-4, which shows five
“snapshots” of a sinusoidal wave traveling in the positive direction of an x axis.
The movement of the wave is indicated by the rightward progress of the short
arrow pointing to a high point of the wave. From snapshot to snapshot, the short
arrow moves to the right with the wave shape, but the string moves only parallel
to the y axis.To see that, let us follow the motion of the red-dyed string element at
x � 0. In the first snapshot (Fig. 16-4a), this element is at displacement y � 0.
In the next snapshot, it is at its extreme downward displacement because a valley
(or extreme low point) of the wave is passing through it. It then moves back up
through y � 0. In the fourth snapshot, it is at its extreme upward displacement
because a peak (or extreme high point) of the wave is passing through it. In the
fifth snapshot, it is again at y � 0, having completed one full oscillation.

Amplitude and Phase
The amplitude ym of a wave, such as that in Fig. 16-4 , is the magnitude of the
maximum displacement of the elements from their equilibrium positions as the
wave passes through them. (The subscript m stands for maximum.) Because ym is
a magnitude, it is always a positive quantity, even if it is measured downward
instead of upward as drawn in Fig. 16-4a.

The phase of the wave is the argument kx � vt of the sine in Eq. 16-2. As the
wave sweeps through a string element at a particular position x, the phase
changes linearly with time t. This means that the sine also changes, oscillating
between �1 and �1. Its extreme positive value (�1) corresponds to a peak of the
wave moving through the element; at that instant the value of y at position x is ym.
Its extreme negative value (�1) corresponds to a valley of the wave moving
through the element; at that instant the value of y at position x is �ym. Thus, the
sine function and the time-dependent phase of a wave correspond to the oscilla-
tion of a string element, and the amplitude of the wave determines the extremes
of the element’s displacement.

Caution: When evaluating the phase, rounding off the numbers before you
evaluate the sine function can throw of the calculation considerably.

Wavelength and Angular Wave Number
The wavelength l of a wave is the distance (parallel to the direction of the wave’s
travel) between repetitions of the shape of the wave (or wave shape). A typical
wavelength is marked in Fig. 16-4a, which is a snapshot of the wave at time t � 0.
At that time, Eq. 16-2 gives, for the description of the wave shape,

y(x, 0) � ym sin kx. (16-3)

By definition, the displacement y is the same at both ends of this wave-
length—that is, at x � x1 and x � x1 � l.Thus, by Eq. 16-3,

ym sin kx1 � ym sin k(x1 � l)

� ym sin(kx1 � kl). (16-4)

A sine function begins to repeat itself when its angle (or argument) is increased
by 2p rad, so in Eq. 16-4 we must have kl � 2p, or

(angular wave number). (16-5)

We call k the angular wave number of the wave; its SI unit is the radian per meter,
or the inverse meter. (Note that the symbol k here does not represent a spring
constant as previously.)

Notice that the wave in Fig. 16-4 moves to the right by l from one snapshot
to the next.Thus, by the fifth snapshot, it has moved to the right by 1l.

1
4

k �
2p

l

Figure 16-4 Five “snapshots” of a string wave
traveling in the positive direction of an
x axis.The amplitude ym is indicated.A
typical wavelength l, measured from an
arbitrary position x1, is also indicated.

x

y

ym x1

λ 
(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Watch this spot in this
series of snapshots.

Figure 16-3 The names of the quantities in
Eq. 16-2, for a transverse sinusoidal wave.
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Period, Angular Frequency, and Frequency
Figure 16-5 shows a graph of the displacement y of Eq. 16-2 versus time t at a
certain position along the string, taken to be x � 0. If you were to monitor the
string, you would see that the single element of the string at that position moves
up and down in simple harmonic motion given by Eq. 16-2 with x � 0:

y(0, t) � ym sin(�vt)

� �ym sin vt (x � 0). (16-6)

Here we have made use of the fact that sin(�a) � �sin a, where a is any angle.
Figure 16-5 is a graph of this equation, with displacement plotted versus time; it
does not show the shape of the wave. (Figure 16-4 shows the shape and is a
picture of reality; Fig. 16-5 is a graph and thus an abstraction.)

We define the period of oscillation T of a wave to be the time any string
element takes to move through one full oscillation.A typical period is marked on
the graph of Fig. 16-5. Applying Eq. 16-6 to both ends of this time interval and
equating the results yield

�ym sin vt1 � �ym sin v(t1 � T)

� �ym sin(vt1 � vT). (16-7)

This can be true only if vT � 2p, or if

(angular frequency). (16-8)

We call v the angular frequency of the wave; its SI unit is the radian per second.
Look back at the five snapshots of a traveling wave in Fig. 16-4. The time

between snapshots is T. Thus, by the fifth snapshot, every string element has
made one full oscillation.

The frequency f of a wave is defined as 1/T and is related to the angular
frequency v by

(frequency). (16-9)

Like the frequency of simple harmonic motion in Chapter 15, this frequency f is a
number of oscillations per unit time—here, the number made by a string element
as the wave moves through it. As in Chapter 15, f is usually measured in hertz or
its multiples, such as kilohertz.

f �
1
T

�
v

2p

1
4

v �
2p

T

Checkpoint 1
The figure is a composite of three snapshots, each of
a wave traveling along a particular string.The
phases for the waves are given by (a) 2x � 4t,
(b) 4x � 8t, and (c) 8x � 16t.Which phase
corresponds to which wave in the figure?

1 2 3 

x

y

Figure 16-5 A graph of the displacement of
the string element at x � 0 as a function of
time, as the sinusoidal wave of Fig. 16-4
passes through the element.The amplitude
ym is indicated.A typical period T, mea-
sured from an arbitrary time t1, is also
indicated.

t

y

t1
ym

T

This is a graph,
not a snapshot.

Phase Constant
When a sinusoidal traveling wave is given by the wave function of Eq. 16-2, the
wave near x � 0 looks like Fig. 16-6a when t � 0. Note that at x � 0, the displace-
ment is y � 0 and the slope is at its maximum positive value. We can generalize
Eq. 16-2 by inserting a phase constant f in the wave function:

y � ym sin(kx � vt � f). (16-10)

Figure 16-6 A sinusoidal traveling wave at 
t � 0 with a phase constant f of (a) 0 and
(b) p/5 rad.

x

x

y

y

(a)

(b)

The effect of the
phase constant
is to shift the wave.

φ
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The value of f can be chosen so that the function gives some other displacement
and slope at x � 0 when t � 0. For example, a choice of f � �p/5 rad gives the
displacement and slope shown in Fig. 16-6b when t � 0. The wave is still
sinusoidal with the same values of ym, k, and v, but it is now shifted from what
you see in Fig. 16-6a (where f � 0). Note also the direction of the shift.A positive
value of f shifts the curve in the negative direction of the x axis; a negative value
shifts the curve in the positive direction.

The Speed of a Traveling Wave
Figure 16-7 shows two snapshots of the wave of Eq. 16-2, taken a small time
interval �t apart. The wave is traveling in the positive direction of x (to the right
in Fig. 16-7), the entire wave pattern moving a distance �x in that direction
during the interval �t. The ratio �x/�t (or, in the differential limit, dx/dt) is the
wave speed v. How can we find its value?

As the wave in Fig.16-7 moves,each point of the moving wave form,such as point
A marked on a peak,retains its displacement y. (Points on the string do not retain their
displacement, but points on the wave form do.) If point A retains its displacement as it
moves, the phase in Eq.16-2 giving it that displacement must remain a constant:

kx � vt � a constant. (16-11)

Note that although this argument is constant, both x and t are changing. In fact,
as t increases, x must also, to keep the argument constant. This confirms that the
wave pattern is moving in the positive direction of x.

To find the wave speed v, we take the derivative of Eq. 16-11, getting

or (16-12)

Using Eq. 16-5 (k � 2p/l) and Eq. 16-8 (v � 2p/T), we can rewrite the wave
speed as

(wave speed). (16-13)

The equation v � l/T tells us that the wave speed is one wavelength per period;
the wave moves a distance of one wavelength in one period of oscillation.

Equation 16-2 describes a wave moving in the positive direction of x. We can
find the equation of a wave traveling in the opposite direction by replacing t in
Eq. 16-2 with �t.This corresponds to the condition

kx � vt � a constant, (16-14)

which (compare Eq. 16-11) requires that x decrease with time. Thus, a wave trav-
eling in the negative direction of x is described by the equation

y(x, t) � ym sin(kx � vt). (16-15)

If you analyze the wave of Eq. 16-15 as we have just done for the wave of
Eq. 16-2, you will find for its velocity

(16-16)

The minus sign (compare Eq. 16-12) verifies that the wave is indeed moving in the
negative direction of x and justifies our switching the sign of the time variable.

dx
dt

� �
v

k
.

v �
v

k
�

l

T
� lf

dx
dt

� v �
v

k
.

k
dx
dt

� v � 0

Figure 16-7 Two snapshots of the wave of 
Fig. 16-4, at time t � 0 and then at time
t � �t.As the wave moves to the right at
velocity , the entire curve shifts a distance
�x during �t. Point A “rides” with the wave
form, but the string elements move only up
and down.

v:

x

y Δ x

A

Wave at t = 0 
Wave at t = Δt

v



450 CHAPTER 16 WAVES—I

Consider now a wave of arbitrary shape, given by

y(x, t) � h(kx � vt), (16-17)

where h represents any function, the sine function being one possibility. Our
previous analysis shows that all waves in which the variables x and t enter
into the combination kx � vt are traveling waves. Furthermore, all traveling
waves must be of the form of Eq. 16-17. Thus, y(x, t) � represents a
possible (though perhaps physically a little bizarre) traveling wave. The function
y(x, t) � sin(ax2 � bt), on the other hand, does not represent a traveling wave.

1ax � bt

Checkpoint 2
Here are the equations of three waves:
(1) y(x, t) � 2 sin(4x � 2t), (2) y(x, t) � sin(3x � 4t), (3) y(x, t) � 2 sin(3x � 3t).
Rank the waves according to their (a) wave speed and (b) maximum speed perpendi-
cular to the wave’s direction of travel (the transverse speed), greatest first.

straction, showing us motion spread out over time. From it
we can determine the period T of the string element in its
SHM and thus also of the wave itself. From T we can then
find angular frequency v (� 2p/T) in Eq. 16-18. (3) The
phase constant f is set by the displacement of the string at
x � 0 and t � 0.

Amplitude: From either Fig. 16-8a or 16-8b we see that the
maximum displacement is 3.0 mm. Thus, the wave’s ampli-
tude xm � 3.0 mm.

Wavelength: In Fig. 16-8a, the wavelength l is the distance
along the x axis between repetitions in the pattern.The easi-
est way to measure l is to find the distance from one cross-
ing point to the next crossing point where the string has the
same slope. Visually we can roughly measure that distance
with the scale on the axis. Instead, we can lay the edge of a

Sample Problem 16.01 Determining the quantities in an equation for a transverse wave

A transverse wave traveling along an x axis has the form
given by

y � ym sin(kx � vt � f). (16-18)

Figure 16-8a gives the displacements of string elements as a
function of x, all at time t � 0. Figure 16-8b gives the
displacements of the element at x � 0 as a function of t. Find
the values of the quantities shown in Eq. 16-18, including the
correct choice of sign.

KEY IDEAS

(1) Figure 16-8a is effectively a snapshot of reality (some-
thing that we can see), showing us motion spread out over
the x axis. From it we can determine the wavelength l of the
wave along that axis, and then we can find the angular wave
number k (� 2p/l) in Eq. 16-18. (2) Figure 16-8b is an ab-

Figure 16-8 (a) A snapshot of the displacement y versus position x along a string, at time t � 0. (b) A graph of displacement y versus time
t for the string element at x � 0.

(a)

–8

2

–2

0

y (mm)

x (mm)
–4 4 8

(b)

0

y (mm)

t (ms)
–20 10 20–10

–3

–2
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crease (mentally slide the curve slightly rightward). If,
instead, the wave is moving leftward, then just after the snap-
shot, the depth at x � 0 should decrease. Now let’s check the
graph in Fig. 16-8b. It tells us that just after t � 0, the depth in-
creases.Thus, the wave is moving rightward, in the positive di-
rection of x, and we choose the minus sign in Eq. 16-18.

Phase constant: The value of f is set by the conditions at
x � 0 at the instant t � 0. From either figure we see that at
that location and time, y � �2.0 mm. Substituting these
three values and also ym � 3.0 mm into Eq. 16-18 gives us

�2.0 mm � (3.0 mm) sin(0 � 0 � f)

or f � sin�1 � �0.73 rad.

Note that this is consistent with the rule that on a plot of y
versus x, a negative phase constant shifts the normal sine
function rightward, which is what we see in Fig. 16-8a.

Equation: Now we can fill out Eq. 16-18:

y � (3.0 mm) sin(200px � l00pt � 0.73 rad), (Answer)

with x in meters and t in seconds.

(�2
3)

paper sheet on the graph, mark those crossing points, slide
the sheet to align the left-hand mark with the origin, and
then read off the location of the right-hand mark. Either
way we find l � 10 mm. From Eq. 16-5, we then have

Period: The period T is the time interval that a string ele-
ment’s SHM takes to begin repeating itself. In Fig. 16-8b, T
is the distance along the t axis from one crossing point to the
next crossing point where the plot has the same slope.
Measuring the distance visually or with the aid of a sheet of
paper, we find T � 20 ms. From Eq. 16-8, we then have

Direction of travel: To find the direction, we apply a bit of
reasoning to the figures. In the snapshot at t � 0 given in
Fig. 16-8a, note that if the wave is moving rightward, then just
after the snapshot, the depth of the wave at x � 0 should in-

v �
2p

T
�

2p

0.020 s
� 100p rad/s.

k �
2p

l
�

2p

0.010 m
� 200p rad/m.

Next, substituting numerical values but suppressing the
units, which are SI, we write

u � (�2.72)(0.00327) cos[(72.1)(0.225) � (2.72)(18.9)]

� 0.00720 m/s � 7.20 mm/s. (Answer)

Thus, at t � 18.9 s our string element is moving in the
positive direction of y with a speed of 7.20 mm/s.
(Caution: In evaluating the cosine function, we keep all the
significant figures in the argument or the calculation can be
off considerably. For example, round off the numbers to two
significant figures and then see what you get for u.)

(b) What is the transverse acceleration ay of our string
element at t � 18.9 s?

KEY IDEA

The transverse acceleration ay is the rate at which the ele-
ment’s transverse velocity is changing.

Calculations: From Eq. 16-20, again treating x as a constant
but allowing t to vary, we find

(16-21)

Substituting numerical values but suppressing the units,
which are SI, we have

ay 5 2(2.72)2(0.00327) sin[(72.1)(0.225) � (2.72)(18.9)]

� �0.0142 m/s2 � �14.2 mm/s2. (Answer)

ay �
�u
�t

� �v2ym sin (kx � vt).

Sample Problem 16.02 Transverse velocity and transverse acceleration of a string element

A wave traveling along a string is described by

y(x, t) = (0.00327 m) sin(72.1x � 2.72t),

in which the numerical constants are in SI units (72.1 rad/m
and 2.72 rad/s).

(a) What is the transverse velocity u of the string element
at x � 22.5 cm at time t � 18.9 s? (This velocity, which is
associated with the transverse oscillation of a string
element, is parallel to the y axis. Don’t confuse it with v,
the constant velocity at which the wave form moves along
the x axis.)

KEY IDEAS

The transverse velocity u is the rate at which the
displacement y of the element is changing. In general, that
displacement is given by

y(x, t) = ym sin(kx � vt). (16-19)

For an element at a certain location x, we find the rate of
change of y by taking the derivative of Eq. 16-19 with re-
spect to t while treating x as a constant. A derivative taken
while one (or more) of the variables is treated as a constant
is called a partial derivative and is represented by a symbol
such as rather than d/dt.

Calculations: Here we have

(16-20)u �
�y
�t

� �vym cos(kx � vt).

�/�t
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16-2 WAVE SPEED ON A STRETCHED STRING

After reading this module, you should be able to . . .

16.14 Calculate the linear density m of a uniform string in
terms of the total mass and total length.

l6.15 Apply the relationship between wave speed v, tension t,
and linear density m.

● The speed of a wave on a stretched string is set by
properties of the string, not properties of the wave such as
frequency or amplitude.

● The speed of a wave on a string with tension t and linear
density m is

v � A
t

m
.

Learning Objectives

Key Ideas

Wave Speed on a Stretched String
The speed of a wave is related to the wave’s wavelength and frequency by Eq.
16-13, but it is set by the properties of the medium. If a wave is to travel through
a medium such as water, air, steel, or a stretched string, it must cause the particles
of that medium to oscillate as it passes, which requires both mass (for kinetic en-
ergy) and elasticity (for potential energy).Thus, the mass and elasticity determine
how fast the wave can travel. Here, we find that dependency in two ways.

Dimensional Analysis
In dimensional analysis we carefully examine the dimensions of all the physical
quantities that enter into a given situation to determine the quantities they pro-
duce. In this case, we examine mass and elasticity to find a speed v, which has the
dimension of length divided by time, or LT �1.

For the mass, we use the mass of a string element, which is the mass m of the
string divided by the length l of the string.We call this ratio the linear density m of
the string.Thus, m � m/l, its dimension being mass divided by length, ML�1.

You cannot send a wave along a string unless the string is under tension,
which means that it has been stretched and pulled taut by forces at its two ends.
The tension t in the string is equal to the common magnitude of those two forces.
As a wave travels along the string, it displaces elements of the string by causing
additional stretching, with adjacent sections of string pulling on each other
because of the tension. Thus, we can associate the tension in the string with the
stretching (elasticity) of the string. The tension and the stretching forces it pro-
duces have the dimension of a force—namely, MLT �2 (from F � ma).

We need to combine m (dimension ML�1) and t (dimension MLT �2) to get v
(dimension LT �1).A little juggling of various combinations suggests

(16-22)

in which C is a dimensionless constant that cannot be determined with dimen-
sional analysis. In our second approach to determining wave speed, you will see
that Eq. 16-22 is indeed correct and that C � 1.

v � CA
t

m
,

Additional examples, video, and practice available at WileyPLUS

From part (a) we learn that at t � 18.9 s our string element is
moving in the positive direction of y, and here we learn that

it is slowing because its acceleration is in the opposite
direction of u.
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Derivation from Newton’s Second Law
Instead of the sinusoidal wave of Fig. 16-1b, let us consider a single symmetrical
pulse such as that of Fig. 16-9, moving from left to right along a string with
speed v. For convenience, we choose a reference frame in which the pulse
remains stationary; that is, we run along with the pulse, keeping it constantly
in view. In this frame, the string appears to move past us, from right to left in
Fig. 16-9, with speed v.

Consider a small string element of length �l within the pulse, an element that
forms an arc of a circle of radius R and subtending an angle 2u at the center of
that circle. A force with a magnitude equal to the tension in the string pulls
tangentially on this element at each end. The horizontal components of these
forces cancel, but the vertical components add to form a radial restoring force .
In magnitude,

(force), (16-23)

where we have approximated sin u as u for the small angles u in Fig. 16-9. From
that figure, we have also used 2u � �l/R.The mass of the element is given by

�m � m �l (mass), (16-24)

where m is the string’s linear density.
At the moment shown in Fig. 16-9, the string element �l is moving in an arc of a

circle.Thus, it has a centripetal acceleration toward the center of that circle, given by

(acceleration). (16-25)

Equations 16-23, 16-24, and 16-25 contain the elements of Newton’s second
law. Combining them in the form

force � mass � acceleration

gives

Solving this equation for the speed v yields

(speed), (16-26)

in exact agreement with Eq. 16-22 if the constant C in that equation is given the
value unity. Equation 16-26 gives the speed of the pulse in Fig. 16-9 and the speed
of any other wave on the same string under the same tension.

Equation 16-26 tells us:

v � A
t

m

t �l
R

� (m �l)
v2

R
.

a �
v2

R

F � 2(t  sin u) � t(2u) � t
�l
R

F
:

	:

Figure 16-9 A symmetrical pulse, viewed
from a reference frame in which the pulse
is stationary and the string appears to move
right to left with speed v.We find speed v
by applying Newton’s second law to a
string element of length �l, located at the
top of the pulse.

τ
θ

R

lΔ

O

τ

θ

v

The speed of a wave along a stretched ideal string depends only on the tension
and linear density of the string and not on the frequency of the wave.

Checkpoint 3
You send a traveling wave along a particular string by oscillating one end. If you
increase the frequency of the oscillations, do (a) the speed of the wave and (b) the
wavelength of the wave increase, decrease, or remain the same? If, instead, you
increase the tension in the string, do (c) the speed of the wave and (d) the wavelength
of the wave increase, decrease, or remain the same?

The frequency of the wave is fixed entirely by whatever generates the wave (for
example, the person in Fig. 16-1b). The wavelength of the wave is then fixed by
Eq. 16-13 in the form l � v/f.
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Energy and Power of a Wave Traveling Along a String
When we set up a wave on a stretched string, we provide energy for the motion of
the string. As the wave moves away from us, it transports that energy as both
kinetic energy and elastic potential energy. Let us consider each form in turn.

Kinetic Energy
A string element of mass dm, oscillating transversely in simple harmonic motion
as the wave passes through it, has kinetic energy associated with its transverse
velocity . When the element is rushing through its y � 0 position (element b in
Fig. 16-10), its transverse velocity—and thus its kinetic energy—is a maximum.
When the element is at its extreme position y � ym (as is element a), its trans-
verse velocity—and thus its kinetic energy—is zero.

Elastic Potential Energy
To send a sinusoidal wave along a previously straight string, the wave must neces-
sarily stretch the string.As a string element of length dx oscillates transversely, its
length must increase and decrease in a periodic way if the string element is to fit
the sinusoidal wave form. Elastic potential energy is associatzed with these
length changes, just as for a spring.

When the string element is at its y � ym position (element a in Fig. 16-10), its
length has its normal undisturbed value dx, so its elastic potential energy is zero.
However, when the element is rushing through its y � 0 position, it has maximum
stretch and thus maximum elastic potential energy.

Energy Transport
The oscillating string element thus has both its maximum kinetic energy and its
maximum elastic potential energy at y � 0. In the snapshot of Fig. 16-10, the
regions of the string at maximum displacement have no energy, and the regions at
zero displacement have maximum energy. As the wave travels along the string,
forces due to the tension in the string continuously do work to transfer energy
from regions with energy to regions with no energy.

As in Fig. 16-1b, let’s set up a wave on a string stretched along a horizontal x
axis such that Eq. 16-2 applies. As we oscillate one end of the string, we continu-
ously provide energy for the motion and stretching of the string—as the string
sections oscillate perpendicularly to the x axis, they have kinetic energy and elas-
tic potential energy.As the wave moves into sections that were previously at rest,
energy is transferred into those new sections. Thus, we say that the wave trans-
ports the energy along the string.

The Rate of Energy Transmission
The kinetic energy dK associated with a string element of mass dm is given by

dK � dm u2, (16-27)1
2

u:

16-3 ENERGY AND POWER OF A WAVE TRAVELING ALONG A STRING

After reading this module, you should be able to . . .

16.16 Calculate the average rate at which energy is transported by a transverse wave.

● The average power of, or average rate at which energy is
transmitted by, a sinusoidal wave on a stretched string is

Learning Objective

Key Idea

Figure 16-10 A snapshot of a traveling wave
on a string at time t � 0. String element a is
at displacement y � ym, and string element
b is at displacement y � 0.The kinetic en-
ergy of the string element at each position
depends on the transverse velocity of the
element.The potential energy depends on
the amount by which the string element is
stretched as the wave passes through it.

y

ym

0

dx

b

dx

a
λ 

x

v

given by
Pavg � 1

2mvv2y2
m.
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where u is the transverse speed of the oscillating string element. To find u, we
differentiate Eq. 16-2 with respect to time while holding x constant:

(16-28)

Using this relation and putting dm � m dx, we rewrite Eq. 16-27 as

dK � (m dx)(�vym)2 cos2(kx � vt). (16-29)

Dividing Eq. 16-29 by dt gives the rate at which kinetic energy passes through
a string element, and thus the rate at which kinetic energy is carried along by the
wave.The dx/dt that then appears on the right of Eq. 16-29 is the wave speed v, so 

(16-30)

The average rate at which kinetic energy is transported is

� mvv2y2
m. (16-31)

Here we have taken the average over an integer number of wavelengths and
have used the fact that the average value of the square of a cosine function over
an integer number of periods is .

Elastic potential energy is also carried along with the wave, and at the same
average rate given by Eq. 16-31. Although we shall not examine the proof, you
should recall that, in an oscillating system such as a pendulum or a spring–block
system, the average kinetic energy and the average potential energy are equal.

The average power, which is the average rate at which energy of both kinds
is transmitted by the wave, is then

(16-32)

or, from Eq. 16-31,

Pavg � mvv2y2
m (average power). (16-33)

The factors m and v in this equation depend on the material and tension of the
string.The factors v and ym depend on the process that generates the wave.The de-
pendence of the average power of a wave on the square of its amplitude and also on
the square of its angular frequency is a general result, true for waves of all types.

1
2

Pavg � 2 � dK
dt �avg

1
2

1
4

� dK
dt �avg

� 1
2mvv2y2

m [cos2(kx � vt)]avg

dK
dt

� 1
2
v�2y2

m cos2(kx � �t).

1
2

u �
≠y
≠t

� �vym cos(kx � vt).

angular frequency v and wave speed v. From Eq. 16-9,
v � 2pf � (2p)(120 Hz) � 754 rad/s.

From Eq. 16-26 we have

Equation 16-33 then yields

Pavg � mvv2y2
m

� ( )(0.525 kg/m)(9.26 m/s)(754 rad/s)2(0.0085 m)2

� 100 W. (Answer)

1
2

1
2

v � A
	



� A

45 N
0.525 kg/m

� 9.26 m/s.

Sample Problem 16.03 Average power of a transverse wave

A string has linear density m � 525 g/m and is under tension 
t � 45 N.We send a sinusoidal wave with frequency f � 120 Hz
and amplitude ym � 8.5 mm along the string. At what average
rate does the wave transport energy?

KEY IDEA

The average rate of energy transport is the average power
Pavg as given by Eq. 16-33.

Calculations: To use Eq. 16-33, we first must calculate

Additional examples, video, and practice available at WileyPLUS



The Wave Equation
As a wave passes through any element on a stretched string, the element moves
perpendicularly to the wave’s direction of travel (we are dealing with a trans-
verse wave). By applying Newton’s second law to the element’s motion, we can
derive a general differential equation, called the wave equation, that governs the
travel of waves of any type.

Figure 16-11a shows a snapshot of a string element of mass dm and length �
as a wave travels along a string of linear density m that is stretched along a hori-
zontal x axis. Let us assume that the wave amplitude is small so that the element
can be tilted only slightly from the x axis as the wave passes. The force 2 on the
right end of the element has a magnitude equal to tension t in the string and is
directed slightly upward. The force 1 on the left end of the element also has
a magnitude equal to the tension t but is directed slightly downward. Because of
the slight curvature of the element, these two forces are not simply in opposite di-
rection so that they cancel. Instead, they combine to produce a net force that
causes the element to have an upward acceleration ay. Newton’s second law writ-
ten for y components (Fnet,y � may) gives us

F2y � F1y � dm ay. (16-34)

Let’s analyze this equation in parts, first the mass dm, then the acceleration com-
ponent ay, then the individual force components F2y and F1y, and then finally the
net force that is on the left side of Eq. 16-34.

Mass. The element’s mass dm can be written in terms of the string’s linear
density m and the element’s length � as dm � m�. Because the element can have
only a slight tilt, � � dx (Fig. 16-11a) and we have the approximation

dm � m dx. (16-35)

F
:

F
:

456 CHAPTER 16 WAVES—I

16-4 THE WAVE EQUATION

After reading this module, you should be able to . . .
16.17 For the equation giving a string-element displacement

as a function of position x and time t, apply the relationship
between the second derivative with respect to x and the
second derivative with respect to t.

● The general differential equation that governs the travel of waves
of all types is

�2y
�x2 �

1
v2

�2y
�t2 .

Here the waves travel along an x axis and oscillate parallel to
the y axis, and they move with speed v, in either the positive x
direction or the negative x direction.

Learning Objective

Key Idea

Figure 16-11 (a) A string element as a sinusoidal transverse wave travels on a stretched string.
Forces 1 and 2 act at the left and right ends, producing acceleration having a vertical
component ay. (b) The force at the element’s right end is directed along a tangent to the ele-
ment’s right side.

a:F
:

F
:

y

x
dx

� 
F1

F2

ay

(a)

y

x

F2

F2x

F2y

(b)

Tangent line



45716-4 THE WAVE EQUATION

Acceleration. The acceleration ay in Eq. 16-34 is the second derivative of the
displacement y with respect to time:

(16-36)

Forces. Figure 16-11b shows that 2 is tangent to the string at the right end
of the string element.Thus we can relate the components of the force to the string
slope S2 at the right end as

(16-37)

We can also relate the components to the magnitude F2 (� t) with

or (16-38)

However, because we assume that the element is only slightly tilted, F2y � F2x and
therefore we can rewrite Eq. 16-38 as

t � F2x. (16-39)

Substituting this into Eq. 16-37 and solving for F2y yield

F2y � tS2. (16-40)

Similar analysis at the left end of the string element gives us

F1y � tS1. (16-41)

Net Force. We can now substitute Eqs. 16-35, 16-36, 16-40, and 16-41 into
Eq. 16-34 to write

or (16-42)

Because the string element is short, slopes S2 and S1 differ by only a differential
amount dS, where S is the slope at any point:

(16-43)

First replacing S2 � S1 in Eq. 16-42 with dS and then using Eq. 16-43 to substitute
dy/dx for S, we find

and . (16-44)

In the last step, we switched to the notation of partial derivatives because on
the left we differentiate only with respect to x and on the right we differenti-
ate only with respect to t. Finally, substituting from Eq. 16-26 (v � ), we
find

(wave equation). (16-45)

This is the general differential equation that governs the travel of waves of all
types.
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1t /m
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�
m

t
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�
m

t
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The Principle of Superposition for Waves
It often happens that two or more waves pass simultaneously through the same
region. When we listen to a concert, for example, sound waves from many instru-
ments fall simultaneously on our eardrums. The electrons in the antennas of our
radio and television receivers are set in motion by the net effect of many electro-
magnetic waves from many different broadcasting centers. The water of a lake or
harbor may be churned up by waves in the wakes of many boats.

Suppose that two waves travel simultaneously along the same stretched
string. Let y1(x, t) and y2(x, t) be the displacements that the string would 
experience if each wave traveled alone. The displacement of the string when the
waves overlap is then the algebraic sum

y
(x, t) � y1(x, t) � y2(x, t). (16-46)

This summation of displacements along the string means that

This is another example of the principle of superposition, which says that when
several effects occur simultaneously, their net effect is the sum of the individual
effects. (We should be thankful that only a simple sum is needed. If two effects
somehow amplified each other, the resulting nonlinear world would be very diffi-
cult to manage and understand.)

Figure 16-12 shows a sequence of snapshots of two pulses traveling in
opposite directions on the same stretched string. When the pulses overlap, the
resultant pulse is their sum. Moreover,

Overlapping waves algebraically add to produce a resultant wave (or net wave).

Overlapping waves do not in any way alter the travel of each other.

Figure 16-12 A series of snapshots that
show two pulses traveling in opposite
directions along a stretched string. The
superposition principle applies as the
pulses move through each other.

When two waves overlap,
we see the resultant wave,
not the individual waves.

● When two or more waves traverse the same medium, the
displacement of any particle of the medium is the sum of the
displacements that the individual waves would give it, an
effect known as the principle of superposition for waves.

● Two sinusoidal waves on the same string exhibit
interference, adding or canceling according to the
principle of superposition. If the two are traveling in the
same direction and have the same amplitude ym and

frequency (hence the same wavelength) but differ in phase by
a phase constant f, the result is a single wave with this same
frequency:

y
(x, t) � [2ym cos f] sin(kx � vt � f).

If f � 0, the waves are exactly in phase and their interference
is fully constructive; if f � p rad, they are exactly out of phase
and their interference is fully destructive.

1
2

1
2

Key Ideas

16-5 INTERFERENCE OF WAVES

After reading this module, you should be able to . . .

16.18 Apply the principle of superposition to show that two
overlapping waves add algebraically to give a resultant
(or net) wave.

16.19 For two transverse waves with the same amplitude and
wavelength and that travel together, find the displacement equa-
tion for the resultant wave and calculate the amplitude in terms
of the individual wave amplitude and the phase difference.

16.20 Describe how the phase difference between two
transverse waves (with the same amplitude and wavelength)
can result in fully constructive interference, fully destructive in-
terference, and intermediate interference.

16.21 With the phase difference between two interfering
waves expressed in terms of wavelengths, quickly
determine the type of interference the waves have.

Learning Objectives
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Interference of Waves
Suppose we send two sinusoidal waves of the same wavelength and amplitude in
the same direction along a stretched string. The superposition principle applies.
What resultant wave does it predict for the string?

The resultant wave depends on the extent to which the waves are in phase
(in step) with respect to each other — that is, how much one wave form is
shifted from the other wave form. If the waves are exactly in phase (so that the
peaks and valleys of one are exactly aligned with those of the other), they com-
bine to double the displacement of either wave acting alone. If they are exactly
out of phase (the peaks of one are exactly aligned with the valleys of the other),
they combine to cancel everywhere, and the string remains straight. We call this
phenomenon of combining waves interference, and the waves are said to
interfere. (These terms refer only to the wave displacements; the travel of the
waves is unaffected.)

Let one wave traveling along a stretched string be given by

y1(x, t) � ym sin(kx � vt) (16-47)

and another, shifted from the first, by

y2(x, t) � ym sin(kx � vt � f). (16-48)

These waves have the same angular frequency v (and thus the same frequency
f ), the same angular wave number k (and thus the same wavelength l), and the
same amplitude ym. They both travel in the positive direction of the x axis, with
the same speed, given by Eq. 16-26. They differ only by a constant angle f, the
phase constant. These waves are said to be out of phase by f or to have a phase
difference of f, or one wave is said to be phase-shifted from the other by f.

From the principle of superposition (Eq. 16-46), the resultant wave is the
algebraic sum of the two interfering waves and has displacement

y
(x, t) � y1(x, t) � y2(x, t)

� ym sin(kx � vt) � ym sin(kx � vt � f). (16-49)

In Appendix E we see that we can write the sum of the sines of two angles a and b as

sin a � sin b � 2 sin (a � b) cos (a � b). (16-50)

Applying this relation to Eq. 16-49 leads to

y
(x, t) � [2ym cos f] sin(kx � vt � f). (16-51)

As Fig. 16-13 shows, the resultant wave is also a sinusoidal wave traveling in the
direction of increasing x. It is the only wave you would actually see on the string
(you would not see the two interfering waves of Eqs. 16-47 and 16-48).

1
2

1
2

1
2

1
2

If two sinusoidal waves of the same amplitude and wavelength travel in the same
direction along a stretched string, they interfere to produce a resultant sinusoidal
wave traveling in that direction.

Figure 16-13 The resultant wave of 
Eq. 16-51, due to the interference of two
sinusoidal transverse waves, is also a
sinusoidal transverse wave, with an
amplitude and an oscillating term.

Displacement

Magnitude
gives

amplitude

y'(x,t) = [2ym cos      ] sin(kx – t +      ) φ ω φ 

Oscillating
term

1__
2

1__
2

The resultant wave differs from the interfering waves in two respects: (1) its phase
constant is f, and (2) its amplitude y
m is the magnitude of the quantity in the brack-
ets in Eq. 16-51:

y
m � |2ym cos f| (amplitude). (16-52)

If f � 0 rad (or 0�), the two interfering waves are exactly in phase and Eq.
16-51 reduces to

y
(x, t) � 2ym sin(kx � vt) (f � 0). (16-53)

1
2

1
2
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Being exactly in phase,
the waves produce a
large resultant wave.

Being exactly out of
phase, they produce
a flat string.

This is an intermediate
situation, with an
intermediate result.

Figure 16-14 Two identical sinusoidal waves,
y1(x, t) and y2(x, t), travel along a string in
the positive direction of an x axis.They in-
terfere to give a resultant wave y
(x, t).
The resultant wave is what is actually
seen on the string.The phase difference f
between the two interfering waves is (a) 0
rad or 0�, (b) p rad or 180�, and (c) p rad
or 120�.The corresponding result-
ant waves are shown in (d), (e), and ( f ).

2
3

The two waves are shown in Fig. 16-14a, and the resultant wave is plotted in Fig.
16-14d. Note from both that plot and Eq. 16-53 that the amplitude of the resultant
wave is twice the amplitude of either interfering wave. That is the greatest ampli-
tude the resultant wave can have, because the cosine term in Eqs. 16-51 and 16-52
has its greatest value (unity) when f � 0. Interference that produces the greatest
possible amplitude is called fully constructive interference.

If f � p rad (or 180�), the interfering waves are exactly out of phase as in Fig.
16-14b.Then cos f becomes cos p/2 � 0, and the amplitude of the resultant wave
as given by Eq. 16-52 is zero.We then have, for all values of x and t,

y
(x, t) � 0 (f � p rad). (16-54)

The resultant wave is plotted in Fig. 16-14e. Although we sent two waves along
the string, we see no motion of the string. This type of interference is called fully
destructive interference.

Because a sinusoidal wave repeats its shape every 2p rad, a phase difference
of f � 2p rad (or 360�) corresponds to a shift of one wave relative to the other
wave by a distance equivalent to one wavelength. Thus, phase differences can be
described in terms of wavelengths as well as angles. For example, in Fig. 16-14b
the waves may be said to be 0.50 wavelength out of phase.Table 16-1 shows some
other examples of phase differences and the interference they produce. Note that
when interference is neither fully constructive nor fully destructive, it is called
intermediate interference. The amplitude of the resultant wave is then interme-
diate between 0 and 2ym. For example, from Table 16-1, if the interfering waves
have a phase difference of 120� (f � p rad � 0.33 wavelength), then the result-
ant wave has an amplitude of ym, the same as that of the interfering waves
(see Figs. 16-14c and f ).

Two waves with the same wavelength are in phase if their phase
difference is zero or any integer number of wavelengths.Thus, the integer part of
any phase difference expressed in wavelengths may be discarded. For example, a
phase difference of 0.40 wavelength (an intermediate interference, close to fully
destructive interference) is equivalent in every way to one of 2.40 wavelengths,

2
3

1
2
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and so the simpler of the two numbers can be used in computations. Thus, by
looking at only the decimal number and comparing it to 0, 0.5, or 1.0 wavelength,
you can quickly tell what type of interference two waves have.

16-5 INTERFERENCE OF WAVES

Checkpoint 4
Here are four possible phase differences between two identical waves, expressed in
wavelengths: 0.20, 0.45, 0.60, and 0.80. Rank them according to the amplitude of the 
resultant wave, greatest first.

Table 16-1 Phase Difference and Resulting Interference Typesa

AmplitudePhase Difference, in
of Resultant Type of 

Degrees Radians Wavelengths Wave Interference

0 0 0 2ym Fully constructive

120 p 0.33 ym Intermediate

180 p 0.50 0 Fully destructive

240 p 0.67 ym Intermediate

360 2p 1.00 2ym Fully constructive

865 15.1 2.40 0.60ym Intermediate

aThe phase difference is between two otherwise identical waves, with amplitude ym, moving in the
same direction.

4
3

2
3

(b) What phase difference, in radians and wavelengths, will
give the resultant wave an amplitude of 4.9 mm?

Calculations: Now we are given y
m and seek f. From Eq.
16-52,

y
m � |2ym cos f|,

we now have

4.9 mm � (2)(9.8 mm) cos f,

which gives us (with a calculator in the radian mode)

� �2.636 rad � �2.6 rad. (Answer)

There are two solutions because we can obtain the same re-
sultant wave by letting the first wave lead (travel ahead of)
or lag (travel behind) the second wave by 2.6 rad. In wave-
lengths, the phase difference is

� �0.42 wavelength. (Answer)

f

2p rad/wavelength
�

�2.636 rad
2p rad/wavelength

f � 2 cos�1 4.9 mm
(2)(9.8 mm)

1
2

1
2

Sample Problem 16.04 Interference of two waves, same direction, same amplitude

Two identical sinusoidal waves, moving in the same 
direction along a stretched string, interfere with each other.
The amplitude ym of each wave is 9.8 mm, and the phase
difference f between them is 100�.

(a) What is the amplitude y
m of the resultant wave due to the
interference, and what is the type of this interference?

KEY IDEA

These are identical sinusoidal waves traveling in the same
direction along a string, so they interfere to produce a
sinusoidal traveling wave.

Calculations: Because they are identical, the waves  have
the same amplitude. Thus, the amplitude y
m of the resultant
wave is given by Eq. 16-52:

y
m � |2ym cos f| � |(2)(9.8 mm) cos(100�/2)|

� 13 mm. (Answer)

We can tell that the interference is intermediate in two ways.
The phase difference is between 0 and 180�, and, correspond-
ingly, the amplitude y
m is between 0 and 2ym (� 19.6 mm).

1
2

Additional examples, video, and practice available at WileyPLUS
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Phasors
Adding two waves as discussed in the preceding module is strictly limited to
waves with identical amplitudes. If we have such waves, that technique is easy
enough to use, but we need a more general technique that can be applied to any
waves, whether or not they have the same amplitudes. One neat way is to use
phasors to represent the waves. Although this may seem bizarre at first, it is es-
sentially a graphical technique that uses the vector addition rules of Chapter 3 in-
stead of messy trig additions.

A phasor is a vector that rotates around its tail, which is pivoted at the origin
of a coordinate system. The magnitude of the vector is equal to the amplitude ym

of the wave that it represents.The angular speed of the rotation is equal to the an-
gular frequency v of the wave. For example, the wave

y1(x, t) � ym1 sin(kx � vt) (16-55)

is represented by the phasor shown in Figs. 16-15a to d. The magnitude of the 
phasor is the amplitude ym1 of the wave. As the phasor rotates around the origin
at angular speed v, its projection y1 on the vertical axis varies sinusoidally, from a
maximum of ym1 through zero to a minimum of �ym1 and then back to ym1. This
variation corresponds to the sinusoidal variation in the displacement y1 of any
point along the string as the wave passes through that point. (All this is shown as
an animation with voiceover in WileyPLUS.)

When two waves travel along the same string in the same direction, we can
represent them and their resultant wave in a phasor diagram. The phasors in
Fig. 16-15e represent the wave of Eq. 16-55 and a second wave given by

y2(x, t) � ym2 sin(kx � vt � f). (16-56)

This second wave is phase-shifted from the first wave by phase constant f.
Because the phasors rotate at the same angular speed v, the angle between the
two phasors is always f. If f is a positive quantity, then the phasor for wave 2 lags
the phasor for wave 1 as they rotate, as drawn in Fig. 16-15e. If f is a negative
quantity, then the phasor for wave 2 leads the phasor for wave 1.

Because waves y1 and y2 have the same angular wave number k and angu-
lar frequency v, we know from Eqs. 16-51 and 16-52 that their resultant is of
the form

y
(x, t) � y
m sin(kx � vt � b), (16-57)

16-6 PHASORS

After reading this module, you should be able to . . .

16.22 Using sketches, explain how a phasor can represent
the oscillations of a string element as a wave travels
through its location.

16.23 Sketch a phasor diagram for two overlapping waves
traveling together on a string, indicating their amplitudes
and phase difference on the sketch.

16.24 By using phasors, find the resultant wave of two trans-
verse waves traveling together along a string, calculating
the amplitude and phase and writing out the displacement
equation, and then displaying all three phasors in a phasor
diagram that shows the amplitudes, the leading or lagging,
and the relative phases.

● A wave y(x, t) can be represented with a phasor. This is a
vector that has a magnitude equal to the amplitude ym of the
wave and that rotates about an origin with an angular speed

equal to the angular frequency v of the wave. The projection
of the rotating phasor on a vertical axis gives the displace-
ment y of a point along the wave’s travel.

Learning Objectives

Key Idea
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Figure 16-15 (a)–(d) A phasor of magnitude ym1 rotating about an origin at angular speed v represents a sinusoidal wave.The phasor’s
projection y1 on the vertical axis represents the displacement of a point through which the wave passes. (e) A second phasor, also of
angular speed v but of magnitude ym2 and rotating at a constant angle f from the first phasor, represents a second wave, with a phase
constant f. (f ) The resultant wave is represented by the vector sum y
m of the two phasors.

φ
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ω
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(d)

Zero projection,
zero displacement

Maximum negative projection The next crest is about to
move through the dot.

This is a snapshot of the
two phasors for two waves.

These are the
projections of
the two phasors.

Wave 1

This is the
projection of
the resultant
phasor.

Adding the two phasors as vectors
gives the resultant phasor of the
resultant wave.

Wave 2, delayed
by radiansφ

This projection matches this
displacement of the dot as
the wave moves through it.

A
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where y
m is the amplitude of the resultant wave and b is its phase constant. To
find the values of y
m and b, we would have to sum the two combining waves, as
we did to obtain Eq. 16-51.To do this on a phasor diagram, we vectorially add the
two phasors at any instant during their rotation, as in Fig. 16-15f where phasor ym2

has been shifted to the head of phasor ym1. The magnitude of the vector sum
equals the amplitude y
m in Eq. 16-57. The angle between the vector sum and the
phasor for y1 equals the phase constant b in Eq. 16-57.

Note that, in contrast to the method of Module 16-5:

We can use phasors to combine waves even if their amplitudes are different.

we shall sum them by components. (They are called hori-
zontal and vertical components, because the symbols x and
y are already used for the waves themselves.) For the hori-
zontal components we have

y
mh � ym1 cos 0 � ym2 cos p/3

� 4.0 mm � (3.0 mm) cos p/3 � 5.50 mm.

For the vertical components we have

y
mv � ym1 sin 0 � ym2 sin p/3

� 0 � (3.0 mm) sin p/3 � 2.60 mm.

Thus, the resultant wave has an amplitude of

� 6.1 mm (Answer)
and a phase constant of

(Answer)

From Fig. 16-16b, phase constant b is a positive angle rela-
tive to phasor 1.Thus, the resultant wave lags wave 1 in their
travel by phase constant b � �0.44 rad. From Eq. 16-57, we
can write the resultant wave as

y
(x, t) � (6.1 mm) sin(kx � vt � 0.44 rad). (Answer)

b � tan�1 2.60 mm
5.50 mm

� 0.44 rad.

y
m � 2(5.50 mm)2 � (2.60 mm)2

Sample Problem 16.05 Interference of two waves, same direction, phasors, any amplitudes

Two sinusoidal waves y1(x, t) and y2(x, t) have the same
wavelength and travel together in the same direction along
a string. Their amplitudes are ym1 � 4.0 mm and ym2 � 3.0
mm, and their phase constants are 0 and p/3 rad, respec-
tively. What are the amplitude y
m and phase constant b of
the resultant wave? Write the resultant wave in the form of
Eq. 16-57.

KEY IDEAS

(1) The two waves have a number of properties in com-
mon: Because they travel along the same string, they must
have the same speed v, as set by the tension and linear
density of the string according to Eq. 16-26. With the
same wavelength l, they have the same angular wave
number k (� 2p/l). Also, because they have the same
wave number k and speed v, they must have the same an-
gular frequency v (� kv).

(2) The waves (call them waves 1 and 2) can be repre-
sented by phasors rotating at the same angular speed v
about an origin. Because the phase constant for wave 2 is
greater than that for wave 1 by p/3, phasor 2 must lag pha-
sor 1 by p/3 rad in their clockwise rotation, as shown in
Fig. 16-16a. The resultant wave due to the interference of
waves 1 and 2 can then be represented by a phasor that is
the vector sum of phasors 1 and 2.

Calculations: To simplify the vector summation, we drew
phasors 1 and 2 in Fig. 16-16a at the instant when phasor 1
lies along the horizontal axis. We then drew lagging
phasor 2 at positive angle p/3 rad. In Fig. 16-16b
we shifted phasor 2 so its tail is at the head of phasor 1.
Then we can draw the phasor y
m of the resultant
wave from the tail of phasor 1 to the head of phasor 2.
The phase constant b is the angle phasor y
m makes with
phasor 1.

To find values for y
m and b, we can sum phasors 1 and
2 as vectors on a vector-capable calculator. However, here

Figure 16-16 (a) Two phasors of magnitudes ym1 and ym2 and with
phase difference p/3. (b) Vector addition of these phasors at any
instant during their rotation gives the magnitude y
m of the phasor
for the resultant wave.

π /3

ym2

ym1

β π 

ym2

/3

ym1

y'm
y'

(a) (b)

Add the phasors
as vectors.

Additional examples, video, and practice available at WileyPLUS
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16-7 STANDING WAVES AND RESONANCE

After reading this module, you should be able to . . .
16.25 For two overlapping waves (same amplitude and

wavelength) that are traveling in opposite directions,
sketch snapshots of the resultant wave, indicating nodes
and antinodes.

16.26 For two overlapping waves (same amplitude and
wavelength) that are traveling in opposite directions, find
the displacement equation for the resultant wave and
calculate the amplitude in terms of the individual wave
amplitude.

16.27 Describe the SHM of a string element at an antinode
of a standing wave.

16.28 For a string element at an antinode of a standing wave,
write equations for the displacement, transverse velocity,
and transverse acceleration as functions of time.

16.29 Distinguish between “hard” and “soft” reflections of
string waves at a boundary.

16.30 Describe resonance on a string tied taut between two
supports, and sketch the first several standing wave
patterns, indicating nodes and antinodes.

16.31 In terms of string length, determine the wavelengths re-
quired for the first several harmonics on a string under tension.

16.32 For any given harmonic, apply the relationship between
frequency, wave speed, and string length.

● The interference of two identical sinusoidal waves moving
in opposite directions produces standing waves. For a string
with fixed ends, the standing wave is given by

y
(x, t) � [2ym sin kx] cos vt.

Standing waves are characterized by fixed locations of zero
displacement called nodes and fixed locations of maximum
displacement called antinodes.

● Standing waves on a string can be set up by reflection of
traveling waves from the ends of the string. If an end is fixed, it
must be the position of a node. This limits the frequencies at

which standing waves will occur on a given string. Each
possible frequency is a resonant frequency, and the
corresponding standing wave pattern is an oscillation mode.
For a stretched string of length L with fixed ends, the
resonant frequencies are

for n � 1, 2, 3, . . . .

The oscillation mode corresponding to n � 1 is called the
fundamental mode or the first harmonic; the mode
corresponding to n � 2 is the second harmonic; and so on.

f �
v
l

� n
v

2L
,

Learning Objectives

Key Ideas

Standing Waves
In Module 16-5, we discussed two sinusoidal waves of the same wavelength and
amplitude traveling in the same direction along a stretched string. What if they
travel in opposite directions? We can again find the resultant wave by applying
the superposition principle.

Figure 16-17 suggests the situation graphically. It shows the two combin-
ing waves, one traveling to the left in Fig. 16-17a, the other to the right in
Fig. 16-17b. Figure 16-17c shows their sum, obtained by applying the superposition

Figure 16-17 (a) Five snapshots of a wave
traveling to the left,at the times t
indicated below part (c) (T is the period
of oscillation). (b) Five snapshots of a
wave identical to that in (a) but traveling
to the right,at the same times t. (c)
Corresponding snapshots for the
superposition of the two waves on the
same string.At t � 0, T, and T, fully
constructive interference occurs because
of the alignment of peaks with peaks and
valleys with valleys.At t T and T,
fully destructive interference occurs
because of the alignment of peaks with
valleys.Some points (the nodes,marked
with dots) never oscillate; some points
(the antinodes) oscillate the most.

3
4� 1

4

1
2

(a)

(b)

(c)

t = 0 t = T t  = T1
2 t = T3

4t = T1
4

x x x x x

As the waves move through each other,
some points never move and some move
the most.
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principle graphically.The outstanding feature of the resultant wave is that there are
places along the string, called nodes, where the string never moves. Four such nodes
are marked by dots in Fig. 16-17c. Halfway between adjacent nodes are antinodes,
where the amplitude of the resultant wave is a maximum. Wave patterns such as
that of Fig. 16-17c are called standing waves because the wave patterns do not
move left or right; the locations of the maxima and minima do not change.

If two sinusoidal waves of the same amplitude and wavelength travel in opposite
directions along a stretched string, their interference with each other produces a 
standing wave.

Figure 16-18 The resultant wave of Eq. 16-60
is a standing wave and is due to the
interference of two sinusoidal waves of the
same amplitude and wavelength that travel
in opposite directions.

Displacement

Magnitude
gives

amplitude
at position x

y'(x,t) = [2ym  sin kx]cos    t ω 

Oscillating
term

To analyze a standing wave, we represent the two waves with the equations

y1(x, t) � ym sin(kx � vt) (16-58)

and y2(x, t) � ym sin(kx � vt). (16-59)

The principle of superposition gives, for the combined wave,

y
(x, t) � y1(x, t) � y2(x, t) � ym sin(kx � vt) � ym sin(kx � vt).

Applying the trigonometric relation of Eq. 16-50 leads to Fig. 16-18 and

y
(x, t) � [2ym sin kx] cos vt. (16-60)

This equation does not describe a traveling wave because it is not of the form of
Eq. 16-17. Instead, it describes a standing wave.

The quantity 2ym sin kx in the brackets of Eq. 16-60 can be viewed as the
amplitude of oscillation of the string element that is located at position x.
However, since an amplitude is always positive and sin kx can be negative, we
take the absolute value of the quantity 2ym sin kx to be the amplitude at x.

In a traveling sinusoidal wave, the amplitude of the wave is the same for all
string elements.That is not true for a standing wave, in which the amplitude varies
with position. In the standing wave of Eq. 16-60, for example, the amplitude is
zero for values of kx that give sin kx � 0.Those values are

kx � np, for n � 0, 1, 2, . . . . (16-61)

Substituting k � 2p/l in this equation and rearranging, we get

for n � 0, 1, 2, . . . (nodes), (16-62)

as the positions of zero amplitude—the nodes—for the standing wave of
Eq. 16-60. Note that adjacent nodes are separated by l/2, half a wavelength.

The amplitude of the standing wave of Eq. 16-60 has a maximum value of
2ym, which occurs for values of kx that give | sin kx | � 1.Those values are

, . . .

for n � 0, 1, 2, . . . . (16-63)

Substituting k � 2p/l in Eq. 16-63 and rearranging, we get

for n � 0, 1, 2, . . . (antinodes), (16-64)

as the positions of maximum amplitude—the antinodes—of the standing wave
of Eq. 16-60.Antinodes are separated by l/2 and are halfway between nodes.

Reflections at a Boundary
We can set up a standing wave in a stretched string by allowing a traveling wave
to be reflected from the far end of the string so that the wave travels back

x � �n �
1
2 �

l

2
,

� (n � 1
2)p,

kx � 1
2p, 3

2p, 5
2p

x � n
l

2
,
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through itself. The incident (original) wave and the reflected wave can then be
described by Eqs. 16-58 and 16-59, respectively, and they can combine to form a
pattern of standing waves.

In Fig. 16-19, we use a single pulse to show how such reflections take place. In
Fig. 16-19a, the string is fixed at its left end.When the pulse arrives at that end, it ex-
erts an upward force on the support (the wall). By Newton’s third law, the support
exerts an opposite force of equal magnitude on the string.This second force gener-
ates a pulse at the support, which travels back along the string in the direction op-
posite that of the incident pulse. In a “hard” reflection of this kind, there must be a
node at the support because the string is fixed there. The reflected and incident
pulses must have opposite signs, so as to cancel each other at that point.

In Fig. 16-19b, the left end of the string is fastened to a light ring that is free to
slide without friction along a rod.When the incident pulse arrives, the ring moves
up the rod. As the ring moves, it pulls on the string, stretching the string and
producing a reflected pulse with the same sign and amplitude as the incident
pulse. Thus, in such a “soft” reflection, the incident and reflected pulses rein-
force each other, creating an antinode at the end of the string; the maximum
displacement of the ring is twice the amplitude of either of these two pulses.

Figuer 16-19 (a) A pulse incident from the
right is reflected at the left end of the
string, which is tied to a wall. Note that the
reflected pulse is inverted from the incident
pulse. (b) Here the left end of the string is
tied to a ring that can slide without friction
up and down the rod. Now the pulse is not
inverted by the reflection.

(a) (b)

There are two ways a
pulse can reflect from
the end of a string.

Checkpoint 5
Two waves with the same amplitude and wavelength interfere in three different
situations to produce resultant waves with the following equations:

(1) y
(x, t) � 4 sin(5x � 4t)

(2) y
(x, t) � 4 sin(5x) cos(4t)

(3) y
(x, t) � 4 sin(5x � 4t)

In which situation are the two combining waves traveling (a) toward positive x,
(b) toward negative x, and (c) in opposite directions?

Standing Waves and Resonance
Consider a string, such as a guitar string, that is stretched between two clamps.
Suppose we send a continuous sinusoidal wave of a certain frequency along the
string, say, toward the right. When the wave reaches the right end, it reflects and
begins to travel back to the left. That left-going wave then overlaps the wave that
is still traveling to the right. When the left-going wave reaches the left end, it
reflects again and the newly reflected wave begins to travel to the right, over-
lapping the left-going and right-going waves. In short, we very soon have many
overlapping traveling waves, which interfere with one another.

For certain frequencies, the interference produces a standing wave pattern
(or oscillation mode) with nodes and large antinodes like those in Fig. 16-20.
Such a standing wave is said to be produced at resonance, and the string is said
to resonate at these certain frequencies, called resonant frequencies. If the string

Figure 16-20 Stroboscopic photographs reveal (imperfect) standing wave patterns on a 
string being made to oscillate by an oscillator at the left end.The patterns occur at certain
frequencies of oscillation.

Richard Megna/Fundamental Photographs



Courtesy Thomas D. Rossing, Northern
Illinois University

Figure 16-22 One of many possible standing
wave patterns for a kettledrum head, made
visible by dark powder sprinkled on the
drumhead.As the head is set into oscilla-
tion at a single frequency by a mechanical
oscillator at the upper left of the photo-
graph, the powder collects at the nodes,
which are circles and straight lines in this
two-dimensional example.

Checkpoint 6
In the following series of resonant frequencies, one frequency (lower than 400 Hz)
is missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency? (b) What is the
frequency of the seventh harmonic?
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Figure 16-21 A string, stretched between two
clamps, is made to oscillate in standing
wave patterns. (a) The simplest possible
pattern consists of one loop, which refers to
the composite shape formed by the string
in its extreme displacements (the solid and
dashed lines). (b) The next simplest pattern
has two loops. (c) The next has three loops.

L

L = λ
2

(a)

First harmonic

L = λ
2

(b)
2λ =

Second harmonic

L = λ
2

(c)
3

Third harmonic

is oscillated at some frequency other than a resonant frequency, a standing wave
is not set up. Then the interference of the right-going and left-going traveling
waves results in only small, temporary (perhaps even imperceptible) oscillations
of the string.

Let a string be stretched between two clamps separated by a fixed
distance L. To find expressions for the resonant frequencies of the string, we
note that a node must exist at each of its ends, because each end is fixed and
cannot oscillate. The simplest pattern that meets this key requirement is that
in Fig. 16-21a, which shows the string at both its extreme displacements (one
solid and one dashed, together forming a single “loop”). There is only one
antinode, which is at the center of the string. Note that half a wavelength
spans the length L, which we take to be the string’s length. Thus, for this
pattern, l/2 � L. This condition tells us that if the left-going and right-going
traveling waves are to set up this pattern by their interference, they must have
the wavelength l � 2L.

A second simple pattern meeting the requirement of nodes at the fixed ends
is shown in Fig. 16-21b.This pattern has three nodes and two antinodes and is said
to be a two-loop pattern. For the left-going and right-going waves to set it up,
they must have a wavelength l � L.A third pattern is shown in Fig. 16-21c. It has
four nodes, three antinodes, and three loops, and the wavelength is l � L.We could
continue this progression by drawing increasingly more complicated patterns. In
each step of the progression, the pattern would have one more node and one
more antinode than the preceding step, and an additional l/2 would be fitted into
the distance L.

Thus, a standing wave can be set up on a string of length L by a wave with a
wavelength equal to one of the values

for n � 1, 2, 3, . . . . (16-65)

The resonant frequencies that correspond to these wavelengths follow from
Eq. 16-13:

for n � 1, 2, 3, . . . . (16-66)

Here v is the speed of traveling waves on the string.
Equation 16-66 tells us that the resonant frequencies are integer multiples of

the lowest resonant frequency, f � v/2L, which corresponds to n � 1. The oscilla-
tion mode with that lowest frequency is called the fundamental mode or the first
harmonic. The second harmonic is the oscillation mode with n � 2, the third har-
monic is that with n � 3, and so on. The frequencies associated with these modes
are often labeled f1, f2, f3, and so on. The collection of all possible oscillation
modes is called the harmonic series, and n is called the harmonic number of the
nth harmonic.

For a given string under a given tension, each resonant frequency corre-
sponds to a particular oscillation pattern. Thus, if the frequency is in the audi-
ble range, you can hear the shape of the string. Resonance can also occur in
two dimensions (such as on the surface of the kettledrum in Fig. 16-22) and in
three dimensions (such as in the wind-induced swaying and twisting of a tall
building).

f �
v
�

� n
v

2L
,

� �
2L
n

,

2
3
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(Answer)

Note that we get the same answer by substituting into Eq.
16-66:

(Answer)

Now note that this 806 Hz is not only the frequency of the
waves producing the fourth harmonic but also it is said to be
the fourth harmonic, as in the statement, “The fourth
harmonic of this oscillating string is 806 Hz.” It is also the
frequency of the string elements as they oscillate vertically
in the figure in simple harmonic motion, just as a block on a
vertical spring would oscillate in simple harmonic motion.
Finally, it is also the frequency of the sound you would hear
as the oscillating string periodically pushes against the air.

Transverse velocity: The displacement y
 of the string
element located at coordinate x is given by Eq. 16-67 as a
function of time t. The term cos vt contains the dependence
on time and thus provides the “motion” of the standing
wave. The term 2ym sin kx sets the extent of the motion—
that is, the amplitude. The greatest amplitude occurs at an
antinode, where sin kx is �1 or �1 and thus the greatest
amplitude is 2ym. From Fig. 16-23, we see that 2ym � 4.00 mm,
which tells us that ym � 2.00 mm.

We want the transverse velocity—the velocity of a
string element parallel to the y axis. To find it, we take the
time derivative of Eq. 16-67:

(16-69)

Here the term sin vt provides the variation with time and
the term �2ymv sin kx provides the extent of that varia-
tion. We want the absolute magnitude of that extent:

To evaluate this for the element at x � 0.180 m, we first note
that ym � 2.00 mm, k � 2p/l � 2p/(0.400 m), and v �
2pf � 2p (806.2 Hz). Then the maximum speed of the
element at x � 0.180 m is

um � � �2ymv sin kx �.

� [�2ym� sin kx] sin �t.

u(x, t) �
�y


�t
�

�

�t
 [(2ym sin kx) cos vt]

� 806 Hz.

f � n
v

2L
� 4

322.49 m/s
2(0.800 m)

� 806.2 Hz � 806 Hz.

Figure 16-23 shows resonant oscillation of a string of mass
m � 2.500 g and length L � 0.800 m and that is under tension
t � 325.0 N. What is the wavelength l of the transverse
waves producing the standing wave pattern, and what is the
harmonic number n? What is the frequency f of the trans-
verse waves and of the oscillations of the moving string ele-
ments? What is the maximum magnitude of the transverse
velocity um of the element oscillating at coordinate x� 0.180 m?
At what point during the element’s oscillation is the trans-
verse velocity maximum?

KEY IDEAS

(1) The traverse waves that produce a standing wave pattern
must have a wavelength such that an integer number n of
half-wavelengths fit into the length L of the string. (2) The
frequency of those waves and of the oscillations of the string
elements is given by Eq. 16-66 ( f � nv/2L). (3) The displace-
ment of a string element as a function of position x and time
t is given by Eq. 16-60:

y
(x, t) � [2ym sin kx] cos vt. (16-67)

Wavelength and harmonic number: In Fig. 16-23, the solid
line, which is effectively a snapshot (or freeze-frame) of the
oscillations, reveals that 2 full wavelengths fit into the length
L � 0.800 m of the string.Thus, we have

or (16-68)

(Answer)

By counting the number of loops (or half-wavelengths) in
Fig. 16-23, we see that the harmonic number is

n � 4. (Answer)

We also find n � 4 by comparing Eqs. 16-68 and 16-65 (l �
2L/n).Thus, the string is oscillating in its fourth harmonic.

Frequency: We can get the frequency f of the transverse waves
from Eq. 16-13 (v� lf ) if we first find the speed v of the waves.
That speed is given by Eq.16-26,but we must substitute m/L for
the unknown linear density m.We obtain

After rearranging Eq. 16-13, we write

f �
v
l

�
322.49 m/s

0.400 m

� A
(325 N)(0.800 m)

2.50 � 10�3 kg
� 322.49 m/s.

v � A
t

m
� A

t

m/L
� A

tL
m

�
0.800 m

2
� 0.400 m.

� �
L
2

.

 2l � L,

Figure 16-23 Resonant oscillation of a string under tension.
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Sample Problem 16.06 Resonance of transverse waves, standing waves, harmonics



Transverse and Longitudinal Waves Mechanical waves
can exist only in material media and are governed by Newton’s
laws. Transverse mechanical waves, like those on a stretched string,
are waves in which the particles of the medium oscillate perpendi-
cular to the wave’s direction of travel. Waves in which the particles
of the medium oscillate parallel to the wave’s direction of travel
are longitudinal waves.

Sinusoidal Waves A sinusoidal wave moving in the positive
direction of an x axis has the mathematical form

y(x, t) � ym sin(kx � vt), (16-2)

where ym is the amplitude of the wave, k is the angular wave number,
v is the angular frequency, and kx � vt is the phase. The wavelength
l is related to k by

(16-5)

The period T and frequency f of the wave are related to v by

(16-9)

Finally, the wave speed v is related to these other parameters by

(16-13)

Equation of a Traveling Wave Any function of the form

y(x, t) � h(kx � vt) (16-17)

can represent a traveling wave with a wave speed given by Eq. 16-13
and a wave shape given by the mathematical form of h.The plus sign
denotes a wave traveling in the negative direction of the x axis, and
the minus sign a wave traveling in the positive direction.

Wave Speed on Stretched String The speed of a wave on
a stretched string is set by properties of the string. The speed on a
string with tension t and linear density m is

(16-26)

Power The average power of, or average rate at which energy is
transmitted by, a sinusoidal wave on a stretched string is given by

Pavg � (16-33)1
2mvv2y2

m.

v � A
t

m
.

v �
�

k
�

�

T
� �f.

�

2�
� f �

1
T

.

k �
2�

�
.

Review & Summary

Superposition of Waves When two or more waves traverse
the same medium, the displacement of any particle of the medium is
the sum of the displacements that the individual waves would give it.

Interference of Waves Two sinusoidal waves on the same
string exhibit interference, adding or canceling according to the prin-
ciple of superposition. If the two are traveling in the same direction
and have the same amplitude ym and frequency (hence the same
wavelength) but differ in phase by a phase constant f, the result is a
single wave with this same frequency:

y
(x, t) � [2ym cos f] sin(kx � vt � f). (16-51)

If f � 0, the waves are exactly in phase and their interference is
fully constructive; if f � p rad, they are exactly out of phase and
their interference is fully destructive.

Phasors A wave y(x, t) can be represented with a phasor. This
is a vector that has a magnitude equal to the amplitude ym of the
wave and that rotates about an origin with an angular speed equal
to the angular frequency v of the wave.The projection of the rotat-
ing phasor on a vertical axis gives the displacement y of a point
along the wave’s travel.

Standing Waves The interference of two identical sinusoidal
waves moving in opposite directions produces standing waves. For
a string with fixed ends, the standing wave is given by

y
(x, t) � [2ym sin kx] cos vt. (16-60)

Standing waves are characterized by fixed locations of zero dis-
placement called nodes and fixed locations of maximum displace-
ment called antinodes.

Resonance Standing waves on a string can be set up by
reflection of traveling waves from the ends of the string. If an end
is fixed, it must be the position of a node. This limits the frequen-
cies at which standing waves will occur on a given string. Each pos-
sible frequency is a resonant frequency, and the corresponding
standing wave pattern is an oscillation mode. For a stretched string
of length L with fixed ends, the resonant frequencies are

for n � 1, 2, 3, . . . . (16-66)

The oscillation mode corresponding to n � 1 is called the funda-
mental mode or the first harmonic; the mode corresponding to 
n � 2 is the second harmonic; and so on.

f �
v
�

� n
v

2L
,

1
2

1
2
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(Answer)� 6.26 m/s.

� sin� 2p

0.400 m
 (0.180 m)� �

um � � �2(2.00 � 10�3 m)(2p)(806.2 Hz) 

Additional examples, video, and practice available at WileyPLUS

To determine when the string element has this maxi-
mum speed, we could investigate Eq. 16-69. However, a little
thought can save a lot of work. The element is undergoing
SHM and must come to a momentary stop at its extreme 
upward position and extreme downward position. It has the
greatest speed as it zips through the midpoint of its oscilla-
tion, just as a block does in a block–spring oscillator.



10 If you set up the seventh harmonic on a string, (a) how many
nodes are present, and (b) is there a node, antinode, or some inter-
mediate state at the midpoint? If you next set up the sixth harmonic,
(c) is its resonant wavelength longer or shorter than that for the sev-
enth harmonic, and (d) is
the resonant frequency
higher or lower?

11 Figure 16-28 shows
phasor diagrams for three
situations in which two
waves travel along the
same string. All six waves
have the same amplitude. Rank the situations according to the am-
plitude of the net wave on the string, greatest first.
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Questions

1 The following four waves are sent along strings with the same
linear densities (x is in meters and t is in seconds). Rank the waves
according to (a) their wave speed and (b) the tension in the strings
along which they travel, greatest first:
(1) y1 � (3 mm) sin(x � 3t),
(2) y2 � (6 mm) sin(2x � t),

2 In Fig. 16-24, wave 1 consists of a rectangular peak of height 4 units
and width d, and a rectangular valley of depth 2 units and width d.The
wave travels rightward along an x axis. Choices 2, 3, and 4 are similar
waves,with the same heights,depths,and widths, that will travel leftward
along that axis and through wave 1. Right-going wave 1 and one of the
left-going waves will interfere as they pass through each other. With
which left-going wave will the interference give, for an instant, (a) the
deepest valley,(b) a flat line,and (c) a flat peak 2d wide?

6 The amplitudes and phase differences for four pairs of
waves of equal wavelengths are (a) 2 mm, 6 mm, and p rad;
(b) 3 mm, 5 mm, and p rad; (c) 7 mm, 9 mm, and p rad; (d) 2 mm,
2 mm, and 0 rad. Each pair travels in the same direction along the
same string. Without written calculation, rank the four pairs ac-
cording to the amplitude of their resultant wave, greatest first.
(Hint: Construct phasor diagrams.)

7 A sinusoidal wave is sent along a cord under tension, transport-
ing energy at the average rate of Pavg,1. Two waves, identical to that
first one, are then to be sent along the cord with a phase difference
f of either 0, 0.2 wavelength, or 0.5 wavelength. (a) With only men-
tal calculation, rank those choices of f according to the average
rate at which the waves will transport energy, greatest first. (b) For
the first choice of f, what is the average rate in terms of Pavg,1?

8 (a) If a standing wave on a string is given by

y
(t) � (3 mm) sin(5x) cos(4t),

is there a node or an antinode of the oscillations of the string at 
x � 0? (b) If the standing wave is given by

y
(t) � (3 mm) sin(5x � p/2) cos(4t),

is there a node or an antinode at x � 0?

9 Strings A and B have identical lengths and linear densities, but
string B is under greater tension than string A. Figure 16-27 shows
four situations, (a) through (d), in which standing wave patterns
exist on the two strings. In which situations is there the possibility
that strings A and B are oscillating at the same resonant frequency?

(3) y3 � (1 mm) sin(4x � t),
(4) y4 � (2 mm) sin(x � 2t).

(3) (4) 

(1) (2) 

Figure 16-24 Question 2.

3 Figure 16-25a gives a snapshot of a wave traveling in the direc-
tion of positive x along a string under tension. Four string elements
are indicated by the lettered points. For each of those elements, de-
termine whether, at the instant of the snapshot, the element is
moving upward or downward or is momentarily at rest. (Hint:
Imagine the wave as it moves through the four string elements, as if
you were watching a video of the wave as it traveled rightward.)

Figure 16-25b gives the displacement of a string element located
at, say, x � 0 as a function of time. At the lettered times, is the
element moving upward or downward or is it momentarily at rest?

Figure 16-25 Question 3.

y y 

x t 
he

fa d 

b c 

g

(a) (b)

4 Figure 16-26 shows three waves that
are separately sent along a string that is
stretched under a certain tension along
an x axis. Rank the waves according to
their (a) wavelengths, (b) speeds, and
(c) angular frequencies,greatest first.

5 If you start with two sinusoidal
waves of the same amplitude travel-
ing in phase on a string and then
somehow phase-shift one of them by
5.4 wavelengths, what type of interference will occur on the string?

Figure 16-26 Question 4.

y

x

3

2

1

Figure 16-27 Question 9.

(a)

(b)

(c)

(d)

String A String B

Figure 16-28 Question 11.

(a) (b) (c)
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 16-1 Transverse Waves
•1 If a wave y(x, t) � (6.0 mm) sin(kx � (600 rad/s)t � f) travels
along a string, how much time does any given point on the string take
to move between displacements y � �2.0 mm and y � �2.0 mm?

•2 A human wave. During
sporting events within large, densely
packed stadiums, spectators will
send a wave (or pulse) around the
stadium (Fig. 16-29). As the wave
reaches a group of spectators, they
stand with a cheer and then sit. At
any instant, the width w of the wave
is the distance from the leading edge (people are just about to stand)
to the trailing edge (people have just sat down). Suppose a human
wave travels a distance of 853 seats around a stadium in 39 s, with
spectators requiring about 1.8 s to respond to the wave’s passage by
standing and then sitting.What are (a) the wave speed v (in seats per
second) and (b) width w (in number of seats)?

•3 A wave has an angular frequency of 110 rad/s and a wave-
length of 1.80 m. Calculate (a) the angular wave number and
(b) the speed of the wave.

•4 A sand scorpion can de-
tect the motion of a nearby beetle
(its prey) by the waves the motion
sends along the sand surface (Fig.
16-30). The waves are of two types:
transverse waves traveling at

and longitudinal waves
traveling at . If a sud-
den motion sends out such waves, a
scorpion can tell the distance of the
beetle from the difference �t in the
arrival times of the waves at its leg
nearest the beetle. If �t � 4.0 ms,
what is the beetle’s distance?

•5 A sinusoidal wave travels along
a string. The time for a particular
point to move from maximum displacement to zero is 0.170 s.What
are the (a) period and (b) frequency? (c) The wavelength is 1.40 m;
what is the wave speed?

••6 A sinusoidal wave travels
along a string under tension.
Figure 16-31 gives the slopes
along the string at time t � 0. The
scale of the x axis is set by xs �
0.80 m. What is the amplitude of
the wave?

••7 A transverse sinusoidal wave is moving along a string in the
positive direction of an x axis with a speed of 80 m/s. At t � 0, the
string particle at x � 0 has a transverse displacement of 4.0 cm
from its equilibrium position and is not moving. The maximum

vl � 150 m/s
vt � 50 m/s

transverse speed of the string particle at x � 0 is 16 m/s. (a) What is
the frequency of the wave? (b) What is the wavelength of the
wave? If y(x, t) � ym sin(kx � vt � f) is the form of the wave
equation, what are (c) ym, (d) k, (e) v, (f) f, and (g) the correct
choice of sign in front of v?

••8 Figure 16-32 shows the trans-
verse velocity u versus time t of the
point on a string at x � 0, as a wave
passes through it.The scale on the ver-
tical axis is set by us � 4.0 m/s. The
wave has the generic form y(x, t) �
ym sin(kx � vt � f). What then is f?
(Caution: A calculator does not always
give the proper inverse trig function, so
check your answer by substituting it
and an assumed value of v into y(x, t) and then plotting the function.)

••9 A sinusoidal wave mov-
ing along a string is shown
twice in Fig. 16-33, as crest A
travels in the positive direc-
tion of an x axis by distance
d � 6.0 cm in 4.0 ms. The
tick marks along the axis are
separated by 10 cm; height
H � 6.00 mm. The equation
for the wave is in the form
y(x, t) � ym sin(kx � vt), so
what are (a) ym, (b) k, (c) v, and (d) the correct choice of sign in
front of v?

••10 The equation of a transverse wave traveling along a very
long string is y � 6.0 sin(0.020px � 4.0pt), where x and y are ex-
pressed in centimeters and t is in seconds. Determine (a) the ampli-
tude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the
direction of propagation of the wave, and (f) the maximum trans-
verse speed of a particle in the string. (g) What is the transverse
displacement at x � 3.5 cm when t �
0.26 s?

••11 A sinusoidal transverse wave
of wavelength 20 cm travels along a
string in the positive direction of an
x axis. The displacement y of the
string particle at x � 0 is given in
Fig. 16-34 as a function of time t. The scale  of the vertical axis is
set by ys � 4.0 cm. The wave equation is to be in the form 
y(x, t) � ym sin(kx � vt � f). (a) At t � 0, is a plot of y versus x in
the shape of a positive sine function or a negative sine function?
What are (b) ym, (c) k, (d) v, (e) f, (f) the sign in front of v, and (g)
the speed of the wave? (h) What is the transverse velocity of the par-
ticle at x � 0 when t � 5.0 s?

••12 The function y(x, t) � (15.0 cm) cos(px � 15pt), with x in
meters and t in seconds, describes a wave on a taut string. What is
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end at x � 0 and the other at x � 10.0 m. At time t � 0, pulse 1 is
sent along the wire from the end at x � 10.0 m. At time t � 30.0
ms, pulse 2 is sent along the wire from the end at x � 0.At what po-
sition x do the pulses begin to meet?

••22 A sinusoidal wave is traveling on a string with speed 40 cm/s.
The displacement of the particles of the string at x � 10 cm varies
with time according to y � (5.0 cm) sin[1.0 � (4.0 s�1)t]. The linear
density of the string is 4.0 g/cm. What
are (a) the frequency and (b) the
wavelength of the wave? If the wave
equation is of the form y(x, t) �
ym sin(kx � vt), what are (c) ym, (d) k,
(e) v, and (f) the correct choice of
sign in front of v? (g) What is the ten-
sion in the string?

••23 A sinusoidal trans-
verse wave is traveling along a string in
the negative direction of an x axis.
Figure 16-35 shows a plot of the dis-
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the transverse speed for a point on the string at an instant when
that point has the displacement y � �12.0 cm?

••13 A sinusoidal wave of frequency 500 Hz has a speed of
350 m/s. (a) How far apart are two points that differ in phase by p/3
rad? (b) What is the phase difference between two displacements
at a certain point at times 1.00 ms apart?

Module 16-2 Wave Speed on a Stretched String
•14 The equation of a transverse wave on a string is

y � (2.0 mm) sin[(20 m�1)x � (600 s�1)t].

The tension in the string is 15 N. (a) What is the wave speed? (b)
Find the linear density of this string in grams per meter.

•15 A stretched string has a mass per unit length of
5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string
has an amplitude of 0.12 mm and a frequency of 100 Hz and is
traveling in the negative direction of an x axis. If the wave equation
is of the form y(x, t) � ym sin(kx � vt), what are (a) ym, (b) k, (c) v,
and (d) the correct choice of sign in front of v?

•16 The speed of a transverse wave on a string is 170 m/s when
the string tension is 120 N. To what value must the tension be
changed to raise the wave speed to 180 m/s?

•17 The linear density of a string is 1.6 � 10�4 kg/m.A transverse
wave on the string is described by the equation

y � (0.021 m) sin[(2.0 m�1)x � (30 s�1)t].

What are (a) the wave speed and (b) the tension in the string?

•18 The heaviest and lightest strings on a certain violin have lin-
ear densities of 3.0 and 0.29 g/m. What is the ratio of the diameter
of the heaviest string to that of the lightest string, assuming that the
strings are of the same material?

•19 What is the speed of a transverse wave in a rope of 
length 2.00 m and mass 60.0 g under a tension of 500 N?

•20 The tension in a wire clamped at both ends is doubled with-
out appreciably changing the wire’s length between the clamps.
What is the ratio of the new to the old wave speed for transverse
waves traveling along this wire?

••21 A 100 g wire is held under a tension of 250 N with oneILW

SSM

WWWSSM

ILW

placement as a function of position at time t � 0; the scale of the
y axis is set by ys � 4.0 cm. The string tension is 3.6 N, and its lin-
ear density is 25 g/m. Find the (a) amplitude, (b) wavelength,
(c) wave speed, and (d) period of the wave. (e) Find the maxi-
mum transverse speed of a particle in the string. If the wave is of
the form y(x, t) � ym sin(kx � vt � f), what are (f) k, (g) v, (h)
f, and (i) the correct choice of sign
in front of v?

•••24 In Fig. 16-36a, string 1 has a
linear density of 3.00 g/m, and
string 2 has a linear density of 5.00
g/m. They are under tension due to
the hanging block of mass M � 500
g. Calculate the wave speed on (a)
string 1 and (b) string 2. (Hint:
When a string loops halfway
around a pulley, it pulls on the pul-
ley with a net force that is twice the
tension in the string.) Next the
block is divided into two blocks
(with M1 � M2 � M) and the appa-
ratus is rearranged as shown in
Fig. 16-36b. Find (c) M1 and (d) M2

such that the wave speeds in the
two strings are equal.

•••25 A uniform rope of mass m
and length L hangs from a ceiling.
(a) Show that the speed of a trans-
verse wave on the rope is a function
of y, the distance from the lower end, and is given by v � (b)
Show that the time a transverse wave takes to travel the length of
the rope is given by 

Module 16-3 Energy and Power of a Wave Traveling 
Along a String
•26 A string along which waves can travel is 2.70 m long and has
a mass of 260 g. The tension in the string is 36.0 N. What must be
the frequency of traveling waves of amplitude 7.70 mm for the av-
erage power to be 85.0 W?

••27 A sinusoidal wave is sent along a string with a linear 
density of 2.0 g/m. As it travels, the kinetic energies of 
the mass elements along the string vary. Figure 16-37a gives the
rate dK/dt at which kinetic energy passes through the string ele-
ments at a particular instant, plotted as a function of distance x
along the string. Figure 16-37b is similar except that it gives the
rate at which kinetic energy passes through a particular mass ele-
ment (at a particular location), plotted as a function of time t. For
both figures, the scale on the vertical (rate) axis is set by Rs � 10 W.
What is the amplitude of the wave?

t � 21L/g.
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Module 16-4 The Wave Equation
•28 Use the wave equation to find the speed of a wave given by

y(x, t) � (3.00 mm) sin[(4.00 m�1)x � (7.00 s�1)t].

••29 Use the wave equation to find the speed of a wave given by

y(x, t) � (2.00 mm)[(20 m�1)x � (4.0 s�1)t]0.5.

•••30 Use the wave equation to find the speed of a wave given in
terms of the general function h(x, t):

y(x, t) � (4.00 mm) h[(30 m�1)x � (6.0 s�1)t].

Module 16-5 Interference of Waves
•31 Two identical traveling waves, moving in the same di-
rection, are out of phase by p/2 rad. What is the amplitude of the
resultant wave in terms of the common amplitude ym of the two
combining waves?

•32 What phase difference between two identical traveling
waves, moving in the same direction along a stretched string, re-
sults in the combined wave having an amplitude 1.50 times that of
the common amplitude of the two combining waves? Express
your answer in (a) degrees, (b) radians, and (c) wavelengths.

••33 Two sinusoidal waves with
the same amplitude of 9.00 mm and
the same wavelength travel together
along a string that is stretched along
an x axis. Their resultant wave is
shown twice in Fig. 16-38, as valley A
travels in the negative direction of
the x axis by distance d � 56.0 cm in
8.0 ms. The tick marks along the axis
are separated by 10 cm, and height
H is 8.0 mm. Let the equation for
one wave be of the form y(x, t) � ym sin(kx � vt � f1), where 
f1 � 0 and you must choose the correct sign in front of v. For the
equation for the other wave, what are (a) ym, (b) k, (c) v, (d) f2,
and (e) the sign in front of v?

•••34 A sinusoidal wave of angular frequency 1200 rad/s
and amplitude 3.00 mm is sent along a cord with linear density
2.00 g/m and tension 1200 N. (a) What is the average rate at

SSM

••37 These two waves travel along the same string:

y1(x, t) � (4.60 mm) sin(2px � 400pt)

y2(x, t) � (5.60 mm) sin(2px � 400pt � 0.80p rad).

What are (a) the amplitude and (b) the phase angle (relative to
wave 1) of the resultant wave? (c) If a third wave of amplitude
5.00 mm is also to be sent along the string in the same direction as
the first two waves, what should be its phase angle in order to
maximize the amplitude of the new resultant wave?

••38 Two sinusoidal waves of the same frequency are to be sent
in the same direction along a taut string. One wave has an ampli-
tude of 5.0 mm, the other 8.0 mm. (a) What phase difference f1 be-
tween the two waves results in the smallest amplitude of the result-
ant wave? (b) What is that smallest amplitude? (c) What phase
difference f2 results in the largest amplitude of the resultant
wave? (d) What is that largest amplitude? (e) What is the resultant
amplitude if the phase angle is (f1 � f2)/2?

••39 Two sinusoidal waves of the same period, with amplitudes of
5.0 and 7.0 mm, travel in the same direction along a stretched
string; they produce a resultant wave with an amplitude of 9.0 mm.
The phase constant of the 5.0 mm wave is 0.What is the phase con-
stant of the 7.0 mm wave?

Module 16-7 Standing Waves and Resonance
•40 Two sinusoidal waves with identical wavelengths and
amplitudes travel in opposite directions along a string with a speed
of 10 cm/s. If the time interval between instants when the string is
flat is 0.50 s, what is the wavelength of the waves?

•41 A string fixed at both ends is 8.40 m long and has a
mass of 0.120 kg. It is subjected to a tension of 96.0 N and set oscil-
lating. (a) What is the speed of the waves on the string? (b) What is
the longest possible wavelength for a standing wave? (c) Give the
frequency of that wave.

•42 A string under tension ti oscillates in the third harmonic at fre-
quency f3, and the waves on the string have wavelength l3. If the ten-
sion is increased to tf � 4ti and the string is again made to oscillate in
the third harmonic, what then are (a) the frequency of oscillation in
terms of f3 and (b) the wavelength of the waves in terms of l3?

•43 What are (a) the lowest frequency, (b) the sec-
ond lowest frequency, and (c) the third lowest frequency for stand-
ing waves on a wire that is 10.0 m long, has a mass of 100 g, and is
stretched under a tension of 250 N?

•44 A 125 cm length of string has mass 2.00 g and tension 7.00 N.
(a) What is the wave speed for this string? (b) What is the lowest
resonant frequency of this string?

•45 A string that is stretched between fixed supports
separated by 75.0 cm has resonant frequencies of 420 and 315 Hz,
with no intermediate resonant frequencies.What are (a) the lowest
resonant frequency and (b) the wave speed?

•46 String A is stretched between two clamps separated by dis-
tance L. String B, with the same linear density and under the same
tension as string A, is stretched between two clamps separated by
distance 4L. Consider the first eight harmonics of string B. For
which of these eight harmonics of B (if any) does the frequency
match the frequency of (a) A’s first harmonic, (b) A’s second har-
monic, and (c) A’s third harmonic?

•47 One of the harmonic frequencies for a particular string under
tension is 325 Hz. The next higher harmonic frequency is 390 Hz.
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the same direction along a string. If ym1 � 3.0 cm, ym2 � 4.0 cm,
f1 � 0, and f2 � p/2 rad, what is the amplitude of the resultant wave?

••36 Four waves are to be sent along the same string, in the same
direction:

y1(x, t) � (4.00 mm) sin(2px � 400pt)

y2(x, t) � (4.00 mm) sin(2px � 400pt � 0.7p)

y3(x, t) � (4.00 mm) sin(2px � 400pt � p)

y4(x, t) � (4.00 mm) sin(2px � 400pt � 1.7p).

What is the amplitude of the resultant wave?

which energy is transported by the wave to the opposite end of the
cord? (b) If, simultaneously, an identical wave travels along an adja-
cent, identical cord, what is the total average rate at which energy is
transported to the opposite ends of the two cords by the waves? If, in-
stead, those two waves are sent along the same cord simultaneously,
what is the total average rate at which they transport energy when
their phase difference is (c) 0, (d) 0.4p rad,and (e) p rad?

Module 16-6 Phasors
•35 Two sinusoidal waves of the same frequency travel inSSM
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What harmonic frequency is next higher after the harmonic fre-
quency 195 Hz?

•48 If a transmission line in a cold climate collects ice, the
increased diameter tends to cause vortex formation in a passing
wind. The air pressure variations in the vortexes tend to cause the
line to oscillate (gallop), especially if the frequency of the varia-
tions matches a resonant frequency of the line. In long lines, the
resonant frequencies are so close that almost any wind speed can
set up a resonant mode vigorous enough to pull down support tow-
ers or cause the line to short out with an adjacent line. If a transmis-
sion line has a length of 347 m, a linear density of 3.35 kg/m, and a
tension of 65.2 MN, what are (a) the frequency of the fundamental
mode and (b) the frequency difference between successive modes?

•49 A nylon guitar string has a
linear density of 7.20 g/m and is under a
tension of 150 N.The fixed supports are
distance D � 90.0 cm apart. The string
is oscillating in the standing wave pat-
tern shown in Fig. 16-39. Calculate the (a) speed, (b) wavelength, and
(c) frequency of the traveling waves whose superposition gives this
standing wave.

••50 For a particular transverse
standing wave on a long string, one
of the antinodes is at x � 0 and an
adjacent node is at x � 0.10 m. The
displacement y(t) of the string parti-
cle at x � 0 is shown in Fig. 16-40,
where the scale of the y axis is set by
ys � 4.0 cm. When t � 0.50 s, what is
the displacement of the string particle
at (a) x � 0.20 m and (b) x � 0.30 m?
What is the transverse velocity of the string particle at x � 0.20 m at
(c) t � 0.50 s and (d) t � 1.0 s? (e) Sketch the standing wave at t �
0.50 s for the range x � 0 to x � 0.40 m.

••51 Two waves are generated on a string of length
3.0 m to produce a three-loop standing wave with an amplitude of
1.0 cm. The wave speed is 100 m/s. Let the equation for one of the
waves be of the form y(x, t) � ym sin(kx � vt). In the equation for the
other wave, what are (a) ym, (b) k, (c) v, and (d) the sign in front of v?

••52 A rope, under a tension of 200 N and fixed at both ends, os-
cillates in a second-harmonic standing wave pattern. The displace-
ment of the rope is given by

y � (0.10 m)(sin px/2) sin 12pt,

where x � 0 at one end of the rope, x is in meters, and t is in sec-
onds. What are (a) the length of the rope, (b) the speed of the
waves on the rope, and (c) the mass of the rope? (d) If the rope os-
cillates in a third-harmonic standing wave pattern, what will be the
period of oscillation?

••53 A string oscillates according to the equation

What are the (a) amplitude and (b) speed of the two waves
(identical except for direction of travel) whose superposition
gives this oscillation? (c) What is the distance between nodes?
(d) What is the transverse speed of a particle of the string at the
position x � 1.5 cm when t � s?9

8

y
 � (0.50 cm) sin	� p

3
 cm�1�x 
 cos[(40p s�1)t].
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••54 Two sinusoidal waves
with the same amplitude and
wavelength travel through each
other along a string that is
stretched along an x axis. Their
resultant wave is shown twice
in Fig. 16-41, as the antinode A
travels from an extreme up-
ward displacement to an ex-
treme downward displacement
in 6.0 ms. The tick marks along
the axis are separated by 10 cm; height H is 1.80 cm. Let the equation
for one of the two waves be of the form y(x, t) � ym sin(kx � vt). In
the equation for the other wave, what are (a) ym, (b) k, (c) v, and (d)
the sign in front of v?

••55 The following two waves are sent in opposite directions
on a horizontal string so as to create a standing wave in a vertical
plane:

y1(x, t) � (6.00 mm) sin(4.00px � 400pt)

y2(x, t) � (6.00 mm) sin(4.00px � 400pt),

with x in meters and t in seconds.An antinode is located at point A.
In the time interval that point takes to move from maximum up-
ward displacement to maximum downward displacement, how far
does each wave move along the string?

••56 A standing wave pattern on a string is described by

y(x, t) � 0.040 (sin 5px)(cos 40pt),

where x and y are in meters and t is in seconds. For x � 0, what is
the location of the node with the (a) smallest, (b) second small-
est, and (c) third smallest value of x? (d) What is the period of the
oscillatory motion of any (nonnode) point? What are the (e)
speed and (f) amplitude of the two traveling waves that interfere
to produce this wave? For t � 0, what are the (g) first, (h) second,
and (i) third time that all points on the string have zero trans-
verse velocity?

••57 A generator at one end of a very long string creates a wave
given by

and a generator at the other end creates the wave

Calculate the (a) frequency, (b) wavelength, and (c) speed of each
wave. For x � 0, what is the location of the node having the (d)
smallest, (e) second smallest, and (f) third smallest value of x? For
x � 0, what is the location of the antinode having the (g) smallest,
(h) second smallest, and (i) third smallest value of x?

••58 In Fig. 16-42, a string, tied to a sinusoidal oscillator at P
and running over a support at Q, is stretched by a block of mass m.
Separation L � 1.20 m, linear density m � 1.6 g/m, and the oscillator

y � (6.0 cm) cos 
p

2
 [(2.00 m�1)x � (8.00 s�1)t].

y � (6.0 cm) cos 
p

2
 [(2.00 m�1)x � (8.00 s�1)t],

D
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sign), and (d) wavelength of the wave. (e) Find the maximum
transverse speed of a particle in the string.

66 Figure 16-44 shows the dis-
placement y versus time t of the
point on a string at x � 0, as a
wave passes through that point.
The scale of the y axis is set by 
ys � 6.0 mm. The wave is given 
by y(x, t) � ym sin(kx � vt � f).
What is f? (Caution: A calculator
does not always give the proper
inverse trig function, so check your answer by substituting it and an
assumed value of v into y(x, t) and then plotting the function.)

67 Two sinusoidal waves, identical except for phase, travel in 
the same direction along a string, producing the net wave 
y
(x, t) � (3.0 mm) sin(20x � 4.0t � 0.820 rad), with x in meters
and t in seconds. What are (a) the wavelength l of the two waves,
(b) the phase difference between them, and (c) their amplitude ym?

68 A single pulse, given by h(x � 5.0t), is shown in Fig. 16-45
for t � 0. The scale of the vertical
axis is set by hs � 2. Here x is in
centimeters and t is in seconds.
What are the (a) speed and (b) di-
rection of travel of the pulse? (c)
Plot h(x � 5t) as a function of x for
t � 2 s. (d) Plot h(x � 5t) as a func-
tion of t for x � 10 cm.

69 Three sinusoidal waves of the same frequency travel
along a string in the positive direction of an x axis. Their
amplitudes are y1, y1/2, and y1/3, and their phase constants
are 0, p/2, and p, respectively. What are the (a) amplitude and
(b) phase constant of the resultant wave? (c) Plot the wave
form of the resultant wave at t � 0, and discuss its behavior as t
increases.

70 Figure 16-46 shows
transverse acceleration ay versus
time t of the point on a string at
x � 0, as a wave in the form of
y(x, t) � ym sin(kx � vt � f)
passes through that point. The
scale of the vertical axis is set 
by as � 400 m/s2. What is f?
(Caution: A calculator does not
always give the proper inverse trig function, so check your answer by
substituting it and an assumed value of v into y(x, t) and then plotting
the function.)

71 A transverse sinusoidal wave is generated at one end of a
long, horizontal string by a bar that moves up and down through
a distance of 1.00 cm. The motion is continuous and is repeated
regularly 120 times per second. The string has linear density 120
g/m and is kept under a tension of 90.0 N. Find the maximum
value of (a) the transverse speed u and (b) the transverse com-
ponent of the tension t.

(c) Show that the two maximum values calculated above
occur at the same phase values for the wave. What is the trans-
verse displacement y of the string at these phases? (d) What is the
maximum rate of energy transfer along the string? (e) What is the
transverse displacement y when this maximum transfer occurs?
(f) What is the minimum rate of energy transfer along the
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frequency f � 120 Hz. The amplitude of the motion at P is small
enough for that point to be considered a node.A node also exists at
Q. (a) What mass m allows the oscillator to set up the fourth har-
monic on the string? (b) What standing wave mode, if any, can be
set up if m � 1.00 kg?

•••59 In Fig. 16-43,
an aluminum wire, of
length L1 � 60.0 cm,
cross-sectional area 1.00
� 10�2 cm2, and density
2.60 g/cm3, is joined to a
steel wire, of density
7.80 g/cm3 and the same
cross-sectional area.The
compound wire, loaded with a block of mass m � 10.0 kg, is
arranged so that the distance L2 from the joint to the supporting
pulley is 86.6 cm. Transverse waves are set up on the wire by an ex-
ternal source of variable frequency; a node is located at the pulley.
(a) Find the lowest frequency that generates a standing wave hav-
ing the joint as one of the nodes. (b) How many nodes are
observed at this frequency?

•••60 In Fig. 16-42, a string, tied to a sinusoidal oscillator at P
and running over a support at Q, is stretched by a block of mass m.
The separation L between P and Q is 1.20 m, and the frequency f
of the oscillator is fixed at 120 Hz. The amplitude of the motion at
P is small enough for that point to be considered a node. A node
also exists at Q. A standing wave appears when the mass of the
hanging block is 286.1 g or 447.0 g, but not for any intermediate
mass.What is the linear density of the string? 

Additional Problems
61 In an experiment on standing waves, a string 90 cm long is
attached to the prong of an electrically driven tuning fork that os-
cillates perpendicular to the length of the string at a frequency of
60 Hz. The mass of the string is 0.044 kg. What tension must the
string be under (weights are attached to the other end) if it is to os-
cillate in four loops?

62 A sinusoidal transverse wave traveling in the positive
direction of an x axis has an amplitude of 2.0 cm, a wavelength of
10 cm, and a frequency of 400 Hz. If the wave equation is of the
form y(x, t) � ym sin(kx � vt), what are (a) ym, (b) k, (c) v, and
(d) the correct choice of sign in front of v? What are (e) the maxi-
mum transverse speed of a point on the cord and (f) the speed of
the wave?

63 A wave has a speed of 240 m/s and a wavelength of 3.2 m.What
are the (a) frequency and (b) period of the wave?

64 The equation of a transverse wave traveling along a string is

y � 0.15 sin(0.79x � 13t),

in which x and y are in meters and t is in seconds. (a) What is the dis-
placement y at x � 2.3 m, t � 0.16 s? A second wave is to be added
to the first wave to produce standing waves on the string. If the sec-
ond wave is of the form y(x, t) � ym sin(kx � vt), what are (b) ym, (c)
k, (d) v, and (e) the correct choice of sign in front of v for this sec-
ond wave? (f) What is the displacement of the resultant standing
wave at x � 2.3 m, t � 0.16 s?

65 The equation of a transverse wave traveling along a string is

y � (2.0 mm) sin[(20 m�1)x � (600 s�1)t].

Find the (a) amplitude, (b) frequency, (c) velocity (including

Figure 16-44 Problem 66.
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string? (g) What is the transverse displacement y when this mini-
mum transfer occurs?

72 Two sinusoidal 120 Hz
waves, of the same frequency
and amplitude, are to be sent in
the positive direction of an x axis
that is directed along a cord un-
der tension. The waves can be
sent in phase, or they can be
phase-shifted. Figure 16-47
shows the amplitude y
 of the re-
sulting wave versus the distance of the shift (how far one wave is
shifted from the other wave). The scale of the vertical axis is set
by y
s � 6.0 mm. If the equations for the two waves are of the
form y(x, t) � ym sin(kx � vt), what are (a) ym, (b) k, (c) v, and
(d) the correct choice of sign in front of v?

73 At time t � 0 and at position x � 0 m along a string, a travel-
ing sinusoidal wave with an angular frequency of 440 rad/s has dis-
placement y � �4.5 mm and transverse velocity u � �0.75 m/s. If
the wave has the general form y(x, t) � ym sin(kx � vt � f), what
is phase constant f?

74 Energy is transmitted at rate P1 by a wave of frequency f1 on a
string under tension t1. What is the new energy transmission rate P2

in terms of P1 (a) if the tension is increased to t2 � 4t1 and (b) if, in-
stead, the frequency is decreased to f2 � f1/2?

75 (a) What is the fastest transverse wave that can be sent along
a steel wire? For safety reasons, the maximum tensile stress to
which steel wires should be subjected is 7.00 � 108 N/m2. The den-
sity of steel is 7800 kg/m3. (b) Does your answer depend on the di-
ameter of the wire?

76 A standing wave results from the sum of two transverse trav-
eling waves given by

y1 � 0.050 cos(px � 4pt)

and y2 � 0.050 cos(px � 4pt),

where x, y1, and y2 are in meters and t is in seconds. (a) What is the
smallest positive value of x that corresponds to a node? Beginning
at t � 0, what is the value of the (b) first, (c) second, and (d) third
time the particle at x � 0 has zero velocity?

77 The type of rubber band used inside some baseballs
and golf balls obeys Hooke’s law over a wide range of elonga-
tion of the band. A segment of this material has an unstretched
length � and a mass m. When a force F is applied, the band
stretches an additional length � . (a) What is the speed (in
terms of m, � , and the spring constant k) of transverse waves
on this stretched rubber band? (b) Using your answer to (a),
show that the time required for a transverse pulse to travel the
length of the rubber band is proportional to if 
and is constant if .

78 The speed of electromagnetic waves (which include visible
light, radio, and x rays) in vacuum is 3.0 � 108 m/s. (a) Wavelengths
of visible light waves range from about 400 nm in the violet to
about 700 nm in the red. What is the range of frequencies of these
waves? (b) The range of frequencies for shortwave radio (for ex-
ample, FM radio and VHF television) is 1.5 to 300 MHz. What is
the corresponding wavelength range? (c) X-ray wavelengths range
from about 5.0 nm to about 1.0 � 10�2 nm. What is the frequency
range for x rays?

�� � �
�� � �1/1��

�
�
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79 A 1.50 m wire has a mass of 8.70 g and is under a ten-
sion of 120 N. The wire is held rigidly at both ends and set into
oscillation. (a) What is the speed of waves on the wire? What is the
wavelength of the waves that produce (b) one-loop and (c) two-
loop standing waves? What is the frequency of the waves that pro-
duce (d) one-loop and (e) two-loop standing waves?

80 When played in a certain manner, the lowest resonant fre-
quency of a certain violin string is concert A (440 Hz). What is the
frequency of the (a) second and (b) third harmonic of the string?

81 A sinusoidal transverse wave traveling in the negative
direction of an x axis has an amplitude of 1.00 cm, a frequency of
550 Hz, and a speed of 330 m/s. If the wave equation is of the form
y(x, t) � ym sin(kx � vt), what are (a) ym, (b) v, (c) k, and (d) the
correct choice of sign in front of v?

82 Two sinusoidal waves of the same wavelength travel in the same
direction along a stretched string. For wave 1, ym � 3.0 mm and f �
0; for wave 2, ym � 5.0 mm and f � 70�. What are the (a) amplitude
and (b) phase constant of the resultant wave?

83 A sinusoidal transverse wave of amplitude ym and
wavelength l travels on a stretched cord. (a) Find the ratio of
the maximum particle speed (the speed with which a single particle
in the cord moves transverse to the wave) to the wave speed. (b)
Does this ratio depend on the material of which the cord is made?

84 Oscillation of a 600 Hz tuning fork sets up standing waves in a
string clamped at both ends. The wave speed for the string is
400 m/s. The standing wave has four loops and an amplitude of
2.0 mm. (a) What is the length of the string? (b) Write an equation
for the displacement of the string as a function of position and time.

85 A 120 cm length of string is stretched between fixed supports.
What are the (a) longest, (b) second longest, and (c) third longest
wavelength for waves traveling on the string if standing waves are to
be set up? (d) Sketch those standing waves.

86 (a) Write an equation describing a sinusoidal transverse wave
traveling on a cord in the positive direction of a y axis with an an-
gular wave number of 60 cm�1, a period of 0.20 s, and an amplitude
of 3.0 mm. Take the transverse direction to be the z direction.
(b) What is the maximum transverse speed of a point on the cord?

87 A wave on a string is described by

y(x, t) � 15.0 sin(px/8 � 4pt),

where x and y are in centimeters and t is in seconds. (a) What is
the transverse speed for a point on the string at x � 6.00 cm
when t � 0.250 s? (b) What is the maximum transverse speed of
any point on the string? (c) What is the magnitude of the
transverse acceleration for a point on the string at x � 6.00 cm
when t � 0.250 s? (d) What is the magnitude of the maximum
transverse acceleration for any point on the string?

88 Body armor. When a high-speed projectile such as a
bullet or bomb fragment strikes modern body armor, the fabric of
the armor stops the projectile and prevents penetration by quickly
spreading the projectile’s energy over a large area. This spreading
is done by longitudinal and transverse pulses that move radially
from the impact point, where the projectile pushes a cone-shaped
dent into the fabric. The longitudinal pulse, racing along the fibers
of the fabric at speed vl ahead of the denting, causes the fibers to
thin and stretch, with material flowing radially inward into the
dent. One such radial fiber is shown in Fig. 16-48a. Part of the pro-
jectile’s energy goes into this motion and stretching.The transverse
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Figure 16-47 Problem 72.
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pulse, moving at a slower speed vt, is due to the denting. As the
projectile increases the dent’s depth, the dent increases in radius,
causing the material in the fibers to move in the same direction as the
projectile (perpendicular to the transverse pulse’s direction of
travel). The rest of the projectile’s energy goes into this motion. All
the energy that does not eventually go into permanently deforming
the fibers ends up as thermal energy.

Figure 16-48b is a graph of speed v versus time t for a bullet of
mass 10.2 g fired from a .38 Special revolver directly into body ar-
mor. The scales of the vertical and horizontal axes are set by vs �
300 m/s and ts � 40.0 ms. Take vl � 2000 m/s, and assume that the
half-angle u of the conical dent is 60�. At the end of the collision,
what are the radii of (a) the thinned region and (b) the dent (as-
suming that the person wearing the armor remains stationary)?

moving upward in the positive direction of a y axis with a trans-
verse velocity of 5.0 m/s. What are (a) the amplitude of the mo-
tion of that point and (b) the tension in the rope? (c) Write the
standing wave equation for the fundamental mode.

92 Two waves,

y1 � (2.50 mm) sin[(25.1 rad/m)x � (440 rad/s)t]

and y2 � (1.50 mm) sin[(25.1 rad/m)x � (440 rad/s)t],

travel along a stretched string. (a) Plot the resultant wave as
a function of t for x � 0, l/8, l/4, 3l/8, and l/2, where l is the
wavelength. The graphs should extend from t � 0 to a little over
one period. (b) The resultant wave is the superposition of a stand-
ing wave and a traveling wave. In which direction does the travel-
ing wave move? (c) How can you change the original waves so

Radius reached 
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pulse

Radius reached by 
transverse pulse 

v

θ 

Bullet
vl vt vt vl
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Figure 16-48 Problem 88.

89 Two waves are described by

y1 � 0.30 sin[p (5x � 200t)]

and y2 � 0.30 sin[p (5x � 200t) � p/3],

where y1, y2, and x are in meters and t is in seconds. When these two
waves are combined, a traveling wave is produced. What are the (a)
amplitude, (b) wave speed, and (c) wavelength of that traveling wave?

90 A certain transverse sinu-
soidal wave of wavelength 20 cm
is moving in the positive direc-
tion of an x axis. The transverse
velocity of the particle at x � 0
as a function of time is shown in
Fig. 16-49, where the scale of
the vertical axis is set by us � 5.0 cm/s. What are the (a) wave
speed, (b) amplitude, and  (c) frequency? (d) Sketch the wave
between x � 0 and x � 20 cm at t � 2.0 s.

91 In a demonstration, a 1.2 kg horizontal rope is fixed inSSM

the resultant wave is the superposition of standing and traveling
waves with the same amplitudes as before but with the traveling
wave moving in the opposite direction? Next, use your graphs to
find the place at which the oscillation amplitude is (d) maximum
and (e) minimum. (f) How is the maximum amplitude related to
the amplitudes of the original two waves? (g) How is the minimum
amplitude related to the amplitudes of the original two waves?

93 A traveling wave on a string is described by

where x and y are in centimeters and t is in seconds. (a) For t � 0, plot y
as a function of x for 0 � x � 160 cm. (b) Repeat (a) for t � 0.05 s and 
t � 0.10 s. From your graphs, determine (c) the wave speed and (d) the
direction in which the wave is traveling.

94 In Fig. 16-50, a circular loop of string is set
spinning about the center point in a place with
negligible gravity. The radius is 4.00 cm and the
tangential speed of a string segment is 5.00
cm/s. The string is plucked. At what speed do
transverse waves move along the string? (Hint:
Apply Newton’s second law to a small, but fi-
nite, section of the string.)

95 A continuous traveling wave with amplitude A is incident on
a boundary. The continuous reflection, with a smaller amplitude B,
travels back through the incoming wave.The resulting interference
pattern is displayed in Fig. 16-51. The standing wave ratio is
defined to be

SWR �
A � B
A � B

.

y � 2.0 sin	2p � t
0.40

�
x

80 � 
,

Figure 16-50
Problem 94.

Figure 16-49 Problem 90.
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place at its two ends (x � 0 and x � 2.0 m) and made to oscil-
late up and down in the fundamental mode, at frequency 5.0 Hz.
At t � 0, the point at x � 1.0 m has zero displacement and is
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Figure 16-51 Problem 95.

The reflection coefficient R
is the ratio of the power of
the reflected wave to the
power of the incoming wave
and is thus proportional to
the ratio (B/A)2.What is the
SWR for (a) total reflection
and (b) no reflection? (c) For SWR � 1.50, what is R expressed as a
percentage?

96 Consider a loop in the standing wave created by two
waves (amplitude 5.00 mm and frequency 120 Hz) traveling in op-
posite directions along a string with length 2.25 m and mass 125 g
and under tension 40 N. At what rate does energy enter the loop
from (a) each side and (b) both sides? (c) What is the maximum ki-
netic energy of the string in the loop during its oscillation?
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In air at 20�C, the speed of sound is 343 m/s.
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What Is Physics?
The physics of sound waves is the basis of countless studies in the research
journals of many fields. Here are just a few examples. Some physiologists are
concerned with how speech is produced, how speech impairment might be
corrected, how hearing loss can be alleviated, and even how snoring is pro-
duced. Some acoustic engineers are concerned with improving the acoustics of
cathedrals and concert halls, with reducing noise near freeways and road
construction, and with reproducing music by speaker systems. Some aviation en-
gineers are concerned with the shock waves produced by supersonic aircraft and
the aircraft noise produced in communities near an airport. Some medical re-
searchers are concerned with how noises produced by the heart and lungs can
signal a medical problem in a patient. Some paleontologists are concerned with
how a dinosaur’s fossil might reveal the dinosaur’s vocalizations. Some military
engineers are concerned with how the sounds of sniper fire might allow a sol-
dier to pinpoint the sniper’s location, and, on the gentler side, some biolo-
gists are concerned with how a cat purrs.

To begin our discussion of the physics of sound, we must first answer the
question “What are sound waves?”

Sound Waves
As we saw in Chapter 16, mechanical waves are waves that require a material
medium to exist. There are two types of mechanical waves: Transverse waves
involve oscillations perpendicular to the direction in which the wave travels;
longitudinal waves involve oscillations parallel to the direction of wave travel.

In this book, a sound wave is defined roughly as any longitudinal wave.
Seismic prospecting teams use such waves to probe Earth’s crust for oil. Ships

C H A P T E R  1 7

Waves—II

17-1 SPEED OF SOUND

After reading this module, you should be able to . . .

17.01 Distinguish between a longitudinal wave and a
transverse wave.

17.02 Explain wavefronts and rays.
17.03 Apply the relationship between the speed of sound

through a material, the material’s bulk modulus, and the
material’s density.

Key Idea

Learning Objectives

● Sound waves are longitudinal mechanical waves that can
travel through solids, liquids, or gases. The speed v of a
sound wave in a medium having bulk modulus B and den-
sity r is

17.04 Apply the relationship between the speed of sound, the
distance traveled by a sound wave, and the time required
to travel that distance.
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carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines
use sound waves to stalk other submarines, largely by listening for the charac-
teristic noises produced by the propulsion system. Figure 17-1 suggests how
sound waves can be used to explore the soft tissues of an animal or human body.
In this chapter we shall focus on sound waves that travel through the air and that
are audible to people.

Figure 17-2 illustrates several ideas that we shall use in our discussions.
Point S represents a tiny sound source, called a point source, that emits sound
waves in all directions. The wavefronts and rays indicate the direction of travel
and the spread of the sound waves. Wavefronts are surfaces over which the
oscillations due to the sound wave have the same value; such surfaces are rep-
resented by whole or partial circles in a two-dimensional drawing for a point
source. Rays are directed lines perpendicular to the wavefronts that indicate
the direction of travel of the wavefronts. The short double arrows superim-
posed on the rays of Fig. 17-2 indicate that the longitudinal oscillations of the
air are parallel to the rays.

Near a point source like that of Fig. 17-2, the wavefronts are spherical and
spread out in three dimensions, and there the waves are said to be spherical. As
the wavefronts move outward and their radii become larger, their curvature
decreases. Far from the source, we approximate the wavefronts as planes (or lines
on two-dimensional drawings), and the waves are said to be planar.

The Speed of Sound
The speed of any mechanical wave, transverse or longitudinal, depends on both an
inertial property of the medium (to store kinetic energy) and an elastic property of
the medium (to store potential energy). Thus, we can generalize Eq. 16-26, which
gives the speed of a transverse wave along a stretched string, by writing

(17-1)

where (for transverse waves) t is the tension in the string and m is the string’s
linear density. If the medium is air and the wave is longitudinal, we can guess
that the inertial property, corresponding to m, is the volume density r of air.
What shall we put for the elastic property?

In a stretched string, potential energy is associated with the periodic stretching
of the string elements as the wave passes through them. As a sound wave passes
through air, potential energy is associated with periodic compressions and expan-
sions of small volume elements of the air. The property that determines the extent
to which an element of a medium changes in volume when the pressure (force per
unit area) on it changes is the bulk modulus B, defined (from Eq. 12-25) as

(definition of bulk modulus). (17-2)

Here �V/V is the fractional change in volume produced by a change in pressure
�p. As explained in Module 14-1, the SI unit for pressure is the newton per
square meter, which is given a special name, the pascal (Pa). From Eq. 17-2 we see
that the unit for B is also the pascal. The signs of �p and �V are always
opposite: When we increase the pressure on an element (�p is positive), its vol-
ume decreases (�V is negative). We include a minus sign in Eq. 17-2 so that B is
always a positive quantity. Now substituting B for t and r for m in Eq. 17-1 yields

(speed of sound) (17-3)v � A
B
�

B � �
�p

�V/V

v � A
t

m
� A

elastic property
inertial property

,

Mauro Fermariello/SPL/Photo Researchers, Inc.

Figure 17-1 A loggerhead turtle is being
checked with ultrasound (which has a
frequency above your hearing range); an
image of its interior is being produced on
a monitor off to the right.

Ray

Ray

S

Wavefronts 

Figure 17-2 A sound wave travels from a
point source S through a three-dimen-
sional medium. The wavefronts form
spheres centered on S; the rays are radi-
al to S. The short, double-headed arrows
indicate that elements of the medium
oscillate parallel to the rays.
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as the speed of sound in a medium with bulk modulus B and density r.Table 17-1
lists the speed of sound in various media.

The density of water is almost 1000 times greater than the density of air. If this
were the only relevant factor, we would expect from Eq. 17-3 that the speed of
sound in water would be considerably less than the speed of sound in air. However,
Table 17-1 shows us that the reverse is true.We conclude (again from Eq. 17-3) that
the bulk modulus of water must be more than 1000 times greater than that of air.
This is indeed the case.Water is much more incompressible than air, which (see Eq.
17-2) is another way of saying that its bulk modulus is much greater.

Formal Derivation of Eq. 17-3
We now derive Eq. 17-3 by direct application of Newton’s laws. Let a single
pulse in which air is compressed travel (from right to left) with speed v through the
air in a long tube, like that in Fig. 16-2. Let us run along with the pulse at that speed,
so that the pulse appears to stand still in our reference frame. Figure 17-3a
shows the situation as it is viewed from that frame. The pulse is standing still, and
air is moving at speed v through it from left to right.

Let the pressure of the undisturbed air be p and the pressure inside the
pulse be p � �p, where �p is positive due to the compression. Consider an element
of air of thickness �x and face area A, moving toward the pulse at speed v. As this
element enters the pulse, the leading face of the element encounters a region of
higher pressure, which slows the element to speed v � �v, in which �v is negative.
This slowing is complete when the rear face of the element reaches the pulse, which
requires time interval

(17-4)

Let us apply Newton’s second law to the element. During �t, the average
force on the element’s trailing face is pA toward the right, and the average force
on the leading face is ( p � �p)A toward the left (Fig. 17-3b). Therefore, the
average net force on the element during �t is

F � pA � ( p � �p)A

� ��p A (net force). (17-5)

The minus sign indicates that the net force on the air element is directed to the
left in Fig. 17-3b. The volume of the element is A �x, so with the aid of Eq. 17-4,
we can write its mass as

�m � r �V � rA �x � rAv �t (mass). (17-6)

The average acceleration of the element during �t is

(acceleration). (17-7)a �
�v
�t

�t �
�x
v

.

Table 17-1 The Speed of Sounda

Medium Speed (m/s)

Gases

Air (0�C) 331
Air (20�C) 343
Helium 965
Hydrogen 1284
Liquids

Water (0�C) 1402
Water (20�C) 1482
Seawaterb 1522
Solids

Aluminum 6420
Steel 5941
Granite 6000

aAt 0�C and 1 atm pressure, except where noted.
bAt 20�C and 3.5% salinity.

ΔΔx

(b)

pA (p +    p)APulse

Moving air (fluid element)

p, v

p +    p, v + vΔ Δ

Δx

A

p, v

(a)

v

Figure 17-3 A compression pulse is sent from right to left down a long air-filled tube.The refer-
ence frame of the figure is chosen so that the pulse is at rest and the air moves from left to
right. (a) An element of air of width �x moves toward the pulse with speed v. (b) The leading
face of the element enters the pulse.The forces acting on the leading and trailing faces (due to
air pressure) are shown.
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17-2 TRAVELING SOUND WAVES

After reading this module, you should be able to . . .

17.05 For any particular time and position, calculate the dis-
placement s(x, t) of an element of air as a sound wave travels
through its location.

17.06 Given a displacement function s(x, t) for a sound wave,
calculate the time between two given displacements.

17.07 Apply the relationships between wave speed v, angular
frequency v, angular wave number k, wavelength l, period
T, and frequency f.

17.08 Sketch a graph of the displacement s(x) of an element
of air as a function of position, and identify the amplitude
sm and wavelength l.

17.09 For any particular time and position, calculate the pres-

sure variation (variation from atmospheric pressure) of an
element of air as a sound wave travels through its location.

17.10 Sketch a graph of the pressure variation �p(x) of an el-
ement as a function of position, and identify the amplitude
�pm and wavelength l.

17.11 Apply the relationship between pressure-variation am-
plitude �pm and displacement amplitude sm.

17.12 Given a graph of position s versus time for a sound
wave, determine the amplitude sm and the period T.

17.13 Given a graph of pressure variation �p versus time
for a sound wave, determine the amplitude �pm and the
period T.

�p

Learning Objectives

● A sound wave causes a longitudinal displacement s of a
mass element in a medium as given by

s � sm cos(kx � vt),

where sm is the displacement amplitude (maximum displace-
ment) from equilibrium, k � 2p/l, and v � 2pf, l and f being
the wavelength and frequency, respectively, of the sound wave. 

● The sound wave also causes a pressure change of the
medium from the equilibrium pressure:

�p � �pm sin(kx � vt),

where the pressure amplitude is

�pm � (vrv)sm.

�p
Key Ideas

Thus, from Newton’s second law (F � ma), we have, from Eqs. 17-5, 17-6,
and 17-7,

(17-8)

which we can write as

(17-9)

The air that occupies a volume V (� Av �t) outside the pulse is compressed by an
amount �V (� A �v �t) as it enters the pulse.Thus,

(17-10)

Substituting Eq. 17-10 and then Eq. 17-2 into Eq. 17-9 leads to

(17-11)

Solving for v yields Eq. 17-3 for the speed of the air toward the right in Fig. 17-3,
and thus for the actual speed of the pulse toward the left.

�v2 � �
�p

�v/v
� �

�p
�V/V

� B.

�V
V

�
A �v �t
Av �t

�
�v
v

.

�v2 � �
�p

�v/v
.

��p A � (�Av �t)
�v
�t

,

Traveling Sound Waves
Here we examine the displacements and pressure variations associated with a
sinusoidal sound wave traveling through air. Figure 17-4a displays such a wave
traveling rightward through a long air-filled tube. Recall from Chapter 16 that
we can produce such a wave by sinusoidally moving a piston at the left end of
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the tube (as in Fig. 16-2). The piston’s rightward motion moves the element of
air next to the piston face and compresses that air; the piston’s leftward motion
allows the element of air to move back to the left and the pressure to decrease.
As each element of air pushes on the next element in turn, the right– left motion
of the air and the change in its pressure travel along the tube as a sound wave.

Consider the thin element of air of thickness �x shown in Fig. 17-4b. As the
wave travels through this portion of the tube, the element of air oscillates left
and right in simple harmonic motion about its equilibrium position. Thus, the
oscillations of each air element due to the traveling sound wave are like those of
a string element due to a transverse wave, except that the air element oscillates
longitudinally rather than transversely. Because string elements oscillate parallel
to the y axis, we write their displacements in the form y(x, t). Similarly, because
air elements oscillate parallel to the x axis, we could write their displacements in
the confusing form x(x, t), but we shall use s(x, t) instead.

Displacement. To show that the displacements s(x, t) are sinusoidal func-
tions of x and t, we can use either a sine function or a cosine function. In this
chapter we use a cosine function, writing

s(x, t) � sm cos(kx � vt). (17-12)

Figure 17-5a labels the various parts of this equation. In it, sm is the displacement
amplitude—that is, the maximum displacement of the air element to either side
of its equilibrium position (see Fig. 17-4b). The angular wave number k, angular
frequency v, frequency f, wavelength l, speed v, and period T for a sound
(longitudinal) wave are defined and interrelated exactly as for a transverse
wave, except that l is now the distance (again along the direction of travel) in
which the pattern of compression and expansion due to the wave begins to
repeat itself (see Fig. 17-4a). (We assume sm is much less than l.)

Pressure. As the wave moves, the air pressure at any position x in Fig. 17-4a
varies sinusoidally, as we prove next.To describe this variation we write

�p(x, t) � �pm sin(kx � vt). (17-13)

Figure 17-5b labels the various parts of this equation. A negative value of �p in
Eq. 17-13 corresponds to an expansion of the air, and a positive value to a com-
pression. Here �pm is the pressure amplitude, which is the maximum increase or
decrease in pressure due to the wave; �pm is normally very much less than the
pressure p present when there is no wave. As we shall prove, the pressure ampli-

Compression

(a)

Δ x

Expansion

λ 

Equilibrium
position

s

sm sm

(b)

x

Oscillating fluid element 

v

The element oscillates
left and right as the wave
moves through it.

Figure 17-4 (a) A sound wave, traveling
through a long air-filled tube with speed v,
consists of a moving, periodic pattern of
expansions and compressions of the air.
The wave is shown at an arbitrary instant.
(b) A horizontally expanded view of a
short piece of the tube. As the wave pass-
es, an air element of thickness �x oscillates
left and right in simple harmonic motion
about its equilibrium position. At the
instant shown in (b), the element happens
to be displaced a distance s to the right of
its equilibrium position. Its maximum dis-
placement, either right or left, is sm.

Displacement

Pressure variation 
Pressure amplitude 

Displacement
amplitude

ω ω 

Oscillating
term

(a)

ω ω (b)

s(x,t) = sm cos(kx – t)

Δp(x,t) = Δpm sin(kx – t)

Figure 17-5 (a) The displacement function
and (b) the pressure-variation function
of a traveling sound wave consist of an
amplitude and an oscillating term.
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tude �pm is related to the displacement amplitude sm in Eq. 17-12 by

�pm � (vrv)sm. (17-14)

Figure 17-6 shows plots of Eqs. 17-12 and 17-13 at t � 0; with time, the
two curves would move rightward along the horizontal axes. Note that the
displacement and pressure variation are p/2 rad (or 90�) out of phase. Thus, for
example, the pressure variation �p at any point along the wave is zero when the
displacement there is a maximum.

Checkpoint 1
When the oscillating air element in Fig. 17-4b is moving rightward through the point
of zero displacement, is the pressure in the element at its equilibrium value, just be-
ginning to increase, or just beginning to decrease?

Figure 17-6 (a) A plot of the displacement
function (Eq. 17-12) for t � 0. (b) A simi-
lar plot of the pressure-variation function
(Eq. 17-13). Both plots are for a 1000 Hz
sound wave whose pressure amplitude is
at the threshold of pain.
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Derivation of Eqs. 17-13 and 17-14
Figure 17-4b shows an oscillating element of air of cross-sectional area A and
thickness �x, with its center displaced from its equilibrium position by
distance s. From Eq. 17-2 we can write, for the pressure variation in the dis-
placed element,

(17-15)

The quantity V in Eq. 17-15 is the volume of the element, given by

V � A �x. (17-16)

The quantity �V in Eq. 17-15 is the change in volume that occurs when the
element is displaced. This volume change comes about because the displace-
ments of the two faces of the element are not quite the same, differing by some
amount �s.Thus, we can write the change in volume as

�V � A �s. (17-17)

Substituting Eqs. 17-16 and 17-17 into Eq. 17-15 and passing to the differen-
tial limit yield

(17-18)

The symbols � indicate that the derivative in Eq. 17-18 is a partial derivative,
which tells us how s changes with x when the time t is fixed. From Eq. 17-12 we
then have, treating t as a constant,

Substituting this quantity for the partial derivative in Eq. 17-18 yields

�p � Bksm sin(kx � vt).

This tells us that the pressure varies as a sinusoidal function of time and that the
amplitude of the variation is equal to the terms in front of the sine function.
Setting �pm � Bksm, this yields Eq. 17-13, which we set out to prove.

Using Eq. 17-3, we can now write

�pm � (Bk)sm � (v2rk)sm.

Equation 17-14, which we also wanted to prove, follows at once if we substitute
v/v for k from Eq. 16-12.

�s
�x

�
�

�x
 [sm cos(kx � vt)] � �ksm sin(kx � vt).

�p � �B
�s
�x

� �B
�s
�x

.

�p � �B
�V
V

.
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� 1.1 � 10�5 m � 11 mm. (Answer)

That is only about one-seventh the thickness of a book page.
Obviously, the displacement amplitude of even the loudest
sound that the ear can tolerate is very small. Temporary ex-
posure to such loud sound produces temporary hearing loss,
probably due to a decrease in blood supply to the inner ear.
Prolonged exposure produces permanent damage.

The pressure amplitude �pm for the faintest detectable
sound at 1000 Hz is 2.8 � 10�5 Pa. Proceeding as above
leads to sm � 1.1 � 10�11 m or 11 pm, which is about one-
tenth the radius of a typical atom. The ear is indeed a sensi-
tive detector of sound waves.

sm �
28 Pa

(343 m/s)(1.21 kg/m3)(2�)(1000 Hz)

Sample Problem 17.01 Pressure amplitude, displacement amplitude

The maximum pressure amplitude pm that the human ear can
tolerate in loud sounds is about 28 Pa (which is very much less
than the normal air pressure of about 105 Pa). What is the dis-
placement amplitude sm for such a sound in air of density r �
1.21 kg/m3,at a frequency of 1000 Hz and a speed of 343 m/s?

KEY IDEA

The displacement amplitude sm of a sound wave is related to
the pressure amplitude �pm of the wave according to Eq.17-14.

Calculations: Solving that equation for sm yields

.

Substituting known data then gives us

sm �
�pm

v��
�

�pm

v�(2�f )

�

Additional examples, video, and practice available at WileyPLUS

17-3 INTERFERENCE
Learning Objectives

waves with the same amplitude, wavelength, and travel di-
rection, determine the type of interference between the
waves (fully destructive interference, fully constructive in-
terference, or indeterminate interference).

17.16 Convert a phase difference between radians, degrees,
and number of wavelengths.

● The interference of two sound waves with identical wave-
lengths passing through a common point depends on their phase
difference f there. If the sound waves were emitted in phase and
are traveling in approximately the same direction, f is given by

where �L is their path length difference. 

● Fully constructive interference occurs when f is an integer
multiple of 2p,

f �
�L
l

 2p,

f m(2p), for m 0, 1, 2, . . . ,

and, equivalently, when �L is related to wavelength l by

� 0, 1, 2, . . . .

● Fully destructive interference occurs when f is an odd multiple
of p,

f � (2m � 1)p, for m � 0, 1, 2, . . . ,

� 0.5, 1.5, 2.5, . . . .
�L
l

�L
l

��

After reading this module, you should be able to . . . 

17.14 If two waves with the same wavelength begin in
phase but reach a common point by traveling along dif-
ferent paths, calculate their phase difference f at that
point by relating the path length difference �L to the
wavelength l.

17.15 Given the phase difference between two sound

Key Ideas

Interference
Like transverse waves, sound waves can undergo interference. In fact, we can
write equations for the interference as we did in Module 16-5 for transverse
waves. Suppose two sound waves with the same amplitude and wavelength are
traveling in the positive direction of an x axis with a phase difference of f.We can
express the waves in the form of Eqs. 16-47 and 16-48 but, to be consistent with
Eq. 17-12, we use cosine functions instead of sine functions:

s1(x, t) � sm cos(kx � vt)

and
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S1

L1

L2

S2

P

P

P

(a)

(b)

(c)

The interference at P
depends on the difference
in the path lengths to reach P.

If the difference is equal to,
say, 2.0  , then the waves
arrive exactly in phase. This
is how transverse waves
would look.

λ

If the difference is equal to,
say, 2.5  , then the waves
arrive exactly out of phase.
This is how transverse
waves would look.

λ

Figure 17-7 (a) Two point sources S1 and S2

emit spherical sound waves in phase. The
rays indicate that the waves pass through a
common point P. The waves (represented
with transverse waves) arrive at P (b) exactly
in phase and (c) exactly out of phase.

and

These waves overlap and interfere. From Eq. 16-51, we can write the resultant
wave as

As we saw with transverse waves, the resultant wave is itself a traveling wave. Its
amplitude is the magnitude

(17-19)

As with transverse waves, the value of f determines what type of interference the
individual waves undergo.

One way to control f is to send the waves along paths with different lengths.
Figure 17-7a shows how we can set up such a situation: Two point sources S1 and
S2 emit sound waves that are in phase and of identical wavelength l. Thus, the
sources themselves are said to be in phase; that is, as the waves emerge from the
sources, their displacements are always identical. We are interested in the waves
that then travel through point P in Fig. 17-7a. We assume that the distance to P
is much greater than the distance between the sources so that we can approxi-
mate the waves as traveling in the same direction at P.

If the waves traveled along paths with identical lengths to reach point P,
they would be in phase there. As with transverse waves, this means that they
would undergo fully constructive interference there. However, in Fig. 17-7a, path
L2 traveled by the wave from S2 is longer than path L1 traveled by the wave from
S1. The difference in path lengths means that the waves may not be in
phase at point P. In other words, their phase difference f at P depends on their
path length difference �L � |L2 � L1|.

To relate phase difference f to path length difference �L, we recall (from
Module 16-1) that a phase difference of 2p rad corresponds to one wavelength.
Thus, we can write the proportion

, (17-20)

from which

(17-21)

Fully constructive interference occurs when f is zero, 2p, or any integer multiple
of 2p. We can write this condition as

f � m(2p), for m � 0, 1, 2, . . . (fully constructive interference). (17-22)

From Eq. 17-21, this occurs when the ratio L/l is

� 0, 1, 2, . . . (fully constructive interference). (17-23)

For example, if the path length difference L |L2 L1| in Fig. 17-7a is equal
to 2l, then �L/l � 2 and the waves undergo fully constructive interference at
point P (Fig. 17-7b). The interference is fully constructive because the wave
from S2 is phase-shifted relative to the wave from S1 by 2l, putting the two
waves exactly in phase at P.

Fully destructive interference occurs when f is an odd multiple of p :

f � (2m � 1)p, for m � 0, 1, 2, . . . (fully destructive interference). (17-24)

���

�L
l

�

f �
�L
l

 2p.

f

2p
�

�L
l

s
m � �2sm cos1
2f�.

s
 � [2sm cos1
2f] cos(kx � vt � 1

2f).

s2(x, t) � sm cos(kx � vt � f).
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From Eq. 17-21, this occurs when the ratio �L/l is

� 0.5, 1.5, 2.5, . . . (fully destructive interference). (17-25)

For example, if the path length difference �L � |L2 � L1| in Fig. 17-7a is equal to
2.5l, then �L/l � 2.5 and the waves undergo fully destructive interference at
point P (Fig. 17-7c). The interference is fully destructive because the wave from
S2 is phase-shifted relative to the wave from S1 by 2.5 wavelengths, which puts the
two waves exactly out of phase at P.

Of course, two waves could produce intermediate interference as, say, when
�L/l � 1.2. This would be closer to fully constructive interference (�L/l � 1.0)
than to fully destructive interference (�L/l � 1.5).

�L
l

Reasoning: The wave from S1 travels the extra distance D
(� 1.5l) to reach P2.Thus, the path length difference is

�L � 1.5l. (Answer)

From Eq. 17-25, this means that the waves are exactly out
of phase at P2 and undergo fully destructive interference
there.

(c) Figure 17-8d shows a circle with a radius much greater
than D, centered on the midpoint between sources S1 and S2.
What is the number of points N around this circle at which
the interference is fully constructive? (That is, at how many
points do the waves arrive exactly in phase?)

Reasoning: Starting at point a, let’s move clockwise
along the circle to point d. As we move, path length differ-
ence �L increases and so the type of interference changes.
From (a), we know that is �L � 0l at point a. From (b),
we know that �L � 1.5l at point d. Thus, there must be

Sample Problem 17.02 Interference points along a big circle

In Fig. 17-8a, two point sources S1 and S2, which are in phase
and separated by distance D � 1.5l, emit identical sound
waves of wavelength l.

(a) What is the path length difference of the waves from S1

and S2 at point P1, which lies on the perpendicular bisector
of distance D, at a distance greater than D from the sources
(Fig. 17-8b)? (That is, what is the difference in the distance
from source S1 to point P1 and the distance from source S2

to P1?) What type of interference occurs at P1?

Reasoning: Because the waves travel identical distances to
reach P1, their path length difference is

�L � 0. (Answer)

From Eq. 17-23, this means that the waves undergo fully
constructive interference at P1 because they start in phase at
the sources and reach P1 in phase.

(b) What are the path length difference and type of inter-
ference at point P2 in Fig. 17-8c?

A

D/2

D/2

S1
L1

L2
S2

P1

(b)

S1

S2

P2(c)

D

S1

S2

(a)

a 0

1.5λ

λ
S2

S1

d

(d)

D

The difference in these
path lengths equals 0.

The difference in these
path lengths is D,
which equals 1.5  .

Thus, the waves arrive exactly
in phase and undergo fully
constructive interference.

Thus, the waves arrive
exactly out of phase 
and undergo fully
destructive interference.

λ

Figure 17-8 (a) Two point sources S1 and S2, separated by distance D, emit spherical sound waves in phase. (b) The waves travel equal 
distances to reach point P1. (c) Point P2 is on the line extending through S1 and S2. (d) We move around a large circle. (Figure continues)
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17-4 INTENSITY AND SOUND LEVEL

After reading this module, you should be able to . . .

17.17 Calculate the sound intensity I at a surface as the ratio of
the power P to the surface area A.

17.18 Apply the relationship between the sound intensity I and
the displacement amplitude sm of the sound wave.

17.19 Identify an isotropic point source of sound.
17.20 For an isotropic point source, apply the relationship in-

volving the emitting power Ps, the distance r to a detector,
and the sound intensity I at the detector.

17.21 Apply the relationship between the sound level b,
the sound intensity I, and the standard reference 
intensity I0.

17.22 Evaluate a logarithm function (log) and an antilogarithm
function (log�1).

17.23 Relate the change in a sound level to the change in sound
intensity.

● The intensity I of a sound wave at a surface is the average
rate per unit area at which energy is transferred by the wave
through or onto the surface:

,

where P is the time rate of energy transfer (power) of the
sound wave and A is the area of the surface intercepting
the sound. The intensity I is related to the displacement
amplitude sm of the sound wave by

I � 1
2�vv2s2

m.

I �
P
A

● The intensity at a distance r from a point source that
emits sound waves of power Ps equally in all directions
(isotropically) is

.

● The sound level b in decibels (dB) is defined as

,

where I0 (� 10�12 W/m2) is a reference intensity level to
which all intensities are compared. For every factor-of-10
increase in intensity, 10 dB is added to the sound level.

b � (10 dB) log 
I
I0

I �
Ps

4pr2

Learning Objectives

Key Ideas

one point between a and d at which �L � l (Fig. 17-8e).
From Eq. 17-23, fully constructive interference occurs at
that point. Also, there can be no other point along the way
from point a to point d at which fully constructive inter-
ference occurs, because there is no other integer than 1
between 0 at point a and 1.5 at point d.

We can now use symmetry to locate other points of fully
constructive or destructive interference (Fig. 17-8f ).
Symmetry about line cd gives us point b, at which �L � 0l.
Also, there are three more points at which �L � l. In all
(Fig. 17-8g) we have

N � 6. (Answer)

Additional examples, video, and practice available at WileyPLUS

Figure 17-8 (continued) (e) Another point of fully constructive interference. ( f ) Using symmetry to determine other points. (g) The six points
of fully constructive interference.

The difference
in these path
lengths
equals 1.0  .

0 0

1.0λ

λλ

1.0λ

1.0λ

1.0λ

S2

S1

(e)

λ

0 b a 0

1.5λ

1.5λ

1.0λ

λλ

1.0λ

1.0λ

1.0λ

S2

S1

d

c

(f ) (g)

1.0λ

Thus, the waves arrive exactly in phase 
and undergo fully constructive interference.

We find six points
of fully constructive
interference.

Maximum phase
difference

Maximum phase difference

Zero phase
difference

Zero
phase
difference
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S

r

Figure 17-9 A point source S emits sound
waves uniformly in all directions. The
waves pass through an imaginary sphere
of radius r that is centered on S.

Checkpoint 2
The figure indicates three small patches 1, 2, and 3 that
lie on the surfaces of two imaginary spheres; the spheres
are centered on an isotropic point source S of sound.
The rates at which energy is transmitted through the
three patches by the sound waves are equal. Rank the
patches according to (a) the intensity of the sound on
them and (b) their area, greatest first.

S
3

1

2

Intensity and Sound Level
If you have ever tried to sleep while someone played loud music nearby, you are
well aware that there is more to sound than frequency, wavelength, and speed.
There is also intensity. The intensity I of a sound wave at a surface is the average
rate per unit area at which energy is transferred by the wave through or onto the
surface.We can write this as

, (17-26)

where P is the time rate of energy transfer (the power) of the sound wave and
A is the area of the surface intercepting the sound. As we shall derive shortly,
the intensity I is related to the displacement amplitude sm of the sound 
wave by

. (17-27)

Intensity can be measured on a detector. Loudness is a perception, something
that you sense. The two can differ because your perception depends on factors
such as the sensitivity of your hearing mechanism to various frequencies.

Variation of Intensity with Distance
How intensity varies with distance from a real sound source is often complex.
Some real sources (like loudspeakers) may transmit sound only in particular
directions, and the environment usually produces echoes (reflected sound
waves) that overlap the direct sound waves. In some situations, however, we
can ignore echoes and assume that the sound source is a point source that
emits the sound isotropically—that is, with equal intensity in all directions.
The wavefronts spreading from such an isotropic point source S at a particular
instant are shown in Fig. 17-9.

Let us assume that the mechanical energy of the sound waves is conserved
as they spread from this source. Let us also center an imaginary sphere of radius
r on the source, as shown in Fig. 17-9. All the energy emitted by the source
must pass through the surface of the sphere. Thus, the time rate at which energy
is transferred through the surface by the sound waves must equal the time rate
at which energy is emitted by the source (that is, the power Ps of the source).
From Eq. 17-26, the intensity I at the sphere must then be

, (17-28)

where 4pr2 is the area of the sphere. Equation 17-28 tells us that the intensity of
sound from an isotropic point source decreases with the square of the distance r
from the source.

I �
Ps

4pr 2

I � 1
2rvv2s2

m

I �
P
A
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The Decibel Scale
The displacement amplitude at the human ear ranges from about 10�5 m for
the loudest tolerable sound to about 10�11 m for the faintest detectable sound,
a ratio of 106. From Eq. 17-27 we see that the intensity of a sound varies as the
square of its amplitude, so the ratio of intensities at these two limits of the hu-
man auditory system is 1012. Humans can hear over an enormous range of 
intensities.

We deal with such an enormous range of values by using logarithms.
Consider the relation

y � log x,

in which x and y are variables. It is a property of this equation that if we multiply
x by 10, then y increases by 1.To see this, we write

y
 � log(10x) � log 10 � log x � 1 � y.

Similarly, if we multiply x by 1012, y increases by only 12.
Thus, instead of speaking of the intensity I of a sound wave, it is much more

convenient to speak of its sound level b, defined as

(17-29)

Here dB is the abbreviation for decibel, the unit of sound level, a name that was
chosen to recognize the work of Alexander Graham Bell. I0 in Eq. 17-29 is a
standard reference intensity (� 10�12 W/m2), chosen because it is near the lower
limit of the human range of hearing. For I � I0, Eq. 17-29 gives b � 10 log 1 � 0,
so our standard reference level corresponds to zero decibels. Then b increases
by 10 dB every time the sound intensity increases by an order of magnitude
(a factor of 10). Thus, b � 40 corresponds to an intensity that is 104 times
the standard reference level. Table 17-2 lists the sound levels for a variety of 
environments.

Derivation of Eq. 17-27
Consider, in Fig. 17-4a, a thin slice of air of thickness dx, area A, and mass dm,
oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The
kinetic energy dK of the slice of air is

(17-30)

Here vs is not the speed of the wave but the speed of the oscillating element of air,
obtained from Eq. 17-12 as

Using this relation and putting dm � rA dx allow us to rewrite Eq. 17-30 as

dK � (rA dx)(�vsm)2 sin2(kx � vt). (17-31)

Dividing Eq. 17-31 by dt gives the rate at which kinetic energy moves along with
the wave. As we saw in Chapter 16 for transverse waves, dx/dt is the wave speed
v, so we have

rAvv2s2
m sin2(kx � vt). (17-32)

dK
dt

� 1
2

1
2

vs �
�s
�t

� �vsm sin(kx � vt).

dK � 1
2 dm v2

s.

b � (10 dB) log 
I
I0

.

Sound can cause the wall of a drinking
glass to oscillate. If the sound produces a
standing wave of oscillations and if the
intensity of the sound is large enough, the
glass will shatter.

© Ben Rose

Table 17-2 Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130
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The average rate at which kinetic energy is transported is

(17-33)

To obtain this equation, we have used the fact that the average value of the
square of a sine (or a cosine) function over one full oscillation is .

We assume that potential energy is carried along with the wave at this
same average rate. The wave intensity I, which is the average rate per unit area
at which energy of both kinds is transmitted by the wave, is then, from 
Eq. 17-33,

which is Eq. 17-27, the equation we set out to derive.

I �
2(dK/dt)avg

A
� 1

2 rvv2s2
m,

1
2

� 1
4 rAvv2s2

m.

� dK
dt �avg

� 1
2 rAvv2s2

m[sin2(kx � vt)]avg

Calculations: Putting these ideas together and noting that the
area of the cylindrical surface is A � 2prL,we have

. (17-34)

This tells us that the intensity of the sound from a line
source decreases with distance r (and not with the square of
distance r as for a point source). Substituting the given data,
we find

(Answer)

(b) At what time rate Pd is sound energy intercepted by an
acoustic detector of area Ad � 2.0 cm2, aimed at the spark
and located a distance r � 12 m from the spark?

Calculations: We know that the intensity of sound at the
detector is the ratio of the energy transfer rate Pd there to
the detector’s area Ad:

(17-35)

We can imagine that the detector lies on the cylindrical
surface of (a).Then the sound intensity at the detector is the
intensity I (� 21.2 W/m2) at the cylindrical surface. Solving
Eq. 17-35 for Pd gives us

Pd � (21.2 W/m2)(2.0 � 10�4 m2) � 4.2 mW. (Answer)

I �
Pd

Ad
.

� 21.2 W/m2 � 21 W/m2.

I �
1.6 � 104 W

2p(12 m)(10 m)

I �
P
A

�
Ps

2prL

Sample Problem 17.03 Intensity change with distance, cylindrical sound wave

An electric spark jumps along a straight line of length 
L � 10 m, emitting a pulse of sound that travels radially
outward from the spark. (The spark is said to be a line
source of sound.) The power of this acoustic emission is 
Ps � 1.6 � 104 W.

(a) What is the intensity I of the sound when it reaches a dis-
tance r � 12 m from the spark?

KEY IDEAS

(1) Let us center an imaginary cylinder of radius r � 12 m
and length L � 10 m (open at both ends) on the spark, as
shown in Fig. 17-10. Then the intensity I at the cylindrical
surface is the ratio P/A, where P is the time rate at which
sound energy passes through the surface and A is the sur-
face area. (2) We assume that the principle of conservation
of energy applies to the sound energy. This means that the
rate P at which energy is transferred through the cylinder
must equal the rate Ps at which energy is emitted by the
source.

Additional examples, video, and practice available at WileyPLUS

rL

Spark

Figure 17-10 A spark along a straight line of length L emits sound
waves radially outward. The waves pass through an imaginary
cylinder of radius r and length L that is centered on the spark.
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sound level as bf � bi � �20 dB, we find

We next take the antilog of the far left and far right sides of
this equation. (Although the antilog 10�2.0 can be evaluated
mentally, you could use a calculator by keying in 10ˆ-2.0 or
using the 10x key.) We find

(Answer)

Thus, the earplug reduces the intensity of the sound waves
to 0.010 of their initial intensity (two orders of magnitude).

If

Ii
� log�1 (�2.0) � 0.010.

log
If

Ii
�

bf � bi

10 dB
�

�20 dB
10 dB

� �2.0.

Sample Problem 17.04 Decibels, sound level, change in intensity

Many veteran rockers suffer from acute hearing damage
because of the high sound levels they endured for years.
Many rockers now wear special earplugs to protect their
hearing during performances (Fig. 17-11). If an earplug de-
creases the sound level of the sound waves by 20 dB, what is
the ratio of the final intensity If of the waves to their initial
intensity Ii?

KEY IDEA

For both the final and initial waves, the sound level b is related
to the intensity by the definition of sound level in Eq.17-29.

Calculations: For the final waves we have

,

and for the initial waves we have

.

The difference in the sound levels is

. (17-36)

Using the identity

we can rewrite Eq. 17-36 as

. (17-37)

Rearranging and then substituting the given decrease in

bf � bi � (10 dB) log 
If

Ii

log
a
b

� log
c
d

� log
ad
bc

,

bf � bi � (10 dB) �log
If

I0
� log

Ii

I0
�

bi � (10 dB) log 
Ii

I0

bf � (10 dB) log 
If

I0

Additional examples, video, and practice available at WileyPLUS

Tim Mosenfelder/Getty Images, Inc.

Figure 17-11 Lars Ulrich
of Metallica is an
advocate for the
organization HEAR
(Hearing Education
and Awareness for
Rockers), which warns
about the damage high
sound levels can have
on hearing.

17-5 SOURCES OF MUSICAL SOUND
Learning Objectives

17.26 Identify which type of pipe has even harmonics.
17.27 For any given harmonic and for a pipe with only one open

end or with two open ends, apply the relationships between
the pipe length L, the speed of sound v, the wavelength l, the
harmonic frequency f, and the harmonic number n.

After reading this module, you should be able to . . . 

17.24 Using standing wave patterns for string waves, sketch the
standing wave patterns for the first several acoustical harmon-
ics of a pipe with only one open end and with two open ends.

17.25 For a standing wave of sound, relate the distance
between nodes and the wavelength.

● Standing sound wave patterns can be set up in pipes (that
is, resonance can be set up) if sound of the proper wave-
length is introduced in the pipe.

● A pipe open at both ends will resonate at frequencies

, n � 1, 2, 3, . . . ,f �
v
�

�
nv
2L

where v is the speed of sound in the air in the pipe.

● For a pipe closed at one end and open at the other, the 
resonant frequencies are

, n � 1, 3, 5, . . . .f �
v
�

�
nv
4L

Key Ideas
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(b)

λ  = 2L

L

A N A (a)

Antinodes (maximum oscillation)
occur at the open ends.

First harmonic

Figure 17-13 (a) The simplest standing wave pattern of displacement for (longitudinal)
sound waves in a pipe with both ends open has an antinode (A) across each end and a
node (N) across the middle. (The longitudinal displacements represented by the double
arrows are greatly exaggerated.) (b) The corresponding standing wave pattern for
(transverse) string waves.

Sources of Musical Sound
Musical sounds can be set up by oscillating strings (guitar, piano, violin), mem-
branes (kettledrum, snare drum), air columns (flute, oboe, pipe organ, and the
didgeridoo of Fig. 17-12), wooden blocks or steel bars (marimba, xylophone), and
many other oscillating bodies. Most common instruments involve more than a
single oscillating part.

Recall from Chapter 16 that standing waves can be set up on a stretched
string that is fixed at both ends. They arise because waves traveling along the
string are reflected back onto the string at each end. If the wavelength of the
waves is suitably matched to the length of the string, the superposition of waves
traveling in opposite directions produces a standing wave pattern (or oscillation
mode). The wavelength required of the waves for such a match is one that cor-
responds to a resonant frequency of the string. The advantage of setting up
standing waves is that the string then oscillates with a large, sustained amplitude,
pushing back and forth against the surrounding air and thus generating a notice-
able sound wave with the same frequency as the oscillations of the string. This
production of sound is of obvious importance to, say, a guitarist.

Sound Waves. We can set up standing waves of sound in an air-filled pipe in
a similar way.As sound waves travel through the air in the pipe, they are reflected
at each end and travel back through the pipe. (The reflection occurs even if an
end is open, but the reflection is not as complete as when the end is closed.) If the
wavelength of the sound waves is suitably matched to the length of the pipe, the
superposition of waves traveling in opposite directions through the pipe sets up
a standing wave pattern. The wavelength required of the sound waves for such a
match is one that corresponds to a resonant frequency of the pipe. The advan-
tage of such a standing wave is that the air in the pipe oscillates with a large,
sustained amplitude, emitting at any open end a sound wave that has the same
frequency as the oscillations in the pipe. This emission of sound is of obvious
importance to, say, an organist.

Many other aspects of standing sound wave patterns are similar to those
of string waves: The closed end of a pipe is like the fixed end of a string in that
there must be a node (zero displacement) there, and the open end of a pipe is
like the end of a string attached to a freely moving ring, as in Fig. 16-19b, in
that there must be an antinode there. (Actually, the antinode for the open
end of a pipe is located slightly beyond the end, but we shall not dwell on
that detail.)

Two Open Ends. The simplest standing wave pattern that can be set up in a
pipe with two open ends is shown in Fig. 17-13a. There is an antinode across each

Alamy

Figure 17-12 The air column within a didgeri-
doo (“a pipe”) oscillates when the instru-
ment is played.
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open end, as required. There is also a node across the middle of the pipe. An 
easier way of representing this standing longitudinal sound wave is shown in 
Fig. 17-13b—by drawing it as a standing transverse string wave.

The standing wave pattern of Fig. 17-13a is called the fundamental mode or
first harmonic. For it to be set up, the sound waves in a pipe of length L must
have a wavelength given by L � l/2, so that l � 2L. Several more standing
sound wave patterns for a pipe with two open ends are shown in Fig. 17-14a
using string wave representations. The second harmonic requires sound waves of
wavelength l � L, the third harmonic requires wavelength l � 2L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with two
open ends correspond to the wavelengths

for n � 1, 2, 3, . . . , (17-38)

where n is called the harmonic number. Letting v be the speed of sound, we write
the resonant frequencies for a pipe with two open ends as

for n � 1, 2, 3, . . . (pipe, two open ends). (17-39)

One Open End. Figure 17-14b shows (using string wave representations)
some of the standing sound wave patterns that can be set up in a pipe with only
one open end. As required, across the open end there is an antinode and across
the closed end there is a node. The simplest pattern requires sound waves hav-
ing a wavelength given by L � l/4, so that l � 4L.The next simplest pattern re-
quires a wavelength given by L � 3l/4, so that l � 4L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with only
one open end correspond to the wavelengths

for n � 1, 3, 5, . . . , (17-40)

in which the harmonic number n must be an odd number. The resonant frequen-
cies are then given by

for n � 1, 3, 5, . . . (pipe, one open end). (17-41)

Note again that only odd harmonics can exist in a pipe with one open end. For
example, the second harmonic, with n � 2, cannot be set up in such a pipe.
Note also that for such a pipe the adjective in a phrase such as “the third har-
monic” still refers to the harmonic number n (and not to, say, the third possible
harmonic). Finally note that Eqs. 17-38 and 17-39 for two open ends contain the

f �
v
l

�
nv
4L

,

l �
4L
n

,

f �
v
l

�
nv
2L

,

l �
2L
n

,

L

n = 2

Second

n = 3

Third

Fourth
n = 4

λ = 2L/2 = L

λ = 2L/3

λ = 2L/4 = L/2

(a) Two open ends—
any harmonic

(b)

λ = 4L

λ = 4L/3

λ = 4L/5

λ = 4L/7

n = 1

First

Third

Fifth

Seventh

n = 3

n = 5

n = 7

One open end—
only odd harmonics

Figure 17-14 Standing wave patterns for string waves superimposed on pipes to represent
standing sound wave patterns in the pipes. (a) With both ends of the pipe open, any harmonic
can be set up in the pipe. (b) With only one end open, only odd harmonics can be set up.
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number 2 and any integer value of n, but Eqs. 17-40 and 17-41 for one open end
contain the number 4 and only odd values of n.

Length. The length of a musical instrument reflects the range of frequencies
over which the instrument is designed to function, and smaller length implies
higher frequencies, as we can tell from Eq. 16-66 for string instruments and Eqs. 17-
39 and 17-41 for instruments with air columns. Figure 17-15, for example, shows the
saxophone and violin families, with their frequency ranges suggested by the piano
keyboard. Note that, for every instrument, there is overlap with its higher- and
lower-frequency neighbors.

Net Wave. In any oscillating system that gives rise to a musical sound,
whether it is a violin string or the air in an organ pipe, the fundamental and one
or more of the higher harmonics are usually generated simultaneously. Thus, you
hear them together—that is, superimposed as a net wave. When different instru-
ments are played at the same note, they produce the same fundamental fre-
quency but different intensities for the higher harmonics. For example, the fourth
harmonic of middle C might be relatively loud on one instrument and relatively
quiet or even missing on another. Thus, because different instruments produce
different net waves, they sound different to you even when they are played at the
same note. That would be the case for the two net waves shown in Fig. 17-16,
which were produced at the same note by different instruments. If you heard only
the fundamentals, the music would not be musical.

Figure 17-15 The saxophone and
violin families, showing the re-
lations between instrument
length and frequency range.
The frequency range of each
instrument is indicated by a
horizontal bar along a fre-
quency scale suggested by the
keyboard at the bottom; the
frequency increases toward
the right.

Figure 17-16 The wave forms produced by (a)
a flute and (b) an oboe when played at the
same note, with the same first harmonic
frequency.

Time

(a)

(b)

A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B CB C D E F GA

Bass saxophone 

Soprano saxophone 

Bass

Cello

Viola

Violin

Baritone saxophone 

Tenor saxophone 

Alto saxophone 

Checkpoint 3
Pipe A, with length L, and pipe B, with length 2L, both have two open ends. Which 
harmonic of pipe B has the same frequency as the fundamental of pipe A?

KEY IDEAS

(1) The sound from one pipe can set up a standing wave in
another pipe only if the harmonic frequencies match. (2)
Equation 17-39 gives the harmonic frequencies in a pipe
with two open ends (a symmetric pipe) as f nv/2L, for
n 1, 2, 3, . . . , that is, for any positive integer. (3) Equation�

�

Sample Problem 17.05 Resonance between pipes of different lengths

Pipe A is open at both ends and has length LA 0.343 m.
We want to place it near three other pipes in which standing
waves have been set up, so that the sound can set up a stand-
ing wave in pipe A. Those other three pipes are each closed
at one end and have lengths LB � 0.500LA, LC � 0.250LA,
and LD � 2.00LA. For each of these three pipes, which of
their harmonics can excite a harmonic in pipe A?

�
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17-6 BEATS

After reading this module, you should be able to . . .

17.28 Explain how beats are produced.
17.29 Add the displacement equations for two sound

waves of the same amplitude and slightly different angu-
lar frequencies to find the displacement equation of the
resultant wave and identify the time-varying amplitude.

17.30 Apply the relationship between the beat frequency
and the frequencies of two sound waves that have the
same amplitude when the frequencies (or, equivalently,
the angular frequencies) differ by a small amount.

Learning Objectives

● Beats arise when two waves having slightly different frequencies, f1 and f2, are detected together. The beat frequency is

fbeat � f 1 � f 2.

Key Idea

Additional examples, video, and practice available at WileyPLUS

1

1 3

3 5

1 3 5

1 32 4 65

0.500 1.51.0 2.0 3.02.5

7 9 11 13 15 17 19 21 23

nA

kHz

nB

nC

nD

Figure 17-17 Harmonic frequencies of four pipes.

17-41 gives the harmonic frequencies in a pipe with only
one open end (an asymmetric pipe) as f � nv/4L, for n �
1, 3, 5, . . . , that is, for only odd positive integers.

Pipe A: Let’s first find the resonant frequencies of symmet-
ric pipe A (with two open ends) by evaluating Eq. 17-39:

� nA(500 Hz) � nA(0.50 kHz), for nA � 1, 2, 3, . . . .

The first six harmonic frequencies are shown in the top plot
in Fig. 17-17.

Pipe B: Next let’s find the resonant frequencies of asym-
metric pipe B (with only one open end) by evaluating Eq.
17-41, being careful to use only odd integers for the har-
monic numbers:

� nB(500 Hz) � nB(0.500 kHz), for nB � 1, 3, 5, . . . .

Comparing our two results, we see that we get a match for
each choice of nB:

fA = fB for nA � nB with nB � 1, 3, 5, . . . . (Answer)

For example, as shown in Fig. 17-17, if we set up the fifth
harmonic in pipe B and bring the pipe close to pipe A, the
fifth harmonic will then be set up in pipe A. However, no
harmonic in B can set up an even harmonic in A.

Pipe C: Let’s continue with pipe C (with only one end) by
writing Eq. 17-41 as

fB �
nBv
4LB

�
nBv

4(0.500LA)
�

nB(343 m/s)
2(0.343 m)

fA �
nAv
2LA

�
nA(343 m/s)
2(0.343 m)

� nC (1000 Hz) � nC (1.00 kHz), for nC � 1, 3, 5, . . . .

From this we see that C can excite some of the harmonics of
A but only those with harmonic numbers nA that are twice
an odd integer:

fA � fC for nA � 2nC, with nC � 1, 3, 5, . . . . (Answer)

Pipe D: Finally, let’s check D with our same procedure:

� nD (125 Hz) � nD (0.125 kHz), for nD � 1, 3, 5, . . . .

As shown in Fig. 17-17, none of these frequencies match a
harmonic frequency of A. (Can you see that we would get a
match if nD � 4nA? But that is impossible because 4nA can-
not yield an odd integer, as required of nD.) Thus D cannot
set up a standing wave in A.

fD �
nDv
4LD

�
nDv

4(2LA)
�

nD (343 m/s)
8(0.343 m/s)

fC �
nCv
4LC

�
nCv

4(0.250LA)
�

nC (343 m/s)
0.343 m/s
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Beats
If we listen, a few minutes apart, to two sounds whose frequencies are, say, 552
and 564 Hz, most of us cannot tell one from the other because the frequencies are
so close to each other. However, if the sounds reach our ears simultaneously,
what we hear is a sound whose frequency is 558 Hz, the average of the two com-
bining frequencies. We also hear a striking variation in the intensity of this
sound—it increases and decreases in slow, wavering beats that repeat at a fre-
quency of 12 Hz, the difference between the two combining frequencies. Figure
17-18 shows this beat phenomenon.

Let the time-dependent variations of the displacements due to two sound
waves of equal amplitude sm be

s1 � sm cos v1t and s2 � sm cos v2t, (17-42)

where v1 � v2. From the superposition principle, the resultant displacement is the
sum of the individual displacements:

s � s1 � s2 � sm(cos v1t � cos v2t).

Using the trigonometric identity (see Appendix E)

allows us to write the resultant displacement as

. (17-43)

If we write

v
 � (v1 � v2) and v � (v1 � v2), (17-44)

we can then write Eq. 17-43 as

s(t) � [2sm cos v
t] cos vt. (17-45)

We now assume that the angular frequencies v1 and v2 of the combining
waves are almost equal, which means that v � v
 in Eq. 17-44. We can then
regard Eq. 17-45 as a cosine function whose angular frequency is v and whose
amplitude (which is not constant but varies with angular frequency v
) is the
absolute value of the quantity in the brackets.

A maximum amplitude will occur whenever cos v
t in Eq. 17-45 has the
value �1 or �1, which happens twice in each repetition of the cosine function.
Because cos v
t has angular frequency v
, the angular frequency vbeat at which
beats occur is vbeat � 2v
. Then, with the aid of Eq. 17-44, we can write the beat
angular frequency as

.

Because v � 2pf, we can recast this as

fbeat � f1 � f2 (beat frequency). (17-46)

Musicians use the beat phenomenon in tuning instruments. If an instrument is
sounded against a standard frequency (for example, the note called “concert A”
played on an orchestra’s first oboe) and tuned until the beat disappears, the instru-
ment is in tune with that standard. In musical Vienna, concert A (440 Hz) is avail-
able as a convenient telephone service for the city’s many musicians.

vbeat � 2v
 � (2)(1
2)(v1 � v2) � v1 � v2

1
2

1
2

s � 2sm cos[1
2(v1 � v2)t] cos[1

2(v1 � v2)t]

cos a � cos b � 2 cos[1
2(a � b)] cos[1

2(a � b)]

Figure 17-18 (a, b) The pressure variations �p of two sound waves as they would be detected
separately.The frequencies of the waves are nearly equal. (c) The resultant pressure varia-
tion if the two waves are detected simultaneously.

Time

(c)

(b)

(a)
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sociated with the second harmonics is

fbeat,2 � fA2 � fB2 � 2fA1 � 2fB1

� 2(432 Hz) � 2(371 Hz)

� 122 Hz. (Answer)

Experiments indicate that penguins can perceive such large
beat frequencies. (Humans cannot hear a beat frequency
any higher than about 12 Hz — we perceive the two sepa-
rate frequencies.) Thus, a penguin’s cry can be rich with dif-
ferent harmonics and different beat frequencies, allowing
the voice to be recognized even among the voices of thou-
sands of other, closely huddled penguins.

Additional examples, video, and practice available at WileyPLUS

17-7 THE DOPPLER EFFECT

After reading this module, you should be able to . . .

17.31 Identify that the Doppler effect is the shift in the de-
tected frequency from the frequency emitted by a sound
source due to the relative motion between the source and
the detector.

17.32 Identify that in calculating the Doppler shift in sound,
the speeds are measured relative to the medium (such as
air or water), which may be moving.

17.33 Calculate the shift in sound frequency for (a) a source

moving either directly toward or away from a stationary
detector, (b) a detector moving either directly toward or
away from a stationary source, and (c) both source and
detector moving either directly toward each other or
directly away from each other.

17.34 Identify that for relative motion between a sound source
and a sound detector, motion toward tends to shift the
frequency up and motion away tends to shift it down.

Learning Objectives

● The Doppler effect is a change in the observed frequency of
a wave when the source or the detector moves relative to the
transmitting medium (such as air). For sound the observed fre-
quency f
 is given in terms of the source frequency f by

(general Doppler effect),f 
 � f
v � vD

v � vS

Key Ideas

Because the standing waves in the penguin are effec-
tively in a pipe with two open ends, the resonant frequencies
are given by Eq. 17-39 ( f � nv/2L), in which L is the
(unknown) length of the effective pipe. The first-harmonic
frequency is f1 � v/2L, and the second-harmonic frequency
is f2 � 2v/2L. Comparing these two frequencies, we see that,
in general,

f2 � 2f1.

For the penguin, the second harmonic of side A has
frequency fA2 � 2fA1 and the second harmonic of side B has
frequency fB2 � 2fB1. Using Eq. 17-46 with frequencies
fA2 and fB2, we find that the corresponding beat frequency as-

Sample Problem 17.06 Beat frequencies and penguins finding one another

When an emperor penguin returns from a search for food,
how can it find its mate among the thousands of penguins
huddled together for warmth in the harsh Antarctic
weather? It is not by sight, because penguins all look alike,
even to a penguin.

The answer lies in the way penguins vocalize. Most birds
vocalize by using only one side of their two-sided vocal or-
gan, called the syrinx. Emperor penguins, however, vocalize
by using both sides simultaneously. Each side sets up
acoustic standing waves in the bird’s throat and mouth,
much like in a pipe with two open ends. Suppose that the
frequency of the first harmonic produced by side A is fA1

432 Hz and the frequency of the first harmonic produced by
side B is fB1 371 Hz. What is the beat frequency between
those two first-harmonic frequencies and between the two
second-harmonic frequencies?

KEY IDEA

The beat frequency between two frequencies is their differ-
ence, as given by Eq. 17-46 ( fbeat � f1 � f2).

Calculations: For the two first-harmonic frequencies fA1

and fB1, the beat frequency is
fbeat,1 � fA1 � fB1 � 432 Hz � 371 Hz

� 61 Hz. (Answer)

�

�

where vD is the speed of the detector relative to the medium,
vS is that of the source, and v is the speed of sound in the
medium.

● The signs are chosen such that f 
 tends to be greater for
relative motion toward (one of the objects moves toward the
other) and less for motion away.
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The Doppler Effect
A police car is parked by the side of the highway, sounding its 1000 Hz siren. If
you are also parked by the highway, you will hear that same frequency.
However, if there is relative motion between you and the police car, either
toward or away from each other, you will hear a different frequency. For exam-
ple, if you are driving toward the police car at 120 km/h (about 75 mi/h), you will
hear a higher frequency (1096 Hz, an increase of 96 Hz). If you are driving away
from the police car at that same speed, you will hear a lower frequency (904 Hz,
a decrease of 96 Hz).

These motion-related frequency changes are examples of the Doppler
effect. The effect was proposed (although not fully worked out) in 1842 by
Austrian physicist Johann Christian Doppler. It was tested experimentally in
1845 by Buys Ballot in Holland, “using a locomotive drawing an open car with
several trumpeters.”

The Doppler effect holds not only for sound waves but also for electromag-
netic waves, including microwaves, radio waves, and visible light. Here, however,
we shall consider only sound waves, and we shall take as a reference frame the
body of air through which these waves travel. This means that we shall measure
the speeds of a source S of sound waves and a detector D of those waves relative
to that body of air. (Unless otherwise stated, the body of air is stationary relative
to the ground, so the speeds can also be measured relative to the ground.)
We shall assume that S and D move either directly toward or directly away from
each other, at speeds less than the speed of sound.

General Equation. If either the detector or the source is moving, or both are
moving, the emitted frequency f and the detected frequency f 
 are related by

(general Doppler effect), (17-47)

where v is the speed of sound through the air, vD is the detector’s speed relative
to the air, and vS is the source’s speed relative to the air. The choice of plus or
minus signs is set by this rule:

f 
 � f
v � vD

v � vS

When the motion of detector or source is toward the other, the sign on its speed
must give an upward shift in frequency. When the motion of detector or source is
away from the other, the sign on its speed must give a downward shift in frequency.

In short, toward means shift up, and away means shift down.
Here are some examples of the rule. If the detector moves toward the

source, use the plus sign in the numerator of Eq. 17-47 to get a shift up in the
frequency. If it moves away, use the minus sign in the numerator to get a shift
down. If it is stationary, substitute 0 for vD. If the source moves toward the
detector, use the minus sign in the denominator of Eq. 17-47 to get a shift up in
the frequency. If it moves away, use the plus sign in the denominator to get
a shift down. If the source is stationary, substitute 0 for vS.

Next, we derive equations for the Doppler effect for the following two
specific situations and then derive Eq. 17-47 for the general situation.

1. When the detector moves relative to the air and the source is stationary
relative to the air, the motion changes the frequency at which the detector
intercepts wavefronts and thus changes the detected frequency of the sound
wave.

2. When the source moves relative to the air and the detector is stationary
relative to the air, the motion changes the wavelength of the sound wave and
thus changes the detected frequency (recall that frequency is related to
wavelength).
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Detector Moving, Source Stationary
In Fig. 17-19, a detector D (represented by an ear) is moving at speed vD toward
a stationary source S that emits spherical wavefronts, of wavelength l and
frequency f, moving at the speed v of sound in air. The wavefronts are drawn one
wavelength apart. The frequency detected by detector D is the rate at which D
intercepts wavefronts (or individual wavelengths). If D were stationary, that rate
would be f, but since D is moving into the wavefronts, the rate of interception is
greater, and thus the detected frequency f 
 is greater than f.

Let us for the moment consider the situation in which D is stationary
(Fig. 17-20). In time t, the wavefronts move to the right a distance vt. The num-
ber of wavelengths in that distance vt is the number of wavelengths intercepted
by D in time t, and that number is vt/l. The rate at which D intercepts wave-
lengths, which is the frequency f detected by D, is

(17-48)

In this situation, with D stationary, there is no Doppler effect—the frequency
detected by D is the frequency emitted by S.

Now let us again consider the situation in which D moves in the direction
opposite the wavefront velocity (Fig. 17-21). In time t, the wavefronts move to
the right a distance vt as previously, but now D moves to the left a distance vDt.
Thus, in this time t, the distance moved by the wavefronts relative to D is vt �
vDt. The number of wavelengths in this relative distance vt � vDt is the number
of wavelengths intercepted by D in time t and is (vt � vDt)/l. The rate at which
D intercepts wavelengths in this situation is the frequency f 
, given by

. (17-49)

From Eq. 17-48, we have l � v/f.Then Eq. 17-49 becomes

. (17-50)

Note that in Eq. 17-50, f 
 > f unless vD � 0 (the detector is stationary).
Similarly, we can find the frequency detected by D if D moves away from

the source. In this situation, the wavefronts move a distance vt � vDt relative to
D in time t, and f 
 is given by

. (17-51)

In Eq. 17-51, f 
 < f unless vD � 0.We can summarize Eqs. 17-50 and 17-51 with

(detector moving, source stationary). (17-52)f 
 � f
v � vD

v

f 
 � f
v � vD

v

f 
 �
v � vD

v/f
� f

v � vD

v

f 
 �
(vt � vDt)/�

t
�

v � vD

�

f �
vt/l

t
�

v
l

.

Figure 17-19 A stationary source of
sound S emits spherical wavefronts,
shown one wavelength apart, that
expand outward at speed v. A sound
detector D, represented by an ear,
moves with velocity toward the
source. The detector senses a higher
frequency because of its motion.

v:D

λ vS = 0 

S
x

Dλ 

vD

vv

Shift up: The detector
moves toward the source.

Figure 17-20 The wavefronts of Fig. 17-19,
assumed planar, (a) reach and (b) pass 
a stationary detector D; they move a
distance vt to the right in time t.
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λ 

Figure 17-21 Wavefronts traveling to the
right (a) reach and (b) pass detector D,
which moves in the opposite direction. In
time t, the wavefronts move a distance vt
to the right and D moves a distance vDt to
the left.

v

v
vt

(a)

(b)
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Source Moving, Detector Stationary
Let detector D be stationary with respect to the body of air, and let source S
move toward D at speed vS (Fig. 17-22). The motion of S changes the wavelength
of the sound waves it emits and thus the frequency detected by D.

To see this change, let T (� 1/f ) be the time between the emission of any
pair of successive wavefronts W1 and W2. During T, wavefront W1 moves a dis-
tance vT and the source moves a distance vST. At the end of T, wavefront W2 is
emitted. In the direction in which S moves, the distance between W1 and W2, which
is the wavelength l
 of the waves moving in that direction, is vT � vST. If D detects
those waves, it detects frequency f 
 given by

. (17-53)

Note that f 
 must be greater than f unless vS � 0.
In the direction opposite that taken by S, the wavelength l
 of the waves is

again the distance between successive waves but now that distance is vT � vST. If
D detects those waves, it detects frequency f 
 given by

. (17-54)

Now f 
 must be less than f unless vS � 0.
We can summarize Eqs. 17-53 and 17-54 with

(source moving, detector stationary). (17-55)

General Doppler Effect Equation
We can now derive the general Doppler effect equation by replacing f in
Eq. 17-55 (the source frequency) with f 
 of Eq. 17-52 (the frequency associated
with motion of the detector). That simple replacement gives us Eq. 17-47 for the
general Doppler effect. That general equation holds not only when both detector
and source are moving but also in the two specific situations we just discussed.
For the situation in which the detector is moving and the source is stationary, sub-
stitution of vS � 0 into Eq. 17-47 gives us Eq. 17-52, which we previously found.
For the situation in which the source is moving and the detector is stationary,
substitution of vD � 0 into Eq. 17-47 gives us Eq. 17-55, which we previously
found.Thus, Eq. 17-47 is the equation to remember.

f 
 � f
v

v � vS

f 
 � f
v

v � vS

� f
v

v � vS

f 
 �
v
�


�
v

vT � vST
�

v
v/f � vS /f

Figure 17-22 A detector D is stationary,
and a source S is moving toward it at
speed vS. Wavefront W1 was emitted
when the source was at S1, wavefront
W7 when it was at S7. At the moment
depicted, the source is at S. The
detector senses a higher frequency
because the moving source, chasing
its own wavefronts, emits a reduced
wavelength l
 in the direction of its
motion.

W1

x
λ   ' SS7S1

vS
W7

W2

vD = 0 

D

Shift up: The source moves
toward the detector.
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numerator, we choose the minus sign to meet that tendency
(the numerator becomes smaller). These reasoning steps
are shown in Table 17 -3.

We have the speed of the bat in the denominator of
Eq. 17-56. The bat moves toward the moth, which tends to
increase the detected frequency. Because the speed is in the
denominator, we choose the minus sign to meet that ten-
dency (the denominator becomes smaller).

With these substitutions and decisions, we have

(Answer)

Detection of echo by bat: In the echo back to the bat, the
moth acts as a source of sound, emitting at the frequency fmd

we just calculated. So now the moth is the source (moving
away) and the bat is the detector (moving toward). The rea-
soning steps are shown in Table 17 -3. To find the frequency
fbd detected by the bat, we write Eq. 17-56 as

(Answer)

Some moths evade bats by  “jamming” the detection system
with ultrasonic clicks.

� 83.00 kHz � 83.0 kHz.

� (82.767 kHz) 
343 m/s � 9.00 m/s
343 m/s � 8.00 m/s

fbd � fmd
v � vb

v � vm

� 82.767 kHz � 82.8 kHz.

� (82.52 kHz) 
343 m/s � 8.00 m/s
343 m/s � 9.00 m/s

fmd � fbe
v � vm

v � vb

Sample Problem 17.07 Double Doppler shift in the echoes used by bats

Bats navigate and search out prey by emitting, and then de-
tecting reflections of, ultrasonic waves, which are sound
waves with frequencies greater than can be heard by a hu-
man. Suppose a bat emits ultrasound at frequency fbe � 82.52
kHz while flying with velocity as it chases a
moth that flies with velocity . What fre-
quency fmd does the moth detect? What frequency fbd does the
bat detect in the returning echo from the moth?

KEY IDEAS

The frequency is shifted by the relative motion of the bat and
moth. Because they move along a single axis, the shifted fre-
quency is given by Eq. 17-47. Motion toward tends to shift the
frequency up, and motion away tends to shift it down.

Detection by moth: The general Doppler equation is

(17-56)

Here, the detected frequency f
 that we want to find is the fre-
quency fmd detected by the moth. On the right side, the emitted
frequency f is the bat’s emission frequency fbe � 82.52 kHz, the
speed of sound is v � 343 m/s, the speed vD of the detector is
the moth’s speed vm � 8.00 m/s, and the speed vS of the
source is the bat’s speed vb � 9.00 m/s.

The decisions about the plus and minus signs can be
tricky. Think in terms of toward and away. We have the
speed of the moth (the detector) in the numerator of
Eq. 17 -56. The moth moves away from the bat, which tends
to lower the detected frequency. Because the speed is in the

f 
 � f
v � vD

v � vS
.

v:m � (8.00 m/s)î
v:b � (9.00 m/s)î

Additional examples, video, and practice available at WileyPLUS

Table 17-3

Bat to Moth

Detector Source

moth bat
speed vD � vm speed vS � vb

away toward
shift down shift up
numerator denominator

minus minus

Echo Back to Bat

Detector Source

bat moth
speed vD � vb speed vS � vm

toward away
shift up shift down

numerator denominator
plus plus

Checkpoint 4
The figure indicates the directions of motion of a sound source and a detector for
six situations in stationary air. For each situation, is the detected frequency greater
than or less than the emitted frequency, or can’t we tell without more information
about the actual speeds?

Source Detector Source Detector

(a) 99: • 0 speed (d ) ;99 ;99

(b) ;99 • 0 speed (e) 99: ;99

(c) 99: 99: (f ) ;99 99:
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Supersonic Speeds, Shock Waves
If a source is moving toward a stationary detector at a speed vS equal to
the speed of sound v, Eqs. 17-47 and 17-55 predict that the detected fre-
quency f 
 will be infinitely great. This means that the source is moving so
fast that it keeps pace with its own spherical wavefronts (Fig. 17-23a).
What happens when vS > v? For such supersonic speeds, Eqs. 17-47 and
17-55 no longer apply. Figure 17-23b depicts the spherical wavefronts that
originated at various positions of the source. The radius of any wavefront
is vt, where t is the time that has elapsed since the source emitted that
wavefront. Note that all the wavefronts bunch along a V-shaped envelope
in this two-dimensional drawing. The wavefronts actually extend in
three dimensions, and the bunching actually forms a cone called the Mach
cone. A shock wave exists along the surface of this cone, because the
bunching of wavefronts causes an abrupt rise and fall of air pressure as
the surface passes through any point. From Fig. 17-23b, we see that the
half-angle u of the cone (the Mach cone angle) is given by

(Mach cone angle). (17-57)

The ratio vS/v is the Mach number. If a plane flies at Mach 2.3, its
speed is 2.3 times the speed of sound in the air through which the plane
is flying. The shock wave generated by a supersonic aircraft (Fig. 17-24)

sin � �
vt
vSt

�
v
vS

17-8 SUPERSONIC SPEEDS, SHOCK WAVES

After reading this module, you should be able to . . .

17.35 Sketch the bunching of wavefronts for a sound source
traveling at the speed of sound or faster.

17.36 Calculate the Mach number for a sound source
exceeding the speed of sound.

17.37 For a sound source exceeding the speed of 
sound, apply the relationship between the Mach 
cone angle, the speed of sound, and the speed of the
source.

Learning Objectives

● If the speed of a source relative to the medium exceeds the speed of sound in the medium, the Doppler equation no longer
applies. In such a case, shock waves result. The half-angle u of the Mach cone is given by

(Mach cone angle).sin � �
v
vS

Key Idea

Figure 17-24 Shock waves produced by the wings of a Navy FA
18 jet.The shock waves are visible because the sudden decrease
in air pressure in them caused water molecules in the air to con-
dense, forming a fog.

U.S. Navy photo by Ensign John Gay

Figure 17-23 (a) A source of sound S moves at speed
vS equal to the speed of sound and thus as fast as the
wavefronts it generates. (b) A source S moves at
speed vS faster than the speed of sound and thus
faster than the wavefronts. When the source was at
position S1 it generated wavefront W1, and at posi-
tion S6 it generated W6. All the spherical wavefronts
expand at the speed of sound v and bunch along the
surface of a cone called the Mach cone, forming a
shock wave. The surface of the cone has half-angle u
and is tangent to all the wavefronts.

Surface of
Mach cone

W6

W1

x

(b)

SS6S1

θ vS

vSt

vt

x
vS

(a)

S
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or projectile produces a burst of sound, called a sonic boom, in which the air pres-
sure first suddenly increases and then suddenly decreases below normal before re-
turning to normal. Part of the sound that is heard when a rifle is fired is the sonic
boom produced by the bullet. When a long bull whip is snapped, its tip is moving
faster than sound and produces a small sonic boom—the crack of the whip.

Sound Waves Sound waves are longitudinal mechanical waves
that can travel through solids, liquids, or gases. The speed v of a
sound wave in a medium having bulk modulus B and density r is

(speed of sound). (17-3)

In air at 20�C, the speed of sound is 343 m/s.
A sound wave causes a longitudinal displacement s of a mass

element in a medium as given by

s � sm cos(kx � vt), (17-12)

where sm is the displacement amplitude (maximum displacement)
from equilibrium, k � 2p/l, and v � 2pf, l and f being the wave-
length and frequency of the sound wave. The wave also causes a
pressure change �p from the equilibrium pressure:

�p � �pm sin(kx � vt), (17-13)

where the pressure amplitude is

�pm � (vrv)sm. (17-14)

Interference The interference of two sound waves with identi-
cal wavelengths passing through a common point depends on their
phase difference f there. If the sound waves were emitted in phase
and are traveling in approximately the same direction, f is given by

(17-21)

where �L is their path length difference (the difference in the
distances traveled by the waves to reach the common point). Fully
constructive interference occurs when f is an integer multiple of 2p,

f � m(2p), for m � 0, 1, 2, . . . , (17-22)

and, equivalently, when �L is related to wavelength l by

� 0, 1, 2, . . . . (17-23)

Fully destructive interference occurs when f is an odd multiple of p,

f � (2m � 1)p, for m � 0, 1, 2, . . . , (17-24)

and, equivalently, when �L is related to l by

� 0.5, 1.5, 2.5, . . . . (17-25)

Sound Intensity The intensity I of a sound wave at a surface is
the average rate per unit area at which energy is transferred by the
wave through or onto the surface:

, (17-26)

where P is the time rate of energy transfer (power) of the sound wave

I �
P
A

�L
l

�L
l

f �
�L
l

 2p,

v � A
B
�

Review & Summary

and A is the area of the surface intercepting the sound.The intensity I
is related to the displacement amplitude sm of the sound wave by

(17-27)

The intensity at a distance r from a point source that emits sound
waves of power Ps is

. (17-28)

Sound Level in Decibels The sound level b in decibels (dB)
is defined as

, (17-29)

where I0 (� 10�12 W/m2) is a reference intensity level to which all
intensities are compared. For every factor-of-10 increase in inten-
sity, 10 dB is added to the sound level.

Standing Wave Patterns in Pipes Standing sound wave
patterns can be set up in pipes. A pipe open at both ends will
resonate at frequencies

, n � 1, 2, 3, . . . , (17-39)

where v is the speed of sound in the air in the pipe. For a pipe
closed at one end and open at the other, the resonant fre-
quencies are

, n � 1, 3, 5, . . . . (17-41)

Beats Beats arise when two waves having slightly different fre-
quencies, f1 and f2, are detected together.The beat frequency is

fbeat � f 1 � f 2. (17-46)

The Doppler Effect The Doppler effect is a change in the
observed frequency of a wave when the source or the detec-
tor moves relative to the transmitting medium (such as air).
For sound the observed frequency f 
 is given in terms of the source
frequency f by

(general Doppler effect), (17-47)

where vD is the speed of the detector relative to the medium, vS is
that of the source, and v is the speed of sound in the medium. The
signs are chosen such that f 
 tends to be greater for motion toward
and less for motion away.

Shock Wave If the speed of a source relative to the medium
exceeds the speed of sound in the medium, the Doppler equation
no longer applies. In such a case, shock waves result.The half-angle
u of the Mach cone is given by

(Mach cone angle). (17-57)sin u �
v
vS

f 
 � f
v � vD

v � vS

f �
v
�

�
nv
4L

f �
v
�

�
nv
2L

b � (10 dB) log 
I
I0

I �
Ps

4pr2

I � 1
2�vv2s2

m.
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6 Pipe A has length L and one open end. Pipe B has length 2L
and two open ends. Which harmonics of pipe B have a frequency
that matches a resonant frequency of pipe A?

7 Figure 17-28 shows a moving sound source S that emits at a certain
frequency, and four stationary sound detectors. Rank the detectors
according to the frequency of the sound they detect from the
source, greatest first.

1 In a first experiment, a sinusoidal sound wave is sent through
a long tube of air, transporting energy at the average rate of Pavg,1.
In a second experiment, two other sound waves, identical to the
first one, are to be sent simultaneously through the tube with a
phase difference f of either 0, 0.2 wavelength, or 0.5 wavelength
between the waves. (a) With only mental calculation, rank those
choices of f according to the average rate at which the waves will
transport energy, greatest first. (b) For the first choice of f, what is
the average rate in terms of Pavg,1?

2 In Fig. 17-25, two point sources
S1 and S2, which are in phase, emit
identical sound waves of wave-
length 2.0 m. In terms of wave-
lengths, what is the phase differ-
ence between the waves arriving at
point P if (a) L1 � 38 m and L2 � 34 m, and (b) L1 � 39 m and
L2 � 36 m? (c) Assuming that the source separation is much
smaller than L1 and L2, what type of interference occurs at P in
situations (a) and (b)?

3 In Fig. 17-26, three long tubes
(A, B, and C) are filled with differ-
ent gases under different pressures.
The ratio of the bulk modulus to the
density is indicated for each gas in
terms of a basic value B0/r0. Each
tube has a piston at its left end
that can send a sound pulse
through the tube (as in Fig. 16-2).
The three pulses are sent simulta-
neously. Rank the tubes according
to the time of arrival of the pulses
at the open right ends of the tubes,
earliest first.

4 The sixth harmonic is set up in a
pipe. (a) How many open ends does the pipe have (it has at least
one)? (b) Is there a node, antinode, or some intermediate state at the
midpoint?

5 In Fig. 17-27, pipe A is made to oscillate in its third harmonic
by a small internal sound source. Sound emitted at the right end
happens to resonate four nearby pipes, each with only one open
end (they are not drawn to scale). Pipe B oscillates in its lowest
harmonic, pipe C in its second lowest harmonic, pipe D in its
third lowest harmonic, and pipe E in its fourth lowest harmonic.
Without computation, rank all five pipes according to their
length, greatest first. (Hint: Draw the standing waves to scale and
then draw the pipes to scale.)

Questions

Figure 17-25 Question 2.

S1

S2

L1

L2

P

16B0/ 0ρ 

4B0/ 0ρ 

B0/ 0ρ 

A

B

C

L

L

L
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Figure 17-26 Question 3.

A

E

D

C

B

Figure 17-27 Question 5.

Figure 17-29 Question 8.

t

f

3

21

3

2 1 

4

S

Figure 17-28 Question 7.

9 For a particular tube, here are four of the six harmonic
frequencies below 1000 Hz: 300, 600, 750, and 900 Hz. What two
frequencies are missing from the list?

10 Figure 17-30 shows a stretched string of length L and pipes a,
b, c, and d of lengths L, 2L, L/2, and L/2, respectively. The string’s
tension is adjusted until the speed of waves on the string equals the
speed of sound waves in the air. The fundamental mode of oscilla-
tion is then set up on the string. In which pipe will the sound pro-
duced by the string cause resonance, and what oscillation mode will
that sound set up?

L

b

dca

Figure 17-30 Question 10.

8 A friend rides, in turn, the rims of three fast merry-go-rounds
while holding a sound source that emits isotropically at a certain
frequency. You stand far from each merry-go-round. The frequency
you hear for each of your friend’s three rides varies as the merry-go-
round rotates. The variations in frequency for the three rides are
given by the three curves in Fig. 17-29. Rank the curves according to
(a) the linear speed v of the sound source, (b) the angular speeds v of
the merry-go-rounds, and (c) the radii r of the merry-go-rounds,
greatest first.

11 You are given four tuning forks. The fork with the lowest fre-
quency oscillates at 500 Hz. By striking two tuning forks at a time,
you can produce the following beat frequencies, 1, 2, 3, 5, 7, and 8
Hz. What are the possible frequencies of the other three forks?
(There are two sets of answers.)
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Rather, they change the value of dV/dp—that is, the differential
change in volume due to the differential change in the pressure
caused by the sound wave in the water. If fs /fi � 0.333, what is the
ratio (dV/dp)s/(dV/dp)i?

Module 17-2 Traveling Sound Waves
•9 If the form of a sound wave traveling through air is

s(x, t) � (6.0 nm) cos(kx � (3000 rad/s)t � f),

how much time does any given air molecule along the path take to
move between displacements s � �2.0 nm and s � �2.0 nm?

•10 Underwater illusion. One
clue used by your brain to determine
the direction of a source of sound is
the time delay �t between the arrival
of the sound at the ear closer to the
source and the arrival at the farther
ear.Assume that the source is distant
so that a wavefront from it is approx-
imately planar when it reaches you,
and let D represent the separation
between your ears. (a) If the source is located at angle u in front of
you (Fig. 17-31), what is in terms of D and the speed of sound v
in air? (b) If you are submerged in water and the sound source is di-
rectly to your right, what is �t in terms of D and the speed of sound
vw in water? (c) Based on the time-delay clue, your brain interprets
the submerged sound to arrive at an angle u from the forward direc-
tion. Evaluate u for fresh water at 20�C.

•11 Diagnostic ultrasound of frequency 4.50 MHz is used to
examine tumors in soft tissue. (a) What is the wavelength in air of
such a sound wave? (b) If the speed of sound in tissue is 1500 m/s,
what is the wavelength of this wave in tissue?

•12 The pressure in a traveling sound wave is given by the
equation

�p � (1.50 Pa) sin p[(0.900 m�1) x � (315 s�1)t].

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, and
(d) speed of the wave.

••13 A sound wave of the form s � sm cos(kx � vt � f) travels at
343 m/s through air in a long horizontal tube. At one instant, air
molecule A at x � 2.000 m is at
its maximum positive displace-
ment of 6.00 nm and air mole-
cule B at x � 2.070 m is at a pos-
itive displacement of 2.00 nm.
All the molecules between A
and B are at intermediate dis-
placements. What is the fre-
quency of the wave?

••14 Figure 17-32 shows the
output from a pressure monitor
mounted at a point along the

SSM

�t

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Where needed in the problems, use

speed of sound in air � 343 m/s

and density of air � 1.21 kg/m3

unless otherwise specified.

Module 17-1 Speed of Sound
•1 Two spectators at a soccer game see, and a moment later hear,
the ball being kicked on the playing field. The time delay for spec-
tator A is 0.23 s, and for spectator B it is 0.12 s. Sight lines from the
two spectators to the player kicking the ball meet at an angle of
90�. How far are (a) spectator A and (b) spectator B from the
player? (c) How far are the spectators from each other?

•2 What is the bulk modulus of oxygen if 32.0 g of oxygen occupies
22.4 L and the speed of sound in the oxygen is 317 m/s?

•3 When the door of the Chapel of the Mausoleum in
Hamilton, Scotland, is slammed shut, the last echo heard by some-
one standing just inside the door reportedly comes 15 s later. (a) If
that echo were due to a single reflection off a wall opposite the
door, how far from the door is the wall? (b) If, instead, the wall is
25.7 m away, how many reflections (back and forth) occur?

•4 A column of soldiers, marching at 120 paces per minute, keep
in step with the beat of a drummer at the head of the column. The
soldiers in the rear end of the column are striding forward with the
left foot when the drummer is advancing with the right foot.What is
the approximate length of the column?

••5 Earthquakes generate sound waves inside Earth.
Unlike a gas, Earth can experience both transverse (S) and longitu-
dinal (P) sound waves. Typically, the speed of S waves is about 
4.5 km/s, and that of P waves 8.0 km/s. A seismograph records 
P and S waves from an earthquake.The first P waves arrive 3.0 min
before the first S waves. If the waves travel in a straight line, how
far away did the earthquake occur?

••6 A man strikes one end of a thin rod with a hammer.
The speed of sound in the rod is 15 times the speed of sound in air.
A woman, at the other end with her ear close to the rod, hears the
sound of the blow twice with a 0.12 s interval between; one sound
comes through the rod and the other comes through the air along-
side the rod. If the speed of sound in air is 343 m/s, what is the
length of the rod?

••7 A stone is dropped into a well. The splash is
heard 3.00 s later.What is the depth of the well?

••8 Hot chocolate effect. Tap a metal spoon inside a
mug of water and note the frequency fi you hear. Then add a
spoonful of powder (say, chocolate mix or instant coffee) and tap
again as you stir the powder. The frequency you hear has a lower
value fs because the tiny air bubbles released by the powder
change the water’s bulk modulus. As the bubbles reach the water
surface and disappear, the frequency gradually shifts back to its
initial value. During the effect, the bubbles don’t appreciably
change the water’s density or volume or the sound’s wavelength.

WWWSSM

ILWSSM

Figure 17-31 Problem 10.
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Figure 17-32 Problem 14.
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separated by distance d1 � 2.00 m are
in phase. Assume the amplitudes of
the sound waves from the speakers
are approximately the same at the lis-
tener’s ear at distance d2 3.75 m di-
rectly in front of one speaker.
Consider the full audible range for
normal hearing, 20 Hz to 20 kHz. (a)
What is the lowest frequency fmin,1

that gives minimum signal (destructive interference) at the lis-
tener’s ear? By what number must fmin,1 be multiplied to get (b)
the second lowest frequency fmin,2 that gives minimum signal and
(c) the third lowest frequency fmin,3 that gives minimum signal?
(d) What is the lowest frequency fmax,1 that gives maximum signal
(constructive interference) at the listener’s ear? By what number
must fmax,1 be multiplied to get (e) the second lowest frequency
fmax,2 that gives maximum signal and (f) the third lowest fre-
quency fmax,3 that gives maximum signal?

••22 In Fig. 17-38, sound with a
40.0 cm wavelength travels right-
ward from a source and through a
tube that consists of a straight por-
tion and a half-circle. Part of the
sound wave travels through the half-
circle and then rejoins the rest of the
wave, which goes directly through
the straight portion. This rejoining
results in interference. What is the
smallest radius r that results in an in-
tensity minimum at the detector?

•••23 Figure 17-39 shows two
point sources S1 and S2 that emit
sound of wavelength l � 2.00 m.
The emissions are isotropic and in
phase, and the separation between

�
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path taken by a sound wave of a single frequency traveling at 343
m/s through air with a uniform density of 1.21 kg/m3. The vertical
axis scale is set by �ps � 4.0 mPa. If the displacement function of the
wave is s(x, t) � sm cos(kx � vt), what are (a) sm, (b) k, and (c) v?
The air is then cooled so that its density is 1.35 kg/m3 and the speed
of a sound wave through it is 320 m/s.The sound source again emits
the sound wave at the same frequency and same pressure ampli-
tude.What now are (d) sm, (e) k, and (f) v?

••15 A handclap on stage in an amphitheater sends out

ql.What are the (a) smallest and (b) second smallest values of q that
put A and B exactly out of phase with each other after the
reflections?

••19 Figure 17-35 shows two

Figure 17-33 Problem 15.

w

Terrace

isotropic point sources of sound, S1

and S2. The sources emit waves in
phase at wavelength 0.50 m; they are
separated by D � 1.75 m. If we move a sound detector along a large
circle centered at the midpoint between the sources, at how many
points do waves arrive at the detector (a) exactly in phase and (b) ex-
actly out of phase?

••20 Figure 17-36 shows four isotropic point sources of sound
that are uniformly spaced on an x axis. The sources emit sound at
the same wavelength l and same amplitude sm, and they emit in
phase. A point P is shown on the x axis. Assume that as the sound
waves travel to P, the decrease in their amplitude is negligible.
What multiple of sm is the amplitude of the net wave at P if dis-
tance d in the figure is (a) l/4, (b) l/2, and (c) l?

••21 In Fig. 17-37, two speakersSSM

sound waves that scatter from terraces of width w � 0.75 m
(Fig. 17-33). The sound returns to the stage as a periodic
series of pulses, one from each terrace; the parade of pulses
sounds like a played note. (a) Assuming that all the rays in
Fig. 17-33 are horizontal, find the frequency at which the pulses
return (that is, the frequency of the perceived note). (b) If the
width w of the terraces were smaller, would the frequency be
higher or lower?

Module 17-3 Interference
•16 Two sound waves, from two different sources with the same
frequency, 540 Hz, travel in the same direction at 330 m/s. The
sources are in phase. What is the phase difference of the waves at
a point that is 4.40 m from one source and 4.00 m from the
other?

••17 Two loud speakers are located 3.35 m apart on an
outdoor stage. A listener is 18.3 m from one and 19.5 m from the
other. During the sound check, a signal generator drives the two
speakers in phase with the same amplitude and frequency.
The transmitted frequency is swept through the audible range
(20 Hz to 20 kHz). (a) What is the lowest frequency fmin,1 that gives
minimum signal (destructive interference) at the listener’s loca-
tion? By what number must fmin,1 be multiplied to get (b) the sec-
ond lowest frequency fmin,2 that gives minimum signal and (c) the
third lowest frequency fmin,3 that gives minimum signal? (d) What is
the lowest frequency fmax,1 that gives maximum signal (constructive
interference) at the listener’s location? By what number must fmax,1

be multiplied to get (e) the second lowest frequency fmax,2 that
gives maximum signal and (f) the third lowest frequency fmax,3 that
gives maximum signal?

••18 In Fig. 17-34, sound waves A
and B, both of wavelength l, are ini-
tially in phase and traveling right-
ward, as indicated by the two rays.
Wave A is reflected from four sur-
faces but ends up traveling in its orig-
inal direction.Wave B ends in that di-
rection after reflecting from two
surfaces. Let distance L in the figure
be expressed as a multiple q of l: L �
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••34 Two atmospheric sound sources A and B emit isotropi-
cally at constant power. The sound levels b of their emissions are
plotted in Fig. 17-40 versus the radial distance r from the sources.
The vertical axis scale is set by b1 � 85.0 dB and b2 � 65.0 dB.
What are (a) the ratio of the larger power to the smaller power and
(b) the sound level difference at r � 10 m? 

intensity of the waves 2.50 m from the source is 1.91 � 10�4 W/m2.
Assuming that the energy of the waves is conserved, find the
power of the source.

•30 The source of a sound wave has a power of 1.00 mW. If it is a
point source, (a) what is the intensity 3.00 m away and (b) what is
the sound level in decibels at that distance?

•31 When you “crack” a knuckle, you suddenly widen
the knuckle cavity, allowing more volume for the synovial fluid in-
side it and causing a gas bubble suddenly to appear in the fluid.The
sudden production of the bubble, called “cavitation,” produces a
sound pulse—the cracking sound. Assume that the sound is trans-
mitted uniformly in all directions and that it fully passes from the
knuckle interior to the outside. If the pulse has a sound level of
62 dB at your ear, estimate the rate at which energy is produced by
the cavitation.

•32 Approximately a third of people with normal hearing
have ears that continuously emit a low-intensity sound outward
through the ear canal. A person with such spontaneous otoacoustic
emission is rarely aware of the sound, except perhaps in a noise-
free environment, but occasionally the emission is loud enough to
be heard by someone else nearby. In one observation, the sound
wave had a frequency of 1665 Hz and a pressure amplitude of
1.13 � 10�3 Pa. What were (a) the displacement amplitude and
(b) the intensity of the wave emitted by the ear?

•33 Male Rana catesbeiana bullfrogs are known for their
loud mating call. The call is emitted not by the frog’s mouth but by
its eardrums, which lie on the surface of the head. And, surpris-
ingly, the sound has nothing to do with the frog’s inflated throat. If
the emitted sound has a frequency of 260 Hz and a sound level of
85 dB (near the eardrum), what is the amplitude of the eardrum’s
oscillation? The air density is 1.21 kg/m3.

the sources is d � 16.0 m. At any point P on the x axis, the wave
from S1 and the wave from S2 interfere. When P is very far away
(x � �), what are (a) the phase difference between the arriving
waves from S1 and S2 and (b) the type of interference they pro-
duce? Now move point P along the x axis toward S1. (c) Does the
phase difference between the waves increase or decrease? At
what distance x do the waves have a phase difference of (d)
0.50l, (e) 1.00l, and (f ) 1.50l?

Module 17-4 Intensity and Sound Level
•24 Suppose that the sound level of a conversation is initially at
an angry 70 dB and then drops to a soothing 50 dB. Assuming that
the frequency of the sound is 500 Hz, determine the (a) initial and
(b) final sound intensities and the (c) initial and (d) final sound
wave amplitudes.

•25 A sound wave of frequency 300 Hz has an intensity of 
1.00 mW/m2.What is the amplitude of the air oscillations caused by
this wave?

•26 A 1.0 W point source emits sound waves isotropically.
Assuming that the energy of the waves is conserved, find the inten-
sity (a) 1.0 m from the source and (b) 2.5 m from the source.

•27 A certain sound source is increased in sound
level by 30.0 dB. By what multiple is (a) its intensity increased and
(b) its pressure amplitude increased?

•28 Two sounds differ in sound level by 1.00 dB. What is the ratio
of the greater intensity to the smaller intensity?

•29 A point source emits sound waves isotropically. TheSSM
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Figure 17-40 Problem 34.

••35 A point source emits 30.0 W of sound isotropically. A small
microphone intercepts the sound in an area of 0.750 cm2, 200 m
from the source. Calculate (a) the sound intensity there and (b) the
power intercepted by the microphone.

••36 Party hearing. As the number of people at a party in-
creases, you must raise your voice for a listener to hear you against
the background noise of the other partygoers. However, once you
reach the level of yelling, the only way you can be heard is if you
move closer to your listener, into the listener’s “personal space.”
Model the situation by replacing you with an isotropic point source
of fixed power P and replacing your listener with a point that ab-
sorbs part of your sound waves.These points are initially separated
by ri � 1.20 m. If the background noise increases by �b � 5 dB, the
sound level at your listener must also increase. What separation rf

is then required?

•••37 A sound source sends a sinusoidal sound wave of angular
frequency 3000 rad/s and amplitude 12.0 nm through a tube of air.
The internal radius of the tube is 2.00 cm. (a) What is the average
rate at which energy (the sum of the kinetic and potential energies)
is transported to the opposite end of the tube? (b) If, simultane-
ously, an identical wave travels along an adjacent, identical tube,
what is the total average rate at which energy is transported to the
opposite ends of the two tubes by the waves? If, instead, those two
waves are sent along the same tube simultaneously, what is the to-
tal average rate at which they transport energy when their phase
difference is (c) 0, (d) 0.40p rad, and (e) p rad?

Module 17-5 Sources of Musical Sound
•38 The water level in a vertical glass tube 1.00 m long can be ad-
justed to any position in the tube.A tuning fork vibrating at 686 Hz
is held just over the open top end of the tube, to set up a standing
wave of sound in the air-filled top portion of the tube. (That air-
filled top portion acts as a tube with one end closed and the other
end open.) (a) For how many different positions of the water level
will sound from the fork set up resonance in the tube’s air-filled
portion?  What are the (b) least and (c) second least water heights
in the tube for resonance to occur?

•39 (a) Find the speed of waves on a violin string of
mass 800 mg and length 22.0 cm if the fundamental frequency is
920 Hz. (b) What is the tension in the string? For the fundamental,
what is the wavelength of (c) the waves on the string and (d) the
sound waves emitted by the string?
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•40 Organ pipe A, with both ends open, has a fundamental 
frequency of 300 Hz. The third harmonic of organ pipe B, with 
one end open, has the same frequency as the second harmonic of
pipe A. How long are (a) pipe A and (b) pipe B?

•41 A violin string 15.0 cm long and fixed at both ends oscillates
in its n � 1 mode. The speed of waves on the string is 250 m/s, and
the speed of sound in air is 348 m/s.What are the (a) frequency and
(b) wavelength of the emitted sound wave?

•42 A sound wave in a fluid medium is reflected at a barrier so
that a standing wave is formed. The distance between nodes is 
3.8 cm, and the speed of propagation is 1500 m/s. Find the fre-
quency of the sound wave.

•43 In Fig. 17-41, S is a small loudspeaker
driven by an audio oscillator with a frequency that
is varied from 1000 Hz to 2000 Hz, and D is a cylin-
drical pipe with two open ends and a length of
45.7 cm. The speed of sound in the air-filled pipe is
344 m/s. (a) At how many frequencies does the
sound from the loudspeaker set up resonance in
the pipe? What are the (b) lowest and (c) second
lowest frequencies at which resonance occurs?

•44 The crest of a Parasaurolophus dinosaur skull is shaped
somewhat like a trombone and contains a nasal passage in the
form of a long, bent tube open at both ends. The dinosaur may
have used the passage to produce sound by setting up the funda-
mental mode in it. (a) If the nasal passage in a certain
Parasaurolophus fossil is 2.0 m long, what frequency would have
been produced? (b) If that dinosaur could be recreated (as in
Jurassic Park), would a person with a hearing range of 60 Hz to
20 kHz be able to hear that fundamental mode and, if so, would the
sound be high or low frequency? Fossil skulls that contain shorter
nasal passages are thought to be those of the female
Parasaurolophus. (c) Would that make the female’s fundamental
frequency higher or lower than the male’s?

•45 In pipe A, the ratio of a particular harmonic frequency to the
next lower harmonic frequency is 1.2. In pipe B, the ratio of a par-
ticular harmonic frequency to the next lower harmonic frequency
is 1.4. How many open ends are in (a) pipe A and (b) pipe B?

••46 Pipe A, which is 1.20 m long and open at both ends,
oscillates at its third lowest harmonic frequency. It is filled with air
for which the speed of sound is 343 m/s. Pipe B, which is closed at
one end, oscillates at its second lowest harmonic frequency. This
frequency of B happens to match the frequency of A. An x axis ex-
tends along the interior of B, with x � 0 at the closed end. (a) How
many nodes are along that axis? What are the (b) smallest and
(c) second smallest value of x locating those nodes? (d) What is the
fundamental frequency of B?

••47 A well with vertical sides and water at the bottom resonates
at 7.00 Hz and at no lower frequency. The air-filled portion of the
well acts as a tube with one closed end (at the bottom) and one
open end (at the top).The air in the well has a density of 1.10 kg/m3

and a bulk modulus of 1.33 � 105 Pa. How far down in the well is
the water surface?

••48 One of the harmonic frequencies of tube A with two open
ends is 325 Hz. The next-highest harmonic frequency is 390 Hz.
(a) What harmonic frequency is next highest after the harmonic 
frequency 195 Hz? (b) What is the number of this next-highest 
harmonic? One of the harmonic frequencies of tube B with only

SSM

one open end is 1080 Hz. The next-highest harmonic frequency is
1320 Hz. (c) What harmonic frequency is next highest after the
harmonic frequency 600 Hz? (d) What is the number of this next-
highest harmonic?

••49 A violin string 30.0 cm long with linear density
0.650 g/m is placed near a loudspeaker that is fed by an audio oscil-
lator of variable frequency. It is found that the string is set into os-
cillation only at the frequencies 880 and 1320 Hz as the frequency
of the oscillator is varied over the range 500–1500 Hz. What is the
tension in the string?

••50 A tube 1.20 m long is closed at one end. A stretched wire
is placed near the open end. The wire is 0.330 m long and has a
mass of 9.60 g. It is fixed at both ends and oscillates in its funda-
mental mode. By resonance, it sets the air column in the tube into
oscillation at that column’s fundamental frequency. Find (a) that
frequency and (b) the tension in the wire.

Module 17-6 Beats
•51 The A string of a violin is a little too tightly stretched. Beats
at 4.00 per second are heard when the string is sounded together
with a tuning fork that is oscillating accurately at concert A
(440 Hz).What is the period of the violin string oscillation?

•52 A tuning fork of unknown frequency makes 3.00 beats per
second with a standard fork of frequency 384 Hz. The beat fre-
quency decreases when a small piece of wax is put on a prong of
the first fork.What is the frequency of this fork?

••53 Two identical piano wires have a fundamental
frequency of 600 Hz when kept under the same tension.What frac-
tional increase in the tension of one wire will lead to the occur-
rence of 6.0 beats/s when both wires oscillate simultaneously?

••54 You have five tuning forks that oscillate at close but differ-
ent resonant frequencies. What are the (a) maximum and (b) mini-
mum number of different beat frequencies you can produce by
sounding the forks two at a time, depending on how the resonant
frequencies differ?

Module 17-7 The Doppler Effect
•55 A whistle of frequency 540 Hz moves in a circle of radius
60.0 cm at an angular speed of 15.0 rad/s. What are the (a) lowest
and (b) highest frequencies heard by a listener a long distance
away, at rest with respect to the center of the circle?

•56 An ambulance with a siren emitting a whine at 1600 Hz over-
takes and passes a cyclist pedaling a bike at 2.44 m/s. After being
passed, the cyclist hears a frequency of 1590 Hz. How fast is the
ambulance moving?

•57 A state trooper chases a speeder along a straight road; both
vehicles move at 160 km/h. The siren on the trooper’s vehicle pro-
duces sound at a frequency of 500 Hz. What is the Doppler shift in
the frequency heard by the speeder?

••58 A sound source A and a reflecting surface B move directly
toward each other. Relative to the air, the speed of source A is
29.9 m/s, the speed of surface B is 65.8 m/s, and the speed of sound
is 329 m/s. The source emits waves at frequency 1200 Hz as meas-
ured in the source frame. In the reflector frame, what are the 
(a) frequency and (b) wavelength of the arriving sound waves? In
the source frame, what are the (c) frequency and (d) wavelength of
the sound waves reflected back to the source?
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Figure 17-44 Problem 73.

••59 In Fig. 17-42, a French submarine and a U.S. submarine
move toward each other during maneuvers in motionless water
in the North Atlantic. The French sub moves at speed vF �
50.00 km/h, and the U.S. sub at vUS � 70.00 km/h. The French sub
sends out a sonar signal (sound wave in water) at 1.000 � 103 Hz.
Sonar waves travel at 5470 km/h. (a) What is the signal’s frequency
as detected by the U.S. sub? (b) What frequency is detected by the
French sub in the signal reflected back to it by the U.S. sub?

locomotive whistle emits sound at frequency 500.0 Hz. The air is
still. (a) What frequency does the uncle hear? (b) What frequency
does the girl hear? A wind begins to blow from the east at 10.00
m/s. (c) What frequency does the uncle now hear? (d) What fre-
quency does the girl now hear?

Module 17-8 Supersonic Speeds, Shock Waves
•68 The shock wave off the cockpit of the FA 18 in Fig. 17-24 
has an angle of about 60�. The airplane was traveling at about 
1350 km/h when the photograph was taken. Approximately what
was the speed of sound at the airplane’s altitude?

••69 A jet plane passes over you at a height of 5000 m
and a speed of Mach 1.5. (a) Find the Mach cone angle (the sound
speed is 331 m/s). (b) How long after the jet passes directly over-
head does the shock wave reach you?

••70 A plane flies at 1.25 times the speed of sound. Its sonic boom
reaches a man on the ground 1.00 min after the plane passes di-
rectly overhead. What is the altitude of the plane? Assume the
speed of sound to be 330 m/s.

Additional Problems
71 At a distance of 10 km, a 100 Hz horn, assumed to be an
isotropic point source, is barely audible. At what distance would it
begin to cause pain?

72 A bullet is fired with a speed of 685 m/s. Find the angle made
by the shock cone with the line of motion of the bullet.

73 A sperm whale (Fig. 17-44a) vocalizes by producing a
series of clicks. Actually, the whale makes only a single sound near
the front of its head to start the series. Part of that sound then
emerges from the head into the water to become the first click of
the series. The rest of the sound travels backward through the
spermaceti sac (a body of fat), reflects from the frontal sac (an air
layer), and then travels forward through the spermaceti sac. When
it reaches the distal sac (another air layer) at the front of the head,
some of the sound escapes into the water to form the second click,
and the rest is sent back through the spermaceti sac (and ends up
forming later clicks).

Figure 17-44b shows a strip-chart recording of a series of clicks.
A unit time interval of 1.0 ms is indicated on the chart. Assuming
that the speed of sound in the spermaceti sac is 1372 m/s, find
the length of the spermaceti sac. From such a calculation, marine
scientists estimate the length of a whale from its click series.

SSMFrench U.S.
vF vUS

Figure 17-42 Problem 59.

••60 A stationary motion detector sends sound waves of frequency
0.150 MHz toward a truck approaching at a speed of 45.0 m/s. What
is the frequency of the waves reflected back to the detector?

••61 A bat is flitting about in a cave, navigating via
ultrasonic bleeps.Assume that the sound emission frequency of the
bat is 39 000 Hz. During one fast swoop directly toward a flat wall
surface, the bat is moving at 0.025 times the speed of sound in air.
What frequency does the bat hear reflected off the wall?

••62 Figure 17-43 shows four tubes with lengths 1.0 m or 2.0 m,
with one or two open ends as drawn. The third harmonic is set up in
each tube, and some of the sound that escapes from them is detected
by detector D, which moves directly away from the tubes. In
terms of the speed of sound v,
what speed must the detector
have such that the detected
frequency of the sound from
(a) tube 1, (b) tube 2, (c) tube
3, and (d) tube 4 is equal to the
tube’s fundamental frequency?

••63 An acoustic burglar alarm consists of a source emitting
waves of frequency 28.0 kHz. What is the beat frequency between
the source waves and the waves reflected from an intruder walking
at an average speed of 0.950 m/s directly away from the alarm?

••64 A stationary detector measures the frequency of a sound
source that first moves at constant velocity directly toward the de-
tector and then (after passing the detector) directly away from it.
The emitted frequency is f. During the approach the detected fre-
quency is f 
app and during the recession it is f 
rec. If ( f 
app � f 
rec)/f �
0.500, what is the ratio vs/v of the speed of the source to the speed
of sound?

•••65 A 2000 Hz siren and a civil defense official are both at
rest with respect to the ground. What frequency does the official
hear if the wind is blowing at 12 m/s (a) from source to official and
(b) from official to source?

•••66 Two trains are traveling toward each other at 30.5 m/s
relative to the ground. One train is blowing a whistle at 500 Hz.
(a) What frequency is heard on the other train in still air? (b) What
frequency is heard on the other train if the wind is blowing at 
30.5 m/s toward the whistle and away from the listener? (c) What
frequency is heard if the wind direction is reversed?

•••67 A girl is sitting near the open window of a
train that is moving at a velocity of 10.00 m/s to the east. The girl’s
uncle stands near the tracks and watches the train move away. The
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80 A detector initially moves at constant velocity directly
toward a stationary sound source and then (after passing it) di-
rectly from it. The emitted frequency is f. During the approach the
detected frequency is f 
app and during the recession it is f 
rec. If the
frequencies are related by (f 
app � f 
rec)/f � 0.500, what is the ratio
vD/v of the speed of the detector to the speed of sound?

81 (a) If two sound waves, one in air and one in (fresh)
water, are equal in intensity and angular frequency, what is the
ratio of the pressure amplitude of the wave in water to that of
the wave in air? Assume the water and the air are at 20�C. (See
Table 14-1.) (b) If the pressure amplitudes are equal instead, what
is the ratio of the intensities of the waves?

SSM

74 The average density of Earth’s crust 10 km beneath the conti-
nents is 2.7 g/cm3. The speed of longitudinal seismic waves at that
depth, found by timing their arrival from distant earthquakes, is
5.4 km/s. Find the bulk modulus of Earth’s crust at that depth. For
comparison, the bulk modulus of steel is about 16 � 1010 Pa.

75 A certain loudspeaker system emits sound isotropically with
a frequency of 2000 Hz and an intensity of 0.960 mW/m2 at a
distance of 6.10 m. Assume that there are no reflections. (a) What
is the intensity at 30.0 m? At 6.10 m, what are (b) the displacement
amplitude and (c) the pressure amplitude?

76 Find the ratios (greater to smaller) of the (a) intensities,
(b) pressure amplitudes, and (c) particle displacement amplitudes
for two sounds whose sound levels differ by 37 dB.

77 In Fig. 17-45, sound waves A and B, both of wavelength l, are
initially in phase and traveling right-
ward, as indicated by the two rays.
Wave A is reflected from four sur-
faces but ends up traveling in its
original direction. What multiple of
wavelength l is the smallest value of
distance L in the figure that puts A
and B exactly out of phase with each
other after the reflections?

78 A trumpet player on a moving
railroad flatcar moves toward a sec-
ond trumpet player standing alongside the track while both play
a 440 Hz note. The sound waves heard by a stationary observer be-
tween the two players have a beat frequency of 4.0 beats/s. What is
the flatcar’s speed?

79 In Fig. 17-46, sound of wavelength 0.850 m is emitted
isotropically by point source S. Sound ray 1 extends directly to 
detector D, at distance L � 10.0 m. Sound ray 2 extends to D via a
reflection (effectively, a “bouncing”) of the sound at a flat surface.
That reflection occurs on a perpendicular bisector to the SD line,
at distance d from the line. Assume that the reflection shifts the
sound wave by 0.500l. For what least value of d (other than zero)
do the direct sound and the reflected sound arrive at D (a) exactly
out of phase and (b) exactly in phase?

82 A continuous sinusoidal longitudinal wave is sent along a very
long coiled spring from an attached oscillating source. The wave
travels in the negative direction of an x axis; the source frequency
is 25 Hz; at any instant the distance between successive points of
maximum expansion in the spring is 24 cm; the maximum longitu-
dinal displacement of a spring particle is 0.30 cm; and the particle
at x � 0 has zero displacement at time t � 0. If the wave is written
in the form s(x, t) � sm cos(kx � vt), what are (a) sm, (b) k, (c) v,
(d) the wave speed, and (e) the cor-
rect choice of sign in front of v?

83 Ultrasound, which consists
of sound waves with frequencies
above the human audible range, can
be used to produce an image of the
interior of a human body. Moreover,
ultrasound can be used to measure
the speed of the blood in the body; it
does so by comparing the frequency of the ultrasound sent into the
body with the frequency of the ultrasound reflected back to the
body’s surface by the blood. As the blood pulses, this detected fre-
quency varies.

Suppose that an ultrasound image of the arm of a patient shows
an artery that is angled at u � 20� to the ultrasound’s line of travel
(Fig. 17-47). Suppose also that the frequency of the ultrasound
reflected by the blood in the artery is increased by a maximum of
5495 Hz from the original ultrasound frequency of 5.000 000 MHz.
(a) In Fig. 17-47, is the direction of the blood flow rightward or
leftward? (b) The speed of sound in the human arm is 1540 m/s.
What is the maximum speed of the blood? (Hint: The Doppler effect
is caused by the component of the blood’s velocity along the ultra-
sound’s direction of travel.) (c) If angle u were greater, would the re-
flected frequency be greater or less?

84 The speed of sound in a certain metal is vm. One end of a 
long pipe of that metal of length L is struck a hard blow.
A listener at the other end hears two sounds, one from the wave
that travels along the pipe’s metal wall and the other from the
wave that travels through the air inside the pipe. (a) If v is the
speed of sound in air, what is the time interval �t between the ar-
rivals of the two sounds at the listener’s ear? (b) If �t � 1.00 s and
the metal is steel, what is the length L?

85 An avalanche of sand along some rare desert sand dunes
can produce a booming that is loud enough to be heard 10 km
away. The booming apparently results from a periodic oscillation
of the sliding layer of sand—the layer’s thickness expands and
contracts. If the emitted frequency is 90 Hz, what are (a) the period
of the thickness oscillation and (b) the wavelength of the sound?

86 A sound source moves along an x axis, between detectors A
and B. The wavelength of the sound detected at A is 0.500 that of
the sound detected at B. What is the ratio �s/� of the speed of the
source to the speed of sound?

87 A siren emitting a sound of frequency 1000 Hz moves
away from you toward the face of a cliff at a speed of 10 m/s. Take
the speed of sound in air as 330 m/s. (a) What is the frequency of
the sound you hear coming directly from the siren? (b) What is the
frequency of the sound you hear reflected off the cliff? (c) What is
the beat frequency between the two sounds? Is it perceptible (less
than 20 Hz)?

88 At a certain point, two waves produce pressure variations
given by �p1 � �pm sin vt and �p2 � �pm sin(vt � f).At this point,

SSM

SSM

S D 

dRay 2 

Ray 1 
L__
2

L__
2

Figure 17-46 Problem 79.

L

L

A

B

Figure 17-45 Problem 77.

Incident
ultrasound

Artery 

θ 

Figure 17-47 Problem 83.



512 CHAPTER 17 WAVES—II

Figure 17-49 Problem 94.
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what is the ratio �pr/�pm, where �pr is the pressure amplitude of
the resultant wave, if f is (a) 0, (b) p/2, (c) p/3, and (d) p/4?

89 Two sound waves with an amplitude of 12 nm and a wave-
length of 35 cm travel in the same direction through a long tube,
with a phase difference of p/3 rad. What are the (a) amplitude and
(b) wavelength of the net sound wave produced by their interfer-
ence? If, instead, the sound waves travel through the tube in oppo-
site directions, what are the (c) amplitude and (d) wavelength of
the net wave?

90 A sinusoidal sound wave moves at 343 m/s through air in the
positive direction of an x axis. At one instant during the oscilla-
tions, air molecule A is at its maximum displacement in the nega-
tive direction of the axis while air molecule B is at its equilibrium
position. The separation between those molecules is 15.0 cm, and
the molecules between A and B have intermediate displacements
in the negative direction of the axis. (a) What is the frequency of
the sound wave?

In a similar arrangement but for a different sinusoidal sound
wave, at one instant air molecule C is at its maximum displacement
in the positive direction while molecule D is at its maximum
displacement in the negative direction.The separation between the
molecules is again 15.0 cm, and the molecules between C and D
have intermediate displacements. (b) What is the frequency of the
sound wave?

91 Two identical tuning forks can oscillate at 440 Hz. A person is
located somewhere on the line between them. Calculate the beat
frequency as measured by this individual if (a) she is standing still
and the tuning forks move in the same direction along the line at
3.00 m/s, and (b) the tuning forks are stationary and the listener
moves along the line at 3.00 m/s.

92 You can estimate your distance from a lightning stroke by
counting the seconds between the flash you see and the thunder
you later hear. By what integer should you divide the number of
seconds to get the distance in kilometers?

93 Figure 17-48 shows an air-
filled, acoustic interferometer, used
to demonstrate the interference of
sound waves. Sound source S is an
oscillating diaphragm; D is a sound
detector, such as the ear or a micro-
phone. Path SBD can be varied in
length, but path SAD is fixed. At D,
the sound wave coming along path
SBD interferes with that coming along path SAD. In one demon-
stration, the sound intensity at D has a minimum value of
100 units at one position of the movable arm and continuously
climbs to a maximum value of 900 units when that arm is shifted
by 1.65 cm. Find (a) the frequency of the sound emitted by the
source and (b) the ratio of the amplitude at D of the SAD wave
to that of the SBD wave. (c) How can it happen that these waves
have different amplitudes, considering that they originate at the
same source?

94 On July 10, 1996, a granite block broke away from a wall in
Yosemite Valley and, as it began to slide down the wall, was
launched into projectile motion. Seismic waves produced by its
impact with the ground triggered seismographs as far away as
200 km. Later measurements indicated that the block had a mass
between 7.3 � 107 kg and 1.7 � 108 kg and that it landed 500 m
vertically below the launch point and 30 m horizontally from it.

SSM

(The launch angle is not known.) (a) Estimate the block’s kinetic
energy just before it landed.

Consider two types of seismic waves that spread from the im-
pact point—a hemispherical body wave traveled through the
ground in an expanding hemisphere and a cylindrical surface wave
traveled along the ground in an expanding shallow vertical cylin-
der (Fig. 17-49). Assume that the impact lasted 0.50 s, the vertical
cylinder had a depth d of 5.0 m, and each wave type received 20%
of the energy the block had just before impact. Neglecting any
mechanical energy loss the waves experienced as they traveled,
determine the intensities of (b) the body wave and (c) the surface
wave when they reached a seismograph 200 km away. (d) On the
basis of these results, which wave is more easily detected on a
distant seismograph?

S

A B 

D

Figure 17-48 Problem 93.

95 The sound intensity is 0.0080 W/m2 at a distance of 10 m
from an isotropic point source of sound. (a) What is the power of
the source? (b) What is the sound intensity 5.0 m from the source?
(c) What is the sound level 10 m from the source?

96 Four sound waves are to be sent through the same tube of air,
in the same direction:

s1(x, t) � (9.00 nm) cos(2px � 700pt)

s2(x, t) � (9.00 nm) cos(2px � 700pt � 0.7p)

s3(x, t) � (9.00 nm) cos(2px � 700pt � p)

s4(x, t) � (9.00 nm) cos(2px � 700pt � 1.7p).
What is the amplitude of the resultant wave? (Hint: Use a phasor
diagram to simplify the problem.)

97 Straight line AB connects two point sources that are 5.00 m
apart, emit 300 Hz sound waves of the same amplitude, and emit
exactly out of phase. (a) What is the shortest distance between the
midpoint of AB and a point on AB where the interfering waves
cause maximum oscillation of the air molecules? What are the
(b) second and (c) third shortest distances?

98 A point source that is stationary on an x axis emits a
sinusoidal sound wave at a frequency of 686 Hz and speed 343 m/s.
The wave travels radially outward from the source, causing air mol-
ecules to oscillate radially inward and outward. Let us define a
wavefront as a line that connects points where the air molecules
have the maximum, radially outward displacement. At any given
instant, the wavefronts are concentric circles that are centered on
the source. (a) Along x, what is the adjacent wavefront separation?
Next, the source moves along x at a speed of 110 m/s. Along x,
what are the wavefront separations (b) in front of and (c) behind
the source?

99 You are standing at a distance D from an isotropic point source
of sound. You walk 50.0 m toward the source and observe that the
intensity of the sound has doubled. Calculate the distance D.

SSM
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100 Pipe A has only one open end; pipe B is four times as long
and has two open ends. Of the lowest 10 harmonic numbers nB of
pipe B, what are the (a) smallest, (b) second smallest, and (c) third
smallest values at which a harmonic frequency of B matches one of
the harmonic frequencies of A?

101 A pipe 0.60 m long and closed at one end is filled with an 
unknown gas. The third lowest harmonic frequency for the pipe is
750 Hz. (a) What is the speed of sound in the unknown gas? 
(b) What is the fundamental frequency for this pipe when it is filled
with the unknown gas?

102 A sound wave travels out uniformly in all directions from a
point source. (a) Justify the following expression for the displace-
ment s of the transmitting medium at any distance r from the source:

where b is a constant. Consider the speed, direction of propaga-
tion, periodicity, and intensity of the wave. (b) What is the dimen-
sion of the constant b?

103 A police car is chasing a speeding Porsche 911. Assume that
the Porsche’s maximum speed is 80.0 m/s and the police car’s is 54.0
m/s.At the moment both cars reach their maximum speed, what fre-
quency will the Porsche driver hear if the frequency of the police
car’s siren is 440 Hz? Take the speed of sound in air to be 340 m/s.

104 Suppose a spherical loudspeaker emits sound isotropically at
10 W into a room with completely absorbent walls, floor, and ceiling
(an anechoic chamber). (a) What is the intensity of the sound at
distance d 3.0 m from the center of the source? (b) What is the
ratio of the wave amplitude at d � 4.0 m to that at d � 3.0 m?

105 In Fig. 17-35, S1 and S2 are two isotropic point sources of
sound. They emit waves in phase at wavelength 0.50 m; they are
separated by D � 1.60 m. If we move a sound detector along a
large circle centered at the midpoint between the sources, at how
many points do waves arrive at the detector (a) exactly in phase
and (b) exactly out of phase?

106 Figure 17-50 shows a transmitter and receiver of waves con-
tained in a single instrument. It is used to measure the speed u of a
target object (idealized as a flat plate) that is moving directly to-
ward the unit, by analyzing the waves reflected from the target.
What is u if the emitted frequency is 18.0 kHz and the detected fre-
quency (of the returning waves) is 22.2 kHz?

�

s �
b
r

 sin k(r � vt),

plunger P is provided at the other end of the tube, and the tube is
filled with a gas. The rod is made to oscillate longitudinally at fre-
quency f to produce sound waves inside the gas, and the location
of the plunger is adjusted until a standing sound wave pattern is
set up inside the tube. Once the standing wave is set up, the mo-
tion of the gas molecules causes the cork filings to collect in a
pattern of ridges at the displacement nodes. If f � 4.46 � 103 Hz
and the separation between ridges is 9.20 cm, what is the speed of
sound in the gas?

108 A source S and a detector D of radio waves are a distance d
apart on level ground (Fig. 17-52). Radio waves of wavelength l
reach D either along a straight path or by reflecting (bouncing)
from a certain layer in the atmosphere. When the layer is at height
H, the two waves reaching D are exactly in phase. If the layer grad-
ually rises, the phase difference between the two waves gradually
shifts, until they are exactly out of phase when the layer is at height
H � h. Express l in terms of d, h, and H.

Figure 17-50 Problem 106.

Target

fr

fs

u

Figure 17-51 Problem 107.
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d

110 A person on a railroad car blows a trumpet note at 440 Hz.
The car is moving toward a wall at 20.0 m/s. Find the sound fre-
quency (a) at the wall and (b) reflected back to the trumpeter.

111 A listener at rest (with respect to the air and the ground)
hears a signal of frequency f1 from a source moving toward him
with a velocity of 15 m/s, due east. If the listener then moves toward
the approaching source with a velocity of 25 m/s, due west, he hears
a frequency f2 that differs from f1 by 37 Hz.What is the frequency of
the source? (Take the speed of sound in air to be 340 m/s.)

107 Kundt’s method for measuring the speed of sound. In Fig.
17-51, a rod R is clamped at its center; a disk D at its end projects
into a glass tube that has cork filings spread over its interior. A

Figure 17-52 Problem 108.

S D

H

d/2 d/2

h

109 In Fig. 17-53, a point source S of sound waves lies near a
reflecting wall AB. A sound detector D intercepts sound ray R1

traveling directly from S. It also intercepts sound ray R2 that re-
flects from the wall such that the angle of incidence ui is equal to
the angle of reflection ur. Assume that the reflection of sound by
the wall causes a phase shift of 0.500l. If the distances are d1 �
2.50 m, d2 20.0 m, and d3 12.5 m, what are the (a) lowest and
(b) second lowest frequency at which R1 and R2 are in phase at D?

��

Figure 17-53 Problem 109.
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18-1 TEMPERATURE

After reading this module, you should be able to . . .

18.01 Identify the lowest temperature as 0 on the Kelvin scale
(absolute zero).

18.02 Explain the zeroth law of thermodynamics.
18.03 Explain the conditions for the triple-point temperature.

18.04 Explain the conditions for measuring a temperature
with a constant-volume gas thermometer.

18.05 For a constant-volume gas thermometer, relate the
pressure and temperature of the gas in some given state
to the pressure and temperature at the triple point.

● Temperature is an SI base quantity related to our sense of
hot and cold. It is measured with a thermometer, which con-
tains a working substance with a measurable property, such
as length or pressure, that changes in a regular way as the
substance becomes hotter or colder.

● When a thermometer and some other object are placed in
contact with each other, they eventually reach thermal equilib-
rium. The reading of the thermometer is then taken to be the
temperature of the other object. The process provides con-
sistent and useful temperature measurements because of the
zeroth law of thermodynamics: If bodies A and B are each in
thermal equilibrium with a third body C (the thermometer),
then A and B are in thermal equilibrium with each other.

● In the SI system, temperature is measured on the Kelvin
scale, which is based on the triple point of water (273.16 K).
Other temperatures are then defined by use of a constant-
volume gas thermometer, in which a sample of gas is main-
tained at constant volume so its pressure is proportional to its
temperature. We define the temperature T as measured with
a gas thermometer to be

Here T is in kelvins, and p3 and p are the pressures of 
the gas at 273.16 K and the measured temperature, 
respectively.

T � (273.16 K) � lim
gas:0

p
p3
�.

Learning Objectives

Key Ideas

What Is Physics?
One of the principal branches of physics and engineering is thermodynamics,
which is the study and application of the thermal energy (often called the
internal energy) of systems. One of the central concepts of thermodynamics is
temperature. Since childhood, you have been developing a working knowledge
of thermal energy and temperature. For example, you know to be cautious with
hot foods and hot stoves and to store perishable foods in cool or cold compart-
ments. You also know how to control the temperature inside home and car, and
how to protect yourself from wind chill and heat stroke.

Examples of how thermodynamics figures into everyday engineering and
science are countless. Automobile engineers are concerned with the heating of a
car engine, such as during a NASCAR race. Food engineers are concerned both
with the proper heating of foods, such as pizzas being microwaved, and with the
proper cooling of foods, such as TV dinners being quickly frozen at a processing
plant. Geologists are concerned with the transfer of thermal energy in an El Niño
event and in the gradual warming of ice expanses in the Arctic and Antarctic.



51518-1 TEMPERATURE

Agricultural engineers are concerned with the weather conditions that determine
whether the agriculture of a country thrives or vanishes. Medical engineers are
concerned with how a patient’s temperature might distinguish between a benign
viral infection and a cancerous growth.

The starting point in our discussion of thermodynamics is the concept of
temperature and how it is measured.

Temperature
Temperature is one of the seven SI base quantities. Physicists measure tempera-
ture on the Kelvin scale, which is marked in units called kelvins. Although the
temperature of a body apparently has no upper limit, it does have a lower limit;
this limiting low temperature is taken as the zero of the Kelvin temperature scale.
Room temperature is about 290 kelvins, or 290 K as we write it, above this
absolute zero. Figure 18-1 shows a wide range of temperatures.

When the universe began 13.7 billion years ago, its temperature was about 1039 K.
As the universe expanded it cooled,and it has now reached an average temperature of
about 3 K.We on Earth are a little warmer than that because we happen to live near a
star.Without our Sun,we too would be at 3 K (or,rather,we could not exist).

The Zeroth Law of Thermodynamics
The properties of many bodies change as we alter their temperature, perhaps by
moving them from a refrigerator to a warm oven. To give a few examples: As
their temperature increases, the volume of a liquid increases, a metal rod grows a
little longer, and the electrical resistance of a wire increases, as does the pressure
exerted by a confined gas. We can use any one of these properties as the basis of
an instrument that will help us pin down the concept of temperature.

Figure 18-2 shows such an instrument.Any resourceful engineer could design
and construct it, using any one of the properties listed above. The instrument is
fitted with a digital readout display and has the following properties: If you heat
it (say, with a Bunsen burner), the displayed number starts to increase; if you then
put it into a refrigerator, the displayed number starts to decrease. The instrument
is not calibrated in any way, and the numbers have (as yet) no physical meaning.
The device is a thermoscope but not (as yet) a thermometer.

Suppose that, as in Fig. 18-3a, we put the thermoscope (which we shall call
body T) into intimate contact with another body (body A). The entire system is
confined within a thick-walled insulating box. The numbers displayed by the
thermoscope roll by until, eventually, they come to rest (let us say the reading is
“137.04”) and no further change takes place. In fact, we suppose that every
measurable property of body T and of body A has assumed a stable, unchanging
value.Then we say that the two bodies are in thermal equilibrium with each other.
Even though the displayed readings for body T have not been calibrated, we
conclude that bodies T and A must be at the same (unknown) temperature.

Suppose that we next put body T into intimate contact with body B (Fig. 18-3b)
and find that the two bodies come to thermal equilibrium at the same reading of the
thermoscope. Then bodies T and B must be at the same (still unknown) temperature.
If we now put bodies A and B into intimate contact (Fig. 18-3c), are they immediately
in thermal equilibrium with each other? Experimentally,we find that they are.

The experimental fact shown in Fig. 18-3 is summed up in the zeroth law of
thermodynamics:

If bodies A and B are each in thermal equilibrium with a third body T, then A
and B are in thermal equilibrium with each other.

Figure 18-1 Some temperatures on the Kelvin
scale.Temperature T � 0 corresponds
to 10�� and cannot be plotted on this 
logarithmic scale.
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Figure 18-2 A thermoscope.The numbers
increase when the device is heated and
decrease when it is cooled.The thermally
sensitive element could be—among many
possibilities—a coil of wire whose
electrical resistance is measured and
displayed.

Thermally sensitive 
element

In less formal language, the message of the zeroth law is: “Every body has a
property called temperature. When two bodies are in thermal equilibrium, their
temperatures are equal. And vice versa.” We can now make our thermoscope
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(b)
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T

A
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(a)
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A
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BA

Figure 18-3 (a) Body T (a thermo-
scope) and body A are in thermal
equilibrium. (Body S is a
thermally insulating screen.) (b)
Body T and body B are also in
thermal equilibrium, at the same
reading of the thermoscope. (c) If
(a) and (b) are true, the zeroth
law of thermodynamics states
that body A and body B are also
in thermal equilibrium.

(the third body T) into a thermometer, confident that its readings will have
physical meaning. All we have to do is calibrate it.

We use the zeroth law constantly in the laboratory. If we want to know whether
the liquids in two beakers are at the same temperature, we measure the tempera-
ture of each with a thermometer. We do not need to bring the two liquids into
intimate contact and observe whether they are or are not in thermal equilibrium.

The zeroth law, which has been called a logical afterthought, came to light
only in the 1930s, long after the first and second laws of thermodynamics had
been discovered and numbered. Because the concept of temperature is funda-
mental to those two laws, the law that establishes temperature as a valid concept
should have the lowest number—hence the zero.

Measuring Temperature
Here we first define and measure temperatures on the Kelvin scale. Then we
calibrate a thermoscope so as to make it a thermometer.

The Triple Point of Water
To set up a temperature scale, we pick some reproducible thermal phenomenon
and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that
is, we select a standard fixed point and give it a standard fixed-point temperature.
We could, for example, select the freezing point or the boiling point of water but,
for technical reasons, we select instead the triple point of water.

Liquid water, solid ice, and water vapor (gaseous water) can coexist, in
thermal equilibrium, at only one set of values of pressure and temperature.
Figure 18-4 shows a triple-point cell, in which this so-called triple point of water
can be achieved in the laboratory. By international agreement, the triple point of
water has been assigned a value of 273.16 K as the standard fixed-point
temperature for the calibration of thermometers; that is,

T3 � 273.16 K (triple-point temperature), (18-1)

in which the subscript 3 means “triple point.” This agreement also sets the size of
the kelvin as 1/273.16 of the difference between the triple-point temperature of
water and absolute zero.

Note that we do not use a degree mark in reporting Kelvin temperatures.
It is 300 K (not 300�K), and it is read “300 kelvins” (not “300 degrees Kelvin”).
The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK. No distinction in nomen-
clature is made between Kelvin temperatures and temperature differences, so
we can write, “the boiling point of sulfur is 717.8 K” and “the temperature of this
water bath was raised by 8.5 K.”

The Constant-Volume Gas Thermometer
The standard thermometer, against which all other thermometers are calibrated,
is based on the pressure of a gas in a fixed volume. Figure 18-5 shows such a
constant-volume gas thermometer; it consists of a gas-filled bulb connected by a
tube to a mercury manometer. By raising and lowering reservoir R, the mercury

Figure 18-4 A triple-point cell, in which solid
ice, liquid water, and water vapor coexist in
thermal equilibrium. By international
agreement, the temperature of this mixture
has been defined to be 273.16 K.The bulb
of a constant-volume gas thermometer is
shown inserted into the well of the cell.

Gas
thermometer
bulb

Vapor

Water

Ice

Figure 18-5 A constant-volume gas ther-
mometer, its bulb immersed in a liquid
whose temperature T is to be measured.

0

h

R

T

Scale
Gas-filled
bulb
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level in the left arm of the U-tube can always be brought to the zero of the scale
to keep the gas volume constant (variations in the gas volume can affect tem-
perature measurements).

The temperature of any body in thermal contact with the bulb (such as the
liquid surrounding the bulb in Fig. 18-5) is then defined to be

T � Cp, (18-2)

in which p is the pressure exerted by the gas and C is a constant. From Eq. 14-10,
the pressure p is p � p0 � rgh, (18-3)

in which p0 is the atmospheric pressure, r is the density of the mercury in the
manometer, and h is the measured difference between the mercury levels in the
two arms of the tube.* (The minus sign is used in Eq. 18-3 because pressure p is
measured above the level at which the pressure is p0.)

If we next put the bulb in a triple-point cell (Fig. 18-4), the temperature now
being measured is

T3 � Cp3, (18-4)

in which p3 is the gas pressure now. Eliminating C between Eqs. 18-2 and 18-4
gives us the temperature as

(provisional). (18-5)

We still have a problem with this thermometer. If we use it to measure, say,
the boiling point of water, we find that different gases in the bulb give slightly
different results. However, as we use smaller and smaller amounts of gas to fill
the bulb, the readings converge nicely to a single temperature, no matter what
gas we use. Figure 18-6 shows this convergence for three gases.

Thus the recipe for measuring a temperature with a gas thermometer is

(18-6)

The recipe instructs us to measure an unknown temperature T as follows:
Fill the thermometer bulb with an arbitrary amount of any gas (for example,
nitrogen) and measure p3 (using a triple-point cell) and p, the gas pressure at 
the temperature being measured. (Keep the gas volume the same.) Calculate the
ratio p/p3.Then repeat both measurements with a smaller amount of gas in the bulb,
and again calculate this ratio. Continue this way, using smaller and smaller amounts
of gas, until you can extrapolate to the ratio p/p3 that you would find if there were ap-
proximately no gas in the bulb. Calculate the temperature T by substituting that ex-
trapolated ratio into Eq. 18-6. (The temperature is called the ideal gas temperature.)

T � (273.16 K) � lim
gas :0

p
p3
�.

T � T3 � p
p3
� � (273.16 K) � p

p3
�

*For pressure units, we shall use units introduced in Module 14-1. The SI unit for pressure is the
newton per square meter, which is called the pascal (Pa). The pascal is related to other common pres-
sure units by

1 atm � 1.01 � 105 Pa � 760 torr � 14.7 lb/in.2.
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Figure 18-6 Temperatures measured by a con-
stant-volume gas thermometer, with its bulb
immersed in boiling water. For temperature
calculations using Eq. 18-5, pressure p3 was
measured at the triple point of water.Three
different gases in the thermometer bulb
gave generally different results at different gas
pressures, but as the amount of gas was
decreased (decreasing p3), all three curves con-
verged to 373.125 K.



The Celsius and Fahrenheit Scales
So far, we have discussed only the Kelvin scale, used in basic scientific work. In
nearly all countries of the world, the Celsius scale (formerly called the centigrade
scale) is the scale of choice for popular and commercial use and much scientific
use. Celsius temperatures are measured in degrees, and the Celsius degree has
the same size as the kelvin. However, the zero of the Celsius scale is shifted to a
more convenient value than absolute zero. If TC represents a Celsius temperature
and T a Kelvin temperature, then

TC � T � 273.15�. (18-7)

In expressing temperatures on the Celsius scale, the degree symbol is commonly
used. Thus, we write 20.00�C for a Celsius reading but 293.15 K for a Kelvin
reading.

The Fahrenheit scale, used in the United States, employs a smaller degree than
the Celsius scale and a different zero of temperature. You can easily verify both
these differences by examining an ordinary room thermometer on which both scales
are marked.The relation between the Celsius and Fahrenheit scales is

(18-8)

where TF is Fahrenheit temperature. Converting between these two scales can be
done easily by remembering a few corresponding points, such as the freezing and
boiling points of water (Table 18-1). Figure 18-7 compares the Kelvin, Celsius,
and Fahrenheit scales.

TF � 9
5TC � 32�,
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18-2 THE CELSIUS AND FAHRENHEIT SCALES

After reading this module, you should be able to . . .

18.06 Convert a temperature between any two (linear) 
temperature scales, including the Celsius, Fahrenheit,
and Kelvin scales.

18.07 Identify that a change of one degree is the same on the
Celsius and Kelvin scales.

Learning Objectives

● The Celsius temperature scale is defined by

TC � T � 273.15�,

Key Idea

Figure 18-7 The Kelvin, Celsius, and
Fahrenheit temperature scales compared.

Triple
point of 

water

Absolute
zero

273.16 K 0.01°C 32.02°F 

0 K –273.15°C –459.67°F 

Table 18-1 Some Corresponding Temperatures

Temperature C F

Boiling point of watera 100 212
Normal body temperature 37.0 98.6
Accepted comfort level 20 68
Freezing point of watera 0 32
Zero of Fahrenheit scale � �18 0
Scales coincide �40 �40

aStrictly, the boiling point of water on the Celsius scale is 99.975 C,
and the freezing point is 0.00 C.Thus, there is slightly less than 100 C
between those two points.

��
�

��

with T in kelvins. The Fahrenheit temperature scale is defined by

TF � 9
5TC � 32�.
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We use the letters C and F to distinguish measurements and degrees on the
two scales.Thus,

0�C � 32�F

means that 0� on the Celsius scale measures the same temperature as 32� on the
Fahrenheit scale, whereas

5 C� � 9 F�

means that a temperature difference of 5 Celsius degrees (note the degree sym-
bol appears after C) is equivalent to a temperature difference of 9 Fahrenheit
degrees.

Checkpoint 1
The figure here shows three
linear temperature scales
with the freezing and boiling
points of water indicated.
(a) Rank the degrees on
these scales by size, greatest
first. (b) Rank the following
temperatures, highest first:
50�X, 50�W, and 50�Y.

70°X

–20°X

120°W

30°W

90°Y

0°Y

Boiling point

Freezing point

corresponding temperatures on the Fahrenheit scale. On the
Z scale, the difference between the boiling and freezing
points is 65.0�Z � (�14.0�Z) � 79.0 Z�. On the Fahrenheit
scale, it is 212�F � 32.0�F � 180 F�. Thus, a temperature dif-
ference of 79.0 Z� is equivalent to a temperature difference of
180 F� (Fig. 18-8), and we can use the ratio (180 F�)/(79.0 Z�)
as our conversion factor.

Now, since T is below the freezing point by 84.0 Z�, it
must also be below the freezing point by

Because the freezing point is at 32.0�F, this means that

T � 32.0�F � 191 F� � �159�F. (Answer)

(84.0 Z�)
180 F�

79.0 Z�
� 191 F�.

Sample Problem 18.01 Conversion between two temperature scales

Suppose you come across old scientific notes that describe
a temperature scale called Z on which the boiling point of
water is 65.0�Z and the freezing point is �14.0�Z. To what
temperature on the Fahrenheit scale would a temperature
of T � �98.0�Z correspond? Assume that the Z scale is 
linear; that is, the size of a Z degree is the same everywhere
on the Z scale.

KEY IDEA

A conversion factor between two (linear) temperature
scales can be calculated by using two known (benchmark)
temperatures, such as the boiling and freezing points of wa-
ter. The number of degrees between the known tempera-
tures on one scale is equivalent to the number of degrees
between them on the other scale.

Calculations: We begin by relating the given temperature
T to either known temperature on the Z scale. Since T �
�98.0�Z is closer to the freezing point (�14.0�Z) than to the
boiling point (65.0�Z), we use the freezing point. Then we
note that the T we seek is below this point by �14.0�Z �
(�98.0�Z) � 84.0 Z� (Fig. 18-8). (Read this difference as
“84.0 Z degrees.”)

Next, we set up a conversion factor between the Z
and Fahrenheit scales to convert this difference. To do so,
we use both known temperatures on the Z scale and the

Additional examples, video, and practice available at WileyPLUS

Figure 18-8 An unknown temperature scale compared with the
Fahrenheit temperature scale.

65.0°Z

–14.0°Z

T = –98.0°Z

79.0 Z° 

84.0 Z° 

Boil

Freeze

212°F

FZ

32°F

T = ? 

180 F° 



Thermal Expansion
You can often loosen a tight metal jar lid by holding it under a stream of hot water.
Both the metal of the lid and the glass of the jar expand as the hot water adds en-
ergy to their atoms. (With the added energy, the atoms can move a bit farther from
one another than usual, against the spring-like interatomic forces that hold every
solid together.) However, because the atoms in the metal move farther apart than
those in the glass, the lid expands more than the jar and thus is loosened.

Such thermal expansion of materials with an increase in temperature must be
anticipated in many common situations. When a bridge is subject to large
seasonal changes in temperature, for example, sections of the bridge are
separated by expansion slots so that the sections have room to expand on hot
days without the bridge buckling. When a dental cavity is filled, the filling mate-
rial must have the same thermal expansion properties as the surrounding tooth;
otherwise, consuming cold ice cream and then hot coffee would be very painful.
When the Concorde aircraft (Fig. 18-9) was built, the design had to allow for the
thermal expansion of the fuselage during supersonic flight because of frictional
heating by the passing air.

The thermal expansion properties of some materials can be put to common
use.Thermometers and thermostats may be based on the differences in expansion
between the components of a bimetal strip (Fig. 18-10).Also, the familiar liquid-in-
glass thermometers are based on the fact that liquids such as mercury and alcohol
expand to a different (greater) extent than their glass containers.

Linear Expansion
If the temperature of a metal rod of length L is raised by an amount �T, its length
is found to increase by an amount

�L � La �T, (18-9)
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18-3 THERMAL EXPANSION

After reading this module, you should be able to . . .

18.08 For one-dimensional thermal expansion, apply the rela-
tionship between the temperature change �T, the length
change �L, the initial length L, and the coefficient of linear
expansion a.

18.09 For two-dimensional thermal expansion, use one-

dimensional thermal expansion to find the change in area.
18.10 For three-dimensional thermal expansion, apply the re-

lationship between the temperature change �T, the vol-
ume change �V, the initial volume V, and the coefficient of
volume expansion b.

Learning Objectives

● All objects change size with changes in temperature. For a
temperature change �T, a change �L in any linear dimension
L is given by

�L � La �T,

in which a is the coefficient of linear expansion.

Key Ideas
● The change in the volume V of a solid or liquid is

�V � Vb �T.

Here b � 3a is the material’s coefficient of volume 
expansion.

�V

Figure 18-9 When a Concorde flew faster
than the speed of sound, thermal expan-
sion due to the rubbing by passing air
increased the aircraft’s length by about
12.5 cm. (The temperature increased to
about 128 C at the aircraft nose and about
90 C at the tail, and cabin windows were
noticeably warm to the touch.) 

�
�

Hugh Thomas/BWP Media/Getty Images, Inc.

Figure 18-10 (a) A bimetal strip, consisting
of a strip of brass and a strip of steel
welded together, at temperature T0.
(b) The strip bends as shown at tempera-
tures above this reference temperature.
Below the reference temperature the
strip bends the other way. Many thermo-
stats operate on this principle, making
and breaking an electrical contact as the
temperature rises and falls.

Brass

Steel

T = T0

(a)

T  > T0

(b)

Different amounts of
expansion or contraction
can produce bending.
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in which a is a constant called the coefficient of linear expansion. The coefficient a
has the unit “per degree” or “per kelvin” and depends on the material. Although a
varies somewhat with temperature, for most practical purposes it can be taken as
constant for a particular material. Table 18-2 shows some coefficients of linear ex-
pansion. Note that the unit C� there could be replaced with the unit K.

The thermal expansion of a solid is like photographic enlargement except it is in
three dimensions. Figure 18-11b shows the (exaggerated) thermal expansion of a
steel ruler. Equation 18-9 applies to every linear dimension of the ruler, including its
edge, thickness, diagonals, and the diameters of the circle etched on it and the circular
hole cut in it. If the disk cut from that hole originally fits snugly in the hole, it will con-
tinue to fit snugly if it undergoes the same temperature increase as the ruler.

Volume Expansion
If all dimensions of a solid expand with temperature, the volume of that solid
must also expand. For liquids, volume expansion is the only meaningful expan-
sion parameter. If the temperature of a solid or liquid whose volume is V is
increased by an amount �T, the increase in volume is found to be

�V � Vb �T, (18-10)

where b is the coefficient of volume expansion of the solid or liquid. The coef-
ficients of volume expansion and linear expansion for a solid are related by

b � 3a. (18-11)

The most common liquid, water, does not behave like other liquids. Above
about 4�C, water expands as the temperature rises, as we would expect. Between
0 and about 4�C, however, water contracts with increasing temperature. Thus, at
about 4�C, the density of water passes through a maximum. At all other tempera-
tures, the density of water is less than this maximum value.

This behavior of water is the reason lakes freeze from the top down rather than
from the bottom up. As water on the surface is cooled from, say, 10�C toward
the freezing point, it becomes denser (“heavier”) than lower water and sinks to the
bottom. Below 4�C, however, further cooling makes the water then on the surface
less dense (“lighter”) than the lower water, so it stays on the surface until it freezes.
Thus the surface freezes while the lower water is still liquid. If lakes froze from the
bottom up, the ice so formed would tend not to melt completely during the sum-
mer, because it would be insulated by the water above. After a few years, many
bodies of open water in the temperate zones of Earth would be frozen solid all year
round—and aquatic life could not exist.

Table 18-2 Some Coefficients of 
Linear Expansiona

Substance a (10�6/C�)

Ice (at 0�C) 51
Lead 29
Aluminum 23
Brass 19
Copper 17
Concrete 12
Steel 11
Glass (ordinary) 9
Glass (Pyrex) 3.2
Diamond 1.2
Invarb 0.7
Fused quartz 0.5

aRoom temperature values except for the listing
for ice.
bThis alloy was designed to have a low coeffi-
cient of expansion.The word is a shortened form
of “invariable.”

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(b)

Circular
hole

Circle(a)

Figure 18-11 The same steel ruler at two
different temperatures.When it ex-
pands, the scale, the numbers, the
thickness, and the diameters of the cir-
cle and circular hole are all increased
by the same factor. (The expansion has
been exaggerated for clarity.)

Checkpoint 2
The figure here shows four rectangular metal plates, with sides of L, 2L, or
3L.They are all made of the same material, and their temperature is to be
increased by the same amount.Rank the plates according to the expected
increase in (a) their vertical heights and (b) their areas,greatest first.

(1) (2) (3) (4)
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volume of the fuel did also, as given by Eq. 18-10 (�V �
Vb �T).

Calculations: We find

�V� (37 000 L)(9.50 � 10�4/C�)(�23.0 K) � �808 L.

Thus, the amount delivered was

Vdel � V � �V � 37 000 L � 808 L
� 36 190 L. (Answer)

Note that the thermal expansion of the steel tank has 
nothing to do with the problem. Question: Who paid for the
“missing” diesel fuel?

Sample Problem 18.02 Thermal expansion of a volume

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of
diesel fuel. He encountered cold weather on the way to
Payson, Utah, where the temperature was 23.0 K lower than
in Las Vegas, and where he delivered his entire load. How
many liters did he deliver? The coefficient of volume expan-
sion for diesel fuel is 9.50 � 10�4/C�, and the coefficient of
linear expansion for his steel truck tank is 11 � 10�6/C�.

KEY IDEA

The volume of the diesel fuel depends directly on the tem-
perature. Thus, because the temperature decreased, the

Additional examples, video, and practice available at WileyPLUS

18-4 ABSORPTION OF HEAT

After reading this module, you should be able to . . .

18.11 Identify that thermal energy is associated with the random
motions of the microscopic bodies in an object.

18.12 Identify that heat Q is the amount of transferred energy
(either to or from an object’s thermal energy) due to a tempera-
ture difference between the object and its environment.

18.13 Convert energy units between various measurement systems.
18.14 Convert between mechanical or electrical energy and ther-

mal energy.
18.15 For a temperature change �T of a substance, relate 

the change to the heat transfer Q and the substance’s heat 
capacity C.

18.16 For a temperature change �T of a substance, relate the

change to the heat transfer Q and the substance’s 
specific heat c and mass m.

18.17 Identify the three phases of matter.
18.18 For a phase change of a substance, relate the heat

transfer Q, the heat of transformation L, and the amount
of mass m transformed.

18.19 Identify that if a heat transfer Q takes a substance
across a phase-change temperature, the transfer must
be calculated in steps: (a) a temperature change to reach
the phase-change temperature, (b) the phase change,
and then (c) any temperature change that moves the 
substance away from the phase-change temperature.

Learning Objectives

● Heat Q is energy that is transferred between a system and
its environment because of a temperature difference between
them. It can be measured in joules (J), calories (cal), kilocalo-
ries (Cal or kcal), or British thermal units (Btu), with

1 cal � 3.968 � 10�3 Btu � 4.1868 J.

● If heat Q is absorbed by an object, the object’s temperature
change Tf � Ti is related to Q by

Q � C(Tf � Ti),

in which C is the heat capacity of the object. If the object has
mass m, then

Q � cm(Tf � Ti),

where c is the specific heat of the material making up the
object.

Key Ideas
● The molar specific heat of a material is the heat capacity
per mole, which means per 6.02 � 1023 elementary units of
the material.

● Heat absorbed by a material may change the material’s
physical state —for example, from solid to liquid or from liquid
to gas. The amount of energy required per unit mass to
change the state (but not the temperature) of a particular
material is its heat of transformation L. Thus,

Q � Lm.

● The heat of vaporization LV is the amount of energy per unit
mass that must be added to vaporize a liquid or that must be
removed to condense a gas. 

● The heat of fusion LF is the amount of energy per unit mass
that must be added to melt a solid or that must be removed to
freeze a liquid.
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Temperature and Heat
If you take a can of cola from the refrigerator and leave it on the kitchen table, its
temperature will rise—rapidly at first but then more slowly—until the tempera-
ture of the cola equals that of the room (the two are then in thermal equilibrium).
In the same way, the temperature of a cup of hot coffee, left sitting on the table,
will fall until it also reaches room temperature.

In generalizing this situation, we describe the cola or the coffee as a system
(with temperature TS) and the relevant parts of the kitchen as the environment
(with temperature TE) of that system. Our observation is that if TS is not equal to
TE, then TS will change (TE can also change some) until the two temperatures are
equal and thus thermal equilibrium is reached.

Such a change in temperature is due to a change in the thermal energy of the
system because of a transfer of energy between the system and the system’s
environment. (Recall that thermal energy is an internal energy that consists of the
kinetic and potential energies associated with the random motions of the atoms,
molecules, and other microscopic bodies within an object.) The transferred energy
is called heat and is symbolized Q. Heat is positive when energy is transferred to a
system’s thermal energy from its environment (we say that heat is absorbed by the
system). Heat is negative when energy is transferred from a system’s thermal en-
ergy to its environment (we say that heat is released or lost by the system).

This transfer of energy is shown in Fig. 18-12. In the situation of Fig. 18-12a,
in which TS � TE, energy is transferred from the system to the environment, so
Q is negative. In Fig. 18-12b, in which TS � TE, there is no such transfer, Q is
zero, and heat is neither released nor absorbed. In Fig. 18-12c, in which TS � TE,
the transfer is to the system from the environment; so Q is positive.

Environment

System
TS

Q
TETS >

Environment

System
TS

TETS = Q = 0

Q < 0 

TE

TE

Environment

System
TS

Q

TETS <

TE

(a)

(b)

(c)
Q > 0

The system has a
higher temperature,
so ...

... it loses
energy as heat.

The system has the
same temperature,
so ...

... no energy
is transferred
as heat.

The system has a
lower temperature,
so ...

... it gains
energy as
heat.

Figure 18-12 If the temperature of a system exceeds that of its environment as in (a), heat Q
is lost by the system to the environment until thermal equilibrium (b) is established. (c) If
the temperature of the system is below that of the environment, heat is absorbed by the
system until thermal equilibrium is established.



Language. Recall that energy can also be transferred between a system and
its environment as work W via a force acting on a system. Heat and work, unlike
temperature, pressure, and volume, are not intrinsic properties of a system. They
have meaning only as they describe the transfer of energy into or out of a system.
Similarly, the phrase “a $600 transfer” has meaning if it describes the transfer to
or from an account, not what is in the account, because the account holds money,
not a transfer.

Units. Before scientists realized that heat is transferred energy, heat was
measured in terms of its ability to raise the temperature of water. Thus, the
calorie (cal) was defined as the amount of heat that would raise the tempera-
ture of 1 g of water from 14.5�C to 15.5�C. In the British system, the correspon-
ding unit of heat was the British thermal unit (Btu), defined as the amount of
heat that would raise the temperature of 1 lb of water from 63�F to 64�F.

In 1948, the scientific community decided that since heat (like work) is
transferred energy, the SI unit for heat should be the one we use for energy—
namely, the joule. The calorie is now defined to be 4.1868 J (exactly), with no refer-
ence to the heating of water. (The “calorie” used in nutrition, sometimes called the
Calorie (Cal), is really a kilocalorie.) The relations among the various heat units are

1 cal � 3.968 � 10�3 Btu � 4.1868 J. (18-12)

The Absorption of Heat by Solids and Liquids
Heat Capacity
The heat capacity C of an object is the proportionality constant between the heat
Q that the object absorbs or loses and the resulting temperature change �T of
the object; that is,

Q � C �T � C(Tf � Ti), (18-13)

in which Ti and Tf are the initial and final temperatures of the object. Heat
capacity C has the unit of energy per degree or energy per kelvin. The heat
capacity C of, say, a marble slab used in a bun warmer might be 179 cal/C�, which
we can also write as 179 cal/K or as 749 J/K.

The word “capacity” in this context is really misleading in that it suggests analogy
with the capacity of a bucket to hold water. That analogy is false, and you should not
think of the object as “containing” heat or being limited in its ability to absorb heat.
Heat transfer can proceed without limit as long as the necessary temperature differ-
ence is maintained.The object may,of course,melt or vaporize during the process.

Specific Heat
Two objects made of the same material—say, marble—will have heat capacities
proportional to their masses. It is therefore convenient to define a “heat capacity
per unit mass” or specific heat c that refers not to an object but to a unit mass of
the material of which the object is made. Equation 18-13 then becomes

Q � cm �T � cm(Tf � Ti). (18-14)

Through experiment we would find that although the heat capacity of a particu-
lar marble slab might be 179 cal/C� (or 749 J/K), the specific heat of marble itself
(in that slab or in any other marble object) is 0.21 cal/g �C� (or 880 J/kg �K).
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We are led then to this definition of heat:

Heat is the energy transferred between a system and its environment because of
a temperature difference that exists between them.



From the way the calorie and the British thermal unit were initially defined,
the specific heat of water is

c � 1 cal/g �C� � 1 Btu/lb �F� � 4186.8 J/kg �K. (18-15)

Table 18-3 shows the specific heats of some substances at room temperature.
Note that the value for water is relatively high.The specific heat of any substance
actually depends somewhat on temperature, but the values in Table 18-3 apply
reasonably well in a range of temperatures near room temperature.
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Table 18-3 Some Specific Heats
and Molar Specific Heats at Room
Temperature

Molar
Specific

Specific Heat Heat

cal J J

Substance g �K kg �K mol �K

Elemental
Solids

Lead 0.0305 128 26.5
Tungsten 0.0321 134 24.8
Silver 0.0564 236 25.5
Copper 0.0923 386 24.5
Aluminum 0.215 900 24.4
Other Solids

Brass 0.092 380
Granite 0.19 790
Glass 0.20 840
Ice (�10�C) 0.530 2220
Liquids

Mercury 0.033 140
Ethyl
alcohol 0.58 2430

Seawater 0.93 3900
Water 1.00 4187

Checkpoint 3
A certain amount of heat Q will warm 1 g of material A by 3 C� and 1 g of material B
by 4 C�.Which material has the greater specific heat?

Molar Specific Heat
In many instances the most convenient unit for specifying the amount of a
substance is the mole (mol), where

1 mol � 6.02 � 1023 elementary units

of any substance. Thus 1 mol of aluminum means 6.02 � 1023 atoms (the atom is
the elementary unit), and 1 mol of aluminum oxide means 6.02 � 1023 molecules
(the molecule is the elementary unit of the compound).

When quantities are expressed in moles, specific heats must also involve
moles (rather than a mass unit); they are then called molar specific heats.
Table 18-3 shows the values for some elemental solids (each consisting of a single
element) at room temperature.

An Important Point
In determining and then using the specific heat of any substance, we need to
know the conditions under which energy is transferred as heat. For solids and
liquids, we usually assume that the sample is under constant pressure (usually
atmospheric) during the transfer. It is also conceivable that the sample is held at
constant volume while the heat is absorbed. This means that thermal expansion
of the sample is prevented by applying external pressure. For solids and liquids,
this is very hard to arrange experimentally, but the effect can be calculated, and it
turns out that the specific heats under constant pressure and constant volume for
any solid or liquid differ usually by no more than a few percent. Gases, as you will
see, have quite different values for their specific heats under constant-pressure
conditions and under constant-volume conditions.

Heats of Transformation
When energy is absorbed as heat by a solid or liquid, the temperature of the sample
does not necessarily rise. Instead, the sample may change from one phase, or state,
to another. Matter can exist in three common states: In the solid state, the mole-
cules of a sample are locked into a fairly rigid structure by their mutual attraction.
In the liquid state, the molecules have more energy and move about more. They
may form brief clusters, but the sample does not have a rigid structure and can flow
or settle into a container. In the gas, or vapor, state, the molecules have even more
energy, are free of one another, and can fill up the full volume of a container.

Melting. To melt a solid means to change it from the solid state to the liquid
state. The process requires energy because the molecules of the solid must be
freed from their rigid structure. Melting an ice cube to form liquid water is a com-
mon example. To freeze a liquid to form a solid is the reverse of melting and re-
quires that energy be removed from the liquid, so that the molecules can settle
into a rigid structure.



Table 18-4 Some Heats of Transformation

Melting Boiling

Substance Melting Point (K) Heat of Fusion LF (kJ/kg) Boiling Point (K) Heat of Vaporization LV (kJ/kg)

Hydrogen 14.0 58.0 20.3 455
Oxygen 54.8 13.9 90.2 213
Mercury 234 11.4 630 296
Water 273 333 373 2256
Lead 601 23.2 2017 858
Silver 1235 105 2323 2336
Copper 1356 207 2868 4730

Vaporizing. To vaporize a liquid means to change it from the liquid state
to the vapor (gas) state. This process, like melting, requires energy because the
molecules must be freed from their clusters. Boiling liquid water to transfer it
to water vapor (or steam — a gas of individual water molecules) is a common
example. Condensing a gas to form a liquid is the reverse of vaporizing; it
requires that energy be removed from the gas, so that the molecules can cluster
instead of flying away from one another.

The amount of energy per unit mass that must be transferred as heat when a
sample completely undergoes a phase change is called the heat of transformation
L.Thus, when a sample of mass m completely undergoes a phase change, the total
energy transferred is

Q � Lm. (18-16)

When the phase change is from liquid to gas (then the sample must absorb heat)
or from gas to liquid (then the sample must release heat), the heat of transfor-
mation is called the heat of vaporization LV. For water at its normal boiling or
condensation temperature,

LV � 539 cal/g � 40.7 kJ/mol � 2256 kJ/kg. (18-17)

When the phase change is from solid to liquid (then the sample must absorb
heat) or from liquid to solid (then the sample must release heat), the heat of
transformation is called the heat of fusion LF. For water at its normal freezing or
melting temperature,

LF � 79.5 cal/g � 6.01 kJ/mol � 333 kJ/kg. (18-18)

Table 18-4 shows the heats of transformation for some substances.
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can occur. (2) Because nothing in the system undergoes a
phase change, the thermal energy transfers can only change
the temperatures.

Calculations: To relate the transfers to the temperature
changes, we can use Eqs. 18-13 and 18-14 to write

for the water: Qw � cwmw(Tf � Ti); (18-19)
for the beaker: Qb � Cb(Tf � Ti); (18-20)
for the copper: Qc � ccmc(Tf � T). (18-21)

Because the total energy of the system cannot change, the
sum of these three energy transfers is zero:

Qw � Qb � Qc � 0. (18-22)

Sample Problem 18.03 Hot slug in water, coming to equilibrium

A copper slug whose mass mc is 75 g is heated in a laboratory
oven to a temperature T of 312°C. The slug is then dropped
into a glass beaker containing a mass mw � 220 g of water.
The heat capacity Cb of the beaker is 45 cal/K. The initial
temperature Ti of the water and the beaker is 12°C.Assuming
that the slug, beaker, and water are an isolated system and the
water does not vaporize, find the final temperature Tf of the
system at thermal equilibrium.

KEY IDEAS

(1) Because the system is isolated, the system’s total energy
cannot change and only internal transfers of thermal energy
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Q3 � cliqm(Tf � Ti)

� (4186.8 J/kg �K)(0.720 kg)(15�C � 0°C)

� 45 217 J � 45.22 kJ.

Total: The total required heat Qtot is the sum of the
amounts required in the three steps:

Qtot � Q1 � Q2 � Q3

� 15.98 kJ � 239.8 kJ � 45.22 kJ
� 300 kJ. (Answer)

Note that most of the energy goes into melting the ice rather
than raising the temperature.

(b) If we supply the ice with a total energy of only 210 kJ (as
heat), what are the final state and temperature of the water?

KEY IDEA

From step 1, we know that 15.98 kJ is needed to raise the
temperature of the ice to the melting point. The remaining
heat Qrem is then 210 kJ � 15.98 kJ, or about 194 kJ. From
step 2, we can see that this amount of heat is insufficient to
melt all the ice. Because the melting of the ice is incomplete,
we must end up with a mixture of ice and liquid; the temper-
ature of the mixture must be the freezing point, 0�C.

Calculations: We can find the mass m of ice that is melted by
the available energy Qrem by using Eq. 18-16 with LF:

Thus, the mass of the ice that remains is 720 g � 580 g, or
140 g, and we have

580 g water and 140 g ice, at 0�C. (Answer)

m �
Qrem

LF
�

194 kJ
333 kJ/kg

� 0.583 kg � 580 g.

Sample Problem 18.04 Heat to change temperature and state

(a) How much heat must be absorbed by ice of mass m �
720 g at �10�C to take it to the liquid state at 15�C?

KEY IDEAS

The heating process is accomplished in three steps: (1) The
ice cannot melt at a temperature below the freezing
point — so initially, any energy transferred to the ice as
heat can only increase the temperature of the ice, until 0�C is
reached. (2) The temperature then cannot increase until all
the ice melts—so any energy transferred to the ice as heat
now can only change ice to liquid water, until all the ice melts.
(3) Now the energy transferred to the liquid water as heat can
only increase the temperature of the liquid water.

Warming the ice: The heat Q1 needed to take the ice from
the initial Ti � �10�C to the final Tf � 0�C (so that the ice
can then melt) is given by Eq. 18-14 (Q � cm �T). Using the
specific heat of ice cice in Table 18-3 gives us

Q1 � cicem(Tf � Ti)

� (2220 J/kg �K)(0.720 kg)[0�C � (�10�C)]

� 15 984 J � 15.98 kJ.

Melting the ice: The heat Q2 needed to melt all the ice is
given by Eq. 18-16 (Q � Lm). Here L is the heat of fusion
LF, with the value given in Eq. 18-18 and Table 18-4.We find

Q2 � LF m � (333 kJ/kg)(0.720 kg) � 239.8 kJ.

Warming the liquid: The heat Q3 needed to increase the
temperature of the water from the initial value Ti � 0�C to
the final value Tf � 15�C is given by Eq. 18-14 (with the spe-
cific heat of liquid water cliq):

Substituting Eqs. 18-19 through 18-21 into Eq. 18-22 yields

cwmw(Tf � Ti) � Cb(Tf � Ti) � ccmc(Tf � T) � 0. (18-23)

Temperatures are contained in Eq. 18-23 only as differences.
Thus, because the differences on the Celsius and Kelvin
scales are identical, we can use either of those scales in this
equation. Solving it for Tf, we obtain

Using Celsius temperatures and taking values for cc and cw

from Table 18-3, we find the numerator to be

(0.0923 cal/g �K)(75 g)(312�C) � (45 cal/K)(12�C)

� (1.00 cal/g �K)(220 g)(12�C) � 5339.8 cal,

Tf �
cc mcT � CbTi � cw mwTi

cw mw � Cb � cc mc
.

and the denominator to be

(1.00 cal/g �K)(220 g) � 45 cal/K

� (0.0923 cal/g �K)(75 g) � 271.9 cal/C�.

We then have

(Answer)

From the given data you can show that

Qw � 1670 cal, Qb � 342 cal, Qc � �2020 cal.

Apart from rounding errors, the algebraic sum of these
three heat transfers is indeed zero, as required by the con-
servation of energy (Eq. 18-22).

Tf �
5339.8 cal

271.9 cal/C�
� 19.6�C � 20�C.

Additional examples, video, and practice available at WileyPLUS
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A Closer Look at Heat and Work
Here we look in some detail at how energy can be transferred as heat and work
between a system and its environment. Let us take as our system a gas confined
to a cylinder with a movable piston, as in Fig. 18-13. The upward force on the pis-
ton due to the pressure of the confined gas is equal to the weight of lead shot
loaded onto the top of the piston.The walls of the cylinder are made of insulating
material that does not allow any transfer of energy as heat. The bottom of the
cylinder rests on a reservoir for thermal energy, a thermal reservoir (perhaps a hot
plate) whose temperature T you can control by turning a knob.

The system (the gas) starts from an initial state i, described by a pressure pi,
a volume Vi, and a temperature Ti. You want to change the system to a final
state f, described by a pressure pf, a volume Vf , and a temperature Tf . The proce-
dure by which you change the system from its initial state to its final state is
called a thermodynamic process. During such a process, energy may be trans-

18-5 THE FIRST LAW OF THERMODYNAMICS

After reading this module, you should be able to . . .

18.20 If an enclosed gas expands or contracts, calculate the
work W done by the gas by integrating the gas pressure
with respect to the volume of the enclosure.

18.21 Identify the algebraic sign of work W associated with
expansion and contraction of a gas.

18.22 Given a p-V graph of pressure versus volume for a
process, identify the starting point (the initial state) and the
final point (the final state) and calculate the work by using
graphical integration.

18.23 On a p-V graph of pressure versus volume for a gas,
identify the algebraic sign of the work associated with a
right-going process and a left-going process.

18.24 Apply the first law of thermodynamics to relate the
change in the internal energy �Eint of a gas, the energy Q
transferred as heat to or from the gas, and the work W
done on or by the gas.

18.25 Identify the algebraic sign of a heat transfer Q that is
associated with a transfer to a gas and a transfer from
the gas.

18.26 Identify that the internal energy �Eint of a gas 
tends to increase if the heat transfer is to the gas, 
and it tends to decrease if the gas does work on its 
environment.

18.27 Identify that in an adiabatic process with a gas, there
is no heat transfer Q with the environment.

18.28 Identify that in a constant-volume process with a gas,
there is no work W done by the gas.

18.29 Identify that in a cyclical process with a gas, there is
no net change in the internal energy �Eint.

18.30 Identify that in a free expansion with a gas, the heat
transfer Q, work done W, and change in internal energy
�Eint are each zero.

Learning Objectives

● A gas may exchange energy with its surroundings through work.
The amount of work W done by a gas as it expands or contracts
from an initial volume Vi to a final volume Vf is given by

The integration is necessary because the pressure p may vary
during the volume change.

● The principle of conservation of energy for a thermody-
namic process is expressed in the first law of thermodynam-
ics, which may assume either of the forms

�Eint � Eint, f � Eint, i � Q � W (first law)

or dEint � dQ � dW (first law).

Eint represents the internal energy of the material, 
which depends only on the material’s state (temperature,

W � �dW � �Vf

Vi

p dV.

Key Ideas
pressure, and volume). Q represents the energy exchanged
as heat between the system and its surroundings; Q is posi-
tive if the system absorbs heat and negative if the system
loses heat. W is the work done by the system; W is positive
if the system expands against an external force from the sur-
roundings and negative if the system contracts because of
an external force. 

● Q and W are path dependent; �Eint is path independent.

● The first law of thermodynamics finds application in several
special cases:

adiabatic processes: Q � 0, �Eint � �W

constant-volume processes: W � 0, �Eint � Q

cyclical processes: �Eint � 0, Q � W

free expansions: Q � W � �Eint � 0
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Lead shot 

W

Insulation

Thermal reservoir 
T

Control knob 

Q

The gas does work
on this piston.

We control the heat transfer
by adjusting the temperature.

Figure 18-13 A gas is confined to a cylinder
with a movable piston. Heat Q can be
added to or withdrawn from the gas by reg-
ulating the temperature T of the adjustable
thermal reservoir.Work W can be done by
the gas by raising or lowering the piston.

ferred into the system from the thermal reservoir (positive heat) or vice versa
(negative heat). Also, work can be done by the system to raise the loaded piston
(positive work) or lower it (negative work). We assume that all such changes
occur slowly, with the result that the system is always in (approximate) thermal
equilibrium (every part is always in thermal equilibrium).

Suppose that you remove a few lead shot from the piston of Fig. 18-13, allowing
the gas to push the piston and remaining shot upward through a differential dis-
placement d with an upward force . Since the displacement is tiny, we can as-
sume that is constant during the displacement. Then has a magnitude that is
equal to pA, where p is the pressure of the gas and A is the face area of the piston.
The differential work dW done by the gas during the displacement is

dW � �d � (pA)(ds) � p(A ds)

� p dV, (18-24)

in which dV is the differential change in the volume of the gas due to the move-
ment of the piston. When you have removed enough shot to allow the gas to
change its volume from Vi to Vf , the total work done by the gas is

(18-25)

During the volume change, the pressure and temperature may also change. To
evaluate Eq. 18-25 directly, we would need to know how pressure varies with vol-
ume for the actual process by which the system changes from state i to state f.

One Path. There are actually many ways to take the gas from state i to state f.
One way is shown in Fig. 18-14a, which is a plot of the pressure of the gas versus its
volume and which is called a p-V diagram. In Fig. 18-14a, the curve indicates that the

W � �dW � �Vf

Vi

p dV.

s:F
:

F
:

F
:

F
:

s:

Figure 18-14 (a) The shaded
area represents the work W
done by a system as it goes
from an initial state i to a fi-
nal state f. Work W is posi-
tive because the system’s
volume increases. (b) W is
still positive, but now
greater. (c) W is still posi-
tive, but now smaller. (d) W
can be even smaller (path
icdf ) or larger (path ighf).
(e) Here the system goes
from state f to state i as the
gas is compressed to less
volume by an external
force.The work W done by
the system is now negative.
( f ) The net work Wnet done
by the system during
a complete cycle is repre-
sented by the shaded area.
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We can control how
much work it does.

Moving from f to i,
it does negative work.

Cycling clockwise
yields a positive net
work.

Gas moves from i to f,
doing positive work.

It still goes from i to f,
but now it does more
work.

It still goes from i to f,
but now it does less
work.

A
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Checkpoint 4
The p-V diagram here shows six curved paths
(connected by vertical paths) that can be followed
by a gas.Which two of the curved paths should be
part of a closed cycle (those curved paths plus
connecting vertical paths) if the net work done by
the gas during the cycle is to be at its maximum
positive value?

p

V

b

d

f

a

c

e

pressure decreases as the volume increases. The integral in Eq. 18-25 (and thus the
work W done by the gas) is represented by the shaded area under the curve between
points i and f. Regardless of what exactly we do to take the gas along the curve, that
work is positive, due to the fact that the gas increases its volume by forcing the
piston upward.

Another Path. Another way to get from state i to state f is shown in 
Fig. 18-14b. There the change takes place in two steps — the first from state i to
state a, and the second from state a to state f.

Step ia of this process is carried out at constant pressure, which means that
you leave undisturbed the lead shot that ride on top of the piston in Fig. 18-13.
You cause the volume to increase (from Vi to Vf) by slowly turning up the tem-
perature control knob, raising the temperature of the gas to some higher value
Ta. (Increasing the temperature increases the force from the gas on the piston,
moving it upward.) During this step, positive work is done by the expanding gas
(to lift the loaded piston) and heat is absorbed by the system from the thermal
reservoir (in response to the arbitrarily small temperature differences that you
create as you turn up the temperature).This heat is positive because it is added to
the system.

Step af of the process of Fig. 18-14b is carried out at constant volume, so
you must wedge the piston, preventing it from moving. Then as you use the con-
trol knob to decrease the temperature, you find that the pressure drops from
pa to its final value pf. During this step, heat is lost by the system to the thermal
reservoir.

For the overall process iaf , the work W, which is positive and is carried out
only during step ia, is represented by the shaded area under the curve. Energy is
transferred as heat during both steps ia and af, with a net energy transfer Q.

Reversed Steps. Figure 18-14c shows a process in which the previous two
steps are carried out in reverse order. The work W in this case is smaller than for
Fig. 18-14b, as is the net heat absorbed. Figure 18-14d suggests that you can make
the work done by the gas as small as you want (by following a path like icdf ) or as
large as you want (by following a path like ighf ).

To sum up: A system can be taken from a given initial state to a given final
state by an infinite number of processes. Heat may or may not be involved, and in
general, the work W and the heat Q will have different values for different
processes.We say that heat and work are path-dependent quantities.

Negative Work. Figure 18-14e shows an example in which negative work is
done by a system as some external force compresses the system, reducing
its volume. The absolute value of the work done is still equal to the area be-
neath the curve, but because the gas is compressed, the work done by the gas is
negative.

Cycle. Figure 18-14f shows a thermodynamic cycle in which the system is
taken from some initial state i to some other state f and then back to i. The net
work done by the system during the cycle is the sum of the positive work done
during the expansion and the negative work done during the compression.
In Fig. 18-14f , the net work is positive because the area under the expansion
curve (i to f ) is greater than the area under the compression curve ( f to i).
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The First Law of Thermodynamics
You have just seen that when a system changes from a given initial state to a
given final state, both the work W and the heat Q depend on the nature of the
process. Experimentally, however, we find a surprising thing. The quantity Q 2 W
is the same for all processes. It depends only on the initial and final states and
does not depend at all on how the system gets from one to the other. All other
combinations of Q and W, including Q alone, W alone, Q � W, and Q � 2W, are
path dependent; only the quantity Q � W is not.

The quantity Q � W must represent a change in some intrinsic property of
the system.We call this property the internal energy Eint and we write

�Eint � Eint,f � Eint,i � Q � W (first law). (18-26)

Equation 18-26 is the first law of thermodynamics. If the thermodynamic system
undergoes only a differential change, we can write the first law as*

dEint � dQ � dW (first law). (18-27)

In Chapter 8, we discussed the principle of energy conservation as it applies
to isolated systems—that is, to systems in which no energy enters or leaves the
system. The first law of thermodynamics is an extension of that principle to
systems that are not isolated. In such cases, energy may be transferred into or out
of the system as either work W or heat Q. In our statement of the first law of ther-
modynamics above, we assume that there are no changes in the kinetic energy or
the potential energy of the system as a whole; that is, �K � �U � 0.

Rules. Before this chapter, the term work and the symbol W always meant
the work done on a system. However, starting with Eq. 18-24 and continuing
through the next two chapters about thermodynamics, we focus on the work
done by a system, such as the gas in Fig. 18-13.

The work done on a system is always the negative of the work done by the
system, so if we rewrite Eq. 18-26 in terms of the work Won done on the system,
we have �Eint � Q � Won. This tells us the following: The internal energy of a
system tends to increase if heat is absorbed by the system or if positive work is
done on the system. Conversely, the internal energy tends to decrease if heat is
lost by the system or if negative work is done on the system.

*Here dQ and dW, unlike dEint, are not true differentials; that is, there are no such functions as
Q(p, V) and W(p, V) that depend only on the state of the system. The quantities dQ and dW are
called inexact differentials and are usually represented by the symbols d̄Q and d̄W. For our purposes,
we can treat them simply as infinitesimally small energy transfers.

The internal energy Eint of a system tends to increase if energy is added as heat Q
and tends to decrease if energy is lost as work W done by the system.

Checkpoint 5
The figure here shows four paths on a p-V diagram
along which a gas can be taken from state i to state f.
Rank the paths according to (a) the change �Eint in
the internal energy of the gas, (b) the work W done
by the gas, and (c) the magnitude of the energy trans-
ferred as heat Q between the gas and its environment,
greatest first.

i

f

V

p

1

2

3

4
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Figure 18-16 The initial stage of a free-
expansion process.After the stopcock is
opened, the gas fills both chambers and
eventually reaches an equilibrium state.

Vacuum

Insulation

Stopcock

Some Special Cases of the First Law of Thermodynamics
Here are four thermodynamic processes as summarized in Table 18-5.

1. Adiabatic processes.An adiabatic process is one that occurs so rapidly or occurs in
a system that is so well insulated that no transfer of energy as heat occurs between
the system and its environment.Putting Q � 0 in the first law (Eq.18-26) yields

�Eint � �W (adiabatic process). (18-28)

This tells us that if work is done by the system (that is, if W is positive), the
internal energy of the system decreases by the amount of work. Conversely, if
work is done on the system (that is, if W is negative), the internal energy of the
system increases by that amount.

Figure 18-15 shows an idealized adiabatic process. Heat cannot enter or
leave the system because of the insulation. Thus, the only way energy can be
transferred between the system and its environment is by work. If we remove
shot from the piston and allow the gas to expand, the work done by the system
(the gas) is positive and the internal energy of the gas decreases. If, instead, we
add shot and compress the gas, the work done by the system is negative and
the internal energy of the gas increases.

2. Constant-volume processes. If the volume of a system (such as a gas) is held con-
stant, that system can do no work. Putting W � 0 in the first law  (Eq. 18-26) yields

�Eint � Q (constant-volume process). (18-29)

Thus, if heat is absorbed by a system (that is, if Q is positive), the internal
energy of the system increases. Conversely, if heat is lost during the process
(that is, if Q is negative), the internal energy of the system must decrease.

3. Cyclical processes. There are processes in which, after certain interchanges of
heat and work, the system is restored to its initial state. In that case, no intrinsic
property of the system—including its internal energy—can possibly change.
Putting �Eint � 0 in the first law (Eq. 18-26) yields

Q � W (cyclical process). (18-30)

Thus, the net work done during the process must exactly equal the net amount
of energy transferred as heat; the store of internal energy of the system
remains unchanged. Cyclical processes form a closed loop on a p-V plot, as
shown in Fig. 18-14f. We discuss such processes in detail in Chapter 20.

4. Free expansions. These are adiabatic processes in which no transfer of heat
occurs between the system and its environment and no work is done on or by
the system.Thus, Q � W � 0, and the first law requires that

�Eint � 0 (free expansion). (18-31)

Figure 18-16 shows how such an expansion can be carried out.A gas, which is in
thermal equilibrium within itself, is initially confined by a closed stopcock to one
half of an insulated double chamber; the other half is evacuated.The stopcock is
opened, and the gas expands freely to fill both halves of the chamber. No heat is

Table 18-5 The First Law of Thermodynamics: Four Special Cases

The Law: �Eint � Q � W (Eq. 18-26)

Process Restriction Consequence

Adiabatic Q � 0 �Eint � �W

Constant volume W � 0 �Eint � Q

Closed cycle �Eint � 0 Q � W

Free expansion Q � W � 0 �Eint � 0

Figure 18-15 An adiabatic expansion can be
carried out by slowly removing lead shot
from the top of the piston.Adding lead
shot reverses the process at any stage.

Lead shot 

W

Insulation

We slowly remove lead
shot, allowing an expansion
without any heat transfer.
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transferred to or from the gas because of the insulation. No work is done by the
gas because it rushes into a vacuum and thus does not meet any pressure.

A free expansion differs from all other processes we have considered
because it cannot be done slowly and in a controlled way. As a result, at any
given instant during the sudden expansion, the gas is not in thermal equilib-
rium and its pressure is not uniform. Thus, although we can plot the initial and
final states on a p-V diagram, we cannot plot the expansion itself.

Checkpoint 6
For one complete cycle as shown in the p-V diagram here,
are (a) �Eint for the gas and (b) the net energy transferred
as heat Q positive, negative, or zero?

p

V

KEY IDEA

The change in the system’s internal energy is related to the
heat (here, this is energy transferred into the system) and
the work (here, this is energy transferred out of the system)
by the first law of thermodynamics (Eq. 18-26).

Calculation: We write the first law as

�Eint � Q � W � 2256 kJ � 169 kJ

� 2090 kJ � 2.09 MJ. (Answer)

This quantity is positive, indicating that the internal energy
of the system has increased during the boiling process. The
added energy goes into separating the H2O molecules,
which strongly attract one another in the liquid state.We see
that, when water is boiled, about 7.5% (� 169 kJ/2260 kJ) 
of the heat goes into the work of pushing back the atmo-
sphere. The rest of the heat goes into the internal energy
of the system.

Sample Problem 18.05 First law of thermodynamics: work, heat, internal energy change

Let 1.00 kg of liquid water at 100�C be converted to steam at
100�C by boiling at standard atmospheric pressure (which
is 1.00 atm or 1.01 � 105 Pa) in the arrangement of 
Fig. 18-17. The volume of that water changes from an initial
value of 1.00 10�3 m3 as a liquid to 1.671 m3 as steam.

(a) How much work is done by the system during this process?

KEY IDEAS

(1) The system must do positive work because the volume in-
creases. (2) We calculate the work W done by integrating the
pressure with respect to the volume (Eq. 18-25).

Calculation: Because here the pressure is constant at 1.01 �
105 Pa, we can take p outside the integral.Thus,

� (1.01 � 105 Pa)(1.671 m3 � 1.00 � 10�3 m3)

� 1.69 � 105 J � 169 kJ. (Answer)

(b) How much energy is transferred as heat during the process?

KEY IDEA

Because the heat causes only a phase change and not a change
in temperature, it is given fully by Eq. 18-16 (Q � Lm).

Calculation: Because the change is from liquid to gaseous
phase, L is the heat of vaporization LV, with the value given
in Eq. 18-17 and Table 18-4.We find

Q � LVm � (2256 kJ/kg)(1.00 kg)

� 2256 kJ � 2260 kJ. (Answer)

(c) What is the change in the system’s internal energy during
the process?

W � �Vf

Vi

p dV � p �Vf

Vi

dV � p(Vf � Vi )

�

Lead shot 

W

Insulation

Thermal reservoir 
T

Control knob 

Q

Liquid water 

Steam

Figure 18-17 Water
boiling at constant
pressure. Energy is
transferred from the
thermal reservoir as
heat until the liquid
water has changed
completely into
steam.Work is done
by the expanding
gas as it lifts the
loaded piston.

Additional examples, video, and practice available at WileyPLUS
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Heat Transfer Mechanisms
We have discussed the transfer of energy as heat between a system and its en-
vironment, but we have not yet described how that transfer takes place.There are
three transfer mechanisms: conduction, convection, and radiation. Let’s next ex-
amine these mechanisms in turn.

Conduction
If you leave the end of a metal poker in a fire for enough time, its handle will get
hot. Energy is transferred from the fire to the handle by (thermal) conduction
along the length of the poker. The vibration amplitudes of the atoms and elec-
trons of the metal at the fire end of the poker become relatively large because
of the high temperature of their environment. These increased vibrational ampli-
tudes, and thus the associated energy, are passed along the poker, from atom to
atom, during collisions between adjacent atoms. In this way, a region of rising
temperature extends itself along the poker to the handle.

Consider a slab of face area A and thickness L, whose faces are maintained
at temperatures TH and TC by a hot reservoir and a cold reservoir, as in Fig. 18-18.
Let Q be the energy that is transferred as heat through the slab, from its hot face
to its cold face, in time t. Experiment shows that the conduction rate Pcond (the

● The rate Pcond at which energy is conducted through a slab
for which one face is maintained at the higher temperature 
TH and the other face is maintained at the lower temperature
TC is

Here each face of the slab has area A, the length of the slab
(the distance between the faces) is L, and k is the thermal
conductivity of the material.

● Convection occurs when temperature differences cause an
energy transfer by motion within a fluid. 

Pcond �
Q
t

� kA
TH � TC

L
.

Key Ideas
● Radiation is an energy transfer via the emission of electro-
magnetic energy. The rate Prad at which an object emits
energy via thermal radiation is

Prad � s´AT4,

where s (� 5.6704 � 10�8 W/m2�K4) is the Stefan –
Boltzmann constant, ´ is the emissivity of the object’s sur-
face, A is its surface area, and T is its surface temperature
(in kelvins). The rate Pabs at which an object absorbs energy
via thermal radiation from its environment, which is at the
uniform temperature Tenv (in kelvins), is

Pabs � s´AT4
env.

Figure 18-18 Thermal conduction. Energy is
transferred as heat from a reservoir at
temperature TH to a cooler reservoir at
temperature TC through a conducting slab
of thickness L and thermal conductivity k.

k

Hot reservoir 
at TH

Cold reservoir 
at TC

L

TCTH >

Q

We assume a steady
transfer of energy as heat.

18-6 HEAT TRANSFER MECHANISMS

After reading this module, you should be able to . . .

18.31 For thermal conduction through a layer, apply the rela-
tionship between the energy-transfer rate Pcond and the
layer’s area A, thermal conductivity k, thickness L, and
temperature difference �T (between its two sides).

18.32 For a composite slab (two or more layers) that has
reached the steady state in which temperatures are no
longer changing, identify that (by the conservation of
energy) the rates of thermal conduction Pcond through the
layers must be equal.

18.33 For thermal conduction through a layer, apply the
relationship between thermal resistance R, thickness L,
and thermal conductivity k.

18.34 Identify that thermal energy can be transferred by 

convection, in which a warmer fluid (gas or liquid) tends to
rise in a cooler fluid.

18.35 In the emission of thermal radiation by an object, apply
the relationship between the energy-transfer rate Prad and
the object’s surface area A, emissivity ´, and surface tem-
perature T (in kelvins).

18.36 In the absorption of thermal radiation by an object,
apply the relationship between the energy-transfer rate
Pabs and the object’s surface area A and emissivity ́ , and
the environmental temperature T (in kelvins).

18.37 Calculate the net energy-transfer rate Pnet of an object
emitting radiation to its environment and absorbing radia-
tion from that environment.

Learning Objectives
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amount of energy transferred per unit time) is

(18-32)

in which k, called the thermal conductivity, is a constant that depends on the
material of which the slab is made. A material that readily transfers energy by
conduction is a good thermal conductor and has a high value of k.Table 18-6 gives
the thermal conductivities of some common metals, gases, and building materials.

Thermal Resistance to Conduction (R-Value)
If you are interested in insulating your house or in keeping cola cans cold on a
picnic, you are more concerned with poor heat conductors than with good ones.
For this reason, the concept of thermal resistance R has been introduced into
engineering practice.The R-value of a slab of thickness L is defined as

(18-33)

The lower the thermal conductivity of the material of which a slab is made, the
higher the R-value of the slab; so something that has a high R-value is a poor ther-
mal conductor and thus a good thermal insulator.

Note that R is a property attributed to a slab of a specified thickness, not to a
material. The commonly used unit for R (which, in the United States at least, is
almost never stated) is the square foot – Fahrenheit degree – hour per British
thermal unit (ft 2�F��h/Btu). (Now you know why the unit is rarely stated.)

Conduction Through a Composite Slab
Figure 18-19 shows a composite slab, consisting of two materials having different
thicknesses L1 and L2 and different thermal conductivities k1 and k2. The tempera-
tures of the outer surfaces of the slab are TH and TC. Each face of the slab has area
A. Let us derive an expression for the conduction rate through the slab under the
assumption that the transfer is a steady-state process; that is, the temperatures
everywhere in the slab and the rate of energy transfer do not change with time.

In the steady state, the conduction rates through the two materials must be
equal.This is the same as saying that the energy transferred through one material
in a certain time must be equal to that transferred through the other material in
the same time. If this were not true, temperatures in the slab would be changing
and we would not have a steady-state situation. Letting TX be the temperature of
the interface between the two materials, we can now use Eq. 18-32 to write

(18-34)

Solving Eq. 18-34 for TX yields, after a little algebra,

(18-35)

Substituting this expression for TX into either equality of Eq. 18-34 yields

(18-36)

We can extend Eq. 18-36 to apply to any number n of materials making up
a slab:

(18-37)

The summation sign in the denominator tells us to add the values of L/k for all
the materials.

Pcond �
A(TH � TC)

� (L/k)
.

Pcond �
A(TH � TC)

L1/k1 � L2/k2
.

TX �
k1L2TC � k2L1TH

k1L2 � k2L1
.

Pcond �
k2A(TH � TX)

L2
�

k1A(TX � TC)
L1

.

R �
L
k

.

Pcond �
Q
t

� kA
TH � TC

L
,

Table 18-6 Some Thermal Conductivities

Substance k (W/m �K)

Metals

Stainless steel 14
Lead 35
Iron 67
Brass 109
Aluminum 235
Copper 401
Silver 428

Gases

Air (dry) 0.026
Helium 0.15
Hydrogen 0.18

Building Materials

Polyurethane foam 0.024
Rock wool 0.043
Fiberglass 0.048
White pine 0.11
Window glass 1.0

Figure 18-19 Heat is transferred at a steady
rate through a composite slab made up of
two different materials with different thick-
nesses and different thermal conductivities.
The steady-state temperature at the interface
of the two materials is TX.

Cold reservoir 
at TC

Hot reservoir 
at TH

k1

L1

Q

TX

k2

L2

The energy
transfer per
second here ...

... equals the 
energy transfer
per second here.
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Figure 18-20 A false-color thermogram re-
veals the rate at which energy is radiated by a
cat.The rate is color-coded, with white and
red indicating the greatest radiation rate.The
nose is cool.

Edward Kinsman/Photo Researchers, Inc.

Checkpoint 7
The figure shows the face and
interface temperatures of a com-
posite slab consisting of four
materials, of identical thicknesses,
through which the heat transfer is steady. Rank the materials according to their ther-
mal conductivities, greatest first.

25°C 15°C 10°C –5.0°C –10°C

a b c d 

Convection
When you look at the flame of a candle or a match, you are watching thermal
energy being transported upward by convection. Such energy transfer occurs
when a fluid, such as air or water, comes in contact with an object whose tem-
perature is higher than that of the fluid. The temperature of the part of the fluid
that is in contact with the hot object increases, and (in most cases) that fluid
expands and thus becomes less dense. Because this expanded fluid is now lighter
than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the
surrounding cooler fluid then flows so as to take the place of the rising warmer
fluid, and the process can then continue.

Convection is part of many natural processes. Atmospheric convection plays
a fundamental role in determining global climate patterns and daily weather vari-
ations. Glider pilots and birds alike seek rising thermals (convection currents of
warm air) that keep them aloft. Huge energy transfers take place within the
oceans by the same process. Finally, energy is transported to the surface of the
Sun from the nuclear furnace at its core by enormous cells of convection, in
which hot gas rises to the surface along the cell core and cooler gas around the
core descends below the surface.

Radiation
The third method by which an object and its environment can exchange energy
as heat is via electromagnetic waves (visible light is one kind of electromag-
netic wave). Energy transferred in this way is often called thermal radiation to
distinguish it from electromagnetic signals (as in, say, television broadcasts) and
from nuclear radiation (energy and particles emitted by nuclei). (To “radiate”
generally means to emit.) When you stand in front of a big fire, you are warmed
by absorbing thermal radiation from the fire; that is, your thermal energy
increases as the fire’s thermal energy decreases. No medium is required for heat
transfer via radiation — the radiation can travel through vacuum from, say, the
Sun to you.

The rate Prad at which an object emits energy via electromagnetic radiation
depends on the object’s surface area A and the temperature T of that area in
kelvins and is given by

Prad � s´AT 4. (18-38)

Here s � 5.6704 � 10�8 W/m2�K4 is called the Stefan–Boltzmann constant after
Josef Stefan (who discovered Eq. 18-38 experimentally in 1879) and Ludwig
Boltzmann (who derived it theoretically soon after). The symbol ´ represents the
emissivity of the object’s surface, which has a value between 0 and 1, depending
on the composition of the surface. A surface with the maximum emissivity of 1.0
is said to be a blackbody radiator, but such a surface is an ideal limit and does not
occur in nature. Note again that the temperature in Eq. 18-38 must be in kelvins
so that a temperature of absolute zero corresponds to no radiation. Note also that
every object whose temperature is above 0 K—including you—emits thermal
radiation. (See Fig. 18-20.)
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The rate Pabs at which an object absorbs energy via thermal radiation from its
environment, which we take to be at uniform temperature Tenv (in kelvins), is

Pabs � s´AT 4
env. (18-39)

The emissivity ́ in Eq. 18-39 is the same as that in Eq. 18-38.An idealized blackbody
radiator, with ´ � 1, will absorb all the radiated energy it intercepts (rather than
sending a portion back away from itself through reflection or scattering).

Because an object both emits and absorbs thermal radiation, its net rate Pnet

of energy exchange due to thermal radiation is

Pnet � Pabs � Prad � s´A(T 4
env � T 4). (18-40)

Pnet is positive if net energy is being absorbed via radiation and negative if it is
being lost via radiation.

Thermal radiation is involved in the numerous medical cases of a dead rat-
tlesnake striking a hand reaching toward it.Pits between each eye and nostril of a rat-
tlesnake (Fig. 18-21) serve as sensors of thermal radiation.When, say, a mouse moves
close to a rattlesnake’s head, the thermal radiation from the mouse triggers these sen-
sors, causing a reflex action in which the snake strikes the mouse with its fangs and in-
jects its venom. The thermal radiation from a reaching hand can cause the same re-
flex action even if the snake has been dead for as long as 30 min because the snake’s
nervous system continues to function. As one snake expert advised, if you must re-
move a recently killed rattlesnake,use a long stick rather than your hand.

Figure 18-21 A rattlesnake’s face has thermal 
radiation detectors, allowing the snake to
strike at an animal even in complete darkness.

© David A. Northcott/Corbis Images

Additional examples, video, and practice available at WileyPLUS

KEY IDEAS

(1) Temperature T4 helps determine the rate Pd at which en-
ergy is conducted through the brick, as given by Eq. 18-32.
However, we lack enough data to solve Eq. 18-32 for T4.
(2) Because the conduction is steady, the conduction rate Pd

through the brick must equal the conduction rate Pa through
the pine.That gets us going.

Calculations: From Eq. 18-32 and Fig. 18-22, we can write

Setting Pa � Pd and solving for T4 yield

Letting Ld � 2.0La and kd � 5.0ka, and inserting the known
temperatures, we find

� �8.0�C. (Answer)

T4 �
ka(2.0La)
(5.0ka)La

 (25�C � 20�C) � (�10�C)

T4 �
kaLd

kdLa
 (T1 � T2) � T5.

Pa � kaA
T1 � T2

La
  and  Pd � kdA

T4 � T5

Ld
.

Sample Problem 18.06 Thermal conduction through a layered wall

Figure 18-22 shows the cross section of a wall made of
white pine of thickness La and brick of thickness Ld

(� 2.0La), sandwiching two layers of unknown material
with identical thicknesses and thermal conductivities. The
thermal conductivity of the pine is ka and that of the brick
is kd (� 5.0ka). The face area A of the wall is unknown.
Thermal conduction through the wall has reached the
steady state; the only known interface temperatures 
are T1 � 25�C, T2 � 20�C, and T5 � �10�C. What is inter-
face temperature T4?

Figure 18-22 Steady-state heat transfer through a wall.

Indoors Outdoors

(a) (b) (d)(c)

La Lb Lc Ld

ka kb kc kd

T1 T2 T3 T4 T5

The energy transfer
per second is the
same in each layer.
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KEY IDEAS

(1) In a steady-state situation, a surface with area A, emissivity
´, and temperature T loses energy to thermal radiation at the
rate given by Eq. 18-38 (Prad s´AT 4). (2) Simultaneously,
it gains energy by thermal radiation from its environment
at temperature Tenv at the rate given by Eq. 18-39 (Penv �
s´ ).

Calculations: To find the net rate of energy exchange, we
subtract Eq. 18-38 from Eq. 18-39 to write

Pnet � Pabs � Prad

� s´A( � T 4). (18-41)

We need the area of the curved surface of the cylinder,
which is A � h(2pR). We also need the temperatures in
kelvins: Tenv � 273 K � 3 K � 270 K and T � 273 K �
22 K � 295 K. Substituting in Eq. 18-41 for A and then
substituting known values in SI units (which are not dis-
played here), we find

Pnet � (5.67 � 10�8)(0.80)(0.050)(2p)(0.015)(2704 � 2954)

� �0.48 W. (Answer)

Thus, the plant has a net loss of energy via thermal radiation
of 0.48 W. The plant’s energy production rate is comparable
to that of a hummingbird in flight.

T4
env

AT4
env

�

Sample Problem 18.07 Thermal radiation by a skunk cabbage can melt surrounding snow

Unlike most other plants, a skunk cabbage can regulate its
internal temperature (set at T � 22�C) by altering the rate
at which it produces energy. If it becomes covered with
snow, it can increase that production so that its thermal ra-
diation melts the snow in order to re-expose the plant to
sunlight. Let’s model a skunk cabbage with a cylinder of
height h � 5.0 cm and radius R � 1.5 cm and assume it is
surrounded by a snow wall at temperature Tenv � �3.0�C
(Fig. 18-23). If the emissivity ´ is 0.80, what is the net rate
of energy exchange via thermal radiation between the
plant’s curved side and the snow?

Additional examples, video, and practice available at WileyPLUS

h

R

Figure 18-23 Model of skunk cabbage that has melted snow to uncover
itself.

Temperature; Thermometers Temperature is an SI base
quantity related to our sense of hot and cold. It is measured with a
thermometer, which contains a working substance with a measur-
able property, such as length or pressure, that changes in a regular
way as the substance becomes hotter or colder.

Zeroth Law of Thermodynamics When a thermometer and
some other object are placed in contact with each other, they even-
tually reach thermal equilibrium.The reading of the thermometer is
then taken to be the temperature of the other object. The process
provides consistent and useful temperature measurements because
of the zeroth law of thermodynamics: If bodies A and B are each in
thermal equilibrium with a third body C (the thermometer), then A
and B are in thermal equilibrium with each other.

The Kelvin Temperature Scale In the SI system, tempera-
ture is measured on the Kelvin scale, which is based on the triple
point of water (273.16 K). Other temperatures are then defined by

Review & Summary

use of a constant-volume gas thermometer, in which a sample of gas
is maintained at constant volume so its pressure is proportional to
its temperature. We define the temperature T as measured with a
gas thermometer to be

(18-6)

Here T is in kelvins, and p3 and p are the pressures of the gas at
273.16 K and the measured temperature, respectively.

Celsius and Fahrenheit Scales The Celsius temperature
scale is defined by

TC � T � 273.15�, (18-7)

with T in kelvins.The Fahrenheit temperature scale is defined by

(18-8)TF � 9
5TC � 32�.

T � (273.16 K) � lim
gas:0

p
p3
�.
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Thermal Expansion All objects change size with changes in tem-
perature. For a temperature change �T, a change �L in any linear
dimension L is given by

�L � La �T, (18-9)

in which a is the coefficient of linear expansion. The change �V in
the volume V of a solid or liquid is

�V � Vb �T. (18-10)

Here b � 3a is the material’s coefficient of volume expansion.

Heat Heat Q is energy that is transferred between a system and
its environment because of a temperature difference between
them. It can be measured in joules (J), calories (cal), kilocalories
(Cal or kcal), or British thermal units (Btu), with

1 cal � 3.968 � 10�3 Btu � 4.1868 J. (18-12)

Heat Capacity and Specific Heat If heat Q is absorbed by
an object, the object’s temperature change Tf � Ti is related to Q by

Q � C(Tf � Ti), (18-13)

in which C is the heat capacity of the object. If the object has mass
m, then

Q � cm(Tf � Ti), (18-14)

where c is the specific heat of the material making up the object.
The molar specific heat of a material is the heat capacity
per mole, which means per 6.02 � 1023 elementary units of the
material.

Heat of Transformation Matter can exist in three common
states: solid, liquid, and vapor. Heat absorbed by a material may
change the material’s physical state—for example, from solid to liq-
uid or from liquid to gas.The amount of energy required per unit mass
to change the state (but not the temperature) of a particular material
is its heat of transformation L.Thus,

Q � Lm. (18-16)

The heat of vaporization LV is the amount of energy per unit mass
that must be added to vaporize a liquid or that must be removed to
condense a gas. The heat of fusion LF is the amount of energy per
unit mass that must be added to melt a solid or that must be re-
moved to freeze a liquid.

Work Associated with Volume Change A gas may
exchange energy with its surroundings through work. The amount
of work W done by a gas as it expands or contracts from an initial
volume Vi to a final volume Vf is given by

(18-25)W � �dW � �Vf

Vi

p dV.

The integration is necessary because the pressure p may vary dur-
ing the volume change.

First Law of Thermodynamics The principle of conser-
vation of energy for a thermodynamic process is expressed in the
first law of thermodynamics, which may assume either of the
forms

�Eint � Eint, f � Eint,i � Q � W (first law) (18-26)

or dEint � dQ � dW (first law). (18-27)

Eint represents the internal energy of the material, which depends
only on the material’s state (temperature, pressure, and volume).
Q represents the energy exchanged as heat between the system
and its surroundings; Q is positive if the system absorbs heat and
negative if the system loses heat. W is the work done by the sys-
tem; W is positive if the system expands against an external force
from the surroundings and negative if the system contracts be-
cause of an external force. Q and W are path dependent; �Eint is
path independent.

Applications of the First Law The first law of thermody-
namics finds application in several special cases:

adiabatic processes: Q � 0, �Eint � �W

constant-volume processes: W � 0, �Eint � Q

cyclical processes: �Eint � 0, Q � W

free expansions: Q � W � �Eint � 0

Conduction, Convection, and Radiation The rate Pcond at
which energy is conducted through a slab for which one face is
maintained at the higher temperature TH and the other face is
maintained at the lower temperature TC is

(18-32)

Here each face of the slab has area A, the length of the slab (the
distance between the faces) is L, and k is the thermal conductivity
of the material.

Convection occurs when temperature differences cause an en-
ergy transfer by motion within a fluid.

Radiation is an energy transfer via the emission of electromag-
netic energy. The rate Prad at which an object emits energy via ther-
mal radiation is

Prad � s´AT 4, (18-38)

where s (� 5.6704 � 10�8 W/m2�K4) is the Stefan – Boltzmann
constant, ´ is the emissivity of the object’s surface, A is its surface
area, and T is its surface temperature (in kelvins). The rate Pabs at
which an object absorbs energy via thermal radiation from its envi-
ronment, which is at the uniform temperature Tenv (in kelvins), is

Pabs � s´AT4
env. (18-39)

Pcond �
Q
t

� kA
TH � TC

L
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6 Figure 18-26 shows
three different arrange-
ments of materials 1, 2, and
3 to form a wall. The ther-
mal conductivities are k1 �
k2 � k3.The left side of the
wall is 20 C� higher than
the right side. Rank the arrangements according to (a) the (steady
state) rate of energy conduction through the wall and (b) the tem-
perature difference across material 1, greatest first.

7 Figure 18-27 shows
two closed cycles on 
p-V diagrams for a gas.
The three parts of cycle 1
are of the same length
and shape as those of cy-
cle 2. For each cycle,
should the cycle be tra-
versed clockwise or coun-
terclockwise if (a) the net
work W done by the gas is to be positive and (b) the net energy
transferred by the gas as heat Q is to be positive?

8 For which cycle in Fig. 18-27, traversed clockwise, is (a) W
greater and (b) Q greater?

9 Three different materials of
identical mass are placed one at a
time in a special freezer that can ex-
tract energy from a material at a
certain constant rate. During the
cooling process, each material begins
in the liquid state and ends in the
solid state; Fig. 18-28 shows the tem-
perature T versus time t. (a) For ma-
terial 1, is the specific heat for the liquid state greater than or less than
that for the solid state? Rank the materials according to (b) freezing-
point temperature, (c) specific heat in the liquid state, (d) specific
heat in the solid state, and (e) heat of fusion, all greatest first.

10 A solid cube of edge length r, a solid sphere of radius r, and a
solid hemisphere of radius r, all made of the same material, are
maintained at temperature 300 K in an environment at tempera-
ture 350 K. Rank the objects according to the net rate at which ther-
mal radiation is exchanged with the environment, greatest first.

11 A hot object is dropped into a thermally insulated container of
water, and the object and water are then allowed to come to thermal
equilibrium. The experiment is repeated twice, with different hot ob-
jects. All three objects have the same mass and initial temperature,
and the mass and initial temperature of the water are the same in the
three experiments.For each of the experiments,Fig.18-29 gives graphs
of the temperatures T of the object and the water versus time t. Rank
the graphs according to the specific heats of the objects, greatest first.

2 Figure 18-24 shows three linear
temperature scales, with the freezing
and boiling points of water indicated.
Rank the three scales according to
the size of one degree on them, great-
est first.

3 Materials A, B, and C are solids
that are at their melting tempera-
tures. Material A requires 200 J to melt 4 kg, material B requires
300 J to melt 5 kg, and material C requires 300 J to melt 6 kg. Rank
the materials according to their heats of fusion, greatest first.

4 A sample A of liquid water and a sample B of ice, of identical
mass, are placed in a thermally insulated container and allowed to
come to thermal equilibrium.Figure 18-25a is a sketch of the tempera-
ture T of the samples versus time t. (a) Is the equilibrium temperature
above, below, or at the freezing point of water? (b) In reaching equi-
librium, does the liquid partly freeze, fully freeze, or undergo no freez-
ing? (c) Does the ice partly melt, fully melt,or undergo no melting?

5 Question 4 continued: Graphs b through f of Fig. 18-25 are
additional sketches of T versus t, of which one or more are im-
possible to produce. (a) Which is impossible and why? (b) In the
possible ones, is the equilibrium temperature above, below, or at
the freezing point of water? (c) As the possible situations reach
equilibrium, does the liquid partly freeze, fully freeze, or un-
dergo no freezing? Does the ice partly melt, fully melt, or un-
dergo no melting?

150° 

–50° 

X

120° 

–140° 

Y

60° 

20° 

Z

Figure 18-24 Question 2.
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Figure 18-25 Questions 4 and 5.
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Figure 18-26 Question 6.
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Figure 18-27 Questions 7 and 8.

T
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Figure 18-28 Question 9.

T

t(a)

T

t(b)

T

t(c)

Figure 18-29 Question 11.

1 The initial length L, change in temperature T, and change in
length �L of four rods are given in the following table.
Rank the rods according to their coefficients of thermal expansion,
greatest first.

�

Questions

Rod L (m) �T (C�) �L (m)

a 2 10 4 � 10�4

b 1 20 4 � 10�4

c 2 10 8 � 10�4

d 4 5 4 � 10�4
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•12 An aluminum-alloy rod has a length of 10.000 cm at 20.000�C
and a length of 10.015 cm at the boiling point of water. (a) What is
the length of the rod at the freezing point of water? (b) What is the
temperature if the length of the rod is 10.009 cm?

•13 Find the change in volume of an aluminum sphere with anSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 18-1 Temperature
•1 Suppose the temperature of a gas is 373.15 K when it is at the
boiling point of water. What then is the limiting value of the ratio
of the pressure of the gas at that boiling point to its pressure at the
triple point of water? (Assume the volume of the gas is the same at
both temperatures.)

•2 Two constant-volume gas thermometers are assembled, one
with nitrogen and the other with hydrogen. Both contain enough
gas so that p3 � 80 kPa. (a) What is the difference between the
pressures in the two thermometers if both bulbs are in boiling
water? (Hint: See Fig. 18-6.) (b) Which gas is at higher pressure?

•3 A gas thermometer is con-
structed of two gas-containing bulbs,
each in a water bath, as shown in 
Fig. 18-30.The pressure difference be-
tween the two bulbs is measured by
a mercury manometer as shown.
Appropriate reservoirs, not shown in
the diagram, maintain constant gas volume in the two bulbs. There is
no difference in pressure when both baths are at the triple point of
water. The pressure difference is 120 torr when one bath is at the
triple point and the other is at the boiling point of water. It is 90.0 torr
when one bath is at the triple point and the other is at an unknown
temperature to be measured.What is the unknown temperature?

Module 18-2 The Celsius and Fahrenheit Scales
•4 (a) In 1964, the temperature in the Siberian village of
Oymyakon reached �71�C. What temperature is this on the
Fahrenheit scale? (b) The highest officially recorded temperature in
the continental United States was 134�F in Death Valley, California.
What is this temperature on the Celsius scale?

•5 At what temperature is the Fahrenheit scale reading equal to
(a) twice that of the Celsius scale and (b) half that of the Celsius scale?

••6 On a linear X temperature scale, water freezes at �125.0�X and
boils at 375.0�X. On a linear Y temperature scale, water freezes at
�70.00�Y and boils at �30.00�Y. A temperature of 50.00�Y corre-
sponds to what temperature on the X scale?

••7 Suppose that on a linear temperature scale X, water boilsILW

Figure 18-30 Problem 3.

at �53.5�X and freezes at �170�X. What is a temperature of 340 K
on the X scale? (Approximate water’s boiling point as 373 K.)

Module 18-3 Thermal Expansion
•8 At 20�C, a brass cube has edge length 30 cm. What is the in-
crease in the surface area when it is heated from 20�C to 75�C?

•9 A circular hole in an aluminum plate is 2.725 cm inILW
diameter at 0.000�C. What is its diameter when the temperature of
the plate is raised to 100.0�C?

•10 An aluminum flagpole is 33 m high. By how much does its
length increase as the temperature increases by 15 C�?

•11 What is the volume of a lead ball at 30.00�C if the ball’s vol-
ume at 60.00�C is 50.00 cm3?

pletely filled with glycerin at 22�C. How much glycerin, if any, will
spill out of the cup if the temperature of both the cup and the glyc-
erin is increased to 28�C? (The coefficient of volume expansion of
glycerin is 5.1 � 10�4/C�.)

••18 At 20�C, a rod is exactly 20.05 cm long on a steel
ruler. Both are placed in an oven at 270�C, where the rod now
measures 20.11 cm on the same ruler. What is the coefficient of
linear expansion for the material of which the rod is made?

••19 A vertical glass tube of length L � 1.280 000 m is half
filled with a liquid at 20.000 000�C. How much will the height of
the liquid column change when the tube and liquid are heated to 
30.000 000�C? Use coefficients aglass � 1.000 000 � 10�5/K and
bliquid � 4.000 000 � 10�5/K.

has an interior diameter of 2.992 cm at 25.00�C. At what common
temperature will the ring just slide onto the rod?

••16 When the temperature of a metal cylinder is raised from 0.0�C
to 100�C, its length increases by 0.23%. (a) Find the percent change in
density. (b) What is the metal? Use Table 18-2.

••17 An aluminum cup of 100 cm3 capacity is com-WWWSSM

Radioactive
source

Electric
heater

Clamp
d

Figure 18-31 Problem 20.

Figure 18-32 Problem 21.

initial radius of 10 cm when the sphere is heated from 0.0�C to 100�C.

••14 When the temperature of a copper coin is raised by 100 C�,
its diameter increases by 0.18%. To two significant figures, give the
percent increase in (a) the area of a face, (b) the thickness, (c) the
volume, and (d) the mass of the coin. (e) Calculate the coefficient
of linear expansion of the coin.

••15 A steel rod is 3.000 cm in diameter at 25.00�C.A brass ringILW

L 0

L 0

x

••20 In a certain experiment, a
small radioactive source must
move at selected, extremely slow
speeds. This motion is accom-
plished by fastening the source to
one end of an aluminum rod and
heating the central section of the
rod in a controlled way. If the effective heated section of the rod
in Fig. 18-31 has length d � 2.00 cm, at what constant rate must
the temperature of the rod be changed if the source is to move at
a constant speed of 100 nm/s?

•••21 As a result of a
temperature rise of 32 , a bar
with a crack at its center buckles
upward (Fig. 18-32). The fixed dis-
tance L0 is 3.77 m and the coeffi-
cient of linear expansion of the bar
is 25 � 10�6/ . Find the rise x of
the center.

C�

C�

ILWSSM
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Module 18-4 Absorption of Heat 
•22 One way to keep the contents of a garage from becoming
too cold on a night when a severe subfreezing temperature is forecast
is to put a tub of water in the garage. If the mass of the water is 125 kg
and its initial temperature is 20 C, (a) how much energy must the wa-
ter transfer to its surroundings in order to freeze completely and
(b) what is the lowest possible temperature of the water and its sur-
roundings until that happens?

•23 A small electric immersion heater is used to heat 100 g
of water for a cup of instant coffee. The heater is labeled
“200 watts” (it converts electrical energy to thermal energy at this
rate). Calculate the time required to bring all this water from 
23.0 C to 100 C, ignoring any heat losses.

•24 A certain substance has a mass per mole of 50.0 g/mol. When
314 J is added as heat to a 30.0 g sample, the sample’s temperature
rises from 25.0 C to 45.0 C. What are the (a) specific heat and
(b) molar specific heat of this substance? (c) How many moles are
in the sample?

•25 A certain diet doctor encourages people to diet by drinking
ice water. His theory is that the body must burn off enough fat to
raise the temperature of the water from 0.00�C to the body tem-
perature of 37.0�C. How many liters of ice water would have to be
consumed to burn off 454 g (about 1 lb) of fat, assuming that burn-
ing this much fat requires 3500 Cal be transferred to the ice water?
Why is it not advisable to follow this diet? (One liter � 103 cm3.
The density of water is 1.00 g/cm3.)

•26 What mass of butter, which has a usable energy content of 
6.0 Cal/g (� 6000 cal/g), would be equivalent to the change in grav-
itational potential energy of a 73.0 kg man who ascends from sea
level to the top of Mt. Everest, at elevation 8.84 km? Assume that
the average g for the ascent is 9.80 m/s2.

•27 Calculate the minimum amount of energy, in joules,
required to completely melt 130 g of silver initially at 15.0 C.

•28 How much water remains unfrozen after 50.2 kJ is trans-
ferred as heat from 260 g of liquid water initially at its freezing
point?

••29 In a solar water heater, energy from the Sun is gathered by
water that circulates through tubes in a rooftop collector. The so-
lar radiation enters the collector through a transparent cover and
warms the water in the tubes; this water is pumped into a holding
tank. Assume that the efficiency of the overall system is 20%
(that is, 80% of the incident solar energy is lost from the system).
What collector area is necessary to raise the temperature of 200
L of water in the tank from 20�C to 40°C in 1.0 h when the inten-
sity of incident sunlight is 700 W/m2?

••30 A 0.400 kg sample is placed in a cooling apparatus that re-
moves energy as heat at a con-
stant rate. Figure 18-33 gives
the temperature T of the sam-
ple versus time t; the horizon-
tal scale is set by ts � 80.0 min.
The sample freezes during the
energy removal. The specific
heat of the sample in its initial
liquid phase is 3000 J/kg �K.
What are (a) the sample’s heat
of fusion and (b) its specific
heat in the frozen phase?
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••31 What mass of steam at 100 C must be mixed with 150 g
of ice at its melting point, in a thermally insulated container, to
produce liquid water at 50 C?

••32 The specific heat of a substance varies with temperature ac-
cording to the function c � 0.20 � 0.14T � 0.023T 2, with T in C
and c in cal/g �K. Find the energy required to raise the temperature
of 2.0 g of this substance from 5.0 C to 15 C.

••33 Nonmetric version: (a) How long does a 2.0 � 105 Btu/h water
heater take to raise the temperature of 40 gal of water from 70 F to
100°F? Metric version: (b) How long does a 59 kW water heater take
to raise the temperature of 150 L of water from 21�C to 38�C?

••34 Samples A and B are at different initial temperatures
when they are placed in a thermally insulated container and al-
lowed to come to thermal equilibrium. Figure 18-34a gives their
temperatures T versus time t. Sample A has a mass of 5.0 kg; sam-
ple B has a mass of 1.5 kg. Figure 18-34b is a general plot for
the material of sample B. It shows the temperature change �T that
the material undergoes when energy is transferred to it as heat Q.
The change �T is plotted versus the energy Q per unit mass of the
material, and the scale of the vertical axis is set by �Ts � 4.0 C .
What is the specific heat of sample A?
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Figure 18-33 Problem 30.
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Figure 18-34 Problem 34.

••35 An insulated Thermos contains 130 cm3 of hot coffee at
80.0 C. You put in a 12.0 g ice cube at its melting point to cool the
coffee. By how many degrees has your coffee cooled once the ice
has melted and equilibrium is reached? Treat the coffee as
though it were pure water and neglect energy exchanges with the
environment.

••36 A 150 g copper bowl contains 220 g of water, both at 20.0 C.A
very hot 300 g copper cylinder is dropped into the water, causing the
water to boil, with 5.00 g being converted to steam. The final tem-
perature of the system is 100 C. Neglect energy transfers with the
environment. (a) How much energy (in calories) is transferred to
the water as heat? (b) How much to the bowl? (c) What is the orig-
inal temperature of the cylinder?

••37 A person makes a quantity of iced tea by mixing 500 g of hot
tea (essentially water) with an equal mass of ice at its melting
point.Assume the mixture has negligible energy exchanges with its
environment. If the tea’s initial temperature is Ti � 90 C, when
thermal equilibrium is reached what are (a) the mixture’s tempera-
ture Tf and (b) the remaining mass mf of ice? If Ti � 70 C, when
thermal equilibrium is reached what are (c) Tf and (d) mf?

••38 A 0.530 kg sample of liquid water and a sample of ice are
placed in a thermally insulated container. The container also con-
tains a device that transfers energy as heat from the liquid water
to the ice at a constant rate P, until thermal equilibrium is
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point of �114 C, a heat of vaporization of 879 kJ/kg, a heat of fu-
sion of 109 kJ/kg, and a specific heat of 2.43 kJ/kg�K. How much
energy must be removed from 0.510 kg of ethyl alcohol that is ini-
tially a gas at 78.0 C so that it becomes a solid at �114 C?

••40 Calculate the specific heat of a metal from the following
data. A container made of the metal has a mass of 3.6 kg and con-
tains 14 kg of water. A 1.8 kg piece of the metal initially at a tem-
perature of 180 C is dropped into the water. The container and
water initially have a temperature of 16.0 C, and the final tempera-
ture of the entire (insulated) system is 18.0 C.

•••41 (a) Two 50 g ice cubes are dropped into 200 g
of water in a thermally insulated container. If the water is initially
at 25 C, and the ice comes directly from a freezer at �15 C, what is
the final temperature at thermal equilibrium? (b) What is the final
temperature if only one ice cube is used?
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reached. The temperatures T of the liquid water and the ice are
given in Fig. 18-35 as functions of time t; the horizontal scale is set
by ts � 80.0 min. (a) What is rate P? (b) What is the initial mass of
the ice in the container? (c) When thermal equilibrium is
reached, what is the mass of the ice produced in this process?

state C, and then back to A, as shown in the p-V diagram of Fig. 18-
38a. The vertical scale is set by ps � 40 Pa, and the horizontal scale
is set by Vs � 4.0 m3. (a)–(g) Complete the table in Fig. 18-38b by
inserting a plus sign, a minus sign, or a zero in each indicated cell.
(h) What is the net work done by the system as it moves once
through the cycle ABCA?
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Al

d

D

Cu

Pr
es

su
re

 (
Pa

)

p0

V0 4.0V0

C
B

A

Volume (m3)

0

Figure 18-37 Problem 43.

Figure 18-38 Problem 44.••39 Ethyl alcohol has a boiling point of 78.0 C, a freezing�

•45 A gas within a
closed chamber undergoes the
cycle shown in the p-V diagram
of Fig. 18-39. The horizontal
scale is set by Vs � 4.0 m3.
Calculate the net energy added
to the system as heat during
one complete cycle.

•46 Suppose 200 J of work is
done on a system and 70.0 cal is
extracted from the system as
heat. In the sense of the first law
of thermodynamics, what are
the values (including algebraic signs) of (a) W, (b) Q, and (c) �Eint?

••47 When a system is taken from state i to state fWWWSSM
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along path iaf in Fig. 18-40, Q � 50 cal and W � 20 cal. Along path 
ibf, Q � 36 cal. (a) What is W along path ibf? (b) If W � �13 cal
for the return path fi, what is Q for this path? (c) If Eint,i � 10 cal,
what is Eint, f? If Eint,b � 22 cal, what is Q for (d) path ib and (e)
path bf ?
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Figure 18-35 Problem 38.

•••42 A 20.0 g copper ring at
0.000 C has an inner diameter of 
D � 2.54000 cm. An aluminum
sphere at 100.0 C has a diameter
of d � 2.545 08 cm. The sphere is
put on top of the ring (Fig. 18-36),
and the two are allowed to come
to thermal equilibrium, with no
heat lost to the surroundings. The
sphere just passes through the
ring at the equilibrium tempera-
ture. What is the mass of the
sphere?

Module 18-5 The First Law of
Thermodynamics
•43 In Fig. 18-37, a gas sample ex-
pands from V0 to 4.0V0 while its
pressure decreases from p0 to
p0/4.0. If V0 � 1.0 m3 and p0 � 40
Pa, how much work is done by the
gas if its pressure changes with vol-
ume via (a) path A, (b) path B, and
(c) path C?

•44 A thermodynamic system
is taken from state A to state B to
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••48 As a gas is held within a
closed chamber, it passes through the
cycle shown in Fig. 18-41. Determine
the energy transferred by the system
as heat during constant-pressure
process CA if the energy added as heat
QAB during constant-volume process
AB is 20.0 J, no energy is transferred
as heat during adiabatic process BC,
and the net work done during the cycle
is 15.0 J.
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••49 Figure 18-42 represents a
closed cycle for a gas (the figure is not
drawn to scale).The change in the inter-
nal energy of the gas as it moves from a
to c along the path abc is �200 J.
As it moves from c to d, 180 J must be
transferred to it as heat. An additional
transfer of 80 J to it as heat is needed as
it moves from d to a. How much work is
done on the gas as it moves from c to d?

••50 A lab sample of gas is taken
through cycle abca shown in the p-V
diagram of Fig. 18-43. The net work
done is �1.2 J. Along path ab, the
change in the internal energy is �3.0 J
and the magnitude of the work done
is 5.0 J. Along path ca, the energy
transferred to the gas as heat is �2.5
J. How much energy is transferred as
heat along (a) path ab and (b) path bc?

a beehive, several hundred of the bees quickly form a compact
ball around the hornet to stop it. They don’t sting, bite, crush, or
suffocate it. Rather they overheat it by quickly raising their body
temperatures from the normal 35 C to 47 C or 48 C, which is
lethal to the hornet but not to the bees (Fig. 18-44). Assume the
following: 500 bees form a ball of radius R � 2.0 cm for a time t �
20 min, the primary loss of energy by the ball is by thermal radia-
tion, the ball’s surface has emissivity ´ � 0.80, and the ball has a
uniform temperature. On average, how much additional energy
must each bee produce during the 20 min to maintain 47 C?

••57 (a) What is the rate of energy loss in watts per square meter
through a glass window 3.0 mm thick if the outside temperature is
�20 F and the inside temperature is �72 F? (b) A storm window
having the same thickness of glass is installed parallel to the first
window, with an air gap of 7.5 cm between the two windows. What
now is the rate of energy loss if conduction is the only important
energy-loss mechanism?

••58 A solid cylinder of radius r1 � 2.5 cm, length h1 � 5.0 cm,
emissivity 0.85, and temperature 30 C is suspended in an environ-
ment of temperature 50 C. (a) What is the cylinder’s net thermal
radiation transfer rate P1? (b) If the cylinder is stretched until its
radius is r2 � 0.50 cm, its net thermal radiation transfer rate be-
comes P2.What is the ratio P2 /P1?
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Figure 18-44
Problem 56. © Dr. Masato Ono, Tamagawa University

Module 18-6 Heat Transfer Mechanisms
•51 A sphere of radius 0.500 m, temperature 27.0 C, and emissiv-
ity 0.850 is located in an environment of temperature 77.0 C. At
what rate does the sphere (a) emit and (b) absorb thermal radia-
tion? (c) What is the sphere’s net rate of energy exchange?

•52 The ceiling of a single-family dwelling in a cold climate
should have an R-value of 30. To give such insulation, how thick
would a layer of (a) polyurethane foam and (b) silver have to be?

•53 Consider the slab shown in Fig. 18-18. Suppose thatSSM
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L � 25.0 cm, A � 90.0 cm2, and the material is copper. If TH �
125 C, TC � 10.0 C, and a steady state is reached, find the conduc-
tion rate through the slab.

•54 If you were to walk briefly in space without a spacesuit
while far from the Sun (as an astronaut does in the movie 2001, A
Space Odyssey), you would feel the cold of space—while you radi-
ated energy, you would absorb almost none from your environ-
ment. (a) At what rate would you lose energy? (b) How much en-
ergy would you lose in 30 s? Assume that your emissivity is 0.90,
and estimate other data needed in the calculations.

•55 A cylindrical copper rod of length 1.2 m and cross-sectional
area 4.8 cm2 is insulated along its side.The ends are held at a temper-
ature difference of 100 C by having one end in a water–ice mixture
and the other in a mixture of boiling water and steam. At what rate
(a) is energy conducted by the rod and (b) does the ice melt?

••56 The giant hornet Vespa mandarinia japonica preys on
Japanese bees. However, if one of the hornets attempts to invade
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••59 In Fig. 18-45a, two identical rec-
tangular rods of metal are welded end
to end, with a temperature of T1 � 0 C
on the left side and a temperature 
of T2 � 100 C on the right side. In 
2.0 min, 10 J is conducted at a constant
rate from the right side to the left side.
How much time would be required to
conduct 10 J if the rods were welded
side to side as in Fig. 18-45b?

••60 Figure 18-46 shows the cross
section of a wall made of three layers.
The layer thicknesses are L1, L2 �
0.700L1, and L3 � 0.350L1. The ther-
mal conductivities are k1, k2 �
0.900k1, and k3 0.800k1. The temper-
atures at the left side and right side of
the wall are TH � 30.0 C and TC ��

�

�

�

�15.0 C, respectively. Thermal
conduction is steady. (a) What is
the temperature difference �T2

across layer 2 (between the left and
right sides of the layer)? If k2 were,
instead, equal to 1.1k1, (b) would
the rate at which energy is con-
ducted through the wall be greater
than, less than, or the same as pre-
viously, and (c) what would be the
value of �T2?

••61 A 5.0 cm slab has formed
on an outdoor tank of water (Fig.
18-47). The air is at �10�C. Find the
rate of ice formation (centimeters
per hour). The ice has thermal con-
ductivity 0.0040 cal/s �cm �C and
density 0.92 g/cm3. Assume there is

�

SSM

�

no energy transfer through the walls or bottom.



temperature of 100 C. Water has density r � 1000 kg/m3, and the�
skillet has a constant temperature Ts � 300 C and the drop has a�

utes, an effect named after an early investigator. The longer lifetime
is due to the support of a thin layer of air and water vapor that sepa-
rates the drop from the metal (by distance L in Fig. 18-48). Let L �
0.100 mm, and assume that the drop is flat with height h � 1.50 mm
and bottom face area A � 4.00 � 10�6 m2. Also assume that the

••62 Leidenfrost effect. A
water drop will last about 1 s on a
hot skillet with a temperature
between 100 C and about 200 C.
However, if the skillet is much hot-
ter, the drop can last several min-

��

Water drop 

Skillet

h
L

Figure 18-48 Problem 62.
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Figure 18-50 Problem 64.
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Figure 18-49 Problem 63.

••64 Penguin huddling. To withstand the harsh weather of
the Antarctic, emperor penguins huddle in groups (Fig. 18-50).
Assume that a penguin is a circular cylinder with a top surface area
a � 0.34 m2 and height h � 1.1 m. Let Pr be the rate at which an in-
dividual penguin radiates energy to the environment (through the
top and the sides); thus NPr is the rate at which N identical, well-
separated penguins radiate. If the penguins huddle closely to form

a huddled cylinder with top surface area Na and height h, the cylin-
der radiates at the rate Ph. If N � 1000, (a) what is the value of the
fraction Ph/NPr and (b) by what percentage does huddling reduce
the total radiation loss?

••65 Ice has formed on a shallow pond, and a steady state has
been reached, with the air above the ice at �5.0 C and the bottom
of the pond at 4.0 C. If the total depth of ice � water is 1.4 m, how
thick is the ice? (Assume that the thermal conductivities of ice and
water are 0.40 and 0.12 cal/m �C �s, respectively.)

•••66 Evaporative cooling of beverages. A cold beverage
can be kept cold even on a warm day if it is slipped into a porous
ceramic container that has been soaked in water. Assume that en-
ergy lost to evaporation matches the net energy gained via the ra-
diation exchange through the top and side surfaces. The container
and beverage have temperature T � 15 C, the environment has
temperature Tenv � 32 C, and the container is a cylinder with 
radius r � 2.2 cm and height 10 cm. Approximate the emissivity as
´ � 1, and neglect other energy exchanges. At what rate dm/dt is
the container losing water mass?

Additional Problems
67 In the extrusion of cold chocolate from a tube, work is done
on the chocolate by the pressure applied by a ram forcing the
chocolate through the tube. The work per unit mass of extruded
chocolate is equal to p/r, where p is the difference between the ap-
plied pressure and the pressure where the chocolate emerges from
the tube, and r is the density of the chocolate. Rather than increas-
ing the temperature of the chocolate, this work melts cocoa fats in
the chocolate.These fats have a heat of fusion of 150 kJ/kg.Assume
that all of the work goes into that melting and that these fats make
up 30% of the chocolate’s mass. What percentage of the fats melt
during the extrusion if p � 5.5 MPa and r � 1200 kg/m3?

68 Icebergs in the North Atlantic present hazards to shipping,
causing the lengths of shipping routes to be increased by about 30%
during the iceberg season. Attempts to destroy icebergs include
planting explosives, bombing, torpedoing, shelling, ramming, and
coating with black soot. Suppose that direct melting of the iceberg, by
placing heat sources in the ice, is tried. How much energy as heat is
required to melt 10% of an iceberg that has a mass of 200 000 metric
tons? (Use 1 metric ton � 1000 kg.)

69 Figure 18-51 displays a closed cycle for
a gas. The change in internal energy along
path ca is �160 J. The energy transferred to
the gas as heat is 200 J along path ab, and 40 J
along path bc. How much work is done by
the gas along (a) path abc and (b) path ab?

70 In a certain solar house, energy from
the Sun is stored in barrels filled with wa-
ter. In a particular winter stretch of five
cloudy days, 1.00 � 10 6 kcal is needed
to maintain the inside of the house at
22.0 C. Assuming that the water in the
barrels is at 50.0 C and that the water
has a density of 1.00 � 10 3 kg/m3, what
volume of water is required?

71 A 0.300 kg sample is placed in a
cooling apparatus that removes energy as
heat at a constant rate of 2.81 W. Figure
18-52 gives the temperature T of the sam-
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supporting layer has thermal conductivity k � 0.026 W/m�K. (a) At
what rate is energy conducted from the skillet to the drop through
the drop’s bottom surface? (b) If conduction is the primary way en-
ergy moves from the skillet to the drop, how long will the drop last?

••63 Figure 18-49 shows (in cross section) a wall consisting of
four layers, with thermal conductivities k1 0.060 W/m �K, k3

0.040 W/m �K, and k4 � 0.12 W/m �K (k2 is not known). The layer
thicknesses are L1 � 1.5 cm, L3 � 2.8 cm, and L4 � 3.5 cm (L2 is
not known). The known temperatures are T1 � 30 C, T12 � 25 C,
and T4 � �10 C. Energy transfer through the wall is steady. What
is interface temperature T34?
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there? The thermal conductivity of ice is 0.400 W/m�K, and the
density of liquid water is 1000 kg/m3.

79 A sample of gas expands from an initial pressure and
volume of 10 Pa and 1.0 m3 to a final volume of 2.0 m3. During the
expansion, the pressure and volume are related by the equation 
p � aV 2, where a � 10 N/m8. Determine the work done by the gas
during this expansion.

80 Figure 18-56a shows a cylinder containing gas and closed by a
movable piston.The cylinder is kept submerged in an ice–water mix-
ture.The piston is quickly pushed down from position 1 to position 2
and then held at position 2 until the gas is again at the temperature of
the ice–water mixture; it then is slowly raised back to position 1.
Figure 18-56b is a p-V diagram for the process. If 100 g of ice is
melted during the cycle, how much work has been done on the gas?

SSM

ple versus time t. The temperature scale is set by Ts � 30 C and the
time scale is set by ts � 20 min.What is the specific heat of the sample?

72 The average rate at which energy is conducted outward
through the ground surface in North America is 54.0 mW/m2, and
the average thermal conductivity of the near-surface rocks is 2.50
W/m �K. Assuming a surface temperature of 10.0 C, find the tem-
perature at a depth of 35.0 km (near the base of the crust). Ignore
the heat generated by the presence of radioactive elements.

73 What is the volume increase of an aluminum cube 5.00 cm on
an edge when heated from 10.0 C to 60.0 C?

74 In a series of experiments,
block B is to be placed in a ther-
mally insulated container with
block A, which has the same mass as
block B. In each experiment, block
B is initially at a certain tempera-
ture TB, but temperature TA of
block A is changed from experi-
ment to experiment. Let Tf repre-
sent the final temperature of the
two blocks when they reach thermal
equilibrium in any of the experi-
ments. Figure 18-53 gives temperature Tf versus the initial tem-
perature TA for a range of possible values of TA, from TA1 � 0 K
to TA2 � 500 K. The vertical axis scale is set by Tfs � 400 K. What
are (a) temperature TB and (b) the ratio cB/cA of the specific
heats of the blocks?

75 Figure 18-54 displays a closed
cycle for a gas. From c to b, 40 J is
transferred from the gas as heat.
From b to a, 130 J is transferred
from the gas as heat, and the mag-
nitude of the work done by the gas
is 80 J. From a to c, 400 J is trans-
ferred to the gas as heat. What is
the work done by the gas from a to
c? (Hint: You need to supply the
plus and minus signs for the given data.)

76 Three equal-length straight rods, of aluminum, Invar, and
steel, all at 20.0 C, form an equilateral triangle with hinge pins at
the vertices. At what temperature will the angle opposite the Invar
rod be 59.95 ? See Appendix E for needed trigonometric formulas
and Table 18-2 for needed data.
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� sides of the icicle or down through the tip because there is no tem-
perature change in those directions. It can lose energy and freeze
only by sending energy up (through distance L) to the top of the
icicle, where the temperature Tr can be below 0 C.Take L � 0.12 m
and Tr � �5 C. Assume that the central tube and the upward con-
duction path both have cross-sectional area A. In terms of A, what
rate is (a) energy conducted upward and (b) mass converted from
liquid to ice at the top of the central tube? (c) At what rate does
the top of the tube move downward because of water freezing
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Figure 18-53 Problem 74.
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77 The temperature of a 0.700 kg cube of ice is decreasedSSM

81 A sample of gas under-
goes a transition from an initial state
a to a final state b by three different
paths (processes), as shown in the p-
V diagram in Fig. 18-57, where Vb �
5.00Vi. The energy transferred to
the gas as heat in process 1 is 10piVi.
In terms of piVi, what are (a) the en-
ergy transferred to the gas as heat in
process 2 and (b) the change in in-
ternal energy that the gas undergoes
in process 3?

82 A copper rod, an aluminum rod, and a brass rod, each of
6.00 m length and 1.00 cm diameter, are placed end to end with the
aluminum rod between the other two. The free end of the copper
rod is maintained at water’s boiling point, and the free end of the
brass rod is maintained at water’s freezing point. What is the
steady-state temperature of (a) the copper–aluminum junction
and (b) the aluminum–brass junction?

83 The temperature of a Pyrex disk is changed from 10.0 C
to 60.0 C. Its initial radius is 8.00 cm; its initial thickness is
0.500 cm. Take these data as being exact. What is the change in the
volume of the disk? (See Table 18-2.)
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Figure 18-57 Problem 81.
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Figure 18-55 Problem 78.

to �150 C. Then energy is gradually transferred to the cube as�
heat while it is otherwise thermally
isolated from its environment. The
total transfer is 0.6993 MJ. Assume
the value of cice given in Table 18-3
is valid for temperatures from
�150 C to 0 C. What is the final
temperature of the water?

78 Icicles. Liquid water
coats an active (growing) icicle and
extends up a short, narrow tube along
the central axis (Fig. 18-55). Because
the water–ice interface must have a
temperature of 0 C, the water in the
tube cannot lose energy through the

�

��
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84 (a) Calculate the rate at which body heat is conducted
through the clothing of a skier in a steady-state process, given the
following data: the body surface area is 1.8 m2, and the clothing is
1.0 cm thick; the skin surface temperature is 33 C and the outer
surface of the clothing is at 1.0 C; the thermal conductivity of the
clothing is 0.040 W/m �K. (b) If, after a fall, the skier’s clothes be-
came soaked with water of thermal conductivity 0.60 W/m �K, by
how much is the rate of conduction multiplied?

85 A 2.50 kg lump of aluminum is heated to 92.0 C and then
dropped into 8.00 kg of water at 5.00 C. Assuming that the
lump–water system is thermally isolated, what is the system’s equi-
librium temperature?

86 A glass window pane is exactly 20 cm by 30 cm at 10 C. By
how much has its area increased when its temperature is 40 C, as-
suming that it can expand freely?

87 A recruit can join the semi-secret “300 F” club at the
Amundsen–Scott South Pole Station only when the outside tem-
perature is below �70 C. On such a day, the recruit first basks in a
hot sauna and then runs outside wearing only shoes. (This is, of
course, extremely dangerous, but the rite is effectively a protest
against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit’s skin
temperature is 102 F and the walls, ceiling, and floor of the sauna
room have a temperature of 30 C. Estimate the recruit’s surface
area, and take the skin emissivity to be 0.80. (a) What is the ap-
proximate net rate Pnet at which the recruit loses energy via ther-
mal radiation exchanges with the room? Next, assume that when
outdoors, half the recruit’s surface area exchanges thermal radia-
tion with the sky at a temperature of �25 C and the other half
exchanges thermal radiation with the snow and ground at a tem-
perature of �80 C. What is the approximate net rate at which the
recruit loses energy via thermal radiation exchanges with (b) the
sky and (c) the snow and ground?

88 A steel rod at 25.0 C is bolted at both ends and then cooled.
At what temperature will it rupture? Use Table 12-1.

89 An athlete needs to lose weight and decides to do it by
“pumping iron.” (a) How many times must an 80.0 kg weight be
lifted a distance of 1.00 m in order to burn off 1.00 lb of fat, assum-
ing that that much fat is equivalent to 3500 Cal? (b) If the weight is
lifted once every 2.00 s, how long does the task take?

90 Soon after Earth was formed, heat released by the decay of ra-
dioactive elements raised the average internal temperature from 300
to 3000 K, at about which value it remains today. Assuming an aver-
age coefficient of volume expansion of 3.0 � 10�5 K�1, by how much
has the radius of Earth increased since the planet was formed?

91 It is possible to melt ice by rubbing one block of it against
another. How much work, in joules, would you have to do to get
1.00 g of ice to melt?

92 A rectangular plate of glass initially has the dimensions 0.200 m
by 0.300 m. The coefficient of linear expansion for the glass is
9.00 � 10�6/K.What is the change in the plate’s area if its tempera-
ture is increased by 20.0 K?

93 Suppose that you intercept 5.0 � 10�3 of the energy radiated
by a hot sphere that has a radius of 0.020 m, an emissivity of 0.80,
and a surface temperature of 500 K. How much energy do you in-
tercept in 2.0 min?

94 A thermometer of mass 0.0550 kg and of specific heat
0.837 kJ/kg �K reads 15.0 C. It is then completely immersed in�
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0.300 kg of water, and it comes to the same final temperature as
the water. If the thermometer then reads 44.4 C, what was the tem-
perature of the water before insertion of the thermometer?

95 A sample of gas expands from
V1 � 1.0 m3 and p1 � 40 Pa to V2 �
4.0 m3 and p2 � 10 Pa along path B in
the p-V diagram in Fig. 18-58. It is
then compressed back to V1 along
either path A or path C. Compute the
net work done by the gas for the
complete cycle along (a) path BA and
(b) path BC.

96 Figure 18-59 shows a composite
bar of length L � L1 � L2 and con-
sisting of two materials. One mate-
rial has length L1 and coeffi-
cient of linear expansion a1;
the other has length L2 and
coefficient of linear expan-
sion a2. (a) What is the coeffi-
cient of linear expansion a for
the composite bar? For a particular composite bar, L is 52.4 cm,
material 1 is steel, and material 2 is brass. If a � 1.3 � 10�5/C�,
what are the lengths (b) L1 and (c) L2?

97 On finding your stove out of order, you decide to boil the wa-
ter for a cup of tea by shaking it in a thermos flask. Suppose that
you use tap water at 19�C, the water falls 32 cm each shake, and
you make 27 shakes each minute. Neglecting any loss of thermal
energy by the flask, how long (in minutes) must you shake the flask
until the water reaches 100�C?

98 The p-V diagram in Fig. 18-60
shows two paths along which a sample
of gas can be taken from state a to state
b, where Vb 3.0V1. Path 1 requires
that energy equal to 5.0p1V1 be trans-
ferred to the gas as heat. Path 2 requires
that energy equal to 5.5p1V1 be trans-
ferred to the gas as heat. What is the ra-
tio p2/p1?

99 A cube of edge length 6.0 � 10�6 m,
emissivity 0.75, and temperature �100�C
floats in an environment at �150�C.What
is the cube’s net thermal radiation transfer rate?

100 A flow calorimeter is a device used to measure the specific
heat of a liquid. Energy is added as heat at a known rate to a
stream of the liquid as it passes through the calorimeter at a
known rate. Measurement of the resulting temperature difference
between the inflow and the outflow points of the liquid stream en-
ables us to compute the specific heat of the liquid. Suppose a liquid
of density 0.85 g/cm3 flows through a calorimeter at the rate of 8.0
cm3/s. When energy is added at the rate of 250 W by means of an
electric heating coil, a temperature difference of 15 C� is estab-
lished in steady-state conditions between the inflow and the out-
flow points.What is the specific heat of the liquid?

101 An object of mass 6.00 kg falls through a height of 50.0 m
and, by means of a mechanical linkage, rotates a paddle wheel
that stirs 0.600 kg of water. Assume that the initial gravitational
potential energy of the object is fully transferred to thermal en-
ergy of the water, which is initially at 15.0 C. What is the temper-
ature rise of the water?
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102 The Pyrex glass mirror in a telescope has a diameter of
170 in. The temperature ranges from �16�C to 32�C on the loca-
tion of the telescope. What is the maximum change in the diam-
eter of the mirror, assuming that the glass can freely expand and
contract?

103 The area A of a rectangular plate is ab � 1.4 m2. Its coeffi-
cient of linear expansion is a � 32 � 10�6/C�. After a tempera-
ture rise �T � 89�C, side a is longer by �a and side b is longer
by �b (Fig. 18-61). Neglecting the small quantity (�a �b)/ab,
find �A.

104 Consider the liquid in a barometer whose coefficient of
volume expansion is 6.6 � 10�4/C�. Find the relative change in the
liquid’s height if the temperature changes by 12 C� while the pres-
sure remains constant. Neglect the expansion of the glass tube.

105 A pendulum clock with a pendulum made of brass is de-
signed to keep accurate time at 23�C. Assume it is a simple pendu-
lum consisting of a bob at one end of a brass rod of negligible mass
that is pivoted about the other end. If the clock operates at 0.0�C,
(a) does it run too fast or too slow, and (b) what is the magnitude of
its error in seconds per hour?

106 A room is lighted by four 100 W incandescent lightbulbs.
(The power of 100 W is the rate at which a bulb converts electrical
energy to heat and the energy of visible light.) Assuming that 73%
of the energy is converted to heat, how much heat does the room
receive in 6.9 h?

107 An energetic athlete can use up all the energy from a diet of
4000 Cal/day. If he were to use up this energy at a steady rate, what
is the ratio of the rate of energy use compared to that of a 100 W
bulb? (The power of 100 W is the rate at which the bulb converts
electrical energy to heat and the energy of visible light.)

108 A 1700 kg Buick moving at 83 km/h brakes to a stop, at uni-
form deceleration and without skidding, over a distance of 93 m.
At what average rate is mechanical energy transferred to thermal
energy in the brake system?
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Figure 18-61 Problem 103.
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The Kinetic Theory of Gases
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19-1 AVOGADRO’S NUMBER

After reading this module, you should be able to . . .

19.01 Identify Avogadro’s number NA.
19.02 Apply the relationship between the number of moles n,

the number of molecules N, and Avogadro’s number NA.

19.03 Apply the relationships between the mass m of a sample,
the molar mass M of the molecules in the sample, the num-
ber of moles n in the sample, and Avogadro’s number NA.

● The kinetic theory of gases relates the macroscopic
properties of gases (for example, pressure and temperature)
to the microscopic properties of gas molecules (for example,
speed and kinetic energy).

● One mole of a substance contains NA (Avogadro’s
number) elementary units (usually atoms or molecules),
where NA is found experimentally to be

NA � 6.02 � 1023 mol�1 (Avogadro’s number).

One molar mass M of any substance is the mass of one mole
of the substance. 

● A mole is related to the mass m of the individual molecules
of the substance by

M � mNA.

● The number of moles n contained in a sample of mass
Msam, consisting of N molecules, is related to the molar
mass M of the molecules and to Avogadro’s number NA

as given by

n �
N

NA
�

Msam

M
�

Msam

mNA
.

Learning Objectives

Key Ideas

What Is Physics?
One of the main subjects in thermodynamics is the physics of gases.A gas consists
of atoms (either individually or bound together as molecules) that fill their con-
tainer’s volume and exert pressure on the container’s walls.We can usually assign
a temperature to such a contained gas. These three variables associated with a
gas—volume, pressure, and temperature—are all a consequence of the motion of
the atoms. The volume is a result of the freedom the atoms have to spread
throughout the container, the pressure is a result of the collisions of the atoms
with the container’s walls, and the temperature has to do with the kinetic energy
of the atoms. The kinetic theory of gases, the focus of this chapter, relates the
motion of the atoms to the volume, pressure, and temperature of the gas.

Applications of the kinetic theory of gases are countless. Automobile engi-
neers are concerned with the combustion of vaporized fuel (a gas) in the automo-
bile engines. Food engineers are concerned with the production rate of the
fermentation gas that causes bread to rise as it bakes. Beverage engineers are
concerned with how gas can produce the head in a glass of beer or shoot a cork
from a champagne bottle. Medical engineers and physiologists are concerned
with calculating how long a scuba diver must pause during ascent to eliminate
nitrogen gas from the bloodstream (to avoid the bends). Environmental scientists
are concerned with how heat exchanges between the oceans and the atmosphere
can affect weather conditions.

The first step in our discussion of the kinetic theory of gases deals with measur-
ing the amount of a gas present in a sample, for which we use Avogadro’s number.



Avogadro’s Number
When our thinking is slanted toward atoms and molecules, it makes sense to
measure the sizes of our samples in moles. If we do so, we can be certain that we
are comparing samples that contain the same number of atoms or molecules.
The mole is one of the seven SI base units and is defined as follows:
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One mole is the number of atoms in a 12 g sample of carbon-12.

The obvious question now is: “How many atoms or molecules are there in a
mole?” The answer is determined experimentally and, as you saw in Chapter 18, is

NA � 6.02 � 1023 mol�1 (Avogadro’s number), (19-1)

where mol�1 represents the inverse mole or “per mole,” and mol is the abbre-
viation for mole. The number NA is called Avogadro’s number after Italian sci-
entist Amedeo Avogadro (1776–1856), who suggested that all gases occupying
the same volume under the same conditions of temperature and pressure contain
the same number of atoms or molecules.

The number of moles n contained in a sample of any substance is equal to the
ratio of the number of molecules N in the sample to the number of molecules
NA in 1 mol:

. (19-2)

(Caution: The three symbols in this equation can easily be confused with one
another, so you should sort them with their meanings now, before you end in
“N-confusion.”) We can find the number of moles n in a sample from the mass
Msam of the sample and either the molar mass M (the mass of 1 mol) or the
molecular mass m (the mass of one molecule):

. (19-3)

In Eq. 19-3, we used the fact that the mass M of 1 mol is the product of the mass
m of one molecule and the number of molecules NA in 1 mol:

M � mNA. (19-4)

n �
M sam

M
�

M sam

mNA

n �
N

NA

19-2 IDEAL GASES

After reading this module, you should be able to . . .

19.04 Identify why an ideal gas is said to be ideal.
19.05 Apply either of the two forms of the ideal gas law, writ-

ten in terms of the number of moles n or the number of
molecules N.

19.06 Relate the ideal gas constant R and the Boltzmann
constant k.

19.07 Identify that the temperature in the ideal gas law must
be in kelvins.

19.08 Sketch p-V diagrams for a constant-temperature
expansion of a gas and a constant-temperature 
contraction.

19.09 Identify the term isotherm.

19.10 Calculate the work done by a gas, including the al-
gebraic sign, for an expansion and a contraction along
an isotherm.

19.11 For an isothermal process, identify that the change in
internal energy �E is zero and that the energy Q trans-
ferred as heat is equal to the work W done.

19.12 On a p-V diagram, sketch a constant-volume process
and identify the amount of work done in terms of area on
the diagram.

19.13 On a p-V diagram, sketch a constant-pressure
process and determine the work done in terms of area
on the diagram.

Learning Objectives
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Ideal Gases
Our goal in this chapter is to explain the macroscopic properties of a gas—such
as its pressure and its temperature—in terms of the behavior of the molecules
that make it up. However, there is an immediate problem: which gas? Should it
be hydrogen, oxygen, or methane, or perhaps uranium hexafluoride? They are
all different. Experimenters have found, though, that if we confine 1 mol samples
of various gases in boxes of identical volume and hold the gases at the same
temperature, then their measured pressures are almost the same, and at lower
densities the differences tend to disappear. Further experiments show that, at low
enough densities, all real gases tend to obey the relation

pV � nRT (ideal gas law), (19-5)

in which p is the absolute (not gauge) pressure, n is the number of moles of gas
present, and T is the temperature in kelvins. The symbol R is a constant called
the gas constant that has the same value for all gases—namely,

R � 8.31 J/mol �K. (19-6)

Equation 19-5 is called the ideal gas law. Provided the gas density is low, this law
holds for any single gas or for any mixture of different gases. (For a mixture,
n is the total number of moles in the mixture.)

We can rewrite Eq. 19-5 in an alternative form, in terms of a constant called
the Boltzmann constant k, which is defined as

(19-7)

This allows us to write R � kNA.Then, with Eq. 19-2 (n � N/NA), we see that

nR � Nk. (19-8)

Substituting this into Eq. 19-5 gives a second expression for the ideal gas law:

pV � NkT (ideal gas law). (19-9)

(Caution: Note the difference between the two expressions for the ideal gas
law—Eq. 19-5 involves the number of moles n, and Eq. 19-9 involves the number
of molecules N.)

You may well ask, “What is an ideal gas, and what is so ‘ideal’ about it?” The
answer lies in the simplicity of the law (Eqs. 19-5 and 19-9) that governs its
macroscopic properties. Using this law—as you will see—we can deduce many
properties of the ideal gas in a simple way. Although there is no such thing in
nature as a truly ideal gas, all real gases approach the ideal state at low enough
densities—that is, under conditions in which their molecules are far enough
apart that they do not interact with one another. Thus, the ideal gas concept
allows us to gain useful insights into the limiting behavior of real gases.

k �
R
NA

�
8.31 J/mol�K

6.02 � 10 23 mol�1 � 1.38 � 10�23 J/K.

● An ideal gas is one for which the pressure p, volume V, and
temperature T are related by

pV � nRT (ideal gas law).

Here n is the number of moles of the gas present and R is a
constant (8.31 J/mol �K) called the gas constant. 

● The ideal gas law can also be written as

pV � NkT,

where the Boltzmann constant k is

● The work done by an ideal gas during an isothermal 
(constant-temperature) change from volume Vi to volume Vf is

(ideal gas, isothermal process).W � nRT ln 
Vf

Vi

k �
R

NA
� 1.38 � 10�23 J/K.

Key Ideas



Figure 19-1 gives a dramatic example of the ideal gas law. A stainless-steel
tank with a volume of 18 m3 was filled with steam at a temperature of 110�C
through a valve at one end. The steam supply was then turned off and the valve
closed, so that the steam was trapped inside the tank (Fig. 19-1a). Water from a
fire hose was then poured onto the tank to rapidly cool it. Within less than a
minute, the enormously sturdy tank was crushed (Fig. 19-1b), as if some giant
invisible creature from a grade B science fiction movie had stepped on it during a
rampage.

Actually, it was the atmosphere that crushed the tank. As the tank was
cooled by the water steam, the steam cooled and much of it condensed, which
means that the number N of gas molecules and the temperature T of the gas
inside the tank both decreased. Thus, the right side of Eq. 19-9 decreased, and
because volume V was constant, the gas pressure p on the left side also
decreased. The gas pressure decreased so much that the external atmospheric
pressure was able to crush the tank’s steel wall. Figure 19-1 was staged, but this
type of crushing sometimes occurs in industrial accidents (photos and videos
can be found on the web).

Work Done by an Ideal Gas at Constant Temperature
Suppose we put an ideal gas in a piston–cylinder arrangement like those in
Chapter 18. Suppose also that we allow the gas to expand from an initial volume
Vi to a final volume Vf while we keep the temperature T of the gas constant. Such
a process, at constant temperature, is called an isothermal expansion (and the
reverse is called an isothermal compression).

On a p-V diagram, an isotherm is a curve that connects points that have
the same temperature. Thus, it is a graph of pressure versus volume for a gas
whose temperature T is held constant. For n moles of an ideal gas, it is a graph of
the equation

(19-10)

Figure 19-2 shows three isotherms, each corresponding to a different (constant)
value of T. (Note that the values of T for the isotherms increase upward to the
right.) Superimposed on the middle isotherm is the path followed by a gas during
an isothermal expansion from state i to state f at a constant temperature of 310 K.

To find the work done by an ideal gas during an isothermal expansion, we
start with Eq. 18-25,

(19-11)

This is a general expression for the work done during any change in volume of any
gas. For an ideal gas, we can use Eq. 19-5 ( pV � nRT) to substitute for p, obtaining

(19-12)

Because we are considering an isothermal expansion, T is constant, so we can
move it in front of the integral sign to write

(19-13)

By evaluating the expression in brackets at the limits and then using the rela-
tionship ln a � ln b � ln(a/b), we find that

(ideal gas, isothermal process). (19-14)

Recall that the symbol ln specifies a natural logarithm, which has base e.

W � nRT ln
Vf

Vi

W � nRT �Vf

Vi

dV
V

� nRT 	ln V

Vf

Vi

.

W � �Vf

Vi

nRT
V

dV.

W � �Vf

Vi

p dV.

p � nRT
1
V

� (a constant) 
1
V

.
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Figure 19-1 (a) Before and (b) after images of
a large steel tank crushed by atmospheric
pressure after internal steam cooled and 
condensed.

(a)

(b)
Courtesy www.doctorslime.com

Figure 19-2 Three isotherms on a p-V
diagram.The path shown along the middle
isotherm represents an isothermal expan-
sion of a gas from an initial state i to a final
state f.The path from f to i along the
isotherm would represent the reverse
process—that is, an isothermal compression.

p

V

T = 300 K 

T = 310 K 

T = 320 K 
f

i

The expansion is along
an isotherm (the gas has
constant temperature).



For an expansion, Vf is greater than Vi, so the ratio Vf/Vi in Eq. 19-14 is greater
than unity. The natural logarithm of a quantity greater than unity is positive, and
so the work W done by an ideal gas during an isothermal expansion is positive, as
we expect. For a compression, Vf is less than Vi, so the ratio of volumes in
Eq. 19-14 is less than unity. The natural logarithm in that equation—hence the
work W—is negative, again as we expect.

Work Done at Constant Volume and at Constant Pressure
Equation 19-14 does not give the work W done by an ideal gas during every
thermodynamic process. Instead, it gives the work only for a process in which
the temperature is held constant. If the temperature varies, then the symbol T
in Eq. 19-12 cannot be moved in front of the integral symbol as in Eq. 19-13, and
thus we do not end up with Eq. 19-14.

However, we can always go back to Eq. 19-11 to find the work W done by
an ideal gas (or any other gas) during any process, such as a constant-volume
process and a constant-pressure process. If the volume of the gas is constant, then
Eq. 19-11 yields

W � 0 (constant-volume process). (19-15)

If, instead, the volume changes while the pressure p of the gas is held constant,
then Eq. 19-11 becomes

W � p(Vf � Vi) � p �V (constant-pressure process). (19-16)

55319-2 IDEAL GASES

Checkpoint 1
An ideal gas has an initial pressure of 3 pressure units and
an initial volume of 4 volume units.The table gives the
final pressure and volume of the gas (in those same units)
in five processes.Which processes start and end on the
same isotherm?

a b c d e

p 12 6 5 4 1
V 1 2 7 3 12

Note here that if we converted the given initial and final
volumes from liters to the proper units of cubic meters,
the multiplying conversion factors would cancel out of
Eq. 19-17. The same would be true for conversion factors
that convert the pressures from atmospheres to the
proper pascals. However, to convert the given tempera-
tures to kelvins requires the addition of an amount that
would not cancel and thus must be included. Hence, we
must write

Ti � (273 � 20) K � 293 K

and Tf � (273 � 35) K � 308 K.

Inserting the given data into Eq. 19-17 then yields

(Answer)pf �
(15 atm)(308 K)(12 L)

(293 K)(8.5 L)
� 22 atm.

Sample Problem 19.01 Ideal gas and changes of temperature, volume, and pressure

A cylinder contains 12 L of oxygen at 20 C and 15 atm. The
temperature is raised to 35�C, and the volume is reduced to
8.5 L. What is the final pressure of the gas in atmospheres?
Assume that the gas is ideal.

KEY IDEA

Because the gas is ideal, we can use the ideal gas law to relate
its parameters, both in the initial state i and in the final state f.

Calculations: From Eq. 19-5 we can write

piVi � nRTi and pfVf � nRTf .

Dividing the second equation by the first equation and solving
for pf yields

(19-17)pf �
piTf Vi

Ti Vf
.

�

Additional examples, video, and practice available at WileyPLUS
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You can show that if the expansion is now reversed,
with the gas undergoing an isothermal compression from
19 L to 12 L, the work done by the gas will be �1180 J.Thus,
an external force would have to do 1180 J of work on the
gas to compress it.

Sample Problem 19.02 Work by an ideal gas

One mole of oxygen (assume it to be an ideal gas) expands
at a constant temperature T of 310 K from an initial volume
Vi of 12 L to a final volume Vf of 19 L. How much work is
done by the gas during the expansion?

KEY IDEA

Generally we find the work by integrating the gas pressure
with respect to the gas volume, using Eq. 19-11. However,
because the gas here is ideal and the expansion is isother-
mal, that integration leads to Eq. 19-14.

Calculation: Therefore, we can write

� 1180 J. (Answer)

The expansion is graphed in the p-V diagram of Fig. 19-3.
The work done by the gas during the expansion is repre-
sented by the area beneath the curve if.

� (1 mol)(8.31 J/mol�K)(310 K) ln 
19 L
12 L

W � nRT ln
Vf

Vi

Additional examples, video, and practice available at WileyPLUS
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Figure 19-3 The
shaded area repre-
sents the work done
by 1 mol of oxygen
in expanding from Vi

to Vf at a tempera-
ture T of 310 K.

19-3 PRESSURE, TEMPERATURE, AND RMS SPEED

After reading this module, you should be able to . . .

19.14 Identify that the pressure on the interior walls of a gas
container is due to the molecular collisions with the walls.

19.15 Relate the pressure on a container wall to the momen-
tum of the gas molecules and the time intervals between
their collisions with the wall.

19.16 For the molecules of an ideal gas, relate the root-

mean-square speed vrms and the average speed vavg.
19.17 Relate the pressure of an ideal gas to the rms speed

vrms of the molecules.
19.18 For an ideal gas, apply the relationship between the

gas temperature T and the rms speed vrms and molar mass
M of the molecules.

Learning Objectives

● In terms of the speed of the gas molecules, the pressure
exerted by n moles of an ideal gas is

where is the root-mean-square speed of thevrms � 2(v2)avg

p �
nMv2

rms

3V
,

molecules, M is the molar mass, and V is the volume.

● The rms speed can be written in terms of the 
temperature as

vrms � A
3RT
M

.

Key Ideas

Pressure, Temperature, and RMS Speed
Here is our first kinetic theory problem. Let n moles of an ideal gas be confined
in a cubical box of volume V, as in Fig. 19-4. The walls of the box are held at
temperature T.What is the connection between the pressure p exerted by the gas
on the walls and the speeds of the molecules?



The molecules of gas in the box are moving in all directions and with various
speeds, bumping into one another and bouncing from the walls of the box like
balls in a racquetball court. We ignore (for the time being) collisions of the mole-
cules with one another and consider only elastic collisions with the walls.

Figure 19-4 shows a typical gas molecule, of mass m and velocity , that is
about to collide with the shaded wall. Because we assume that any collision of a
molecule with a wall is elastic, when this molecule collides with the shaded wall,
the only component of its velocity that is changed is the x component, and that
component is reversed. This means that the only change in the particle’s momen-
tum is along the x axis, and that change is

�px � (�mvx) � (mvx) � �2mvx.

Hence, the momentum �px delivered to the wall by the molecule during the colli-
sion is �2mvx. (Because in this book the symbol p represents both momentum
and pressure, we must be careful to note that here p represents momentum and is
a vector quantity.)

The molecule of Fig. 19-4 will hit the shaded wall repeatedly. The time �t
between collisions is the time the molecule takes to travel to the opposite wall and
back again (a distance 2L) at speed vx.Thus, �t is equal to 2L/vx. (Note that this re-
sult holds even if the molecule bounces off any of the other walls along the way, be-
cause those walls are parallel to x and so cannot change vx.) Therefore, the average
rate at which momentum is delivered to the shaded wall by this single molecule is

.

From Newton’s second law , the rate at which momentum is
delivered to the wall is the force acting on that wall. To find the total force, we
must add up the contributions of all the molecules that strike the wall, allowing
for the possibility that they all have different speeds. Dividing the magnitude of
the total force Fx by the area of the wall (� L2) then gives the pressure p on that
wall, where now and in the rest of this discussion, p represents pressure. Thus,
using the expression for �px/�t, we can write this pressure as

(19-18)

where N is the number of molecules in the box.
Since N � nNA, there are nNA terms in the second set of parentheses of

Eq. 19-18. We can replace that quantity by nNA(v2
x)avg, where (v2

x)avg is the
average value of the square of the x components of all the molecular speeds.
Equation 19-18 then becomes

However, mNA is the molar mass M of the gas (that is, the mass of 1 mol of the
gas).Also, L3 is the volume of the box, so

(19-19)

For any molecule, v2 � v 2
x � v 2

y � v 2
z. Because there are many molecules and

because they are all moving in random directions, the average values of the
squares of their velocity components are equal, so that Thus, Eq. 19-19
becomes

(19-20)p �
nM(v2)avg

3V
.

v2
x � 1

3 v2.

p �
nM(v2

x)avg

V
.

p �
nmNA

L3 (v2
x)avg .

� � m
L3 �(v2

x1 � v2
x2 � � � � � v2

xN),

p �
Fx

L2 �
mv2

x1/L � mv2
x2/L � � � � � mv2

xN/L
L2

(F
:

� dp:/dt)

�px

�t
�

2mvx

2L/vx
�

mv2
x

L

v:
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Figure 19-4 A cubical box of edge length
L, containing n moles of an ideal gas.A
molecule of mass m and velocity is about
to collide with the shaded wall of area L2.
A normal to that wall is shown.

v:

y

z

x

L
L

L
m

Normal to 
shaded wall v



The square root of (v2)avg is a kind of average speed, called the root-mean-
square speed of the molecules and symbolized by vrms. Its name describes it
rather well: You square each speed, you find the mean (that is, the average) of
all these squared speeds, and then you take the square root of that mean. With

we can then write Eq. 19-20 as

(19-21)

This tells us how the pressure of the gas (a purely macroscopic quantity) depends
on the speed of the molecules (a purely microscopic quantity).

We can turn Eq. 19-21 around and use it to calculate vrms. Combining 
Eq. 19-21 with the ideal gas law ( pV � nRT ) leads to

(19-22)

Table 19-1 shows some rms speeds calculated from Eq. 19-22. The speeds are
surprisingly high. For hydrogen molecules at room temperature (300 K), the
rms speed is 1920 m/s, or 4300 mi/h — faster than a speeding bullet! On the sur-
face of the Sun, where the temperature is 2 � 106 K, the rms speed of hydrogen
molecules would be 82 times greater than at room temperature were it not for
the fact that at such high speeds, the molecules cannot survive collisions among
themselves. Remember too that the rms speed is only a kind of average speed;
many molecules move much faster than this, and some much slower.

The speed of sound in a gas is closely related to the rms speed of the mole-
cules of that gas. In a sound wave, the disturbance is passed on from molecule to
molecule by means of collisions. The wave cannot move any faster than the
“average” speed of the molecules. In fact, the speed of sound must be somewhat
less than this “average” molecular speed because not all molecules are moving in
exactly the same direction as the wave. As examples, at room temperature, the
rms speeds of hydrogen and nitrogen molecules are 1920 m/s and 517 m/s,
respectively. The speeds of sound in these two gases at this temperature are
1350 m/s and 350 m/s, respectively.

A question often arises: If molecules move so fast, why does it take as long as
a minute or so before you can smell perfume when someone opens a bottle
across a room? The answer is that, as we shall discuss in Module 19-5, each
perfume molecule may have a high speed but it moves away from the bottle only
very slowly because its repeated collisions with other molecules prevent it from
moving directly across the room to you.

vrms � A
3RT
M

.

p �
nMv2

rms

3V
.

2(v2)avg � vrms ,
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Table 19-1 Some RMS Speeds at Room
Temperature (T � 300 K)a

Molar
Mass
(10�3 vrms

Gas kg/mol) (m/s)

Hydrogen (H2) 2.02 1920
Helium (He) 4.0 1370
Water vapor

(H2O) 18.0 645
Nitrogen (N2) 28.0 517
Oxygen (O2) 32.0 483
Carbon dioxide

(CO2) 44.0 412
Sulfur dioxide

(SO2) 64.1 342

aFor convenience, we often set room
temperature equal to 300 K even though 
(at 27�C or 81�F) that represents a fairly warm
room.

Calculation: We find this from

(Answer)

The rms value is greater than the average value because
the larger numbers—being squared—are relatively more
important in forming the rms value.

� 52.1.

nrms � A
52 � 112 � 322 � 672 � 892

5

Sample Problem 19.03 Average and rms values

Here are five numbers: 5, 11, 32, 67, and 89.

(a) What is the average value navg of these numbers?

Calculation: We find this from

. (Answer)

(b) What is the rms value nrms of these numbers?

navg �
5 � 11 � 32 � 67 � 89

5
� 40.8

Additional examples, video, and practice available at WileyPLUS



Translational Kinetic Energy
We again consider a single molecule of an ideal gas as it moves around in the box
of Fig. 19-4, but we now assume that its speed changes when it collides with other
molecules. Its translational kinetic energy at any instant is . Its average
translational kinetic energy over the time that we watch it is

(19-23)

in which we make the assumption that the average speed of the molecule during
our observation is the same as the average speed of all the molecules at any given
time. (Provided the total energy of the gas is not changing and provided we
observe our molecule for long enough, this assumption is appropriate.) Substi-
tuting for vrms from Eq. 19-22 leads to

However, M/m, the molar mass divided by the mass of a molecule, is simply
Avogadro’s number.Thus,

Using Eq. 19-7 (k � R/NA), we can then write

(19-24)

This equation tells us something unexpected:

Kavg � 3
2kT.

Kavg �
3RT
2NA

.

Kavg � (1
2 m)

3RT
M

.

Kavg � (1
2 mv2)avg � 1

2 m(v2)avg � 1
2 mv2

rms ,

1
2 mv2
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19-4 TRANSLATIONAL KINETIC ENERGY

After reading this module, you should be able to . . .

19.19 For an ideal gas, relate the average kinetic energy of
the molecules to their rms speed.

19.20 Apply the relationship between the average kinetic
energy and the temperature of the gas.

19.21 Identify that a measurement of a gas temperature is
effectively a measurement of the average kinetic energy of
the gas molecules.

Learning Objectives

● The average translational kinetic energy per molecule in an
ideal gas is

Kavg � 1
2mv2

rms.

● The average translational kinetic energy is related to the
temperature of the gas:

Kavg � 3
2kT.

Key Ideas

Checkpoint 2
A gas mixture consists of molecules of types 1, 2, and 3, with molecular masses m1 �
m2 � m3. Rank the three types according to (a) average kinetic energy and (b) rms
speed, greatest first.

At a given temperature T, all ideal gas molecules—no matter what their 
mass—have the same average translational kinetic energy—namely, . When we
measure the temperature of a gas, we are also measuring the average translational
kinetic energy of its molecules.

3
2kT



Mean Free Path
We continue to examine the motion of molecules in an ideal gas. Figure 19-5
shows the path of a typical molecule as it moves through the gas, changing both
speed and direction abruptly as it collides elastically with other molecules.
Between collisions, the molecule moves in a straight line at constant speed.
Although the figure shows the other molecules as stationary, they are (of course)
also moving.

One useful parameter to describe this random motion is the mean free path
l of the molecules. As its name implies, l is the average distance traversed by a
molecule between collisions. We expect l to vary inversely with N/V, the number
of molecules per unit volume (or density of molecules). The larger N/V is, the
more collisions there should be and the smaller the mean free path. We also
expect l to vary inversely with the size of the molecules—with their diameter d,
say. (If the molecules were points, as we have assumed them to be, they would
never collide and the mean free path would be infinite.) Thus, the larger the
molecules are, the smaller the mean free path. We can even predict that l should
vary (inversely) as the square of the molecular diameter because the cross section
of a molecule—not its diameter—determines its effective target area.

The expression for the mean free path does, in fact, turn out to be

(mean free path). (19-25)

To justify Eq. 19-25, we focus attention on a single molecule and assume—as
Fig. 19-5 suggests—that our molecule is traveling with a constant speed v and
that all the other molecules are at rest. Later, we shall relax this assumption.

We assume further that the molecules are spheres of diameter d. A collision
will then take place if the centers of two molecules come within a distance d of
each other, as in Fig. 19-6a. Another, more helpful way to look at the situation is

l �
1

12pd2 N/V
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19-5 MEAN FREE PATH

After reading this module, you should be able to . . .

19.22 Identify what is meant by mean free path.
19.23 Apply the relationship between the mean free path, the

diameter of the molecules, and the number of molecules
per unit volume.

Learning Objectives

● The mean free path of a gas molecule is its average path length between collisions and is given by

where N/V is the number of molecules per unit volume and d is the molecular diameter.

l �
1

12pd2 N/V
,

l

Key Idea

Figure 19-5 A molecule traveling through a
gas, colliding with other gas molecules in its
path.Although the other molecules are
shown as stationary, they are also moving 
in a similar fashion.

Figure 19-6 (a) A collision occurs when the
centers of two molecules come within a
distance d of each other, d being the molec-
ular diameter. (b) An equivalent but more
convenient representation is to think of the
moving molecule as having a radius d and
all other molecules as being points.The
condition for a collision is unchanged. (b)2d

mm

(a)d d

d

m m 
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Figure 19-7 In time the moving molecule effectively sweeps out a cylinder of length v �t
and radius d.

�t

2d

v Δ t

Checkpoint 3
One mole of gas A, with molecular diameter 2d0 and average molecular speed v0, is
placed inside a certain container. One mole of gas B, with molecular diameter d0 and
average molecular speed 2v0 (the molecules of B are smaller but faster), is placed in
an identical container.Which gas has the greater average collision rate within its
container?

to consider our single molecule to have a radius of d and all the other molecules
to be points, as in Fig. 19-6b.This does not change our criterion for a collision.

As our single molecule zigzags through the gas, it sweeps out a short cylinder
of cross-sectional area pd 2 between successive collisions. If we watch this 
molecule for a time interval �t, it moves a distance v �t, where v is its assumed
speed. Thus, if we align all the short cylinders swept out in interval �t, we form a
composite cylinder (Fig. 19-7) of length v �t and volume (pd 2)(v �t).The number
of collisions that occur in time �t is then equal to the number of (point) mole-
cules that lie within this cylinder.

Since N/V is the number of molecules per unit volume, the number of mole-
cules in the cylinder is N/V times the volume of the cylinder, or (N/V )(pd 2v �t).
This is also the number of collisions in time �t.The mean free path is the length of
the path (and of the cylinder) divided by this number:

(19-26)

This equation is only approximate because it is based on the assumption that
all the molecules except one are at rest. In fact, all the molecules are moving;
when this is taken properly into account, Eq. 19-25 results. Note that it differs
from the (approximate) Eq. 19-26 only by a factor of .

The approximation in Eq. 19-26 involves the two v symbols we canceled.
The v in the numerator is vavg, the mean speed of the molecules relative to the
container. The v in the denominator is vrel, the mean speed of our single molecule
relative to the other molecules, which are moving. It is this latter average speed
that determines the number of collisions. A detailed calculation, taking into
account the actual speed distribution of the molecules, gives and
thus the factor .

The mean free path of air molecules at sea level is about 0.1 mm. At an alti-
tude of 100 km, the density of air has dropped to such an extent that the mean
free path rises to about 16 cm. At 300 km, the mean free path is about 20 km. A
problem faced by those who would study the physics and chemistry of the upper
atmosphere in the laboratory is the unavailability of containers large enough to
hold gas samples (of Freon, carbon dioxide, and ozone) that simulate upper at-
mospheric conditions.

12
vrel � 12vavg

1/12

�
1

pd2 N/V
.

l �
length of path during �t

number of collisions in �t
�

v �t
pd2v �t N/V
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Additional examples, video, and practice available at WileyPLUS

19-6 THE DISTRIBUTION OF MOLECULAR SPEEDS

After reading this module, you should be able to . . .

19.24 Explain how Maxwell’s speed distribution law is used
to find the fraction of molecules with speeds in a certain
speed range.

19.25 Sketch a graph of Maxwell’s speed distribution, show-
ing the probability distribution versus speed and indicating
the relative positions of the average speed vavg, the most
probable speed vP, and the rms speed vrms.

19.26 Explain how Maxwell’s speed distribution is used to
find the average speed, the rms speed, and the most
probable speed.

19.27 For a given temperature T and molar mass M, calcu-
late the average speed vavg, the most probable speed vP,
and the rms speed vrms.

Learning Objectives

● The Maxwell speed distribution P(v) is a function such that
P(v) dv gives the fraction of molecules with speeds in the
interval dv at speed v:

● Three measures of the distribution of speeds among the
molecules of a gas are

P(v) � 4p� M
2pRT �

3/2

v2 e�Mv2/2RT.

(average speed),

(most probable speed),

and (rms speed).vrms � A
3RT
M

vP � A
2RT
M

vavg � A
8RT
pM

Key Ideas

Sample Problem 19.04 Mean free path, average speed, collision frequency

(a) What is the mean free path l for oxygen molecules at
temperature T � 300 K and pressure p � 1.0 atm? Assume
that the molecular diameter is d � 290 pm and the gas is
ideal.

KEY IDEA

Each oxygen molecule moves among other moving oxygen
molecules in a zigzag path due to the resulting collisions. Thus,
we use Eq.19-25 for the mean free path.

Calculation: We first need the number of molecules per unit
volume, N/V. Because we assume the gas is ideal, we can use
the ideal gas law of Eq. 19-9 (pV NkT) to write N/V
p/kT. Substituting this into Eq. 19-25, we find

� 1.1 � 10�7 m. (Answer)
This is about 380 molecular diameters.

(b) Assume the average speed of the oxygen molecules is 
v � 450 m/s. What is the average time t between successive

�
(1.38 � 10�23 J/K)(300 K)

12p(2.9 � 10�10 m)2(1.01 � 105 Pa)

l �
1

12pd2 N/V
�

kT

12pd2p

��

collisions for any given molecule? At what rate does
the molecule collide; that is, what is the frequency f of its
collisions?

KEY IDEAS

(1) Between collisions, the molecule travels, on average, the
mean free path l at speed v. (2) The average rate or fre-
quency at which the collisions occur is the inverse of the
time t between collisions.

Calculations: From the first key idea, the average time
between collisions is

� 2.44 � 10�10 s � 0.24 ns. (Answer)

This tells us that, on average, any given oxygen molecule has
less than a nanosecond between collisions.

From the second key idea, the collision frequency is

(Answer)

This tells us that, on average, any given oxygen molecule
makes about 4 billion collisions per second.

f �
1
t

�
1

2.44 � 10�10 s
� 4.1 � 109 s�1.

t �
distance

speed
�

l

v
�

1.1 � 10�7 m
450 m/s
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The Distribution of Molecular Speeds
The root-mean-square speed vrms gives us a general idea of molecular speeds in
a gas at a given temperature. We often want to know more. For example, what
fraction of the molecules have speeds greater than the rms value? What fraction
have speeds greater than twice the rms value? To answer such questions, we need
to know how the possible values of speed are distributed among the molecules.
Figure 19-8a shows this distribution for oxygen molecules at room temperature
(T � 300 K); Fig. 19-8b compares it with the distribution at T � 80 K.

In 1852, Scottish physicist James Clerk Maxwell first solved the problem of
finding the speed distribution of gas molecules. His result, known as Maxwell’s
speed distribution law, is

. (19-27)

Here M is the molar mass of the gas, R is the gas constant, T is the gas temper-
ature, and v is the molecular speed. It is this equation that is plotted in 
Fig. 19-8a, b. The quantity P(v) in Eq. 19-27 and Fig. 19-8 is a probability distribu-
tion function: For any speed v, the product P(v) dv (a dimensionless quantity) is
the fraction of molecules with speeds in the interval dv centered on speed v.

As Fig. 19-8a shows, this fraction is equal to the area of a strip with height
P(v) and width dv. The total area under the distribution curve corresponds to the
fraction of the molecules whose speeds lie between zero and infinity. All
molecules fall into this category, so the value of this total area is unity; that is,

(19-28)

The fraction (frac) of molecules with speeds in an interval of, say, v1 to v2 is then

(19-29)

Average, RMS, and Most Probable Speeds
In principle, we can find the average speed vavg of the molecules in a gas with the fol-
lowing procedure:We weight each value of v in the distribution; that is, we multiply it

frac � �v2

v1

P(v) dv.

��

0
P(v) dv � 1.

P(v) � 4p� M
2pRT �

3/2 

v2 e�Mv2/ 2RT

A

0

1.0

2.0

P(
v)

 (
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s/

m
)

0 200 400 600 800 1000 1200 
Speed (m/s) 

vP

vrms dv

Area = P(v) dv

(a)

(b)

0

1.0

3.0

2.0

P(
v)

 (
10

–3
s/

m
)

0 200 400 600 800 1000 1200
Speed (m/s)

4.0

T = 300 K

T = 80 K

vavg

Figure 19-8 (a) The Maxwell speed distribution for oxygen
molecules at T � 300 K.The three characteristic speeds are
marked. (b) The curves for 300 K and 80 K. Note that the
molecules move more slowly at the lower temperature. Because
these are probability distributions, the area under each curve
has a numerical value of unity.



by the fraction P(v) dv of molecules with speeds in a differential interval dv centered
on v.Then we add up all these values of v P(v) dv.The result is vavg. In practice, we do
all this by evaluating

(19-30)

Substituting for P(v) from Eq. 19-27 and using generic integral 20 from the list of
integrals in Appendix E, we find

(average speed). (19-31)

Similarly, we can find the average of the square of the speeds (v2)avg with

(19-32)

Substituting for P(v) from Eq. 19-27 and using generic integral 16 from the list of in-
tegrals in Appendix E,we find

(19-33)

The square root of (v2)avg is the root-mean-square speed vrms.Thus,

(rms speed), (19-34)

which agrees with Eq. 19-22.
The most probable speed vP is the speed at which P(v) is maximum (see 

Fig. 19-8a).To calculate vP, we set dP/dv � 0 (the slope of the curve in Fig. 19-8a is
zero at the maximum of the curve) and then solve for v. Doing so, we find

(most probable speed). (19-35)

A molecule is more likely to have speed vP than any other speed, but some
molecules will have speeds that are many times vP. These molecules lie in the
high-speed tail of a distribution curve like that in Fig. 19-8a. Such higher speed mole-
cules make possible both rain and sunshine (without which we could not exist):

Rain The speed distribution of water molecules in, say, a pond at summer-
time temperatures can be represented by a curve similar to that of Fig. 19-8a.
Most of the molecules lack the energy to escape from the surface. However, a few
of the molecules in the high-speed tail of the curve can do so. It is these water
molecules that evaporate, making clouds and rain possible.

As the fast water molecules leave the surface, carrying energy with them,
the temperature of the remaining water is maintained by heat transfer from the sur-
roundings. Other fast molecules—produced in particularly favorable collisions—
quickly take the place of those that have left, and the speed distribution is maintained.

Sunshine Let the distribution function of Eq. 19-27 now refer to protons in
the core of the Sun. The Sun’s energy is supplied by a nuclear fusion process that
starts with the merging of two protons. However, protons repel each other
because of their electrical charges, and protons of average speed do not have
enough kinetic energy to overcome the repulsion and get close enough to merge.
Very fast protons with speeds in the high-speed tail of the distribution curve can
do so, however, and for that reason the Sun can shine.

vP � A
2RT
M

vrms � A
3RT
M

(v2)avg �
3RT
M

.

(v2)avg � ��

0
v2 P(v) dv.

vavg � A
8RT
pM

vavg � ��

0
v P(v) dv.
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The total area under the plot of P(v) in Fig. 19-8a is the
total fraction of molecules (unity), and the area of the thin
gold strip (not to scale) is the fraction we seek. Let’s evalu-
ate frac in parts:

frac � (4p)(A)(v2)(eB)(�v), (19-36)
where

� 2.92 � 10�9 s3/m3

and

Substituting A and B into Eq. 19-36 yields

frac � (4p)(A)(v2)(eB)(�v)

� (4p)(2.92 � 10�9 s3/m3)(600 m/s)2(e�2.31)(2 m/s)

� 2.62 � 10�3 � 0.262%. (Answer)

� �2.31.

B � �
Mv2

2RT
� �

(0.0320 kg/mol)(600 m/s)2

(2)(8.31 J/mol �K)(300 K)

A � � M
2pRT �

3/2

� � 0.0320 kg/mol
(2p)(8.31 J/mol �K)(300 K) �

3/2

Sample Problem 19.05 Speed distribution in a gas

In oxygen (molar mass M = 0.0320 kg/mol) at room temper-
ature (300 K), what fraction of the molecules have speeds in
the interval 599 to 601 m/s?

KEY IDEAS

1. The speeds of the molecules are distributed over a wide
range of values,with the distribution P(v) of Eq.19-27.

2. The fraction of molecules with speeds in a differential
interval dv is P(v) dv.

3. For a larger interval, the fraction is found by integrating
P(v) over the interval.

4. However, the interval �v � 2 m/s here is small compared
to the speed v � 600 m/s on which it is centered.

Calculations: Because �v is small, we can avoid the inte-
gration by approximating the fraction as

frac � P(v) �v � 4p � M
2pRT �

3/2 

v2 e�Mv2/2RT �v.

Calculation: We end up with Eq. 19-34, which gives us

(Answer)

This result, plotted in Fig. 19-8a, is greater than vavg because
the greater speed values influence the calculation more when
we integrate the v2 values than when we integrate the v values.

(c) What is the most probable speed vP at 300 K?

KEY IDEA

Speed vP corresponds to the maximum of the distribution
function P(v), which we obtain by setting the derivative
dP/dv � 0 and solving the result for v.

Calculation: We end up with Eq. 19-35, which gives us

(Answer)

This result is also plotted in Fig. 19-8a.

� 395 m/s.

� A
2(8.31 J/mol �K)(300 K)

0.0320 kg/mol

vP � A
2RT
M

� 483 m/s.

� A
3(8.31 J/mol �K)(300 K)

0.0320 kg/mol

vrms � A
3RT
M

Sample Problem 19.06 Average speed, rms speed, most probable speed

The molar mass M of oxygen is 0.0320 kg/mol.

(a) What is the average speed vavg of oxygen gas molecules
at T � 300 K?

KEY IDEA

To find the average speed, we must weight speed v with the
distribution function P(v) of Eq. 19-27 and then integrate
the resulting expression over the range of possible speeds
(from zero to the limit of an infinite speed).

Calculation: We end up with Eq. 19-31, which gives us

(Answer)

This result is plotted in Fig. 19-8a.

(b) What is the root-mean-square speed vrms at 300 K?

KEY IDEA

To find vrms, we must first find (v2)avg by weighting v2 with
the distribution function P(v) of Eq. 19-27 and then inte-
grating the expression over the range of possible speeds.
Then we must take the square root of the result.

� 445 m/s.

� A
8(8.31 J/mol �K)(300 K)

p(0.0320 kg/mol)

vavg � A
8RT
pM

Additional examples, video, and practice available at WileyPLUS



The Molar Specific Heats of an Ideal Gas
In this module, we want to derive from molecular considerations an expression for
the internal energy Eint of an ideal gas. In other words, we want an expression for the
energy associated with the random motions of the atoms or molecules in the gas.We
shall then use that expression to derive the molar specific heats of an ideal gas.

Internal Energy Eint

Let us first assume that our ideal gas is a monatomic gas (individual atoms rather
than molecules), such as helium, neon, or argon. Let us also assume that the inter-
nal energy Eint is the sum of the translational kinetic energies of the atoms.
(Quantum theory disallows rotational kinetic energy for individual atoms.)

The average translational kinetic energy of a single atom depends only on the
gas temperature and is given by Eq. 19-24 as . A sample of n moles of
such a gas contains nNA atoms.The internal energy Eint of the sample is then

(19-37)Eint � (nNA)Kavg � (nNA)(3
2kT ).

Kavg � 3
2 kT
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After reading this module, you should be able to . . .

19.28 Identify that the internal energy of an ideal monatomic gas is
the sum of the translational kinetic energies of its atoms.

19.29 Apply the relationship between the internal energy Eint

of a monatomic ideal gas, the number of moles n, and the
gas temperature T.

19.30 Distinguish between monatomic, diatomic, and
polyatomic ideal gases.

19.31 For monatomic, diatomic, and polyatomic ideal gases,
evaluate the molar specific heats for a constant-volume
process and a constant-pressure process.

19.32 Calculate a molar specific heat at constant pressure Cp by
adding R to the molar specific heat at constant volume CV,
and explain why (physically) Cp is greater.

19.33 Identify that the energy transferred to an ideal gas as
heat in a constant-volume process goes entirely into the
internal energy (the random translational motion) but that

in a constant-pressure process energy also goes into the
work done to expand the gas.

19.34 Identify that for a given change in temperature, the
change in the internal energy of an ideal gas is the same
for any process and is most easily calculated by assuming
a constant-volume process.

19.35 For an ideal gas, apply the relationship between heat
Q, number of moles n, and temperature change �T, using
the appropriate molar specific heat.

19.36 Between two isotherms on a p-V diagram, sketch a
constant-volume process and a constant-pressure
process, and for each identify the work done in terms of
area on the graph.

19.37 Calculate the work done by an ideal gas for a constant-
pressure process.

19.38 Identify that work is zero for constant volume.

Learning Objectives

● The molar specific heat CV of a gas at constant volume is
defined as

in which Q is the energy transferred as heat to or from a
sample of n moles of the gas, �T is the resulting temperature
change of the gas, and �Eint is the resulting change in the
internal energy of the gas. 

● For an ideal monatomic gas,

● The molar specific heat Cp of a gas at constant pressure is

CV � 3
2R � 12.5 J/mol�K.

CV �
Q

n �T
�

�Eint

n �T
,

defined to be

in which Q, n, and are defined as above. Cp is also given by

Cp � CV � R.

● For n moles of an ideal gas,

Eint � nCVT (ideal gas).

● If n moles of a confined ideal gas undergo a temperature
change �T due to any process, the change in the internal
energy of the gas is

�Eint � nCV �T (ideal gas, any process).

�T

Cp �
Q

n �T
,

Key Ideas
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The internal energy Eint of an ideal gas is a function of the gas temperature only; it
does not depend on any other variable.

With Eq. 19-38 in hand, we are now able to derive an expression for the
molar specific heat of an ideal gas. Actually, we shall derive two expressions. One
is for the case in which the volume of the gas remains constant as energy is trans-
ferred to or from it as heat. The other is for the case in which the pressure of the
gas remains constant as energy is transferred to or from it as heat. The symbols
for these two molar specific heats are CV and Cp, respectively. (By convention, the
capital letter C is used in both cases, even though CV and Cp represent types of
specific heat and not heat capacities.)

Molar Specific Heat at Constant Volume
Figure 19-9a shows n moles of an ideal gas at pressure p and temperature T,
confined to a cylinder of fixed volume V. This initial state i of the gas is
marked on the p-V diagram of Fig. 19-9b. Suppose now that you add a small
amount of energy to the gas as heat Q by slowly turning up the temperature
of the thermal reservoir. The gas temperature rises a small amount to T �
�T, and its pressure rises to p � �p, bringing the gas to final state f. In such
experiments, we would find that the heat Q is related to the temperature
change �T by

Q � nCV �T (constant volume), (19-39)

where CV is a constant called the molar specific heat at constant volume. Substi-
tuting this expression for Q into the first law of thermodynamics as given by
Eq. 18-26 (�Eint � Q � W ) yields

�Eint � nCV �T � W. (19-40)

With the volume held constant, the gas cannot expand and thus cannot do any
work.Therefore, W � 0, and Eq. 19-40 gives us

(19-41)

From Eq. 19-38, the change in internal energy must be

(19-42)

Substituting this result into Eq. 19-41 yields

(monatomic gas). (19-43)

As Table 19-2 shows, this prediction of the kinetic theory (for ideal gases) agrees
very well with experiment for real monatomic gases, the case that we have
assumed. The (predicted and) experimental values of CV for diatomic gases
(which have molecules with two atoms) and polyatomic gases (which have mole-
cules with more than two atoms) are greater than those for monatomic gases for
reasons that will be suggested in Module 19-8. Here we make the preliminary as-
sumption that the CV values for diatomic and polyatomic gases are greater than
for monatomic gases because the more complex molecules can rotate and thus
have rotational kinetic energy. So, when Q is transferred to a diatomic or poly-
atomic gas, only part of it goes into the translational kinetic energy, increasing the

CV � 3
2R � 12.5 J/mol�K

�Eint � 3
2nR �T.

CV �
�Eint

n �T
.

Figure 19-9 (a) The temperature of an ideal
gas is raised from T to T � �T in a constant-
volume process. Heat is added, but no work
is done. (b) The process on a p-V diagram.
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Using Eq. 19-7 (k � R/NA), we can rewrite this as

(monatomic ideal gas). (19-38)Eint � 3
2nRT

Table 19-2 Molar Specific Heats at
Constant Volume

CV

Molecule Example (J/mol �K)

Monatomic
Ideal R � 12.5

Real
He 12.5
Ar 12.6

Diatomic
Ideal R � 20.8

Real
N2 20.7
O2 20.8

Polyatomic
Ideal 3R � 24.9

Real
NH4 29.0
CO2 29.7

5
2

3
2



temperature. (For now we neglect the possibility of also putting energy into oscil-
lations of the molecules.)

We can now generalize Eq. 19-38 for the internal energy of any ideal gas by
substituting CV for R; we get

Eint � nCVT (any ideal gas). (19-44)

This equation applies not only to an ideal monatomic gas but also to diatomic
and polyatomic ideal gases, provided the appropriate value of CV is used. Just as
with Eq. 19-38, we see that the internal energy of a gas depends on the temper-
ature of the gas but not on its pressure or density.

When a confined ideal gas undergoes temperature change �T, then from ei-
ther Eq. 19-41 or Eq. 19-44 the resulting change in its internal energy is

�Eint � nCV �T (ideal gas, any process). (19-45)

This equation tells us:

3
2
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Figure 19-10 Three paths representing three
different processes that take an ideal gas
from an initial state i at temperature T to
some final state f at temperature T � �T.
The change �Eint in the internal energy
of the gas is the same for these three
processes and for any others that result in
the same change of temperature.
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The paths are different,
but the change in the
internal energy is the
same.

A change in the internal energy Eint of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.

As examples, consider the three paths between the two isotherms in the p-V
diagram of Fig. 19-10. Path 1 represents a constant-volume process. Path 2
represents a constant-pressure process (we examine it next). Path 3 represents a
process in which no heat is exchanged with the system’s environment (we discuss
this in Module 19-9). Although the values of heat Q and work W associated with
these three paths differ, as do pf and Vf , the values of �Eint associated with the
three paths are identical and are all given by Eq. 19-45, because they all involve
the same temperature change �T. Therefore, no matter what path is actually
taken between T and T � �T, we can always use path 1 and Eq. 19-45 to compute
�Eint easily.

Molar Specific Heat at Constant Pressure
We now assume that the temperature of our ideal gas is increased by the same
small amount �T as previously but now the necessary energy (heat Q) is added
with the gas under constant pressure. An experiment for doing this is shown in
Fig. 19-11a; the p-V diagram for the process is plotted in Fig. 19-11b. From such
experiments we find that the heat Q is related to the temperature change �T by

Q � nCp �T (constant pressure), (19-46)

where Cp is a constant called the molar specific heat at constant pressure. This
Cp is greater than the molar specific heat at constant volume CV, because energy
must now be supplied not only to raise the temperature of the gas but also for
the gas to do work—that is, to lift the weighted piston of Fig. 19-11a.

To relate molar specific heats Cp and CV, we start with the first law of ther-
modynamics (Eq. 18-26):

�Eint � Q � W. (19-47)

We next replace each term in Eq. 19-47. For �Eint, we substitute from Eq. 19-45.
For Q, we substitute from Eq. 19-46. To replace W, we first note that since the
pressure remains constant, Eq. 19-16 tells us that W � p �V. Then we note that,
using the ideal gas equation (pV � nRT), we can write

W � p �V � nR �T. (19-48)

Making these substitutions in Eq. 19-47 and then dividing through by n �T,
we find

CV � Cp � R

TQ
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Figure 19-11 (a) The temperature of an ideal
gas is raised from T to T � �T in a constant-
pressure process. Heat is added and work
is done in lifting the loaded piston. (b) The
process on a p-V diagram.The work p �V
is given by the shaded area.



and then

Cp � CV � R. (19-49)

This prediction of kinetic theory agrees well with experiment, not only for
monatomic gases but also for gases in general, as long as their density is low
enough so that we may treat them as ideal.

The left side of Fig. 19-12 shows the relative values of Q for a monatomic gas
undergoing either a constant-volume process or a constant-(Q � 3

2nR �T )
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Monatomic Diatomic 

nR ΔT7__
2

nR ΔT5__
2

nR ΔT Q @ con V 

Q @ con p 

W

W ΔEint trans

3__
2

ΔEint trans

Q @ con V 

Q @ con p 

W

ΔEint trans
rotation

trans
rotation

ΔEint

WFigure 19-12 The relative
values of Q for a
monatomic gas (left side)
and a diatomic gas under-
going a constant-volume
process (labeled “con V”)
and a constant-pressure
process (labeled “con p”).
The transfer of the energy
into work W and internal
energy (�Eint) is noted.

Checkpoint 4
The figure here shows five paths traversed by a gas on a
p-V diagram. Rank the paths according to the change in
internal energy of the gas, greatest first.

p

V
T1

T2

T3
4

3
2

1

5

constant pressure Cp and Eq. 19-46,

Q � nCp �T, (19-50)

to find Q. To evaluate Cp we go to Eq. 19-49, which tells us
that for any ideal gas, Cp � CV � R. Then from Eq. 19-43, we
know that for any monatomic gas (like the helium here),

Thus, Eq. 19-50 gives us

(Answer)

(b) What is the change �Eint in the internal energy of the
helium during the temperature increase?

� 2077.5 J � 2080 J.

� (5.00 mol)(2.5)(8.31 J/mol�K)(20.0 C�)

Q � n(CV � R) �T � n(3
2R � R) �T � n(5

2R) �T

CV � 3
2R.

Sample Problem 19.07 Monatomic gas, heat, internal energy, and work

A bubble of 5.00 mol of helium is submerged at a certain depth
in liquid water when the water (and thus the helium) undergoes
a temperature increase �T of 20.0 C� at constant pressure.As a
result, the bubble expands.The helium is monatomic and ideal.

(a) How much energy is added to the helium as heat during
the increase and expansion?

KEY IDEA

Heat Q is related to the temperature change �T by a molar
specific heat of the gas.

Calculations: Because the pressure p is held constant dur-
ing the addition of energy, we use the molar specific heat at

pressure process . Note that for the latter, the value of Q is higher(Q � 5
2nR �T )

by the amount W, the work done by the gas in the expansion. Note also that for
the constant-volume process, the energy added as Q goes entirely into the change
in internal energy �Eint and for the constant-pressure process, the energy added
as Q goes into both �Eint and the work W.



Degrees of Freedom and Molar Specific Heats
As Table 19-2 shows, the prediction that agrees with experiment for
monatomic gases but fails for diatomic and polyatomic gases. Let us try to explain
the discrepancy by considering the possibility that molecules with more than one
atom can store internal energy in forms other than translational kinetic energy.

Figure 19-13 shows common models of helium (a monatomic molecule, con-
taining a single atom), oxygen (a diatomic molecule, containing two atoms), and

CV � 3
2R
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● We find CV by using the equipartition of energy theorem,
which states that every degree of freedom of a molecule
(that is, every independent way it can store energy) has
associated with it—on average—an energy per molecule
( per mole). 

● If f is the number of degrees of freedom, then 

� 1
2RT

1
2kT

Eint ( f /2)nRT and

● For monatomic gases f 3 (three translational degrees);
for diatomic gases f 5 (three translational and two rota-
tional degrees).

�
�

CV � � f
2 �R � 4.16f  J/mol�K.

�

Key Ideas

KEY IDEA

Because the bubble expands, this is not a constant-volume
process. However, the helium is nonetheless confined (to the
bubble). Thus, the change Eint is the same as would occur in a
constant-volume process with the same temperature change �T.

Calculation: We can now easily find the constant-volume
change �Eint with Eq. 19-45:

(Answer)

(c) How much work W is done by the helium as it expands
against the pressure of the surrounding water during the
temperature increase?

KEY IDEAS

The work done by any gas expanding against the pressure
from its environment is given by Eq. 19-11, which tells us to in-

� 1246.5 J � 1250 J.

� (5.00 mol)(1.5)(8.31 J/mol�K)(20.0 C�)

�Eint � nCV �T � n(3
2R) �T

�

tegrate p dV. When the pressure is constant (as here), we can
simplify that to W � p �V. When the gas is ideal (as here), we
can use the ideal gas law (Eq. 19-5) to write p �V � nR �T.

Calculation: We end up with

W � nR �T

� (5.00 mol)(8.31 J/mol �K)(20.0 C�)

� 831 J. (Answer)

Another way: Because we happen to know Q and �Eint, we can
work this problem another way: We can account for the energy
changes of the gas with the first law of thermodynamics, writing

W � Q � �Eint � 2077.5 J � 1246.5 J

� 831 J. (Answer)

The transfers: Let’s follow the energy. Of the 2077.5 J
transferred to the helium as heat Q, 831 J goes into the work
W required for the expansion and 1246.5 J goes into the inter-
nal energy Eint, which, for a monatomic gas, is entirely the ki-
netic energy of the atoms in their translational motion.These
several results are suggested on the left side of Fig. 19-12.

Additional examples, video, and practice available at WileyPLUS

19-8 DEGREES OF FREEDOM AND MOLAR SPECIFIC HEATS

After reading this module, you should be able to . . .

19.39 Identify that a degree of freedom is associated with
each way a gas can store energy (translation, rotation, and
oscillation).

19.40 Identify that an energy of per molecule is associ-
ated with each degree of freedom.

19.41 Identify that a monatomic gas can have an internal
energy consisting of only translational motion.

1
2kT

19.42 Identify that at low temperatures a diatomic gas has
energy in only translational motion, at higher temperatures it
also has energy in molecular rotation, and at even higher
temperatures it can also have energy in molecular oscillations.

19.43 Calculate the molar specific heat for monatomic and di-
atomic ideal gases in a constant-volume process and a
constant-pressure process.

Learning Objectives
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Every kind of molecule has a certain number f of degrees of freedom, which are inde-
pendent ways in which the molecule can store energy. Each such degree of freedom has
associated with it—on average—an energy of per molecule (or per mole).1

2RT1
2kT

He

O
O

(b) O2

(a) He

H

H
H

H

C

(c) CH4

Figure 19-13 Models of molecules as used
in kinetic theory: (a) helium, a typical
monatomic molecule; (b) oxygen, a typical
diatomic molecule; and (c) methane, a
typical polyatomic molecule.The spheres
represent atoms, and the lines between
them represent bonds.Two rotation axes
are shown for the oxygen molecule.

Let us apply the theorem to the translational and rotational motions of the
molecules in Fig. 19-13. (We discuss oscillatory motion below.) For the transla-
tional motion, superimpose an xyz coordinate system on any gas. The molecules
will, in general, have velocity components along all three axes.Thus, gas molecules
of all types have three degrees of translational freedom (three ways to move in
translation) and, on average, an associated energy of per molecule.

For the rotational motion, imagine the origin of our xyz coordinate system at
the center of each molecule in Fig. 19-13. In a gas, each molecule should be able to
rotate with an angular velocity component along each of the three axes, so each gas
should have three degrees of rotational freedom and, on average, an additional en-
ergy of per molecule. However, experiment shows this is true only for the
polyatomic molecules.According to quantum theory, the physics dealing with the al-
lowed motions and energies of molecules and atoms, a monatomic gas molecule
does not rotate and so has no rotational energy (a single atom cannot rotate like a
top).A diatomic molecule can rotate like a top only about axes perpendicular to the
line connecting the atoms (the axes are shown in Fig. 19-13b) and not about that line
itself. Therefore, a diatomic molecule can have only two degrees of rotational free-
dom and a rotational energy of only per molecule.

To extend our analysis of molar specific heats (Cp and C in Module 19-7) to ideal
diatomic and polyatomic gases, it is necessary to retrace the derivations of that analysis
in detail.First,we replace Eq.19-38 with Eint ( f/2)nRT, where f is the
number of degrees of freedom listed in Table 19-3.Doing so leads to the prediction

(19-51)

which agrees—as it must—with Eq. 19-43 for monatomic gases ( f � 3). As Table
19-2 shows, this prediction also agrees with experiment for diatomic gases ( f � 5),
but it is too low for polyatomic gases ( f � 6 for molecules comparable to CH4).

CV � � f
2 �R � 4.16f  J/mol�K,

�(Eint � 3
2nRT )

2(1
2kT )

3(1
2kT )

3(1
2kT )

Table 19-3 Degrees of Freedom for Various Molecules

Degrees of Freedom Predicted Molar Specific Heats

Molecule Example Translational Rotational Total ( f ) CV (Eq. 19-51) Cp � CV � R

Monatomic He 3 0 3

Diatomic O2 3 2 5

Polyatomic CH4 3 3 6 3R 4R

7
2R

5
2R

5
2R

3
2R

methane (a polyatomic molecule). From such models, we would assume that all
three types of molecules can have translational motions (say, moving left–right
and up–down) and rotational motions (spinning about an axis like a top). In
addition, we would assume that the diatomic and polyatomic molecules can have
oscillatory motions, with the atoms oscillating slightly toward and away from one
another, as if attached to opposite ends of a spring.

To keep account of the various ways in which energy can be stored in a gas,
James Clerk Maxwell introduced the theorem of the equipartition of energy:

Sample Problem 19.08 Diatomic gas, heat, temperature, internal energy

We transfer 1000 J as heat Q to a diatomic gas, allowing the gas
to expand with the pressure held constant. The gas molecules

each rotate around an internal axis but do not oscillate. How
much of the 1000 J goes into the increase of the gas’s internal
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(Answer)

In words, about 71% of the energy transferred to the gas
goes into the internal energy.The rest goes into the work re-
quired to increase the volume of the gas, as the gas pushes
the walls of its container outward.

Increases in K: If we were to increase the temperature of a
monatomic gas (with the same value of n) by the amount
given in Eq. 19-52, the internal energy would change by a
smaller amount, call it �Eint, mon, because rotational motion
is not involved.To calculate that smaller amount, we still use
Eq. 19-45 but now we substitute the value of CV for a
monatomic gas—namely, So,

Substituting for �T from Eq. 19-52 leads us to

For the monatomic gas, all this energy would go into the ki-
netic energy of the translational motion of the atoms. The im-
portant point here is that for a diatomic gas with the same 
values of n and �T, the same amount of energy goes into the
kinetic energy of the translational motion of the molecules.
The rest of �Eint,dia (that is, the additional 285.7 J) goes into the
rotational motion of the molecules. Thus, for the diatomic gas,

�Ktrans � 428.6 J and �Krot � 285.7 J. (Answer)

� 0.42857Q � 428.6 J.

�Eint,mon � n3
2R� Q

n7
2R

� � 3
7Q

�Eint,mon � n3
2R �T.

CV � 3
2R.

� 0.71428Q � 714.3 J.

�Eint,dia � nCV �T � n5
2R� Q

7
2nR � � 5

7Q
energy? Of that amount, how much goes into �Ktran (the ki-
netic energy of the translational motion of the molecules) and
�Krot (the kinetic energy of their rotational motion)?

KEY IDEAS

1. The transfer of energy as heat Q to a gas under constant
pressure is related to the resulting temperature increase
�T via Eq. 19-46 (Q � nCp �T ).

2. Because the gas is diatomic with molecules undergoing
rotation but not oscillation, the molar specific heat is,
from Fig. 19-12 and Table 19-3, .

3. The increase �Eint in the internal energy is the same as
would occur with a constant-volume process resulting in
the same �T. Thus, from Eq. 19-45, �Eint � nCV �T. From
Fig. 19-12 and Table 19-3, we see that .

4. For the same n and �T, �Eint is greater for a diatomic gas
than for a monatomic gas because additional energy is
required for rotation.

Increase in Eint: Let’s first get the temperature change �T due
to the transfer of energy as heat. From Eq. 19-46, substituting

for Cp,we have

(19-52)

We next find Eint from Eq. 19-45, substituting the molar
specific heat for a constant-volume process and
using the same . Because we are dealing with a di-
atomic gas, let’s call this change . Equation 19-45
gives us

�Eint,dia

�T
CV (� 5

2R)
�

�T �
Q

7
2nR

.

7
2R

CV � 5
2R

Cp � 7
2R

Additional examples, video, and practice available at WileyPLUS

A Hint of Quantum Theory
We can improve the agreement of kinetic theory with experiment by
including the oscillations of the atoms in a gas of diatomic or poly-
atomic molecules. For example, the two atoms in the O2 molecule of
Fig. 19-13b can oscillate toward and away from each other, with the
interconnecting bond acting like a spring. However, experiment
shows that such oscillations occur only at relatively high tempera-
tures of the gas—the motion is “turned on” only when the gas mole-
cules have relatively large energies. Rotational motion is also sub-
ject to such “turning on,” but at a lower temperature.

Figure 19-14 is of help in seeing this turning on of rotational mo-
tion and oscillatory motion. The ratio CV/R for diatomic hydrogen
gas (H2) is plotted there against temperature, with the temperature
scale logarithmic to cover several orders of magnitude. Below about
80 K, we find that CV/R � 1.5. This result implies that only the three
translational degrees of freedom of hydrogen are involved in the
specific heat.

20 50 100 200 500 1000 2000 5000 10,000 
Temperature (K) 
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3/2

Translation

Rotation

Oscillation

Figure 19-14 CV/R versus temperature for (diatomic) hydrogen
gas. Because rotational and oscillatory motions begin at cer-
tain energies, only translation is possible at very low tempera-
tures.As the temperature increases, rotational motion can be-
gin.At still higher temperatures, oscillatory motion can begin.



As the temperature increases, the value of CV/R gradually increases to 2.5, im-
plying that two additional degrees of freedom have become involved. Quantum
theory shows that these two degrees of freedom are associated with the rota-
tional motion of the hydrogen molecules and that this motion requires a certain
minimum amount of energy. At very low temperatures (below 80 K), the mole-
cules do not have enough energy to rotate. As the temperature increases from 80
K, first a few molecules and then more and more of them obtain enough energy
to rotate, and the value of CV/R increases, until all of the molecules are rotating
and CV/R � 2.5.

Similarly, quantum theory shows that oscillatory motion of the molecules
requires a certain (higher) minimum amount of energy. This minimum amount is
not met until the molecules reach a temperature of about 1000 K, as shown in
Fig. 19-14. As the temperature increases beyond 1000 K, more and more mole-
cules have enough energy to oscillate and the value of CV/R increases, until all of
the molecules are oscillating and CV/R � 3.5. (In Fig. 19-14, the plotted curve
stops at 3200 K because there the atoms of a hydrogen molecule oscillate so
much that they overwhelm their bond, and the molecule then dissociates into two
separate atoms.)

The turning on of the rotation and vibration of the diatomic and polyatomic
molecules is due to the fact that the energies of these motions are quantized, that
is, restricted to certain values.There is a lowest allowed value for each type of mo-
tion. Unless the thermal agitation of the surrounding molecules provides those
lowest amounts, a molecule simply cannot rotate or vibrate.
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After reading this module, you should be able to . . .

19.44 On a p-V diagram, sketch an adiabatic expansion 
(or contraction) and identify that there is no heat exchange
Q with the environment.

19.45 Identify that in an adiabatic expansion, the gas does
work on the environment, decreasing the gas’s internal
energy, and that in an adiabatic contraction, work is done
on the gas, increasing the internal energy.

19.46 In an adiabatic expansion or contraction, relate the ini-
tial pressure and volume to the final pressure and volume.

19.47 In an adiabatic expansion or contraction, relate the ini-
tial temperature and volume to the final temperature and
volume.

19.48 Calculate the work done in an adiabatic process by
integrating the pressure with respect to volume.

19.49 Identify that a free expansion of a gas into a vacuum is
adiabatic but no work is done and thus, by the first law of
thermodynamics, the internal energy and temperature of
the gas do not change.

Learning Objectives

● When an ideal gas undergoes a slow adiabatic volume
change (a change for which Q � 0),

pVg
� a constant (adiabatic process),

in which g (� Cp/CV) is the ratio of molar specific heats for
the gas. 

● For a free expansion, pV � a constant.

Key Ideas

The Adiabatic Expansion of an Ideal Gas
We saw in Module 17-2 that sound waves are propagated through air and
other gases as a series of compressions and expansions; these variations in the
transmission medium take place so rapidly that there is no time for energy to
be transferred from one part of the medium to another as heat. As we saw in
Module 18-5, a process for which Q � 0 is an adiabatic process. We can ensure
that Q � 0 either by carrying out the process very quickly (as in sound waves) or
by doing it (at any rate) in a well-insulated container.
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Adiabat (Q = 0)
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300 K
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Isotherms:

We slowly remove lead shot, allowing an 
expansion without any heat transfer.

Figure 19-15 (a) The volume of an ideal gas is increased by removing mass from the piston.
The process is adiabatic (Q � 0). (b) The process proceeds from i to f along an adiabat on
a p-V diagram.

Figure 19-15a shows our usual insulated cylinder, now containing an ideal gas
and resting on an insulating stand. By removing mass from the piston, we can
allow the gas to expand adiabatically. As the volume increases, both the pressure
and the temperature drop. We shall prove next that the relation between the
pressure and the volume during such an adiabatic process is

pVg
� a constant (adiabatic process), (19-53)

in which g � Cp/CV, the ratio of the molar specific heats for the gas. On a p-V
diagram such as that in Fig. 19-15b, the process occurs along a line (called an
adiabat) that has the equation p (a constant)/Vg. Since the gas goes from an
initial state i to a final state f, we can rewrite Eq. 19-53 as

piV
g
i � pfV

g
f (adiabatic process). (19-54)

To write an equation for an adiabatic process in terms of T and V, we use the
ideal gas equation ( pV � nRT ) to eliminate p from Eq. 19-53, finding

Because n and R are constants, we can rewrite this in the alternative form

TVg�1 � a constant (adiabatic process), (19-55)

in which the constant is different from that in Eq. 19-53. When the gas goes from
an initial state i to a final state f, we can rewrite Eq. 19-55 as

TiV
g�1
i � TfV

g�1
f (adiabatic process). (19-56)

Understanding adiabatic processes allows you to understand why popping
the cork on a cold bottle of champagne or the tab on a cold can of soda causes
a slight fog to form at the opening of the container. At the top of any unopened
carbonated drink sits a gas of carbon dioxide and water vapor. Because the pres-
sure of that gas is much greater than atmospheric pressure, the gas expands out
into the atmosphere when the container is opened. Thus, the gas volume in-
creases, but that means the gas must do work pushing against the atmosphere.
Because the expansion is rapid, it is adiabatic, and the only source of energy for
the work is the internal energy of the gas. Because the internal energy decreases,

� nRT
V �V�

� a constant.

�



the temperature of the gas also decreases and so does the number of water mole-
cules that can remain as a vapor. So, lots of the water molecules condense into
tiny drops of fog.

Proof of Eq. 19-53
Suppose that you remove some shot from the piston of Fig. 19-15a, allowing the
ideal gas to push the piston and the remaining shot upward and thus to increase
the volume by a differential amount dV. Since the volume change is tiny, we may
assume that the pressure p of the gas on the piston is constant during the change.
This assumption allows us to say that the work dW done by the gas during the
volume increase is equal to p dV. From Eq. 18-27, the first law of thermodynamics
can then be written as

dEint � Q � p dV. (19-57)

Since the gas is thermally insulated (and thus the expansion is adiabatic), we
substitute 0 for Q. Then we use Eq. 19-45 to substitute nCV dT for dEint. With
these substitutions, and after some rearranging, we have

(19-58)

Now from the ideal gas law ( pV � nRT ) we have

p dV � V dp � nR dT. (19-59)

Replacing R with its equal, Cp � CV, in Eq. 19-59 yields

(19-60)

Equating Eqs. 19-58 and 19-60 and rearranging then give

Replacing the ratio of the molar specific heats with g and integrating (see inte-
gral 5 in Appendix E) yield

ln p � g ln V � a constant.

Rewriting the left side as ln pVg and then taking the antilog of both sides, we find

pVg
� a constant. (19-61)

Free Expansions
Recall from Module 18-5 that a free expansion of a gas is an adiabatic process
with no work or change in internal energy. Thus, a free expansion differs from
the adiabatic process described by Eqs. 19-53 through 19-61, in which work is
done and the internal energy changes. Those equations then do not apply to a
free expansion, even though such an expansion is adiabatic.

Also recall that in a free expansion, a gas is in equilibrium only at its initial
and final points; thus, we can plot only those points, but not the expansion
itself, on a p-V diagram. In addition, because �Eint � 0, the temperature of
the final state must be that of the initial state. Thus, the initial and final points
on a p-V diagram must be on the same isotherm, and instead of Eq. 19-56
we have

Ti � Tf (free expansion). (19-62)

dp
p

� � Cp

CV
� dV

V
� 0.

n dT �
p dV � V dp

Cp � CV
.

n dT � �� p
CV

� dV.
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If we next assume that the gas is ideal (so that pV � nRT ), then because
there is no change in temperature, there can be no change in the product pV.
Thus, instead of Eq. 19-53 a free expansion involves the relation

piVi � pfVf (free expansion). (19-63)
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expression into Eq. 19-64 and integrating lead us to

(19-66)

Before we substitute in given data, we must determine the
ratio g of molar specific heats for a gas of diatomic molecules
with rotation but no oscillation. From Table 19-3 we find

g (19-67)

We can now write the work done by the gas as the following
(with volume in cubic meters and pressure in pascals):

� [(8.00 � 10�6)�1.4�1 � (4.00 � 10�6)�1.4�1]

� 0.48 J. (Answer)

The first law of thermodynamics (Eq. 18-26) tells us that
�Eint � Q � W. Because Q � 0 in the adiabatic expansion,
we see that

�Eint � �0.48 J. (Answer)

With this decrease in internal energy, the gas temperature
must also decrease because of the expansion.

W �
1

�1.4 � 1
 (2.00 � 105)(4.00 � 10�6)1.4

�
Cp

CV
�

7
2R
5
2R

� 1.4.

�
1

�g � 1
piV

g
i  [V�g�1

f � V�g�1
i ].

� piV
g
i�Vf

Vi

V�g dV �
1

�g � 1
piV

g
i  [V�g�1]Vf

Vi

W � �Vf

Vi

p dV � �Vf

Vi

V�gpiV
g
i dV

Sample Problem 19.09 Work done by a gas in an adiabatic expansion

Initially an ideal diatomic gas has pressure pi 2.00 105 Pa
and volume Vi � 4.00 � 10�6 m3. How much work W does
it do, and what is the change �Eint in its internal energy if
it expands adiabatically to volume Vf � 8.00 � 10�6 m3?
Throughout the process, the molecules have rotation but
not oscillation.

KEY IDEA

(1) In an adiabatic expansion, no heat is exchanged be-
tween the gas and its environment, and the energy for the
work done by the gas comes from the internal energy.
(2) The final pressure and volume are related to the initial
pressure and volume by Eq. 19-54 . (3) The
work done by a gas in any process can be calculated by
integrating the pressure with respect to the volume (the
work is due to the gas pushing the walls of its container
outward).

Calculations: We want to calculate the work by filling out
this integration,

(19-64)

but we first need an expression for the pressure as a func-
tion of volume (so that we integrate the expression with
respect to volume). So, let’s rewrite Eq. 19-54 with indefinite
symbols (dropping the subscripts f ) as

(19-65)

The initial quantities are given constants but the pressure p
is a function of the variable volume V. Substituting this

p �
1

Vg
piV

g
i � V�gpiV

g
i .

W � �Vf

Vi

p dV,

(piV
g
i � pfV

g
f )

��

2. When the process is adiabatic (no energy is transferred as
heat), then the energy required for the work can come only
from the internal energy of the gas.

3. Because the internal energy decreases, the temperature
T must also decrease.

Calculations: We can relate the initial and final tempera-
tures and volumes with Eq. 19-56:

(19-68)

Because the molecules are diatomic and have rotation but
not oscillation, we can take the molar specific heats from

TiV
g�1
i � TfV

g�1
f .

Sample Problem 19.10 Adiabatic expansion, free expansion

Initially, 1 mol of oxygen (assumed to be an ideal gas) has
temperature 310 K and volume 12 L. We will allow it to
expand to volume 19 L.

(a) What would be the final temperature if the gas  expands adi-
abatically? Oxygen (O2) is diatomic and here has rotation but
not oscillation.

KEY IDEAS

1. When a gas expands against the pressure of its environ-
ment, it must do work.



575REVIEW & SUMMARY

Problem-Solving Tactics A Graphical Summary of Four Gas Processes

In this chapter we have discussed four special processes that
an ideal gas can undergo. An example of each (for a mon-
atomic ideal gas) is shown in Fig. 19-16, and some associated
characteristics are given in Table 19-4, including two process
names (isobaric and isochoric) that we have not used but
that you might see in other courses.

Additional examples, video, and practice available at WileyPLUS

Checkpoint 5
Rank paths 1, 2, and 3 in Fig. 19-16 according to the energy
transfer to the gas as heat, greatest first.

700 K 
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Figure 19-16 A p-V diagram representing four special processes for
an ideal monatomic gas.

Table 19-4 Four Special Processes

Some Special Results

Path in Fig. 19-16 Constant Quantity Process Type (�Eint � Q � W and �Eint � nCV �T for all paths)

1 p Isobaric Q � nCp �T; W � p �V

2 T Isothermal Q � W � nRT ln(Vf /Vi); �Eint � 0
3 pVg, TVg�1 Adiabatic Q � 0; W � ��Eint

4 V Isochoric Q � �Eint � nCV �T; W � 0

Table 19-3.Thus,

Solving Eq. 19-68 for Tf and inserting known data then yield

(Answer)

(b) What would be the final temperature and pressure if,
instead, the gas expands freely to the new volume, from an
initial pressure of 2.0 Pa?

� (310 K)(12
19)

0.40 � 258 K.

Tf �
TiV

g�1
i

Vg�1
f

�
(310 K)(12 L)1.40�1

(19 L)1.40�1

g �
Cp

CV
�

7
2R
5
2R

� 1.40.

KEY IDEA

The temperature does not change in a free expansion be-
cause there is nothing to change the kinetic energy of the
molecules.

Calculation: Thus, the temperature is

Tf � Ti � 310 K. (Answer)

We find the new pressure using Eq. 19-63, which gives us

(Answer)pf � pi
Vi

Vf
� (2.0 Pa) 

12 L
19 L

� 1.3 Pa.

Kinetic Theory of Gases The kinetic theory of gases relates
the macroscopic properties of gases (for example, pressure and
temperature) to the microscopic properties of gas molecules (for
example, speed and kinetic energy).

Avogadro’s Number One mole of a substance contains
NA (Avogadro’s number) elementary units (usually atoms or mole-
cules), where NA is found experimentally to be

NA � 6.02 � 1023 mol�1 (Avogadro’s number). (19-1)

Review & Summary

One molar mass M of any substance is the mass of one mole of the
substance. It is related to the mass m of the individual molecules of
the substance by

M � mNA. (19-4)

The number of moles n contained in a sample of mass Msam,
consisting of N molecules, is given by

(19-2, 19-3)n �
N
NA

�
Msam

M
�

Msam

mNA
.
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1 For four situations for an
ideal gas, the table gives the
energy transferred to or from
the gas as heat Q and either the
work W done by the gas or the
work Won done on the gas, all in
joules. Rank the four situations in terms of the temperature change
of the gas, most positive first.

Questions

a

b

c

V

p

Figure 19-17 Question 2.

a b c d

Q �50 �35 �15 �20
W �50 �35
Won �40 �40

Ideal Gas An ideal gas is one for which the pressure p, volume
V, and temperature T are related by

pV � nRT (ideal gas law). (19-5)

Here n is the number of moles of the gas present and R is a constant
(8.31 J/mol �K) called the gas constant. The ideal gas law can also be
written as

pV � NkT, (19-9)

where the Boltzmann constant k is

(19-7)

Work in an Isothermal Volume Change The work done
by an ideal gas during an isothermal (constant-temperature)
change from volume Vi to volume Vf is

(ideal gas, isothermal process). (19-14)

Pressure, Temperature, and Molecular Speed The pres-
sure exerted by n moles of an ideal gas, in terms of the speed of its
molecules, is

(19-21)

where is the root-mean-square speed of the mole-
cules of the gas.With Eq. 19-5 this gives

(19-22)

Temperature and Kinetic Energy The average transla-
tional kinetic energy Kavg per molecule of an ideal gas is

(19-24)

Mean Free Path The mean free path l of a gas molecule is its
average path length between collisions and is given by

(19-25)

where N/V is the number of molecules per unit volume and d is the
molecular diameter.

Maxwell Speed Distribution The Maxwell speed distri-
bution P(v) is a function such that P(v) dv gives the fraction
of molecules with speeds in the interval dv at speed v:

(19-27)

Three measures of the distribution of speeds among the molecules of

P(v) � 4p� M
2pRT �

3/2

v2 e�Mv2/2RT.

l �
1

12pd2 N/V
,

Kavg � 3
2kT.

vrms � A
3RT
M

.

vrms � 2(v2)avg

p �
nMv2

rms

3V
,

W � nRT ln 
Vf

Vi

k �
R

NA
� 1.38 � 10�23 J/K.

a gas are

(average speed), (19-31)

(most probable speed), (19-35)

and the rms speed defined above in Eq. 19-22.

Molar Specific Heats The molar specific heat CV of a gas at
constant volume is defined as

(19-39, 19-41)

in which Q is the energy transferred as heat to or from a sample of
n moles of the gas, �T is the resulting temperature change of the
gas, and �Eint is the resulting change in the internal energy of the
gas. For an ideal monatomic gas,

(19-43)

The molar specific heat Cp of a gas at constant pressure is defined to be

(19-46)

in which Q, n, and �T are defined as above. Cp is also given by

Cp � CV � R. (19-49)

For n moles of an ideal gas,

Eint � nCVT (ideal gas). (19-44)

If n moles of a confined ideal gas undergo a temperature change �T
due to any process, the change in the internal energy of the gas is

�Eint � nCV �T (ideal gas, any process). (19-45)

Degrees of Freedom and CV The equipartition of energy
theorem states that every degree of freedom of a molecule has an
energy per molecule ( per mole). If f is the number of
degrees of freedom, then Eint ( f /2)nRT and

(19-51)

For monatomic gases f � 3 (three translational degrees); for di-
atomic gases f � 5 (three translational and two rotational degrees).

Adiabatic Process When an ideal gas undergoes an adiabatic
volume change (a change for which Q � 0),

pVg
� a constant (adiabatic process), (19-53)

in which g (� Cp/CV) is the ratio of molar specific heats for the gas.
For a free expansion, however, pV � a constant.

CV � � f
2 �R � 4.16f  J/mol�K.

�
� 1

2RT1
2kT

Cp �
Q

n �T
,

CV � 3
2R � 12.5 J/mol�K.

CV �
Q

n �T
�

�Eint

n �T
,

vP � A
2RT
M

vavg � A
8RT
pM

2 In the p-V diagram of Fig.
19-17, the gas does 5 J of work
when taken along isotherm ab
and 4 J when taken along
adiabat bc. What is the change
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final points on a p-V diagram for the two gases. Which path goes
with which process? (e) Are the molecules of the diatomic gas ro-
tating?

6 The dot in Fig. 19-18b represents the initial state of a gas, and
the isotherm through the dot divides the p-V diagram into regions
1 and 2. For the following processes, determine whether the change
�Eint in the internal energy of the gas is positive, negative, or zero:
(a) the gas moves up along the isotherm, (b) it moves down along
the isotherm, (c) it moves to anywhere in region 1, and (d) it moves
to anywhere in region 2.

7 (a) Rank the four paths of Fig. 19-16 according to the work
done by the gas, greatest first. (b) Rank paths 1, 2, and 3 according
to the change in the internal energy of the gas, most positive first
and most negative last.

8 The dot in Fig. 19-18c represents the initial state of a gas, and
the adiabat through the dot divides the p-V diagram into regions
1 and 2. For the following processes, determine whether the cor-
responding heat Q is positive, negative, or zero: (a) the gas
moves up along the adiabat, (b) it moves down along the adia-
bat, (c) it moves to anywhere in region 1, and (d) it moves to
anywhere in region 2.

9 An ideal diatomic gas, with molecular rotation but without any
molecular oscillation, loses a certain amount of energy as heat Q.
Is the resulting decrease in the internal energy of the gas greater if
the loss occurs in a constant-volume process or in a constant-pres-
sure process?

10 Does the temperature of an ideal gas increase, decrease,
or stay the same during (a) an isothermal expansion, (b) an expan-
sion at constant pressure, (c) an adiabatic expansion, and (d) an
increase in pressure at constant volume?

p p p

V V V

11

22
21

(a) (b) (c)

Figure 19-18 Questions 4, 6, and 8.

•6 Water bottle in a hot car. In the American Southwest, the
temperature in a closed car parked in sunlight during the summer
can be high enough to burn flesh. Suppose a bottle of water at a re-
frigerator temperature of 5.00�C is opened, then closed, and then
left in a closed car with an internal temperature of 75.0�C.
Neglecting the thermal expansion of the water and the bottle, find
the pressure in the air pocket trapped in the bottle. (The pressure
can be enough to push the bottle cap past the threads that are in-
tended to keep the bottle closed.)

•7 Suppose 1.80 mol of an ideal gas is taken from a volume of
3.00 m3 to a volume of 1.50 m3 via an isothermal compression at
30�C. (a) How much energy is transferred as heat during the com-
pression, and (b) is the transfer to or from the gas?

•8 Compute (a) the number of moles and (b) the number of mol-
ecules in 1.00 cm3 of an ideal gas at a pressure of 100 Pa and a tem-
perature of 220 K.

•9 An automobile tire has a volume of 1.64 � 10�2 m3 and con-
tains air at a gauge pressure (pressure above atmospheric pres-
sure) of 165 kPa when the temperature is 0.00�C.What is the gauge

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 19-1 Avogadro’s Number
•1 Find the mass in kilograms of 7.50 � 1024 atoms of arsenic,
which has a molar mass of 74.9 g/mol.

•2 Gold has a molar mass of 197 g/mol. (a) How many moles of
gold are in a 2.50 g sample of pure gold? (b) How many atoms are
in the sample?

Module 19-2 Ideal Gases
•3 Oxygen gas having a volume of 1000 cm3 at 40.0 C and�SSM

1.01 � 105 Pa expands until its volume is 1500 cm3 and its pressure
is 1.06 � 105 Pa. Find (a) the number of moles of oxygen present
and (b) the final temperature of the sample.

•4 A quantity of ideal gas at 10.0�C and 100 kPa occupies a volume
of 2.50 m3. (a) How many moles of the gas are present? (b) If the
pressure is now raised to 300 kPa and the temperature is raised to
30.0�C, how much volume does the gas occupy? Assume no leaks.

•5 The best laboratory vacuum has a pressure of about 1.00 �
10�18 atm, or 1.01 � 10�13 Pa. How many gas molecules are there
per cubic centimeter in such a vacuum at 293 K?

in the internal energy of the gas when it is taken along the straight
path from a to c?

3 For a temperature increase of �T1, a certain amount of an ideal
gas requires 30 J when heated at constant volume and 50 J when
heated at constant pressure. How much work is done by the gas in
the second situation?

4 The dot in Fig. 19-18a represents the initial state of a gas, and
the vertical line through the dot divides the p-V diagram into re-
gions 1 and 2. For the following processes, determine whether the
work W done by the gas is positive, negative, or zero: (a) the gas
moves up along the vertical line, (b) it moves down along the verti-
cal line, (c) it moves to anywhere in region 1, and (d) it moves to
anywhere in region 2.

5 A certain amount of energy is to
be transferred as heat to 1 mol of a
monatomic gas (a) at constant pres-
sure and (b) at constant volume, and
to 1 mol of a diatomic gas (c) at con-
stant pressure and (d) at constant
volume. Figure 19-19 shows four
paths from an initial point to four

4
3

2

1

V

p

Figure 19-19 Question 5.



•••16 An air bubble of volume 20 cm3 is at the bottom of a lake
40 m deep, where the temperature is 4.0�C. The bubble rises to the
surface, which is at a temperature of 20�C.Take the temperature of
the bubble’s air to be the same as that of the surrounding water.
Just as the bubble reaches the surface, what is its volume?

•••17 Container A in Fig. 19-22
holds an ideal gas at a pressure of
5.0 � 105 Pa and a temperature of
300 K. It is connected by a thin tube
(and a closed valve) to container B,
with four times the volume of A.
Container B holds the same ideal
gas at a pressure of 1.0 � 105 Pa and
a temperature of 400 K. The valve is
opened to allow the pressures to equalize, but the temperature of
each container is maintained.What then is the pressure?

Module 19-3 Pressure, Temperature, and RMS Speed
•18 The temperature and pressure in the Sun’s atmosphere are
2.00 � 106 K and 0.0300 Pa. Calculate the rms speed of free elec-
trons (mass 9.11 � 10�31 kg) there, assuming they are an ideal gas.

•19 (a) Compute the rms speed of a nitrogen molecule at 20.0�C.
The molar mass of nitrogen molecules (N2) is given in Table 19-1.
At what temperatures will the rms speed be (b) half that value and
(c) twice that value?

•20 Calculate the rms speed of helium atoms at 1000 K. See
Appendix F for the molar mass of helium atoms.

•21 The lowest possible temperature in outer space is 2.7 K.
What is the rms speed of hydrogen molecules at this temperature?
(The molar mass is given in Table 19-1.)

•22 Find the rms speed of argon atoms at 313 K. See Appendix F
for the molar mass of argon atoms.

••23 A beam of hydrogen molecules (H2) is directed toward a wall,
at an angle of 55� with the normal to the wall. Each molecule in the
beam has a speed of 1.0 km/s and a mass of 3.3 � 10�24 g. The beam
strikes the wall over an area of 2.0 cm2, at the rate of 1023 molecules
per second.What is the beam’s pressure on the wall?

••24 At 273 K and 1.00 � 10�2 atm, the density of a gas is 1.24 �
10�5 g/cm3. (a) Find vrms for the gas molecules. (b) Find the molar
mass of the gas and (c) identify the gas. See Table 19-1.

Module 19-4 Translational Kinetic Energy
•25 Determine the average value of the translational kinetic en-
ergy of the molecules of an ideal gas at temperatures (a) 0.00�C

SSM
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pressure of the air in the tires when its temperature rises to 27.0�C
and its volume increases to 1.67 � 10�2 m3? Assume atmospheric
pressure is 1.01 � 105 Pa.

•10 A container encloses 2 mol of an ideal gas that has molar
mass M1 and 0.5 mol of a second ideal gas that has molar mass 
M2 � 3M1. What fraction of the total pressure on the container
wall is attributable to the second gas? (The kinetic theory explana-
tion of pressure leads to the experimentally discovered law of par-
tial pressures for a mixture of gases that do not react chemically:
The total pressure exerted by the mixture is equal to the sum of the
pressures that the several gases would exert separately if each were
to occupy the vessel alone. The molecule–vessel collisions of one
type would not be altered by the presence of another type.)

••11 Air that initially occupies 0.140 m3 at a
gauge pressure of 103.0 kPa is expanded isothermally to a pressure
of 101.3 kPa and then cooled at constant pressure until it reaches
its initial volume. Compute the work done by the air. (Gauge pres-
sure is the difference between the actual pressure and atmospheric
pressure.)

••12 Submarine rescue. When the U.S. submarine
Squalus became disabled at a depth of 80 m, a cylindrical cham-
ber was lowered from a ship to rescue the crew. The chamber
had a radius of 1.00 m and a height of 4.00 m, was open at the
bottom, and held two rescuers. It slid along a guide cable that a
diver had attached to a hatch on the submarine. Once the cham-
ber reached the hatch and clamped to the hull, the crew could es-
cape into the chamber. During the descent, air was released from
tanks to prevent water from flooding the chamber. Assume that
the interior air pressure matched the water pressure at depth h
as given by p0 � rgh, where p0 � 1.000 atm is the surface pres-
sure and r � 1024 kg/m3 is the density of seawater. Assume a sur-
face temperature of 20.0�C and a submerged water temperature
of �30.0�C. (a) What is the air volume in the chamber at the sur-
face? (b) If air had not been released from the tanks, what would
have been the air volume in the chamber at depth h � 80.0 m?
(c) How many moles of air were needed to be released to main-
tain the original air volume in the
chamber?

••13 A sample of an ideal gas is
taken through the cyclic process abca
shown in Fig. 19-20. The scale of the
vertical axis is set by pb � 7.5 kPa and
pac � 2.5 kPa. At point a, T � 200 K.
(a) How many moles of gas are in the
sample? What are (b) the temperature
of the gas at point b, (c) the tempera-
ture of the gas at point c, and (d) the
net energy added to the gas as heat
during the cycle?

••14 In the temperature range 310 K to 330 K, the pressure p of a
certain nonideal gas is related to volume V and temperature T by

How much work is done by the gas if its temperature is raised from
315 K to 325 K while the pressure is held constant?

••15 Suppose 0.825 mol of an ideal gas undergoes an isothermal
expansion as energy is added to it as heat Q. If Fig. 19-21 shows the
final volume Vf versus Q, what is the gas temperature? The scale of

p � (24.9 J/K) 
T
V

� (0.00662 J/K2)
T 2

V
.
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the vertical axis is set by Vfs � 0.30 m3, and the scale of the horizon-
tal axis is set by Qs � 1200 J.

Figure 19-21 Problem 15.
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and (b) 100�C. What is the translational kinetic energy per mole of
an ideal gas at (c) 0.00�C and (d) 100�C?

•26 What is the average translational kinetic energy of nitrogen
molecules at 1600 K?

••27 Water standing in the open at 32.0�C evaporates because
of the escape of some of the surface molecules. The heat of vapor-
ization (539 cal/g) is approximately equal to ´n, where ´ is the av-
erage energy of the escaping molecules and n is the number of
molecules per gram. (a) Find ´. (b) What is the ratio of ´ to the
average kinetic energy of H2O molecules, assuming the latter is re-
lated to temperature in the same way as it is for gases?

Module 19-5 Mean Free Path
•28 At what frequency would the wavelength of sound in air be
equal to the mean free path of oxygen molecules at 1.0 atm pres-
sure and 0.00�C? The molecular diameter is 3.0 � 10�8 cm.

•29 The atmospheric density at an altitude of 2500 km is
about 1 molecule/cm3. (a) Assuming the molecular diameter of
2.0 � 10�8 cm, find the mean free path predicted by Eq. 19-25.
(b) Explain whether the predicted value is meaningful.

•30 The mean free path of nitrogen molecules at 0.0�C and
1.0 atm is 0.80 � 10�5 cm. At this temperature and pressure there
are 2.7 � 1019 molecules/cm3.What is the molecular diameter?

••31 In a certain particle accelerator, protons travel around a cir-
cular path of diameter 23.0 m in an evacuated chamber, whose
residual gas is at 295 K and 1.00 � 10�6 torr pressure. (a) Calculate
the number of gas molecules per cubic centimeter at this pressure.
(b) What is the mean free path of the gas molecules if the molecu-
lar diameter is 2.00 � 10�8 cm?

••32 At 20�C and 750 torr pressure, the mean free paths for argon
gas (Ar) and nitrogen gas (N2) are lAr � 9.9 � 10�6 cm and lN2

�
27.5 � 10�6 cm. (a) Find the ratio of the diameter of an Ar atom
to that of an N2 molecule. What is the mean free path of argon at
(b) 20�C and 150 torr, and (c) �40�C and 750 torr?

Module 19-6 The Distribution of Molecular Speeds
•33 The speeds of 10 molecules are 2.0, 3.0, 4.0, . . . , 11 km/s.
What are their (a) average speed and (b) rms speed?

•34 The speeds of 22 particles are as follows (Ni represents the
number of particles that have speed vi):

Ni 2 4 6 8 2
vi (cm/s) 1.0 2.0 3.0 4.0 5.0

What are (a) vavg, (b) vrms, and (c) vP?

•35 Ten particles are moving with the following speeds: four 
at 200 m/s, two at 500 m/s, and four at 600 m/s. Calculate their
(a) average and (b) rms speeds. (c) Is vrms � vavg?

••36 The most probable speed of the molecules in a gas at tempera-
ture T2 is equal to the rms speed of the molecules at temperature T1.
Find T2 /T1.

••37 Figure 19-23 shows a
hypothetical speed distribution for a sam-
ple of N gas particles (note that P(v) � 0
for speed v � 2v0).What are the values of
(a) av0, (b) vavg/v0, and (c) vrms/v0? (d)
What fraction of the particles has a speed
between 1.5v0 and 2.0v0?

WWWSSM
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••38 Figure 19-24 gives the probability distribution for nitrogen
gas.The scale of the horizontal axis is set by vs � 1200 m/s.What are
the (a) gas temperature and (b) rms speed of the molecules?

v0
Speed

2v00

a

P(
v)

Figure 19-23 Problem 37.

0 vs
v (m/s) 

P(
v)

Figure 19-24 Problem 38.
••39 At what temperature does the rms speed of (a) H2 (molecu-
lar hydrogen) and (b) O2 (molecular oxygen) equal the escape
speed from Earth (Table 13-2)? At what temperature does the rms
speed of (c) H2 and (d) O2 equal the escape speed from the Moon
(where the gravitational acceleration at the surface has magnitude
0.16g)? Considering the answers to parts (a) and (b), should there
be much (e) hydrogen and (f) oxygen high in Earth’s upper atmo-
sphere, where the temperature is about 1000 K?   

••40 Two containers are at the same temperature. The first con-
tains gas with pressure p1, molecular mass m1, and rms speed vrms1.
The second contains gas with pressure 2.0p1, molecular mass m2,
and average speed vavg2 � 2.0vrms1. Find the mass ratio m1/m2.

••41 A hydrogen molecule (diameter 1.0 � 10�8 cm), traveling at
the rms speed, escapes from a 4000 K furnace into a chamber con-
taining cold argon atoms (diameter 3.0 � 10�8 cm) at a density of 
4.0 � 1019 atoms/cm3. (a) What is the speed of the hydrogen mole-
cule? (b) If it collides with an argon atom, what is the closest their
centers can be, considering each as spherical? (c) What is the initial
number of collisions per second experienced by the hydrogen mol-
ecule? (Hint:Assume that the argon atoms are stationary.Then the
mean free path of the hydrogen molecule is given by Eq. 19-26 and
not Eq. 19-25.)

Module 19-7 The Molar Specific Heats of an Ideal Gas
•42 What is the internal energy of 1.0 mol of an ideal monatomic
gas at 273 K?

••43 The temperature of 3.00 mol of an ideal diatomic gas is in-
creased by 40.0 C without the pressure of the gas changing. The
molecules in the gas rotate but do not oscillate. (a) How much
energy is transferred to the gas as heat? (b) What is the change in
the internal energy of the gas? (c) How much work is done by the
gas? (d) By how much does the rotational kinetic energy of the gas
increase?

••44 One mole of an ideal di-
atomic gas goes from a to c along the
diagonal path in Fig. 19-25. The scale
of the vertical axis is set by pab �
5.0 kPa and pc � 2.0 kPa, and the scale
of the horizontal axis is set by Vbc �
4.0 m3 and Va � 2.0 m3. During the
transition, (a) what is the change in in-
ternal energy of the gas, and (b) how
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Figure 19-25 Problem 44.



580 CHAPTER 19 THE KINETIC THEORY OF GASES

much energy is added to the gas as heat? (c) How much heat is re-
quired if the gas goes from a to c along the indirect path abc?

••45 The mass of a gas molecule can be computed from its
specific heat at constant volume cV. (Note that this is not CV.) Take
cV � 0.075 cal/g �C� for argon and calculate (a) the mass of an ar-
gon atom and (b) the molar mass of argon.

••46 Under constant pressure, the temperature of 2.00 mol of an
ideal monatomic gas is raised 15.0 K. What are (a) the work W
done by the gas, (b) the energy transferred as heat Q, (c) the
change �Eint in the internal energy of the gas, and (d) the change
�K in the average kinetic energy per atom?

••47 The temperature of 2.00 mol of an ideal monatomic gas is
raised 15.0 K at constant volume.What are (a) the work W done by
the gas, (b) the energy transferred as heat Q, (c) the change �Eint in
the internal energy of the gas, and (d) the change �K in the aver-
age kinetic energy per atom?

••48 When 20.9 J was added as heat to a particular ideal gas,
the volume of the gas changed from 50.0 cm3 to 100 cm3 while the
pressure remained at 1.00 atm. (a) By how much did the internal
energy of the gas change? If the quantity of gas present was 2.00 �
10�3 mol, find (b) Cp and (c) CV.

••49 A container holds a mixture of three nonreacting gases:SSM
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•56 Suppose 1.00 L of a gas with g � 1.30, initially at 273 K and
1.00 atm, is suddenly compressed adiabatically to half its initial vol-
ume. Find its final (a) pressure and (b) temperature. (c) If the gas is
then cooled to 273 K at constant pressure, what is its final volume?

••57 The volume of an ideal gas is adiabatically reduced from
200 L to 74.3 L. The initial pressure and temperature are 1.00 atm
and 300 K. The final pressure is 4.00 atm. (a) Is the gas monatomic,
diatomic, or polyatomic? (b) What is the final temperature?
(c) How many moles are in the gas?

••58 Opening champagne. In a bottle of champagne, the
pocket of gas (primarily carbon dioxide) between the liquid and
the cork is at pressure of pi � 5.00 atm. When the cork is pulled
from the bottle, the gas undergoes an adiabatic expansion until its
pressure matches the ambient air pressure of 1.00 atm. Assume
that the ratio of the molar specific heats is . If the gas has� � 4

3

p

V

Path 1 

Isothermal

Isothermal

AdiabaticPath 2 

f

i

Figure 19-26 Problem 59.

2.40 mol of gas 1 with CV1 12.0 J/mol �K, 1.50 mol of gas 2 with
CV2 � 12.8 J/mol �K, and 3.20 mol of gas 3 with CV3 � 20.0 J/mol �K.
What is CV of the mixture?

Module 19-8 Degrees of Freedom and Molar Specific Heats
•50 We give 70 J as heat to a diatomic gas, which then expands at
constant pressure.The gas molecules rotate but do not oscillate. By
how much does the internal energy of the gas increase?

•51 When 1.0 mol of oxygen (O2) gas is heated at constant
pressure starting at 0 C, how much energy must be added to the
gas as heat to double its volume? (The molecules rotate but do not
oscillate.)

••52 Suppose 12.0 g of oxygen (O2) gas is heated at constant
atmospheric pressure from 25.0 C to 125 C. (a) How many moles
of oxygen are present? (See Table 19-1 for the molar mass.)
(b) How much energy is transferred to the oxygen as heat? (The

��

�
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�

molecules rotate but do not oscillate.) (c) What fraction of the heat
is used to raise the internal energy of the oxygen?

••53 Suppose 4.00 mol of an ideal diatomic gas, with
molecular rotation but not oscillation, experienced a temperature
increase of 60.0 K under constant-pressure conditions. What are
(a) the energy transferred as heat Q, (b) the change �Eint in inter-
nal energy of the gas, (c) the work W done by the gas, and (d) the
change �K in the total translational kinetic energy of the gas?

Module 19-9 The Adiabatic Expansion of an Ideal Gas
•54 We know that for an adiabatic process pVg � a constant.
Evaluate “a constant” for an adiabatic process involving exactly
2.0 mol of an ideal gas passing through the state having exactly
p � 1.0 atm and T � 300 K. Assume a diatomic gas whose mole-
cules rotate but do not oscillate.

•55 A certain gas occupies a volume of 4.3 L at a pressure of
1.2 atm and a temperature of 310 K. It is compressed adiabatically
to a volume of 0.76 L. Determine (a) the final pressure and 
(b) the final temperature, assuming the gas to be an ideal gas for
which g � 1.4.

WWWSSM

••60 Adiabatic wind. The normal airflow over the
Rocky Mountains is west to east.The air loses much of its moisture
content and is chilled as it climbs the western side of the moun-
tains.When it descends on the eastern side, the increase in pressure
toward lower altitudes causes the temperature to increase. The
flow, then called a chinook wind, can rapidly raise the air tempera-
ture at the base of the mountains. Assume that the air pressure p
depends on altitude y according to p p0 exp (�ay), where p0 �
1.00 atm and a 1.16 10�4 m�1. Also assume that the ratio of
the molar specific heats is . A parcel of air with an initial tem-
perature of .00 C descends adiabatically from y1 4267 m to 
y 1567 m.What is its temperature at the end of the descent? 

••61 A gas is to be expanded from initial state i to final state f
along either path 1 or path 2 on a p-V diagram. Path 1 consists of
three steps: an isothermal expansion (work is 40 J in magnitude),
an adiabatic expansion (work is 20 J in magnitude), and another
isothermal expansion (work is 30 J in magnitude). Path 2 consists
of two steps: a pressure reduction at constant volume and an ex-
pansion at constant pressure.What is the change in the internal en-
ergy of the gas along path 2?

•••62 An ideal diatomic gas, with rotation but no oscillation, un-
dergoes an adiabatic compression. Its initial pressure and volume are

�
���5

g � 4
3

��
�

initial temperature Ti � 5.00 C, what is its temperature at the end
of the adiabatic expansion? 

••59 Figure 19-26 shows two paths that may be taken by a gas
from an initial point i to a final point f. Path 1 consists of an isother-
mal expansion (work is 50 J in magnitude), an adiabatic expansion
(work is 40 J in magnitude), an isothermal compression (work is
30 J in magnitude), and then an adiabatic compression (work is 25 J
in magnitude). What is the change in the internal energy of the gas
if the gas goes from point i to point f along path 2?

�
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1.20 atm and 0.200 m3. Its final pressure
is 2.40 atm. How much work is done by
the gas?

•••63 Figure 19-27 shows a cycle un-
dergone by 1.00 mol of an ideal
monatomic gas. The temperatures are
T1 � 300 K, T2 � 600 K, and T3 � 455
K. For 1 : 2, what are (a) heat Q,
(b) the change in internal energy �Eint,
and (c) the work done W? For 2 : 3,
what are (d) Q, (e) �Eint, and (f) W?
For 3 : 1, what are (g) Q, (h) �Eint,
and (i) W? For the full cycle, what are (j) Q, (k) �Eint, and (l) W? The
initial pressure at point 1 is 1.00 atm (� 1.013 � 105 Pa).What are the
(m) volume and (n) pressure at point 2 and the (o) volume and (p)
pressure at point 3?

Additional Problems
64 Calculate the work done by an external agent during an
isothermal compression of 1.00 mol of oxygen from a volume of
22.4 L at 0�C and 1.00 atm to a volume of 16.8 L.

65 An ideal gas undergoes an adiabatic compression from 
p � 1.0 atm, V � 1.0 � 106 L, T � 0.0�C to p � 1.0 � 105 atm,
V � 1.0 � 103 L. (a) Is the gas monatomic, diatomic, or polyatomic?
(b) What is its final temperature? (c) How many moles of gas are
present? What is the total translational kinetic energy per mole
(d) before and (e) after the compression? (f) What is the ratio of
the squares of the rms speeds before and after the compression?

66 An ideal gas consists of 1.50 mol of diatomic molecules that ro-
tate but do not oscillate. The molecular diameter is 250 pm. The gas is
expanded at a constant pressure of 1.50 � 105 Pa,with a transfer of 200
J as heat.What is the change in the mean free path of the molecules?

67 An ideal monatomic gas initially has a temperature of 330 K
and a pressure of 6.00 atm. It is to expand from volume 500 cm3

to volume 1500 cm3. If the expansion is isothermal, what are (a) the
final pressure and (b) the work done by the gas? If, instead, the ex-
pansion is adiabatic, what are (c) the final pressure and (d) the
work done by the gas?

68 In an interstellar gas cloud at 50.0 K, the pressure is 
1.00 � 10�8 Pa. Assuming that the molecular diameters of the
gases in the cloud are all 20.0 nm, what is their mean free path?

69 The envelope and basket of a hot-air balloon have a
combined weight of 2.45 kN, and the envelope has a capacity (vol-
ume) of 2.18 � 103 m3. When it is fully inflated, what should be
the temperature of the enclosed air to give the balloon a lifting
capacity (force) of 2.67 kN (in addition to the balloon’s weight)?
Assume that the surrounding air, at 20.0�C, has a weight per unit
volume of 11.9 N/m3 and a molecular mass of 0.028 kg/mol, and is
at a pressure of 1.0 atm.

70 An ideal gas, at initial temperature T1 and initial volume
2.0 m3, is expanded adiabatically to a volume of 4.0 m3, then ex-
panded isothermally to a volume of 10 m3, and then compressed
adiabatically back to T1.What is its final volume?

71 The temperature of 2.00 mol of an ideal monatomic gas
is raised 15.0 K in an adiabatic process. What are (a) the work W
done by the gas, (b) the energy transferred as heat Q, (c) the
change �Eint in internal energy of the gas, and (d) the change �K in
the average kinetic energy per atom?
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72 At what temperature do atoms of helium gas have the same
rms speed as molecules of hydrogen gas at 20.0�C? (The molar
masses are given in Table 19-1.)

73 At what frequency do molecules (diameter 290 pm) col-
lide in (an ideal) oxygen gas (O2) at temperature 400 K and pres-
sure 2.00 atm?

74 (a) What is the number of molecules per cubic meter in air at
20�C and at a pressure of 1.0 atm (� 1.01 � 105 Pa)? (b) What is
the mass of 1.0 m3 of this air? Assume that 75% of the molecules
are nitrogen (N2) and 25% are oxygen (O2).

75 The temperature of 3.00 mol of a gas with CV � 6.00 cal/mol �K
is to be raised 50.0 K. If the process is at constant volume, what are
(a) the energy transferred as heat Q, (b) the work W done by
the gas, (c) the change �Eint in internal energy of the gas, and
(d) the change �K in the total translational kinetic energy? If the
process is at constant pressure, what are (e) Q, (f) W, (g) Eint,
and (h) �K? If the process is adiabatic, what are (i) Q, ( j) W,
(k) �Eint, and (l) �K?

76 During a compression at a constant pressure of 250 Pa, the
volume of an ideal gas decreases from 0.80 m3 to 0.20 m3. The ini-
tial temperature is 360 K, and the gas loses 210 J as heat. What are
(a) the change in the internal energy of the gas and (b) the final
temperature of the gas?

77 Figure 19-28 shows a hy-
pothetical speed distribution for
particles of a certain gas: P(v) � Cv2

for 0 � v � v0 and P(v) � 0 for v �
v0. Find (a) an expression for C in
terms of v0, (b) the average speed of
the particles, and (c) their rms speed.

78 (a) An ideal gas initially at pressure p0 undergoes a free ex-
pansion until its volume is 3.00 times its initial volume. What then
is the ratio of its pressure to p0? (b) The gas is next slowly and adia-
batically compressed back to its original volume. The pressure af-
ter compression is (3.00)1/3p0. Is the gas monatomic, diatomic, or
polyatomic? (c) What is the ratio of the average kinetic energy per
molecule in this final state to that in the initial state?

79 An ideal gas undergoes isothermal compression from
an initial volume of 4.00 m3 to a final volume of 3.00 m3. There is
3.50 mol of the gas, and its temperature is 10.0�C. (a) How much
work is done by the gas? (b) How much energy is transferred as
heat between the gas and its environment?

80 Oxygen (O2) gas at 273 K and 1.0 atm is confined to a cubical
container 10 cm on a side. Calculate �Ug/Kavg, where �Ug is the
change in the gravitational potential energy of an oxygen molecule
falling the height of the box and Kavg is the molecule’s average
translational kinetic energy.

81 An ideal gas is taken through a complete cycle in three steps:
adiabatic expansion with work equal to 125 J, isothermal contraction
at 325 K, and increase in pressure at constant volume. (a) Draw a p-V
diagram for the three steps. (b) How much energy is transferred as
heat in step 3, and (c) is it transferred to or from the gas?

82 (a) What is the volume occupied by 1.00 mol of an ideal gas
at standard conditions — that is, 1.00 atm (� 1.01 � 10 5 Pa) and
273 K? (b) Show that the number of molecules per cubic centime-
ter (the Loschmidt number) at standard conditions is 2.69 � 109.

83 A sample of ideal gas expands from an initial pressureSSM
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until the water rises halfway
up in the pipe (Fig. 19-30).
What is the depth h of the
lower end of the pipe?
Assume that the temperature
is the same everywhere and
does not change.

90 In a motorcycle engine, a
piston is forced down toward
the crankshaft when the fuel
in the top of the piston’s
cylinder undergoes combustion. The mixture of gaseous combus-
tion products then expands adiabatically as the piston descends.
Find the average power in (a) watts and (b) horsepower that is in-
volved in this expansion when the engine is running at 4000 rpm,
assuming that the gauge pressure immediately after combustion is
15 atm, the initial volume is 50 cm3, and the volume of the mixture
at the bottom of the stroke is 250 cm3. Assume that the gases are
diatomic and that the time involved in the expansion is one-half
that of the total cycle.

91 For adiabatic processes in an ideal gas, show that (a) the bulk
modulus is given by 

where g � Cp/CV. (See Eq. 17-2.) (b) Then show that the speed of
sound in the gas is

where r is the density, T is the temperature, and M is the molar
mass. (See Eq. 17-3.)

92 Air at 0.000�C and 1.00 atm pressure has a density of 1.29 � 10�3

g/cm3, and the speed of sound is 331 m/s at that temperature.
Compute the ratio g of the molar specific heats of air. (Hint: See
Problem 91.)

93 The speed of sound in different gases at a certain tempera-
ture T depends on the molar mass of the gases. Show that

where v1 is the speed of sound in a gas of molar mass M1 and v2 is the
speed of sound in a gas of molar mass M2. (Hint: See Problem 91.)

94 From the knowledge that CV, the molar specific heat at con-
stant volume, for a gas in a container is 5.0R, calculate the ratio of
the speed of sound in that gas to the rms speed of the molecules,
for gas temperature T. (Hint: See Problem 91.)

95 The molar mass of iodine is 127 g/mol. When sound at fre-
quency 1000 Hz is introduced to a tube of iodine gas at 400 K, an
internal acoustic standing wave is set up with nodes separated by
9.57 cm.What is g for the gas? (Hint: See Problem 91.)

96 For air near 0�C, by how much does the speed of sound increase
for each increase in air temperature by 1 C�? (Hint: See Problem 91.)

97 Two containers are at the same temperature. The gas in the
first container is at pressure p1 and has molecules with mass m1

and root-mean-square speed vrms1.The gas in the second is at pres-
sure 2p1 and has molecules with mass m2 and average speed
vavg2 � 2vrms1. Find the ratio m1/m2 of the masses of their molecules.

v1

v2
� A

M2

M1
,

vs � A
gp
r

� A
gRT
M

,

B � �V
dp
dV

� gp,

and volume of 32 atm and 1.0 L to a final volume of 4.0 L. The
initial temperature is 300 K. If the gas is monatomic and the expan-
sion isothermal, what are the (a) final pressure pf , (b) final temper-
ature Tf , and (c) work W done by the gas? If the gas is monatomic
and the expansion adiabatic, what are (d) pf , (e) Tf , and (f) W? If
the gas is diatomic and the expansion adiabatic, what are (g) pf ,
(h) Tf , and (i) W?

84 An ideal gas with 3.00 mol is initially in state 1 with pressure
p1 � 20.0 atm and volume V1 � 1500 cm3. First it is taken to state 2
with pressure p2 � 1.50p1 and volume V2 � 2.00V1. Then it is taken
to state 3 with pressure p3 2.00p1 and volume V3 0.500V1.
What is the temperature of the gas in (a) state 1 and (b) state 2?
(c) What is the net change in internal energy from state 1 to state 3?

85 A steel tank contains 300 g of ammonia gas (NH3) at a pres-
sure of 1.35 � 106 Pa and a temperature of 77�C. (a) What is the
volume of the tank in liters? (b) Later the temperature is 22�C and
the pressure is 8.7 � 105 Pa. How many grams of gas have leaked
out of the tank?

86 In an industrial process the volume of 25.0 mol of a monatomic
ideal gas is reduced at a uniform rate from 0.616 m3 to 0.308 m3 in
2.00 h while its temperature is increased at a uniform rate from
27.0�C to 450�C. Throughout the process, the gas passes through
thermodynamic equilibrium states. What are (a) the cumulative
work done on the gas, (b) the cumulative energy absorbed by the gas
as heat, and (c) the molar specific heat for the process? (Hint: To
evaluate the integral for the work, you might use

an indefinite integral.) Suppose the process is replaced with a two-
step process that reaches the same final state. In step 1, the gas 
volume is reduced at constant temperature, and in step 2 the tempera-
ture is increased at constant volume. For this process, what are (d) the
cumulative work done on the gas, (e) the cumulative energy absorbed
by the gas as heat,and (f) the molar specific heat for the process?

87 Figure 19-29 shows a cycle consisting of five paths: AB
is isothermal at 300 K, BC is adiabatic with work � 5.0 J, CD is at a
constant pressure of 5 atm, DE is isothermal, and EA is adiabatic
with a change in internal energy of 8.0 J. What is the change in in-
ternal energy of the gas along path CD?

� a � bx
A � Bx

dx �
bx
B

�
aB � bA

B2  ln(A � Bx),

��
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Figure 19-30 Problem 89.

h

L/2

L/2
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p

Figure 19-29 Problem 87.

88 An ideal gas initially at 300 K is compressed at a constant pres-
sure of 25 N/m2 from a volume of 3.0 m3 to a volume of 1.8 m3. In the
process, 75 J is lost by the gas as heat.What are (a) the change in inter-
nal energy of the gas and (b) the final temperature of the gas?

89 A pipe of length L � 25.0 m that is open at one end contains air
at atmospheric pressure. It is thrust vertically into a freshwater lake
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20-1 ENTROPY

After reading this module, you should be able to . . .

20.01 Identify the second law of thermodynamics: If a
process occurs in a closed system, the entropy of the 
system increases for irreversible processes and remains
constant for reversible processes; it never decreases.

20.02 Identify that entropy is a state function (the value for a
particular state of the system does not depend on how
that state is reached).

20.03 Calculate the change in entropy for a process by
integrating the inverse of the temperature (in kelvins) with
respect to the heat Q transferred during the process.

20.04 For a phase change with a constant temperature
process, apply the relationship between the entropy
change �S, the total transferred heat Q, and the tempera-
ture T (in kelvins).

20.05 For a temperature change �T that is small relative to
the temperature T, apply the relationship between the
entropy change �S, the transferred heat Q, and the
average temperature Tavg (in kelvins).

20.06 For an ideal gas, apply the relationship between the
entropy change �S and the initial and final values of the
pressure and volume.

20.07 Identify that if a process is an irreversible one, the
integration for the entropy change must be done for a 
reversible process that takes the system between the
same initial and final states as the irreversible process.

20.08 For stretched rubber, relate the elastic force to the rate
at which the rubber’s entropy changes with the change in
the stretching distance.

● An irreversible process is one that cannot be reversed by
means of small changes in the environment. The direction in
which an irreversible process proceeds is set by the change
in entropy �S of the system undergoing the process. Entropy
S is a state property (or state function) of the system; that is, it
depends only on the state of the system and not on the way in
which the system reached that state. The entropy postulate
states (in part): If an irreversible process occurs in a closed
system, the entropy of the system always increases.

● The entropy change �S for an irreversible process that
takes a system from an initial state i to a final state f is exactly
equal to the entropy change �S for any reversible process
that takes the system between those same two states. We
can compute the latter (but not the former) with

Here Q is the energy transferred as heat to or from the
system during the process, and T is the temperature of the
system in kelvins during the process.

● For a reversible isothermal process, the expression for an
entropy change reduces to

�S � Sf � Si � �f

i

dQ
T

.

● When the temperature change of a system is small rela-
tive to the temperature (in kelvins) before and after the process,
the entropy change can be approximated as

where Tavg is the system’s average temperature during the
process.

● When an ideal gas changes reversibly from an initial state with
temperature Ti and volume Vi to a final state with temperature
Tf and volume Vf, the change �S in the entropy of the gas is

● The second law of thermodynamics, which is an extension
of the entropy postulate, states: If a process occurs in a
closed system, the entropy of the system increases for
irreversible processes and remains constant for reversible
processes. It never decreases. In equation form,

�S � 0.

�S � Sf � Si � nR ln 
Vf

Vi
� nCV ln

Tf

Ti
.

�S � Sf � Si �
Q

Tavg
,

�T

�S � Sf � Si �
Q
T

.

Learning Objectives

Key Ideas



What Is Physics?
Time has direction, the direction in which we age. We are accustomed to many
one-way processes — that is, processes that can occur only in a certain sequence
(the right way) and never in the reverse sequence (the wrong way). An egg is
dropped onto a floor, a pizza is baked, a car is driven into a lamppost, large
waves erode a sandy beach — these one-way processes are irreversible, mean-
ing that they cannot be reversed by means of only small changes in their
environment.

One goal of physics is to understand why time has direction and why one-
way processes are irreversible. Although this physics might seem disconnected
from the practical issues of everyday life, it is in fact at the heart of any engine,
such as a car engine, because it determines how well an engine can run.

The key to understanding why one-way processes cannot be reversed
involves a quantity known as entropy.

Irreversible Processes and Entropy
The one-way character of irreversible processes is so pervasive that we take it for
granted. If these processes were to occur spontaneously (on their own) in the
wrong way, we would be astonished. Yet none of these wrong-way events would
violate the law of conservation of energy.

For example, if you were to wrap your hands around a cup of hot coffee, you
would be astonished if your hands got cooler and the cup got warmer. That is
obviously the wrong way for the energy transfer, but the total energy of the
closed system (hands � cup of coffee) would be the same as the total energy if
the process had run in the right way. For another example, if you popped a helium
balloon, you would be astonished if, later, all the helium molecules were to gather
together in the original shape of the balloon. That is obviously the wrong way for
molecules to spread, but the total energy of the closed system (molecules �
room) would be the same as for the right way.

Thus, changes in energy within a closed system do not set the direction of
irreversible processes. Rather, that direction is set by another property that we
shall discuss in this chapter—the change in entropy �S of the system. The change
in entropy of a system is defined later in this module, but we can here state its
central property, often called the entropy postulate:
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If an irreversible process occurs in a closed system, the entropy S of the system
always increases; it never decreases.

Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in this module and the
second in Module 20-4.
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Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Modules 18-5 and 19-9: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf � Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of �S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f.Thus, we cannot trace a pressure–volume
path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a rela-
tion between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.

We saw in Module 19-9 that the temperature of an ideal gas does not change
during a free expansion: Ti � Tf � T. Thus, points i and f in Fig. 20-2 must be on
the same isotherm. A convenient replacement process is then a reversible
isothermal expansion from state i to state f, which actually proceeds along that
isotherm. Furthermore, because T is constant throughout a reversible isothermal
expansion, the integral of Eq. 20-1 is greatly simplified.

Figure 20-3 shows how to produce such a reversible isothermal expansion.
We confine the gas to an insulated cylinder that rests on a thermal reservoir
maintained at the temperature T. We begin by placing just enough lead shot on
the movable piston so that the pressure and volume of the gas are those of the
initial state i of Fig. 20-1a. We then remove shot slowly (piece by piece) until
the pressure and volume of the gas are those of the final state f of Fig. 20-1b. The
temperature of the gas does not change because the gas remains in thermal
contact with the reservoir throughout the process.

The reversible isothermal expansion of Fig. 20-3 is physically quite different
from the irreversible free expansion of Fig. 20-1. However, both processes have
the same initial state and the same final state and thus must have the same change in

�S � Sf � Si � �f

i

dQ
T

Figure 20-1 The free expansion of an ideal
gas. (a) The gas is confined to the left half
of an insulated container by a closed stop-
cock. (b) When the stopcock is opened,
the gas rushes to fill the entire container.
This process is irreversible; that is, it does
not occur in reverse, with the gas sponta-
neously collecting itself in the left half of
the container.

Vacuum 

Insulation

System

(a) Initial state i

(b) Final state f

Irreversible
process

Stopcock open 

Stopcock closed 
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su
re

Volume

i

f

Figure 20-2 A p-V diagram showing the ini-
tial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.



entropy. Because we removed the lead shot slowly, the intermediate states of the
gas are equilibrium states, so we can plot them on a p-V diagram (Fig. 20-4).

To apply Eq. 20-1 to the isothermal expansion, we take the constant tempera-
ture T outside the integral, obtaining

Because � dQ � Q, where Q is the total energy transferred as heat during the
process, we have

(change in entropy, isothermal process). (20-2)

To keep the temperature T of the gas constant during the isothermal expansion
of Fig. 20-3, heat Q must have been energy transferred from the reservoir to the
gas. Thus, Q is positive and the entropy of the gas increases during the isothermal
process and during the free expansion of Fig. 20-1.

To summarize:

�S � Sf � Si �
Q
T

�S � Sf � Si �
1
T
�f

i
dQ.
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T

Lead shot 

Insulation

Thermal reservoir 
T

Control knob 

Q

(a) Initial state i

Reversible
process

Lead shot 

(b) Final state f

Figure 20-3 The isothermal expansion of an
ideal gas, done in a reversible way. The gas
has the same initial state i and same final
state f as in the irreversible process of
Figs. 20-1 and 20-2.

Figure 20-4 A p-V diagram for the reversible
isothermal expansion of Fig. 20-3. The
intermediate states, which are now equilib-
rium states, are shown.
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To find the entropy change for an irreversible process, replace that process with
any reversible process that connects the same initial and final states. Calculate the
entropy change for this reversible process with Eq. 20-1.

When the temperature change �T of a system is small relative to the tem-
perature (in kelvins) before and after the process, the entropy change can be
approximated as

(20-3)

where Tavg is the average temperature of the system in kelvins during the process.

�S � Sf � Si �
Q

Tavg
,

Checkpoint 1
Water is heated on a stove. Rank the entropy changes of the water as its temperature rises
(a) from 20�C to 30�C, (b) from 30�C to 35�C, and (c) from 80�C to 85�C, greatest first.

Entropy as a State Function
We have assumed that entropy, like pressure, energy, and temperature, is a prop-
erty of the state of a system and is independent of how that state is reached. That
entropy is indeed a state function (as state properties are usually called) can be de-
duced only by experiment. However, we can prove it is a state function for the spe-
cial and important case in which an ideal gas is taken through a reversible process.

To make the process reversible, it is done slowly in a series of small steps,
with the gas in an equilibrium state at the end of each step. For each small step,
the energy transferred as heat to or from the gas is dQ, the work done by the gas
is dW, and the change in internal energy is dEint.These are related by the first law
of thermodynamics in differential form (Eq. 18-27):

dEint � dQ � dW.

Because the steps are reversible, with the gas in equilibrium states, we can use
Eq. 18-24 to replace dW with p dV and Eq. 19-45 to replace dEint with nCV dT.
Solving for dQ then leads to

dQ � p dV � nCV dT.

Using the ideal gas law, we replace p in this equation with nRT/V.Then we divide
each term in the resulting equation by T, obtaining

dQ
T

� nR
dV
V

� nCV
dT
T

.



Now let us integrate each term of this equation between an arbitrary initial state
i and an arbitrary final state f to get

The quantity on the left is the entropy change �S (� Sf � Si) defined by Eq. 20-1.
Substituting this and integrating the quantities on the right yield

(20-4)

Note that we did not have to specify a particular reversible process when we
integrated. Therefore, the integration must hold for all reversible processes that
take the gas from state i to state f. Thus, the change in entropy �S between the
initial and final states of an ideal gas depends only on properties of the initial
state (Vi and Ti) and properties of the final state (Vf and Tf); �S does not depend
on how the gas changes between the two states.

�S � Sf � Si � nR ln 
Vf

Vi
� nCV ln 

Tf

Ti
.

�f

i

dQ
T

� �f

i
nR

dV
V

� �f

i
nCV

dT
T

.
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Checkpoint 2
An ideal gas has temperature T1 at the initial state i shown in the p-V diagram here.The
gas has a higher temperature T2 at final states a and b, which it can reach along the paths
shown. Is the entropy change along the path to state a larger than, smaller than, or the
same as that along the path to state b?

T2

T1 T2b
i

a

Volume

Pr
es

su
re

Sample Problem 20.01 Entropy change of two blocks coming to thermal equilibrium

Figure 20-5a shows two identical copper blocks of mass
m 1.5 kg: block L at temperature TiL � 60 C and block
R at temperature TiR � 20�C. The blocks are in a thermally
insulated box and are separated by an insulating shutter.
When we lift the shutter, the blocks eventually come to the
equilibrium temperature Tf � 40�C (Fig. 20-5b). What is
the net entropy change of the two-block system during
this irreversible process? The specific heat of copper is
386 J/kg �K.

KEY IDEA

To calculate the entropy change, we must find a reversible
process that takes the system from the initial state of Fig. 20-5a
to the final state of Fig. 20-5b. We can calculate the net en-
tropy change �Srev of the reversible process using Eq. 20-1,
and then the entropy change for the irreversible process is
equal to �Srev.

Calculations: For the reversible process, we need a thermal
reservoir whose temperature can be changed slowly (say, by
turning a knob). We then take the blocks through the fol-
lowing two steps, illustrated in Fig. 20-6.

Step 1: With the reservoir’s temperature set at 60 C, put
block L on the reservoir. (Since block and reservoir are at
the same temperature, they are already in thermal equilib-

�

��

Warm Cool 
TiL TiR

L R Irreversible
process

Insulation

(a) (b)

Tf Tf

L R 

Movable
shutter

Figure 20-5 (a) In the initial state, two copper blocks L and R, iden-
tical except for their temperatures, are in an insulating box and
are separated by an insulating shutter. (b) When the shutter is
removed, the blocks exchange energy as heat and come to a final
state, both with the same temperature Tf .

Figure 20-6 The blocks of Fig. 20-5 can proceed from their initial
state to their final state in a reversible way if we use a reservoir
with a controllable temperature (a) to extract heat reversibly
from block L and (b) to add heat reversibly to block R.

Q

Reservoir

L

Insulation

Q

R

(a) Step 1 (b) Step 2 



Additional examples, video, and practice available at WileyPLUS

588 CHAPTER 20 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS

rium.) Then slowly lower the temperature of the reservoir
and the block to 40�C. As the block’s temperature changes
by each increment dT during this process, energy dQ is
transferred as heat from the block to the reservoir. Using
Eq. 18-14, we can write this transferred energy as dQ �
mc dT, where c is the specific heat of copper. According to
Eq. 20-1, the entropy change �SL of block L during the full
temperature change from initial temperature TiL (� 60�C �
333 K) to final temperature Tf (� 40�C � 313 K) is

Inserting the given data yields

Step 2: With the reservoir’s temperature now set at 20 C,�

� �35.86 J/K.

�SL � (1.5 kg)(386 J/kg�K) ln 
313 K
333 K

� mc ln 
Tf

TiL
.

�SL � �f

i

dQ
T

� �Tf

TiL

mc dT
T

� mc �Tf

TiL

dT
T

put block R on the reservoir. Then slowly raise the tempera-
ture of the reservoir and the block to 40�C. With the
same reasoning used to find �SL, you can show that the 
entropy change �SR of block R during this process is

38.23 J/K.

The net entropy change �Srev of the two-block system un-
dergoing this two-step reversible process is then

�Srev � �SL � �SR

� �35.86 J/K � 38.23 J/K � 2.4 J/K.

Thus, the net entropy change �Sirrev for the two-block sys-
tem undergoing the actual irreversible process is

�Sirrev � �Srev � 2.4 J/K. (Answer)

This result is positive, in accordance with the entropy 
postulate.

� �

�SR � (1.5 kg)(386 J/kg�K) ln 
313 K
293 K

in which n is the number of moles of gas present. From
Eq. 20-2 the entropy change for this reversible process in
which the temperature is held constant is

Substituting n � 1.00 mol and Vf /Vi � 2, we find

� �5.76 J/K.

Thus, the entropy change for the free expansion (and for all
other processes that connect the initial and final states
shown in Fig. 20-2) is

�Sirrev � �Srev � �5.76 J/K. (Answer)

Because �S is positive, the entropy increases, in accordance
with the entropy postulate.

�Srev � nR ln 
Vf

Vi
� (1.00 mol)(8.31 J/mol�K)(ln 2)

�Srev �
Q
T

�
nRT ln(Vf /Vi )

T
� nR ln  

Vf

Vi
.

Sample Problem 20.02 Entropy change of a free expansion of a gas

Suppose 1.0 mol of nitrogen gas is confined to the left side
of the container of Fig. 20-1a. You open the stopcock, and
the volume of the gas doubles. What is the entropy change
of the gas for this irreversible process? Treat the gas as ideal.

KEY IDEAS

(1) We can determine the entropy change for the irre-
versible process by calculating it for a reversible process
that provides the same change in volume. (2) The temper-
ature of the gas does not change in the free expansion.Thus,
the reversible process should be an isothermal expansion—
namely, the one of Figs. 20-3 and 20-4.

Calculations: From Table 19-4, the energy Q added as heat
to the gas as it expands isothermally at temperature T from
an initial volume Vi to a final volume Vf is

,Q � nRT ln  
Vf

Vi

The Second Law of Thermodynamics
Here is a puzzle. In the process of going from (a) to (b) in Fig. 20-3, the entropy
change of the gas (our system) is positive. However, because the process is re-
versible, we can also go from (b) to (a) by, say, gradually adding lead shot to the
piston, to restore the initial gas volume. To maintain a constant temperature, we
need to remove energy as heat, but that means Q is negative and thus the entropy
change is also. Doesn’t this entropy decrease violate the entropy postulate: en-



tropy always increases? No, because the postulate holds only for irreversible
processes in closed systems. Here, the process is not irreverible and the system is
not closed (because of the energy transferred to and from the reservoir as heat).

However, if we include the reservoir, along with the gas, as part of the system,
then we do have a closed system. Let’s check the change in entropy of the
enlarged system gas � reservoir for the process that takes it from (b) to (a) in
Fig. 20-3. During this reversible process, energy is transferred as heat from the gas
to the reservoir—that is, from one part of the enlarged system to another. Let �Q�
represent the absolute value (or magnitude) of this heat. With Eq. 20-2, we can
then calculate separately the entropy changes for the gas (which loses �Q�) and
the reservoir (which gains �Q�).We get

and .

The entropy change of the closed system is the sum of these two quantities: 0.
With this result, we can modify the entropy postulate to include both

reversible and irreversible processes:

�Sres � �
�Q�
T

�Sgas � �
�Q�
T
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If a process occurs in a closed system, the entropy of the system increases for
irreversible processes and remains constant for reversible processes. It never
decreases.

Although entropy may decrease in part of a closed system, there will always
be an equal or larger entropy increase in another part of the system, so that the
entropy of the system as a whole never decreases. This fact is one form of the
second law of thermodynamics and can be written as

�S � 0 (second law of thermodynamics), (20-5)

where the greater-than sign applies to irreversible processes and the equals sign
to reversible processes. Equation 20-5 applies only to closed systems.

In the real world almost all processes are irreversible to some extent because
of friction, turbulence, and other factors, so the entropy of real closed systems
undergoing real processes always increases. Processes in which the system’s
entropy remains constant are always idealizations.

Force Due to Entropy
To understand why rubber resists being stretched, let’s write the first law of 
thermodynamics

dE � dQ � dW

for a rubber band undergoing a small increase in length dx as we stretch it
between our hands. The force from the rubber band has magnitude F, is directed
inward, and does work dW dx during length increase dx. From Eq. 20-2
(�S � Q/T), small changes in Q and S at constant temperature are related by
dS � dQ/T, or dQ � T dS. So, now we can rewrite the first law as

dE � T dS � F dx. (20-6)

To good approximation, the change dE in the internal energy of rubber is 0 if the
total stretch of the rubber band is not very much. Substituting 0 for dE in Eq. 20-6
leads us to an expression for the force from the rubber band:

(20-7)F � �T
dS
dx

.

� �F



This tells us that F is proportional to the rate dS/dx at which the rubber band’s
entropy changes during a small change dx in the rubber band’s length. Thus, you
can feel the effect of entropy on your hands as you stretch a rubber band.

To make sense of the relation between force and entropy, let’s consider a
simple model of the rubber material. Rubber consists of cross-linked polymer
chains (long molecules with cross links) that resemble three-dimensional zig-zags
(Fig. 20-7). When the rubber band is at its rest length, the polymers are coiled up
in a spaghetti-like arrangement. Because of the large disorder of the molecules,
this rest state has a high value of entropy. When we stretch a rubber band, we un-
coil many of those polymers, aligning them in the direction of stretch. Because
the alignment decreases the disorder, the entropy of the stretched rubber band is
less. That is, the change dS/dx in Eq. 20-7 is a negative quantity because the en-
tropy decreases with stretching. Thus, the force on our hands from the rubber
band is due to the tendency of the polymers to return to their former disordered
state and higher value of entropy.
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Figure 20-7 A section of a rubber band (a) un-
stretched and (b) stretched, and a polymer
within it (a) coiled and (b) uncoiled.

(a)

(b)

Coiled

Uncoiled

F F

20-2 ENTROPY IN THE REAL WORLD: ENGINES

After reading this module, you should be able to . . .

20.09 Identify that a heat engine is a device that extracts
energy from its environment in the form of heat and does
useful work and that in an ideal heat engine, all processes
are reversible, with no wasteful energy transfers.

20.10 Sketch a p-V diagram for the cycle of a Carnot engine,
indicating the direction of cycling, the nature of the
processes involved, the work done during each process
(including algebraic sign), the net work done in the cycle,
and the heat transferred during each process (including
algebraic sign).

20.11 Sketch a Carnot cycle on a temperature–entropy
diagram, indicating the heat transfers.

20.12 Determine the net entropy change around a Carnot cycle.
20.13 Calculate the efficiency ´C of a Carnot engine in terms

of the heat transfers and also in terms of the temperatures
of the reservoirs.

20.14 Identify that there are no perfect engines in which
the energy transferred as heat Q from a high temperature
reservoir goes entirely into the work W done by the engine.

20.15 Sketch a p-V diagram for the cycle of a Stirling engine,
indicating the direction of cycling, the nature of the
processes involved, the work done during each process
(including algebraic sign), the net work done in the cycle,
and the heat transfers during each process.

Learning Objectives

● An engine is a device that, operating in a cycle, extracts 
energy as heat �QH� from a high-temperature reservoir and does
a certain amount of work �W�. The efficiency ́ of any engine is
defined as

● In an ideal engine, all processes are reversible and no waste-
ful energy transfers occur due to, say, friction and turbulence. 

● A Carnot engine is an ideal engine that follows the cycle of
Fig. 20-9. Its efficiency is

´C � 1 �
�QL �
�QH �

� 1 �
TL

TH
,

´ �
energy we get

energy we pay for
�

�W �
�QH �

.

in which TH and TL are the temperatures of the high- and low-
temperature reservoirs, respectively. Real engines always have
an efficiency lower than that of a Carnot engine. Ideal engines
that are not Carnot engines also have efficiencies lower than
that of a Carnot engine.

● A perfect engine is an imaginary engine in which energy
extracted as heat from the high-temperature reservoir is
converted completely to work. Such an engine would
violate the second law of thermodynamics, which can be
restated as follows: No series of processes is possible
whose sole result is the absorption of energy as heat from
a thermal reservoir and the complete conversion of this
energy to work.

Key Ideas

Entropy in the Real World: Engines
A heat engine, or more simply, an engine, is a device that extracts energy from its
environment in the form of heat and does useful work. At the heart of every
engine is a working substance. In a steam engine, the working substance is water,



in both its vapor and its liquid form. In an automobile engine the working sub-
stance is a gasoline–air mixture. If an engine is to do work on a sustained basis,
the working substance must operate in a cycle; that is, the working substance
must pass through a closed series of thermodynamic processes, called strokes,
returning again and again to each state in its cycle. Let us see what the laws of
thermodynamics can tell us about the operation of engines.

A Carnot Engine
We have seen that we can learn much about real gases by analyzing an ideal gas,
which obeys the simple law pV � nRT. Although an ideal gas does not exist, any
real gas approaches ideal behavior if its density is low enough. Similarly, we can
study real engines by analyzing the behavior of an ideal engine.
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In an ideal engine, all processes are reversible and no wasteful energy transfers
occur due to, say, friction and turbulence.

We shall focus on a particular ideal engine called a Carnot engine after the
French scientist and engineer N. L. Sadi Carnot (pronounced “car-no”), who first
proposed the engine’s concept in 1824. This ideal engine turns out to be the best
(in principle) at using energy as heat to do useful work. Surprisingly, Carnot was
able to analyze the performance of this engine before the first law of thermo-
dynamics and the concept of entropy had been discovered.

Figure 20-8 shows schematically the operation of a Carnot engine. During
each cycle of the engine, the working substance absorbs energy �QH� as heat from
a thermal reservoir at constant temperature TH and discharges energy �QL� as
heat to a second thermal reservoir at a constant lower temperature TL.

Figure 20-9 shows a p-V plot of the Carnot cycle—the cycle followed by
the working substance. As indicated by the arrows, the cycle is traversed in the
clockwise direction. Imagine the working substance to be a gas, confined to an
insulating cylinder with a weighted, movable piston. The cylinder may be placed
at will on either of the two thermal reservoirs, as in Fig. 20-6, or on an insulating
slab. Figure 20-9a shows that, if we place the cylinder in contact with the high-
temperature reservoir at temperature TH, heat �QH� is transferred to the working
substance from this reservoir as the gas undergoes an isothermal expansion from
volume Va to volume Vb. Similarly, with the working substance in contact with
the low-temperature reservoir at temperature TL, heat �QL� is transferred from

Figure 20-8 The elements of a Carnot
engine. The two black arrowheads on the
central loop suggest the working substance
operating in a cycle, as if on a p-V plot.
Energy �QH� is transferred as heat from
the high-temperature reservoir at temper-
ature TH to the working substance. Energy
�QL� is transferred as heat from the work-
ing substance to the low-temperature
reservoir at temperature TL. Work W is
done by the engine (actually by the work-
ing substance) on something in the envi-
ronment.

TH

TL

Q H

Q L

W

Schematic of 
a Carnot engine

Work is done
by the engine.

Heat is
absorbed.

Heat is lost.

Figure 20-9 A pressure–volume
plot of the cycle followed by the
working substance of the Carnot
engine in Fig. 20-8. The cycle con-
sists of two isothermal (ab and
cd) and two adiabatic processes
(bc and da). The shaded area
enclosed by the cycle is equal to
the work W per cycle done by
the Carnot engine.
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the working substance to the low-temperature reservoir as the gas undergoes an
isothermal compression from volume Vc to volume Vd (Fig. 20-9b).

In the engine of Fig. 20-8, we assume that heat transfers to or from the work-
ing substance can take place only during the isothermal processes ab and cd of
Fig. 20-9. Therefore, processes bc and da in that figure, which connect the two
isotherms at temperatures TH and TL, must be (reversible) adiabatic processes;
that is, they must be processes in which no energy is transferred as heat.To ensure
this, during processes bc and da the cylinder is placed on an insulating slab as the
volume of the working substance is changed.

During the processes ab and bc of Fig. 20-9a, the working substance is
expanding and thus doing positive work as it raises the weighted piston. This
work is represented in Fig. 20-9a by the area under curve abc. During the
processes cd and da (Fig. 20-9b), the working substance is being compressed,
which means that it is doing negative work on its environment or, equivalently,
that its environment is doing work on it as the loaded piston descends. This work
is represented by the area under curve cda. The net work per cycle, which is repre-
sented by W in both Figs. 20-8 and 20-9, is the difference between these two areas
and is a positive quantity equal to the area enclosed by cycle abcda in Fig. 20-9.
This work W is performed on some outside object, such as a load to be lifted.

Equation 20-1 (�S � � dQ/T) tells us that any energy transfer as heat must
involve a change in entropy. To see this for a Carnot engine, we can plot the
Carnot cycle on a temperature–entropy (T-S) diagram as in Fig. 20-10. The
lettered points a, b, c, and d there correspond to the lettered points in the p-V
diagram in Fig. 20-9. The two horizontal lines in Fig. 20-10 correspond to the two
isothermal processes of the cycle. Process ab is the isothermal expansion of the
cycle. As the working substance (reversibly) absorbs energy �QH� as heat at
constant temperature TH during the expansion, its entropy increases. Similarly,
during the isothermal compression cd, the working substance (reversibly) loses
energy �QL� as heat at constant temperature TL, and its entropy decreases.

The two vertical lines in Fig. 20-10 correspond to the two adiabatic processes
of the Carnot cycle. Because no energy is transferred as heat during the two
processes, the entropy of the working substance is constant during them.

The Work To calculate the net work done by a Carnot engine during a cycle, let
us apply Eq. 18-26, the first law of thermodynamics (�Eint � Q � W ), to the work-
ing substance.That substance must return again and again to any arbitrarily selected
state in the cycle. Thus, if X represents any state property of the working substance,
such as pressure, temperature, volume, internal energy, or entropy, we must have
�X � 0 for every cycle. It follows that �Eint � 0 for a complete cycle of the working
substance. Recalling that Q in Eq. 18-26 is the net heat transfer per cycle and W is the
net work, we can write the first law of thermodynamics for the Carnot cycle as

(20-8)

Entropy Changes In a Carnot engine, there are two (and only two) reversible 
energy transfers as heat, and thus two changes in the entropy of the working
substance—one at temperature TH and one at TL. The net entropy change per
cycle is then

(20-9)

Here �SH is positive because energy �QH� is added to the working substance as
heat (an increase in entropy) and �SL is negative because energy �QL� is removed
from the working substance as heat (a decrease in entropy). Because entropy is
a state function, we must have �S � 0 for a complete cycle. Putting �S � 0 in
Eq. 20-9 requires that

(20-10)

Note that, because TH � TL, we must have �QH� � �QL�; that is, more energy is

�QH�
TH

�
�QL�
TL

.

�S � �SH � �SL �
�QH�
TH

�
�QL�
TL

.

W � �QH�� �QL�.
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Figure 20-10 The Carnot cycle of Fig. 20-9
plotted on a temperature–entropy
diagram. During processes ab and cd the
temperature remains constant. During
processes bc and da the entropy remains
constant.
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extracted as heat from the high-temperature reservoir than is delivered to the
low-temperature reservoir.

We shall now derive an expression for the efficiency of a Carnot engine.

Efficiency of a Carnot Engine
The purpose of any engine is to transform as much of the extracted energy QH

into work as possible. We measure its success in doing so by its thermal efficiency
´, defined as the work the engine does per cycle (“energy we get”) divided by the
energy it absorbs as heat per cycle (“energy we pay for”):

(efficiency, any engine). (20-11)

For a Carnot engine we can substitute for W from Eq. 20-8 to write Eq. 20-11 as

(20-12)

Using Eq. 20-10 we can write this as

(efficiency, Carnot engine), (20-13)

where the temperatures TL and TH are in kelvins. Because TL � TH, the Carnot
engine necessarily has a thermal efficiency less than unity—that is, less than
100%. This is indicated in Fig. 20-8, which shows that only part of the energy
extracted as heat from the high-temperature reservoir is available to do work,
and the rest is delivered to the low-temperature reservoir. We shall show in
Module 20-3 that no real engine can have a thermal efficiency greater than that
calculated from Eq. 20-13.

Inventors continually try to improve engine efficiency by reducing the
energy �QL� that is “thrown away” during each cycle. The inventor’s dream is to
produce the perfect engine, diagrammed in Fig. 20-11, in which �QL� is reduced to
zero and �QH� is converted completely into work. Such an engine on an ocean
liner, for example, could extract energy as heat from the water and use it to drive
the propellers, with no fuel cost. An automobile fitted with such an engine could
extract energy as heat from the surrounding air and use it to drive the car, again
with no fuel cost. Alas, a perfect engine is only a dream: Inspection of Eq. 20-13
shows that we can achieve 100% engine efficiency (that is, ´ � 1) only if TL � 0
or TH : �, impossible requirements. Instead, experience gives the following
alternative version of the second law of thermodynamics, which says in short,
there are no perfect engines:

´C � 1 �
TL

TH

´C �
�QH� � �QL�

QH
� 1 �

�QL�
�QH�

.

´ �
energy we get

energy we pay for
�

�W�
�QH�
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Figure 20-11 The elements of a perfect
engine—that is, one that converts heat QH

from a high-temperature reservoir directly
to work W with 100% efficiency.

TH

W (= Q H)

Q H

Q L = 0

Perfect engine:
total conversion
of heat to work

No series of processes is possible whose sole result is the transfer of energy as heat
from a thermal reservoir and the complete conversion of this energy to work.

To summarize: The thermal efficiency given by Eq. 20-13 applies only to
Carnot engines. Real engines, in which the processes that form the engine cycle
are not reversible, have lower efficiencies. If your car were powered by a Carnot
engine, it would have an efficiency of about 55% according to Eq. 20-13; its actual
efficiency is probably about 25%. A nuclear power plant (Fig. 20-12), taken in its
entirety, is an engine. It extracts energy as heat from a reactor core, does work by
means of a turbine, and discharges energy as heat to a nearby river. If the power
plant operated as a Carnot engine, its efficiency would be about 40%; its actual
efficiency is about 30%. In designing engines of any type, there is simply no way
to beat the efficiency limitation imposed by Eq. 20-13.

© Richard Ustinich

Figure 20-12 The North Anna nuclear power
plant near Charlottesville, Virginia, which
generates electric energy at the rate of
900 MW. At the same time, by design, it
discards energy into the nearby river at
the rate of 2100 MW. This plant and all
others like it throw away more energy
than they deliver in useful form. They are
real counterparts of the ideal engine of
Fig. 20-8.



Stirling Engine
Equation 20-13 applies not to all ideal engines but only to those that can be
represented as in Fig. 20-9— that is, to Carnot engines. For example, Fig. 20-13
shows the operating cycle of an ideal Stirling engine. Comparison with the
Carnot cycle of Fig. 20-9 shows that each engine has isothermal heat transfers
at temperatures TH and TL. However, the two isotherms of the Stirling engine
cycle are connected, not by adiabatic processes as for the Carnot engine but
by constant-volume processes. To increase the temperature of a gas at
constant volume reversibly from TL to TH (process da of Fig. 20-13) requires a
transfer of energy as heat to the working substance from a thermal reservoir
whose temperature can be varied smoothly between those limits. Also, a re-
verse transfer is required in process bc. Thus, reversible heat transfers (and
corresponding entropy changes) occur in all four of the processes that form
the cycle of a Stirling engine, not just two processes as in a Carnot engine.
Thus, the derivation that led to Eq. 20-13 does not apply to an ideal Stirling en-
gine. More important, the efficiency of an ideal Stirling engine is lower than
that of a Carnot engine operating between the same two temperatures. Real
Stirling engines have even lower efficiencies.

The Stirling engine was developed in 1816 by Robert Stirling. This engine,
long neglected, is now being developed for use in automobiles and spacecraft.
A Stirling engine delivering 5000 hp (3.7 MW) has been built. Because they are
quiet, Stirling engines are used on some military submarines.
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Stages of a
Stirling engine

Figure 20-13 A p-V plot for the working
substance of an ideal Stirling engine, with
the working substance assumed for con-
venience to be an ideal gas.

Checkpoint 3
Three Carnot engines operate between reservoir temperatures of (a) 400 and 500 K,
(b) 600 and 800 K, and (c) 400 and 600 K. Rank the engines according to their thermal
efficiencies, greatest first.

(c) How much energy �QH� is extracted as heat from the
high-temperature reservoir every cycle?

KEY IDEA

The efficiency ´ is the ratio of the work W that is done per
cycle to the energy �QH� that is extracted as heat from the
high-temperature reservoir per cycle (´ � W/�QH�).

Calculation: Here we have

(Answer)

(d) How much energy �QL� is delivered as heat to the low-
temperature reservoir every cycle?

KEY IDEA

For a Carnot engine, the work W done per cycle is equal to
the difference in the energy transfers as heat: �QH� � �QL�, as
in Eq. 20-8.

Calculation: Thus, we have
�QL� � �QH� � W

� 1855 J � 1200 J � 655 J. (Answer)

�QH� �
W
´

�
1200 J
0.647

� 1855 J.

Sample Problem 20.03 Carnot engine, efficiency, power, entropy changes

Imagine a Carnot engine that operates between the temper-
atures TH � 850 K and TL � 300 K. The engine performs
1200 J of work each cycle, which takes 0.25 s.

(a) What is the efficiency of this engine?

KEY IDEA

The efficiency ´ of a Carnot engine depends only on the ratio
TL/TH of the temperatures (in kelvins) of the thermal reser-
voirs to which it is connected.

Calculation: Thus, from Eq. 20-13, we have

(Answer)

(b) What is the average power of this engine?

KEY IDEA

The average power P of an engine is the ratio of the work W
it does per cycle to the time t that each cycle takes.

Calculation: For this Carnot engine, we find

(Answer)P �
W
t

�
1200 J
0.25 s

� 4800 W � 4.8 kW.

´ � 1 �
TL

TH
� 1 �

300 K
850 K

� 0.647 � 65%.
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(e) By how much does the entropy of the working substance
change as a result of the energy transferred to it from the
high-temperature reservoir? From it to the low-temperature
reservoir?

KEY IDEA

The entropy change �S during a transfer of energy as heat Q at
constant temperature T is given by Eq. 20-2 (�S � Q/T).

Calculations: Thus, for the positive transfer of energy QH

from the high-temperature reservoir at TH, the change in the

entropy of the working substance is

(Answer)

Similarly, for the negative transfer of energy QL to the 
low-temperature reservoir at TL, we have

(Answer)

Note that the net entropy change of the working substance for
one cycle is zero,as we discussed in deriving Eq.20-10.

�SL �
QL

TL
�

�655 J
300 K

� �2.18 J/K.

�SH �
QH

TH
�

1855 J
850 K

� �2.18 J/K.

Additional examples, video, and practice available at WileyPLUS

Calculation: From Eq. 20-13, we find that the efficiency of a
Carnot engine operating between the boiling and freezing
points of water is

Thus, for the given temperatures, the claimed efficiency of
75% for a real engine (with its irreversible processes and
wasteful energy transfers) is impossible.

´ � 1 �
TL

TH
� 1 �

(0 � 273) K
(100 � 273) K

� 0.268 � 27%.

Sample Problem 20.04 Impossibly efficient engine

An inventor claims to have constructed an engine that has
an efficiency of 75% when operated between the boiling
and freezing points of water. Is this possible?

KEY IDEA

The efficiency of a real engine must be less than the effi-
ciency of a Carnot engine operating between the same two
temperatures.

20-3 REFRIGERATORS AND REAL ENGINES

After reading this module, you should be able to . . .

20.16 Identify that a refrigerator is a device that uses work to
transfer energy from a low-temperature reservoir to a 
high-temperature reservoir, and that an ideal refrigerator is
one that does this with reversible processes and no wasteful
losses.

20.17 Sketch a p-V diagram for the cycle of a Carnot refriger-
ator, indicating the direction of cycling, the nature of the
processes involved, the work done during each process
(including algebraic sign), the net work done in the cycle,

and the heat transferred during each process (including
algebraic sign).

20.18 Apply the relationship between the coefficient of
performance K and the heat exchanges with the reservoirs
and the temperatures of the reservoirs.

20.19 Identify that there is no ideal refrigerator in which all of
the energy extracted from the low-temperature reservoir is
transferred to the high-temperature reservoir.

20.20 Identify that the efficiency of a real engine is less
than that of the ideal Carnot engine.

Learning Objectives

● A refrigerator is a device that, operating in a cycle, has
work W done on it as it extracts energy �QL� as heat from a
low-temperature reservoir. The coefficient of performance K
of a refrigerator is defined as

.

● A Carnot refrigerator is a Carnot engine operating in
reverse. Its coefficient of performance is

KC �
�QL �

�QH � � �QL �
�

TL

TH � TL
.

K �
what we want

what we pay for
�

�QL �
�W �

● A perfect refrigerator is an entirely imaginary refrigerator
in which energy extracted as heat from the low-temperature
reservoir is somehow converted completely to heat dis-
charged to the high-temperature reservoir without any
need for work. 

● A perfect refrigerator would violate the second law of
thermodynamics, which can be restated as follows: No se-
ries of processes is possible whose sole result is the trans-
fer of energy as heat from a reservoir at a given tempera-
ture to a reservoir at a higher temperature (without work
being involved).

Key Ideas
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Entropy in the Real World: Refrigerators
A refrigerator is a device that uses work in order to transfer energy from a low-
temperature reservoir to a high-temperature reservoir as the device continuously
repeats a set series of thermodynamic processes. In a household refrigerator, for
example, work is done by an electrical compressor to transfer energy from the
food storage compartment (a low-temperature reservoir) to the room (a high-
temperature reservoir).

Air conditioners and heat pumps are also refrigerators. For an air conditioner,
the low-temperature reservoir is the room that is to be cooled and the high-temper-
ature reservoir is the warmer outdoors. A heat pump is an air conditioner that can
be operated in reverse to heat a room; the room is the high-temperature reservoir,
and heat is transferred to it from the cooler outdoors.

Let us consider an ideal refrigerator:

TH

TL

Q H

Q L

W

Heat is 
absorbed.

Heat
is lost.

Work is done
on the engine.

Schematic of 
a refrigerator

Q

TL

TH

Q

Perfect refrigerator:
total transfer of heat
from cold to hot
without any work

In an ideal refrigerator, all processes are reversible and no wasteful energy trans-
fers occur as a result of, say, friction and turbulence.

Figure 20-14 shows the basic elements of an ideal refrigerator. Note that its oper-
ation is the reverse of how the Carnot engine of Fig. 20-8 operates. In other
words, all the energy transfers, as either heat or work, are reversed from those of
a Carnot engine.We can call such an ideal refrigerator a Carnot refrigerator.

The designer of a refrigerator would like to extract as much energy �QL� as pos-
sible from the low-temperature reservoir (what we want) for the least amount of
work �W� (what we pay for).A measure of the efficiency of a refrigerator, then, is

(20-14)

where K is called the coefficient of performance. For a Carnot refrigerator,
the first law of thermodynamics gives �W� � �QH� � �QL�, where �QH� is the mag-
nitude of the energy transferred as heat to the high-temperature reservoir.
Equation 20-14 then becomes

(20-15)

Because a Carnot refrigerator is a Carnot engine operating in reverse, we can
combine Eq. 20-10 with Eq. 20-15; after some algebra we find

(20-16)

For typical room air conditioners, K � 2.5. For household refrigerators,
K � 5. Perversely, the value of K is higher the closer the temperatures of the two
reservoirs are to each other. That is why heat pumps are more effective in
temperate climates than in very cold climates.

It would be nice to own a refrigerator that did not require some input of
work—that is, one that would run without being plugged in. Figure 20-15 rep-
resents another “inventor’s dream,” a perfect refrigerator that transfers energy as
heat Q from a cold reservoir to a warm reservoir without the need for work.
Because the unit operates in cycles, the entropy of the working substance does
not change during a complete cycle.The entropies of the two reservoirs, however,
do change: The entropy change for the cold reservoir is ��Q�/TL, and that for the
warm reservoir is ��Q�/TH. Thus, the net entropy change for the entire system is

�S � �
�Q�
TL

�
�Q�
TH

.

(coefficient of performance,
Carnot refrigerator).

KC �
TL

TH � TL

KC �
�QL�

�QH � � �QL�
.

(coefficient of performance,
any refrigerator),

K �
what we want

what we pay for
�

�QL�
�W�

Figure 20-14 The elements of a refrigerator.
The two black arrowheads on the central
loop suggest the working substance oper-
ating in a cycle, as if on a p-V plot. Energy
is transferred as heat QL to the working
substance from the low-temperature reser-
voir. Energy is transferred as heat QH to
the high-temperature reservoir from the
working substance. Work W is done on the
refrigerator (on the working substance) by
something in the environment.

Figure 20-15 The elements of a perfect
refrigerator—that is, one that transfers
energy from a low-temperature reservoir
to a high-temperature reservoir without
any input of work.
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Because TH � TL, the right side of this equation is negative and thus the net
change in entropy per cycle for the closed system refrigerator � reservoirs is also
negative. Because such a decrease in entropy violates the second law of ther-
modynamics (Eq. 20-5), a perfect refrigerator does not exist. (If you want your
refrigerator to operate, you must plug it in.)

Here, then, is another way to state the second law of thermodynamics:

No series of processes is possible whose sole result is the transfer of energy as heat
from a reservoir at a given temperature to a reservoir at a higher temperature.

Checkpoint 4
You wish to increase the coefficient of performance of an ideal refrigerator.You can
do so by (a) running the cold chamber at a slightly higher temperature, (b) running
the cold chamber at a slightly lower temperature, (c) moving the unit to a slightly
warmer room, or (d) moving it to a slightly cooler room.The magnitudes of the tem-
perature changes are to be the same in all four cases. List the changes according to the
resulting coefficients of performance, greatest first.

In short, there are no perfect refrigerators.

Engine
X

TL

(a) (b)

TH

Carnot
refrigerator

Perfect
refrigeratorW

Q'H
Q

Q
Q'L

Q H

Q L

Figure 20-16 (a) Engine X drives a
Carnot refrigerator. (b) If, as
claimed, engine X is more effi-
cient than a Carnot engine, then
the combination shown in (a) is
equivalent to the perfect refriger-
ator shown here. This violates the
second law of thermodynamics,
so we conclude that engine X can-
not be more efficient than a
Carnot engine.

The Efficiencies of Real Engines
Let ´C be the efficiency of a Carnot engine operating between two given tem-
peratures. Here we prove that no real engine operating between those tempera-
tures can have an efficiency greater than �C. If it could, the engine would violate
the second law of thermodynamics.

Let us assume that an inventor, working in her garage, has constructed an
engine X, which she claims has an efficiency ´X that is greater than ´C:

´X � ´C (a claim). (20-17)

Let us couple engine X to a Carnot refrigerator, as in Fig. 20-16a. We adjust the
strokes of the Carnot refrigerator so that the work it requires per cycle is just equal
to that provided by engine X. Thus, no (external) work is performed on or by the
combination engine � refrigerator of Fig. 20-16a, which we take as our system.

If Eq. 20-17 is true, from the definition of efficiency (Eq. 20-11), we must have

where the prime refers to engine X and the right side of the inequality is the
efficiency of the Carnot refrigerator when it operates as an engine. This inequal-
ity requires that

(20-18)�QH� � �Q
H�.

�W�
�Q
H�

�
�W�
�QH�

,
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Because the work done by engine X is equal to the work done on the Carnot
refrigerator, we have, from the first law of thermodynamics as given by Eq. 20-8,

which we can write as

(20-19)

Because of Eq. 20-18, the quantity Q in Eq. 20-19 must be positive.
Comparison of Eq. 20-19 with Fig. 20-16 shows that the net effect of engine

X and the Carnot refrigerator working in combination is to transfer energy Q as
heat from a low-temperature reservoir to a high-temperature reservoir without
the requirement of work. Thus, the combination acts like the perfect refrigerator
of Fig. 20-15, whose existence is a violation of the second law of thermodynamics.

Something must be wrong with one or more of our assumptions, and it can
only be Eq. 20-17. We conclude that no real engine can have an efficiency greater
than that of a Carnot engine when both engines work between the same two tem-
peratures. At most, the real engine can have an efficiency equal to that of a
Carnot engine. In that case, the real engine is a Carnot engine.

�QH� � � Q
H� � �QL� � � Q
L� � Q.

�QH� � � QL� � �Q
H� � � Q
L� ,

20-4 A STATISTICAL VIEW OF ENTROPY

After reading this module, you should be able to . . .

20.21 Explain what is meant by the configurations of a system
of molecules.

20.22 Calculate the multiplicity of a given configuration.
20.23 Identify that all microstates are equally probable but

the configurations with more microstates are more proba-
ble than the other configurations.

20.24 Apply Boltzmann’s entropy equation to calculate the
entropy associated with a multiplicity.

Learning Objectives

● The entropy of a system can be defined in terms of the pos-
sible distributions of its molecules. For identical molecules,
each possible distribution of molecules is called a microstate
of the system. All equivalent microstates are grouped into a
configuration of the system. The number of microstates in a
configuration is the multiplicity W of the configuration.

● For a system of N molecules that may be distributed
between the two halves of a box, the multiplicity is given by

in which n1 is the number of molecules in one half of the box and
n2 is the number in the other half. A basic assumption of statisti-
cal mechanics is that all the microstates are equally probable.

W �
N!

n1! n2!
,

Thus, configurations with a large multiplicity occur most
often. When N is very large (say, N 1022 molecules or more),
the molecules are nearly always in the configuration in which 
n1 � n2.

● The multiplicity W of a configuration of a system and the en-
tropy S of the system in that configuration are related by
Boltzmann’s entropy equation:

S � k ln W,

where k � 1.38 � 10�23 J/K is the Boltzmann constant.

● When N is very large (the usual case), we can approximate 
ln N! with Stirling’s approximation:

ln N! � N(ln N) � N.

�

Key Ideas

A Statistical View of Entropy
In Chapter 19 we saw that the macroscopic properties of gases can be explained
in terms of their microscopic, or molecular, behavior. Such explanations are part
of a study called statistical mechanics. Here we shall focus our attention on a sin-
gle problem, one involving the distribution of gas molecules between the two
halves of an insulated box.This problem is reasonably simple to analyze, and it al-
lows us to use statistical mechanics to calculate the entropy change for the free
expansion of an ideal gas.You will see that statistical mechanics leads to the same
entropy change as we would find using thermodynamics.
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Figure 20-17 shows a box that contains six identical (and thus indistinguish-
able) molecules of a gas. At any instant, a given molecule will be in either the
left or the right half of the box; because the two halves have equal volumes, the
molecule has the same likelihood, or probability, of being in either half.

Table 20-1 shows the seven possible configurations of the six molecules, each
configuration labeled with a Roman numeral. For example, in configuration I, all
six molecules are in the left half of the box (n1 � 6) and none are in the right half
(n2 � 0). We see that, in general, a given configuration can be achieved in a
number of different ways. We call these different arrangements of the molecules
microstates. Let us see how to calculate the number of microstates that corre-
spond to a given configuration.

Suppose we have N molecules, distributed with n1 molecules in one half of
the box and n2 in the other. (Thus n1 � n2 � N.) Let us imagine that we distribute
the molecules “by hand,” one at a time. If N � 6, we can select the first molecule
in six independent ways; that is, we can pick any one of the six molecules. We can
pick the second molecule in five ways, by picking any one of the remaining five
molecules; and so on.The total number of ways in which we can select all six mol-
ecules is the product of these independent ways, or 6 � 5 � 4 � 3 � 2 � 1 � 720.
In mathematical shorthand we write this product as 6! � 720, where 6! is pro-
nounced “six factorial.” Your hand calculator can probably calculate factorials.
For later use you will need to know that 0! � 1. (Check this on your calculator.)

However, because the molecules are indistinguishable, these 720 arrange-
ments are not all different. In the case that n1 � 4 and n2 � 2 (which is config-
uration III in Table 20-1), for example, the order in which you put four molecules
in one half of the box does not matter, because after you have put all four in,
there is no way that you can tell the order in which you did so. The number of
ways in which you can order the four molecules is 4! � 24. Similarly, the number
of ways in which you can order two molecules for the other half of the box is
simply 2! 2. To get the number of different arrangements that lead to the (4, 2)
split of configuration III, we must divide 720 by 24 and also by 2. We call the
resulting quantity, which is the number of microstates that correspond to a given
configuration, the multiplicity W of that configuration.Thus, for configuration III,

Thus, Table 20-1 tells us there are 15 independent microstates that correspond to
configuration III. Note that, as the table also tells us, the total number of mi-
crostates for six molecules distributed over the seven configurations is 64.

Extrapolating from six molecules to the general case of N molecules, we have

(multiplicity of configuration). (20-20)W �
N!

n1! n2!

WIII �
6!

4! 2!
�

720
24 � 2

� 15.

�

Table 20-1 Six Molecules in a Box

Calculation Entropy
Configuration Multiplicity W of W 10�23 J/K

Label n1 n2 (number of microstates) (Eq. 20-20) (Eq. 20-21)

I 6 0 1 6!/(6!  0!) � 1 0
II 5 1 6 6!/(5!  1!) � 6 2.47

III 4 2 15 6!/(4!  2!) � 15 3.74
IV 3 3 20 6!/(3!  3!) � 20 4.13
V 2 4 15 6!/(2!  4!) � 15 3.74

VI 1 5 6 6!/(1!  5!) � 6 2.47
VII 0 6 1 6!/(0!  6!) � 1 0

Total � 64

Figure 20-17 An insulated box contains six
gas molecules. Each molecule has the same
probability of being in the left half of the
box as in the right half.The arrangement in
(a) corresponds to configuration III in
Table 20-1, and that in (b) corresponds to
configuration IV.

(a) Insulation

(b)
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You should verify the multiplicities for all the configurations in Table 20-1.
The basic assumption of statistical mechanics is that

Figure 20-18 For a large number of molecules
in a box,a plot of the number of microstates
that require various percentages of the mole-
cules to be in the left half of the box.Nearly
all the microstates correspond to an approxi-
mately equal sharing of the molecules
between the two halves of the box; those mi-
crostates form the central configuration peak
on the plot.For N � 1022, the central configu-
ration peak is much too narrow to be drawn
on this plot.
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Percentage of molecules in left half 

Central
configuration
peak All microstates are equally probable.

In other words, if we were to take a great many snapshots of the six molecules as
they jostle around in the box of Fig. 20-17 and then count the number of times
each microstate occurred, we would find that all 64 microstates would occur
equally often. Thus the system will spend, on average, the same amount of time
in each of the 64 microstates.

Because all microstates are equally probable but different configurations
have different numbers of microstates, the configurations are not all equally
probable. In Table 20-1 configuration IV, with 20 microstates, is the most probable
configuration, with a probability of 20/64 � 0.313. This result means that the sys-
tem is in configuration IV 31.3% of the time. Configurations I and VII, in which
all the molecules are in one half of the box, are the least probable, each with a
probability of 1/64 � 0.016 or 1.6%. It is not surprising that the most probable
configuration is the one in which the molecules are evenly divided between the
two halves of the box, because that is what we expect at thermal equilibrium.
However, it is surprising that there is any probability, however small, of finding all
six molecules clustered in half of the box, with the other half empty.

For large values of N there are extremely large numbers of microstates, but
nearly all the microstates belong to the configuration in which the molecules are
divided equally between the two halves of the box, as Fig. 20-18 indicates. Even
though the measured temperature and pressure of the gas remain constant, the
gas is churning away endlessly as its molecules “visit” all probable microstates
with equal probability. However, because so few microstates lie outside the very
narrow central configuration peak of Fig. 20-18, we might as well assume that the
gas molecules are always divided equally between the two halves of the box. As
we shall see, this is the configuration with the greatest entropy.

Similarly, for the configuration (100, 0), we have

(Answer)

The meaning: Thus, a 50 – 50 distribution is more likely
than a 100 – 0 distribution by the enormous factor of about
1 � 1029. If you could count, at one per nanosecond, the
number of microstates that correspond to the 50 – 50 dis-
tribution, it would take you about 3 � 1012 years, which is
about 200 times longer than the age of the universe. Keep
in mind that the 100 molecules used in this sample prob-
lem is a very small number. Imagine what these calculated
probabilities would be like for a mole of molecules, say
about N � 1024. Thus, you need never worry about sud-
denly finding all the air molecules clustering in one corner
of your room, with you gasping for air in another corner.
So, you can breathe easy because of the physics of
entropy.

W �
N!

n1! n2!
�

100!
100! 0!

�
1
0!

�
1
1

� 1.

Sample Problem 20.05 Microstates and multiplicity

Suppose that there are 100 indistinguishable molecules in the
box of Fig.20-17.How many microstates are associated with the
configuration n1 � 50 and n2 � 50, and with the configuration 
n1 � 100 and n2 � 0? Interpret the results in terms of the rela-
tive probabilities of the two configurations.

KEY IDEA

The multiplicity W of a configuration of indistinguishable
molecules in a closed box is the number of independent
microstates with that configuration, as given by Eq. 20-20.

Calculations: Thus, for the (n1, n2) configuration (50, 50),

� 1.01 � 1029. (Answer)

�
9.33 � 10157

(3.04 � 1064)(3.04 � 1064)

W �
N!

n1! n2!
�

100!
50! 50!

Additional examples, video, and practice available at WileyPLUS
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Probability and Entropy
In 1877, Austrian physicist Ludwig Boltzmann (the Boltzmann of Boltzmann’s
constant k) derived a relationship between the entropy S of a configuration of a
gas and the multiplicity W of that configuration.That relationship is

S � k ln W (Boltzmann’s entropy equation). (20-21)

This famous formula is engraved on Boltzmann’s tombstone.
It is natural that S and W should be related by a logarithmic function. The

total entropy of two systems is the sum of their separate entropies. The proba-
bility of occurrence of two independent systems is the product of their separate
probabilities. Because ln ab � ln a � ln b, the logarithm seems the logical way to
connect these quantities.

Table 20-1 displays the entropies of the configurations of the six-molecule
system of Fig. 20-17, computed using Eq. 20-21. Configuration IV, which has the
greatest multiplicity, also has the greatest entropy.

When you use Eq. 20-20 to calculate W, your calculator may signal “OVER-
FLOW” if you try to find the factorial of a number greater than a few hundred.
Instead, you can use Stirling’s approximation for ln N!:

ln N! � N(ln N) � N (Stirling’s approximation). (20-22)

The Stirling of this approximation was an English mathematician and not the
Robert Stirling of engine fame.

Checkpoint 5
A box contains 1 mol of a gas. Consider two configurations: (a) each half of the box
contains half the molecules and (b) each third of the box contains one-third of the
molecules.Which configuration has more microstates?

half of the container, their (n1, n2) configuration is (N, 0).
Then, Eq. 20-20 gives their multiplicity as

Finally, with the molecules spread through the full volume,
their (n1, n2) configuration is (N/2, N/2). Then, Eq. 20-20
gives their multiplicity as

From Eq. 20-21, the initial and final entropies are

Si � k ln Wi � k ln 1 � 0
and

Sf � k ln Wf � k ln(N!) � 2k ln[(N/2)!]. (20-23)

In writing Eq. 20-23, we have used the relation

ln
a
b2 � ln a � 2 ln b.

Wf �
N!

(N/2)! (N/2)!
.

Wi �
N!

N! 0!
� 1.

Sample Problem 20.06 Entropy change of free expansion using microstates

In Sample Problem 20.01, we showed that when n moles of
an ideal gas doubles its volume in a free expansion, the
entropy increase from the initial state i to the final state f is
Sf � Si � nR ln 2. Derive this increase in entropy by using
statistical mechanics.

KEY IDEA

We can relate the entropy S of any given configuration of
the molecules in the gas to the multiplicity W of microstates
for that configuration, using Eq. 20-21 (S � k ln W ).

Calculations: We are interested in two configurations: the
final configuration f (with the molecules occupying the full
volume of their container in Fig. 20-1b) and the initial con-
figuration i (with the molecules occupying the left half of
the container). Because the molecules are in a closed con-
tainer, we can calculate the multiplicity W of their mi-
crostates with Eq. 20-20. Here we have N molecules in the
n moles of the gas. Initially, with the molecules all in the left
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Additional examples, video, and practice available at WileyPLUS

thus
Sf � Si � nR ln 2 � 0

� nR ln 2, (Answer)

which is what we set out to show. In the first sample prob-
lem of this chapter we calculated this entropy increase for
a free expansion with thermodynamics by finding an
equivalent reversible process and calculating the entropy
change for that process in terms of temperature and heat
transfer. In this sample problem, we calculate the same in-
crease in entropy with statistical mechanics using the fact
that the system consists of molecules. In short, the two,
very different approaches give the same answer.

Now, applying Eq. 20-22 to evaluate Eq. 20-23, we find that

Sf � k ln(N!) � 2k ln[(N/2)!]

� k[N(ln N) � N] � 2k[(N/2) ln(N/2) � (N/2)]

� k[N(ln N) � N � N ln(N/2) � N]

� k[N(ln N) � N(ln N � ln 2)] � Nk ln 2. (20-24)

From Eq. 19-8 we can substitute nR for Nk, where R is the
universal gas constant. Equation 20-24 then becomes

Sf � nR ln 2.

The change in entropy from the initial state to the final is

One-Way Processes An irreversible process is one that can-
not be reversed by means of small changes in the environment.The
direction in which an irreversible process proceeds is set by the
change in entropy �S of the system undergoing the process.
Entropy S is a state property (or state function) of the system; that
is, it depends only on the state of the system and not on the way in
which the system reached that state. The entropy postulate states (in
part): If an irreversible process occurs in a closed system, the entropy
of the system always increases.

Calculating Entropy Change The entropy change �S for an 
irreversible process that takes a system from an initial state i to a
final state f is exactly equal to the entropy change �S for any re-
versible process that takes the system between those same two
states.We can compute the latter (but not the former) with

(20-1)

Here Q is the energy transferred as heat to or from the system dur-
ing the process, and T is the temperature of the system in kelvins
during the process.

For a reversible isothermal process, Eq. 20-1 reduces to

(20-2)

When the temperature change �T of a system is small relative to
the temperature (in kelvins) before and after the process, the en-
tropy change can be approximated as

(20-3)

where Tavg is the system’s average temperature during the process.
When an ideal gas changes reversibly from an initial state with

temperature Ti and volume Vi to a final state with temperature Tf

and volume Vf, the change �S in the entropy of the gas is

(20-4)�S � Sf � Si � nR ln 
Vf

Vi
� nCV ln

Tf

Ti
.

�S � Sf � Si �
Q

Tavg
,

�S � Sf � Si �
Q
T

.

�S � Sf � Si � �f

i

dQ
T

.

Review & Summary

The Second Law of Thermodynamics This law, which is
an extension of the entropy postulate, states: If a process occurs in
a closed system, the entropy of the system increases for irreversible
processes and remains constant for reversible processes. It never de-
creases. In equation form,

�S � 0. (20-5)

Engines An engine is a device that, operating in a cycle, extracts
energy as heat �QH� from a high-temperature reservoir and does a cer-
tain amount of work �W�. The efficiency ´ of any engine is defined as

(20-11)

In an ideal engine, all processes are reversible and no wasteful energy
transfers occur due to, say, friction and turbulence.A Carnot engine is
an ideal engine that follows the cycle of Fig.20-9. Its efficiency is

(20-12, 20-13)

in which TH and TL are the temperatures of the high- and low-
temperature reservoirs, respectively. Real engines always have an
efficiency lower than that given by Eq. 20-13. Ideal engines that are
not Carnot engines also have lower efficiencies.

A perfect engine is an imaginary engine in which energy ex-
tracted as heat from the high-temperature reservoir is converted com-
pletely to work. Such an engine would violate the second law of ther-
modynamics, which can be restated as follows: No series of processes
is possible whose sole result is the absorption of energy as heat from a
thermal reservoir and the complete conversion of this energy to work.

Refrigerators A refrigerator is a device that, operating in a cy-
cle, has work W done on it as it extracts energy �QL� as heat from a
low-temperature reservoir. The coefficient of performance K of a
refrigerator is defined as

. (20-14)

A Carnot refrigerator is a Carnot engine operating in reverse.

K �
what we want

what we pay for
�

�QL�
�W �

´C � 1 �
�QL �
�QH �

� 1 �
TL

TH
,

´ �
energy we get

energy we pay for
�

�W �
�QH �

.



3 A gas, confined to an insulated cylinder, is compressed
adiabatically to half its volume. Does the entropy of the gas
increase, decrease, or remain unchanged during this process?

4 An ideal monatomic gas at initial temperature T0 (in kelvins) ex-
pands from initial vol-
ume V0 to volume 2V0

by each of the five
processes indicated in
the T-V diagram of
Fig. 20-20. In which
process is the expan-

sion (a) isothermal, (b) isobaric (constant pressure), and (c) adiabatic?
Explain your answers. (d) In which processes does the entropy of the
gas decrease?

5 In four experiments, 2.5
mol of hydrogen gas under-
goes reversible isothermal
expansions, starting from
the same volume but at dif-
ferent temperatures. The
corresponding p-V plots are
shown in Fig. 20-21. Rank
the situations according
to the change in the entropy
of the gas, greatest first.

6 A box contains 100 atoms in a configuration that has
50 atoms in each half of the box. Suppose that you could count
the different microstates associated with this configuration at the
rate of 100 billion states per second, using a supercomputer.
Without written calculation, guess how much computing time
you would need: a day, a year, or much more than a year.

7 Does the entropy per cycle increase, decrease, or remain the
same for (a) a Carnot engine, (b) a real engine, and (c) a perfect
engine (which is, of course, impossible to build)?

8 Three Carnot engines operate between temperature limits of
(a) 400 and 500 K, (b) 500 and 600 K, and (c) 400 and 600 K. Each
engine extracts the same amount of energy per cycle from the
high-temperature reservoir. Rank the magnitudes of the work
done by the engines per cycle, greatest first.

9 An inventor claims to have invented four engines, each of which
operates between constant-temperature reservoirs at 400 and 300 K.
Data on each engine, per cycle of operation, are: engine A, QH � 200
J,QL � �175 J,and W � 40 J;engine B, QH � 500 J,QL � �200 J,and
W � 400 J;engine C,QH � 600 J,QL � �200 J,and W � 400 J;engine
D, QH � 100 J, QL � �90 J, and W � 10 J. Of the first and second laws
of thermodynamics,which (if either) does each engine violate?

10 Does the entropy per cycle increase, decrease, or remain the
same for (a) a Carnot refrigerator, (b) a real refrigerator, and (c) a
perfect refrigerator (which is, of course, impossible to build)?

603QUESTIONS

For a Carnot refrigerator, Eq. 20-14 becomes

(20-15, 20-16)

A perfect refrigerator is an imaginary refrigerator in which
energy extracted as heat from the low-temperature reservoir is con-
verted completely to heat discharged to the high-temperature reser-
voir, without any need for work. Such a refrigerator would violate
the second law of thermodynamics, which can be restated as follows:
No series of processes is possible whose sole result is the transfer of
energy as heat from a reservoir at a given temperature to a reservoir
at a higher temperature.

Entropy from a Statistical View The entropy of a system can
be defined in terms of the possible distributions of its molecules. For
identical molecules, each possible distribution of molecules is called a
microstate of the system.All equivalent microstates are grouped into

KC �
�QL�

�QH� � �QL�
�

TL

TH � TL
.

a configuration of the system.The number of microstates in a config-
uration is the multiplicity W of the configuration.

For a system of N molecules that may be distributed between
the two halves of a box, the multiplicity is given by

(20-20)

in which n1 is the number of molecules in one half of the box and n2 is
the number in the other half. A basic assumption of statistical
mechanics is that all the microstates are equally probable. Thus, con-
figurations with a large multiplicity occur most often.

The multiplicity W of a configuration of a system and the en-
tropy S of the system in that configuration are related by
Boltzmann’s entropy equation:

S � k ln W, (20-21)

where k � 1.38 � 10�23 J/K is the Boltzmann constant.

W �
N!

n1! n2!
,

1 Point i in Fig. 20-19 represents
the initial state of an ideal gas at 
temperature T. Taking algebraic
signs into account, rank the entropy
changes that the gas undergoes as it
moves, successively and reversibly,
from point i to points a, b, c, and d,
greatest first.

2 In four experiments, blocks A
and B, starting at different initial
temperatures, were brought together in an insulating box and al-
lowed to reach a common final temperature. The entropy changes
for the blocks in the four experiments had the following values (in
joules per kelvin), but not necessarily in the order given.
Determine which values for A go with which values for B.

Questions

Figure 20-19 Question 1.
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Figure 20-23 Problem 12.

gives the change in entropy �S of the block until thermal equilib-
rium is reached.The scale of the horizontal axis is set by Ta � 280 K
and Tb � 380 K.What is the specific heat of the block?

••11 In an experiment, 200 g of aluminum (with aWWWSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 20-1 Entropy
•1 Suppose 4.00 mol of an ideal gas undergoes a reversibleSSM

isothermal expansion from volume V1 to volume V2 � 2.00V1 at tem-
perature T � 400 K. Find (a) the work done by the gas and (b) the
entropy change of the gas. (c) If the expansion is reversible and adia-
batic instead of isothermal, what is the entropy change of the gas?

•2 An ideal gas undergoes a reversible isothermal expansion at
77.0 C, increasing its volume from 1.30 L to 3.40 L. The entropy
change of the gas is 22.0 J/K. How many moles of gas are present?

•3 A 2.50 mol sample of an ideal gas expands reversibly and
isothermally at 360 K until its volume is doubled. What is the in-
crease in entropy of the gas?

•4 How much energy must be transferred as heat for a reversible
isothermal expansion of an ideal gas at 132 C if the entropy of the
gas increases by 46.0 J/K?

•5 Find (a) the energy absorbed as heat and (b) the change in
entropy of a 2.00 kg block of copper whose temperature is in-
creased reversibly from 25.0�C to 100�C. The specific heat of cop-
per is 386 J/kg �K.

•6 (a) What is the entropy change of a 12.0 g ice cube that melts
completely in a bucket of water whose temperature is just above
the freezing point of water? (b) What is the entropy change of a
5.00 g spoonful of water that evaporates completely on a hot plate
whose temperature is slightly above the boiling point of water?

••7 A 50.0 g block of copper whose temperature is 400 K is
placed in an insulating box with a 100 g block of lead whose temper-
ature is 200 K. (a) What is the equilibrium temperature of the two-
block system? (b) What is the change in the internal energy of the
system between the initial state and the equilibrium state? (c) What
is the change in the entropy of the system? (See Table 18-3.)

••8 At very low temperatures, the molar specific heat CV of
many solids is approximately CV � AT 3, where A depends on the
particular substance. For aluminum, J/mol �K4.
Find the entropy change for 4.00 mol of aluminum when its tem-
perature is raised from 5.00 K to 10.0 K.

••9 A 10 g ice cube at �10�C is placed in a lake whose
temperature is 15�C. Calculate the change in entropy of the
cube– lake system as the ice cube comes to thermal equilibrium
with the lake.The specific heat of ice is 2220 J/kg �K. (Hint: Will the
ice cube affect the lake temperature?)

••10 A 364 g block is
put in contact with a ther-
mal reservoir. The block
is initially at a lower tem-
perature than the reser-
voir. Assume that the
consequent transfer of
energy as heat from the
reservoir to the block is
reversible. Figure 20-22

A � 3.15 � 10�5

ILW

ILW

�

ILW

�

••13 In the irreversible process of Fig. 20-5, let the initial temper-
atures of the identical blocks L and R be 305.5 and 294.5 K,
respectively, and let 215 J be the energy that must be transferred 
between the blocks in order to reach equilibrium. For the
reversible processes of Fig. 20-6, what is for (a) block L, (b) its
reservoir, (c) block R, (d) its reservoir, (e) the two-block system,
and (f) the system of the two blocks and the two reservoirs?

••14 (a) For 1.0 mol of a
monatomic ideal gas taken through
the cycle in Fig. 20-24, where V1 �
4.00V0, what is W/p0V0 as the gas
goes from state a to state c along
path abc? What is �Eint/p0V0 in go-
ing (b) from b to c and (c) through
one full cycle? What is �S in going
(d) from b to c and (e) through one
full cycle?

••15 A mixture of 1773 g of water and 227 g of ice is in an initial
equilibrium state at 0.000�C. The mixture is then, in a reversible
process, brought to a second equilibrium state where the water–ice
ratio, by mass, is 1.00�1.00 at 0.000�C. (a) Calculate the entropy
change of the system during this process. (The heat of fusion for wa-
ter is 333 kJ/kg.) (b) The system is then returned to the initial equi-
librium state in an irreversible process (say, by using a Bunsen
burner). Calculate the entropy change of the system during this
process. (c) Are your answers consistent with the second law of
thermodynamics?
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Figure 20-22 Problem 10.

specific heat of 900 J/kg �K) at 100 C is mixed with 50.0 g of wa-
ter at 20.0�C, with the mixture thermally isolated. (a) What is the
equilibrium temperature? What are the entropy changes of (b) the
aluminum, (c) the water, and (d) the aluminum–water system?

••12 A gas sample undergoes a reversible isothermal expansion.
Figure 20-23 gives the change �S in entropy of the gas versus the
final volume Vf of the gas. The scale of the vertical axis is set by 
�Ss � 64 J/K. How many moles are in the sample?
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ice � original water. (a) What is the equilibrium temperature of the
system? What are the entropy changes of the water that was origi-
nally the ice cube (b) as it melts and (c) as it warms to the equilib-
rium temperature? (d) What is the entropy change of the original
water as it cools to the equilibrium temperature? (e) What is the
net entropy change of the ice � original water system as it reaches
the equilibrium temperature?

Module 20-2 Entropy in the Real World: Engines
•23 A Carnot engine whose low-temperature reservoir is at 17�C
has an efficiency of 40%. By how much should the temperature of
the high-temperature reservoir be increased to increase the effi-
ciency to 50%?

•24 A Carnot engine absorbs 52 kJ as heat and exhausts 36 kJ as
heat in each cycle. Calculate (a) the engine’s efficiency and (b) the
work done per cycle in kilojoules.

•25 A Carnot engine has an efficiency of 22.0%. It operates be-
tween constant-temperature reservoirs differing in temperature by
75.0 C . What is the temperature of the (a) lower-temperature and
(b) higher-temperature reservoir?

•26 In a hypothetical nuclear fusion reactor, the fuel is deuterium
gas at a temperature of 7 � 108 K. If this gas could be used to oper-
ate a Carnot engine with TL � 100 C, what would be the engine’s
efficiency? Take both temperatures to be exact and report your
answer to seven significant figures.

•27 A Carnot engine operates between 235 C and
115 C, absorbing 6.30 104 J per cycle at the higher temperature.
(a) What is the efficiency of the engine? (b) How much work per
cycle is this engine capable of performing?

••28 In the first stage of a two-stage Carnot engine, energy is ab-
sorbed as heat Q1 at temperature T1, work W1 is done, and energy
is expelled as heat Q2 at a lower temperature T2. The second stage
absorbs that energy as heat Q2, does work W2, and expels energy as
heat Q3 at a still lower temperature T3. Prove that the efficiency of
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••16 An 8.0 g ice cube at �10�C is put into a Thermos flask con-
taining 100 cm3 of water at 20 C. By how much has the entropy of the
cube–water system changed when equilibrium is reached? The spe-
cific heat of ice is 2220 J/kg �K.

••17 In Fig. 20-25, where V23 �
3.00V1, n moles of a diatomic ideal
gas are taken through the cycle with
the molecules rotating but not oscil-
lating. What are (a) p2/p1, (b) p3/p1,
and (c) T3/T1? For path 1 : 2, what
are (d) W/nRT1, (e) Q/nRT1,
(f) �Eint/nRT1, and (g) �S/nR? For
path 2 : 3, what are (h) W/nRT1,
(i) Q/nRT1, ( j) �Eint/nRT1, (k)
�S/nR? For path 3 : 1, what are
(l) W/nRT1, (m) Q/nRT1, (n)
�Eint/nRT1, and (o) �S/nR?

••18 A 2.0 mol sample of an
ideal monatomic gas undergoes
the reversible process shown in 
Fig. 20-26. The scale of the vertical
axis is set by Ts � 400.0 K and the
scale of the horizontal axis is set by
Ss � 20.0 J/K. (a) How much energy
is absorbed as heat by the gas?
(b) What is the change in the inter-
nal energy of the gas? (c) How much
work is done by the gas?

•••19 Suppose 1.00 mol of a monatomic ideal gas is taken from ini-
tial pressure p1 and volume V1 through two steps: (1) an isothermal
expansion to volume 2.00V1 and (2) a pressure increase to 2.00p1 at
constant volume. What is Q/p1V1 for (a) step 1 and (b) step 2? What
is W/p1V1 for (c) step 1 and (d) step 2? For the full process, what are
(e) �Eint/p1V1 and (f) �S? The gas is returned to its initial state and
again taken to the same final state but now through these two steps:
(1) an isothermal compression to pressure 2.00p1 and (2) a volume
increase to 2.00V1 at constant pressure.What is Q/p1V1 for (g) step 1
and (h) step 2? What is W/p1V1 for (i) step 1 and (j) step 2? For the
full process, what are (k) �Eint/p1V1 and (l) �S?

•••20 Expand 1.00 mol of an monatomic gas initially at 5.00 kPa
and 600 K from initial volume Vi � 1.00 m3 to final volume Vf �
2.00 m3.At any instant during the expansion, the pressure p and vol-
ume V of the gas are related by p � 5.00 exp[(Vi � V )/a], with p in
kilopascals, Vi and V in cubic meters, and a � 1.00 m3. What are the
final (a) pressure and (b) temperature of the gas? (c) How much
work is done by the gas during the expansion? (d) What is �S for the
expansion? (Hint: Use two simple reversible processes to find �S.)

•••21 Energy can be removed from water as heat at
and even below the normal freezing point (0.0 C at atmospheric
pressure) without causing the water to freeze; the water is then
said to be supercooled. Suppose a 1.00 g water drop is super-
cooled until its temperature is that of the surrounding air, which
is at �5.00�C. The drop then suddenly and irreversibly freezes,
transferring energy to the air as heat. What is the entropy change
for the drop? (Hint: Use a three-step reversible process as if the
water were taken through the normal freezing point.) The spe-
cific heat of ice is 2220 J/kg �K.

•••22 An insulated Thermos contains 130 g of water at 80.0�C.
You put in a 12.0 g ice cube at 0 C to form a system of �
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the engine is (T1 � T3)/T1.

••29 Figure 20-27 shows a re-
versible cycle through which 1.00 mol
of a monatomic ideal gas is taken.
Assume that p � 2p0, V � 2V0, p0 �
1.01 � 105 Pa, and V0 � 0.0225 m3.
Calculate (a) the work done during
the cycle, (b) the energy added as
heat during stroke abc, and (c) the
efficiency of the cycle. (d) What is
the efficiency of a Carnot engine op-
erating between the highest and low-
est temperatures that occur in
the cycle? (e) Is this greater than or less than the efficiency calcu-
lated in (c)?

••30 A 500 W Carnot engine operates between constant-
temperature reservoirs at 100 C and 60.0 C.What is the rate at which
energy is (a) taken in by the engine as heat and (b) exhausted by the
engine as heat?

••31 The efficiency of a particular car engine is 25% when the en-
gine does 8.2 kJ of work per cycle.Assume the process is reversible.
What are (a) the energy the engine gains per cycle as heat Qgain

from the fuel combustion and (b) the energy the engine loses per
cycle as heat Qlost? If a tune-up increases the efficiency to 31%,
what are (c) Qgain and (d) Qlost at the same work value?

��
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J as heat (a) from a reservoir at 7.0 C to one at 27 C, (b) from a reser-
voir at �73 C to one at 27 C, (c) from a reservoir at �173 C to one at
27 C, and (d) from a reservoir at �223 C to one at 27 C?

•37 A heat pump is used to heat a building. The external
temperature is less than the internal temperature. The pump’s co-
efficient of performance is 3.8, and the heat pump delivers 7.54 MJ
as heat to the building each hour. If the heat pump is a Carnot en-
gine working in reverse, at what rate must work be done to run it?

•38 The electric motor of a heat pump transfers energy as heat
from the outdoors, which is at �5.0 C, to a room that is at 17 C. If
the heat pump were a Carnot heat pump (a Carnot engine working
in reverse), how much energy would be transferred as heat to the
room for each joule of electric energy consumed?

•39 A Carnot air conditioner takes energy from the thermal
energy of a room at 70 F and transfers it as heat to the outdoors,
which is at 96 F. For each joule of electric energy required to operate
the air conditioner, how many joules are removed from the room?

•40 To make ice, a freezer that is a reverse Carnot engine extracts
42 kJ as heat at �15 C during each cycle, with coefficient of
performance 5.7. The room temperature is 30.3 C. How much
(a) energy per cycle is delivered as heat to the room and (b) work
per cycle is required to run the freezer?

••41 An air conditioner operating between 93 F and 70 F is rated
at 4000 Btu/h cooling capacity. Its coefficient of performance is 27% of
that of a Carnot refrigerator operating between the same two tempera-
tures.What horsepower is required of the air conditioner motor?

••42 The motor in a refrigerator has a power of 200 W. If the freez-
ing compartment is at 270 K and the outside air is at 300 K, and as-
suming the efficiency of a Carnot refrigerator, what is the maximum
amount of energy that can be extracted as heat from the freezing
compartment in 10.0 min?

••43 Figure 20-32 rep-
resents a Carnot engine
that works between tem-
peratures T1 400 K and
T2 150 K and drives a
Carnot refrigerator that
works between tempera-
tures T3 � 325 K and T4 �
225 K. What is the ratio
Q3/Q1?

••44 (a) During each cy-
cle, a Carnot engine ab-
sorbs 750 J as heat from a
high-temperature reser-
voir at 360 K, with the
low-temperature reservoir at 280 K. How much work is done per
cycle? (b) The engine is then made to work in reverse to function
as a Carnot refrigerator between those same two reservoirs.
During each cycle, how much work is required to remove 1200 J as
heat from the low-temperature reservoir?

Module 20-4 A Statistical View of Entropy
•45 Construct a table like Table 20-1 for eight molecules.

••46 A box contains N identical gas molecules equally divided
between its two halves. For N � 50, what are (a) the multiplicity W
of the central configuration, (b) the total number of microstates,
and (c) the percentage of the time the system spends in the central
configuration? For N � 100, what are (d) W of the central configura-
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��••32 A Carnot engine is set up to produce a certain work W
per cycle. In each cycle, energy in the form of heat QH is
transferred to the working substance of the engine from
the higher-temperature thermal reservoir, which is at an adjustable
temperature TH. The lower-temperature thermal reservoir is main-
tained at temperature TL � 250 K. Figure 20-28 gives QH for a
range of TH. The scale of the vertical axis is set by QHs � 6.0 kJ. If
TH is set at 550 K, what is QH?

Figure 20-28 Problem 32.
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••33 Figure 20-29 shows
a reversible cycle through which 1.00
mol of a monatomic ideal gas is
taken. Volume Vc � 8.00Vb. Process
bc is an adiabatic expansion, with pb

� 10.0 atm and Vb � 1.00 � 10�3 m3.
For the cycle, find (a) the energy
added to the gas as heat, (b) the en-
ergy leaving the gas as heat, (c) the
net work done by the gas, and (d) the
efficiency of the cycle.

••34 An ideal gas (1.0 mol) is
the working substance in an engine that operates on the cycle
shown in Fig. 20-30. Processes BC and DA are reversible and adia-
batic. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What
is the engine efficiency?
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•••35 The cycle in Fig. 20-31 repre-
sents the operation of a gasoline in-
ternal combustion engine. Volume
V3 � 4.00V1. Assume the gaso-
line–air intake mixture is an ideal
gas with g � 1.30. What are the
ratios (a) T2/T1, (b) T3/T1, (c) T4/T1,
(d) p3/p1, and (e) p4/p1? (f) What is
the engine efficiency?

Module 20-3 Refrigerators and
Real Engines
•36 How much work must be done
by a Carnot refrigerator to transfer 1.0
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is 2220 J/kg �K; water’s heat of fusion is 333 kJ/kg. (Note that the
engine can operate only between 0�C and 800�C in this case. Energy
exhausted at �40�C cannot warm anything above �40�C.)

54 What is the entropy change for 3.20 mol of an ideal
monatomic gas undergoing a reversible increase in temperature
from 380 K to 425 K at constant volume?

55 A 600 g lump of copper at 80.0�C is placed in 70.0 g of water at
10.0 C in an insulated container. (See Table 18-3 for specific heats.)
(a) What is the equilibrium temperature of the copper–
water system? What entropy changes do (b) the copper, (c) the
water, and (d) the copper–water system undergo in reaching the
equilibrium temperature?

56 Figure 20-33 gives the force
magnitude F versus stretch distance x for
a rubber band, with the scale of the F axis
set by Fs � 1.50 N and the scale of the x
axis set by xs � 3.50 cm. The temperature
is 2.00 C. When the rubber band is
stretched by x � 1.70 cm, at what rate
does the entropy of the rubber band
change during a small additional stretch?

57 The temperature of 1.00 mol of a
monatomic ideal gas is raised reversibly
from 300 K to 400 K, with its volume kept constant.What is the en-
tropy change of the gas?

58 Repeat Problem 57, with the pressure now kept constant.

59 A 0.600 kg sample of water is initially ice at temperature
. What is the sample’s entropy change if its temperature is

increased to 40 C?

60 A three-step cycle is undergone by 3.4 mol of an ideal diatomic
gas: (1) the temperature of the gas is increased from 200 K to 500 K at
constant volume; (2) the gas is then isothermally expanded to its orig-
inal pressure; (3) the gas is then contracted at constant pressure back
to its original volume.Throughout the cycle, the molecules rotate but
do not oscillate.What is the efficiency of the cycle?

61 An inventor has built an engine X and claims that its
efficiency ´X is greater than the efficiency ´ of an ideal engine op-
erating between the same two temperatures. Suppose you couple
engine X to an ideal refrigerator (Fig. 20-34a) and adjust the cycle
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tion, (e) the total number of microstates, and (f) the percentage of
the time the system spends in the central configuration? For N � 200,
what are (g) W of the central configuration, (h) the total number of
microstates, and (i) the percentage of the time the system spends in
the central configuration? ( j) Does the time spent in the central con-
figuration increase or decrease with an increase in N?

•••47 A box contains N gas molecules. Consider
the box to be divided into three equal parts. (a) By extension of
Eq. 20-20, write a formula for the multiplicity of any given configu-
ration. (b) Consider two configurations: configuration A with
equal numbers of molecules in all three thirds of the box, and con-
figuration B with equal numbers of molecules in each half of the
box divided into two equal parts rather than three. What is the ra-
tio WA/WB of the multiplicity of configuration A to that of configu-
ration B? (c) Evaluate WA/WB for N � 100. (Because 100 is not
evenly divisible by 3, put 34 molecules into one of the three box
parts of configuration A and 33 in each of the other two parts.)

Additional Problems
48 Four particles are in the insulated box of Fig. 20-17.
What are (a) the least multiplicity, (b) the greatest multiplicity,
(c) the least entropy, and (d) the greatest entropy of the
four-particle system?

49 A cylindrical copper rod of length 1.50 m and radius 2.00 cm
is insulated to prevent heat loss through its curved surface. One
end is attached to a thermal reservoir fixed at 300 C; the other is
attached to a thermal reservoir fixed at 30.0 C. What is the rate at
which entropy increases for the rod–reservoirs system?

50 Suppose 0.550 mol of an ideal gas is isothermally and
reversibly expanded in the four situations given below. What is the
change in the entropy of the gas for each situation?

Situation (a) (b) (c) (d)

Temperature (K) 250 350 400 450
Initial volume (cm3) 0.200 0.200 0.300 0.300
Final volume (cm3) 0.800 0.800 1.20 1.20

51 As a sample of nitrogen gas (N2) undergoes a tempera-
ture increase at constant volume, the distribution of molecular
speeds increases. That is, the probability distribution function P(v)
for the molecules spreads to higher speed values, as suggested in
Fig. 19-8b. One way to report the spread in P(v) is to measure the
difference �v between the most probable speed vP and the rms
speed vrms. When P(v) spreads to higher speeds, �v increases.
Assume that the gas is ideal and the N2 molecules rotate but do not
oscillate. For 1.5 mol, an initial temperature of 250 K, and a final
temperature of 500 K, what are (a) the initial difference �vi, (b) the
final difference �vf, and (c) the entropy change �S for the gas?

52 Suppose 1.0 mol of a monatomic ideal gas initially at 10 L and
300 K is heated at constant volume to 600 K, allowed to expand
isothermally to its initial pressure, and finally compressed at con-
stant pressure to its original volume, pressure, and temperature.
During the cycle, what are (a) the net energy entering the system
(the gas) as heat and (b) the net work done by the gas? (c) What is
the efficiency of the cycle?

53 Suppose that a deep shaft were drilled in Earth’s crust near
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temperatures? (b) If all the energy released as heat into the low-
temperature reservoir were used to melt ice that was initially at
�40 C, at what rate could liquid water at 0�C be produced by a
100 MW power plant (treat it as an engine)? The specific heat of ice
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one of the poles, where the surface temperature is �40 C, to a
depth where the temperature is 800 C. (a) What is the theoretical
limit to the efficiency of an engine operating between these
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69 A brass rod is in thermal contact with a constant-tempera-
ture reservoir at 130 C at one end and a constant-temperature
reservoir at 24.0 C at the other end. (a) Compute the total change
in entropy of the rod–reservoirs system when 5030 J of energy is
conducted through the rod, from one reservoir to the other.
(b) Does the entropy of the rod change?

70 A 45.0 g block of tungsten at 30.0 C and a 25.0 g block of
silver at �120 C are placed together in an insulated container.
(See Table 18-3 for specific heats.) (a) What is the equilibrium tem-
perature? What entropy changes do (b) the tungsten, (c) the silver,
and (d) the tungsten–silver system undergo in reaching the equi-
librium temperature?

71 A box contains N molecules. Consider two configurations:
configuration A with an equal division of the molecules between
the two halves of the box, and configuration B with 60.0% of the
molecules in the left half of the box and 40.0% in the right half. For
N � 50, what are (a) the multiplicity WA of configuration A, (b) the
multiplicity WB of configuration B, and (c) the ratio fB/A of the time
the system spends in configuration B to the time it spends in con-
figuration A? For N � 100, what are (d) WA, (e) WB, and (f) fB/A?
For N � 200, what are (g) WA, (h) WB, and (i) fB/A? ( j) With in-
creasing N, does f increase, decrease, or remain the same?

72 Calculate the efficiency of a fossil-fuel power plant that con-
sumes 380 metric tons of coal each hour to produce useful work at
the rate of 750 MW. The heat of combustion of coal (the heat due
to burning it) is 28 MJ/kg.

73 A Carnot refrigerator extracts 35.0 kJ as heat during
each cycle, operating with a coefficient of performance of 4.60.
What are (a) the energy per cycle transferred as heat to the room
and (b) the work done per cycle?

74 A Carnot engine whose high-temperature reservoir is at 400
K has an efficiency of 30.0%. By how much should the tempera-
ture of the low-temperature reservoir be changed to increase the
efficiency to 40.0%?

75 System A of three particles and system B of five particles
are in insulated boxes like that in Fig. 20-17.What is the least multi-
plicity W of (a) system A and (b) system B? What is the greatest
multiplicity W of (c) A and (d) B? What is the greatest entropy of
(e) A and (f) B?

76 Figure 20-36 shows a
Carnot cycle on a T-S dia-
gram, with a scale set by
Ss � 0.60 J/K. For a full cy-
cle, find (a) the net heat
transfer and (b) the net
work done by the system.

77 Find the relation be-
tween the efficiency of a
reversible ideal heat engine
and the coefficient of per-
formance of the reversible
refrigerator obtained by running the engine backwards.

78 A Carnot engine has a power of 500 W. It operates between
heat reservoirs at 100 C and 60.0 C. Calculate (a) the rate of heat
input and (b) the rate of exhaust heat output.

79 In a real refrigerator, the low-temperature coils are at �13 C,
and the compressed gas in the condenser is at 26 C. What is the
theoretical coefficient of performance?
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of engine X so that the work per cycle it provides equals the work
per cycle required by the ideal refrigerator.Treat this combination
as a single unit and show that if the inventor’s claim were true (if
´X � ´), the combined unit would act as a perfect refrigerator
(Fig. 20-34b), transferring energy as heat from the low-tempera-
ture reservoir to the high-temperature reservoir without the need
for work.

62 Suppose 2.00 mol of a di-
atomic gas is taken reversibly
around the cycle shown in the T-
S diagram of Fig. 20-35, where
S1 � 6.00 J/K and S2 � 8.00 J/K.
The molecules do not rotate or
oscillate. What is the energy
transferred as heat Q for (a) path
1 : 2, (b) path 2 : 3, and (c) the
full cycle? (d) What is the work
W for the isothermal process?
The volume V1 in state 1 is
0.200 m3. What is the volume in
(e) state 2 and (f) state 3?

What is the change �Eint for (g) path 1 : 2, (h) path 2 : 3, and
(i) the full cycle? (Hint: (h) can be done with one or two lines of cal-
culation using Module 19-7 or with a page of calculation using
Module 19-9.) ( j) What is the work W for the adiabatic process?

63 A three-step cycle is undergone reversibly by 4.00 mol of an ideal
gas: (1) an adiabatic expansion that gives the gas 2.00 times its initial
volume, (2) a constant-volume process, (3) an isothermal compression
back to the initial state of the gas. We do not know whether the gas is
monatomic or diatomic; if it is diatomic, we do not know whether the
molecules are rotating or oscillating.What are the entropy changes for
(a) the cycle,(b) process 1,(c) process 3,and (d) process 2?

64 (a) A Carnot engine operates between a hot reservoir at
320 K and a cold one at 260 K. If the engine absorbs 500 J as heat
per cycle at the hot reservoir, how much work per cycle does it
deliver? (b) If the engine working in reverse functions as a refrig-
erator between the same two reservoirs, how much work per cy-
cle must be supplied to remove 1000 J as heat from the cold
reservoir?

65 A 2.00 mol diatomic gas initially at 300 K undergoes this
cycle: It is (1) heated at constant volume to 800 K, (2) then allowed
to expand isothermally to its initial pressure, (3) then compressed
at constant pressure to its initial state. Assuming the gas molecules
neither rotate nor oscillate, find (a) the net energy transferred as
heat to the gas, (b) the net work done by the gas, and (c) the effi-
ciency of the cycle.

66 An ideal refrigerator does 150 J of work to remove 560 J as
heat from its cold compartment. (a) What is the refrigerator’s coef-
ficient of performance? (b) How much heat per cycle is exhausted
to the kitchen?

67 Suppose that 260 J is conducted from a constant-temperature
reservoir at 400 K to one at (a) 100 K, (b) 200 K, (c) 300 K, and
(d) 360 K. What is the net change in entropy �Snet of the reservoirs
in each case? (e) As the temperature difference of the two reser-
voirs decreases, does �Snet increase, decrease, or remain the same?

68 An apparatus that liquefies helium is in a room maintained at
300 K. If the helium in the apparatus is at 4.0 K, what is the 
minimum ratio Qto/Qfrom, where Qto is the energy delivered as heat to
the room and Qfrom is the energy removed as heat from the helium?
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Figure 20-36 Problem 76.
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C H A P T E R  2 1

Coulomb’s Law

21-1 COULOMB’S LAW

After reading this module, you should be able to . . .

21.01 Distinguish between being electrically neutral, negatively
charged, and positively charged and identify excess charge.

21.02 Distinguish between conductors, nonconductors (insu-
lators), semiconductors, and superconductors.

21.03 Describe the electrical properties of the particles in-
side an atom.

21.04 Identify conduction electrons and explain their role in
making a conducting object negatively or positively charged.

21.05 Identify what is meant by “electrically isolated” and by
“grounding.”

21.06 Explain how a charged object can set up induced
charge in a second object.

21.07 Identify that charges with the same electrical sign repel
each other and those with opposite electrical signs attract
each other.

21.08 For either of the particles in a pair of charged particles,
draw a free-body diagram, showing the electrostatic force
(Coulomb force) on it and anchoring the tail of the force
vector on that particle.

21.09 For either of the particles in a pair of charged particles,
apply Coulomb’s law to relate the magnitude of the electro-
static force, the charge magnitudes of the particles, and the
separation between the particles.

21.10 Identify that Coulomb’s law applies only to (point-like)
particles and objects that can be treated as particles.

21.11 If more than one force acts on a particle, find the net
force by adding all the forces as vectors, not scalars.

21.12 Identify that a shell of uniform charge attracts or repels
a charged particle that is outside the shell as if all the
shell’s charge were concentrated as a particle at the
shell’s center.

21.13 Identify that if a charged particle is located inside a shell
of uniform charge, there is no net electrostatic force on the
particle from the shell.

21.14 Identify that if excess charge is put on a spherical conduc-
tor, it spreads out uniformly over the external surface area.

21.15 Identify that if two identical spherical conductors touch
or are connected by conducting wire, any excess charge
will be shared equally.

21.16 Identify that a nonconducting object can have any given
distribution of charge, including charge at interior points.

21.17 Identify current as the rate at which charge moves
through a point.

21.18 For current through a point, apply the relationship be-
tween the current, a time interval, and the amount of charge
that moves through the point in that time interval.

● The strength of a particle’s electrical interaction with ob-
jects around it depends on its electric charge (usually repre-
sented as q), which can be either positive or negative.
Particles with the same sign of charge repel each other, and
particles with opposite signs of charge attract each other.

● An object with equal amounts of the two kinds of charge is
electrically neutral, whereas one with an imbalance is electri-
cally charged and has an excess charge.

● Conductors are materials in which a significant number of
electrons are free to move. The charged particles in noncon-
ductors (insulators) are not free to move.

● Electric current i is the rate dq/dt at which charge passes a
point:

● Coulomb’s law describes the electrostatic force (or electric

i �
dq
dt

.

force) between two charged particles. If the particles have
charges q1 and q2, are separated by distance r, and are at rest
(or moving only slowly) relative to each other, then the magni-
tude of the force acting on each due to the other is given by

(Coulomb’s law),

where is the permittivity con-
stant. The ratio 1/4p´0 is often replaced with the electrostatic
constant (or Coulomb constant) .

● The electrostatic force vector acting on a charged particle
due to a second charged particle is either directly toward the
second particle (opposite signs of charge) or directly away
from it (same sign of charge).

● If multiple electrostatic forces act on a particle, the net force
is the vector sum (not scalar sum) of the individual forces.

k � 8.99 � 109 N �m2/C2

´0 � 8.85 � 10�12 C2/N �m2

F �
1

4p´0

�q1� �q2�
r2

Key Ideas

Learning Objectives
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What Is Physics?
You are surrounded by devices that depend on the physics of electromagnetism,
which is the combination of electric and magnetic phenomena. This physics is at
the root of computers, television, radio, telecommunications, household lighting,
and even the ability of food wrap to cling to a container. This physics is also the
basis of the natural world. Not only does it hold together all the atoms and
molecules in the world, it also produces lightning, auroras, and rainbows.

The physics of electromagnetism was first studied by the early Greek
philosophers, who discovered that if a piece of amber is rubbed and then brought
near bits of straw, the straw will jump to the amber.We now know that the attrac-
tion between amber and straw is due to an electric force.The Greek philosophers
also discovered that if a certain type of stone (a naturally occurring magnet) is
brought near bits of iron, the iron will jump to the stone. We now know that the
attraction between magnet and iron is due to a magnetic force.

From these modest origins with the Greek philosophers, the sciences of
electricity and magnetism developed separately for centuries—until 1820, in fact,
when Hans Christian Oersted found a connection between them: an electric cur-
rent in a wire can deflect a magnetic compass needle. Interestingly enough,
Oersted made this discovery, a big surprise, while preparing a lecture demonstra-
tion for his physics students.

The new science of electromagnetism was developed further by workers in
many countries. One of the best was Michael Faraday, a truly gifted experimenter
with a talent for physical intuition and visualization. That talent is attested to by
the fact that his collected laboratory notebooks do not contain a single equation.
In the mid-nineteenth century, James Clerk Maxwell put Faraday’s ideas into
mathematical form, introduced many new ideas of his own, and put electromag-
netism on a sound theoretical basis.

Our discussion of electromagnetism is spread through the next 16 chapters.
We begin with electrical phenomena, and our first step is to discuss the nature of
electric charge and electric force.

Electric Charge
Here are two demonstrations that seem to be magic, but our job here is to make
sense of them. After rubbing a glass rod with a silk cloth (on a day when the
humidity is low), we hang the rod by means of a thread tied around its center
(Fig. 21-la). Then we rub a second glass rod with the silk cloth and bring it near
the hanging rod. The hanging rod magically moves away. We can see that a force
repels it from the second rod, but how? There is no contact with that rod, no
breeze to push on it, and no sound wave to disturb it.

In the second demonstration we replace the second rod with a plastic rod
that has been rubbed with fur. This time, the hanging rod moves toward the
nearby rod (Fig. 21-1b). Like the repulsion, this attraction occurs without any
contact or obvious communication between the rods.

In the next chapter we shall discuss how the hanging rod knows of the pres-
ence of the other rods, but in this chapter let’s focus on just the forces that are in-
volved. In the first demonstration, the force on the hanging rod was repulsive, and

● Shell theorem 1: A charged particle outside a shell with charge
uniformly distributed on its surface is attracted or repelled as if
the shell's charge were concentrated as a particle at its center.

● Shell theorem 2: A charged particle inside a shell with

charge uniformly distributed on its surface has no net force
acting on it due to the shell.
● Charge on a conducting spherical shell spreads uniformly
over the (external) surface.

Figure 21-1 (a) The two glass rods were each
rubbed with a silk cloth and one was sus-
pended by thread.When they are close to
each other, they repel each other. (b) The
plastic rod was rubbed with fur.When
brought close to the glass rod, the rods
attract each other.

Glass

Glass

(a)

Glass

Plastic

(b)

F –F

F

–F
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in the second, attractive. After a great many investigations, scientists figured out
that the forces in these types of demonstrations are due to the electric charge that
we set up on the rods when they are in contact with silk or fur. Electric charge is
an intrinsic property of the fundamental particles that make up objects such as
the rods, silk, and fur. That is, charge is a property that comes automatically with
those particles wherever they exist.

Two Types. There are two types of electric charge, named by the American
scientist and statesman Benjamin Franklin as positive charge and negative
charge. He could have called them anything (such as cherry and walnut), but us-
ing algebraic signs as names comes in handy when we add up charges to find the
net charge. In most everyday objects, such as a mug, there are about equal num-
bers of negatively charged particles and positively charged particles, and so the
net charge is zero, the charge is said to be balanced, and the object is said to be
electrically neutral (or just neutral for short).

Excess Charge. Normally you are approximately neutral. However, if you live in
regions where the humidity is low, you know that the charge on your body can be-
come slightly unbalanced when you walk across certain carpets. Either you gain neg-
ative charge from the carpet (at the points of contact between your shoes with the
carpet) and become negatively charged,or you lose negative charge and become pos-
itively charged. Either way, the extra charge is said to be an excess charge.You proba-
bly don’t notice it until you reach for a door handle or another person.Then, if your
excess charge is enough, a spark leaps between you and the other object, eliminating
your excess charge. Such sparking can be annoying and even somewhat painful. Such
charging and discharging does not happen in humid conditions because the water in
the air neutralizes your excess charge about as fast as you acquire it.

Two of the grand mysteries in physics are (1) why does the universe have par-
ticles with electric charge (what is it, really?) and (2) why does electric charge
come in two types (and not, say, one type or three types). We just do not know.
Nevertheless, with lots of experiments similar to our two demonstrations scien-
tists discovered that

Particles with the same sign of electrical charge repel each other, and particles
with opposite signs attract each other.

In a moment we shall put this rule into quantitative form as Coulomb’s law of
electrostatic force (or electric force) between charged particles. The term electro-
static is used to emphasize that, relative to each other, the charges are either sta-
tionary or moving only very slowly.

Demos. Now let’s get back to the demonstrations to understand the motions
of the rod as being something other than just magic. When we rub the glass rod
with a silk cloth, a small amount of negative charge moves from the rod to the silk
(a transfer like that between you and a carpet), leaving the rod with a small
amount of excess positive charge. (Which way the negative charge moves is not
obvious and requires a lot of experimentation.) We rub the silk over the rod to in-
crease the number of contact points and thus the amount, still tiny, of transferred
charge.We hang the rod from the thread so as to electrically isolate it from its sur-
roundings (so that the surroundings cannot neutralize the rod by giving it enough
negative charge to rebalance its charge). When we rub the second rod with the
silk cloth, it too becomes positively charged. So when we bring it near the first
rod, the two rods repel each other (Fig. 21-2a).

Next, when we rub the plastic rod with fur, it gains excess negative charge
from the fur. (Again, the transfer direction is learned through many experiments.)
When we bring the plastic rod (with negative charge) near the hanging glass rod
(with positive charge), the rods are attracted to each other (Fig. 21-2b). All this is
subtle.You cannot see the charge or its transfer, only the results.

Figure 21-2 (a) Two charged rods of the same
sign repel each other. (b) Two charged rods
of opposite signs attract each other. Plus
signs indicate a positive net charge, and mi-
nus signs indicate a negative net charge.
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Conductors and Insulators
We can classify materials generally according to the ability of charge to move
through them. Conductors are materials through which charge can move rather
freely; examples include metals (such as copper in common lamp wire), the human
body, and tap water. Nonconductors—also called insulators—are materials
through which charge cannot move freely; examples include rubber (such as the
insulation on common lamp wire), plastic, glass, and chemically pure water.
Semiconductors are materials that are intermediate between conductors and
insulators; examples include silicon and germanium in computer chips. Super-
conductors are materials that are perfect conductors, allowing charge to move with-
out any hindrance. In these chapters we discuss only conductors and insulators.

Conducting Path. Here is an example of how conduction can eliminate excess
charge on an object. If you rub a copper rod with wool, charge is transferred from the
wool to the rod. However, if you are holding the rod while also touching a faucet, you
cannot charge the rod in spite of the transfer.The reason is that you, the rod, and the
faucet are all conductors connected, via the plumbing, to Earth’s surface, which is a
huge conductor. Because the excess charges put on the rod by the wool repel one an-
other, they move away from one another by moving first through the rod, then
through you, and then through the faucet and plumbing to reach Earth’s surface,
where they can spread out.The process leaves the rod electrically neutral.

In thus setting up a pathway of conductors between an object and Earth’s
surface, we are said to ground the object, and in neutralizing the object (by elimi-
nating an unbalanced positive or negative charge), we are said to discharge the
object. If instead of holding the copper rod in your hand, you hold it by an
insulating handle, you eliminate the conducting path to Earth, and the rod can
then be charged by rubbing (the charge remains on the rod), as long as you do
not touch it directly with your hand.

Charged Particles. The properties of conductors and insulators are due to
the structure and electrical nature of atoms. Atoms consist of positively charged
protons, negatively charged electrons, and electrically neutral neutrons. The pro-
tons and neutrons are packed tightly together in a central nucleus.

The charge of a single electron and that of a single proton have the same
magnitude but are opposite in sign. Hence, an electrically neutral atom contains
equal numbers of electrons and protons. Electrons are held near the nucleus
because they have the electrical sign opposite that of the protons in the nucleus
and thus are attracted to the nucleus. Were this not true, there would be no
atoms and thus no you.

When atoms of a conductor like copper come together to form the solid,
some of their outermost (and so most loosely held) electrons become free to
wander about within the solid, leaving behind positively charged atoms ( positive
ions). We call the mobile electrons conduction electrons. There are few (if any)
free electrons in a nonconductor.

Induced Charge. The experiment of Fig. 21-3 demonstrates the mobility of
charge in a conductor. A negatively charged plastic rod will attract either end of
an isolated neutral copper rod. What happens is that many of the conduction
electrons in the closer end of the copper rod are repelled by the negative charge
on the plastic rod. Some of the conduction electrons move to the far end of the
copper rod, leaving the near end depleted in electrons and thus with an unbal-
anced positive charge. This positive charge is attracted to the negative charge in
the plastic rod. Although the copper rod is still neutral, it is said to have an
induced charge, which means that some of its positive and negative charges have
been separated due to the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, induced charge is again set up in the neutral copper rod but
now the near end gains conduction electrons, becomes negatively charged, and is
attracted to the glass rod, while the far end is positively charged.

Neutral copper 

Charged plastic 

++++++ + + + +

–––––––

–––––––––
–

–––––– – –
F –F

Figure 21-3 A neutral copper rod is electri-
cally isolated from its surroundings by be-
ing suspended on a nonconducting thread.
Either end of the copper rod will be at-
tracted by a charged rod. Here, conduction
electrons in the copper rod are repelled to
the far end of that rod by the negative
charge on the plastic rod.Then that nega-
tive charge attracts the remaining positive
charge on the near end of the copper rod,
rotating the copper rod to bring that near
end closer to the plastic rod.
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Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-4). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B move away from each other, air (primarily nitrogen, N2) flows
into the gap, and many of the jumping electrons collide with nitrogen molecules
in the air, causing the molecules to emit ultraviolet light. You cannot see this type
of light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.

Figure 21-4 Two pieces of a wintergreen
LifeSaver candy as they fall away from
each other. Electrons jumping from the
negative surface of piece A to the positive
surface of piece B collide with nitrogen
(N2) molecules in the air.

A

B + + +
+ +++

–
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– –
–

–

N2

Checkpoint 1
The figure shows five
pairs of plates: A, B, and
D are charged plastic
plates and C is an elec-
trically neutral copper
plate.The electrostatic
forces between the pairs
of plates are shown for
three of the pairs. For the remaining two pairs, do the plates repel or attract each other? 

A C C D B 

B A D A D 

Coulomb’s Law
Now we come to the equation for Coulomb’s law, but first a caution. This equa-
tion works for only charged particles (and a few other things that can be treated
as particles). For extended objects, with charge located in many different places,
we need more powerful techniques. So, here we consider just charged particles
and not, say, two charged cats.

If two charged particles are brought near each other, they each exert an elec-
trostatic force on the other. The direction of the force vectors depends on the
signs of the charges. If the particles have the same sign of charge, they repel each
other. That means that the force vector on each is directly away from the other
particle (Figs. 21-5a and b). If we release the particles, they accelerate away from
each other. If, instead, the particles have opposite signs of charge, they attract
each other. That means that the force vector on each is directly toward the other
particle (Fig. 21-5c). If we release the particles, they accelerate toward each other.

The equation for the electrostatic forces acting on the particles is called
Coulomb’s law after Charles-Augustin de Coulomb, whose experiments in 1785 led
him to it. Let’s write the equation in vector form and in terms of the particles shown
in Fig. 21-6, where particle 1 has charge q1 and particle 2 has charge q2. (These sym-
bols can represent either positive or negative charge.) Let’s also focus on particle 1
and write the force acting on it in terms of a unit vector that points along a radialr̂

(a)

(b)

(c)

Always draw the force
vector with the tail on
the particle.

The forces push the
particles apart.

But here the forces
pull the particles
together.

Here too.

Figure 21-5 Two charged particles repel each
other if they have the same sign of charge,
either (a) both positive or (b) both negative.
(c) They attract each other if they have op-
posite signs of charge.

Figure 21-6 The electrostatic force on parti-
cle 1 can be described in terms of a unit
vector along an axis through the two
particles, radially away from particle 2.

r̂

r
q1

q2

F

r̂
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axis extending through the two particles, radially away from particle 2. (As with
other unit vectors, has a magnitude of exactly 1 and no unit; its purpose is to
point, like a direction arrow on a street sign.) With these decisions, we write the
electrostatic force as

(Coulomb’s law), (21-1)

where r is the separation between the particles and k is a positive constant called
the electrostatic constant or the Coulomb constant. (We’ll discuss k below.)

Let’s first check the direction of the force on particle 1 as given by Eq. 21-1. If
q1 and q2 have the same sign, then the product q1q2 gives us a positive result. So,
Eq. 21-1 tells us that the force on particle 1 is in the direction of .That checks, be-
cause particle 1 is being repelled from particle 2. Next, if q1 and q2 have opposite
signs, the product q1q2 gives us a negative result. So, now Eq. 21-1 tells us that the
force on particle 1 is in the direction opposite . That checks because particle 1 is
being attracted toward particle 2.

An Aside. Here is something that is very curious. The form of Eq. 21-1 is the
same as that of Newton’s equation (Eq. 13-3) for the gravitational force between
two particles with masses m1 and m2 and separation r:

(Newton’s law), (21-2)

where G is the gravitational constant.Although the two types of forces are wildly
different, both equations describe inverse square laws (the 1/r2 dependences)
that involve a product of a property of the interacting particles—the charge in
one case and the mass in the other. However, the laws differ in that gravitational
forces are always attractive but electrostatic forces may be either attractive or re-
pulsive, depending on the signs of the charges.This difference arises from the fact
that there is only one type of mass but two types of charge.

Unit. The SI unit of charge is the coulomb. For practical reasons having to do
with the accuracy of measurements, the coulomb unit is derived from the SI unit am-
pere for electric current i. We shall discuss current in detail in Chapter 26, but here
let’s just note that current i is the rate dq/dt at which charge moves past a point or
through a region:

(electric current). (21-3)

Rearranging Eq. 21-3 and replacing the symbols with their units (coulombs C,
amperes A,and seconds s) we see that

1 C � (1 A)(1 s).

Force Magnitude. For historical reasons (and because doing so simplifies
many other formulas), the electrostatic constant k in Eq. 21-1 is often written as
1/4p´0. Then the magnitude of the electrostatic force in Coulomb’s law becomes

(Coulomb’s law). (21-4)

The constants in Eqs. 21-1 and 21-4 have the value

(21-5)

The quantity ´0, called the permittivity constant, sometimes appears separately in
equations and is

´0 � 8.85 � 10�12 C2/N � m2. (21-6)

Working a Problem. Note that the charge magnitudes appear in Eq. 21-4,
which gives us the force magnitude. So, in working problems in this chapter, we
use Eq. 21-4 to find the magnitude of a force on a chosen particle due to a second

k �
1

4p´0
� 8.99 � 109 N �m2/C2.

F �
1

4p´0

�q1��q2�
r2

i �
dq
dt

F
:

� G
m1m2

r2  r̂

r̂

r̂

F
:

� k
q1q2

r2  r̂

r̂
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particle and we separately determine the direction of the force by considering the
charge signs of the two particles.

Multiple Forces. As with all forces in this book, the electrostatic force obeys
the principle of superposition. Suppose we have n charged particles near a chosen
particle called particle 1; then the net force on particle 1 is given by the vector sum

(21-7)

in which, for example, is the force on particle 1 due to the presence of particle 4.
This equation is the key to many of the homework problems, so let’s state it

in words. If you want to know the net force acting on a chosen charged particle
that is surrounded by other charged particles, first clearly identify that chosen
particle and then find the force on it due to each of the other particles. Draw
those force vectors in a free-body diagram of the chosen particle, with the tails
anchored on the particle. (That may sound trivial, but failing to do so easily leads
to errors.) Then add all those forces as vectors according to the rules of Chapter 3,
not as scalars. (You cannot just willy-nilly add up their magnitudes.) The result is
the net force (or resultant force) acting on the particle.

Although the vector nature of the forces makes the homework problems
harder than if we simply had scalars, be thankful that Eq. 21-7 works. If two force
vectors did not simply add but for some reason amplified each other, the world
would be very difficult to understand and manage.

Shell Theories. Analogous to the shell theories for the gravitational force
(Module 13-1), we have two shell theories for the electrostatic force:

F
:

14

F
:

1,net � F
:

12 � F
:

13 � F
:

14 � F
:

15 � � � � � F
:

1n,

Shell theory 1. A charged particle outside a shell with charge uniformly distrib-
uted on its surface is attracted or repelled as if the shell’s charge were concentrated
as a particle at its center.

Shell theory 2. A charged particle inside a shell with charge uniformly distributed
on its surface has no net force acting on it due to the shell.

(In the first theory, we assume that the charge on the shell is much greater than
the particle’s charge.Thus the presence of the particle has negligible effect on the
distribution of charge on the shell.)

Spherical Conductors
If excess charge is placed on a spherical shell that is made of conducting material, the
excess charge spreads uniformly over the (external) surface. For example, if we place
excess electrons on a spherical metal shell, those electrons repel one another and
tend to move apart, spreading over the available surface until they are uniformly dis-
tributed. That arrangement maximizes the distances between all pairs of the excess
electrons. According to the first shell theorem, the shell then will attract or repel an
external charge as if all the excess charge on the shell were concentrated at its center.

If we remove negative charge from a spherical metal shell, the resulting pos-
itive charge of the shell is also spread uniformly over the surface of the shell. For
example, if we remove n electrons, there are then n sites of positive charge (sites
missing an electron) that are spread uniformly over the shell. According to the
first shell theorem, the shell will again attract or repel an external charge as if all
the shell’s excess charge were concentrated at its center.

Checkpoint 2
The figure shows two protons
(symbol p) and one electron
(symbol e) on an axis.On the central proton,what is the direction of (a) the force due to the
electron,(b) the force due to the other proton,and (c) the net force?

e p p
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Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 � 10�24 N and 180�. (Answer)

We can also write in unit-vector notation as

. (Answer)

(b) Figure 21-7c is identical to Fig. 21-7a except that particle 3
now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 � �3.20 � 10�19 C and is at a distance from3

4 R

F
:

12 � �(1.15 � 10 �24 N)î

F
:

12

F
:

12

� 1.15 � 10 �24 N.

�
(1.60 � 10 �19 C)(3.20 � 10 �19 C)

(0.0200 m)2

� (8.99 � 10 9 N �m2/C2)

F12 �
1

4p´0

�q1��q2�
R2

Sample Problem 21.01 Finding the net force due to two other particles

This sample problem actually contains three examples, to
build from basic stuff to harder stuff. In each we have the
same charged particle 1. First there is a single force acting
on it (easy stuff).Then there are two forces, but they are just
in opposite directions (not too bad). Then there are again
two forces but they are in very different directions (ah, now
we have to get serious about the fact that they are vectors).
The key to all three examples is to draw the forces correctly
before you reach for a calculator, otherwise you may be cal-
culating nonsense on the calculator. (Figure 21-7 is available
in WileyPLUS as an animation with voiceover.)

(a) Figure 21-7a shows two positively charged particles fixed in
place on an x axis. The charges are q1 � 1.60 � 10�19 C and
q2 � 3.20 � 10�19 C, and the particle separation is R � 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

KEY IDEAS

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-7b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

F
:

12

F
:

12

A

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Figure 21-7 (a) Two charged particles of charges q1 and q2 are fixed in place on an x axis. (b) The free-body 
diagram for particle 1, showing the electrostatic force on it from particle 2. (c) Particle 3 included. (d) Free-body
diagram for particle 1.(e) Particle 4 included.(f ) Free-body diagram for particle 1.

particle 1.What is the net electrostatic force on particle 1
due to particles 2 and 3?

KEY IDEA

The presence of particle 3 does not alter the electrostatic force
on particle 1 from particle 2.Thus, force still acts on particle
1. Similarly, the force that acts on particle 1 due to particle 3
is not affected by the presence of particle 2. Because particles 1

F
:

13

F
:

12

F
:

1,net
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Then from Eq. 21-7, we can write the net force on parti-
cle 1 as

Because the forces and are not directed along the
same axis, we cannot sum simply by combining their mag-
nitudes. Instead, we must add them as vectors, using one of
the following methods.

Method 1. Summing directly on a vector-capable calculator.
For , we enter the magnitude and the angle1.15 � 10�24F

:

12

F
:

14F
:

12

F
:

1,net � F
:

12 � F
:

14.

F
:

1,netand 3 have charge of opposite signs, particle 1 is attracted
to particle 3.Thus, force is directed toward particle 3, as in-
dicated in the free-body diagram of Fig. 21-7d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

The net force on particle 1 is the vector sum of F
:

12F
:

1,net

F
:

13 � (2.05 � 10 �24 N)î .

F
:

13

� 2.05 � 10 �24 N.

�
(1.60 � 10 �19 C)(3.20 � 10 �19 C)

(3
4)

2(0.0200 m)2

� (8.99 � 10 9 N �m2/C2)

F13 �
1

4p´0

�q1��q3�
(3

4R)2

F
:

13

F
:

13

and ; that is, from Eq. 21-7, we can write the net force
on particle 1 in unit-vector notation as

. (Answer)

Thus, has the following magnitude and direction (relative
to the positive direction of the x axis):

9.00 � 10�25 N and 0�. (Answer)

(c) Figure 21-7e is identical to Fig. 21-7a except that particle 4
is now included. It has charge q4 � �3.20 � 10�19 C, is at a
distance from particle 1, and lies on a line that makes an3

4R

F
:

1,net

� (9.00 � 10 �25 N)î

� �(1.15 � 10 �24 N)î � (2.05 � 10 �24 N)î

F
:

1,net � F
:

12 � F
:

13

F
:

1,net

F
:

13

angle u � 60� with the x axis. What is the net electrostatic
force on particle 1 due to particles 2 and 4?

KEY IDEA

The net force is the vector sum of and a new forceF
:

12F
:

1,net

F
:

1,net

acting on particle 1 due to particle 4. Because particles 1
and 4 have charge of opposite signs, particle 1 is attracted to
particle 4. Thus, force on particle 1 is directed towardF

:

14

F
:

14

particle 4, at angle 60�, as indicated in the free-body dia-
gram of Fig. 21-7f.

Four particles: We can rewrite Eq. 21-4 as

� 2.05 � 10 �24 N. 

�
(1.60 � 10 �19 C)(3.20 � 10 �19 C)

(3
4)

2(0.0200 m)2

� (8.99 � 10 9 N �m2/C2)

F14 �
1

4p´0

�q1��q4�
(3

4R)2

u �

180�. For , we enter the magnitude and the 2.05 � 10�24F
:

14

angle 60�.Then we add the vectors.

Method 2. Summing in unit-vector notation. First we
rewrite as

Substituting N for F14 and 60� for u, this becomes

.

Then we sum:

(Answer)

Method 3. Summing components axis by axis. The sum of
the x components gives us

The sum of the y components gives us

The net force has the magnitude

(Answer)

To find the direction of , we take

u � tan�1
F1,net,y

F1,net,x
� �86.0�.

F
:

1,net

F1,net � 2F 2
1,net,x � F 2

1,net,y � 1.78 � 10 �24 N.

F
:

1,net

� 1.78 � 10 �24 N. 

� (2.05 � 10 �24 N)(sin 60�)

F1,net,y � F12,y � F14,y � 0 � F14 sin 60�

� �1.25 � 10 �25 N. 

� �1.15 � 10 �24 N � (2.05 � 10 �24 N)(cos 60�)

F1,net,x � F12,x � F14,x � F12 � F14 cos 60�

� (�1.25 � 10 �25 N)î � (1.78 � 10 �24 N)ĵ.

� (1.025 � 10 �24 N)î � (1.775 � 10 �24 N)ĵ

� �(1.15 � 10 �24 N)î

F
:

1,net � F
:

12 � F
:

14

F
:

14 � (1.025 � 10 �24 N)î � (1.775 � 10 �24 N)ĵ

2.05 � 10�24

F
:

14 � (F14 cos u)î � (F14 sin u)ĵ .

F
:

14

However, this is an unreasonable result because mustF
:

1,net

Additional examples, video, and practice available at WileyPLUS

have a direction between the directions of and . To
correct u, we add 180�, obtaining

�86.0� � 180� � 94.0�. (Answer)

F
:

14F
:

12
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Checkpoint 3
The figure here shows three arrangements of an electron e and two
protons p.(a) Rank the arrangements according to the magnitude of the
net electrostatic force on the electron due to the protons, largest first.(b) In
situation c, is the angle between the net force on the electron and the line
labeled d less than or more than 45�?

D
d

e p p 

Dd

p e p 

D

d

e

p

p

(a) (b) (c)

Calculations: With Eq.21-4,we can now rewrite Eq.21-9:

(21-10)

(Note that only the charge magnitudes appear in Eq.
21-10. We already decided about the directions of the forces
in drawing Fig. 21-8d and do not want to include any posi-
tive or negative signs here.) Rearranging Eq. 21-10 gives us

After taking the square roots of both sides, we find

x � 2L. (Answer)

The equilibrium at x � 2L is unstable; that is, if the proton is
displaced leftward from point R, then F1 and F2 both increase
but F2 increases more (because q2 is closer than q1), and a net
force will drive the proton farther leftward. If the proton is dis-
placed rightward, both F1 and F2 decrease but F2 decreases
more, and a net force will then drive the proton farther right-
ward. In a stable equilibrium, if the proton is displaced slightly, it
returns to the equilibrium position.

x � L
x

�
1
2

� x � L
x �

2

�
1
4

.

1
4p´0

8qqp

x2 �
1

4p´0

2qqp

(x � L)2 .

Sample Problem 21.02 Equilibrium of two forces on a particle

Figure 21-8a shows two particles fixed in place: a particle of
charge q1 � �8q at the origin and a particle of charge q2 � �2q
at x � L. At what point (other than infinitely far away) can a
proton be placed so that it is in equilibrium (the net force on it is
zero)? Is that equilibrium stable or unstable? (That is, if the pro-
ton is displaced, do the forces drive it back to the point of equi-
librium or drive it farther away?)

KEY IDEA

If is the force on the proton due to charge q1 and is the
force on the proton due to charge q2, then the point we seek is
where Thus,

(21-8)

This tells us that at the point we seek, the forces acting on
the proton due to the other two particles must be of equal
magnitudes,

F1 � F2, (21-9)

and that the forces must have opposite directions.

Reasoning: Because a proton has a positive charge, the pro-
ton and the particle of charge q1 are of the same sign, and
force on the proton must point away from q1. Also, the
proton and the particle of charge q2 are of opposite signs, so
force on the proton must point toward q2. “Away from q1”
and “toward q2” can be in opposite directions only if the pro-
ton is located on the x axis.

If the proton is on the x axis at any point between q1 and
q2, such as point P in Fig. 21-8b, then and are in the
same direction and not in opposite directions as required.
If the proton is at any point on the x axis to the left of q1,
such as point S in Fig. 21-8c, then and are in opposite
directions. However, Eq. 21-4 tells us that and can-
not have equal magnitudes there: F1 must be greater than F2,
because F1 is produced by a closer charge (with lesser r) of
greater magnitude (8q versus 2q).

Finally, if the proton is at any point on the x axis to the
right of q2, such as point R in Fig. 21-8d, then and are
again in opposite directions. However, because now the
charge of greater magnitude (q1) is farther away from the pro-
ton than the charge of lesser magnitude, there is a point at
which F1 is equal to F2. Let x be the coordinate of this point,
and let qp be the charge of the proton.

F
:

2F
:

1

F
:

2F
:

1

F
:

2F
:

1

F
:

2F
:

1

F
:

2

F
:

1

F
:

1 � �F
:

2.

F
:

1 � F
:

2 � 0.

F
:

2F
:

1

L

y

x
q2q1

(a)

y

x
S

(c)

q1 q2F2

F1

y

x
P

(b)

q1 q2
F2

F1

Pushed away from q1,
pulled toward q2.

The forces cannot cancel 
(same direction).

The forces cannot cancel 
(one is definitely larger).

y

x
R

(d)

q1 q2 F2

F1

The forces can cancel,
at the right distance.

Figure 21-8 (a) Two particles of charges q1 and q2 are fixed in place on
an x axis, with separation L. (b) – (d) Three possible locations P, S,
and R for a proton.At each location, is the force on the protonF

:

1
from particle 1 and is the force on the proton from particle 2.F

:

2

Additional examples, video, and practice available at WileyPLUS
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(Answer)

The spheres, now positively charged, repel each other.

(b) Next, suppose sphere A is grounded momentarily, and
then the ground connection is removed. What now is the
electrostatic force between the spheres?

Reasoning: When we provide a conducting path between a
charged object and the ground (which is a huge conductor),
we neutralize the object. Were sphere A negatively charged,
the mutual repulsion between the excess electrons would
cause them to move from the sphere to the ground.
However, because sphere A is positively charged, electrons
with a total charge of �Q/2 move from the ground up onto
the sphere (Fig. 21-9d), leaving the sphere with a charge of 0
(Fig. 21-9e).Thus, the electrostatic force is again zero.

F �
1

4p´0

(Q/2)(Q/2)
a2 �

1
16p´0

� Q
a �

2

.

Sample Problem 21.03 Charge sharing by two identical conducting spheres

In Fig. 21-9a, two identical, electrically isolated conducting
spheres A and B are separated by a (center-to-center) dis-
tance a that is large compared to the spheres. Sphere A has
a positive charge of �Q, and sphere B is electrically neutral.
Initially, there is no electrostatic force between the spheres.
(The large separation means there is no induced charge.)

(a) Suppose the spheres are connected for a moment by a
conducting wire. The wire is thin enough so that any net
charge on it is negligible. What is the electrostatic force
between the spheres after the wire is removed?

KEY IDEAS

(1) Because the spheres are identical, connecting them means
that they end up with identical charges (same sign and same
amount). (2) The initial sum of the charges (including the
signs of the charges) must equal the final sum of the charges.

Reasoning: When the spheres are wired together, the (nega-
tive) conduction electrons on B, which repel one another,
have a way to move away from one another (along the wire
to positively charged A, which attracts them—Fig. 21-9b). As
B loses negative charge, it becomes positively charged, and as
A gains negative charge, it becomes less positively charged.
The transfer of charge stops when the charge on B has in-
creased to �Q/2 and the charge on A has decreased to �Q/2,
which occurs when �Q/2 has  shifted from B to A.

After the wire has been removed (Fig. 21-9c), we can
assume that the charge on either sphere does not disturb the
uniformity of the charge distribution on the other sphere,
because the spheres are small relative to their separation.Thus,
we can apply the first shell theorem to each sphere. By Eq. 21-4
with q1 � q2 � Q/2 and r � a,

Figure 21-9 Two small conducting spheres A and B. (a) To start, sphere A
is charged positively. (b) Negative charge is transferred from B to A
through a connecting wire. (c) Both spheres are then charged posi-
tively. (d) Negative charge is transferred through a grounding wire to
sphere A. (e) Sphere A is then neutral.

q = 0 
B

a

A
+Q

(a)

–Q/2

(b)

+Q/2

+Q/2

(c)

+Q/2

–Q/2

(d)

+Q/2

q = 0 

(e)

Additional examples, video, and practice available at WileyPLUS

21-2 CHARGE IS QUANTIZED

After reading this module, you should be able to . . .

21.19 Identify the elementary charge.
21.20 Identify that the charge of a particle or object must be a

positive or negative integer times the elementary charge.

● Electric charge is quantized (restricted to certain values).

● The charge of a particle can be written as ne, where n is a
positive or negative integer and e is the elementary charge,

which is the magnitude of the charge of the electron and
proton (� 1.602 � 10�19 C).

Learning Objectives

Key Ideas

Charge Is Quantized
In Benjamin Franklin’s day, electric charge was thought to be a continuous
fluid—an idea that was useful for many purposes. However, we now know that
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Table 21-1 The Charges of Three
Particles

Particle Symbol Charge

Electron e or e� �e

Proton p �e

Neutron n 0

Checkpoint 4
Initially, sphere A has a charge of �50e and sphere B has a charge of �20e.The
spheres are made of conducting material and are identical in size. If the spheres then
touch, what is the resulting charge on sphere A?

No explosion: This is a small force to be acting on a macro-
scopic object like a cantaloupe, but an enormous force to be
acting on a proton. Such forces should explode the nucleus
of any element but hydrogen (which has only one proton in
its nucleus). However, they don’t, not even in nuclei with a
great many protons. Therefore, there must be some enor-
mous attractive force to counter this enormous repulsive
electrostatic force.

(b) What is the magnitude of the gravitational force
between those same two protons?

KEY IDEA

Because the protons are particles, the magnitude of the
gravitational force on one from the other is given by
Newton’s equation for the gravitational force (Eq. 21-2).

Calculation: With mp (� 1.67 � 10�27 kg) representing the

Sample Problem 21.04 Mutual electric repulsion in a nucleus

The nucleus in an iron atom has a radius of about 4.0 �
10�15 m and contains 26 protons.

(a) What is the magnitude of the repulsive electrostatic force be-
tween two of the protons that are separated by 4.0 � 10�15 m?

KEY IDEA

The protons can be treated as charged particles, so the mag-
nitude of the electrostatic force on one from the other is
given by Coulomb’s law.

Calculation: Table 21-1 tells us that the charge of a proton is
�e.Thus, Eq. 21-4 gives us

. (Answer)�  14 N

�
(8.99 � 10 9 N �m2/C2)(1.602 � 10 �19 C)2

(4.0 � 10 �15 m)2

F �
1

4p´0

e2

r2

fluids themselves, such as air and water, are not continuous but are made up of
atoms and molecules; matter is discrete. Experiment shows that “electrical fluid”
is also not continuous but is made up of multiples of a certain elementary charge.
Any positive or negative charge q that can be detected can be written as

q � ne, n � �1, �2, �3, . . . , (21-11)

in which e, the elementary charge, has the approximate value

e � 1.602 � 10�19 C. (21-12)

The elementary charge e is one of the important constants of nature.The electron
and proton both have a charge of magnitude e (Table 21-1). (Quarks, the con-
stituent particles of protons and neutrons, have charges of �e/3 or �2e/3, but they
apparently cannot be detected individually. For this and for historical reasons, we
do not take their charges to be the elementary charge.)

You often see phrases—such as “the charge on a sphere,” “the amount of
charge transferred,” and “the charge carried by the electron”—that suggest that
charge is a substance. (Indeed, such statements have already appeared in this
chapter.) You should, however, keep in mind what is intended: Particles are the
substance and charge happens to be one of their properties, just as mass is.

When a physical quantity such as charge can have only discrete values rather
than any value, we say that the quantity is quantized. It is possible, for example, to
find a particle that has no charge at all or a charge of �10e or �6e, but not a parti-
cle with a charge of, say, 3.57e.

The quantum of charge is small. In an ordinary 100 W lightbulb, for example,
about 1019 elementary charges enter the bulb every second and just as many
leave. However, the graininess of electricity does not show up in such large-scale
phenomena (the bulb does not flicker with each electron).
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Additional examples, video, and practice available at WileyPLUS

21-3 CHARGE IS CONSERVED

After reading this module, you should be able to . . .

21.21 Identify that in any isolated physical process, the net
charge cannot change (the net charge is always conserved).

21.22 Identify an annihilation process of particles and a pair
production of particles.

21.23 Identify mass number and atomic number in terms of
the number of protons, neutrons, and electrons.

● The net electric charge of any isolated system is always
conserved.

● If two charged particles undergo an annihilation process,

they have opposite signs of charge.

● If two charged particles appear as a result of a pair produc-
tion process, they have opposite signs of charge.

Learning Objectives

Key Ideas

mass of a proton, Eq. 21-2 gives us

. (Answer)

Weak versus strong: This result tells us that the (attractive)
gravitational force is far too weak to counter the repulsive
electrostatic forces between protons in a nucleus. Instead,
the protons are bound together by an enormous force called

� 1.2 � 10 �35 N

�
(6.67 � 10 �11 N �m2/kg2)(1.67 � 10 �27 kg)2

(4.0 � 10 �15 m)2

F � G
mp

2

r2

(aptly) the strong nuclear force—a force that acts between
protons (and neutrons) when they are close together, as in a
nucleus.

Although the gravitational force is many times weaker
than the electrostatic force, it is more important in large-
scale situations because it is always attractive.This means that
it can collect many small bodies into huge bodies with huge
masses, such as planets and stars, that then exert large gravita-
tional forces. The electrostatic force, on the other hand, is re-
pulsive for charges of the same sign, so it is unable to collect
either positive charge or negative charge into large concen-
trations that would then exert large electrostatic forces.

Charge Is Conserved
If you rub a glass rod with silk, a positive charge appears on the rod. Measure-
ment shows that a negative charge of equal magnitude appears on the silk. This
suggests that rubbing does not create charge but only transfers it from one body
to another, upsetting the electrical neutrality of each body during the process.
This hypothesis of conservation of charge, first put forward by Benjamin
Franklin, has stood up under close examination, both for large-scale charged
bodies and for atoms, nuclei, and elementary particles. No exceptions have ever
been found. Thus, we add electric charge to our list of quantities—including
energy and both linear momentum and angular momentum—that obey a con-
servation law.

Important examples of the conservation of charge occur in the radioactive
decay of nuclei, in which a nucleus transforms into (becomes) a different type of
nucleus. For example, a uranium-238 nucleus (238U) transforms into a thorium-
234 nucleus (234Th) by emitting an alpha particle. Because that particle has the
same makeup as a helium-4 nucleus, it has the symbol 4He. The number used in
the name of a nucleus and as a superscript in the symbol for the nucleus is called
the mass number and is the total number of the protons and neutrons in the
nucleus. For example, the total number in 238U is 238. The number of protons in
a nucleus is the atomic number Z, which is listed for all the elements in Appendix F.
From that list we find that in the decay

238U : 234Th � 4He, (21-13)
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the parent nucleus 238U contains 92 protons (a charge of �92e), the daughter
nucleus 234Th contains 90 protons (a charge of �90e), and the emitted alpha parti-
cle 4He contains 2 protons (a charge of �2e).We see that the total charge is �92e
before and after the decay; thus, charge is conserved. (The total number of pro-
tons and neutrons is also conserved: 238 before the decay and 234 � 4 � 238
after the decay.)

Another example of charge conservation occurs when an electron e� (charge
�e) and its antiparticle, the positron e� (charge �e), undergo an annihilation
process, transforming into two gamma rays (high-energy light):

e� � e� : g � g (annihilation). (21-14)

In applying the conservation-of-charge principle, we must add the charges alge-
braically, with due regard for their signs. In the annihilation process of Eq. 21-14
then, the net charge of the system is zero both before and after the event. Charge
is conserved.

In pair production, the converse of annihilation, charge is also conserved. In
this process a gamma ray transforms into an electron and a positron:

g : e� � e� (pair production). (21-15)

Figure 21-10 shows such a pair-production event that occurred in a bubble cham-
ber. (This is a device in which a liquid is suddenly made hotter than its boiling
point. If a charged particle passes through it, tiny vapor bubbles form along the
particle’s trail.) A gamma ray entered the chamber from the bottom and at one
point transformed into an electron and a positron. Because those new particles
were charged and moving, each left a trail of bubbles. (The trails were curved
because a magnetic field had been set up in the chamber.) The gamma ray, being
electrically neutral, left no trail. Still, you can tell exactly where it underwent pair
production—at the tip of the curved V, which is where the trails of the electron
and positron begin.

Figure 21-10 A photograph of trails of bub-
bles left in a bubble chamber by an electron
and a positron.The pair of particles was
produced by a gamma ray that entered the
chamber directly from the bottom. Being
electrically neutral, the gamma ray did not
generate a telltale trail of bubbles along its
path, as the electron and positron did.
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Electric Charge The strength of a particle’s electrical interaction
with objects around it depends on its electric charge (usually repre-
sented as q), which can be either positive or negative. Particles with
the same sign of charge repel each other, and particles with opposite
signs of charge attract each other. An object with equal amounts of
the two kinds of charge is electrically neutral, whereas one with an
imbalance is electrically charged and has an excess charge.

Conductors are materials in which a significant number of
electrons are free to move. The charged particles in nonconductors
(insulators) are not free to move.

Electric current i is the rate dq/dt at which charge passes a point:

(electric current). (21-3)

Coulomb’s Law Coulomb’s law describes the electrostatic
force (or electric force) between two charged particles. If the parti-
cles have charges q1 and q2, are separated by distance r, and are at
rest (or moving only slowly) relative to each other, then the magni-
tude of the force acting on each due to the other is given by

(Coulomb’s law), (21-4)

where is the permittivity constant. The
ratio 1/4p´0 is often replaced with the electrostatic constant (or
Coulomb constant) .k � 8.99 � 109 N �m2/C2

´0 � 8.85 � 10�12 C2/N �m2

F �
1

4p´0

�q1� �q2�
r2

i �
dq
dt

Review & Summary

The electrostatic force vector acting on a charged particle due
to a second charged particle is either directly toward the second
particle (opposite signs of charge) or directly away from it (same
sign of charge).As with other types of forces, if multiple electrostatic
forces act on a particle, the net force is the vector sum (not scalar
sum) of the individual forces.

The two shell theories for electrostatics are 

Shell theorem 1: A charged particle outside a shell with charge
uniformly distributed on its surface is attracted or repelled as if
the shell’s charge were concentrated as a particle at its center.

Shell theorem 2: A charged particle inside a shell with charge
uniformly distributed on its surface has no net force acting on it
due to the shell.

Charge on a conducting spherical shell spreads uniformly over the
(external) surface.

The Elementary Charge Electric charge is quantized (re-
stricted to certain values). The charge of a particle can be written
as ne, where n is a positive or negative integer and e is the elemen-
tary charge, which is the magnitude of the charge of the electron
and proton (� 1.602 � 10�19 C).

Conservation of Charge The net electric charge of any iso-
lated system is always conserved.
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Questions

1 Figure 21-11 shows
four situations in which
five charged particles are
evenly spaced along an
axis. The charge values
are indicated except for
the central particle, which
has the same charge in all
four situations. Rank the
situations according to
the magnitude of the net
electrostatic force on the central particle,greatest first.

2 Figure 21-12 shows three pairs of identical spheres that are to
be touched together and then separated.The initial charges on them
are indicated. Rank the pairs according to (a) the magnitude of the
charge transferred during touching and (b) the charge left on the
positively charged sphere, greatest first.

4 Figure 21-14 shows two charged
particles on an axis. The charges are
free to move. However, a third
charged particle can be placed at a
certain point such that all three particles are then in equilibrium. (a) Is
that point to the left of the first two
particles, to their right, or between
them? (b) Should the third particle be
positively or negatively charged? (c)
Is the equilibrium stable or unstable?

5 In Fig. 21-15, a central particle of
charge �q is surrounded by two cir-
cular rings of charged particles.What
are the magnitude and direction of
the net electrostatic force on the cen-
tral particle due to the other parti-
cles? (Hint: Consider symmetry.)

6 A positively charged ball is
brought close to an electrically neu-
tral isolated conductor. The conductor is then grounded while the
ball is kept close. Is the conductor charged positively, charged neg-
atively, or neutral if (a) the ball is first taken away and then the

–e –e +e –e
(1)

+e +e +e –e
(2)

–e –e +e +e
(3)

–e +e +e –e
(4)

Figure 21-11 Question 1.

+6e –4e

(1)

0 +2e

(2)

–12e +14e

(3)

Figure 21-12 Question 2.

3 Figure 21-13 shows four situations in which charged particles are
fixed in place on an axis. In which situations is there a point to the left
of the particles where an electron will be in equilibrium?

+q

(a)

–3q

+3q

(c)

–q –3q

(d)

+q

(b)

–q +3q

Figure 21-13 Question 3.

–3q –q

Figure 21-14 Question 4.

+4q

+2q

+q

–2q

r

R

–2q

–7q –7q

–2q–2q

+4q

+q

Figure 21-15 Question 5.

ground connection is removed and (b) the ground connection is
first removed and then the ball is taken away?

7 Figure 21-16 shows three situations involving a charged parti-
cle and a uniformly charged spherical shell. The charges are given,
and the radii of the shells are indicated. Rank the situations ac-
cording to the magnitude of the force on the particle due to the
presence of the shell, greatest first.

R
2R R/2

+8Q

–q+2q

+6q

–4Q
+5Q

(a) (b) (c)

d

Figure 21-16 Question 7.

8 Figure 21-17 shows four arrangements of charged particles.
Rank the arrangements according to the magnitude of the net
electrostatic force on the particle with charge �Q, greatest first.

+Q
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p

d

2d

(a)

+Q
e

p

d

2d

(b)

+Q
p

e

d

2d

(c)

+Q
e

e

d

2d

(d)

Figure 21-17 Question 8.

9 Figure 21-18 shows four situations in which particles of
charge �q or �q are fixed in place. In each situation, the parti-

Figure 21-18 Question 9.

x
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y
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Figure 21-20 Question 11. Figure 21-21 Question 12.

Module 21-1 Coulomb’s Law
•1 Of the charge Q initially on a tiny sphere, a por-
tion q is to be transferred to a second, nearby sphere. Both spheres

ILWSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

cles on the x axis are equidistant from the y axis. First, consider
the middle particle in situation 1; the middle particle experiences
an electrostatic force from each of the other two particles.
(a) Are the magnitudes F of those forces the same or different?
(b) Is the magnitude of the net force on the middle particle
equal to, greater than, or less than 2F? (c) Do the x components
of the two forces add or cancel? (d) Do their y components add
or cancel? (e) Is the direction of the net force on the middle particle
that of the canceling components or the adding components? (f)
What is the direction of that net force? Now consider the remaining
situations:What is the direction of the net force on the middle parti-
cle in (g) situation 2, (h) situation 3, and (i) situation 4? (In each
situation, consider the symmetry of the charge distribution and
determine the canceling components and the adding components.)

10 In Fig. 21-19, a central
particle of charge �2q is
surrounded by a square array
of charged particles, separated
by either distance d or d/2
along the perimeter of the
square. What are the magni-
tude and direction of the net
electrostatic force on the cen-
tral particle due to the other
particles? (Hint: Consideration
of symmetry can greatly re-
duce the amount of work re-
quired here.)

11 Figure 21-20 shows
three identical conducting bubbles A, B, and C floating in a con-

ducting container that is grounded by a wire. The bubbles ini-
tially have the same charge. Bubble A bumps into the con-
tainer’s ceiling and then into bubble B. Then bubble B bumps
into bubble C, which then drifts to the container’s floor. When
bubble C reaches the floor, a charge of �3e is transferred up-
ward through the wire, from the ground to the container, as in-
dicated. (a) What was the initial charge of each bubble? When
(b) bubble A and (c) bubble B reach the floor, what is the
charge transfer through the wire? (d) During this whole
process, what is the total charge transfer through the wire?

12 Figure 21-21 shows four situations in which a central proton is
partially surrounded by protons or electrons fixed in place along a
half-circle. The angles u are identical; the angles f are also. (a) In
each situation, what is the direction of the net force on the central
proton due to the other particles? (b) Rank the four situations ac-
cording to the magnitude of that net force on the central proton,
greatest first.

+2q

–5q

+3q

–3q

+4q
–7q

–2q

–7q
+4q

–3q

–5q

+2q

Figure 21-19 Question 10.

can be treated as particles and are fixed with a certain separation.
For what value of q/Q will the electrostatic force between the two
spheres be maximized?
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•2 Identical isolated conducting spheres 1 and 2 have equal
charges and are separated by a distance that is large compared with
their diameters (Fig. 21-22a). The electrostatic force acting on
sphere 2 due to sphere 1 is . Suppose now that a third identical
sphere 3, having an insulating handle and initially neutral, is
touched first to sphere 1 (Fig. 21-22b), then to sphere 2 (Fig. 21-22c),
and finally removed (Fig. 21-22d). The electrostatic force that now
acts on sphere 2 has magnitude F
.What is the ratio F
/F?

F
:

(a)

1 2 

(b)

1 2 

3

(c)

1 2 

(d)

1 2 

3

F

F'

–F

–F'

Figure 21-22 Problem 2.

•3 What must be the distance between point charge q1 �SSM

static force between A and B at the end of experiment 2 to that at
the end of experiment 1?

••9 Two identical conducting spheres, fixed in
place, attract each other with an electrostatic force of 0.108 N when
their center-to-center separation is 50.0 cm. The spheres are then
connected by a thin conducting wire. When the wire is removed,
the spheres repel each other with an electrostatic force of 0.0360 N.
Of the initial charges on the spheres, with a positive net charge,
what was (a) the negative charge on one of them and (b) the posi-
tive charge on the other?

••10 In Fig. 21-25, four particles form a square.The charges are

WWWSSM

26.0 mC and point charge q2 � �47.0 mC for the electrostatic force
between them to have a magnitude of 5.70 N?

•4 In the return stroke of a typical lightning bolt, a current
of 2.5 � 104 A exists for 20 ms. How much charge is transferred in
this event?

•5 A particle of charge �3.00 � 10�6 C is 12.0 cm distant from a
second particle of charge �1.50 � 10�6 C. Calculate the magni-
tude of the electrostatic force between the particles.

•6 Two equally charged particles are held 3.2 � 10�3 m apart and
then released from rest. The initial acceleration of the first particle is
observed to be 7.0 m/s2 and that of the second to be 9.0 m/s2. If the
mass of the first particle is 6.3 � 10�7 kg, what are (a) the mass of the
second particle and (b) the magnitude of the charge of each particle?

••7 In Fig. 21-23, three charged
particles lie on an x axis. Particles
1 and 2 are fixed in place. Particle
3 is free to move, but the net elec-
trostatic force on it from particles
1 and 2 happens to be zero. If L23 � L12, what is the ratio q1/q2?

••8 In Fig. 21-24, three identical conducting spheres initially have
the following charges: sphere A, 4Q; sphere B, �6Q; and sphere
C, 0. Spheres A and B are fixed in place, with a center-to-center
separation that is much larger than the spheres. Two experiments
are conducted. In experiment 1,
sphere C is touched to sphere A
and then (separately) to sphere B,
and then it is removed. In experi-
ment 2, starting with the same
initial states, the procedure is re-
versed: Sphere C is touched to
sphere B and then (separately) to
sphere A, and then it is removed.
What is the ratio of the electro-

ILW

L12 L23

1 2 3 
x

Figure 21-23 Problems 7 and 40.

Figure 21-24
Problems 8 and 65.

C

A
d

B

Figure 21-25
Problems 10, 11, and 70.

3 4 

1 2 a

a

a a

x

y
q1 � q4 � Q and q2 � q3 � q. (a)
What is Q/q if the net electrostatic
force on particles 1 and 4 is zero? (b)
Is there any value of q that makes the
net electrostatic force on each of the
four particles zero? Explain.

••11 In Fig. 21-25, the particlesILW

have charges q1 � �q2 � 100 nC and
q3 � �q4 � 200 nC, and distance a �
5.0 cm. What are the (a) x and (b) y
components of the net electrostatic
force on particle 3?

••12 Two particles are fixed on an x
axis. Particle 1 of charge 40 mC is located at x � �2.0 cm; particle 2 of
charge Q is located at x � 3.0 cm. Particle 3 of charge magnitude 20
mC is released from rest on the y axis at y � 2.0 cm.What is the value
of Q if the initial acceleration of particle 3 is in the positive direction of
(a) the x axis and (b) the y axis?

••13 In Fig. 21-26, particle 1 of
x

y

1 2 

L

Figure 21-26 Problems 13,
19, 30, 58, and 67.

charge �1.0 mC and particle 2 of charge
�3.0 mC are held at separation L �
10.0 cm on an x axis. If particle 3 of un-
known charge q3 is to be located such
that the net electrostatic force on it
from particles 1 and 2 is zero, what must be the (a) x and (b) y coor-
dinates of particle 3?

••14 Three particles are fixed on an x axis. Particle 1 of charge q1 is
at x � �a, and particle 2 of charge q2 is at x � �a. If their net electro-
static force on particle 3 of charge �Q is to be zero, what must be the
ratio q1/q2 when particle 3 is at (a) x � �0.500a and (b) x � �1.50a?

••15 The charges and coordinates of two charged particles held
fixed in an xy plane are q1 � �3.0 mC, x1 � 3.5 cm, y1 � 0.50 cm,
and q2 � �4.0 mC, x2 � �2.0 cm, y2 � 1.5 cm. Find the (a) magni-
tude and (b) direction of the electrostatic force on particle 2 due to
particle 1. At what (c) x and (d) y coordinates should a third parti-
cle of charge q3 � �4.0 mC be placed such that the net electrostatic
force on particle 2 due to particles 1 and 3 is zero?

••16 In Fig. 21-27a, particle 1 (of charge q1) and particle 2 (of
charge q2) are fixed in place on an x axis, 8.00 cm apart. Particle 3 (of

F 
(1

0–2
3  N

) 

–1

0

1

0 xs

x
x (cm) 

y

(a)

(b)

1 2 

Figure 21-27 Problem 16.



cle 2 of charge �4.00q are held at separation L � 9.00 cm on an
x axis. If particle 3 of charge q3 is to be located such that the
three particles remain in place when released, what must be the (a)
x and (b) y coordinates of particle 3, and (c) the ratio q3 /q?

•••20 Figure 21-30a shows an arrangement of three charged
particles separated by distance d. Particles A and C are fixed on
the x axis, but particle B can be moved along a circle centered on
particle A. During the movement, a radial line between A and B
makes an angle u relative to the positive direction of the x axis
(Fig. 21-30b). The curves in Fig. 21-30c give, for two situations, the
magnitude Fnet of the net electrostatic force on particle A due to the
other particles.That net force is given as a function of angle u and as
a multiple of a basic amount F0. For example on curve 1, at u � 180�,
we see that Fnet � 2F0. (a) For the situation corresponding to curve 1,
what is the ratio of the charge of particle C to that of particle B (in-
cluding sign)? (b) For the situation corresponding to curve 2, what is
that ratio?
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charge q3 � �8.00 � 10�19 C) is to be placed on the line between par-
ticles 1 and 2 so that they produce a net electrostatic force on it.
Figure 21-27b gives the x component of that force versus the coordi-
nate x at which particle 3 is placed.The scale of the x axis is set by xs �
8.0 cm.What are (a) the sign of charge q1 and (b) the ratio q2/q1?

••17 In Fig. 21-28a, particles 1 and
2 have charge 20.0 mC each and are
held at separation distance d � 1.50
m. (a) What is the magnitude of the
electrostatic force on particle 1 due
to particle 2? In Fig. 21-28b, particle
3 of charge 20.0 mC is positioned so
as to complete an equilateral trian-
gle. (b) What is the magnitude of
the net electrostatic force on parti-
cle 1 due to particles 2 and 3?

••18 In Fig. 21-29a, three positively
charged particles are fixed on an x
axis. Particles B and C are so close
to each other that they can be con-
sidered to be at the same distance
from particle A. The net force on
particle A due to particles B and
C is 2.014 � 10�23 N in the negative
direction of the x axis. In Fig. 21-
29b, particle B has been moved to the opposite side of A but is still
at the same distance from it. The net force on A is now 2.877 �
10�24 N in the negative direction of the x axis. What is the ratio
qC/qB?

••19 In Fig. 21-26, particle 1 of charge �q and parti-WWWSSM

F
:

3,net

•••21 A nonconducting spherical shell, with an inner radius of
4.0 cm and an outer radius of 6.0 cm, has charge spread nonuni-
formly through its volume between its inner and outer surfaces.
The volume charge density r is the charge per unit volume, with the
unit coulomb per cubic meter. For this shell r � b/r, where r is the dis-
tance in meters from the center of the shell and b � 3.0 mC/m2.What
is the net charge in the shell?

•••22 Figure 21-31 shows an

2 of charge q1 � q2 � �3.20 � 10�19 C
are on a y axis at distance d � 17.0 cm
from the origin. Particle 3 of charge 
q3 � �6.40 � 10�19 C is moved gradu-
ally along the x axis from x � 0 to x �
�5.0 m. At what values of x will the
magnitude of the electrostatic force on
the third particle from the other two
particles be (a) minimum and (b)
maximum? What are the (c) minimum and (d) maximum magnitudes?

Module 21-2 Charge Is Quantized
•24 Two tiny, spherical water drops, with identical charges
of �1.00 � 10�16 C, have a center-to-center separation of 1.00 cm.
(a) What is the magnitude of the electrostatic force acting between
them? (b) How many excess electrons are on each drop, giving it
its charge imbalance?

•25 How many electrons would have to be removed from aILW

Figure 21-28 Problem 17.

d
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Figure 21-29 Problem 18.

•27 The magnitude of the electrostatic force between two iden-SSM
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Figure 21-30 Problem 20.

arrangement of four charged parti-
cles, with angle u � 30.0� and dis-
tance d � 2.00 cm. Particle 2 has
charge q2 � �8.00 � 10 �19 C; par-
ticles 3 and 4 have charges q3 � q4

� �1.60 � 10 �19 C. (a) What is dis-
tance D between the origin and
particle 2 if the net electrostatic
force on particle 1 due to the other particles is zero? (b) If parti-
cles 3 and 4 were moved closer to the x axis but maintained their
symmetry about that axis, would the required value of D be
greater than, less than, or the same as in part (a)?

•••23 In Fig. 21-32, particles 1 and
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3
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Figure 21-31 Problem 22.

Figure 21-32 Problem 23.

x

1

3

d

d

2

y

coin to leave it with a charge of �1.0 � 10�7 C?

•26 What is the magnitude of the electrostatic force between a
singly charged sodium ion (Na�, of charge �e) and an adjacent
singly charged chlorine ion (Cl�, of charge �e) in a salt crystal if
their separation is 2.82 � 10�10 m?

tical ions that are separated by a distance of 5.0 � 10�10 m is 3.7 � 10�9

N. (a) What is the charge of each ion? (b) How many electrons are
“missing”from each ion (thus giving the ion its charge imbalance)?

•28 A current of 0.300 A through your chest can send your

x

y

1 3 

4

2

Figure 21-33 Problem 29.

heart into fibrillation, ruining the
normal rhythm of heartbeat and
disrupting the flow of blood (and
thus oxygen) to your brain. If that
current persists for 2.00 min, how
many conduction electrons pass
through your chest?

••29 In Fig. 21-33, particles 2
and 4, of charge �e, are fixed in
place on a y axis, at y2 � �10.0 cm



Additional Problems
38 Figure 21-37 shows four iden-
tical conducting spheres that are actu-
ally well separated from one another.
Sphere W (with an initial charge of
zero) is touched to sphere A and then
they are separated. Next, sphere W is
touched to sphere B (with an initial
charge of �32e) and then they are separated. Finally, sphere W is
touched to sphere C (with an initial charge of �48e), and then they
are separated. The final charge on sphere W is �18e. What was the
initial charge on sphere A?

••33 Calculate the number of coulombs of positive charge in 250
cm3 of (neutral) water. (Hint: A hydrogen atom contains one pro-
ton; an oxygen atom contains
eight protons.)
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and y4 � 5.00 cm. Particles 1 and 3, of charge �e, can be moved
along the x axis. Particle 5, of charge �e, is fixed at the origin.
Initially particle 1 is at x1 � �10.0 cm and particle 3 is at x3 � 10.0
cm. (a) To what x value must particle 1 be moved to rotate the
direction of the net electric force on particle 5 by 30� counter-
clockwise? (b) With particle 1 fixed at its new position, to what x
value must you move particle 3 to rotate back to its original
direction?

••30 In Fig.21-26,particles 1 and 2 are fixed in place on an x axis,at a
separation of L � 8.00 cm.Their charges are q1 � �e and q2 � �27e.
Particle 3 with charge q3 � �4e is to be placed on the line between
particles 1 and 2, so that they produce a net electrostatic force on
it. (a) At what coordinate should particle 3 be placed to minimize the
magnitude of that force? (b) What is that minimum magnitude?

••31 Earth’s atmosphere is constantly bombarded by cosmic
ray protons that originate somewhere in space. If the protons all
passed through the atmosphere, each square meter of Earth’s sur-
face would intercept protons at the average rate of 1500 protons
per second. What would be the electric current intercepted by the
total surface area of the planet?

••32 Figure 21-34a shows charged particles 1 and 2 that are
fixed in place on an x axis. Particle 1 has a charge with a magnitude
of |q1| � 8.00e. Particle 3 of charge q3 � �8.00e is initially on the x
axis near particle 2. Then particle 3 is gradually moved in the posi-
tive direction of the x axis. As a result, the magnitude of the net
electrostatic force on particle 2 due to particles 1 and 3
changes. Figure 21-34b gives the x component of that net force as a
function of the position x of particle 3. The scale of the x axis is set
by xs � 0.80 m. The plot has an asymptote of F2,net � 1.5 � 10�25 N
as x : �. As a multiple of e and including the sign, what is the
charge q2 of particle 2?

F
:

2,net
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•••35 In crystals of the salt cesium chloride, cesium ions
Cs� form the eight corners of a cube and a chlorine ion Cl� is at the
cube’s center (Fig. 21-36). The edge length of the cube is 0.40 nm.

SSM

•••34 Figure 21-35 shows
electrons 1 and 2 on an x axis
and charged ions 3 and 4 of iden-
tical charge �q and at identical
angles u. Electron 2 is free to
move; the other three particles
are fixed in place at horizontal
distances R from electron 2 and
are intended to hold electron 2 in
place. For physically possible val-

The Cs� ions are each deficient by one electron (and thus each has
a charge of �e), and the Cl� ion has one excess electron (and thus
has a charge of �e). (a) What is the magnitude of the net electro-
static force exerted on the Cl� ion by the eight Cs� ions at the cor-
ners of the cube? (b) If one of the Cs� ions is missing, the crystal is
said to have a defect; what is the magnitude of the net electrostatic
force exerted on the Cl� ion by the seven remaining Cs� ions?
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Figure 21-34 Problem 32.

Figure 21-35 Problem 34.
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Figure 21-36 Problem 35.

Module 21-3 Charge Is Conserved
•36 Electrons and positrons are produced by the nuclear transforma-
tions of protons and neutrons known as beta decay. (a) If a proton trans-
forms into a neutron, is an electron or a positron produced? (b) If a
neutron transforms into a proton, is an electron or a positron produced?

•37 Identify X in the following nuclear reactions: (a) 1H �SSM
9Be : X � n; (b) 12C � 1H : X; (c) 15N � 1H : 4He � X.
Appendix F will help.
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Figure 21-37 Problem 38.

x

y

d2

d1

1

2

Figure 21-38 Problem 39.

39 In Fig. 21-38, particle 1 ofSSM

ticle 2 due to particle 1?

40 In Fig. 21-23, particles 1 and 2 are fixed in place, but particle 3
is free to move. If the net electrostatic force on particle 3 due to
particles 1 and 2 is zero and L23 � 2.00L12, what is the ratio q1/q2?

41 (a) What equal positive charges would have to be placed on
Earth and on the Moon to neutralize their gravitational attraction?
(b) Why don’t you need to know the lunar distance to solve this prob-
lem? (c) How many kilograms of hydrogen ions (that is, protons)
would be needed to provide the positive charge calculated in (a)?

charge �4e is above a floor by dis-
tance d1 � 2.00 mm and particle 2 of
charge �6e is on the floor, at dis-
tance d2 � 6.00 mm horizontally
from particle 1. What is the x compo-
nent of the electrostatic force on par-

ues of q � 5e, what are the (a) smallest, (b) second smallest, and (c)
third smallest values of u for which electron 2 is held in place?



51 A charged nonconducting rod, with a length of 2.00 m and a
cross-sectional area of 4.00 cm2, lies along the positive side of an x
axis with one end at the origin. The volume charge density r is
charge per unit volume in coulombs per cubic meter. How many
excess electrons are on the rod if r is (a) uniform, with a value of
�4.00 mC/m3, and (b) nonuniform, with a value given by r � bx2,
where b � �2.00 mC/m5?

52 A particle of charge Q is fixed at the origin of an xy coordi-
nate system. At t � 0 a particle (m � 0.800 g, q � 4.00 mC) is lo-
cated on the x axis at x � 20.0 cm, moving with a speed of 50.0 m/s
in the positive y direction. For what value of Q will the moving par-
ticle execute circular motion? (Neglect the gravitational force on
the particle.)

53 What would be the magnitude of the electrostatic force be-
tween two 1.00 C point charges separated by a distance of (a) 1.00 m
and (b) 1.00 km if such point charges existed (they do not) and this
configuration could be set up?

54 A charge of 6.0 mC is to be split into two parts that are then
separated by 3.0 mm. What is the maximum possible magnitude of
the electrostatic force between those two parts?

55 Of the charge Q on a tiny sphere, a fraction a is to be trans-
ferred to a second, nearby sphere. The spheres can be treated as
particles. (a) What value of a maximizes the magnitude F of the elec-
trostatic force between the two spheres? What are the (b) smaller
and (c) larger values of a that put F at half the maximum magnitude?

56 If a cat repeatedly rubs against your cotton slacks on a
dry day, the charge transfer between the cat hair and the cotton can
leave you with an excess charge of �2.00 mC. (a) How many elec-
trons are transferred between you and the cat?

You will gradually discharge via the floor, but if instead of
waiting, you immediately reach toward a faucet, a painful spark
can suddenly appear as your fingers near the faucet. (b) In that
spark, do electrons flow from you to the faucet or vice versa?
(c) Just before the spark appears, do you induce positive or nega-
tive charge in the faucet? (d) If, instead, the cat reaches a paw
toward the faucet, which way do electrons flow in the resulting
spark? (e) If you stroke a cat with a bare hand on a dry day, you
should take care not to bring your fingers near the cat’s nose or
you will hurt it with a spark. Considering that cat hair is an insula-
tor, explain how the spark can appear.

57 We know that the negative charge on the electron and the
positive charge on the proton are equal. Suppose, however, that
these magnitudes differ from each other by 0.00010%. With what
force would two copper coins, placed 1.0 m apart, repel each other?
Assume that each coin contains 3 � 1022 copper atoms. (Hint: A
neutral copper atom contains 29 protons and 29 electrons.) What
do you conclude?

628 CHAPTER 21 COULOMB’S LAW

42 In Fig. 21-39, two tiny conducting
balls of identical mass m and identical
charge q hang from nonconducting
threads of length L.Assume that u is so
small that tan u can be replaced by its
approximate equal, sin u. (a) Show that

gives the equilibrium separation x of
the balls. (b) If L � 120 cm, m � 10 g,
and x � 5.0 cm, what is |q|?

43 (a) Explain what happens to the
balls of Problem 42 if one of them is
discharged (loses its charge q to, say,
the ground). (b) Find the new equilibrium separation x, using the
given values of L and m and the computed value of |q|.

44 How far apart must two protons be if the magnitude of the
electrostatic force acting on either one due to the other is equal to the
magnitude of the gravitational force on a proton at Earth’s surface?

45 How many megacoulombs of positive charge are in 1.00 mol
of neutral molecular-hydrogen gas (H2)?

46 In Fig. 21-40, four particles are
fixed along an x axis, separated by
distances d � 2.00 cm. The charges
are q1 � �2e, q2 � �e, q3 � �e,
and q4 � �4e, with e � 1.60 �
10�19 C. In unit-vector notation, what is the net electrostatic force
on (a) particle 1 and (b) particle 2 due to the other particles?

47 Point charges of �6.0 mC and �4.0 mC are placed on an

SSM

x � � q2L
2p´0 mg �

1/3

What value should h have so that the rod exerts no vertical force on
the bearing when the rod is horizontal and balanced?

x axis, at x � 8.0 m and x � 16 m, respectively. What charge must
be placed at x � 24 m so that any charge placed at the origin would
experience no electrostatic force?

48 In Fig. 21-41, three identical con-
ducting spheres form an equilateral tri-
angle of side length d � 20.0 cm. The
sphere radii are much smaller than d,
and the sphere charges are qA � �2.00
nC, qB � �4.00 nC, and qC � �8.00 nC.
(a) What is the magnitude of the electro-
static force between spheres A and C?
The following steps are then taken: A
and B are connected by a thin wire and
then disconnected; B is grounded by the wire, and the wire is then
removed; B and C are connected by the wire and then discon-
nected. What now are the magnitudes of the electrostatic force (b)
between spheres A and C and (c) between spheres B and C?

49 A neutron consists of one “up” quark of charge �2e/3 and two
“down” quarks each having charge �e/3. If we assume that the down
quarks are 2.6 � 10�15 m apart inside the neutron, what is the magni-
tude of the electrostatic force between them?

50 Figure 21-42 shows a long, nonconducting, massless rod of
length L, pivoted at its center and balanced with a block of
weight W at a distance x from the left end. At the left and right
ends of the rod are attached small conducting spheres with posi-
tive charges q and 2q, respectively. A distance h directly beneath
each of these spheres is a fixed sphere with positive charge Q. (a)
Find the distance x when the rod is horizontal and balanced. (b)

θ θ 

L L 

q q 
x

Figure 21-39
Problems 42 and 43.

1 2 

d d d

3 4 
x

Figure 21-40 Problem 46.

d

d d 
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B C

Figure 21-41
Problem 48.
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+Q

Rod

h

L
x

Bearing +2q

+QW

Figure 21-42 Problem 50.
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58 In Fig. 21-26, particle 1 of charge �80.0 mC and particle 2 of
charge �40.0 mC are held at separation L � 20.0 cm on an x axis.
In unit-vector notation, what is the net electrostatic force on parti-
cle 3, of charge q3 � 20.0 mC, if particle 3 is placed at (a) x � 40.0
cm and (b) x � 80.0 cm? What should be the (c) x and (d) y coordi-
nates of particle 3 if the net electrostatic force on it due to particles
1 and 2 is zero?

59 What is the total charge in coulombs of 75.0 kg of electrons?

60 In Fig. 21-43, six charged particles surround particle 7 at ra-

65 The initial charges on the three identical metal spheres in
Fig. 21-24 are the following: sphere A, Q; sphere B, �Q/4; and
sphere C, Q/2, where Q � 2.00 � 10�14 C. Spheres A and B are
fixed in place, with a center-to-center separation of d � 1.20 m,
which is much larger than the spheres. Sphere C is touched first to
sphere A and then to sphere B and is then removed. What then is
the magnitude of the electrostatic force between spheres A and B?

66 An electron is in a vacuum near Earth’s surface and located at 
y � 0 on a vertical y axis.At what value of y should a second electron
be placed such that its electrostatic force on the first electron balances
the gravitational force on the first electron?

67 In Fig. 21-26, particle 1 of charge �5.00q and particle 2 ofSSM

61 Three charged particles form a triangle: particle 1 with charge
Q1 � 80.0 nC is at xy coordinates (0, 3.00 mm), particle 2 with
charge Q2 is at (0, �3.00 mm), and particle 3 with charge q � 18.0
nC is at (4.00 mm, 0). In unit-vector notation, what is the electro-
static force on particle 3 due to the other two particles if Q2 is
equal to (a) 80.0 nC and (b) �80.0 nC?

62 In Fig. 21-44, what are the (a) magnitude and (b) direction
of the net electrostatic force on particle 4 due to the other three
particles? All four particles are fixed in the xy plane, and q1 �
�3.20 � 10�19 C, q2 � �3.20 � 10�19 C, q3 � �6.40 � 10�19 C, q4 �
�3.20 � 10�19 C, u1 � 35.0�, d1 � 3.00 cm, and d2 � d3 � 2.00 cm.

SSM

x

y

2

5

1 7 3 4 

6

Figure 21-43 Problem 60.

dial distances of either d � 1.0 cm or 2d, as drawn. The charges are
q1 � �2e, q2 � �4e, q3 � �e, q4 � �4e, q5 � �2e, q6 � �8e, q7 � �6e,
with e � 1.60 � 10�19 C. What is the magnitude of the net electro-
static force on particle 7?

Figure 21-44 Problem 62.

d1
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d31

x

y

4

1
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3θ 

63 Two point charges of 30 nC and �40 nC are held fixed on an x
axis, at the origin and at x � 72 cm, respectively. A particle with a
charge of 42 mC is released from rest at x � 28 cm. If the initial ac-
celeration of the particle has a magnitude of 100 km/s2, what is the
particle’s mass?

64 Two small, positively charged spheres have a combined
charge of 5.0 � 10�5 C. If each sphere is repelled from the other by
an electrostatic force of 1.0 N when the spheres are 2.0 m apart,
what is the charge on the sphere with the smaller charge?

charge �2.00q are held at separation L on an x axis. If particle 3 of
unknown charge q3 is to be located such that the net electrostatic
force on it from particles 1 and 2 is zero, what must be the (a) x and
(b) y coordinates of particle 3?

68 Two engineering students, John with a mass of 90 kg and Mary
with a mass of 45 kg, are 30 m apart. Suppose each has a 0.01% im-
balance in the amount of positive and negative charge, one student
being positive and the other negative. Find the order of magnitude of
the electrostatic force of attraction between them by replacing each
student with a sphere of water having the same mass as the student.

69 In the radioactive decay of Eq. 21-13, a 238U nucleus transforms
to 234Th and an ejected 4He. (These are nuclei, not atoms, and thus
electrons are not involved.) When the separation between 234Th and
4He is 9.0 � 10�15 m, what are the magnitudes of (a) the electrostatic
force between them and (b) the acceleration of the 4He particle?

70 In Fig. 21-25, four particles form a square. The charges are 
q1 � �Q, q2 � q3 � q, and q4 � �2.00Q. What is q/Q if the net
electrostatic force on particle 1 is zero?

71 In a spherical metal shell of radius R, an electron is shot from
the center directly toward a tiny hole in the shell, through which it
escapes. The shell is negatively charged with a surface charge den-
sity (charge per unit area) of 6.90 � 10�13 C/m2.What is the magni-
tude of the electron’s acceleration when it reaches radial dis-
tances (a) r � 0.500R and (b) 2.00R?

72 An electron is projected with an initial speed vi � 3.2 � 105 m/s
directly toward a very distant proton that is at rest. Because the
proton mass is large relative to the electron mass, assume that the
proton remains at rest. By calculating the work done on the elec-
tron by the electrostatic force, determine the distance between the
two particles when the electron instantaneously has speed 2vi.

73 In an early model of the hydrogen atom (the Bohr model), the
electron orbits the proton in uniformly circular motion. The radius
of the circle is restricted (quantized) to certain values given by

r � n2a0, for n � 1, 2, 3, . . . ,

where a0 � 52.92 pm.What is the speed of the electron if it orbits in
(a) the smallest allowed orbit and (b) the second smallest orbit? (c)
If the electron moves to larger orbits, does its speed increase, de-
crease, or stay the same?

74 A 100 W lamp has a steady current of 0.83 A in its filament. How
long is required for 1 mol of electrons to pass through the lamp?

75 The charges of an electron and a positron are �e and �e. The
mass of each is 9.11 � 10�31 kg. What is the ratio of the electrical
force to the gravitational force between an electron and a positron?
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Electric Fields

22-1 THE ELECTRIC FIELD

After reading this module, you should be able to . . .

22.01 Identify that at every point in the space surrounding
a charged particle, the particle sets up an electric field ,
which is a vector quantity and thus has both magnitude
and direction.

22.02 Identify how an electric field can be used to explain
how a charged particle can exert an electrostatic force F

:
E
:

E
:

on a second charged particle even though there is no con-
tact between the particles.

22.03 Explain how a small positive test charge is used (in
principle) to measure the electric field at any given point.

22.04 Explain electric field lines, including where they
originate and terminate and what their spacing represents.

Key Ideas

Learning Objectives

630

● A charged particle sets up an electric field (a vector quantity)
in the surrounding space. If a second charged particle is
located in that space, an electrostatic force acts on it due to
the magnitude and direction of the field at its location.

● The electric field at any point is defined in terms of the elec-
trostatic force that would be exerted on a positive test charge
q0 placed there:

E
:

�
F
:

q
0

.

F
:

E
:

● Electric field lines help us visualize the direction and
magnitude of electric fields. The electric field vector at any
point is tangent to the field line through that point. The density
of field lines in that region is proportional to the magnitude of
the electric field there. Thus, closer field lines represent a
stronger field.

● Electric field lines originate on positive charges and
terminate on negative charges. So, a field line extending from
a positive charge must end on a negative charge.

What Is Physics?
Figure 22-1 shows two positively charged particles. From the preceding chapter we
know that an electrostatic force acts on particle 1 due to the presence of particle 2.
We also know the force direction and, given some data, we can calculate the force
magnitude. However, here is a leftover nagging question. How does particle 1
“know” of the presence of particle 2? That is, since the particles do not touch, how
can particle 2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as
the magnitude and direction of the push on particle 1. Another purpose is to
provide an explanation of what is recorded. Our purpose in this chapter is to
provide such an explanation to this nagging question about electric force at a
distance.

The explanation that we shall examine here is this: Particle 2 sets up an
electric field at all points in the surrounding space, even if the space is a vac-
uum. If we place particle 1 at any point in that space, particle 1 knows of the
presence of particle 2 because it is affected by the electric field particle 2 has al-
ready set up at that point. Thus, particle 2 pushes on particle 1 not by touching it
as you would push on a coffee mug by making contact. Instead, particle 2
pushes by means of the electric field it has set up.

+ +
q1 q2

Figure 22-1 How does charged particle 2
push on charged particle 1 when they have
no contact?



Our goals in this chapter are to (1) define electric field, (2) discuss how to cal-
culate it for various arrangements of charged particles and objects, and (3) dis-
cuss how an electric field can affect a charged particle (as in making it move).

The Electric Field
A lot of different fields are used in science and engineering. For example, a tem-
perature field for an auditorium is the distribution of temperatures we would find
by measuring the temperature at many points within the auditorium. Similarly,
we could define a pressure field in a swimming pool. Such fields are examples of
scalar fields because temperature and pressure are scalar quantities, having only
magnitudes and not directions.

In contrast, an electric field is a vector field because it is responsible for con-
veying the information for a force, which involves both magnitude and direction.
This field consists of a distribution of electric field vectors , one for each point
in the space around a charged object. In principle, we can define at some point
near the charged object, such as point P in Fig. 22-2a, with this procedure: At P,
we place a particle with a small positive charge q0, called a test charge because we
use it to test the field. (We want the charge to be small so that it does not disturb
the object’s charge distribution.) We then measure the electrostatic force that
acts on the test charge.The electric field at that point is then

(electric field). (22-1)

Because the test charge is positive, the two vectors in Eq. 22-1 are in the same
direction, so the direction of is the direction we measure for .The magnitude of

at point P is F/q0. As shown in Fig. 22-2b, we always represent an electric field
with an arrow with its tail anchored on the point where the measurement is made.
(This may sound trivial, but drawing the vectors any other way usually results in
errors.Also, another common error is to mix up the terms force and field because
they both start with the letter f. Electric force is a push or pull. Electric field is an
abstract property set up by a charged object.) From Eq. 22-1, we see that the SI
unit for the electric field is the newton per coulomb (N/C).

We can shift the test charge around to various other points, to measure the
electric fields there, so that we can figure out the distribution of the electric field
set up by the charged object. That field exists independent of the test charge. It is
something that a charged object sets up in the surrounding space (even vacuum),
independent of whether we happen to come along to measure it.

For the next several modules, we determine the field around charged parti-
cles and various charged objects. First, however, let’s examine a way of visualizing
electric fields.

Electric Field Lines
Look at the space in the room around you. Can you visualize a field of vectors
throughout that space—vectors with different magnitudes and directions? As im-
possible as that seems, Michael Faraday, who introduced the idea of electric fields
in the 19th century, found a way. He envisioned lines, now called electric field
lines, in the space around any given charged particle or object.

Figure 22-3 gives an example in which a sphere is uniformly covered with
negative charge. If we place a positive test charge at any point near the sphere
(Fig. 22-3a), we find that an electrostatic force pulls on it toward the center of the
sphere. Thus at every point around the sphere, an electric field vector points
radially inward toward the sphere. We can represent this electric field with 
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Figure 22-2 (a) A positive test charge q0

placed at point P near a charged object.An
electrostatic force acts on the test charge.
(b) The electric field at point P produced
by the charged object.
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The rod sets up an
electric field, which
can create a force
on the test charge.

Figure 22-3 (a) The electrostatic force 
acting on a positive test charge near a
sphere of uniform negative charge.
(b) The electric field vector at the
location of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the negative-
ly charged sphere. (They originate on
distant positive charges.)
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In Fig. 22-3b, they originate on distant positive charges that are not shown.
For another example, Fig. 22-4a shows part of an infinitely large, nonconduct-

ing sheet (or plane) with a uniform distribution of positive charge on one side. If
we place a positive test charge at any point near the sheet (on either side), we
find that the electrostatic force on the particle is outward and perpendicular to
the sheet. The perpendicular orientation is reasonable because any force compo-
nent that is, say, upward is balanced out by an equal component that is down-
ward.That leaves only outward, and thus the electric field vectors and the electric
field lines must also be outward and perpendicular to the sheet, as shown in
Figs. 22-4b and c.

Because the charge on the sheet is uniform, the field vectors and the field
lines are also. Such a field is a uniform electric field, meaning that the electric field
has the same magnitude and direction at every point within the field. (This is a lot
easier to work with than a nonuniform field, where there is variation from point
to point.) Of course, there is no such thing as an infinitely large sheet. That is just
a way of saying that we are measuring the field at points close to the sheet rela-
tive to the size of the sheet and that we are not near an edge.

Figure 22-5 shows the field lines for two particles with equal positive charges.
Now the field lines are curved, but the rules still hold: (1) the electric field vector
at any given point must be tangent to the field line at that point and in the same
direction, as shown for one vector, and (2) a closer spacing means a larger field
magnitude. To imagine the full three-dimensional pattern of field lines around
the particles, mentally rotate the pattern in Fig. 22-5 around the axis of symmetry,
which is a vertical line through both particles.

electric field lines as in Fig. 22-3b. At any point, such as the one shown, the direc-
tion of the field line through the point matches the direction of the electric vector
at that point.

The rules for drawing electric fields lines are these: (1) At any point, the elec-
tric field vector must be tangent to the electric field line through that point and in
the same direction. (This is easy to see in Fig. 22-3 where the lines are straight, but
we’ll see some curved lines soon.) (2) In a plane perpendicular to the field lines,
the relative density of the lines represents the relative magnitude of the field
there, with greater density for greater magnitude.

If the sphere in Fig. 22-3 were uniformly covered with positive charge, the
electric field vectors at all points around it would be radially outward and thus so
would the electric field lines. So, we have the following rule:

632 CHAPTER 22 ELECTRIC FIELDS

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).

F

E
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+ + + + 

+ + + + 

+ + + + 

Positive test 
charge

(a) (b)

+ + + 

+ + + + 

+ + + 

+ 
+ + +

+
+
+
+
+
+
+
+
+

(c)

+
+

+

Figure 22-4 (a) The force on a positive test charge near a very large, nonconducting sheet
with uniform positive charge on one side. (b) The electric field vector at the test
charge’s location, and the nearby electric field lines, extending away from the sheet.
(c) Side view.
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Figure 22-5 Field lines for two particles with
equal positive charge. Doesn’t the pattern
itself suggest that the particles repel each
other?
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22-2 THE ELECTRIC FIELD DUE TO A CHARGED PARTICLE

After reading this module, you should be able to . . .

22.05 In a sketch, draw a charged particle, indicate its sign,
pick a nearby point, and then draw the electric field vector

at that point, with its tail anchored on the point.
22.06 For a given point in the electric field of a charged particle,

identify the direction of the field vector when the particle is
positively charged and when it is negatively charged.

22.07 For a given point in the electric field of a charged
particle, apply the relationship between the field

E
:

E
:

magnitude E, the charge magnitude , and the distance r
between the point and the particle.

22.08 Identify that the equation given here for the magnitude
of an electric field applies only to a particle, not an extended
object.

22.09 If more than one electric field is set up at a point, draw
each electric field vector and then find the net electric field by
adding the individual electric fields as vectors (not as scalars).

�q�

● The magnitude of the electric field set up by a particle
with charge q at distance r from the particle is

● The electric field vectors set up by a positively charged
particle all point directly away from the particle. Those set up

E �
1

4p´0

�q�
r2 .

E
:

by a negatively charged particle all point directly toward the
particle.

● If more than one charged particle sets up an electric field
at a point, the net electric field is the vector sum of the
individual electric fields—electric fields obey the superposition
principle.

Learning Objectives

Key Ideas

The Electric Field Due to a Point Charge
To find the electric field due to a charged particle (often called a point charge),we place
a positive test charge at any point near the particle, at distance r. From Coulomb’s law
(Eq.21-4),the force on the test charge due to the particle with charge q is

As previously, the direction of is directly away from the particle if q is positive (be-
cause q0 is positive) and directly toward it if q is negative. From Eq. 22-1, we can now
write the electric field set up by the particle (at the location of the test charge) as

(charged particle). (22-2)

Let’s think through the directions again. The direction of matches that of the
force on the positive test charge: directly away from the point charge if q is
positive and directly toward it if q is negative.

So, if given another charged particle, we can immediately determine the
directions of the electric field vectors near it by just looking at the sign of
the charge q. We can find the magnitude at any given distance r by converting
Eq. 22-2 to a magnitude form:

(charged particle). (22-3)

We write to avoid the danger of getting a negative E when q is negative, and
then thinking the negative sign has something to do with direction. Equation 22-3
gives magnitude E only.We must think about the direction separately.

Figure 22-6 gives a number of electric field vectors at points around a
positively charged particle, but be careful. Each vector represents the vector

�q�

E �
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Figure 22-6 The electric field vectors at
various points around a positive point
charge.
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Checkpoint 1
The figure here shows a proton p and an electron e on an x axis.What is the direction of
the electric field due to the electron at (a) point
S and (b) point R? What is the direction of the
net electric field at (c) point R and (d) point S?

x
S e pR

Sample Problem 22.01 Net electric field due to three charged particles

Figure 22-7a shows three particles with charges q1 � �2Q,
q2 � �2Q, and q3 � �4Q, each a distance d from the origin.
What net electric field is produced at the origin?

KEY IDEA

Charges q1, q2, and q3 produce electric field vectors 
and respectively, at the origin, and the net electric field
is the vector sum To find this sum, we
first must find the magnitudes and orientations of the three
field vectors.

Magnitudes and directions: To find the magnitude of 
which is due to q1, we use Eq. 22-3, substituting d for r and
2Q for q and obtaining

Similarly, we find the magnitudes of  and to be
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d2   and  E3 �
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Figure 22-7 (a) Three particles with charges q1, q2, and q3 are at the
same distance d from the origin. (b) The electric field vectors 

and at the origin due to the three particles. (c) The electric
field vector and the vector sum at the origin.E
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Find the net field
at this empty point.

Field toward

Field toward
Field away

quantity at the point where the tail of the arrow is anchored. The vector is not
something that stretches from a “here” to a “there” as with a displacement vector.

In general, if several electric fields are set up at a given point by several
charged particles, we can find the net field by placing a positive test particle at
the point and then writing out the force acting on it due to each particle, such
as due to particle 1. Forces obey the principle of superposition, so we just
add the forces as vectors:

To change over to electric field, we repeatedly use Eq. 22-1 for each of the indi-
vidual forces:

(22-4)

This tells us that electric fields also obey the principle of superposition. If you want
the net electric field at a given point due to several particles, find the electric field
due to each particle (such as due to particle 1) and then sum the fields as vectors.
(As with electrostatic forces, you cannot just willy-nilly add up the magnitudes.)
This addition of fields is the subject of many of the homework problems.

E1
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� E
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which happens to equal the magnitude of field 
We must now combine two vectors, and the vector

sum that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig. 22-7c.
From the symmetry of Fig. 22-7c, we realize that the equal y
components of our two vectors cancel (one is upward and
the other is downward) and the equal x components add
(both are rightward). Thus, the net electric field at the
origin is in the positive direction of the x axis and has the
magnitude

(Answer)� (2)
1

4p´0

4Q
d2  (0.866) �

6.93Q
4p´0d2 .

E � 2E3x � 2E3 cos 30�

E
:

E
:

1 � E
:

2,
E
:

3

E
:

3.

�
1

4p´0

4Q
d2 ,

E1 � E2 �
1

4p´0

2Q
d2 �

1
4p´0

2Q
d2

We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially just
as we added force vectors in Chapter 21. However, here we
can use symmetry to simplify the procedure. From Fig. 22-7b,
we see that electric fields and have the same direction.
Hence, their vector sum has that direction and has the
magnitude

E
:

2E
:

1

Additional examples, video, and practice available at WileyPLUS

22-3 THE ELECTRIC FIELD DUE TO A DIPOLE

After reading this module, you should be able to . . .

22.10 Draw an electric dipole, identifying the charges
(sizes and signs), dipole axis, and direction of the elec-
tric dipole moment.

22.11 Identify the direction of the electric field at any
given point along the dipole axis, including between the
charges.

22.12 Outline how the equation for the electric field due
to an electric dipole is derived from the equations for
the electric field due to the individual charged particles
that form the dipole.

22.13 For a single charged particle and an electric dipole,
compare the rate at which the electric field magnitude

decreases with increase in distance. That is, identify
which drops off faster.

22.14 For an electric dipole, apply the relationship be-
tween the magnitude p of the dipole moment, the sepa-
ration d between the charges, and the magnitude q of
either of the charges.

22.15 For any distant point along a dipole axis, apply the
relationship between the electric field magnitude E, the
distance z from the center of the dipole, and either the
dipole moment magnitude p or the product of charge
magnitude q and charge separation d.

● An electric dipole consists of two particles with charges of
equal magnitude q but opposite signs, separated by a small
distance d.

● The electric dipole moment has magnitude qd and
points from the negative charge to the positive charge.

● The magnitude of the electric field set up by an electric
dipole at a distant point on the dipole axis (which runs
through both particles) can be written in terms of either the
product qd or the magnitude p of the dipole moment:

p: where z is the distance between the point and the center of
the dipole.

● Because of the 1/z3 dependence, the field magnitude of
an electric dipole decreases more rapidly with distance
than the field magnitude of either of the individual charges
forming the dipole, which depends on 1/r2.

�
1

2p´0

p
z3 ,E �

1
2p´0

qd
z3

Learning Objectives

Key Ideas



The Electric Field Due to an Electric Dipole
Figure 22-8 shows the pattern of electric field lines for two particles that have
the same charge magnitude q but opposite signs, a very common and important
arrangement known as an electric dipole. The particles are separated by dis-
tance d and lie along the dipole axis, an axis of symmetry around which you can
imagine rotating the pattern in Fig. 22-8. Let’s label that axis as a z axis. Here
we restrict our interest to the magnitude and direction of the electric field at
an arbitrary point P along the dipole axis, at distance z from the dipole’s
midpoint.

Figure 22-9a shows the electric fields set up at P by each particle. The nearer
particle with charge �q sets up field E(�) in the positive direction of the z axis (di-
rectly away from the particle). The farther particle with charge �q sets up a
smaller field E(�) in the negative direction (directly toward the particle).We want
the net field at P, as given by Eq. 22-4. However, because the field vectors are
along the same axis, let’s simply indicate the vector directions with plus and mi-
nus signs, as we commonly do with forces along a single axis. Then we can write
the magnitude of the net field at P as

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z 
 d.At such large distances, we have d/2z � 1 in Eq. 22-7.Thus, in our approx-
imation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-9b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only
their product. The field at distant points would be unchanged if, for example, q

p:
p:

E �
1
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p
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p:p:
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�
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q
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2d/z
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2

�
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�
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Figure 22-9 (a) An electric dipole.The elec-
tric field vectors and at point P on
the dipole axis result from the dipole’s two
charges. Point P is at distances r(�) and r(�)

from the individual charges that make up
the dipole. (b) The dipole moment of the
dipole points from the negative charge to
the positive charge.

p:

E
:

(�)E
:

(�)

z

r(–)

r(+)

E(+)

d

z

–q

+q

P

(a) (b)

+ +

––

p

E(–)

Dipole
center

Up here the +q
field dominates.

Down here the –q
field dominates.

Figure 22-8 The pattern of electric field lines
around an electric dipole, with an electric
field vector shown at one point (tangent
to the field line through that point).

E
:

+

–
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were doubled and d simultaneously halved. Although Eq. 22-9 holds only for dis-
tant points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for
all distant points, regardless of whether they lie on the dipole axis; here r is the
distance between the point in question and the dipole center.

Inspection of Fig. 22-9 and of the field lines in Fig. 22-8 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipole
moment vector .This is true whether point P in Fig. 22-9a is on the upper or the
lower part of the dipole axis.

Inspection of Eq. 22-9 shows that if you double the distance of a point from a
dipole, the electric field at the point drops by a factor of 8. If you double the distance
from a single point charge, however (see Eq. 22-3), the electric field drops only by a
factor of 4. Thus the electric field of a dipole decreases more rapidly with distance
than does the electric field of a single charge. The physical reason for this rapid
decrease in electric field for a dipole is that from distant points a dipole looks like
two particles that almost—but not quite—coincide. Thus, because they have
charges of equal magnitude but opposite signs, their electric fields at distant points
almost—but not quite—cancel each other.

p:
E
:

KEY IDEA

We can approximate the magnitude E of an electric dipole’s elec-
tric field on the dipole axis with Eq.22-8.

Calculations: We write that equation as

where 2h is the separation between �q and �q in Fig. 22-10c.
For the electric field at altitude z1 � 30 km,we find

(Answer)

Similarly, for altitude z2 � 60 km, we find

E � 2.0 � 102 N/C. (Answer)

As we discuss in Module 22-6, when the magnitude of

� 1.6 � 103 N/C.

E �
1

2p´0

(200 C)(2)(6.0 � 103 m)
(30 � 103 m)3

E �
1

2p´0

q(2h)
z3 ,

Sample Problem 22.02 Electric dipole and atmospheric sprites

Sprites (Fig. 22-10a) are huge flashes that occur far above a
large thunderstorm. They were seen for decades by pilots
flying at night, but they were so brief and dim that most pi-
lots figured they were just illusions.Then in the 1990s sprites
were captured on video. They are still  not well understood
but are believed to be produced when especially powerful
lightning occurs between the ground and storm clouds, par-
ticularly when the lightning transfers a huge amount of neg-
ative charge �q from the ground to the base of the clouds
(Fig. 22-10b).

Just after such a transfer, the ground has a complicated
distribution of positive charge. However, we can model the
electric field due to the charges in the clouds and the ground
by assuming a vertical electric dipole that has charge �q at
cloud height h and charge �q at below-ground depth h
(Fig. 22-10c). If q � 200 C and h � 6.0 km, what is the magni-
tude of the dipole’s electric field at altitude z1 � 30 km some-
what above the clouds and altitude z2 � 60 km somewhat
above the stratosphere?

(a)

Figure 22-10 (a) Photograph of a sprite. (b) Lightning in which a large amount of negative charge is transferred from ground to cloud base.
(c) The cloud–ground system modeled as a vertical electric dipole.

Charge
transfer

Ground

Cloud

– – – – – – (b) (c)

h

h

z

–q

+qCourtesy NASA



The Electric Field Due to a Line of Charge
So far we have dealt with only charged particles, a single particle or a simple col-
lection of them. We now turn to a much more challenging situation in which a
thin (approximately one-dimensional) object such as a rod or ring is charged with
a huge number of particles, more than we could ever even count. In the next
module, we consider two-dimensional objects, such as a disk with charge spread
over a surface. In the next chapter we tackle three-dimensional objects, such as a
sphere with charge spread through a volume.

Heads Up. Many students consider this module to be the most difficult in
the book for a variety of reasons. There are lots of steps to take, a lot of vector
features to keep track of, and after all that, we set up and then solve an integral.
The worst part, however, is that the procedure can be different for different
arrangements of the charge. Here, as we focus on a particular arrangement (a
charged ring), be aware of the general approach, so that you can tackle other
arrangements in the homework (such as rods and partial circles).

Figure 22-11 shows a thin ring of radius R with a uniform distribution of posi-
tive charge along its circumference. It is made of plastic, which means that the
charge is fixed in place. The ring is surrounded by a pattern of electric field lines,
but here we restrict our interest to an arbitrary point P on the central axis (the
axis through the ring’s center and perpendicular to the plane of the ring), at dis-
tance z from the center point.

The charge of an extended object is often conveyed in terms of a charge
density rather than the total charge. For a line of charge, we use the linear charge

638 CHAPTER 22 ELECTRIC FIELDS

22-4 THE ELECTRIC FIELD DUE TO A LINE OF CHARGE

After reading this module, you should be able to . . .

22.16 For a uniform distribution of charge, find the linear charge
density l for charge along a line, the surface charge density
s for charge on a surface, and the volume charge density r
for charge in a volume.

22.17 For charge that is distributed uniformly along a line, find
the net electric field at a given point near the line by

splitting the distribution up into charge elements dq and
then summing (by integration) the electric field vectors 
set up at the point by each element.

22.18 Explain how symmetry can be used to simplify the
calculation of the electric field at a point near a line of
uniformly distributed charge.

dE
:

● The equation for the electric field set up by a particle does
not apply to an extended object with charge (said to have a
continuous charge distribution).

● To find the electric field of an extended object at a point, we
first consider the electric field set up by a charge element dq in
the object, where the element is small enough for us to apply

the equation for a particle. Then we sum, via integration, com-
ponents of the electric fields from all the charge elements.

● Because the individual electric fields have different
magnitudes and point in different directions, we first see if
symmetry allows us to cancel out any of the components of
the fields, to simplify the integration.

dE
:

dE
:

Learning Objectives

Key Ideas

an electric field exceeds a certain critical value Ec, the
field can pull electrons out of atoms (ionize the atoms),
and then the freed electrons can run into other atoms,
causing those atoms to emit light. The value of Ec depends
on the density of the air in which the electric field exists.
At altitude z2 � 60 km the density of the air is so low that

E � 2.0 � 102 N/C exceeds Ec, and thus light is emitted by
the atoms in the air. That light forms sprites. Lower down,
just above the clouds at z1 � 30 km, the density of the air
is much  higher, E � 1.6 � 103 N/C does not exceed Ec,
and no light is emitted. Hence, sprites occur only far
above storm clouds.

Additional examples, video, and practice available at WileyPLUS
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Figure 22-11 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P.dE
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density l (the charge per unit length), with the SI unit of coulomb per meter.
Table 22-1 shows the other charge densities that we shall be using for charged
surfaces and volumes.

First Big Problem. So far, we have an equation for the electric field of a par-
ticle. (We can combine the field of several particles as we did for the electric di-
pole to generate a special equation, but we are still basically using Eq. 22-3).
Now take a look at the ring in Fig. 22-11. That clearly is not a particle and so Eq.
22-3 does not apply. So what do we do?

The answer is to mentally divide the ring into differential elements of charge
that are so small that we can treat them as though they are particles. Then we can
apply Eq. 22-3.

Second Big Problem. We now know to apply Eq. 22-3 to each charge ele-
ment dq (the front d emphasizes that the charge is very small) and can write an
expression for its contribution of electric field (the front d emphasizes that
the contribution is very small). However, each such contributed field vector at P
is in its own direction. How can we add them to get the net field at P?

The answer is to split the vectors into components and then separately
sum one set of components and then the other set. However, first we check to
see if one set simply all cancels out. (Canceling out components saves lots of
work.)

Third Big Problem. There is a huge number of dq elements in the ring and
thus a huge number of components to add up, even if we can cancel out one
set of components. How can we add up more components than we could even
count? The answer is to add them by means of integration.

Do It. Let’s do all this (but again, be aware of the general procedure, not just
the fine details). We arbitrarily pick the charge element shown in Fig. 22-11. Let
ds be the arc length of that (or any other) dq element. Then in terms of the linear
density l (the charge per unit length), we have

dq � l ds. (22-10)

An Element’s Field. This charge element sets up the differential electric
field at P, at distance r from the element, as shown in Fig. 22-11. (Yes, we are
introducing a new symbol that is not given in the problem statement, but soon we
shall replace it with “legal symbols.”) Next we rewrite the field equation for a
particle (Eq. 22-3) in terms of our new symbols dE and dq, but then we replace dq
using Eq. 22-10.The field magnitude due to the charge element is

(22-11)

Notice that the illegal symbol r is the hypotenuse of the right triangle dis-
played in Fig. 22-11.Thus, we can replace r by rewriting Eq. 22-11 as

(22-12)

Because every charge element has the same charge and the same distance
from point P, Eq. 22-12 gives the field magnitude contributed by each of them.
Figure 22-11 also tells us that each contributed leans at angle u to the cen-
tral axis (the z axis) and thus has components perpendicular and parallel to
that axis.

Canceling Components. Now comes the neat part, where we eliminate one
set of those components. In Fig. 22-11, consider the charge element on the oppo-
site side of the ring. It too contributes the field magnitude dE but the field vector
leans at angle u in the opposite direction from the vector from our first charge

dE
:

dE �
1

4p´0

l ds
(z2 � R2)

.

dE �
1

4p´0

dq
r2 �

1
4p´0

l ds
r2 .

dE
:

dE
:

dE
:

Table 22-1 Some Measures of Electric
Charge

Name Symbol SI Unit

Charge q C
Linear charge 
density l C/m

Surface charge 
density s C/m2

Volume charge 
density r C/m3



element, as indicated in the side view of Fig. 22-12. Thus the two perpendicular
components cancel. All around the ring, this cancelation occurs for every charge
element and its symmetric partner on the opposite side of the ring. So we can neg-
lect all the perpendicular components.

Adding Components. We have another big win here. All the remaining
components are in the positive direction of the z axis, so we can just add them
up as scalars. Thus we can already tell the direction of the net electric field at
P: directly away from the ring. From Fig. 22-12, we see that the parallel com-
ponents each have magnitude dE cos u, but u is another illegal symbol. We can
replace cos u with legal symbols by again using the right triangle in Fig. 22-11
to write

(22-13)

Multiplying Eq. 22-12 by Eq. 22-13 gives us the parallel field component from
each charge element:

(22-14)

Integrating. Because we must sum a huge number of these components, each
small, we set up an integral that moves along the ring, from element to element,
from a starting point (call it s � 0) through the full circumference (s � 2pR). Only
the quantity s varies as we go through the elements; the other symbols in Eq. 22-14
remain the same, so we move them outside the integral.We find

(22-15)

This is a fine answer, but we can also switch to the total charge by using l � q/(2pR):

(charged ring). (22-16)

If the charge on the ring is negative, instead of positive as we have assumed, the
magnitude of the field at P is still given by Eq. 22-16. However, the electric field
vector then points toward the ring instead of away from it.

Let us check Eq. 22-16 for a point on the central axis that is so far away that 
z 
 R. For such a point, the expression z2 � R2 in Eq. 22-16 can be approximated
as z2, and Eq. 22-16 becomes

(charged ring at large distance). (22-17)

This is a reasonable result because from a large distance, the ring “looks like”
a point charge. If we replace z with r in Eq. 22-17, we indeed do have the magni-
tude of the electric field due to a point charge, as given by Eq. 22-3.

Let us next check Eq. 22-16 for a point at the center of the ring — that is, for 
z � 0. At that point, Eq. 22-16 tells us that E � 0. This is a reasonable result
because if we were to place a test charge at the center of the ring, there would
be no net electrostatic force acting on it; the force due to any element of the
ring would be canceled by the force due to the element on the opposite side of
the ring. By Eq. 22-1, if the force at the center of the ring were zero, the electric
field there would also have to be zero.

E �
1

4p´0

q
z2

E �
qz

4p´0(z2 � R2)3/2

�
zl(2pR)

4p´0(z2 � R2)3/2  .

E � �dE cos u �
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dE cos u �
1
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z
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�
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640 CHAPTER 22 ELECTRIC FIELDS

z
dE cos u

u u

dEdE

Figure 22-12 The electric fields set up at P
by a charge element and its symmetric
partner (on the opposite side of the ring).
The components perpendicular to the z
axis cancel; the parallel components add.
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Sample Problem 22.03 Electric field of a charged circular rod

60°

60°P

y

xr

Plastic rod
of charge –Q

(a)

This negatively charged rod
is obviously not a particle.

P

y

x

(g)

θ

ds

rd

We use this to 
relate the element’s 
arc length to the 
angle that it subtends.x

P

y

(e)

θ
θ

ds

dEy

Symmetric
element ds'

dE

dE'

These y components just
cancel, so neglect them.

P

y

x

(b)

ds

But we can treat this
element as a particle.

Here is the field created by 
the symmetric element, same 
size and angle.

P

y

x

(d)

θ
θ

ds

Symmetric
element ds'

dE

dE'

P

y

x

(c)

θ

ds

dE

Here is the field the
element creates.

x
P

y

( f )

θ
θ

ds

dEx

Symmetric
element ds'

dE

dE'

These x components add.
Our job is to add all such
components.

Figure 22-13 Available in
WileyPLUS as an animation
with voiceover. (a) A plastic
rod of charge �Q is a circular
section of radius r and central
angle 120�; point P is the center
of curvature of the rod. (b)–(c)
A differential element in the
top half of the rod, at an angle
u to the x axis and of arc length
ds, sets up a differential
electric field at P. (d) An el-
ement ds
, symmetric to ds
about the x axis, sets up a field

at P with the same magni-
tude. (e)–(f ) The field compo-
nents. (g) Arc length ds makes
an angle du about point P.

dE
:




dE
:

A

Figure 22-13a shows a plastic rod with a uniform charge
�Q. It is bent in a 120° circular arc of radius  r and symmet-
rically paced across an x axis with the origin at the center of
curvature P of the rod. In terms of Q and r, what is the elec-
tric field due to the rod at point P?

KEY IDEA

Because the rod has a continuous charge distribution, we must
find an expression for the electric fields due to differential ele-
ments of the rod and then sum those fields via calculus.

An element: Consider a differential element having arc
length ds and located at an angle u above the x axis (Figs.
22-13b and c). If we let l represent the linear charge density of
the rod,our element ds has a differential charge of magnitude

dq � l ds. (22-18)

The element’s field: Our element produces a differential
electric field at point P, which is a distance r from the 
element. Treating the element as a point charge, we can

dE
:

E
:

rewrite Eq. 22-3 to express the magnitude of as

(22-19)

The direction of is toward ds because charge dq is negative.

Symmetric partner: Our element has a symmetrically 
located (mirror image) element ds
 in the bottom half of the
rod. The electric field set up at P by ds
 also has the
magnitude given by Eq. 22-19, but the field vector points to-
ward as shown in Fig. 22-13d. If we resolve the electric
field vectors of ds and into x and y components as shown
in Figs. 22-13e and f, we see that their y components cancel
(because they have equal magnitudes and are in opposite
directions). We also see that their x components have equal
magnitudes and are in the same direction.

Summing: Thus, to find the electric field set up by the rod,
we need sum (via integration) only the x components of the
differential electric fields set up by all the differential ele-
ments of the rod. From Fig. 22-13f and Eq. 22-19, we can write

ds

ds


dE
:
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dE �
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1
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l ds
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dE
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duces and resolve it into components. One of the com-
ponents produced by dq is a canceling component; it is
canceled by the corresponding component produced by
dq
 and needs no further attention.The other compo-
nent produced by dq is an adding component; it adds to
the corresponding component produced by dq
.Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-11. In the expression for dE, replace r 2 with
z2 � R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.

Circular arc, with point P at the center of curva-
ture, as in Fig. 22-13. Express the adding component of

in terms of u. That introduces either sin u or cos u.
Reduce the resulting two variables s and u to one, u, by
replacing ds with r du. Integrate over u from one end
of the arc to the other end.

Straight line, with point P on an extension of the
line, as in Fig. 22-14a. In the expression for dE, replace
r with x. Integrate over x, from end to end of the line of
charge.

dE
:

dE
:

Problem-Solving Tactics A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.

Step 1. If the line of charge is circular, let ds be the arc
length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq � l ds or dq � l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If
P is on an axis of symmetry of the charge distribution,
resolve the field produced by dq into components
that are perpendicular and parallel to the axis of symme-
try.Then consider a second element dq
 that is located
symmetrically to dq about the line of symmetry.At P
draw the vector that this symmetrical element pro-dE

:



dE
:

dE
:

dE
:

dE
:

dE
:

E
:

the component dEx set up by ds as

(22-20)

Equation 22-20 has two variables, u and s. Before we can
integrate it, we must eliminate one variable. We do so by
replacing ds, using the relation

ds � r du,

in which du is the angle at P that includes arc length ds
(Fig. 22-13g). With this replacement, we can integrate
Eq. 22-20 over the angle made by the rod at P, from u � �60�
to u � 60�; that will give us the field magnitude at P:

(22-21)�
1.73l

4p´0r
.

�
l

4p´0r
 [sin 60� � sin(�60�)]

�
l

4p´0r
�60�

�60�

 cos u du �
l

4p´0r 	sin u

60�

�60�

E � � dEx � �60�

�60�

1
4p´0

l

r2  cos u r du

dEx � dE cos u �
1

4p´0

l

r2  cos u ds.

(If we had reversed the limits on the integration, we would
have gotten the same result but with a minus sign. Since the
integration gives only the magnitude of , we would then
have discarded the minus sign.)

Charge density: To evaluate l, we note that the full rod
subtends an angle of 120� and so is one-third of a full circle.
Its arc length is then 2pr/3, and its linear charge density
must be

Substituting this into Eq. 22-21 and simplifying give us

(Answer)

The direction of is toward the rod,along the axis of symmetry
of the charge distribution. We can write in unit-vector nota-
tion as

.E
:

�
0.83Q
4p´0r2  î

E
:

E
:

�
0.83Q
4p´0r2 .

E �
(1.73)(0.477Q)

4p´0r2

l �
charge
length

�
Q

2pr/3
�

0.477Q
r

.

E
:
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Additional examples, video, and practice available at WileyPLUS

x
P

(a)

x
(b)

P

y

x
(c)

P

y

+ + + + + + + + +

+ + + + + + + + + 

+ + + + + + + + + 

Figure 22-14 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.

Checkpoint 2
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its top
half and another along its bottom half. For each rod, what is the
direction of the net electric field at point P?

x x x 

yyy

–Q

+Q

P P

+Q

+Q

+Q

–Q

P

(a) (b) (c)

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-14b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge, find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in
Fig. 22-14c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a
positive result.The reverse gives the same result with a mi-

E
:

dE
:

.

nus sign; discard the minus sign. If the result is to be stated
in terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.

22-5 THE ELECTRIC FIELD DUE TO A CHARGED DISK

After reading this module, you should be able to . . .

22.19 Sketch a disk with uniform charge and indicate the di-
rection of the electric field at a point on the central axis if
the charge is positive and if it is negative.

22.20 Explain how the equation for the electric field on the
central axis of a uniformly charged ring can be used to find

the equation for the electric field on the central axis of a
uniformly charged disk.

22.21 For a point on the central axis of a uniformly charged
disk, apply the relationship between the surface charge den-
sity s, the disk radius R, and the distance z to that point.

● On the central axis through a uniformly charged disk,

E �
s

2´0
�1 �

z

2z2 � R2 �
gives the electric field magnitude. Here z is the distance
along the axis from the center of the disk, R is the radius of
the disk, and s is the surface charge density.

Learning Objectives

Key Idea

The Electric Field Due to a Charged Disk
Now we switch from a line of charge to a surface of charge by examining the elec-
tric field of a circular plastic disk, with a radius R and a uniform surface charge
density s (charge per unit area, Table 22-1) on its top surface. The disk sets up a
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pattern of electric field lines around it, but here we restrict our attention to the
electric field at an arbitrary point P on the central axis, at distance z from the cen-
ter of the disk, as indicated in Fig. 22-15.

We could proceed as in the preceding module but set up a two-dimensional in-
tegral to include all of the field contributions from the two-dimensional distribu-
tion of charge on the top surface. However, we can save a lot of work with a neat
shortcut using our earlier work with the field on the central axis of a thin ring.

We superimpose a ring on the disk as shown in Fig. 22-15, at an arbitrary ra-
dius The ring is so thin that we can treat the charge on it as a charge ele-
ment dq. To find its small contribution dE to the electric field at point P, we
rewrite Eq. 22-16 in terms of the ring’s charge dq and radius r :

(22-22)

The ring’s field points in the positive direction of the z axis.
To find the total field at P, we are going to integrate Eq. 22-22 from the cen-

ter of the disk at r � 0 out to the rim at r � R so that we sum all the dE contribu-
tions (by sweeping our arbitrary ring over the entire disk surface). However, that
means we want to integrate with respect to a variable radius r of the ring.

We get dr into the expression by substituting for dq in Eq. 22-22. Because the ring
is so thin, call its thickness dr.Then its surface area dA is the product of its circumfer-
ence 2pr and thickness dr.So, in terms of the surface charge density s,we have

dq � s dA � s (2pr dr). (22-23)

After substituting this into Eq. 22-22 and simplifying slightly, we can sum all the
dE contributions with

(22-24)

where we have pulled the constants (including z) out of the integral. To solve
this integral, we cast it in the form by setting X � (z2 � r 2), ,m � �3

2� Xm dX

E � � dE �
sz
4´0

�R

0
(z2 � r2)�3/2(2r) dr,

dE �
dq z

4p´0(z2 � r2)3/2 .

r � R.

Figure 22-15 A disk of radius R and uniform
positive charge.The ring shown has radius r
and radial width dr. It sets up a differential
electric field at point P on its central
axis.

dE
:

R

P

dE

dr r

z

and dX � (2r) dr. For the recast integral we have

and so Eq. 22-24 becomes

(22-25)

Taking the limits in Eq. 22-25 and rearranging, we find

(charged disk) (22-26)

as the magnitude of the electric field produced by a flat, circular, charged disk at
points on its central axis. (In carrying out the integration, we assumed that z � 0.)

If we let R : ` while keeping z finite, the second term in the parentheses in
Eq. 22-26 approaches zero, and this equation reduces to

(infinite sheet). (22-27)

This is the electric field produced by an infinite sheet of uniform charge located
on one side of a nonconductor such as plastic. The electric field lines for such
a situation are shown in Fig. 22-4.

We also get Eq. 22-27 if we let z : 0 in Eq. 22-26 while keeping R finite. This
shows that at points very close to the disk, the electric field set up by the disk is
the same as if the disk were infinite in extent.

E �
s

2´0

E �
s

2´0
�1 �

z

2z2 � R2 �

E �
sz
4´0

	 (z2 � r2)�1/2

�1
2



R

0
.

� Xm dX �
Xm�1

m � 1
,
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22-6 A POINT CHARGE IN AN ELECTRIC FIELD

After reading this module, you should be able to . . .

22.22 For a charged particle placed in an external electric
field (a field due to other charged objects), apply the rela-
tionship between the electric field at that point, the parti-
cle’s charge q, and the electrostatic force that acts on
the particle, and identify the relative directions of the force

F
:

E
:

and the field when the particle is positively charged and
negatively charged.

22.23 Explain Millikan’s procedure of measuring the elemen-
tary charge.

22.24 Explain the general mechanism of ink-jet printing.

● If a particle with charge q is placed in an external electric
field , an electrostatic force acts on the particle:

.F
:

� qE
:

F
:

E
:

● If charge q is positive, the force vector is in the same direc-
tion as the field vector. If charge q is negative, the force vec-
tor is in the opposite direction (the minus sign in the equation
reverses the force vector from the field vector).

Learning Objectives

Key Ideas

A Point Charge in an Electric Field
In the preceding four modules we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us

E
:

F
:

� qE
:

,

The electrostatic force acting on a charged particle located in an external electric
field has the direction of if the charge q of the particle is positive and has the
opposite direction if q is negative.

E
:

E
:

F
:

Figure 22-16 The Millikan oil-drop apparatus
for measuring the elementary charge e.
When a charged oil drop drifted into cham-
ber C through the hole in plate P1, its mo-
tion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.

Insulating
chamber
wall

+ –
B

S

P2

COil
drop

P1

A

Microscope

Oil
spray

Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-16 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-16 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the

E
:
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Figure 22-18 The metal wires are so charged
that the electric fields they produce in the
surrounding space cause the air there to un-
dergo electrical breakdown.

Adam Hart-Davis/Photo Researchers, Inc.

values of q were always given by

q � ne, for n � 0, �1, �2, �3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 � 10�19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-17 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field 
has been set up. The drop is deflected upward according to Eq. 22-28 and then
strikes the paper at a position that is determined by the magnitudes of and the
charge q of the drop.

In practice, E is held constant and the position of the drop is determined by
the charge q delivered to the drop in the charging unit, through which the drop
must pass before entering the deflecting system. The charging unit, in turn, is
activated by electronic signals that encode the material to be printed.

Electrical Breakdown and Sparking
If the magnitude of an electric field in air exceeds a certain critical value Ec, the
air undergoes electrical breakdown, a process whereby the field removes elec-
trons from the atoms in the air. The air then begins to conduct electric current
because the freed electrons are propelled into motion by the field. As they
move, they collide with any atoms in their path, causing those atoms to emit
light. We can see the paths, commonly called sparks, taken by the freed elec-
trons because of that emitted light. Figure 22-18 shows sparks above charged
metal wires where the electric fields due to the wires cause electrical break-
down of the air.

E
:

E
:

Checkpoint 3
(a) In the figure, what is the direction of the electro-
static force on the electron due to the external
electric field shown? (b) In which direction will the
electron accelerate if it is moving parallel to the y axis
before it encounters the external field? (c) If, instead,
the electron is initially moving rightward, will its
speed increase, decrease, or remain constant?

x
e

y

E

Input
signals

Deflecting plate 

G C 
Deflecting

plate

E

Figure 22-17 Ink-jet printer. Drops shot from generator G receive a charge in charging unit
C.An input signal from a computer controls the charge and thus the effect of field on
where the drop lands on the paper.

E
:
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magnitude QE acts upward on the charged drop. Thus, as the
drop travels parallel to the x axis at constant speed vx, it
accelerates upward with some constant acceleration ay.

Calculations: Applying Newton’s second law (F � ma) for
components along the y axis, we find that

Sample Problem 22.04 Motion of a charged particle in an electric field

Figure 22-19 shows the de-
flecting plates of an ink-jet
printer, with superimposed
coordinate axes. An ink drop
with a mass m of 1.3 � 10�10

kg and a negative charge of
magnitude Q � 1.5 � 10�13

C enters the region between
the plates, initially moving
along the x axis with speed 
vx � 18 m/s. The length L of
each plate is 1.6 cm. The
plates are charged and thus
produce an electric field at all
points between them. Assume that field is downward
directed, is uniform, and has a magnitude of 1.4 � 106 N/C.
What is the vertical deflection of the drop at the far edge
of the plates? (The gravitational force on the drop is small
relative to the electrostatic force acting on the drop and
can be neglected.)

KEY IDEA

The drop is negatively charged and the electric field is directed
downward. From Eq. 22-28, a constant electrostatic force of

E
:

Additional examples, video, and practice available at WileyPLUS

Figure 22-19 An ink drop of
mass m and charge magnitude
Q is deflected in the electric
field of an ink-jet printer.

22-7 A DIPOLE IN AN ELECTRIC FIELD
Learning Objectives

22.27 For an electric dipole in an external electric field, relate
the potential energy of the dipole to the work done by a
torque as the dipole rotates in the electric field.

22.28 For an electric dipole in an external electric field, calcu-
late the potential energy by taking a dot product of the dipole
moment vector and the electric field vector, in magnitude-
angle notation and unit-vector notation.

22.29 For an electric dipole in an external electric field, iden-
tify the angles for the minimum and maximum potential en-
ergies and the angles for the minimum and maximum
torque magnitudes.

● The torque on an electric dipole of dipole moment when
placed in an external electric field is given by a cross product:

● A potential energy U is associated with the orientation of
the dipole moment in the field, as given by a dot product:

U � �p: � E
:

.

t: � p: � E
:

.

E
:

p: ● If the dipole orientation changes, the work done by the
electric field is

If the change in orientation is due to an external agent, the
work done by the agent is Wa � �W.

W � ��U.

After reading this module, you should be able to . . . 

22.25 On a sketch of an electric dipole in an external electric
field, indicate the direction of the field, the direction of the
dipole moment, the direction of the electrostatic forces on
the two ends of the dipole, and the direction in which
those forces tend to rotate the dipole, and identify the
value of the net force on the dipole.

22.26 Calculate the torque on an electric dipole in an exter-
nal electric field by evaluating a cross product of the dipole
moment vector and the electric field vector, in magnitude-
angle notation and unit-vector notation.

Key Ideas

y

x
x = L 

m,Q

0
E

Plate

Plate

(22-30)

Let t represent the time required for the drop to pass
through the region between the plates. During t the vertical
and horizontal displacements of the drop are

(22-31)

respectively. Eliminating t between these two equations and
substituting Eq. 22-30 for ay, we find

(Answer)� 0.64 mm.

� 6.4 � 10�4 m

�
(1.5 � 10�13 C)(1.4 � 106 N/C)(1.6 � 10�2 m)2

(2)(1.3 � 10�10 kg)(18 m/s)2

y �
QEL2

2mvx
2

y � 1
2ayt2 and L � vxt,

ay �
F
m

�
QE
m

.
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A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-20 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105�, as shown in Fig. 22-20. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-9.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-21a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-21a) and with the same magnitude F � qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d � x from the other end. From Eq. 10-39 (t � rF sin f), we can write
the magnitude of the net torque t: as

t � Fx sin u � F(d � x) sin u � Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p � qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t � pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-21b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-21, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-21 is

t � �pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in
an electric field. The dipole has its least potential energy when it is in its equi-
librium orientation, which is when its moment p: is lined up with the field 
(then . It has greater potential energy in all other orientations.
Thus the dipole is like a pendulum, which has its least gravitational potential

t: � p: � E
:

� 0)
E
:

E
:

E
:

t: � p: � E
:

E
:

p:

E
:

p:

p:E
:

E
:

p:

Figure 22-20 A molecule of H2O, showing the
three nuclei (represented by dots) and the
regions in which the electrons can be lo-
cated.The electric dipole moment p: points
from the (negative) oxygen side to the (pos-
itive) hydrogen side of the molecule.

105°

Hydrogen Hydrogen 

Oxygen

Positive side 

Negative side 

p
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energy in its equilibrium orientation—at its lowest point. To rotate the dipole or
the pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in an arbitrary way because only differences in po-
tential energy have physical meaning.The expression for the potential energy of an
electric dipole in an external electric field is simplest if we choose the potential en-
ergy to be zero when the angle u in Fig. 22-21 is 90�. We then can find the potential
energy U of the dipole at any other value of u with Eq. 8-1 (�U � �W) by calculat-
ing the work W done by the field on the dipole when the dipole is rotated to that
value of u from 90�. With the aid of Eq. 10-53 (W � �t du) and Eq. 22-35, we find
that the potential energy U at any angle u is

(22-36)

Evaluating the integral leads to

U � �pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180 ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W � ��U � �(Uf � Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa � �W � (Uf � Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food.

E
:

E
:

E
:

p:p:
E
:

E
:

E
:

p:�u �U � pE
E
:

p:� � 0U � �pE

U � �p:� E
:

U � �W � ��u

90�

t du � �u

90�

pE sin u du.

Figure 22-21 (a) An electric dipole in a
uniform external electric field E

:
.Two cen-

ters of equal but opposite charge are sepa-
rated by distance d. The line between them
represents their rigid connection. (b) Field
E
:

causes a torque t: on the dipole.The di-
rection of t: is into the page, as represented
by the symbol �.

The dipole is being 
torqued into alignment.

(a)

(b)

p

d

θ 

+q

–q

θτ
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F

p

–F

E

E

Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.

Eθ 
θ 

(1)

(3)

(2)

(4)

+ +

+ +

θ 
θ 
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Electric Field To explain the electrostatic force between two
charges, we assume that each charge sets up an electric field in the
space around it. The force acting on each charge is then due to the
electric field set up at its location by the other charge.

Definition of Electric Field The electric field at any point
is defined in terms of the electrostatic force that would be ex-
erted on a positive test charge q0 placed there:

(22-1)

Electric Field Lines Electric field lines provide a means for visu-
alizing the direction and magnitude of electric fields.The electric field
vector at any point is tangent to a field line through that point. The
density of field lines in any region is proportional to the magnitude of
the electric field in that region. Field lines originate on positive
charges and terminate on negative charges.

Field Due to a Point Charge The magnitude of the electric
field set up by a point charge q at a distance r from the charge is

(22-3)E �
1

4p´0

�q�
r2 .

E
:

E
:

�
F
:

q
0

.

F
:

E
:

Review & Summary

The direction of is away from the point charge if the charge is
positive and toward it if the charge is negative.

Field Due to an Electric Dipole An electric dipole consists
of two particles with charges of equal magnitude q but opposite
sign, separated by a small distance d. Their electric dipole moment

has magnitude qd and points from the negative charge to the
positive charge. The magnitude of the electric field set up by the
dipole at a distant point on the dipole axis (which runs through
both charges) is

(22-9)

where z is the distance between the point and the center of the
dipole.

Field Due to a Continuous Charge Distribution The
electric field due to a continuous charge distribution is found by
treating charge elements as point charges and then summing, via
integration, the electric field vectors produced by all the charge el-
ements to find the net vector.

E �
1

2p´0

p
z3 ,

p:

E
:

KEY IDEA

The torque on a dipole is maximum when the angle u be-
tween and is 90�.

Calculation: Substituting u � 90� in Eq. 22-33 yields

(Answer)

(c) How much work must an external agent do to rotate this
molecule by 180� in this field, starting from its fully aligned
position, for which u � 0?

KEY IDEA

The work done by an external agent (by means of a
torque applied to the molecule) is equal to the change in
the molecule’s potential energy due to the change in
orientation.

Calculation: From Eq. 22-40, we find

(Answer)� 1.9 � 10�25 J.
� 2pE � (2)(6.2 � 10�30 C 	m)(1.5 � 104 N/C)
� (�pE cos 180�) � (�pE cos 0)

Wa � U180� � U 0

� 9.3 � 10�26 N 	m.

� (6.2 � 10�30 C 	m)(1.5 � 104 N/C)(sin 90�)

t � pE sin u

E
:

p:

Sample Problem 22.05 Torque and energy of an electric dipole in an electric field

A neutral water molecule (H2O) in its vapor state has an
electric dipole moment of magnitude 6.2 � 10�30 C 	m.

(a) How far apart are the molecule’s centers of positive and
negative charge?

KEY IDEA

A molecule’s dipole moment depends on the magnitude q
of the molecule’s positive or negative charge and the charge
separation d.

Calculations: There are 10 electrons and 10 protons in a
neutral water molecule; so the magnitude of its dipole mo-
ment is

p � qd � (10e)(d),

in which d is the separation we are seeking and e is the ele-
mentary charge.Thus,

(Answer)

This distance is not only small, but it is also actually smaller
than the radius of a hydrogen atom.

(b) If the molecule is placed in an electric field of 1.5 �
104 N/C, what maximum torque can the field exert on it?
(Such a field can easily be set up in the laboratory.)

� 3.9 � 10�12 m � 3.9 pm.

d �
p

10e
�

6.2 � 10�30 C 	m
(10)(1.60 � 10�19 C)

Additional examples, video, and practice available at WileyPLUS
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Questions

1 Figure 22-22 shows three arrangements of electric field lines. In
each arrangement, a proton is released from rest at point A and is
then accelerated through point B by the electric field. Points A and
B have equal separations in the three arrangements. Rank the
arrangements according to the linear momentum of the proton at
point B, greatest first.

A B A B A B 

(a) (b) (c)

Figure 22-22 Question 1.

Field Due to a Charged Disk The electric field magnitude
at a point on the central axis through a uniformly charged disk is
given by

(22-26)

where z is the distance along the axis from the center of the disk, R
is the radius of the disk, and s is the surface charge density.

Force on a Point Charge in an Electric Field When a
point charge q is placed in an external electric field , the electro-
static force that acts on the point charge is

. (22-28)F
:

� qE
:

F
:

E
:

E �
s

2´0
�1 �

z

2z2 � R2 �,

Force has the same direction as if q is positive and the
opposite direction if q is negative.

Dipole in an Electric Field When an electric dipole of dipole
moment is placed in an electric field , the field exerts a torque 
on the dipole:

(22-34)

The dipole has a potential energy U associated with its orientation
in the field:

(22-38)

This potential energy is defined to be zero when is perpendicular
to ; it is least ( ) when is aligned with and greatest
( ) when is directed opposite .E

:
p:U � pE

E
:

p:U � �pEE
:

p:
U � �p: � E

:
.

t: � p: � E
:

.

t:E
:

p:

E
:

F
:

2 Figure 22-23 shows two
square arrays of charged par-
ticles. The squares, which are
centered on point P, are mis-
aligned.The particles are sep-
arated by either d or d/2
along the perimeters of the
squares. What are the magni-
tude and direction of the net
electric field at P?

3 In Fig. 22-24, two particles
of charge �q are arranged
symmetrically about the y
axis; each produces an elec-
tric field at point P on that axis. (a) Are the magnitudes of the fields
at P equal? (b) Is each electric field directed toward or away from
the charge producing it? (c) Is the magnitude of the net electric
field at P equal to the sum of the
magnitudes E of the two field vec-
tors (is it equal to 2E)? (d) Do the x
components of those two field vec-
tors add or cancel? (e) Do their y
components add or cancel? (f) Is
the direction of the net field at P
that of the canceling components or
the adding components? (g) What is
the direction of the net field?

4 Figure 22-25 shows four
situations in which four
charged particles are evenly
spaced to the left and right
of a central point. The
charge values are indicated.
Rank the situations accord -
ing to the magnitude of the
net electric field at the
central point, greatest first.

5 Figure 22-26 shows two
charged particles fixed in
place on an axis. (a) Where
on the axis (other than at an infinite
distance) is there a point at which
their net electric field is zero: be-
tween the charges, to their left, or to
their right? (b) Is there a point of
zero net electric field anywhere off the axis (other than at an infinite
distance)?

6 In Fig. 22-27, two identical circu-
lar nonconducting rings are centered
on the same line with their planes
perpendicular to the line. Each ring
has charge that is uniformly distrib-
uted along its circumference. The
rings each produce electric fields at points along the line. For three
situations, the charges on rings A and B are, respectively, (1) q0 and
q0, (2) �q0 and �q0, and (3) �q0 and q0. Rank the situations
according to the magnitude of the net electric field at (a) point P1

midway between the rings, (b) point P2 at the center of ring B, and
(c) point P3 to the right of ring B, greatest first.

7 The potential energies associated with four orientations of an
electric dipole in an electric field are (1) �5U0, (2) �7U0, (3) 3U0,
and (4) 5U0, where U0 is positive. Rank the orientations according
to (a) the angle between the electric dipole moment and the elec-
tric field and (b) the magnitude of the torque on the electric
dipole, greatest first.

8 (a) In Checkpoint 4, if the dipole rotates from orientation 1 to
orientation 2, is the work done on the dipole by the field positive,
negative, or zero? (b) If, instead, the dipole rotates from orienta-
tion 1 to orientation 4, is the work done by the field more than, less
than, or the same as in (a)?

E
:

p:

+6q

–2q

+3q
–2q

+3q

–q

+6q

–2q

–3q

–q

+2q –3q

+2q

–qP

Figure 22-23 Question 2.

x

y

P

–q –q

d d 

Figure 22-24 Question 3.

(1)
+e +e–e –e

(2)
+e –e+e –e

(3)
–e +e+e +e

(4)
–e –e –e+e

d d d d

Figure 22-25 Question 4.

+q –3q

Figure 22-26 Question 5.

P1 P2 P3

Ring A Ring B

Figure 22-27 Question 6.
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L L/2 L/2

P P P

(a) (b) (c)

a
b

3 m/s

10 m/s 16 m/s

5 m/s
7 m/s

c
d e

E

x x

x x

(a) (b)

(c) (d)

y y 

y y 

Figure 22-30 Question 11.

Figure 22-32 Question 13.

Figure 22-33 Question 14.

Module 22-1 The Electric Field
•1 Sketch qualitatively the electric field lines both between and
outside two concentric conducting spherical shells when a uniform

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 

Problems

http://www.wiley.com/college/halliday

9 Figure 22-28 shows two disks and a flat ring, each with the same
uniform charge Q. Rank the objects according to the magnitude of
the electric field they create at points P (which are at the same ver-
tical heights), greatest first.

curvature (at the origin). In Figs. 22-30b, c, and d, more circular
rods, each with identical uniform charges �Q, are added until the
circle is complete. A fifth arrangement (which would be labeled e)
is like that in d except the rod in the fourth quadrant has charge
�Q. Rank the five arrangements according to the magnitude of
the electric field at the center of curvature, greatest first.

12 When three electric dipoles are near each other, they each
experience the electric field of the other two, and the three-di-
pole system has a certain potential energy. Figure 22-31 shows
two arrangements in which three electric dipoles are side by side.
Each dipole has the same magnitude of electric dipole moment,
and the spacings between adjacent dipoles are identical. In which
arrangement is the potential energy of the three-dipole system
greater?

10 In Fig. 22-29, an electron e trav-
els through a small hole in plate A
and then toward plate B. A uniform
electric field in the region between
the plates then slows the electron
without deflecting it. (a) What is the
direction of the field? (b) Four other
particles similarly travel through
small holes in either plate A or plate
B and then into the region between
the plates. Three have charges �q1,
�q2, and �q3. The fourth (labeled n) is a neutron, which is electri-
cally neutral. Does the speed of each of those four other particles
increase, decrease, or remain the same in the region between the
plates?

11 In Fig. 22-30a, a circular plastic rod with uniform charge
�Q produces an electric field of magnitude E at the center of

PP

2R 2RR

P

R

(a) (b) (c)

Figure 22-28 Question 9.

14 Figure 22-33 shows five protons that are launched in a uni-
form electric field ; the magnitude and direction of the launch ve-
locities are indicated. Rank the protons according to the magni-
tude of their accelerations due to the field, greatest first.

E
:

e

+q1

n

+q2

–q3

A B 

Figure 22-29 Question 10.

(a) (b)

Figure 22-31 Question 12.

13 Figure 22-32 shows three rods, each with the same charge Q
spread uniformly along its length. Rods a (of length L) and b (of
length L/2) are straight, and points P are aligned with their mid-
points. Rod c (of length L/2) forms a complete circle about point P.
Rank the rods according to the magnitude of the electric field they
create at points P, greatest first.

positive charge q1 is on the inner shell and a uniform negative
charge �q2 is on the outer. Consider the cases q1 � q2, q1 � q2, and
q1 � q2.



charged particles on an x axis: �q �
�3.20 � 10�19 C at x � �3.00 m and
q � 3.20 � 10�19 C at x � �3.00 m.
What are the (a) magnitude and 
(b) direction (relative to the positive
direction of the x axis) of the net electric field produced at point
P at y � 4.00 m?
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•2 In Fig. 22-34 the electric field
lines on the left have twice the sepa-
ration of those on the right. (a) If the
magnitude of the field at A is 40 N/C,
what is the magnitude of the force
on a proton at A?(b) What is the
magnitude of the field at B?

Module 22-2 The Electric Field Due to a Charged Particle
•3 The nucleus of a plutonium-239 atom contains 94 protons.
Assume that the nucleus is a sphere with radius 6.64 fm and with
the charge of the protons uniformly spread through the sphere. At
the surface of the nucleus, what are the (a) magnitude and (b) direc-
tion (radially inward or outward) of the electric field produced by
the protons?

•4 Two charged particles are attached to an x axis: Particle 1 of
charge �2.00 � 10�7 C is at position x � 6.00 cm and particle 2 of
charge �2.00 � 10�7 C is at position x � 21.0 cm. Midway between
the particles, what is their net electric field in unit-vector notation?

•5 A charged particle produces an electric field with a mag-
nitude of 2.0 N/C at a point that is 50 cm away from the particle.
What is the magnitude of the particle’s charge?

•6 What is the magnitude of a point charge that would create an
electric field of 1.00 N/C at points 1.00
m away?

••7 In Fig. 22-35, the
four particles form a square of edge
length a � 5.00 cm and have charges
q1 � �10.0 nC, q2 � �20.0 nC, q3 �
�20.0 nC, and q4 � �10.0 nC. In unit-
vector notation, what net electric field
do the particles produce at the square’s
center?

••8 In Fig. 22-36, the four parti-
cles are fixed in place and have charges
q1 � q2 � �5e, q3 � �3e, and q4 �
�12e. Distance d � 5.0 mm. What is the
magnitude of the net electric field at
point P due to the particles?

••9 Figure 22-37 shows two

WWWILWSSM

SSM

SSM

A
B

Figure 22-34 Problem 2.

Figure 22-35 Problem 7.

a

a

q4 q3

q1 q2

x

y

••11 Two charged particles are fixed to an x axis: Particle 1SSM

••10 Figure 22-38a shows two charged particles fixed in place
on an x axis with separation L. The ratio q1/q2 of their charge mag-
nitudes is 4.00. Figure 22-38b shows the x component Enet,x of their
net electric field along the x axis just to the right of particle 2.The x
axis scale is set by xs � 30.0 cm. (a) At what value of x � 0 is Enet,x

maximum? (b) If particle 2 has charge �q2 � �3e, what is the
value of that maximum? 

Figure 22-36 Problem 8.

x

y

P

–q q 

Figure 22-37 Problem 9.

of charge q1 � 2.1 � 10�8 C is at position x � 20 cm and particle 2 of
charge q2 � �4.00q1 is at position x � 70 cm.At what coordinate on
the axis (other than at infinity) is the net electric field produced by
the two particles equal to zero?

E n
et

,x
 (

10
–8

 N
/C

) 

–2

–4

0

2

(b)(a)

0

x (cm) 

y

x
+q1 –q2

L

xs

Figure 22-38 Problem 10.

q2

d

P
d

d

d

q3

q4

q1

p p

e

p
e

y

x
1θ 

2θ 
3θ 

4θ 

Figure 22-39 Problem 12.

es esec

p

R R 

z

Figure 22-40 Problem 13.

y

L

x
q1 q2

Figure 22-41 Problem 14.

moved to z � R/10.0. What then are the magnitudes of
(c) at the proton’s location? (e) From (a) and (c)
we see that as the proton gets nearer to the disk, the magnitude of

Ec
:

 and (d) E
:

s,net

increases, as expected. Why does the
magnitude of from the two side
electrons decrease, as we see from
(b) and (d)?

••14 In Fig. 22-41, particle 1 of charge
q1 � �5.00q and particle 2 of charge q2

� �2.00q are fixed to an x axis. (a) As a
multiple of distance L, at what coordi-

E
:

s,net

E
:

c

nate on the axis is the net electric field of the particles zero? (b)
Sketch the net electric field lines between and around the particles.

••12 Figure 22-39 shows an un-
even arrangement of electrons (e)
and protons (p) on a circular arc of
radius r � 2.00 cm, with angles 
u1 � 30.0�, u2 � 50.0�, u3 � 30.0�, and
u4 � 20.0�. What are the (a) magni-
tude and (b) direction (relative to the
positive direction of the x axis) of the
net electric field produced at the cen-
ter of the arc?

••13 Figure 22-40 shows a proton
(p) on the central axis through a disk
with a uniform charge density due to
excess electrons.The disk is seen from
an edge-on view. Three of those elec-
trons are shown: electron ec at the
disk center and electrons es at oppo-
site sides of the disk, at radius R from
the center. The proton is initially at
distance z � R � 2.00 cm from the disk. At that location, what are
the magnitudes of (a) the electric field due to electron ec and (b)
the net electric field due to electrons es? The proton is thenE

:

s,net

E
:

c
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Figure 22-44 Problem 17.

E x
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/C
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(a)

E y
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)

Eys

0 θ
90° 180°

(c)

y

x
R

Bead 1
Ring

Exs

r
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d/2

+q

d/2

–q –

+ y

x

Figure 22-45 Problem 19.

••19 Figure 22-45 shows an electric dipole.What are the (a) magni-
tude and (b) direction (relative to the positive direction of the x axis)
of the dipole’s electric field at point P, located at distance r d?


••15 In Fig. 22-42, the three particles are
fixed in place and have charges q1 � q2 �
�e and q3 � �2e. Distance a � 6.00 mm.
What are the (a) magnitude and (b) direc-
tion of the net electric field at point P due to
the particles?

•••16 Figure 22-43 shows a plastic ring of
radius R � 50.0 cm. Two small charged
beads are on the ring: Bead 1 of charge
�2.00 mC is fixed in place at the left side;
bead 2 of charge �6.00 mC can be
moved along the ring. The two
beads produce a net electric field of
magnitude E at the center of the
ring. At what (a) positive and (b)
negative value of angle u should
bead 2 be positioned such that E �
2.00 � 105 N/C?

•••17 Two charged beads are on
the plastic ring in Fig. 22-44a. Bead
2, which is not shown, is fixed in
place on the ring, which has radius
R � 60.0 cm. Bead 1, which is not fixed in place, is initially on the x
axis at angle u � 0�. It is then moved to the opposite side, at angle
u � 180�, through the first and second quadrants of the xy
coordinate system. Figure 22-44b gives the x component of the net
electric field produced at the origin by the two beads as a function
of u, and Fig. 22-44c gives the y component of that net electric field.
The vertical axis scales are set by Exs � 5.0 � 104 N/C and Eys �
�9.0 � 104 N/C. (a) At what angle u is bead 2 located? What are
the charges of (b) bead 1 and (c) bead 2?

••20 Equations 22-8 and 22-9 are approximations of the magnitude
of the electric field of an electric dipole, at points along the dipole
axis. Consider a point P on that axis at distance z � 5.00d from the di-
pole center (d is the separation distance between the particles of the
dipole). Let Eappr be the magnitude of the field at point P as approxi-
mated by Eqs. 22-8 and 22-9. Let Eact be the actual magnitude.What is
the ratio Eappr/Eact?

•••21 Electric quadrupole. Fig-
ure 22-46 shows a generic electric
quadrupole. It consists of two dipoles
with dipole moments that are equal in
magnitude but opposite in direction.
Show that the value of E on the axis
of the quadrupole for a point P a dis-
tance z from its center (assume z
d) is given by

in which Q (� 2qd 2) is known as the quadrupole moment of the
charge distribution.

Module 22-4 The Electric Field Due to a Line of Charge
•22 Density, density, density. (a) A charge �300e is uniformly dis-
tributed along a circular arc of radius 4.00 cm, which subtends an
angle of 40�. What is the linear charge density along the arc? (b) A
charge �300e is uniformly distributed over one face of a circular
disk of radius 2.00 cm. What is the surface charge density over that
face? (c) A charge �300e is uniformly distributed over the surface
of a sphere of radius 2.00 cm. What is the surface charge density
over that surface? (d) A charge �300e is uniformly spread through
the volume of a sphere of radius 2.00 cm. What is the volume
charge density in that sphere?

•23 Figure 22-47 shows two paral-
lel nonconducting rings with their
central axes along a common line.
Ring 1 has uniform charge q1 and ra-
dius R; ring 2 has uniform charge q2

and the same radius R. The rings are
separated by distance d � 3.00R.The
net electric field at point P on the
common line, at distance R from ring
1, is zero.What is the ratio q1/q2?

••24 A thin nonconducting rod with a uniform distribution of
positive charge Q is bent into a complete circle of radius R

E �
3Q

4p´0z4 ,




SSM

a

a P
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x

Figure 22-42
Problem 15.

Figure 22-43 Problem 16.

Bead 1 

Bead 2 

y

R

x

Ring

θ 

Module 22-3 The Electric Field Due to a Dipole
••18 The electric field of an electric dipole along the dipole axis is
approximated by Eqs. 22-8 and 22-9. If a binomial expansion is
made of Eq. 22-7, what is the next term in the expression for the di-
pole’s electric field along the dipole axis? That is, what is Enext in
the expression

E �
1

2p´0

qd
z3 � Enext?

z

–q–q +q+q

d

P
+–––+

d

+p–p

Figure 22-46 Problem 21.

Ring 1 Ring 2 

P

q1 q2

R

R

d

R

Figure 22-47 Problem 23.
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rod and the component perpendicular to the rod.)

Module 22-5 The Electric Field Due to a Charged Disk
•34 A disk of radius 2.5 cm has a surface charge density of
5.3 mC/m2 on its upper face. What is the magnitude of the electric
field produced by the disk at a point on its central axis at distance z �
12 cm from the disk?

•35 At what distance along the central perpendicu-
lar axis of a uniformly charged plastic disk of radius 0.600 m is the
magnitude of the electric field equal to one-half the magnitude of
the field at the center of the surface of the disk?

••36 A circular plastic disk with radius R � 2.00 cm has a uni-
formly distributed charge Q � �(2.00 � 106)e on one face. A cir-
cular ring of width 30 mm is centered on that face, with the center
of that width at radius r � 0.50 cm. In coulombs, what charge is
contained within the width of the ring?

WWWSSM

(Fig. 22-48). The central perpendicu-
lar axis through the ring is a z axis,
with the origin at the center of the
ring. What is the magnitude of the
electric field due to the rod at (a) z �
0 and (b) z � �? (c) In terms of R, at
what positive value of z is that mag-
nitude maximum? (d) If R � 2.00 cm
and Q � 4.00 mC, what is the maxi-
mum magnitude?

••25 Figure 22-49 shows three circu-
lar arcs centered on the origin of a co-
ordinate system. On each arc, the uni-
formly distributed charge is given in
terms of Q � 2.00 mC. The radii
are given in terms of R � 10.0 cm.
What are the (a) magnitude and (b) di-
rection (relative to the positive x direc-
tion) of the net electric field at the ori-

••30 Figure 22-53 shows two
concentric rings, of radii R and
R
 � 3.00R, that lie on the same
plane. Point P lies on the central z
axis, at distance D � 2.00R from the
center of the rings. The smaller ring
has uniformly distributed charge
�Q. In terms of Q, what is the uni-
formly distributed charge on the
larger ring if the net electric field at
P is zero?

••31 In Fig. 22-54,WWWILWSSM

Figure 22-49 Problem 25.

+9Q
–4Q

+Q
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2R
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+q
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y

x

Figure 22-50
Problem 26.

Figure 22-48 Problem 24.

z

R

rods, one of charge �q and the other of
charge �q, form a circle of radius R �
8.50 cm in an xy plane. The x axis passes
through both of the connecting points,
and the charge is distributed uniformly on
both rods. If q � 15.0 pC, what are the
(a) magnitude and (b) direction (relative
to the positive direction of the x axis) of
the electric field produced at P, theE

: Figure 22-51
Problem 27.

P x

y

+q

–q

center of the circle?

••28 Charge is uniformly distributed around a ring of radius
R � 2.40 cm, and the resulting electric field magnitude E is
measured along the ring’s central axis (perpendicular to the
plane of the ring). At what distance from the ring’s center is
E maximum?

Figure 22-52 Problem 29.

P P
+Q

+Q

R

(a) (b)

R

Figure 22-53 Problem 30.

z

D
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P

R

Figure 22-54 Problem 31.

x–– – – 
P–q

L a

a nonconducting rod of length L �
8.15 cm has a charge �q � �4.23 fC
uniformly distributed along its length.
(a) What is the linear charge density
of the rod? What are the (b) magni-
tude and (c) direction (relative to
the positive direction of the x axis)
of the electric field produced at
point P, at distance a � 12.0 cm from the rod? What is the electric
field magnitude produced at distance a �50 m by (d) the rod and
(e) a particle of charge �q � �4.23 fC that we use to replace the

+ + + + + ++++

L

R

P
y

x

Figure 22-55 Problem 32.

rod? (At that distance, the rod
“looks” like a particle.)

+ + + + 

R

P

Figure 22-56 Problem 33.

•••32 In Fig. 22-55, positive
charge q � 7.81 pC is spread uni-
formly along a thin nonconducting
rod of length L � 14.5 cm. What are
the (a) magnitude and (b) direction
(relative to the positive direction of
the x axis) of the electric field pro-
duced at point P, at distance R �
6.00 cm from the rod along its per-
pendicular bisector?

•••33 In Fig. 22-56, a “semi-
infinite” nonconducting rod (that is,
infinite in one direction only) has
uniform linear charge density l.
Show that the electric field at pointE

:

p

P makes an angle of 45� with the rod
and that this result is independent of
the distance R. (Hint: Separately find
the component of parallel to theE

:

p

gin due to the arcs?

••26 In Fig. 22-50, a thin glass rodILW

forms a semicircle of radius r � 5.00 cm.
Charge is uniformly distributed along the rod,
with �q � 4.50 pC in the upper half and �q
� �4.50 pC in the lower half.What are the (a)
magnitude and (b) direction (relative to the
positive direction of the x axis) of the electric
field at P, the center of the semicircle?

••27 In Fig. 22-51, two curved plastic

E
:

••29 Figure 22-52a shows a nonconducting rod with a uniformly
distributed charge Q.The rod forms a half-circle with radius R and
produces an electric field of magnitude Earc at its center of curvature
P. If the arc is collapsed to a point at distance R from P (Fig. 22-52b),
by what factor is the magnitude of the electric field at P multiplied?

�



tric field of magnitude 1.00 � 103 N/C, traveling along a field line
in the direction that retards its motion. (a) How far will the elec-
tron travel in the field before stopping momentarily, and (b) how
much time will have elapsed? (c) If the region containing the elec-
tric field is 8.00 mm long (too short for the electron to stop within
it), what fraction of the electron’s initial kinetic energy will be lost
in that region?

•41 A charged cloud system produces an electric field in theSSM
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an electric field. Determine the field (a) magnitude and (b) di-
rection.

•47 Beams of high-speed protons can be produced in
“guns” using electric fields to accelerate the protons. (a) What
acceleration would a proton experience if the gun’s electric field
were 2.00 � 104 N/C? (b) What speed
would the proton attain if the field ac-
celerated the proton through a distance
of 1.00 cm?

••48 In Fig. 22-59, an electron (e) is to
be released from rest on the central axis
of a uniformly charged disk of radius R.
The surface charge density on the disk is
�4.00 mC/m2. What is the magnitude of
the electron’s initial acceleration if it is
released at a distance (a) R, (b) R/100,
and (c) R/1000 from the center of the disk? (d) Why does the ac-
celeration magnitude increase only slightly as the release point is
moved closer to the disk?

••49 A 10.0 g block with a charge of �8.00 � 10�5 C is placed in
an electric field What are the (a) magni-
tude and (b) direction (relative to the positive direction of the x
axis) of the electrostatic force on the block? If the block is released
from rest at the origin at time t � 0, what are its (c) x and (d) y co-
ordinates at t � 3.00 s?

••50 At some instant the velocity components of an electron
moving between two charged parallel plates are vx � 1.5 � 105 m/s
and vy � 3.0 � 103 m/s. Suppose the electric field between the
plates is uniform and given by . In unit-vector nota-
tion, what are (a) the electron’s acceleration in that field and (b) the
electron’s velocity when its x coordinate has changed by 2.0 cm?

••51 Assume that a honeybee is a sphere of diameter 1.000
cm with a charge of 45.0 pC uniformly spread over its surface.
Assume also that a spherical pollen grain of diameter 40.0 mm is
electrically held on the surface of the bee because the bee’s charge
induces a charge of �1.00 pC on the near side of the grain and a
charge of �1.00 pC on the far side. (a) What is the magnitude of
the net electrostatic force on the grain due to the bee? Next, as-
sume that the bee brings the grain to a distance of 1.000 mm from
the tip of a flower’s stigma and that the tip is a particle of charge
�45.0 pC. (b) What is the magnitude of the net electrostatic force
on the grain due to the stigma? (c) Does the grain remain on the
bee or does it move to the stigma?

••52 An electron enters a region of uniform electric field with an
initial velocity of 40 km/s in the same direction as the electric field,
which has magnitude E � 50 N/C. (a) What is the speed of the
electron 1.5 ns after entering this region? (b) How far does the
electron travel during the 1.5 ns interval?

�

E
:

� (120 N/C)ĵ

E
:

� (3000î � 600ĵ ) N/C.

SSM

Module 22-6 A Point Charge in an Electric Field
•39 In Millikan’s experiment, an oil drop of radius 1.64 mm and
density 0.851 g/cm3 is suspended in chamber C (Fig. 22-16) when a
downward electric field of 1.92 � 105 N/C is applied. Find the
charge on the drop, in terms of e.

•40 An electron with a speed of 5.00 � 108 cm/s enters an elec-

••37 Suppose you design an appa-
ratus in which a uniformly charged
disk of radius R is to produce an
electric field. The field magnitude is
most important along the central
perpendicular axis of the disk, at a
point P at distance 2.00R from the
disk (Fig. 22-57a). Cost analysis sug-
gests that you switch to a ring of the
same outer radius R but with inner
radius R /2.00 (Fig. 22-57b). Assume
that the ring will have the same sur-
face charge density as the original disk. If you switch to the ring, by
what percentage will you decrease the electric field magnitude at P?

••38 Figure 22-58a shows a circular disk that is uniformly
charged. The central z axis is perpendicular to the disk face, with
the origin at the disk. Figure 22-58b gives the magnitude of the
electric field along that axis in terms of the maximum magnitude
Em at the disk surface. The z axis scale is set by zs � 8.0 cm.What is
the radius of the disk?

•44 An alpha particle (the nucleus of a helium atom) has a mass
of 6.64 � 10�27 kg and a charge of �2e.What are the (a) magnitude
and (b) direction of the electric field that will balance the gravita-
tional force on the particle?

•45 An electron on the axis of an electric dipole is 25 nm from
the center of the dipole. What is the magnitude of the electrostatic
force on the electron if the dipole moment is 3.6 � 10�29 C 	m?
Assume that 25 nm is much larger than the separation of the charged
particles that form the dipole.

•46 An electron is accelerated eastward at 1.80 � 109 m/s2 by

ILW

P

z

(a)

P

z

(b)

Figure 22-57 Problem 37.

z

(a) (b)

Em

0.5Em

0
z (cm) 

zs

Figure 22-58 Problem 38.

Figure 22-59
Problem 48.

e

air near Earth’s surface. A particle of charge �2.0 � 10�9 C is
acted on by a downward electrostatic force of 3.0 � 10�6 N when
placed in this field. (a) What is the magnitude of the electric field?
What are the (b) magnitude and (c) direction of the electrostatic
force on the proton placed in this field? (d) What is the magni-
tude of the gravitational force on the proton? (e) What is the ra-
tio Fel /Fg in this case?

•42 Humid air breaks down (its molecules become ionized) in an
electric field of 3.0 � 106 N/C. In that field, what is the magnitude
of the electrostatic force on (a) an electron and (b) an ion with a
single electron missing?

•43 An electron is released from rest in a uniform electricSSM

F
:

g

F
:

el

field of magnitude 2.00 � 104 N/C. Calculate the acceleration of
the electron. (Ignore gravitation.)
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••53 Two large parallel copper
plates are 5.0 cm apart and have a
uniform electric field between them
as depicted in Fig. 22-60. An elec-
tron is released from the negative
plate at the same time that a proton

••61 Find an expression for the oscillation frequency of an elec-
tric dipole of dipole moment and rotational inertia I for small
amplitudes of oscillation about its equilibrium position in a uni-
form electric field of magnitude E.

Additional Problems
62 (a) What is the magnitude of an electron’s acceleration in a uni-
form electric field of magnitude 1.40 � 106 N/C? (b) How long would
the electron take, starting from rest, to attain one-tenth the speed of
light? (c) How far would it travel in that time?

63 A spherical water drop 1.20 mm in diameter is suspended in calm
air due to a downward-directed atmospheric electric field of magni-
tude E � 462 N/C. (a) What is the magnitude of the gravitational
force on the drop? (b) How many excess electrons does it have?

64 Three particles, each with positive charge Q, form an equilat-
eral triangle, with each side of length d.What is the magnitude of the
electric field produced by the particles at the midpoint of any side?

65 In Fig. 22-64a, a particle of charge �Q produces an electric field
of magnitude Epart at point P, at distance R from the particle. In
Fig. 22-64b, that same amount of charge is spread uniformly along
a circular arc that has radius
R and subtends an angle u.
The charge on the arc pro-
duces an electric field
of magnitude Earc at its cen-
ter of curvature P. For what
value of u does Earc �
0.500Epart? (Hint: You will
probably resort to a graphi-
cal solution.)

66 A proton and an electron form two corners of an equilateral
triangle of side length 2.0 � 10�6 m. What is the magnitude of the
net electric field these two particles produce at the third corner?

67 A charge (uniform linear density � 9.0 nC/m) lies on a string
that is stretched along an x axis from x � 0 to x � 3.0 m. Determine
the magnitude of the electric field at x � 4.0 m on the x axis.

68 In Fig. 22-65, eight particles form a square in which distance 
d � 2.0 cm. The charges are q1 � �3e,
q2 � �e, q3 � �5e, q4 � �2e, q5 � �3e,
q6 � �e, q7 � �5e, and q8 � �e. In unit-
vector notation, what is the net electric
field at the square’s center?

69 Two particles, each with a charge
of magnitude 12 nC, are at two of the
vertices of an equilateral triangle with
edge length 2.0 m. What is the magni-
tude of the electric field at the third
vertex if (a) both charges are positive
and (b) one charge is positive and the
other is negative?

70 The following table gives the charge seen by Millikan at dif-
ferent times on a single drop in his experiment. From the data,
calculate the elementary charge e.

6.563 � 10�19 C 13.13 � 10�19 C 19.71 � 10�19 C
8.204 � 10�19 C 16.48 � 10�19 C 22.89 � 10�19 C
11.50 � 10�19 C 18.08 � 10�19 C 26.13 � 10�19 C

p:

is released from the positive plate.
Neglect the force of the particles on
each other and find their distance
from the positive plate when they
pass each other. (Does it surprise you that you need not know the
electric field to solve this problem?)

••54 In Fig. 22-61, an electron is
shot at an initial speed of 
v0 � 2.00 � 106 m/s, at angle u0 �
40.0� from an x axis. It moves
through a uniform electric field

. A screen for de-
tecting electrons is positioned par-
allel to the y axis, at distance x � 3.00 m. In unit-vector notation,
what is the velocity of the electron when it hits the screen?

••55 A uniform electric field exists in a region between two
oppositely charged plates. An electron is released from rest at the
surface of the negatively charged plate and strikes the surface of

ILW

E
:

� (5.00 N/C)ĵ

the opposite plate, 2.0 cm away, in a time 1.5 � 10�8 s. (a) What is

Detecting
screen

y

x
θ 0

E
v0

Figure 22-61 Problem 54.

Figure 22-60 Problem 53.
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Figure 22-65
Problem 68.

the speed of the electron as it strikes the second plate? (b) What is
the magnitude of the electric field ?

Module 22-7 A Dipole in an Electric Field
•56 An electric dipole consists of charges �2e and �2e separated
by 0.78 nm. It is in an electric field of strength 3.4 � 106 N/C.
Calculate the magnitude of the torque on the dipole when the di-
pole moment is (a) parallel to, (b) perpendicular to, and (c) an-
tiparallel to the electric field.

•57 An electric dipole consisting of charges of magnitude
1.50 nC separated by 6.20 mm is in an electric field of strength 1100
N/C. What are (a) the magnitude of the electric dipole moment and
(b) the difference between the potential energies for dipole orienta-
tions parallel and antiparallel to ?E

:

SSM

E
:

••58 A certain electric dipole is
placed in a uniform electric field of
magnitude 20 N/C. Figure 22-62 gives
the potential energy U of the dipole
versus the angle between and the
dipole moment . The vertical axis
scale is set by Us 100 10�28 J.What
is the magnitude of ?

••59 How much work is required to

p:
��

p:
E
:

u

E
:

turn an electric dipole 180� in a uniform electric field of magnitude 
E � 46.0 N/C if the dipole moment has a magnitude of p � 3.02 �
10�25 C 	m and the initial angle is 64�?

••60 A certain electric dipole is placed
in a uniform electric field of magnitude
40 N/C. Figure 22-63 gives the magnitude
t of the torque on the dipole versus the
angle u between field and the dipole
moment .The vertical axis scale is set by

What is the mag-
nitude of ?p:
ts � 100 � 10�28 N 	m.

p:
E
:

E
:
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1
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Figure 22-69 Problem 87.

71 A charge of 20 nC is uniformly distributed along a straight
rod of length 4.0 m that is bent into a circular arc with a radius of
2.0 m. What is the magnitude of the electric field at the center of
curvature of the arc?

72 An electron is constrained to the central axis of the ring of
charge of radius R in Fig. 22-11, with z � R. Show that the electro-
static force on the electron can cause it to oscillate through the ring
center with an angular frequency

,

where q is the ring’s charge and m is the electron’s mass.

73 The electric field in an xy plane produced by a posi-SSM

v � A
eq

4p´0 mR3

what time does the hour hand point in the same direction as the
electric field vector at the center of the dial? (Hint: Use symmetry.)

80 Calculate the electric dipole moment of an electron and a
proton 4.30 nm apart.

81 An electric field with an average magnitude of about 150 N/C
points downward in the atmosphere near Earth’s surface. We wish
to “float” a sulfur sphere weighing 4.4 N in this field by charging
the sphere. (a) What charge (both sign and magnitude) must be
used? (b) Why is the experiment impractical?

82 A circular rod has a radius of curvature R � 9.00 cm and a
uniformly distributed positive charge Q � 6.25 pC and subtends
an angle u � 2.40 rad. What is the magnitude of the electric field
that Q produces at the center of curvature?

83 An electric dipole with dipole moment

is in an electric field (a) What is the potential
energy of the electric dipole? (b) What is the torque acting on it?
(c) If an external agent turns the dipole until its electric dipole
moment is

how much work is done by the
agent?

84 In Fig. 22-68, a uniform, upward
electric field of magnitude 2.00 �
103 N/C has been set up between two
horizontal plates by charging the
lower plate positively and the upper
plate negatively. The plates have
length L � 10.0 cm and separation d
� 2.00 cm. An electron is then shot
between the plates from the left edge of the lower plate. The initial
velocity of the electron makes an angle u � 45.0� with the lowerv:0

E
:

p: � (�4.00î � 3.00ĵ )(1.24 � 10�30 C �m),

E
:

� (4000 N/C)î .

p: � (3.00î � 4.00ĵ )(1.24 � 10�30 C �m)

SSM

E
:

tively charged particle is at the point
(3.0, 3.0) cm and at the point (2.0, 0) cm.What are the (a)
x and (b) y coordinates of the particle? (c) What is the charge of
the particle?

74 (a) What total (excess) charge q must the disk in Fig. 22-15
have for the electric field on the surface of the disk at its center to
have magnitude 3.0 � 106 N/C, the E value at which air breaks
down electrically, producing sparks? Take the disk radius as 2.5 cm.
(b) Suppose each surface atom has an effective cross-sectional
area of 0.015 nm2. How many atoms are needed to make up the
disk surface? (c) The charge calculated in (a) results from some of
the surface atoms having one excess electron. What fraction of
these atoms must be so charged?

75 In Fig. 22-66, particle 1 (of
charge �1.00 mC), particle 2 (of
charge �1.00 mC), and particle 3
(of charge Q) form an equilateral
triangle of edge length a. For what
value of Q (both sign and magni-
tude) does the net electric field pro-
duced by the particles at the center
of the triangle vanish?

76 In Fig. 22-67, an electric dipole swings
from an initial orientation i (ui � 20.0�) to a
final orientation f (uf � 20.0�) in a uniform
external electric field . The electric dipole
moment is 1.60 � 10�27 C �m; the field magni-
tude is 3.00 � 106 N/C. What is the change in
the dipole’s potential energy?

77 A particle of charge �q1 is at the origin of
an x axis. (a) At what location on the axis should
a particle of charge �4q1 be placed so that the
net electric field is zero at x � 2.0 mm on the
axis? (b) If, instead, a particle of charge �4q1 is
placed at that location, what is the direction (relative to the positive
direction of the x axis) of the net electric field at x � 2.0 mm?

78 Two particles, each of positive charge q, are fixed in place on a
y axis, one at y � d and the other at y � �d. (a) Write an expres-
sion that gives the magnitude E of the net electric field at points on
the x axis given by x � ad. (b) Graph E versus a for the range 0 	
a 	 4. From the graph, determine the values of a that give (c) the
maximum value of E and (d) half the maximum value of E.

79 A clock face has negative point charges �q, �2q, �3q, . . . ,
�12q fixed at the positions of the corresponding numerals. The
clock hands do not perturb the net field due to the point charges.At

E
:

100î N/C
7.2(4.0î � 3.0ĵ ) N/C
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Figure 22-66 Problems 75
and 86.
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Figure 22-68 Problem 84.

plate and has a magnitude of 6.00 � 106 m/s. (a) Will the electron
strike one of the plates? (b) If so, which plate and how far horizon-
tally from the left edge will the electron strike?

85 For the data of Problem 70, assume that the charge q on the
drop is given by q � ne, where n is an integer and e is the elemen-
tary charge. (a) Find n for each given value of q. (b) Do a linear re-
gression fit of the values of q versus the values of n and then use
that fit to find e.

86 In Fig. 22-66, particle 1 (of charge �2.00 pC), particle 2 (of
charge �2.00 pC), and particle 3 (of charge �5.00 pC) form an
equilateral triangle of edge length a � 9.50 cm. (a) Relative to
the positive direction of the x axis, determine the direction of
the force on particle 3 due to the other particles by sketching
electric field lines of the other particles. (b) Calculate the mag-
nitude of .

87 In Fig. 22-69, particle 1 of charge q1 � 1.00 pC and particle 2
of charge q2 � �2.00 pC are fixed at a distance d � 5.00 cm apart.
In unit-vector notation, what is the net electric field at points (a) A,
(b) B, and (c) C? (d) Sketch the electric field lines.

F
:

3

F
:

3
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C H A P T E R  2 3

Gauss’ Law

23-1 ELECTRIC FLUX

After reading this module, you should be able to . . .

23.01 Identify that Gauss’ law relates the electric field at points
on a closed surface (real or imaginary, said to be a Gaussian
surface) to the net charge enclosed by that surface.

23.02 Identify that the amount of electric field piercing a sur-
face (not skimming along the surface) is the electric flux 

through the surface.

23.03 Identify that an area vector for a flat surface is a vector
that is perpendicular to the surface and that has a magni-
tude equal to the area of the surface.

23.04 Identify that any surface can be divided into area ele-
ments (patch elements) that are each small enough and
flat enough for an area vector to be assigned to it, with
the vector perpendicular to the element and having a mag-
nitude equal to the area of the element.

dA
:

23.05 Calculate the flux 
 through a surface by integrating the
dot product of the electric field vector and the area vec-
tor (for patch elements) over the surface, in magnitude-
angle notation and unit-vector notation.

23.06 For a closed surface, explain the algebraic signs associ-
ated with inward flux and outward flux.

23.07 Calculate the net flux 
 through a closed surface, alge-
braic sign included, by integrating the dot product of the
electric field vector and the area vector (for patch ele-
ments) over the full surface.

23.08 Determine whether a closed surface can be broken
up into parts (such as the sides of a cube) to simplify
the integration that yields the net flux through the
surface.

dA
:

E
:

dA
:

E
:

● The electric flux 
 through a surface is the amount of electric
field that pierces the surface.

● The area vector for an area element (patch element) on
a surface is a vector that is perpendicular to the element and
has a magnitude equal to the area dA of the element.

● The electric flux d
 through a patch element with area 
vector is given by a dot product:

● The total flux through a surface is given by

d
 � E
:

� dA
:

.

dA
:

dA
:

Key Ideas

Learning Objectives

(total flux),

where the integration is carried out over the surface.

● The net flux through a closed surface (which is used in
Gauss’ law) is given by

(net flux),

where the integration is carried out over the entire surface.


 � 
E
:

� dA
:


 � �E
:

� dA
:

What Is Physics?
In the preceding chapter we found the electric field at points near extended
charged objects, such as rods. Our technique was labor-intensive: We split the
charge distribution up into charge elements dq, found the field due to an ele-
ment, and resolved the vector into components.Then we determined whether the
components from all the elements would end up canceling or adding. Finally we
summed the adding components by integrating over all the elements, with several
changes in notation along the way.

One of the primary goals of physics is to find simple ways of solving such
labor-intensive problems. One of the main tools in reaching this goal is the use of
symmetry. In this chapter we discuss a beautiful relationship between charge and

dE
:
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electric field that allows us, in certain symmetric situations, to find the electric
field of an extended charged object with a few lines of algebra.The relationship is
called Gauss’ law, which was developed by German mathematician and physicist
Carl Friedrich Gauss (1777–1855).

Let’s first take a quick look at some simple examples that give the spirit of
Gauss’ law. Figure 23-1 shows a particle with charge �Q that is surrounded by an
imaginary concentric sphere.At points on the sphere (said to be a Gaussian surface),
the electric field vectors have a moderate magnitude (given by E � kQ/r2) and point
radially away from the particle (because it is positively charged). The electric field
lines are also outward and have a moderate density (which, recall, is related to the
field magnitude).We say that the field vectors and the field lines pierce the surface.

Figure 23-2 is similar except that the enclosed particle has charge �2Q.
Because the enclosed charge is now twice as much, the magnitude of the field
vectors piercing outward through the (same) Gaussian surface is twice as much
as in Fig. 23-1, and the density of the field lines is also twice as much. That sen-
tence, in a nutshell, is Gauss’ law.

Guass’ law relates the electric field at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

Let’s check this with a third example with a particle that is also enclosed by the
same spherical Gaussian surface (a Gaussian sphere, if you like, or even the catchy
G-sphere) as shown in Fig. 23-3. What is the amount and sign of the enclosed
charge? Well, from the inward piercing we see immediately that the charge must be
negative. From the fact that the density of field lines is half that of Fig. 23-1, we also
see that the charge must be 0.5Q. (Using Gauss’ law is like being able to tell what is
inside a gift box by looking at the wrapping paper on the box.)

The problems in this chapter are of two types. Sometimes we know the
charge and we use Gauss’ law to find the field at some point. Sometimes we know
the field on a Gaussian surface and we use Gauss’ law to find the charge enclosed
by the surface. However, we cannot do all this by simply comparing the density of
field lines in a drawing as we just did. We need a quantitative way of determining
how much electric field pierces a surface. That measure is called the electric flux.

Electric Flux
Flat Surface, Uniform Field. We begin with a flat surface with area A in a uni-
form electric field . Figure 23-4a shows one of the electric field vectors pierc-
ing a small square patch with area �A (where � indicates “small”). Actually, only
the x component (with magnitude Ex � E cos u in Fig. 23-4b) pierces the patch.
The y component merely skims along the surface (no piercing in that) and does
not come into play in Gauss’ law.The amount of electric field piercing the patch is
defined to be the electric flux �� through it:

�
 � (E cos u) �A.

E
:

E
:

Gaussian
surface

Field line

E

Figure 23-4 (a) An electric field vector pierces
a small square patch on a flat surface. (b)
Only the x component actually pierces the
patch; the y component skims across it. (c)
The area vector of the patch is perpendicu-
lar to the patch, with a magnitude equal to
the patch’s area.

Figure 23-1 Electric field vectors and field
lines pierce an imaginary, spherical
Gaussian surface that encloses a particle
with charge �Q.

(a) (b) (c)

y

x

y

u

E

A
�A�A

y

x
Ex

Ey

�A
x

Figure 23-2 Now the enclosed particle has
charge �2Q.

Figure 23-3 Can you tell what the enclosed
charge is now?
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An inward piercing field is negative flux. An outward piercing field is positive
flux. A skimming field is zero flux.

Net Flux. In principle, to find the net flux through the surface in Fig. 23-5, we
find the flux at every patch and then sum the results (with the algebraic signs in-
cluded). However, we are not about to do that much work. Instead, we shrink the
squares to patch elements with area vectors and then integrate:

(net flux). (23-4)
 � 
 E
:

� dA
:

dA
:

There is another way to write the right side of this statement so that we have only
the piercing component of .We define an area vector that is perpendicular to
the patch and that has a magnitude equal to the area �A of the patch (Fig. 23-4c).
Then we can write

and the dot product automatically gives us the component of that is parallel to
and thus piercing the patch.
To find the total flux 
 through the surface in Fig. 23-4, we sum the flux

through every patch on the surface:

(23-1)

However, because we do not want to sum hundreds (or more) flux values, we trans-
form the summation into an integral by shrinking the patches from small squares
with area �A to patch elements (or area elements) with area dA.The total flux is then

(total flux). (23-2)

Now we can find the total flux by integrating the dot product over the full surface.
Dot Product. We can evaluate the dot product inside the integral by writing the

two vectors in unit-vector notation. For example, in Fig. 23-4, � dA and mightE
:

îdA
:


 � �E
:

� dA
:


 � � E
:

� �A
:

.

�A
:

E
:

�
 � E
:

� �A
:

,

�A
:

E
:

notation: E cos u dA. When the electric field is uniform and the surface is flat, the
product E cos u is a constant and comes outside the integral. The remaining is
just an instruction to sum the areas of all the patch elements to get the total area, but
we already know that the total area is A. So the total flux in this simple situation is


 � (E cos u)A (uniform field, flat surface). (23-3)

Closed Surface. To use Gauss’ law to relate flux and charge, we need a closed
surface. Let’s use the closed surface in Fig. 23-5 that sits in a nonuniform electric
field. (Don’t worry.The homework problems involve less complex surfaces.) As be-
fore, we first consider the flux through small square patches. However, now we are
interested in not only the piercing components of the field but also on whether the
piercing is inward or outward (just as we did with Figs. 23-1 through 23-3).

Directions. To keep track of the piercing direction, we again use an area vec-
tor that is perpendicular to a patch, but now we always draw it pointing outward
from the surface (away from the interior). Then if a field vector pierces outward, it
and the area vector are in the same direction, the angle is u � 0, and cos u � 1.
Thus, the dot product is positive and so is the flux. Conversely, if a field vec-
tor pierces inward, the angle is u � 180� and cos u � �1. Thus, the dot product is
negative and so is the flux. If a field vector skims the surface (no piercing), the dot
product is zero (because cos 90� � 0) and so is the flux. Figure 23-5 gives some
general examples and here is a summary:

�A
:

E
:

�

�A
:

�dA

Gaussian
surface 

1 3

2

Δ 

θ 

1
Φ < 0 

Φ = 0 

Φ > 0 
3

θ 

2

A

Δ A

Δ A
E

E

E

Pierce
inward:
negative
flux

Pierce
outward:
positive
flux

Skim: zero flux

Figure 23-5 A Gaussian surface of arbitrary
shape immersed in an electric field.The
surface is divided into small squares of area
�A.The electric field vectors and the
area vectors for three representative
squares, marked 1, 2, and 3, are shown.

�A
:

E
:

be, say, (4 � 4 ) N/C. Instead, we can evaluate the dot product in magnitude-angleĵî



The loop on the integral sign indicates that we must integrate over the entire closed
surface, to get the net flux through the surface (as in Fig. 23-5, flux might enter on
one side and leave on another side). Keep in mind that we want to determine the
net flux through a surface because that is what Gauss’ law relates to the charge en-
closed by the surface. (The law is coming up next.) Note that flux is a scalar (yes, we
talk about field vectors but flux is the amount of piercing field, not a vector itself).
The SI unit of flux is the newton–square-meter per coulomb .(N �m2/C)
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Checkpoint 1
The figure here shows a Gaussian cube of face area A
immersed in a uniform electric field that has the positive
direction of the z axis. In terms of E and A, what is the flux
through (a) the front face (which is in the xy plane), (b) the
rear face, (c) the top face, and (d) the whole cube?

E
:

y

x

z

A

E

where gives the cap’s area A (� pR2). Similarly, for the
right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90� at
all points,

Substituting these results into Eq. 23-5 leads us to

� � �EA � 0 � EA � 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

�
b

E
:

� dA
:

� �E(cos 90�) dA � 0.

�
c

E
:

� dA
:

� �E(cos 0) dA � EA.

u �

� dA

�
a

E
:

� dA
:

� �E(cos 180�) dA � �E �dA � �EA,

Sample Problem 23.01 Flux through a closed cylinder, uniform field

Figure 23-6 shows a Gaussian surface in the form of a
closed cylinder (a Gaussian cylinder or G-cylinder) of
radius R. It lies in a uniform electric field with the
cylinder’s central axis (along the length of the cylinder)
parallel to the field. What is the net flux � of the electric
field through the cylinder?

KEY IDEAS

We can find the net flux � with Eq. 23-4 by integrating the
dot product over the cylinder’s surface. However,
we cannot write out functions so that we can do that with
one integral. Instead, we need to be a bit clever: We break
up the surface into sections with which we can actually eval-
uate an integral.

Calculations: We break the integral of Eq. 23-4 into three
terms: integrals over the left cylinder cap a, the curved cylin-
drical surface b, and the right cap c:

(23-5)

Pick a patch element on the left cap. Its area vector 
must be perpendicular to the patch and pointing away from
the interior of the cylinder. In Fig. 23-6, that means the angle
between it and the field piercing the patch is 180�.Also, note
that the electric field through the end cap is uniform and
thus E can be pulled out of the integration. So, we can write the
flux through the left cap as

dA
:

� �
a

E
:

� dA
:

� �
b

E
:

� dA
:

� �
c

E
:

� dA
:

.

� � 
 E
:

� dA
:

E
:

� dA
:

E
:

Additional examples, video, and practice available at WileyPLUS

Figure 23-6 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface 

θ 

a c

θ 

b

dA

dA

dA
E

E

E
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We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x � 3.0 m. This means we can substitute that constant value
for x. This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face, so

�r � (9.0 N/C)(4.0 m2) � 36 N �m2/C. (Answer)

Left face: We repeat this procedure for the left face. However,

��dA

�r �  3.0 � (3.0) dA � 9.0 � dA.

� � (3.0x dA � 0) � 3.0 � x dA.

� � [(3.0x)(dA)î � î � (4.0)(dA)ĵ � î]

�r � � E
:

� dA
:

� � (3.0xî � 4.0ĵ) � (dAî)

Sample Problem 23.02 Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-7a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the top
face? (We consider the other faces in another sample
problem.)

KEY IDEA

We can find the flux � through the surface by integrating
the scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any patch element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-7b and c, but we would have an
identical vector for any other choice of a patch element
on that face. The most convenient way to express the vector
is in unit-vector notation,

From Eq. 23-4, the flux �r through the right face is then

dA
:

� dAî.

dA
:

A
:

E
:

� dA
:

E
:

� 3.0xî � 4.0ĵ

A

Figure 23-7 (a) A Gaussian cube with one edge on the x
axis lies within a nonuniform electric field that de-
pends on the value of x. (b) Each patch element has an
outward vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces the
area and produces positive (outward) flux.The y com-
ponent does not pierce the area and thus does not
produce any flux. (Figure continues on following page)

y

x

z
x = 1.0 m x = 3.0 m

E

Ex

Ey

Gaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

Ex

Ey

y

x

z

dA

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.(c)

y

x

z

dA

dA

dA

dA

dA

The element area vector
(for a patch element) is
perpendicular to the surface
and outward.

(b)(a)



Gauss’ Law
Gauss’ law relates the net flux � of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

´0� � qenc (Gauss’ law). (23-6)
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Figure 23-7 (Continued from previous page) (d) Left face: the x component of the
field produces negative (inward) flux. (e) Top face: the y component of the field
produces positive (outward) flux.

23-2 GAUSS’ LAW
Learning Objectives

no contribution to the net flux through the closed surface.
23.12 Derive the expression for the magnitude of the electric

field of a charged particle by using Gauss’ law.
23.13 Identify that for a charged particle or uniformly charged

sphere, Gauss’ law is applied with a Gaussian surface that
is a concentric sphere.

● Gauss’ law relates the net flux � penetrating a closed sur-
face to the net charge qenc enclosed by the surface:

(Gauss’ law).´0� � qenc

● Gauss’ law can also be written in terms of the electric field
piercing the enclosing Gaussian surface:

(Gauss’ law).´0
E
:

� dA
:

� qenc

After reading this module, you should be able to . . . 

23.09 Apply Gauss’ law to relate the net flux � through a
closed surface to the net enclosed charge qenc.

23.10 Identify how the algebraic sign of the net enclosed
charge corresponds to the direction (inward or outward)
of the net flux through a Gaussian surface.

23.11 Identify that charge outside a Gaussian surface makes

Key Ideas

Additional examples, video, and practice available at WileyPLUS

two factors change. (1) The element area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-7d). (2) On the left face, x � 1.0 m. With these
changes, we find that the flux through the left face is

�l � �12 N �m2/C. (Answer)

Top face: Now points in the positive direction of the y
axis, and thus (Fig. 23-7e).The flux is�tdA

:
� dAĵ

dA
:

�l

dA
:

� �dAî
dA

:

(Answer)� 16 N �m2/C.

� �  (0 � 4.0 dA) � 4.0 � dA

� � [(3.0x)(dA)î � ĵ � (4.0)(dA)ĵ � ĵ]

�t � �(3.0xî � 4.0ĵ) � (dAĵ)

y

x

z

dA

Ex

Ey

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

(e)

y

x

z

dA Ex

Ey

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

(d )
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By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the enclosed
positive and negative charges, and it can be positive, negative, or zero. We include
the sign, rather than just use the magnitude of the enclosed charge, because the sign
tells us something about the net flux through the Gaussian surface: If qenc is posi-
tive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is not in-
cluded in the term qenc in Gauss’ law.The exact form and location of the charges in-
side the Gaussian surface are also of no concern; the only things that matter on the
right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the net enclosed
charge.The quantity on the left side of Eq.23-7,however, is the electric field result-
ing from all charges, both those inside and those outside the Gaussian surface. This
statement may seem to be inconsistent, but keep this in mind: The electric field due
to a charge outside the Gaussian surface contributes zero net flux through the sur-
face,because as many field lines due to that charge enter the surface as leave it.

Let us apply these ideas to Fig. 23-8, which shows two particles, with charges
equal in magnitude but opposite in sign, and the field lines describing the electric
fields the particles set up in the surrounding space. Four Gaussian surfaces are
also shown, in cross section. Let us consider each in turn.
Surface S1. The electric field is outward for all points on this surface. Thus, the

flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if � is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux
of the electric field through this surface is negative and so is the enclosed charge,
as Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc � 0. Gauss’ law
(Eq. 23-6) requires that the net flux of the electric field through this surface
be zero. That is reasonable because all the field lines pass entirely through
the surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed positive
and negative charges have equal magnitudes. Gauss’ law requires that the net
flux of the electric field through this surface be zero. That is reasonable
because there are as many field lines leaving surface S4 as entering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-8? The pattern of the field lines would certainly change, but the
net flux for each of the four Gaussian surfaces would not change. Thus, the value
of Q would not enter Gauss’ law in any way, because Q lies outside all four of the
Gaussian surfaces that we are considering.

E
:

´0
 E
:

� dA
:

� qenc

Figure 23-8 Two charges, equal in magnitude
but opposite in sign, and the field lines that
represent their net electric field. Four
Gaussian surfaces are shown in cross sec-
tion. Surface S1 encloses the positive
charge. Surface S2 encloses the negative
charge. Surface S3 encloses no charge.
Surface S4 encloses both charges and thus
no net charge.

S1

S4

S2

S3

–

+

Checkpoint 2
The figure shows three situations in which a Gaussian cube sits in
an electric field.The arrows and the values indicate the directions
of the field lines and the magnitudes (in N ?m2/C) of the flux
through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a posi-
tive net charge, (b) a negative net charge, and (c) zero net charge? 7

2

7

5 3

4

(1)

4

6

5

33

10

(2)
5

7

2
6 8

5

(3)
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Calculations: To find the field at point P1, we construct a
Gaussian sphere with P1 on its surface and thus with a radius
of r1. Because the charge enclosed by the Gaussian sphere is
positive, the electric flux through the surface must be positive
and thus outward. So, the electric field pierces the surface
outward and, because of the spherical symmetry, must be radi-
ally outward, as drawn in Fig. 23-10b. That figure does not in-
clude the plastic shell because the shell is not enclosed by the
Gaussian sphere.

Consider a patch element on the sphere at P1. Its area vec-
tor is radially outward (it must always be outward from a
Gaussian surface).Thus the angle u between and is zero.
We can now rewrite the left side of Eq.23-7 (Gauss’ law) as

´0
 E
:

� dA
:

� ´0
 E cos 0 dA � ´0
 E dA � ´0 E
dA,

dA
:

E
:

dA
:

E
:

Sample Problem 23.03 Using Gauss’ law to find the electric field

Figure 23-10a shows, in cross section, a plastic, spherical shell
with uniform charge Q � �16e and radius R � 10 cm.A parti-
cle with charge q � �5e is at the center.What is the electric field
(magnitude and direction) at (a) point P1 at radial distance r1 �
6.00 cm and (b) point P2 at radial distance r2 � 12.0 cm?

KEY IDEAS

(1) Because the situation in Fig. 23-10a has spherical symmetry,
we can apply Gauss’ law (Eq. 23-7) to find the electric field at a
point if we use a Gaussian surface in the form of a sphere con-
centric with the particle and shell. (2) To find the electric field
at a point, we put that point on a Gaussian surface (so that the

we want is the in the dot product inside the integral in
Gauss’ law). (3) Gauss’ law relates the net electric flux through
a closed surface to the net enclosed charge. Any external
charge is not included.

E
:

E
:

Gauss’ Law and Coulomb’s Law
One of the situations in which we can apply Gauss’ law is in finding the electric
field of a charged particle. That field has spherical symmetry (the field depends
on the distance r from the particle but not the direction). So, to make use of that
symmetry, we enclose the particle in a Gaussian sphere that is centered on the
particle, as shown in Fig. 23-9 for a particle with positive charge q. Then the elec-
tric field has the same magnitude E at any point on the sphere (all points are at
the same distance r).That feature will simplify the integration.

The drill here is the same as previously. Pick a patch element on the surface and
draw its area vector perpendicular to the patch and directed outward. From the
symmetry of the situation, we know that the electric field at the patch is also radi-E

:
dA

:

Figure 23-9 A spherical Gaussian surface
centered on a particle with charge q.

r

q

Gaussian
surface 

+
E

Checkpoint 3
There is a certain net flux �i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the
new Gaussian surface greater than, less than, or equal to �i?

ally outward and thus at angle u � 0 with .So,we rewrite Gauss’ law as

(23-8)

Here qenc � q. Because the field magnitude E is the same at every patch element, E
can be pulled outside the integral:

(23-9)

The remaining integral is just an instruction to sum all the areas of the patch elements
on the sphere,but we already know that the total area is 4pr2.Substituting this,we have

´0E(4pr 2) � q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E �
1

4p´0

q
r2 .

´0E
 dA � q .

´0
 E
:

� dA
:

� ´0
 E dA � qenc.

dA
:
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Figure 23-10 (a) A charged plastic spherical shell encloses a 
charged particle. (b) To find the electric field at P1, arrange for
the point to be on a Gaussian sphere. The electric field pierces
outward. The area vector for the patch element is outward. (c) P2

is on a Gaussian sphere, is inward, and is still outward.dA
:

E
:

The only charge enclosed by the Gaussian surface through P1

is that of the particle. Solving for E and substituting qenc � 5e
and r � r1 � 6.00 	 10�2 m, we find that the magnitude of the
electric field at P1 is

� 2.00 	 10�6 N/C. (Answer)

To find the electric field at P2, we follow the same pro-
cedure by constructing a Gaussian sphere with P2 on its sur-
face.This time, however, the net charge enclosed by the sphere
is qenc � q � Q � 5e � (�16e) � �11e. Because the net
charge is negative, the electric field vectors on the sphere’s
surface pierce inward (Fig. 23-10c), the angle u between
and is 180�, and the dot product is E (cos 180�) dA �dA

:
E
:

�
5(1.60 	 10�19 C)

4p(8.85 	 10�12 C2/N �m2)(0.0600 m)2

E �
qenc

4p´0r2

where in the last step we pull the field magnitude E out of
the integral because it is the same at all points on the
Gaussian sphere and thus is a constant. The remaining inte-
gral is simply an instruction for us to sum the areas of all the
patch elements on the sphere, but we already know that the
surface area of a sphere is 4pr2. Substituting these results,
Eq. 23-7 for Gauss’ law gives us

´0E4pr2 � qenc.

and we find
�b � �16 N ?m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

� 2.1 	 10�10 C.

qenc � 
0� � (8.85 	 10�12 C2/N �m2)(24 N �m2/C)

� 24 N �m2/C.

� � (36 � 12 � 16 � 16 � 0 � 0) N �m2/C

dA
:

E
:

� 3.0xî � 4.0 ĵ
dA

:
� �dAk̂

dA
:

� dAk̂

dA
:

� �dAĵ ,

Sample Problem 23.04 Using Gauss’ law to find the enclosed charge

What is the net charge enclosed by the Gaussian cube of
Sample Problem 23.02? 

KEY IDEA

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 (´0� � qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (�r � 36 N �m2/C), the left face (�l � �12
N ?m2/C), and the top face (�t � 16 N ?m2/C).

For the bottom face, our calculation is just like that for
the top face except that the element area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

Additional examples, video, and practice available at WileyPLUS

�E dA. Now solving Gauss’ law for E and substituting r �
r2 � 12.00 	 10�2 m and the new qenc, we find

� 1.10 	 10�6 N/C. (Answer) 

Note how different the calculations would have been if
we had put P1 or P2 on the surface of a Gaussian cube in-
stead of mimicking the spherical symmetry with a Gaussian
sphere. Then angle u and magnitude E would have varied
considerably over the surface of the cube and evaluation of
the integral in Gauss’ law would have been difficult.

�
� [�11(1.60 	 10�19 C)]

4p(8.85 	 10�12 C2/N �m2)(0.120 m)2

E �
�qenc

4p´0r2

r1

P1 P2q

Q

r2
(a)

q

Q
r2

E dA

(c)

r1

q

E

dA

(b)
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Figure 23-11 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface 

Gaussian
surface 

(a)

(b)

Copper
surface 

Gaussian
surface 

23-3 A CHARGED ISOLATED CONDUCTOR
Learning Objectives

object, determine the charge on the cavity wall and on the
external surface.

23.18 Explain how Gauss’ law is used to find the electric field
magnitude E near an isolated conducting surface with a
uniform surface charge density s.

23.19 For a uniformly charged conducting surface, apply the
relationship between the charge density s and the electric
field magnitude E at points near the conductor, and iden-
tify the direction of the field vectors.

● An excess charge on an isolated conductor is located
entirely on the outer surface of the conductor.

● The internal electric field of a charged, isolated conductor
is zero, and the external field (at nearby points) is perpendicu-

lar to the surface and has a magnitude that depends on the
surface charge density s:

.E �
s

´0

After reading this module, you should be able to . . . 

23.14 Apply the relationship between surface charge density
s and the area over which the charge is uniformly spread.

23.15 Identify that if excess charge (positive or negative) is
placed on an isolated conductor, that charge moves to the
surface and none is in the interior.

23.16 Identify the value of the electric field inside an isolated
conductor.

23.17 For a conductor with a cavity that contains a charged

Key Ideas

A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be
found within the body of the conductor.

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-11a shows, in cross section, an isolated lump of copper hanging
from an insulating thread and having an excess charge q. We place a Gaussian
surface just inside the actual surface of the conductor.

The electric field inside this conductor must be zero. If this were not so, the
field would exert forces on the conduction (free) electrons, which are always
present in a conductor, and thus current would always exist within a conductor.
(That is, charge would flow from place to place within the conductor.) Of
course, there is no such perpetual current in an isolated conductor, and so the
internal electric field is zero.

(An internal electric field does appear as a conductor is being charged.
However, the added charge quickly distributes itself in such a way that the net
internal electric field — the vector sum of the electric fields due to all the
charges, both inside and outside — is zero. The movement of charge then ceases,
because the net force on each charge is zero; the charges are then in electro-
static equilibrium.)

If is zero everywhere inside our copper conductor, it must be zero for all
points on the Gaussian surface because that surface, though close to the surface
of the conductor, is definitely inside the conductor. This means that the flux
through the Gaussian surface must be zero. Gauss’ law then tells us that the net
charge inside the Gaussian surface must also be zero. Then because the excess
charge is not inside the Gaussian surface, it must be outside that surface, which
means it must lie on the actual surface of the conductor.

E
:
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An Isolated Conductor with a Cavity
Figure 23-11b shows the same hanging conductor, but now with a cavity that is
totally within the conductor. It is perhaps reasonable to suppose that when we
scoop out the electrically neutral material to form the cavity, we do not change the
distribution of charge or the pattern of the electric field that exists in Fig. 23-11a.
Again, we must turn to Gauss’ law for a quantitative proof.

We draw a Gaussian surface surrounding the cavity, close to its surface but in-
side the conducting body. Because inside the conductor, there can be no flux
through this new Gaussian surface.Therefore, from Gauss’ law, that surface can en-
close no net charge. We conclude that there is no net charge on the cavity walls; all
the excess charge remains on the outer surface of the conductor, as in Fig. 23-11a.

The Conductor Removed
Suppose that, by some magic, the excess charges could be “frozen” into position
on the conductor’s surface, perhaps by embedding them in a thin plastic coating,
and suppose that then the conductor could be removed completely. This is
equivalent to enlarging the cavity of Fig. 23-11b until it consumes the entire con-
ductor, leaving only the charges. The electric field would not change at all; it
would remain zero inside the thin shell of charge and would remain unchanged
for all external points. This shows us that the electric field is set up by the charges
and not by the conductor. The conductor simply provides an initial pathway for
the charges to take up their positions.

The External Electric Field
You have seen that the excess charge on an isolated conductor moves entirely to
the conductor’s surface. However, unless the conductor is spherical, the charge
does not distribute itself uniformly. Put another way, the surface charge density s
(charge per unit area) varies over the surface of any nonspherical conductor.
Generally, this variation makes the determination of the electric field set up by
the surface charges very difficult.

However, the electric field just outside the surface of a conductor is easy to
determine using Gauss’ law. To do this, we consider a section of the surface that
is small enough to permit us to neglect any curvature and thus to take the section
to be flat. We then imagine a tiny cylindrical Gaussian surface to be partially em-
bedded in the section as shown in Fig. 23-12: One end cap is fully inside the con-
ductor, the other is fully outside, and the cylinder is perpendicular to the conduc-
tor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux � through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. (Think of the cylinder as a cookie cutter.) If s is the charge per
unit area, then qenc is equal to sA. When we substitute sA for qenc and EA for �,

E
:

E
:

E
:

E
:

� 0

Figure 23-12 (a) Perspective view and (b) side
view of a tiny portion of a large, isolated
conductor with excess positive charge on its
surface. A (closed) cylindrical Gaussian
surface, embedded perpendicularly in the
conductor, encloses some of the charge.
Electric field lines pierce the external end
cap of the cylinder, but not the internal end
cap.The external end cap has area A and
area vector A

:
.

There is flux only
through the
external end face.

+
+

+
+ + + +

+
+

+ + + + + 

+
+

+
+

+
+

+
+

+ + + + +

+
+ + +

+
+

+

(a)

(b)

+
+
+
+
+
+
+
+
+

E = 0 

+

E

E

A

A



670 CHAPTER 23 GAUSS’ LAW

Gauss’ law (Eq. 23-6) becomes

´0EA � sA,

from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor.The sign of the charge gives us the
direction of the field. If the charge on the conductor is positive, the electric field is
directed away from the conductor as in Fig. 23-12. It is directed toward the con-
ductor if the charge is negative.

The field lines in Fig. 23-12 must terminate on negative charges somewhere
in the environment. If we bring those charges near the conductor, the charge den-
sity at any given location on the conductor’s surface changes, and so does the
magnitude of the electric field. However, the relation between s and E is still
given by Eq. 23-11.

E �
s

´0

Sample Problem 23.05 Spherical metal shell, electric field and enclosed charge

Figure 23-13a shows a cross section of a spherical metal shell
of inner radius R. A particle with a charge of �5.0 mC is lo-
cated at a distance R/2 from the center of the shell. If the shell
is electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

KEY IDEAS

Figure 23-13b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also
be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a particle of charge �5.0 mC within the
shell, a charge of �5.0 mC must lie on the inner wall of
the shell in order that the net enclosed charge be zero. If the
particle were centered, this positive charge would be uni-
formly distributed along the inner wall. However, since the
particle is off-center, the distribution of positive charge is
skewed, as suggested by Fig. 23-13b, because the positive
charge tends to collect on the section of the inner wall near-
est the (negative) particle.

Because the shell is electrically neutral, its inner wall
can have a charge of �5.0 mC only if electrons, with a total
charge of �5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-13b. This distribution of negative charge is

Figure 23-13 (a) A negatively charged particle is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall of
the shell, and an equal amount of negative charge is uniformly 
distributed on the outer wall.

R

R/2

(a) (b)

+
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+

+
+

+ +
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uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall
cannot produce an electric field in the shell to affect the dis-
tribution of charge on the outer wall. Furthermore, these
negative charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-13b. All the field lines intersect the
shell and the particle perpendicularly. Inside the shell the pat-
tern of field lines is skewed because of the skew of the
positive charge distribution. Outside the shell the pattern is
the same as if the particle were centered and the shell were
missing. In fact, this would be true no matter where inside
the shell the particle happened to be located.

Additional examples, video, and practice available at WileyPLUS
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Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-14 shows a section of an infinitely long cylindrical plastic rod with a uni-
form charge density l. We want to find an expression for the electric field magni-
tude E at radius r from the central axis of the rod, outside the rod. We could do
that using the approach of Chapter 22 (charge element dq, field vector , etc.).
However, Gauss’ law gives a much faster and easier (and prettier) approach.

The charge distribution and the field have cylindrical symmetry. To find the
field at radius r, we enclose a section of the rod with a concentric Gaussian
cylinder of radius r and height h. (If you want the field at a certain point, put a
Gaussian surface through that point.) We can now apply Gauss’ law to relate the
charge enclosed by the cylinder and the net flux through the cylinder’s surface.

First note that because of the symmetry, the electric field at any point must
be radially outward (the charge is positive). That means that at any point on the
end caps, the field only skims the surface and does not pierce it. So, the flux
through each end cap is zero.

To find the flux through the cylinder’s curved surface, first note that for any
patch element on the surface, the area vector is radially outward (away from
the interior of the Gaussian surface) and thus in the same direction as the field
piercing the patch.The dot product in Gauss’ law is then simply E dA cos 0 � E dA,
and we can pull E out of the integral.The remaining integral is just the instruction
to sum the areas of all patch elements on the cylinder’s curved surface, but we al-
ready know that the total area is the product of the cylinder’s height h and cir-
cumference 2pr.The net flux through the cylinder is then

On the other side of Gauss’s law we have the charge qenc enclosed by the
cylinder. Because the linear charge density (charge per unit length, remember) is
uniform, the enclosed charge is lh.Thus, Gauss’ law,

´0� � qenc,

reduces to ´0E(2prh) � lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outwardE

:

E �
l

2p´0r

� � EA cos u � E(2prh)cos 0 � E(2prh).

dA
:

dE
:

23-4 APPLYING GAUSS’ LAW: CYLINDRICAL SYMMETRY
Learning Objectives

on a cylindrical surface and the electric field magnitude E
at radial distance r from the central axis.

23.22 Explain how Gauss’ law can be used to find the electric
field magnitude inside a cylindrical nonconducting surface
(such as a plastic rod) with a uniform volume charge density r.

● The electric field at a point near an infinite line of charge (or charged rod) with uniform linear charge density l is perpendicular
to the line and has magnitude

(line of charge),

where r is the perpendicular distance from the line to the point.

E �
l

2p´0r

After reading this module, you should be able to . . . 

23.20 Explain how Gauss’ law is used to derive the electric
field magnitude outside a line of charge or a cylindrical
surface (such as a plastic rod) with a uniform linear
charge density l.

23.21 Apply the relationship between linear charge density l

Key Idea

Figure 23-14 A Gaussian surface in the form
of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindri-
cal plastic rod.
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Gaussian
surface

E

There is flux only
through the
curved surface.
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Additional examples, video, and practice available at WileyPLUS

Figure 23-16 (a) Some of the conduction electrons in the woman’s
body are driven into the ground, leaving her positively charged. (b)
An upward streamer develops if the air undergoes electrical break-
down, which provides a path for electrons freed from molecules in
the air to move to the woman. (c) A cylinder represents the woman.

+Q

R

L

e e 

e

Upward
streamer

(a) (b) (c)

from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).

If the rod has a uniform volume charge density r, we could use a similar pro-
cedure to find the electric field magnitude inside the rod. We would just shrink
the Gaussian cylinder shown in Fig. 23-14 until it is inside the rod.The charge qenc

enclosed by the cylinder would then be proportional to the volume of the rod en-
closed by the cylinder because the charge density is uniform.

Sample Problem 23.06 Gauss’ law and an upward streamer in a lightning storm

Upward streamer in a lightning
storm. The woman in Fig. 23-
15 was standing on a lookout
platform high in the Sequoia
National Park when a large
storm cloud moved overhead.
Some of the conduction elec-
trons in her body were driven
into the ground by the cloud’s
negatively charged base (Fig.
23-16a), leaving her positively
charged. You can tell she was
highly charged because her
hair strands repelled one an-
other and extended away from
her along the electric field
lines produced by the charge
on her.

Lightning did not strike
the woman, but she was in
extreme danger because that

Figure 23-15 This woman has
become positively charged by
an overhead storm cloud.

Courtesy NOAA

field magnitude along her body had exceeded the critical value
Ec � 2.4 MN/C.What value of Q would have put the air along
her body on the verge of breakdown?

KEY IDEA

Because R � L, we can approximate the charge distribution
as a long line of charge. Further, because we assume that the
charge is uniformly distributed along this line, we can
approximate the magnitude of the electric field along the
side of her body with Eq. 23-12 (E � l/2p´0r).

Calculations: Substituting the critical value Ec for E, the
cylinder radius R for radial distance r, and the ratio Q/L for
linear charge density l, we have

or .

Substituting given data then gives us

(Answer)� 2.402 	 10 �5 C � 24 mC.

	 (1.8 m)(2.4 	 10 6 N/C)

Q � (2p)(8.85 	 10 �12 C 2 /N �m2)(0.10 m)

Q � 2p´0RLEc

Ec �
Q/L

2p´0R
,

electric field was on the verge of causing electrical break-
down in the surrounding air. Such a breakdown would
have occurred along a path extending away from her in
what is called an upward streamer. An upward streamer is
dangerous because the resulting ionization of molecules
in the air suddenly frees a tremendous number of elec-
trons from those molecules. Had the woman in Fig. 23-15
developed an upward streamer, the free electrons in the
air would have moved to neutralize her (Fig. 23-16b), pro-
ducing a large, perhaps fatal, charge flow through her
body. That charge flow is dangerous because it could have
interfered with or even stopped her breathing (which is
obviously necessary for oxygen) and the steady beat of
her heart (which is obviously necessary for the blood flow
that carries the oxygen). The charge flow could also have
caused burns.

Let’s model her body as a narrow vertical cylinder of
height L � 1.8 m and radius R � 0.10 m (Fig. 23-16c).Assume
that charge Q was uniformly distributed along the cylinder and
that electrical breakdown would have occurred if the electric
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23-5 APPLYING GAUSS’ LAW: PLANAR SYMMETRY
Learning Objectives

tween the charge density and the electric field magnitude
E and also specify the direction of the field.

23.25 For points near two large, flat, parallel, conducting sur-
faces with a uniform charge density s, apply the relation-
ship between the charge density and the electric field
magnitude E and also specify the direction of the field.

● The electric field due to an infinite nonconducting sheet
with uniform surface charge density s is perpendicular to the
plane of the sheet and has magnitude

(nonconducting sheet of charge).E �
s

2´0

● The external electric field just outside the surface of an iso-
lated charged conductor with surface charge density s is per-
pendicular to the surface and has magnitude

(external, charged conductor).

Inside the conductor, the electric field is zero.

E �
s

´0

After reading this module, you should be able to . . . 

23.23 Apply Gauss’ law to derive the electric field magnitude
E near a large, flat, nonconducting surface with a uniform
surface charge density s.

23.24 For points near a large, flat nonconducting surface
with a uniform charge density s, apply the relationship be-

Key Ideas

Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-17 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

E �
s

2´0

´0(EA � EA) � sA,

´0
 E
:

� dA
:

� qenc,

E
:

� dA
:

E
:

E
:

E
:

Figure 23-17 (a) Perspective view
and (b) side view of a portion of a
very large, thin plastic sheet, uni-
formly charged on one side to sur-
face charge density s. A closed
cylindrical Gaussian surface passes
through the sheet and is perpendi-
cular to it.
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Sample Problem 23.07 Electric field near two parallel nonconducting sheets with charge

Figure 23-19a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(�) � 6.8 mC/m2 for the positively charged sheet and s(�) �
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconductors),
we can find the electric field of the sheets in Fig. 23-19a by
(1) finding the field of each sheet as if that sheet were isolated
and (2) algebraically adding the fields of the isolated sheets

E
:

(a) –

–

–
–
–
–
–
–
–
–

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+σ (+) σ (–)
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+Figure 23-19 (a) Two large, paral-

lel sheets, uniformly charged on
one side. (b) The individual
electric fields resulting from the
two charged sheets. (c) The net
field due to both charged
sheets, found by superposition.
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Figure 23-18 (a) A thin, very large conduct-
ing plate with excess positive charge.
(b) An identical plate with excess negative
charge. (c) The two plates arranged so
they are parallel and close.

Two Conducting Plates
Figure 23-18a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Module 23-3 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E � s1/´0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-18b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-18a and b to be close to each
other and parallel (Fig. 23-18c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-18c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

Because the charges moved when we brought the plates close to each other,
the charge distribution of the two-plate system is not merely the sum of the
charge distributions of the individual plates.

One reason why we discuss seemingly unrealistic situations, such as the field set
up by an infinite sheet of charge, is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a finite
nonconducting sheet as long as we are dealing with points close to the sheet and not
too near its edges. Equation 23-14 holds well for a pair of finite conducting plates as
long as we consider points that are not too close to their edges.The trouble with the
edges is that near an edge we can no longer use planar symmetry to find expressions
for the fields. In fact, the field lines there are curved (said to be an edge effect or fring-
ing),and the fields can be very difficult to express algebraically.

E �
2s1

´0
�

s

´0
.
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Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Module 21-1:

Additional examples, video, and practice available at WileyPLUS

via the superposition principle. (We can add the fields alge-
braically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

�  2.43 	 10 5 N/C.

E(�) �
s(�)

2´0
�

4.3 	 10 �6 C/m2

(2)(8.85 	 10 �12 C2/N �m2)

E
:

(�)

�  3.84 	 10 5 N/C.

E(�) �
s(�)

2
0
�

6.8 	 10 �6 C/m2

(2)(8.85 	 10 �12 C2/N �m2)

E
:

(�)

Figure 23-19b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(�) is larger than E(�), the net electric field in this
region is directed to the left, as Fig. 23-19c shows.To the right of
the sheets, the net electric field  has the same magnitude but is
directed to the right,as Fig.23-19c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

� 6.3 	 10 5 N/C.
� 3.84 	 10 5 N/C � 2.43 	 10 5 N/C

EB � E(�) � E(�)

E
:

L

� 1.4 	 10 5 N/C.
� 3.84 	 10 5 N/C � 2.43 	 10 5 N/C

EL � E(�) � E(�)

23-6 APPLYING GAUSS’ LAW: SPHERICAL SYMMETRY
Learning Objectives

charge, apply the relationship between the electric field
magnitude E, the charge q on the shell, and the distance r
from the shell’s center.

23.29 Identify the magnitude of the electric field for points en-
closed by a spherical shell with uniform charge.

23.30 For a uniform spherical charge distribution (a uniform
ball of charge), determine the magnitude and direction of
the electric field at interior and exterior points.

● Outside a spherical shell of uniform charge q, the electric
field due to the shell is radial (inward or outward, depending
on the sign of the charge) and has the magnitude

(outside spherical shell),

where r is the distance to the point of measurement from the
center of the shell. The field is the same as though all of the
charge is concentrated as a particle at the center of the shell.

E �
1

4p´0

q
r2

● Inside the shell, the field due to the shell is zero.

● Inside a sphere with a uniform volume charge density, the
field is radial and has the magnitude

(inside sphere of charge),

where q is the total charge, R is the sphere’s radius, and r is
the radial distance from the center of the sphere to the point
of measurement.

E �
1

4p´0

q
R3 r

After reading this module, you should be able to . . . 

23.26 Identify that a shell of uniform charge attracts or re-
pels a charged particle that is outside the shell as if all the
shell’s charge is concentrated at the center of the shell.

23.27 Identify that if a charged particle is enclosed by a shell
of uniform charge, there is no electrostatic force on the
particle from the shell.

23.28 For a point outside a spherical shell with uniform

Key Ideas

A shell of uniform charge attracts or repels a charged particle that is outside the
shell as if all the shell’s charge were concentrated at the center of the shell.
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Figure 23-21 The dots represent a spherically
symmetric distribution of charge of radius
R, whose volume charge density r is a
function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be
fixed in position. A concentric spherical
Gaussian surface with r � R is shown in (a).
A similar Gaussian surface with r 
 R is
shown in (b).

r

R

ρ 

r

R

Gaussian
surface 

Gaussian
surface 

Enclosed
charge is q'

Enclosed
charge is q

(a)

(b) The flux through the
surface depends on
only the enclosed
charge.

Figure 23-20 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Module 23-2 as we applied Gauss’ law to surface S2, for which r � R,we would find that

(spherical shell, field at r � R). (23-15)

This field is the same as one set up by a particle with charge q at the center of the
shell of charge.Thus, the force produced by a shell of charge q on a charged parti-
cle placed outside the shell is the same as if all the shell’s charge is concentrated
as a particle at the shell’s center.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r 
 R, leads directly to

E � 0 (spherical shell, field at r 
 R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

E �
1

4p´0

q
r2

If a charged particle is located inside a shell of uniform charge, there is no electro-
static force on the particle from the shell.

Any spherically symmetric charge distribution, such as that of Fig. 23-21, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-21a, the entire charge lies within a Gaussian surface with r � R.
The charge produces an electric field on the Gaussian surface as if the charge
were that of a particle located at the center, and Eq. 23-15 holds.

Figure 23-21b shows a Gaussian surface with r 
 R. To find the electric
field at points on this Gaussian surface, we separately consider the charge in-
side it and the charge outside it. From Eq. 23-16, the outside charge does not
set up a field on the Gaussian surface. From Eq. 23-15, the inside charge sets
up a field as though it is concentrated at the center. Letting q� represent that
enclosed charge, we can then rewrite Eq. 23-15 as

(spherical distribution, field at r � R). (23-17)

If the full charge q enclosed within radius R is uniform, then q� enclosed
within radius r in Fig. 23-21b is proportional to q:

or (23-18)

This gives us

(23-19)

Substituting this into Eq. 23-17 yields

(uniform charge, field at r � R). (23-20)E � � q
4p´0R3 �r

q� � q
r3

R3 .

q�
4
3pr3 �

q
4
3pR3 .

�charge enclosed by
sphere of radius r �

�volume enclosed by
sphere of radius r �

�
full charge
full volume

E �
1

4p´0

q�

r2

Figure 23-20 A thin, uniformly charged,
spherical shell with total charge q, in cross
section. Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r
R

S1

q

S2
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Checkpoint 4
The figure shows two large, parallel, nonconducting sheets with identical (posi-
tive) uniform surface charge densities, and a sphere with a uniform (positive)
volume charge density. Rank the four numbered points according to the magni-

+

+

+
+
+
+

+

+

+
+
+
+

d d d d d 

+

1

2 3 4 

Gauss’ Law Gauss’ law and Coulomb’s law are different ways
of describing the relation between charge and electric field in static
situations. Gauss’ law is

´0� � qenc (Gauss’ law), (23-6)

in which qenc is the net charge inside an imaginary closed surface (a
Gaussian surface) and � is the net flux of the electric field through
the surface:

(23-4)

Coulomb’s law can be derived from Gauss’ law.

Applications of Gauss’ Law Using Gauss’ law and, in some
cases, symmetry arguments, we can derive several important
results in electrostatic situations.Among these are:
1. An excess charge on an isolated conductor is located entirely on

the outer surface of the conductor.

2. The external electric field near the surface of a charged conductor
is perpendicular to the surface and has a magnitude that depends
on the surface charge density s :

(conducting surface). (23-11)

Within the conductor, E � 0.

3. The electric field at any point due to an infinite line of charge

E �
s

´0

(electric flux through a
Gaussian surface).� � 
 E

:
� dA

:

Review & Summary

with uniform linear charge density l is perpendicular to the line
of charge and has magnitude

(line of charge), (23-12)

where r is the perpendicular distance from the line of charge to
the point.

4. The electric field due to an infinite nonconducting sheet with
uniform surface charge density s is perpendicular to the plane
of the sheet and has magnitude

(sheet of charge). (23-13)

5. The electric field outside a spherical shell of charge with radius R
and total charge q is directed radially and has magnitude

(spherical shell, for r � R). (23-15)

Here r is the distance from the center of the shell to the point at
which E is measured. (The charge behaves, for external points, as if
it were all located at the center of the sphere.) The field inside a
uniform spherical shell of charge is exactly zero:

E � 0 (spherical shell, for r 
 R). (23-16)

6. The electric field inside a uniform sphere of charge is directed
radially and has magnitude

(23-20)E � � q
4p´0R3 � r.

E �
1

4p´0

q
r2

E �
s

2´0

E �
l

2p´0r

tude of the net electric field there, greatest first.

Questions

1 A surface has the area vector What is the
flux of a uniform electric field through the area if the field is
(a) and (b) 

2 Figure 23-22 shows, in cross section, three solid cylinders, each of
length L and uniform charge Q. Concentric with each cylinder is a
cylindrical Gaussian surface, with all three surfaces having the same
radius. Rank the Gaussian surfaces according to the electric field at
any point on the surface,greatest first.

4k̂ N/C?E
:

�E
:

� 4î N/C

A
:

� (2î � 3ĵ) m2.

Figure 23-22 Question 2.

(a) (b) (c)

Gaussian
surface

Cylinder

3 Figure 23-23 shows, in cross section, a central metal ball, two
spherical metal shells, and three spherical Gaussian surfaces of radii
R, 2R, and 3R, all with the same center. The uniform charges on the
three objects are: ball, Q; smaller shell, 3Q; larger shell, 5Q. Rank the
Gaussian surfaces according to the magnitude of the electric field at
any point on the surface, greatest first.

Figure 23-23 Question 3.

3R

2R

R

Shell

Gaussian
surface
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Figure 23-26 Question 7.

(a)

(b)

(c)

(d)

+3 +2 –2 –3 

–2 +2 +8 

+5

+8

–6 +5 –6 

+2 –4 –4 +2 

E

S1 S2 S3 S4

CA

1

B

2
3

Figure 23-28 Question 11.

Figure 23-29 Question 12.

4 Figure 23-24 shows, in cross sec-
tion, two Gaussian spheres and two
Gaussian cubes that are centered on
a positively charged particle. (a)
Rank the net flux through the four
Gaussian surfaces, greatest first. (b)
Rank the magnitudes of the electric
fields on the surfaces, greatest first,
and indicate whether the magnitudes
are uniform or variable along each
surface.

5 In Fig. 23-25, an electron is released
between two infinite nonconducting sheets that are horizontal and have
uniform surface charge densities s(�) and s(�), as indicated.The electron
is subjected to the following three situations involving surface charge
densities and sheet separations. Rank the magnitudes of the electron’s
acceleration,greatest first.

Situation s(�) s(�) Separation

1 �4s �4s d

2 �7s �s 4d

3 �3s �5s 9d

Figure 23-24 Question 4.

a
b

c

d

+q

+ + + + + + + 

– – – – – – – 

e

(–)σ 

(+)σ 

Figure 23-25 Question 5.

6 Three infinite nonconducting sheets, with uniform positive sur-
face charge densities s, 2s, and 3s, are arranged to be parallel like
the two sheets in Fig. 23-19a. What is their order, from left to
right, if the electric field produced by the arrangement has mag-
nitude E � 0 in one region and E � 2s/´0 in another region?

7 Figure 23-26 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 2d as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

E
:

8 Figure 23-27 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The figure
also shows a point P for each sphere, all at the same distance from
the center of the sphere. (b) Rank the spheres according to the mag-
nitude of the electric field they produce at point P, greatest first.

(a) (b) (c) (d)

P P P P 

Figure 23-27 Question 8.

9 A small charged ball lies within the hollow of a metallic spher-
ical shell of radius R. For three situations, the net charges on the
ball and shell, respectively, are (1) �4q, 0; (2) �6q, �10q;
(3) �16q, �12q. Rank the situations according to the charge on
(a) the inner surface of the shell and (b) the outer surface, most
positive first.

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.

11 Figure 23-28 shows a section of three long charged cylinders
centered on the same axis. Central cylinder A has a uniform charge
qA � �3q0.What uniform charges qB and qC should be on cylinders
B and C so that (if possible) the net electric field is zero at (a) point
1, (b) point 2, and (c) point 3?

12 Figure 23-29 shows four Gaussian surfaces consisting of identical
cylindrical midsections but different end caps. The surfaces are in a
uniform electric field that is directed parallel to the central axis of
each cylindrical midsection. The end caps have these shapes: S1, con-
vex hemispheres; S2, concave hemispheres; S3, cones; S4, flat disks.
Rank the surfaces according to (a) the net electric flux through them
and (b) the electric flux through the top end caps, greatest first.

E
:



are (c) � and (d) qenc if

••10 Figure 23-34 shows a closed Gaussian
surface in the shape of a cube of edge length
2.00 m. It lies in a region where the nonuni-
form electric field is given by 

with x in meters.
What is the net charge contained by the cube?

••11 Figure 23-35 shows a closed Gaussian surface in the shape of
a cube of edge length 2.00 m,with one corner at x1 5.00 m,y1 4.00
m.The cube lies in a region where the electric field vector is given by

with y in meters.What is the net
charge contained by the cube?
E
:

� �3.00î � 4.00y2ĵ � 3.00k̂ N/C,

��

7.00k̂ N/C,�6.00ĵ�4.00)î
�(3.00x�E

:

(6.00 � 3.00y)ĵ] N/C?
E
:

� [�4.00î �

with edge length 1.40 m. What are (a) the net flux � through the
surface and (b) the net charge qenc enclosed by the surface if

with y in meters? WhatE
:

�(3.00yĵ) N/C,

679PROBLEMS

and on the bottom face it is 
Determine the net charge contained within the cube.

•7 A particle of charge 1.8 mC is at the center of a Gaussian cube
55 cm on edge.What is the net electric flux through the surface?

••8 When a shower is turned on in a closed bathroom, the
splashing of the water on the bare tub can fill the room’s air with
negatively charged ions and produce an electric field in the air as
great as 1000 N/C. Consider a bathroom with dimensions 2.5 m 	
3.0 m 	 2.0 m. Along the ceiling, floor, and four walls, approximate
the electric field in the air as being directed perpendicular to the sur-
face and as having a uniform magnitude of 600 N/C.Also, treat those
surfaces as forming a closed Gaussian surface around the room’s air.
What are (a) the volume charge density r and (b) the number of
excess elementary charges e per cubic meter in the room’s air?

••9 Fig. 23-31 shows a Gaussian surface in the shape of a cubeILW

E
:

� � 20k̂ N/C.E
:

� �34k̂ N/C,Module 23-1 Electric Flux
•1 The square surface shown
in Fig. 23-30 measures 3.2 mm on
each side. It is immersed in a uni-
form electric field with magnitude
E � 1800 N/C and with field lines at
an angle of u � 35° with a normal to
the surface, as shown. Take that
normal to be directed “outward,” as
though the surface were one face of
a box. Calculate the electric flux
through the surface.
••2 An electric field given by

pierces a
Gaussian cube of edge length 2.0 m
and positioned as shown in Fig. 23-7.
(The magnitude E is in newtons per
coulomb and the position x is in me-
ters.) What is the electric flux through
the (a) top face, (b) bottom face, (c) left
face, and (d) back face? (e) What is the
net electric flux through the cube?

••3 The cube in Fig. 23-31 has edge
length 1.40 m and is oriented as shown
in a region of uniform electric field. Find
the electric flux through the right face if
the electric field, in newtons per coulomb, is given by (a) (b)

and (c) (d) What is the total flux through the
cube for each field?

Module 23-2 Gauss’ Law
•4 In Fig. 23-32, a butterfly net is
in a uniform electric field of magni-
tude E � 3.0 mN/C. The rim, a cir-
cle of radius a � 11 cm, is aligned
perpendicular to the field. The net
contains no net charge. Find the
electric flux through the netting.

•5 In Fig. 23-33, a proton is a dis-
tance d/2 directly above the center of a square of side d. What is the
magnitude of the electric flux through the square? (Hint: Think of the
square as one face of a cube with edge d.)

�3.00î � 4.00k̂.�2.00ĵ,
6.00î,

E
:

� 4.0î � 3.0(y2 � 2.0)ĵ

SSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Normal

θ 

Figure 23-30 Problem 1.

z

y

x

Figure 23-31 Problems 3,
6, and 9.

a

Figure 23-32 Problem 4.

d/2

d

d

+

Figure 23-33 Problem 5.

x

y

z

Figure 23-34
Problem 10.

Figure 23-35 Problem 11.

x

y

z

x1

y1

••12 Figure 23-36 shows two non-
conducting spherical shells fixed in
place. Shell 1 has uniform surface
charge density �6.0 mC/m2 on its
outer surface and radius 3.0 cm;
shell 2 has uniform surface charge
density �4.0 mC/m2 on its outer
surface and radius 2.0 cm; the shell
centers are separated by L � 10 cm.
In unit-vector notation, what is the
net electric field at x � 2.0 cm?

Shell
1 Shell

2

y

x

L

Figure 23-36 Problem 12.

•6 At each point on the surface of the cube shown in Fig. 23-31,
the electric field is parallel to the z axis. The length of each edge
of the cube is 3.0 m. On the top face of the cube the field is
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y

x

z

z1

z2

z1

z2

x2

y2

x2x1Figure 23-38 Problem 16.

A
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)

(a) (b)

–
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s
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Figure 23-39 Problem 20.
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0

–Es

E 
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03  N
/C

) 

1 2 3 

r (cm) 

4 5 6 

(a)

(b)

Figure 23-41 Problem 26.

••13 The electric field in a certain region of Earth’s atmo-
sphere is directed vertically down. At an altitude of 300 m the field
has magnitude 60.0 N/C; at an altitude of 200 m, the magnitude is
100 N/C. Find the net amount of charge contained in a cube 100 m
on edge, with horizontal faces at altitudes of 200 and 300 m.

••14 Flux and nonconducting shells. A charged particle is sus-
pended at the center of two concentric spherical shells that are
very thin and made of nonconducting material. Figure 23-37a
shows a cross section. Figure 23-37b gives the net flux � through a
Gaussian sphere centered on the particle, as a function of the ra-
dius r of the sphere. The scale of the vertical axis is set by �s �
5.0 	 105 N ?m2/C. (a) What is the charge of the central particle?
What are the net charges of (b) shell A and (c) shell B?

SSM

••15 A particle of charge �q is placed at one corner of a Gaussian
cube. What multiple of q/´0 gives the flux through (a) each cube face
forming that corner and (b) each of the other cube faces?

•••16 The box-like Gaussian surface shown in Fig. 23-38 en-
closes a net charge of 24.0´0 C and lies in an electric field given
by with x and z in me-
ters and b a constant.The bottom face is in the xz plane; the top face
is in the horizontal plane passing through y2 � 1.00 m. For x1 �
1.00 m, x2 � 4.00 m, z1 � 1.00 m, and z2 � 3.00 m, what is b?

E
:

� [(10.0 � 2.00x)î � 3.00ĵ � bzk̂] N/C,
�

•20 Flux and conducting shells. A charged particle is held at the
center of two concentric conducting spherical shells. Figure 23-39a
shows a cross section. Figure 23-39b gives the net flux � through a
Gaussian sphere centered on the particle, as a function of the radius r
of the sphere. The scale of the vertical axis is set by �s � 5.0 	
105 N ?m2/C. What are (a) the charge of the central particle and the
net charges of (b) shell A and (c) shell B?

••21 An isolated conductor has net charge �10 	 10�6 C and a cav-
ity with a particle of charge q � �3.0 	 10�6 C.What is the charge on
(a) the cavity wall and (b) the outer surface?

Module 23-4 Applying Gauss’ Law: Cylindrical Symmetry
•22 An electron is released 9.0 cm from a very long nonconduct-
ing rod with a uniform 6.0 mC/m. What is the magnitude of the
electron’s initial acceleration?

•23 (a) The drum of a photocopying machine has a length of 42 cm
and a diameter of 12 cm.The electric field just above the drum’s sur-
face is 2.3 	 105 N/C. What is the total charge on the drum? (b) The
manufacturer wishes to produce a desktop version of the machine.
This requires reducing the drum length to 28 cm and the diameter to
8.0 cm. The electric field at the drum surface must not change. What
must be the charge on this new drum?

Figure 23-37 Problem 14.

Φs

–Φs

0

Φ
(1

05  N
 •  

m
2 /C

)

r

A
B

(a) (b)

••26 Figure 23-41a shows a narrow charged solid cylinder that is
coaxial with a larger charged cylindrical shell. Both are noncon-

Module 23-3 A Charged Isolated Conductor
•17 A uniformly charged conducting sphere of 1.2 m diam-
eter has surface charge density 8.1 mC/m2. Find (a) the net charge
on the sphere and (b) the total electric flux leaving the surface.

•18 The electric field just above the surface of the charged con-
ducting drum of a photocopying machine has a magnitude E of
2.3 	 10 5 N/C. What is the surface charge density on the drum?

•19 Space vehicles traveling through Earth’s radiation belts can
intercept a significant number of electrons. The resulting charge
buildup can damage electronic components and disrupt operations.
Suppose a spherical metal satellite 1.3 m in diameter accumulates
2.4 mC of charge in one orbital revolution. (a) Find the resulting sur-
face charge density. (b) Calculate the magnitude of the electric field
just outside the surface of the satellite, due to the surface charge.

SSM
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+

+

Figure 23-40 Problem 24.

•24 Figure 23-40 shows a section of a
long, thin-walled metal tube of radius
R � 3.00 cm, with a charge per unit
length of l � 2.00 	 10�8 C/m. What
is the magnitude E of the electric field
at radial distance (a) r � R/2.00 and
(b) r � 2.00R? (c) Graph E versus r
for the range r � 0 to 2.00R.

•25 An infinite line of chargeSSM

produces a field of magnitude 4.5 	
104 N/C at distance 2.0 m. Find the
linear charge density.
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•35 Figure 23-46a shows three plastic sheets that are large, paral-
lel, and uniformly charged. Figure 23-46b gives the component of the
net electric field along an x axis through the sheets. The scale of the
vertical axis is set by Es � 6.0 	 105 N/C.What is the ratio of the charge
density on sheet 3 to that on sheet 2?

ducting and thin and have uniform surface charge densities on
their outer surfaces. Figure 23-41b gives the radial component E of
the electric field versus radial distance r from the common axis,
and Es � 3.0 	 103 N/C.What is the shell’s linear charge density?

••27 A long, straight wire has fixed negative charge with a lin-
ear charge density of magnitude 3.6 nC/m. The wire is to be en-
closed by a coaxial, thin-walled nonconducting cylindrical shell of
radius 1.5 cm.The shell is to have positive charge on its outside sur-
face with a surface charge density s that makes the net external
electric field zero. Calculate s.

••28 A charge of uniform linear density 2.0 nC/m is distributed
along a long, thin, nonconducting rod.The rod is coaxial with a long
conducting cylindrical shell (inner radius � 5.0 cm, outer radius �
10 cm). The net charge on the shell is zero. (a) What is the magni-
tude of the electric field 15 cm from the axis of the shell? What is
the surface charge density on the (b) inner and (c) outer surface of
the shell?

••29 Figure 23-42 isWWWSSM

the plates have excess surface charge densities of opposite signs and
magnitude 7.00 	 10�22 C/m2. In unit-vector notation, what is the
electric field at points (a) to the left of the plates, (b) to the right of
them, and (c) between them?

•34 In Fig. 23-45, a small circular hole of radius R � 1.80 cm has
been cut in the middle of an infinite, flat, nonconducting surface
that has uniform charge density s � 4.50 pC/m2. A z axis, with its
origin at the hole’s center, is perpendicular to the surface. In unit-
vector notation, what is the electric field at point P at z � 2.56 cm?
(Hint: See Eq. 22-26 and use superposition.)

•36 Figure 23-47 shows cross sec-
tions through two large, parallel, non-
conducting sheets with identical distri-
butions of positive charge with surface
charge density s � 1.77 	 10�22 C/m2.
In unit-vector notation, what is at
points (a) above the sheets, (b) be-
tween them, and (c) below them?

•37 A square metal plate of edge length 8.0 cm andWWWSSM

E
:

a section of a conducting rod of ra-
dius R1 � 1.30 mm and length L �
11.00 m inside a thin-walled coax-
ial conducting cylindrical shell of
radius R2 � 10.0R1 and the (same)
length L.The net charge on the rod
is Q1 � �3.40 	 10�12 C; that on
the shell is Q2 � �2.00Q1. What
are the (a) magnitude E and (b) di-
rection (radially inward or out-
ward) of the electric field at radial

R1

R2

Q1

Q 2

Figure 23-42 Problem 29.

distance r � 2.00R2? What are (c) E and (d) the direction at r �
5.00R1? What is the charge on the (e) interior and (f) exterior sur-
face of the shell?

••30 In Fig. 23-43, short sections of
two very long parallel lines of
charge are shown, fixed in place,
separated by L � 8.0 cm. The uni-
form linear charge densities are
�6.0 mC/m for line 1 and �2.0
mC/m for line 2. Where along the x
axis shown is the net electric field
from the two lines zero?

••31 Two long, charged,
thin-walled, concentric cylindrical shells have radii of 3.0 and
6.0 cm. The charge per unit length is 5.0 	 10�6 C/m on the inner
shell and �7.0 	 10�6 C/m on the outer shell. What are the (a)
magnitude E and (b) direction (radially inward or outward) of the
electric field at radial distance r � 4.0 cm? What are (c) E and
(d) the direction at r � 8.0 cm?

•••32 A long, nonconducting, solid cylinder of radius 4.0 cm has a
nonuniform volume charge density r that is a function of radial dis-
tance r from the cylinder axis: r �
Ar 2. For A � 2.5 mC/m5, what is the
magnitude of the electric field at
(a) r � 3.0 cm and (b) r � 5.0 cm?

Module 23-5 Applying Gauss’
Law: Planar Symmetry
•33 In Fig. 23-44, two large, thin
metal plates are parallel and close
to each other. On their inner faces,
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Figure 23-47
Problem 36.

negligible thickness has a total charge of 6.0 	 10�6 C. (a) Estimate
the magnitude E of the electric field just off the center of the plate (at,
say, a distance of 0.50 mm from the center) by assuming that the
charge is spread uniformly over the two faces of the plate. (b)
Estimate E at a distance of 30 m (large relative to the plate size) by as-
suming that the plate is a charged particle.
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Figure 23-54 Problem 49.

••38 In Fig. 23-48a, an electron is shot directly away from a uni- Module 23-6 Applying Gauss’ Law: Spherical Symmetry
•44 Figure 23-52 gives the magni-
tude of the electric field inside and
outside a sphere with a positive charge
distributed uniformly throughout its
volume.The scale of the vertical axis is
set by Es � 5.0	 107 N/C. What is the
charge on the sphere?

•45 Two charged concentric spher-
ical shells have radii 10.0 cm and 15.0 cm. The charge on the inner
shell is 4.00 	 10�8 C, and that on the outer shell is 2.00 	 10�8 C.
Find the electric field (a) at r � 12.0 cm and (b) at r � 20.0 cm.

•46 Assume that a ball of charged particles has a uniformly
distributed negative charge density except for a narrow radial
tunnel through its center, from the surface on one side to the
surface on the opposite side. Also assume that we can position a
proton anywhere along the tunnel or outside the ball. Let FR be
the magnitude of the electrostatic force on the proton when it is
located at the ball’s surface, at radius R. As a multiple of R, how
far from the surface is there a point where the force magnitude is
0.50FR if we move the proton (a) away from the ball and (b) into
the tunnel?

•47 An unknown charge sits on a conducting solid sphere of
radius 10 cm. If the electric field 15 cm from the center of the
sphere has the magnitude 3.0 	 103 N/C and is directed radially in-
ward, what is the net charge on the sphere?

••48 A charged particle is held at the center of a spherical
shell. Figure 23-53 gives the magnitude E of the electric field ver-
sus radial distance r. The scale of the vertical axis is set by Es �
10.0 	 107 N/C. Approximately, what is the net charge on the
shell?

SSM

Both are fixed in place. If d � 0.200 m,
at what (a) positive and (b) negative
coordinate on the x axis (other than in-
finity) is the net electric field ofE

:

net
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••49 In Fig. 23-54, a solid sphere of
radius a � 2.00 cm is concentric with a
spherical conducting shell of inner ra-
dius b � 2.00a and outer radius c �
2.40a. The sphere has a net uniform
charge q1 � �5.00 fC; the shell has a
net charge q2 � �q1.What is the mag-
nitude of the electric field at radial
distances (a) r � 0, (b) r � a/2.00, (c) 
r � a, (d) r � 1.50a, (e) r � 2.30a, and
(f) r � 3.50a? What is the net charge
on the (g) inner and (h) outer surface
of the shell?

Figure 23-48 Problem 38.

formly charged plastic sheet, at speed vs � 2.0 	 105 m/s.The sheet is
nonconducting, flat, and very large. Figure 23-48b gives the electron’s
vertical velocity component v versus time t until the return to the
launch point.What is the sheet’s surface charge density?

••39 In Fig. 23-49, a small, nonconductingSSM +
+
+
+
+
+
+
+
+
+
+
+
+ m, q 

θ 

σ 

Figure 23-49
Problem 39.

ball of mass m � 1.0 mg and charge q � 2.0 	
10�8 C (distributed uniformly through its vol-
ume) hangs from an insulating thread that makes
an angle u � 30° with a vertical, uniformly
charged nonconducting sheet (shown in cross sec-
tion). Considering the gravitational force on the
ball and assuming the sheet extends far vertically
and into and out of the page, calculate the surface
charge density s of the sheet.

••40 Figure 23-50 shows a very large nonconduct-
ing sheet that has a uniform surface charge density
of s � �2.00 mC/m2; it also shows a particle of
charge Q � 6.00 mC, at distance d from the sheet.

y

x
Q

σ 

d

Figure 23-50 Problem 40.

the sheet and particle zero? (c) If d �
0.800 m, at what coordinate on the x
axis is 

••41 An electron is shot directly
toward the center of a large metal

E
:

net � 0?

plate that has surface charge density �2.0 	 10�6 C/m2. If the initial
kinetic energy of the electron is 1.60 	 10�17 J and if the electron is to
stop (due to electrostatic repulsion from the plate) just as it reaches
the plate,how far from the plate must the launch point be?

••42 Two large metal plates of area 1.0 m2 face each other, 5.0
cm apart, with equal charge magnitudes but opposite signs.
The field magnitude E between them (neglect fringing) is 55 N/C.
Find .

•••43 Figure 23-51 shows a cross sec-
tion through a very large nonconducting
slab of thickness d � 9.40 mm and uni-
form volume charge density r � 5.80
fC/m3. The origin of an x axis is at the
slab’s center. What is the magnitude of
the slab’s electric field at an x coordi-
nate of (a) 0, (b) 2.00 mm, (c) 4.70 mm,
and (d) 26.0 mm?

� q �

� q �

d/2 

d

x
0

Figure 23-51
Problem 43.
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••50 Figure 23-55 shows two non-
conducting spherical shells fixed in
place on an x axis. Shell 1 has uniform
surface charge density �4.0 mC/m2

on its outer surface and radius 0.50
cm, and shell 2 has uniform surface
charge density �2.0 mC/m2 on its
outer surface and radius 2.0 cm; the
centers are separated by L � 6.0 cm.

57 A thin-walled metal spherical shell has radius 25.0 cm and
charge 2.00 	 10�7 C. Find E for a point (a) inside the shell, (b)
just outside it, and (c) 3.00 m from the center.

58 A uniform surface charge of density 8.0 nC/m2 is distributed over
the entire xy plane. What is the electric flux through a spherical
Gaussian surface centered on the origin and having a radius of 5.0 cm?

59 Charge of uniform volume density r � 1.2 nC/m3 fills an infi-
nite slab between x � �5.0 cm and x � �5.0 cm. What is the mag-
nitude of the electric field at any point with the coordinate (a) x �
4.0 cm and (b) x � 6.0 cm?

60 The chocolate crumb mystery. Explosions ignited by
electrostatic discharges (sparks) constitute a serious danger in fa-
cilities handling grain or powder. Such an explosion occurred in
chocolate crumb powder at a biscuit factory in the 1970s. Workers
usually emptied newly delivered sacks of the powder into a loading
bin, from which it was blown through electrically grounded plastic
pipes to a silo for storage. Somewhere along this route, two condi-
tions for an explosion were met: (1) The magnitude of an electric
field became 3.0 	 106 N/C or greater, so that electrical break-
down and thus sparking could occur. (2) The energy of a spark was
150 mJ or greater so that it could ignite the powder explosively. Let
us check for the first condition in the powder flow through the
plastic pipes.

Suppose a stream of negatively charged powder was blown
through a cylindrical pipe of radius R � 5.0 cm. Assume that the
powder and its charge were spread uniformly through the pipe
with a volume charge density r. (a) Using Gauss’ law, find an ex-
pression for the magnitude of the electric field in the pipe as a
function of radial distance r from the pipe center. (b) Does E in-
crease or decrease with increasing r? (c) Is directed radially in-
ward or outward? (d) For r � 1.1 	 10�3 C/m3 (a typical value at
the factory), find the maximum E and determine where that maxi-
mum field occurs. (e) Could sparking occur, and if so, where? (The
story continues with Problem 70 in Chapter 24.)

61 A thin-walled metal spherical shell of radius a has a charge
qa. Concentric with it is a thin-walled metal spherical shell of radius
b � a and charge qb. Find the electric field at points a distance r from
the common center, where (a) r 
 a, (b) a 
 r 
 b, and (c) r � b.
(d) Discuss the criterion you would use to determine how the charges
are distributed on the inner and outer surfaces of the shells.

62 A particle of charge q � 1.0 	 10�7 C is at the center of a
spherical cavity of radius 3.0 cm in a chunk of metal. Find the electric
field (a) 1.5 cm from the cavity center and (b) anyplace in the metal.

63 A proton at speed v � 3.00 	 105 m/s orbits at radius r � 1.00 cm
outside a charged sphere. Find the sphere’s charge.

64 Equation 23-11 (E � s/´0) gives the electric field at points near a
charged conducting surface. Apply this equation to a conducting
sphere of radius r and charge q, and show that the electric field outside
the sphere is the same as the field of a charged particle located at the
center of the sphere.

65 Charge Q is uniformly distributed in a sphere of radius R. (a)
What fraction of the charge is contained within the radius 
r � R/2.00? (b) What is the ratio of the electric field magnitude at 
r � R/2.00 to that on the surface of the sphere?

66 A charged particle causes an electric flux of �750 N ?m2/C to
pass through a spherical Gaussian surface of 10.0 cm radius cen-
tered on the charge. (a) If the radius of the Gaussian surface were

SSM

E
:

E
:

Other than at x � �, where on the x
axis is the net electric field equal to
zero?

••51 In Fig. 23-56, a
nonconducting spherical shell of in-
ner radius a � 2.00 cm and outer ra-
dius b � 2.40 cm has (within its thick-
ness) a positive volume charge
density r � A/r, where A is a constant
and r is the distance from the center
of the shell. In addition, a small ball of
charge q � 45.0 fC is located at that
center. What value should A have if
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Figure 23-57 Problem 52.

of radius R � 5.60 cm varies with radial distance r as given by r �
(14.1 pC/m3)r/R. (a) What is the sphere’s total charge? What is the
field magnitude E at (b) r � 0, (c) r � R/2.00, and (d) r � R? (e)

the electric field in the shell (a � r �
b) is to be uniform?

••52 Figure 23-57 shows a spheri-
cal shell with uniform volume charge
density r � 1.84 nC/m3, inner radius
a � 10.0 cm, and outer radius b �
2.00a. What is the magnitude of the
electric field at radial distances (a) r �
0; (b) r � a/2.00, (c) r � a, (d) r �
1.50a, (e) r � b,and (f) r � 3.00b?

•••53 The volume charge den-
sity of a solid nonconducting sphere

ILW

R R

P
1 2 

Figure 23-58 Problem 54.

Graph E versus r.

•••54 Figure 23-58 shows, in cross
section, two solid spheres with uni-
formly distributed charge through-
out their volumes. Each has radius
R. Point P lies on a line connecting
the centers of the spheres, at radial
distance R/2.00 from the center of sphere 1. If the net electric field
at point P is zero, what is the ratio q2/q1 of the total charges? 

•••55 A charge distribution that is spherically symmetric but not
uniform radially produces an electric field of magnitude E � Kr 4,
directed radially outward from the center of the sphere. Here r is
the radial distance from that center, and K is a constant. What is
the volume density r of the charge distribution?

Additional Problems
56 The electric field in a particular space is N/C,
with x in meters. Consider a cylindrical Gaussian surface of radius
20 cm that is coaxial with the x axis. One end of the cylinder is at 
x � 0. (a) What is the magnitude of the electric flux through the
other end of the cylinder at x � 2.0 m? (b) What net charge is en-
closed within the cylinder?

E
:

� (x � 2)î
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doubled, how much flux would pass through the surface? (b) What
is the charge of the particle?

67 The electric field at point P just outside the outer sur-
face of a hollow spherical conductor of inner radius 10 cm and
outer radius 20 cm has magnitude 450 N/C and is directed outward.
When a particle of unknown charge Q is introduced into the center
of the sphere, the electric field at P is still directed outward but is
now 180 N/C. (a) What was the net charge enclosed by the outer
surface before Q was introduced? (b) What is charge Q? After Q is
introduced, what is the charge on the (c) inner and (d) outer sur-
face of the conductor?

68 The net electric flux through each face of a die (singular of
dice) has a magnitude in units of 103 N ?m2/C that is exactly equal
to the number of spots N on the face (1 through 6). The flux is in-
ward for N odd and outward for N even. What is the net charge in-
side the die?

69 Figure 23-59 shows, in
cross section, three infinitely
large nonconducting sheets on
which charge is uniformly
spread. The surface charge
densities are s1 � �2.00
mC/m2, s2 � �4.00 mC/m2,
and s3 � �5.00 mC/m2, and
distance L � 1.50 cm. In unit-
vector notation,what is the net
electric field at point P?

70 Charge of uniform vol-
ume density r � 3.2 mC/m3 fills a nonconducting solid sphere of
radius 5.0 cm. What is the magnitude of the electric field (a) 3.5
cm and (b) 8.0 cm from the sphere’s center?

71 A Gaussian surface in the form of a hemisphere of radius R �
5.68 cm lies in a uniform electric field of magnitude E � 2.50 N/C.
The surface encloses no net charge. At the (flat) base of the sur-
face, the field is perpendicular to the surface and directed into the
surface. What is the flux through (a) the base and (b) the curved
portion of the surface?

72 What net charge is enclosed by the Gaussian cube of
Problem 2?

73 A nonconducting solid sphere has a uni-
form volume charge density r. Let be the
vector from the center of the sphere to a gen-
eral point P within the sphere. (a) Show that
the electric field at P is given by 
(Note that the result is independent of the ra-
dius of the sphere.) (b) A spherical cavity is
hollowed out of the sphere, as shown in Fig. 23-
60. Using superposition concepts, show that
the electric field at all points within the cavity
is uniform and equal to where is the position vector
from the center of the sphere to the center of the cavity.

74 A uniform charge density of 500 nC/m3 is distributed through-
out a spherical volume of radius 6.00 cm. Consider a cubical
Gaussian surface with its center at the center of the sphere. What is
the electric flux through this cubical surface if its edge length is
(a) 4.00 cm and (b) 14.0 cm?

75 Figure 23-61 shows a Geiger counter, a device used to detect
ionizing radiation, which causes ionization of atoms. A thin, posi-

a:E
:

� ra:/3´0,

E
:

� rr:/3´0.

r:

SSM

tively charged central wire is sur-
rounded by a concentric, circular, con-
ducting cylindrical shell with an equal
negative charge, creating  a strong ra-
dial electric field. The shell contains a
low-pressure inert gas.A particle of ra-
diation entering the device through
the shell wall ionizes a few of the gas
atoms. The resulting free electrons (e)
are drawn to the positive wire.
However, the electric field is so intense
that, between collisions with gas
atoms, the free electrons gain energy
sufficient to ionize these atoms also.
More free electrons are thereby cre-
ated, and the process is repeated until
the electrons reach the wire. The re-
sulting “avalanche” of electrons is col-
lected by the wire, generating a signal that is used to record the
passage of the original particle of radiation. Suppose that the ra-
dius of the central wire is 25 mm, the inner radius of the shell 1.4
cm, and the length of the shell 16 cm. If the electric field at the
shell’s inner wall is 2.9 	 104 N/C, what is the total positive charge
on the central wire?

76 Charge is distributed uniformly throughout the volume of an in-
finitely long solid cylinder of radius R. (a) Show that, at a distance r 

R from the cylinder axis,

where r is the volume charge density. (b) Write an expression for E
when r � R.

77 A spherical conducting shell has a charge of �14 mC on
its outer surface and a charged particle in its hollow. If the net
charge on the shell is �10 mC, what is the charge (a) on the inner
surface of the shell and (b) of the particle?

78 A charge of 6.00 pC is spread uniformly throughout the volume
of a sphere of radius r � 4.00 cm.What is the magnitude of the electric
field at a radial distance of (a) 6.00 cm and (b) 3.00 cm?

79 Water in an irrigation ditch of width w � 3.22 m and depth d �
1.04 m flows with a speed of 0.207 m/s. The mass flux of the flowing
water through an imaginary surface is the product of the water’s
density (1000 kg/m3) and its volume flux through that surface. Find
the mass flux through the following imaginary surfaces: (a) a sur-
face of area wd, entirely in the water, perpendicular to the flow;
(b) a surface with area 3wd/2, of which wd is in the water, perpendi-
cular to the flow; (c) a surface of area wd/2, entirely in the water, per-
pendicular to the flow; (d) a surface of area wd, half in the water and
half out, perpendicular to the flow; (e) a surface of area wd, entirely in
the water,with its normal 34.0° from the direction of flow.

80 Charge of uniform surface density 8.00 nC/m2 is distributed
over an entire xy plane; charge of uniform surface density 3.00 nC/m2

is distributed over the parallel plane defined by z � 2.00 m.
Determine the magnitude of the electric field at any point having a z
coordinate of (a) 1.00 m and (b) 3.00 m.

81 A spherical ball of charged particles has a uniform charge
density. In terms of the ball’s radius R, at what radial distances
(a) inside and (b) outside the ball is the magnitude of the ball’s
electric field equal to of the maximum magnitude of that field?1
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Electric Potential

24-1 ELECTRIC POTENTIAL

After reading this module, you should be able to . . .

24.01 Identify that the electric force is conservative and thus
has an associated potential energy.

24.02 Identify that at every point in a charged object’s electric
field, the object sets up an electric potential V, which is a
scalar quantity that can be positive or negative depending
on the sign of the object’s charge.

24.03 For a charged particle placed at a point in an object’s
electric field, apply the relationship between the object’s
electric potential V at that point, the particle’s charge q,
and the potential energy U of the particle–object system.

24.04 Convert energies between units of joules and 
electron-volts.

24.05 If a charged particle moves from an initial point to a 
final point in an electric field, apply the relationships 

between the change V in the potential, the particle’s
charge q, the change U in the potential energy, and the
work W done by the electric force.

24.06 If a charged particle moves between two given points
in the electric field of a charged object, identify that the
amount of work done by the electric force is path
independent.

24.07 If a charged particle moves through a change V in
electric potential without an applied force acting on it, relate

V and the change K in the particle’s kinetic energy.
24.08 If a charged particle moves through a change V in

electric potential while an applied force acts on it, relate 
V, the change K in the particle’s kinetic energy, and the

work Wapp done by the applied force.
��

�
��

�

�
�

● The electric potential V at a point P in the electric field of a
charged object is

V �

where is the work that would be done by the electric 
force on a positive test charge q0 were it brought from an 
infinite distance to P, and U is the electric potential energy
that would then be stored in the test charge–object system.

● If a particle with charge q is placed at a point where the
electric potential of a charged object is V, the electric 
potential energy U of the particle–object system is

U � qV.

● If the particle moves through a potential difference �V, the
change in the electric potential energy is

W�

�W�

q0
�

U
q0

,

�U � q �V � q(Vf � Vi).

● If a particle moves through a change �V in electric 
potential without an applied force acting on it, applying
the conservation of mechanical energy gives the change in 
kinetic energy as

�K � �q �V.

● If, instead, an applied force acts on the particle, doing work
Wapp, the change in kinetic energy is

�K � �q �V � Wapp.

● In the special case when �K � 0, the work of an applied
force involves only the motion of the particle through a
potential difference:

Wapp � q �V.

Learning Objectives

Key Ideas

What Is Physics?
One goal of physics is to identify basic forces in our world, such as the electric
force we discussed in Chapter 21. A related goal is to determine whether a force
is conservative—that is, whether a potential energy can be associated with it. The
motivation for associating a potential energy with a force is that we can then
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apply the principle of the conservation of mechanical energy to closed systems
involving the force. This extremely powerful principle allows us to calculate the
results of experiments for which force calculations alone would be very difficult.
Experimentally, physicists and engineers discovered that the electric force is
conservative and thus has an associated electric potential energy. In this chapter
we first define this type of potential energy and then put it to use.

For a quick taste, let’s return to the situation we considered in Chapter 22:
In Figure 24-1, particle 1 with positive charge q1 is located at point P near parti-
cle 2 with positive charge q2. In Chapter 22 we explained how particle 2 is able
to push on particle 1 without any contact. To account for the force (which is a
vector quantity), we defined an electric field (also a vector quantity) that is
set up at P by particle 2. That field exists regardless of whether particle 1 is at P.
If we choose to place particle 1 there, the push on it is due to charge q1 and that
pre-existing field .

Here is a related problem. If we release particle 1 at P, it begins to move and
thus has kinetic energy. Energy cannot appear by magic, so from where does it
come? It comes from the electric potential energy U associated with the force be-
tween the two particles in the arrangement of Fig. 24-1. To account for the poten-
tial energy U (which is a scalar quantity), we define an electric potential V (also a
scalar quantity) that is set up at P by particle 2. The electric potential exists
regardless of whether particle 1 is at P. If we choose to place particle 1 there, the
potential energy of the two-particle system is then due to charge q1 and that pre-
existing electric potential V.

Our goals in this chapter are to (1) define electric potential, (2) discuss how
to calculate it for various arrangements of charged particles and objects, and
(3) discuss how electric potential V is related to electric potential energy U.

Electric Potential and Electric Potential Energy
We are going to define the electric potential (or potential for short) in terms of
electric potential energy, so our first job is to figure out how to measure that po-
tential energy. Back in Chapter 8, we measured gravitational potential energy U
of an object by (1) assigning U � 0 for a reference configuration (such as the ob-
ject at table level) and (2) then calculating the work W the gravitational force
does if the object is moved up or down from that level. We then defined the po-
tential energy as being

U � �W (potential energy). (24-1)

Let’s follow the same procedure with our new conservative force, the electric
force. In Fig. 24-2a, we want to find the potential energy U associated with a posi-
tive test charge q0 located at point P in the electric field of a charged rod. First, we
need a reference configuration for which U � 0. A reasonable choice is for the
test charge to be infinitely far from the rod, because then there is no interaction
with the rod. Next, we bring the test charge in from infinity to point P to form the
configuration of Fig. 24-2a. Along the way, we calculate the work done by the
electric force on the test charge. The potential energy of the final configuration is
then given by Eq. 24-1, where W is now the work done by the electric force. Let’s
use the notation to emphasize that the test charge is brought in from infinity.
The work and thus the potential energy can be positive or negative depending on
the sign of the rod’s charge.

Next, we define the electric potential V at P in terms of the work done by the
electric force and the resulting potential energy:

(electric potential). (24-2)V �
�W�

q0
�

U
q0

W�

E
:

E
:
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P

The rod sets up an
electric potential, 
which determines 
the potential energy.

Figure 24-1 Particle 1 is located at point P in
the electric field of particle 2.

Figure 24-2 (a) A test charge has been
brought in from infinity to point P in the
electric field of the rod. (b) We define an
electric potential V at P based on the 
potential energy of the configuration in (a).
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That is, the electric potential is the amount of electric potential energy per unit
charge when a positive test charge is brought in from infinity. The rod sets up this
potential V at P regardless of whether the test charge (or anything else) happens
to be there (Fig. 24-2b). From Eq. 24-2 we see that V is a scalar quantity (because
there is no direction associated with potential energy or charge) and can be posi-
tive or negative (because potential energy and charge have signs).

Repeating this procedure we find that an electric potential is set up at every
point in the rod’s electric field. In fact, every charged object sets up electric
potential V at points throughout its electric field. If we happen to place a particle
with, say, charge q at a point where we know the pre-existing V, we can immedi-
ately find the potential energy of the configuration:

(electric potential energy) � (particle’s charge)

or U � qV, (24-3)

where q can be positive or negative.
Two Cautions. (1) The (now very old) decision to call V a potential was un-

fortunate because the term is easily confused with potential energy. Yes, the two
quantities are related (that is the point here) but they are very different and not
interchangeable. (2) Electric potential is a scalar, not a vector. (When you come
to the homework problems, you will rejoice on this point.)

Language. A potential energy is a property of a system (or configuration) of
objects, but sometimes we can get away with assigning it to a single object. For ex-
ample, the gravitational potential energy of a baseball hit to outfield is actually a
potential energy of the baseball–Earth system (because it is associated with the
force between the baseball and Earth). However, because only the baseball no-
ticeably moves (its motion does not noticeably affect Earth), we might assign the
gravitational potential energy to it alone. In a similar way, if a charged particle is
placed in an electric field and has no noticeable effect on the field (or the charged
object that sets up the field), we usually assign the electric potential energy to the
particle alone.

Units. The SI unit for potential that follows from Eq. 24-2 is the joule per
coulomb. This combination occurs so often that a special unit, the volt (abbrevi-
ated V), is used to represent it.Thus,

1 volt � 1 joule per coulomb.

With two unit conversions, we can now switch the unit for electric field from new-
tons per coulomb to a more conventional unit:

The conversion factor in the second set of parentheses comes from our definition
of volt given above; that in the third set of parentheses is derived from the defini-
tion of the joule. From now on, we shall express values of the electric field in volts
per meter rather than in newtons per coulomb.

Motion Through an Electric Field
Change in Electric Potential. If we move from an initial point i to a second point f
in the electric field of a charged object, the electric potential changes by

�V � Vf � Vi.

� 1 V/m.

1 N/C � �1
N
C � � 1 V

1 J/C � � 1 J
1 N �m �

� electric potential energy
unit charge �,
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If we move a particle with charge q from i to f, then, from Eq. 24-3, the potential
energy of the system changes by

�U � q �V � q(Vf � Vi). (24-4)

The change can be positive or negative, depending on the signs of q and �V. It
can also be zero, if there is no change in potential from i to f (the points have the
same value of potential). Because the electric force is conservative, the change in
potential energy �U between i and f is the same for all paths between those
points (it is path independent).

Work by the Field. We can relate the potential energy change �U to the
work W done by the electric force as the particle moves from i to f by applying
the general relation for a conservative force (Eq. 8-1):

W � ��U (work, conservative force). (24-5)

Next, we can relate that work to the change in the potential by substituting from
Eq. 24-4:

W � ��U � �q �V � �q(Vf � Vi). (24-6)

Up until now, we have always attributed work to a force but here can also say
that W is the work done on the particle by the electric field (because it, of course,
produces the force). The work can be positive, negative, or zero. Because �U
between any two points is path independent, so is the work W done by the field.
(If you need to calculate work for a difficult path, switch to an easier path—you
get the same result.)

Conservation of Energy. If a charged particle moves through an electric
field with no force acting on it other than the electric force due to the field, then
the mechanical energy is conserved. Let’s assume that we can assign the electric
potential energy to the particle alone. Then we can write the conservation of me-
chanical energy of the particle that moves from point i to point f as

Ui � Ki � Uf � Kf , (24-7)

or �K � ��U. (24-8)

Substituting Eq. 24-4, we find a very useful equation for the change in the particle’s
kinetic energy as a result of the particle moving through a potential difference:

�K � �q �V � �q(Vf � Vi). (24-9)

Work by an Applied Force. If some force in addition to the electric force
acts on the particle, we say that the additional force is an applied force or external
force, which is often attributed to an external agent. Such an applied force can do
work on the particle, but the force may not be conservative and thus, in general,
we cannot associate a potential energy with it. We account for that work Wapp by
modifying Eq. 24-7:

(initial energy) � (work by applied force) � (final energy)

or Ui � Ki � Wapp � Uf � Kf . (24-10)

Rearranging and substituting from Eq. 24-4, we can also write this as

�K � ��U � Wapp � �q �V � Wapp. (24-11)

The work by the applied force can be positive, negative, or zero, and thus the en-
ergy of the system can increase, decrease, or remain the same.

In the special case where the particle is stationary before and after the move,
the kinetic energy terms in Eqs. 24-10 and 24-11 are zero and we have

Wapp � q �V (for Ki � Kf). (24-12)

In this special case, the work Wapp involves the motion of the particle through
the potential difference �V and not a change in the particle’s kinetic energy.
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where u is the angle between the directions of and .
The field is directed downward and the displacement 
is directed upward; so u � 180�. We can now evaluate the
work as

Equation 24-5 then yields

�U � �W � �1.2 	 10�14 J. (Answer)

This result tells us that during the 520 m ascent, the electric 
potential energy of the electron decreases by 1.2 	 10�14 J.
To find the change in electric potential, we apply Eq. 24-4:

(Answer)

This tells us that the electric force does work to move the
electron to a higher potential.

� 4.5 	 104 V � 45 kV.

�V �
�U
�q

�
�1.2 	 10�14 J
�1.6 	 10�19 C

� 1.2 	 10�14 J.

W � (�1.6 	 10�19 C)(150 N/C)(520 m) cos 180�

d
:

E
:

d
:

E
:

Sample Problem 24.01 Work and potential energy in an electric field

Electrons are continually being knocked out of air mole-
cules in the atmosphere by cosmic-ray particles coming in
from space. Once released, each electron experiences an
electric force due to the electric field that is produced
in the atmosphere by charged particles already on Earth.
Near Earth’s surface the electric field has the magnitude
E � 150 N/C and is directed downward. What is the change
�U in the electric potential energy of a released electron
when the electric force causes it to move vertically upward
through a distance d � 520 m (Fig. 24-3)? Through what
potential change does the electron move?

KEY IDEAS

(1) The change �U in the electric potential energy of the
electron is related to the work W done on the electron by the
electric field. Equation 24-5 (W �U) gives the relation.
(2) The work done by a constant force on a particle under-
going a displacement is

(3) The electric force and the electric field are related by the
force equation where here q is the charge of an
electron ( 1.6 10�19 C).

Calculations: Substituting the force equation into the work
equation and taking the dot product yield

W � qE
:

� d
:

� qEd cos u,

	� �
F
:

� qE
:

,

W � F
:

� d
:

.

d
:

F
:

� �

E
:

F
:

Additional examples, video, and practice available at WileyPLUS

By comparing Eqs. 24-6 and 24-12, we see that in this special case, the work by the
applied force is the negative of the work by the field:

Wapp � �W (for Ki � Kf). (24-13)

Electron-volts. In atomic and subatomic physics, energy measures in the SI
unit of joules often require awkward powers of ten. A more convenient (but non-
SI unit) is the electron-volt (eV), which is defined to be equal to the work required
to move a single elementary charge e (such as that of an electron or proton)
through a potential difference �V of exactly one volt. From Eq. 24-6, we see that
the magnitude of this work is q �V.Thus,

1 eV � e(1 V)

� (1.602 	 10�19 C)(1 J/C) � 1.602 	 10�19 J. (24-14)

Checkpoint 1
In the figure, we move a proton from point i to point f in a uniform electric field. Is positive or negative
work done by (a) the electric field and (b) our force? (c) Does the electric potential energy increase or
decrease? (d) Does the proton move to a point of higher or lower electric potential?

E

+
f i 

Figure 24-3 An electron in the atmosphere is moved upward through
displacement by an electric force due to an electric field .E

:
F
:

d
:

–e

E F d
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Equipotential Surfaces
Adjacent points that have the same electric potential form an equipotential
surface, which can be either an imaginary surface or a real, physical surface. No
net work W is done on a charged particle by an electric field when the particle
moves between two points i and f on the same equipotential surface. This follows
from Eq. 24-6, which tells us that W must be zero if Vf � Vi. Because of the path
independence of work (and thus of potential energy and potential), W � 0 for
any path connecting points i and f on a given equipotential surface regardless of
whether that path lies entirely on that surface.

Figure 24-4 shows a family of equipotential surfaces associated with the elec-
tric field due to some distribution of charges. The work done by the electric field
on a charged particle as the particle moves from one end to the other of paths

24-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD

After reading this module, you should be able to . . .

24.09 Identify an equipotential surface and describe how it is
related to the direction of the associated electric field.

24.10 Given an electric field as a function of position, calcu-
late the change in potential �V from an initial point to a
final point by choosing a path between the points and
integrating the dot product of the field and a length
element along the path.d s:

E
:

24.11 For a uniform electric field, relate the field magnitude
E and the separation �x and potential difference �V
between adjacent equipotential lines.

24.12 Given a graph of electric field E versus position along
an axis, calculate the change in potential �V from an initial
point to a final point by graphical integration.

24.13 Explain the use of a zero-potential location.

Learning Objectives

● The points on an equipotential surface all have the same
electric potential. The work done on a test charge in moving it
from one such surface to another is independent of the loca-
tions of the initial and final points on these surfaces and of the
path that joins the points. The electric field is always directed
perpendicularly to corresponding equipotential surfaces.

● The electric potential difference between two points i and f is

where the integral is taken over any path connecting the
points. If the integration is difficult along any particular path,

Vf � Vi � ��f

i
E
:

� d s:,

E
:

we can choose a different path along which the integration
might be easier. 

● If we choose Vi � 0, we have, for the potential at a particu-
lar point,

● In a uniform field of magnitude E, the change in potential
from a higher equipotential surface to a lower one, separated
by distance �x, is

�V � �E �x.

V � ��f

i
E
:

� d s:.

Key Ideas

I

II

III IV

V1

V2

V3

V4

Equal work is done along
these paths between the
same surfaces.

No work is done along
this path on an
equipotential surface.

No work is done along this path 
that returns to the same surface.

Figure 24-4 Portions of four equipotential
surfaces at electric potentials V1 � 100 V,
V2 � 80 V, V3 � 60 V, and V4 � 40 V. Four
paths along which a test charge may move
are shown.Two electric field lines are also
indicated.
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I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a charged particle or
a spherically symmetrical charge distribution are a family of concentric spheres.
For a uniform electric field, the surfaces are a family of planes perpendicular to
the field lines. In fact, equipotential surfaces are always perpendicular to electric
field lines and thus to , which is always tangent to these lines. If were not per-
pendicular to an equipotential surface, it would have a component lying along
that surface. This component would then do work on a charged particle as it
moved along the surface. However, by Eq. 24-6 work cannot be done if the
surface is truly an equipotential surface; the only possible conclusion is that 
must be everywhere perpendicular to the surface. Figure 24-5 shows electric field
lines and cross sections of the equipotential surfaces for a uniform electric field
and for the field associated with a charged particle and with an electric dipole.

Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-6.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-6,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electric force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-6, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

(24-17)

If we substitute the total work W from Eq. 24-17 into Eq. 24-6, we find

(24-18)Vf � Vi � ��f

i
E
:

� d s:.

W � q0 �f

i
E
:

� d s:.

d s:

dW � q0E
:

� d s:.

F
:

� q0E
:

dW � F
:

� d s:.

d s:F
:

d s:
q0E

:

E
:

E
:

E
:

E
:

Equipotential surface

Field line

(a)

(c)

+

(b)

+

Figure 24-5 Electric field lines (purple) and
cross sections of equipotential surfaces
(gold) for (a) a uniform electric field,
(b) the field due to a charged particle,
and (c) the field due to an electric dipole.

i

f

ds
q0

q0E

Field line Path

+

Figure 24-6 A test charge q0 moves from point i
to point f along the path shown in a nonuni-
form electric field. During a displacement ,
an electric force acts on the test charge.
This force points in the direction of the field
line at the location of the test charge.

q0E
:

d s:
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Checkpoint 2
The figure here shows a family of parallel equipotential surfaces (in cross section) and
five paths along which we shall move an electron from one surface to another. (a)
What is the direction of the electric field associated with the surfaces? (b) For each
path, is the work we do positive, negative, or zero? (c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V 

5

3
4

2

1

The electric field vector points from higher potential toward lower potential.

Thus, the potential difference Vf � Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electric force is con-
servative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi � 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.

Uniform Field. Let’s apply Eq. 24-18 for a uniform field as shown in 
Fig. 24-7. We start at point i on an equipotential line with potential Vi and move to
point f on an equipotential line with a lower potential Vf. The separation between
the two equipotential lines is �x. Let’s also move along a path that is parallel to the
electric field (and thus perpendicular to the equipotential lines). The angle be-
tween and in Eq. 24-18 is zero, and the dot product gives us

� E ds cos 0 � E ds.

Because E is constant for a uniform field, Eq. 24-18 becomes

Vf � Vi � �E . (24-20)

The integral is simply an instruction for us to add all the displacement elements
ds from i to f, but we already know that the sum is length �x. Thus we can write
the change in potential Vf � Vi in this uniform field as

�V � �E �x (uniform field). (24-21)

This is the change in voltage �V between two equipotential lines in a uniform field
of magnitude E, separated by distance �x. If we move in the direction of the field
by distance �x, the potential decreases. In the opposite direction, it increases.

�f

i
ds

E
:

� d s:
d s:E

:
E
:

V � ��f

i
E
:

� d s:,

E
:

� d s:

Field line

Higher
potential Lower

potential

Path

E

�x

i f
x

Figure 24-7 We move between
points i and f, between adja-
cent equipotential lines in a
uniform electric field ,
parallel to a field line.

E
:
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Figure 24-8 (a) A test charge q0 moves in a straight line from point i to point f, along the
direction of a uniform external electric field. (b) Charge q0 moves along path icf in the same
electric field.

ment of the test charge is perpendicular to . Thus, the
angle u between and is 90 , and the dot product 
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: Vc � Vi � 0. Ah, we should have seen this
coming. The points are on the same equipotential surface,
which is perpendicular to the electric field lines.

For line cf we have u 45 and, from Eq. 24-18,

The integral in this equation is just the length of line cf ;
from Fig. 24-8b, that length is d/cos 45�.Thus,

(Answer)

This is the same result we obtained in (a), as it must be;
the potential difference between two points does not de-
pend on the path connecting them. Moral: When you
want to find the potential difference between two points
by moving a test charge between them, you can save time
and work by choosing a path that simplifies the use of
Eq. 24-18.

Vf � Vi � �E(cos 45�)
d

cos 45�
� �Ed.

� �E(cos 45�) �f

c
ds.

Vf � Vi � ��f

c
E
:

� d s: � ��f

c
E(cos 45�) ds

��

E
:

� d s:�d s:E
:

E
:

d s:

Sample Problem 24.02 Finding the potential change from the electric field

(a) Figure 24-8a shows two points i and f in a uniform elec-
tric field .The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference Vf � Vi by moving a positive test charge q0 from
i to f along the path shown, which is parallel to the field
direction.

KEY IDEA

We can find the potential difference between any two points
in an electric field by integrating along a path con-
necting those two points according to Eq. 24-18.

Calculations: We have actually already done the calculation
for such a path in the direction of an electric field line in a
uniform field when we derived Eq. 24-21.With slight changes in
notation,Eq.24-21 gives us

Vf � Vi � �Ed. (Answer)

(b) Now find the potential difference Vf � Vi by moving the
positive test charge q0 from i to f along the path icf shown in
Fig.24-8b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-

E
:

� d s:

E
:

(a) (b)

d

i

f

q0
d

i

f

q0

q0

c

45°

45°+

+

+

ds

ds

ds

E

E

E

The electric field points from
higher potential to lower potential.

The field is perpendicular to this ic path, 
so there is no change in the potential.

The field has a component
along this cf path, so there
is a  change in the potential.

Higher potential

Lower potential

Additional examples, video, and practice available at WileyPLUS
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q0

r

R

P

q

+

+

dsE

To find the potential of
the charged particle,
we move this test charge
out to infinity.

Figure 24-9 The particle with positive charge
q produces an electric field and an elec-
tric potential V at point P. We find the
potential by moving a test charge q0 from
P to infinity. The test charge is shown at
distance r from the particle, during differ-
ential displacement .d s:

E
:

24-3 POTENTIAL DUE TO A CHARGED PARTICLE

After reading this module, you should be able to . . .

24.14 For a given point in the electric field of a charged parti-
cle, apply the relationship between the electric potential V,
the charge of the particle q, and the distance r from the
particle.

24.15 Identify the correlation between the algebraic signs of the
potential set up by a particle and the charge of the particle.

24.16 For points outside or on the surface of a spherically

symmetric charge distribution, calculate the electric
potential as if all the charge is concentrated as a particle
at the center of the sphere.

24.17 Calculate the net potential at any given point due to
several charged particles, identifying that algebraic addi-
tion is used, not vector addition.

24.18 Draw equipotential lines for a charged particle.

Learning Objectives

● The electric potential due to a single charged particle at a
distance r from that charged particle is

where V has the same sign as q.

V �
1

4p´0

q
r

,

● The potential due to a collection of charged particles is

Thus, the potential is the algebraic sum of the individual po-
tentials, with no consideration of directions.

V � �
n

i�1
Vi �

1
4p´0

�
n

i�1

qi

ri
.

Key Ideas

Potential Due to a Charged Particle
We now use Eq. 24-18 to derive, for the space around a charged particle, an
expression for the electric potential V relative to the zero potential at infinity.
Consider a point P at distance R from a fixed particle of positive charge q (Fig. 24-9).
To use Eq. 24-18, we imagine that we move a positive test charge q0 from point P to
infinity. Because the path we take does not matter, let us choose the simplest one—
a line that extends radially from the fixed particle through P to infinity.

To use Eq. 24-18, we must evaluate the dot product

(24-22)

The electric field in Fig. 24-9 is directed radially outward from the fixed 
particle.Thus, the differential displacement of the test particle along its path has
the same direction as . That means that in Eq. 24-22, angle u 0 and cos u 1.
Because the path is radial, let us write ds as dr.Then, substituting the limits R and �,
we can write Eq. 24-18 as

(24-23)

Next, we set Vf � 0 (at �) and Vi � V (at R). Then, for the magnitude of the
electric field at the site of the test charge, we substitute from Eq. 22-3:

(24-24)

With these changes, Eq. 24-23 then gives us

(24-25)� �
1

4p´0

q
R

.

0 � V � �
q

4p´0
��

R

1
r2 dr �

q
4p´0

	 1
r 


�

R

E �
1

4p´0

q
r2 .

Vf � Vi � ���

R
E dr.

��E
:

d s:
E
:

E
:

� d s: � E cos � ds.
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Solving for V and switching R to r, we then have

(24-26)

as the electric potential V due to a particle of charge q at any radial distance
r from the particle.

Although we have derived Eq. 24-26 for a positively charged particle, the
derivation holds also for a negatively charged particle, in which case, q is a nega-
tive quantity. Note that the sign of V is the same as the sign of q:

V �
1

4p´0

q
r

A positively charged particle produces a positive electric potential. A negatively
charged particle produces a negative electric potential.

Figure 24-10 A computer-generated plot of
the electric potential V(r) due to a positive-
ly charged particle located at the origin of
an xy plane. The potentials at points in the
xy plane are plotted vertically. (Curved
lines have been added to help you visual-
ize the plot.) The infinite value of V pre-
dicted by Eq. 24-26 for r � 0 is not plotted.

x

y

V(r)

Figure 24-10 shows a computer-generated plot of Eq. 24-26 for a positively
charged particle; the magnitude of V is plotted vertically. Note that the magni-
tude increases as r : 0. In fact, according to Eq. 24-26, V is infinite at r � 0,
although Fig. 24-10 shows a finite, smoothed-off value there.

Equation 24-26 also gives the electric potential either outside or on the exter-
nal surface of a spherically symmetric charge distribution. We can prove this by
using one of the shell theorems of Modules 21-1 and 23-6 to replace the actual
spherical charge distribution with an equal charge concentrated at its center.
Then the derivation leading to Eq. 24-26 follows, provided we do not consider
a point within the actual distribution.

Potential Due to a Group of Charged Particles
We can find the net electric potential at a point due to a group of charged parti-
cles with the help of the superposition principle. Using Eq. 24-26 with the plus or
minus sign of the charge included, we calculate separately the potential resulting
from each charge at the given point. Then we sum the potentials. Thus, for n
charges, the net potential is

(n charged particles). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from
a group of charged particles. Herein lies an important computational advantage
of potential over electric field: It is a lot easier to sum several scalar quantities
than to sum several vector quantities whose directions and components must
be considered.

V � �
n

i�1
Vi �

1
4p´0

�
n

i�1

qi

ri

Checkpoint 3
The figure here shows three arrangements of two protons. Rank the arrangements ac-
cording to the net electric potential produced at point P by the protons, greatest first.

P

d
D

(b)
P

Dd
D

d

P
(a) (c)
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electric potential is a scalar, the orientations of the electrons
do not matter. (2) The electric field at C is a vector quantity
and thus the orientation of the electrons is important.

Calculations: Because the electrons all have the same nega-
tive charge �e and are all the same distance R from C, Eq.
24-27 gives us

(Answer) (24-28)

Because of the symmetry of the arrangement in Fig. 24-12a,
the electric field vector at C due to any given electron is
canceled by the field vector due to the electron that is dia-
metrically opposite it.Thus, at C,

(Answer)

(b) The electrons are moved along the circle until they are
nonuniformly spaced over a 120� arc (Fig. 24-12b).At C, find
the electric potential and describe the electric field.

Reasoning: The potential is still given by Eq. 24-28, because
the distance between C and each electron is unchanged and
orientation is irrelevant. The electric field is no longer zero,
however, because the arrangement is no longer symmetric.
A net field is now directed toward the charge distribution.

E
:

� 0.

V � �12
1

4p´0

e
R

.

Sample Problem 24.04 Potential is not a vector, orientation is irrelevant

(a) In Fig. 24-12a, 12 electrons (of charge e) are equally
spaced and fixed around a circle of radius R. Relative to 
V � 0 at infinity, what are the electric potential and electric
field at the center C of the circle due to these electrons?

KEY IDEAS

(1) The electric potential V at C is the algebraic sum of the
electric potentials contributed by all the electrons. Because

�

Additional examples, video, and practice available at WileyPLUS

Figure 24-12 (a) Twelve electrons uniformly spaced around a circle.
(b)The electrons nonuniformly spaced along an arc of the original circle.

R

C
R

C

(a) (b)

120°

Potential is a scalar and 
orientation is irrelevant.

(Because electric potential is a scalar, the orientations of the
particles do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positively charged particles in
Fig. 24-11a, the potential has very large positive values.
Close to the single negative charge, the potential has very
large negative values.Therefore, there must be points within
the square that have the same intermediate potential as that
at point P.The curve in Fig. 24-11b shows the intersection of
the plane of the figure with the equipotential surface that
contains point P.

� 350 V.

V �
(8.99 	 109 N �m2/C2)(36 	 10�9 C)

0.919 m

� 36 	 10�9 C.

q1 � q2 � q3 � q4 � (12 � 24 � 31 � 17) 	 10�9 C

d/1 2

V � �
4

i�1
Vi �

1
4p´0

� q1

r
�

q2

r
�

q3

r
�

q4

r �.

Sample Problem 24.03 Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of charged particles shown in Fig. 24-11a?
The distance d is 1.3 m, and the charges are

KEY IDEA

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four particles.

q2 � �24 nC,  q4 � �17 nC.

q1 � �12 nC,  q3 � �31 nC,

Figure 24-11 (a) Four charged particles. (b) The closed curve is a
(roughly drawn) cross section of the equipotential surface that
contains point P.

d d 

d

d

P

q1 q2

q3 q4

P

q1 q2

q3 q4

V = 350 V 

(a) (b)
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24-4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

After reading this module, you should be able to . . .

24.19 Calculate the potential V at any given point due to an
electric dipole, in terms of the magnitude p of the dipole
moment or the product of the charge separation d and the
magnitude q of either charge.

24.20 For an electric dipole, identify the locations of positive
potential, negative potential, and zero potential.

24.21 Compare the decrease in potential with increasing dis-
tance for a single charged particle and an electric dipole.

Learning Objectives

● At a distance r from an electric dipole with dipole moment magnitude p qd, the electric potential of the dipole is

for ; the angle u lies between the dipole moment vector and a line extending from the dipole midpoint to the point of
measurement.

r � d

V �
1

4p´0

p cos u
r2

�

Key Idea

z

d O

θ

+q

–q

r(–) – r(+)

r(–)

r(+)

r

P

(a)

+

z

d
θ

r(–) – r(+)

r(–)

r(+)

(b)

+
+q

–q

Figure 24-13 (a) Point P is a distance r from
the midpoint O of a dipole. The line OP
makes an angle u with the dipole axis.
(b) If P is far from the dipole, the lines of
lengths r(�) and r(�) are approximately
parallel to the line of length r, and the
dashed black line is approximately per-
pendicular to the line of length r(�).

Potential Due to an Electric Dipole
Now let us apply Eq. 24-27 to an electric dipole to find the potential at an 
arbitrary point P in Fig. 24-13a. At P, the positively charged particle (at distance
r(�)) sets up potential V(�) and the negatively charged particle (at distance r(�))
sets up potential V(�).Then the net potential at P is given by Eq. 24-27 as

(24-29)

Naturally occurring dipoles — such as those possessed by many mole-
cules — are quite small; so we are usually interested only in points that are rel-
atively far from the dipole, such that , where d is the distance between
the charges and r is the distance from the dipole’s midpoint to P. In that case,
we can approximate the two lines to P as being parallel and their length dif-
ference as being the leg of a right triangle with hypotenuse d (Fig. 24-13b).
Also, that difference is so small that the product of the lengths is approxi-
mately r 2. Thus,

r(�) � r(�) � d cos u and r(�)r(�) � r 2.

If we substitute these quantities into Eq. 24-29, we can approximate V to be

where u is measured from the dipole axis as shown in Fig. 24-13a. We can now
write V as

(electric dipole), (24-30)

in which p (� qd) is the magnitude of the electric dipole moment defined in
Module 22-3. The vector is directed along the dipole axis, from the negative to
the positive charge. (Thus, u is measured from the direction of .) We use this
vector to report the orientation of an electric dipole.

p:
p:

p:

V �
1

4p´0

p cos u
r2

V �
q

4p´0

d cos �
r2 ,

r � d

�
q

4p´0

r(�) � r(�)

r(�)r(�)
.

V � �
2

i�1
Vi � V(�) � V(�) �

1
4p´0

� q
r(�)

�
�q
r(�)

�
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Potential Due to a Continuous Charge Distribution
When a charge distribution q is continuous (as on a uniformly charged thin rod
or disk), we cannot use the summation of Eq. 24-27 to find the potential V at a point
P. Instead, we must choose a differential element of charge dq, determine the
potential dV at P due to dq, and then integrate over the entire charge distribution.

Let us again take the zero of potential to be at infinity. If we treat the element of
charge dq as a particle, then we can use Eq. 24-26 to express the potential dV at point
P due to dq:

(positive or negative dq). (24-31)

Here r is the distance between P and dq. To find the total potential V at P, we

dV �
1

4p´0

dq
r

+

(a)

+

(b)

p

E

The electric field shifts the positive 
and negative charges, creating a dipole.

Figure 24-14 (a) An atom, showing the posi-
tively charged nucleus (green) and the
negatively charged electrons (gold
shading). The centers of positive and nega-
tive charge coincide. (b) If the atom is
placed in an external electric field , the
electron orbits are distorted so that the
centers of positive and negative charge no
longer coincide. An induced dipole
moment appears. The distortion is great-
ly exaggerated here.

p:

E
:

24-5 POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION

After reading this module, you should be able to . . .

24.22 For charge that is distributed uniformly along a line or over a surface, find the net potential at a given point by splitting the
distribution up into charge elements and summing (by integration) the potential due to each one.

Learning Objective

● For a continuous distribution of charge (over an extended
object), the potential is found by (1) dividing the distribution
into charge elements dq that can be treated as particles and
then (2) summing the potential due to each element by inte-
grating over the full distribution:

V �
1

4p
0
� dq

r
.

● In order to carry out the integration, dq is replaced with the
product of either a linear charge density l and a length ele-
ment (such as dx), or a surface charge density s and area ele-
ment (such as dx dy).

● In some cases where the charge is symmetrically distrib-
uted, a two-dimensional integration can be reduced to a one-
dimensional integration.

Key Ideas

Induced Dipole Moment
Many molecules, such as water, have permanent electric dipole moments. In other
molecules (called nonpolar molecules) and in every isolated atom, the centers of
the positive and negative charges coincide (Fig. 24-14a) and thus no dipole
moment is set up. However, if we place an atom or a nonpolar molecule in an
external electric field, the field distorts the electron orbits and separates the centers
of positive and negative charge (Fig. 24-14b). Because the electrons are negatively
charged, they tend to be shifted in a direction opposite the field.This shift sets up a
dipole moment that points in the direction of the field. This dipole moment is
said to be induced by the field, and the atom or molecule is then said to be polar-
ized by the field (that is, it has a positive side and a negative side).When the field is
removed, the induced dipole moment and the polarization disappear.

p:

Checkpoint 4
Suppose that three points are set at equal (large) distances r from the center of the
dipole in Fig. 24-13: Point a is on the dipole axis above the positive charge, point b is on
the axis below the negative charge, and point c is on a perpendicular bisector through
the line connecting the two charges. Rank the points according to the electric potential
of the dipole there, greatest (most positive) first.
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integrate to sum the potentials due to all the charge elements:

(24-32)

The integral must be taken over the entire charge distribution. Note that because
the electric potential is a scalar, there are no vector components to consider in
Eq. 24-32.

We now examine two continuous charge distributions, a line and a disk.

Line of Charge
In Fig. 24-15a, a thin nonconducting rod of length L has a positive charge of
uniform linear density l. Let us determine the electric potential V due to the rod
at point P, a perpendicular distance d from the left end of the rod.

We consider a differential element dx of the rod as shown in Fig. 24-15b. This
(or any other) element of the rod has a differential charge of

dq � l dx. (24-33)

This element produces an electric potential dV at point P, which is a distance 
r � (x2 � d 2)1/2 from the element (Fig. 24-15c). Treating the element as a point
charge, we can use Eq. 24-31 to write the potential dV as

(24-34)dV �
1

4p´0

dq
r

�
1

4p´0

l dx
(x2 � d 2)1/2 .

V � � dV �
1

4p´0
� dq

r
.

(b)

d

P

x
dx

L

d

P

x

(a)

d = r

P

x

(d )

(c)

x

d

P

x
dx

r

x = 0

d r

P

x

(e)

x = L

This charged rod
is obviously not a
particle.

Our job is to add the
potentials due to all
the elements.

Here is the leftmost
element.

Here is the rightmost
element.

But we can treat this
element as a particle.

Here is how to find
distance r from the
element.

Figure 24-15 (a) A thin, uniformly charged rod produces an electric potential V at point P. (b) An
element can be treated as a particle. (c) The potential at P due to the element depends on the
distance r. We need to sum the potentials due to all the elements, from the left side (d) to the
right side (e).

A
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Since the charge on the rod is positive and we have taken V � 0 at infinity, we
know from Module 24-3 that dV in Eq. 24-34 must be positive.

We now find the total potential V produced by the rod at point P by integrat-
ing Eq. 24-34 along the length of the rod, from x � 0 to x � L (Figs. 24-15d and e),
using integral 17 in Appendix E.We find

We can simplify this result by using the general relation ln A ln B ln(A/B).
We then find

(24-35)

Because V is the sum of positive values of dV, it too is positive, consistent with
the logarithm being positive for an argument greater than 1.

Charged Disk
In Module 22-5, we calculated the magnitude of the electric field at points on the
central axis of a plastic disk of radius R that has a uniform charge density s on
one surface. Here we derive an expression for V(z), the electric potential at any
point on the central axis. Because we have a circular distribution of charge on the
disk, we could start with a differential element that occupies angle du and radial
distance dr. We would then need to set up a two-dimensional integration.
However, let’s do something easier.

In Fig. 24-16, consider a differential element consisting of a flat ring of radius
R� and radial width dR�. Its charge has magnitude

dq � s(2pR�)(dR�),

in which (2pR�)(dR�) is the upper surface area of the ring. All parts of this
charged element are the same distance r from point P on the disk’s axis. With the
aid of Fig. 24-16, we can use Eq. 24-31 to write the contribution of this ring to
the electric potential at P as

(24-36)

We find the net potential at P by adding (via integration) the contributions of all
the rings from R� � 0 to R� � R:

(24-37)

Note that the variable in the second integral of Eq. 24-37 is R� and not z, which
remains constant while the integration over the surface of the disk is carried out.
(Note also that, in evaluating the integral, we have assumed that z � 0.)

V � �dV �
s

2´0
�R

0

R� dR�

2z2 � R�2
�

s

2´0
 (2z2 � R2 � z).

dV �
1

4p´0

dq
r

�
1

4p´0

s(2pR�)(dR�)

2z2 � R�2
.

V �
l

4p´0
 ln 	 L � (L2 � d 2)1/2

d 
.

��

�
l

4p´0
	ln�L � (L2 � d2)1/2� � ln d
.

�
l

4p´0
	ln�x � (x2 � d 2)1/2�


0

L

�
l

4p´0
�L

0

dx
(x2 � d 2)1/2

V � �dV � �L

0

1
4p´0

l

(x2 � d 2)1/2 dx

zr

P

R'

R
dR'

Every charge element
in the ring contributes
to the potential at P.

Figure 24-16 A plastic disk of radius R,
charged on its top surface to a uniform
surface charge density s. We wish to
find the potential V at point P on the
central axis of the disk.
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Calculating the Field from the Potential
In Module 24-2, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this module,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-5 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-17 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-6, we see that
the work the electric field does on the test charge during the move is �q0 dV.
From Eq. 24-16 and Fig. 24-17, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

�q0 dV � q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified axis
(here called the s axis) and only the component of along that axis. In words,
Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18) states:

E
:

Es � �
�V
�s

.

d s:,E
:

E cos u � �
dV
ds

.

(q0E
:

) � d s:,

d s:

E
:

E
:

s
q0

P θ 

Two
equipotential

surfaces

+
ds

E

Figure 24-17 A test charge q0 moves a 
distance from one equipotential sur-
face to another. (The separation between
the surfaces has been exaggerated for clar-
ity.) The displacement makes an angle
u with the direction of the electric field .E

:
ds:

ds:

24-6 CALCULATING THE FIELD FROM THE POTENTIAL

After reading this module, you should be able to . . .

24.23 Given an electric potential as a function of position
along an axis, find the electric field along that axis.

24.24 Given a graph of electric potential versus position
along an axis, determine the electric field along the axis.

24.25 For a uniform electric field, relate the field magnitude E

and the separation x and potential difference V
between adjacent equipotential lines.

24.26 Relate the direction of the electric field and 
the directions in which the potential decreases and 
increases.

��

Learning Objectives

● The component of in any direction is the negative of the rate at
which the potential changes with distance in that direction:

● The x, y, and z components of may be found from

Ex � �
�V
�x

;  Ey � �
�V
�y

;  Ez � �
�V
�z

.

E
:

Es � �
�V
�s

.

E
:

When is uniform, all this reduces to

where s is perpendicular to the equipotential surfaces. 

● The electric field is zero parallel to an equipotential 
surface.

E � �
�V
�s

,

E
:

Key Ideas
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Checkpoint 5
The figure shows
three pairs of parallel
plates with the same
separation, and the
electric potential of
each plate.The elec-
tric field between the
plates is uniform and
perpendicular to the plates. (a) Rank the pairs according to the magnitude of the elec-
tric field between the plates, greatest first. (b) For which pair is the electric field point-
ing rightward? (c) If an electron is released midway between the third pair of plates,
does it remain there, move rightward at constant speed, move leftward at constant
speed, accelerate rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V –200 V –400 V 

(1) (2) (3)

about that axis. Thus, we want the component Ez of in the
direction of z. This component is the negative of the rate at
which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs. 24-41, we can write

(Answer)

This is the same expression that we derived in Module 22-5
by integration, using Coulomb’s law.

�
s

2´0
�1 �

z

2z2 � R2 �.

Ez � �
�V
�z

� �
s

2´0

d
dz

 (2z2 � R2 � z)

E
:

Sample Problem 24.05 Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

KEY IDEAS

We want the electric field as a function of distance z along
the axis of the disk. For any value of z, the direction of must
be along that axis because the disk has circular symmetry

E
:

E
:

V �
s

2´0
 (2z2 � R2 � z).

Additional examples, video, and practice available at WileyPLUS

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes
(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.

E � �
�V
�s

,

E
:

E
:

E
:

Ex � �
�V
�x

;  Ey � �
�V
�y

;  Ez � �
�V
�z

.

E
:

The component of in any direction is the negative of the rate at which the
electric potential changes with distance in that direction.

E
:
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Electric Potential Energy of a System of Charged Particles
In this module we are going to calculate the potential energy of a system of two
charged particles and then briefly discuss how to expand the result to a system of
more than two particles. Our starting point is to examine the work we must do (as
an external agent) to bring together two charged particles that are initially infi-
nitely far apart and that end up near each other and stationary. If the two parti-
cles have the same sign of charge, we must fight against their mutual repulsion.
Our work is then positive and results in a positive potential energy for the final
two-particle system. If, instead, the two particles have opposite signs of charge,
our job is easy because of the mutual attraction of the particles. Our work is then
negative and results in a negative potential energy for the system.

Let’s follow this procedure to build the two-particle system in Fig. 24-18, where
particle 1 (with positive charge q1) and particle 2 (with positive charge q2) have sep-
aration r. Although both particles are positively charged, our result will apply also
to situations where they are both negatively charged or have different signs.

We start with particle 2 fixed in place and particle 1 infinitely far away, with
an initial potential energy Ui for the two-particle system. Next we bring particle 1
to its final position, and then the system’s potential energy is Uf. Our work
changes the system’s potential energy by �U � Uf � Ui.

With Eq. 24-4 (�U � q(Vf � Vi)), we can relate �U to the change in potential
through which we move particle 1:

Uf � Ui � q1(Vf � Vi). (24-43)

Let’s evaluate these terms.The initial potential energy is Ui � 0 because the parti-
cles are in the reference configuration (as discussed in Module 24-1). The two
potentials in Eq. 24-43 are due to particle 2 and are given by Eq. 24-26:

(24-44)

This tells us that when particle 1 is initially at distance r � �, the potential at its
location is Vi � 0. When we move it to the final position at distance r, the poten-
tial at its location is

(24-45)Vf �
1

4p´0

q2

r
.

V �
1

4p´0

q2

r
.

r
q1 q2
+ +

Figure 24-18 Two charges held a fixed
distance r apart.

24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF CHARGED PARTICLES

After reading this module, you should be able to . . .

24.27 Identify that the total potential energy of a system of
charged particles is equal to the work an applied force
must do to assemble the system, starting with the particles
infinitely far apart.

24.28 Calculate the potential energy of a pair of charged
particles.

24.29 Identify that if a system has more than two charged parti-

cles, then the system’s total potential energy is equal to the
sum of the potential energies of every pair of the particles.

24.30 Apply the principle of the conservation of mechanical
energy to a system of charged particles.

24.31 Calculate the escape speed of a charged particle 
from a system of charged particles (the minimum initial
speed required to move infinitely far from the system).

Learning Objectives

● The electric potential energy of a system of charged particles is equal to the work needed to assemble the system with the
particles initially at rest and infinitely distant from each other. For two particles at separation r,

U � W �
1

4p´0

q1q2

r
.

Key Idea
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Substituting these results into Eq. 24-43 and dropping the subscript f, we find that
the final configuration has a potential energy of

(two-particle system). (24-46)

Equation 24-46 includes the signs of the two charges. If the two charges have the
same sign, U is positive. If they have opposite signs, U is negative.

If we next bring in a third particle, with charge q3, we repeat our calculation,
starting with particle 3 at an infinite distance and then bringing it to a final posi-
tion at distance r31 from particle 1 and distance r32 from particle 2. At the final
position, the potential Vf at the location of particle 3 is the algebraic sum of the
potential V1 due to particle 1 and the potential V2 of particle 2. When we work
out the algebra, we find that

U �
1

4p´0

q1q2

r

place. The work that we must do in this last step is equal to
the sum of the work we must do to bring q3 near q1 and the
work we must do to bring it near q2. From Eq. 24-46, with d
substituted for r, that sum is

The total potential energy U of the three-charge system is the
sum of the potential energies associated with the three pairs of
charges. This sum (which is actually independent of the order
in which the charges are brought together) is

W13 � W23 � U13 � U23 �
1

4p´0

q1q3

d
�

1
4p´0

q2q3

d
.

Sample Problem 24.06 Potential energy of a system of three charged particles

Figure 24-19 shows three charged particles held in fixed
positions by forces that are not shown. What is the electric
potential energy U of this system of charges? Assume that
d � 12 cm and that

q1 � �q, q2 � �4q, and q3 � �2q,

in which q � 150 nC.

KEY IDEA

The potential energy U of the system is equal to the work
we must do to assemble the system, bringing in each charge
from an infinite distance.

Calculations: Let’s mentally build the system of Fig. 24-19,
starting with one of the charges, say q1, in place and the
others at infinity. Then we bring another one, say q2, in from
infinity and put it in place. From Eq. 24-46 with d substituted
for r, the potential energy U12 associated with the pair of
charges q1 and q2 is

We then bring the last charge q3 in from infinity and put it in

U12 �
1

4p´0

q1q2

d
.

Figure 24-19 Three charges are fixed at the vertices of an equilateral
triangle.What is the electric potential energy of the system?

d
q1 q3

d d 

q2

+ +

Energy is associated
with each pair of
particles.

The total potential energy of a system of particles is the sum of the potential
energies for every pair of particles in the system.

This result applies to a system for any given number of particles.
Now that we have an expression for the potential energy of a system of par-

ticles, we can apply the principle of the conservation of energy to the system as
expressed in Eq. 24-10. For example, if the system consists of many particles, we
might consider the kinetic energy (and the associated escape speed) required of
one of the particles to escape from the rest of the particles.
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Additional examples, video, and practice available at WileyPLUS

r

Alpha
particle

Gold
nucleus

Figure 24-20 An alpha particle, traveling head-on toward the center of
a gold nucleus,comes to a momentary stop (at which time all its ki-
netic energy has been transferred to electric potential energy) and
then reverses its path.

As the incoming alpha particle is slowed by this repul-
sive force, its kinetic energy is transferred to electric poten-
tial energy of the system. The transfer is complete when the
alpha particle momentarily stops and the kinetic energy is
Kf � 0.

Calculations: The principle of conservation of mechanical
energy tells us that

Ki � Ui � Kf � Uf. (24-47)

We know two values: Ui � 0 and Kf � 0. We also know that
the potential energy Uf at the stopping point is given by the
right side of Eq. 24-46, with q1 � 2e, q2 � 79e (in which e is
the elementary charge, 1.60 	 10�19 C), and r � 9.23 fm.
Thus, we can rewrite Eq. 24-47 as

(Answer)� 3.94 	 10�12 J � 24.6 MeV.

�
(8.99 	 109 N �m2/C2)(158)(1.60 	 10�19 C)2

9.23 	 10�15 m

Ki �
1

4p´0

(2e)(79e)
9.23 fm

Sample Problem 24.07 Conservation of mechanical energy with electric potential energy

An alpha particle (two protons, two neutrons) moves into a
stationary gold atom (79 protons, 118 neutrons), passing
through the electron region that surrounds the gold nucleus
like a shell and headed directly toward the nucleus 
(Fig. 24-20). The alpha particle slows until it momentarily
stops when its center is at radial distance r � 9.23 fm from
the nuclear center. Then it moves back along its incoming
path. (Because the gold nucleus is much more massive
than the alpha particle, we can assume the gold nucleus
does not move.) What was the kinetic energy Ki of the al-
pha particle when it was initially far away (hence external
to the gold atom)? Assume that the only force acting be-
tween the alpha particle and the gold nucleus is the (elec-
trostatic) Coulomb force and treat each as a single charged
particle.

KEY IDEA

During the entire process, the mechanical energy of the 
alpha particle � gold atom system is conserved.

Reasoning: When the alpha particle is outside the atom,
the system’s initial electric potential energy Ui is zero be-
cause the atom has an equal number of electrons and pro-
tons, which produce a net electric field of zero. However,
once the alpha particle passes through the electron region
surrounding the nucleus on its way to the nucleus, the elec-
tric field due to the electrons goes to zero.The reason is that
the electrons act like a closed spherical shell of uniform neg-
ative charge and, as discussed in Module 23-6, such a shell
produces zero electric field in the space it encloses. The
alpha particle still experiences the electric field of the
protons in the nucleus, which produces a repulsive force on
the protons within the alpha particle.

(Answer)� �1.7 	 10�2 J � �17 mJ.

� �
(8.99 	 109 N �m2/C2)(10)(150 	 10�9 C)2

0.12 m

� �
10q2

4p´0d

�
1

4p´0
� (�q)(�4q)

d
�

(�q)(�2q)
d

�
(�4q)(�2q)

d �
U � U12 � U13 � U23 The negative potential energy means that negative

work would have to be done to assemble this structure,
starting with the three charges infinitely separated and at
rest. Put another way, an external agent would have to do 17
mJ of positive work to disassemble the structure completely,
ending with the three charges infinitely far apart.

The lesson here is this: If you are given an assembly of
charged particles, you can find the potential energy of the as-
sembly by finding the potential of every possible pair of the
particles and then summing the results.

24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF CHARGED PARTICLES



706 CHAPTER 24 ELECTRIC POTENTIAL

Potential of a Charged Isolated Conductor
In Module 23-3, we concluded that for all points inside an isolated conduc-
tor.We then used Gauss’ law to prove that an excess charge placed on an isolated
conductor lies entirely on its surface. (This is true even if the conductor has an
empty internal cavity.) Here we use the first of these facts to prove an extension
of the second:

E
:

� 0

An excess charge placed on an isolated conductor will distribute itself on the sur-
face of that conductor so that all points of the conductor—whether on the surface
or inside—come to the same potential. This is true even if the conductor has an
internal cavity and even if that cavity contains a net charge.

Our proof follows directly from Eq. 24-18, which is

Since for all points within a conductor, it follows directly that Vf � Vi for
all possible pairs of points i and f in the conductor.

Figure 24-21a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26
because the charge q behaves for such external points as if it were concentrated at
the center of the shell.That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—to
its center. No extra work is needed to do this because no net electric force acts on
the test charge once it is inside the shell. Thus, the potential at all points inside the
shell has the same value as that on the surface, as Fig. 24-21a shows.

E
:

� 0

Vf � Vi � ��f

i
E
:

� ds:.

12

V 
(k

V
) 8

4

0
0 1 2 3 4 

r (m) 

(a)

(b)

12

E 
(k

V
/m

) 8

4

0
0 1 2 3 4 

r (m) 

Figure 24-21 (a) A plot of V(r) both inside
and outside a charged spherical shell of
radius 1.0 m. (b) A plot of E(r) for the
same shell.

● An excess charge placed on a conductor will, in the equilib-
rium state, be located entirely on the outer surface of the
conductor.

● The entire conductor, including interior points, is at a
uniform potential.

● If an isolated charged conductor is placed in an external

electric field, then at every internal point, the electric field due
to the charge cancels the external electric field that otherwise
would have been there.

● Also, the net electric field at every point on the surface is
perpendicular to the surface.

Key Ideas

24-8 POTENTIAL OF A CHARGED ISOLATED CONDUCTOR

After reading this module, you should be able to . . .

24.32 Identify that an excess charge placed on an isolated
conductor (or connected isolated conductors) will distrib-
ute itself on the surface of the conductor so that all points
of the conductor come to the same potential.

24.33 For an isolated spherical conducting shell, sketch
graphs of the potential and the electric field magnitude
versus distance from the center, both inside and outside
the shell.

24.34 For an isolated spherical conducting shell, identify that
internally the electric field is zero and the electric potential

has the same value as the surface and that externally the
electric field and the electric potential have values as
though all of the shell’s charge is concentrated as a
particle at its center.

24.35 For an isolated cylindrical conducting shell, identify
that internally the electric field is zero and the electric
potential has the same value as the surface and that exter-
nally the electric field and the electric potential have values
as though all of the cylinder’s charge is concentrated as a
line of charge on the central axis.

Learning Objectives
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Figure 24-21b shows the variation of electric field with radial distance for the
same shell. Note that E � 0 everywhere inside the shell.The curves of Fig. 24-21b
can be derived from the curve of Fig. 24-21a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-21a can be derived from the curves of Fig. 24-21b by integrating with
respect to r, using Eq. 24-19.

Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor. At sharp points or sharp edges, the surface
charge density—and thus the external electric field, which is proportional to it—
may reach very high values. The air around such sharp points or edges may
become ionized, producing the corona discharge that golfers and mountaineers
see on the tips of bushes, golf clubs, and rock hammers when thunderstorms
threaten. Such corona discharges, like hair that stands on end, are often the
precursors of lightning strikes. In such circumstances, it is wise to enclose yourself
in a cavity inside a conducting shell, where the electric field is guaranteed to
be zero. A car (unless it is a convertible or made with a plastic body) is almost
ideal (Fig. 24-22).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-23, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-23 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.

Figure 24-22 A large spark jumps to a car’s
body and then exits by moving across the
insulating left front tire (note the flash
there), leaving the person inside unharmed.

Courtesy Westinghouse Electric Corporation

REVIEW & SUMMARY

Figure 24-23 An uncharged conductor is suspended in an external electric field.The free
electrons in the conductor distribute themselves on the surface as shown, so as to reduce
the net electric field inside the conductor to zero and make the net field at the surface
perpendicular to the surface.
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Electric Potential The electric potential V at a point P in the
electric field of a charged object is

(24-2)

where is the work that would be done by the electric force on a
positive test charge were it brought from an infinite distance to P,
and U is the potential energy that would then be stored in the test
charge–object system.

Electric Potential Energy If a particle with charge q is
placed at a point where the electric potential of a charged object is
V, the electric potential energy U of the particle–object system is

U � qV. (24-3)

W�

V �
�W�

q0
�

U
q0

,

Review & Summary

If the particle moves through a potential difference �V, the change
in the electric potential energy is

�U � q �V � q(Vf � Vi). (24-4)

Mechanical Energy If a particle moves through a change �V
in electric potential without an applied force acting on it, applying
the conservation of mechanical energy gives the change in kinetic
energy as

�K � �q �V. (24-9)

If, instead, an applied force acts on the particle, doing work Wapp,
the change in kinetic energy is

�K � �q �V � Wapp. (24-11)

In the special case when , the work of an applied force�K � 0
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20 V 
40
60
80
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–140 V 
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–100

–10 V 

–30

–50

(1) (2) (3) 

Figure 24-25 Question 2.

1 Figure 24-24 shows eight parti-
cles that form a square, with dis-
tance d between adjacent particles.
What is the net electric potential at
point P at the center of the square
if we take the electric potential to
be zero at infinity?

2 Figure 24-25 shows three sets of
cross sections of equipotential sur-
faces in uniform electric fields; all
three cover the same size region of
space. The electric potential is indi-

Questions

Figure 24-24 Question 1.

–4q

+5q

–q

+q

–5q

+4q–2q

–2q

P

d

involves only the motion of the particle through a potential
difference:

Wapp � q �V (for Ki � Kf). (24-12)

Equipotential Surfaces The points on an equipotential sur-
face all have the same electric potential. The work done on a test
charge in moving it from one such surface to another is independent
of the locations of the initial and final points on these surfaces and of
the path that joins the points. The electric field is always directed
perpendicularly to corresponding equipotential surfaces.

Finding V from The electric potential difference between
two points i and f is

(24-18)

where the integral is taken over any path connecting the points. If the
integration is difficult along any particular path,we can choose a differ-
ent path along which the integration might be easier. If we choose Vi �
0,we have, for the potential at a particular point,

(24-19)

In the special case of a uniform field of magnitude E, the po-
tential change between two adjacent (parallel) equipotential lines
separated by distance �x is

�V � �E �x. (24-21)

Potential Due to a Charged Particle The electric potential
due to a single charged particle at a distance r from that particle is

(24-26)

where V has the same sign as q.The potential due to a collection of
charged particles is

(24-27)

Potential Due to an Electric Dipole At a distance r from
an electric dipole with dipole moment magnitude p � qd, the elec-
tric potential of the dipole is

V � �
n

i�1
Vi �

1
4p´0

�
n

i�1

qi

ri
.

V �
1

4p´0

q
r

,

V � ��f

i
E
:

� d s:.

Vf � Vi � ��f

i
E
:

� d s:,

E
:

E
:

(24-30)

for ; the angle u is defined in Fig. 24-13.

Potential Due to a Continuous Charge Distribution
For a continuous distribution of charge, Eq. 24-27 becomes

(24-32)

in which the integral is taken over the entire distribution.

Calculating from V The component of in any direction
is the negative of the rate at which the potential changes with dis-
tance in that direction:

(24-40)

The x, y, and z components of may be found from

(24-41)

When is uniform, Eq. 24-40 reduces to

(24-42)

where s is perpendicular to the equipotential surfaces.

Electric Potential Energy of a System of Charged
Particles The electric potential energy of a system of charged
particles is equal to the work needed to assemble the system with
the particles initially at rest and infinitely distant from each other.
For two particles at separation r,

(24-46)

Potential of a Charged Conductor An excess charge placed
on a conductor will, in the equilibrium state, be located entirely on
the outer surface of the conductor.The charge will distribute itself so
that the following occur: (1) The entire conductor, including interior
points, is at a uniform potential. (2) At every internal point, the elec-
tric field due to the charge cancels the external electric field that oth-
erwise would have been there. (3) The net electric field at every
point on the surface is perpendicular to the surface.

U � W �
1

4p´0

q1q2

r
.

E � �
�V
�s

,

E
:

Ex � �
�V
�x

;  Ey � �
�V
�y

;  Ez � �
�V
�z

.

E
:

Es � �
�V
�s

.

E
:E

:

V �
1

4p´0
� dq

r
,

r � d

V �
1

4p´0

p cos u
r2

cated for each equipotential surface. (a) Rank the arrangements
according to the magnitude of the electric field present in the re-
gion, greatest first. (b) In which is the electric field directed down
the page?
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Figure 24-26 Questions 3 and 9.

–2q +6q

(1)

+3q –4q

(2)

+12q +q

(3)

–6q –2q

(4)

x

x

x

x

3 Figure 24-26 shows four pairs of charged particles. For each pair, let
V � 0 at infinity and consider Vnet at points on the x axis. For which
pairs is there a point at which Vnet 0 (a) between the particles and
(b) to the right of the particles? (c) At such a point is due to the par-
ticles equal to zero? (d) For each pair, are there off-axis points (other
than at infinity) where Vnet � 0?

E
:

net

�

4 Figure 24-27 gives the electric
potential V as a function of x.
(a) Rank the five regions according
to the magnitude of the x compo-
nent of the electric field within
them, greatest first. What is the di-
rection of the field along the x axis
in (b) region 2 and (c) region 4?

V

x
1 2 3 4 5 

Figure 24-27 Question 4.

5 Figure 24-28 shows three paths
along which we can move the posi-
tively charged sphere A closer to
positively charged sphere B, which
is held fixed in place. (a) Would
sphere A be moved to a higher or
lower electric potential? Is the work
done (b) by our force and (c) by the
electric field due to B positive, negative, or zero? (d) Rank the
paths according to the work our force does, greatest first.

Figure 24-29 Question 6.

(a) (b) (c) (d)

–2q

–q

–2q

–2q

–7q

+2q +2q
–4q–2q

–3q–9q

+2q

Figure 24-28 Question 5.

+ + AB 2

3

1

6 Figure 24-29 shows four arrangements of charged particles, all
the same distance from the origin. Rank the situations according to
the net electric potential at the origin, most positive first. Take the
potential to be zero at infinity.

7 Figure 24-30 shows a system of three charged particles. If you
move the particle of charge �q from point A to point D, are the
following quantities positive, negative, or zero: (a) the change in
the electric potential energy of the three-particle system, (b) the
work done by the net electric force on the particle you moved (that
is, the net force due to the other two particles), and (c) the work
done by your force? (d) What are the answers to (a) through (c) if,
instead, the particle is moved from B to C?

+q

A +Q B C +Q D 

d d d d d

Figure 24-30 Questions 7 and 8.

8 In the situation of Question 7, is the work done by your force
positive, negative, or zero if the particle is moved (a) from A to B,
(b) from A to C, and (c) from B to D? (d) Rank those moves
according to the magnitude of the work done by your force,
greatest first.

9 Figure 24-26 shows four pairs of charged particles with identi-
cal separations. (a) Rank the pairs according to their electric
potential energy (that is, the energy of the two-particle system),
greatest (most positive) first. (b) For each pair, if the separation be-
tween the particles is increased,
does the potential energy of the pair
increase or decrease?

10 (a) In Fig. 24-31a, what is the
potential at point P due to charge
Q at distance R from P? Set V � 0
at infinity. (b) In Fig. 24-31b, the
same charge Q has been spread
uniformly over a circular arc of ra-
dius R and central angle 40�. What
is the potential at point P, the cen-
ter of curvature of the arc? (c) In
Fig. 24-31c, the same charge Q has
been spread uniformly over a circle
of radius R. What is the potential at
point P, the center of the circle?
(d) Rank the three situations
according to the magnitude of the
electric field that is set up at P,
greatest first.

11 Figure 24-32 shows a thin, uni-
formly charged rod and three points
at the same distance d from the rod. Rank the magnitude of the elec-
tric potential the rod produces at those three points, greatest first.

(a)

Q

P
R

(b)

Q

P
R

(c)

40°(full angle) 

Q PR+

Figure 24-31 Question 10.

a b

c
d

x

y

L/2 L/2 d

Figure 24-32 Question 11.

A

100 V

B

Figure 24-33
Question 12.

12 In Fig. 24-33, a particle is to be released at rest at point A
and then is to be accelerated directly through point B by an elec-
tric field. The potential difference between points A and B is 100
V. Which point should be at higher electric potential if the parti-
cle is (a) an electron, (b) a proton, and (c) an alpha particle (a
nucleus of two protons and two neutrons)? (d) Rank the kinetic
energies of the particles at point B, greatest first.



84 A �h (ampere-hours) through a circuit, from one terminal to the
other. (a) How many coulombs of charge does this represent?
(Hint: See Eq. 21-3.) (b) If this entire charge undergoes a change in
electric potential of 12 V, how much energy is involved?

•2 The electric potential difference between the ground and a
cloud in a particular thunderstorm is 1.2 	 109 V. In the unit
electron-volts, what is the magnitude of the change in the electric
potential energy of an electron that moves between the ground
and the cloud?

•3 Suppose that in a lightning flash the potential difference be-
tween a cloud and the ground is 1.0 109 V and the quantity of
charge transferred is 30 C. (a) What is the change in energy of that
transferred charge? (b) If all the energy released could be used to
accelerate a 1000 kg car from rest, what would be its final speed?

Module 24-2 Equipotential Surfaces and the Electric Field
•4 Two large, parallel, conducting plates are 12 cm apart and have
charges of equal magnitude and opposite sign on their facing sur-
faces. An electric force of 3.9 	 10�15 N acts on an electron placed
anywhere between the two plates. (Neglect fringing.) (a) Find the
electric field at the position of the electron. (b) What is the poten-
tial difference between the plates?

•5 An infinite nonconducting sheet has a surface charge
density s 0.10 mC/m2 on one side. How far apart are equipoten-
tial surfaces whose potentials differ by 50 V?

•6 When an electron moves from
A to B along an electric field line in
Fig. 24-34, the electric field does
3.94 10�19 J of work on it. What
are the electric potential differences
(a) VB VA, (b) VC VA, and (c)
VC VB?

••7 The electric field in a region of
space has the components Ey

Ez 0 and Ex (4.00 N/C)x. Point
A is on the y axis at y 3.00 m, and
point B is on the x axis at x 4.00 m. What is the potential differ-
ence VB VA?

••8 A graph of the x component of the electric field as a function
of x in a region of space is shown in Fig. 24-35.The scale of the verti-
cal axis is set by Exs 20.0 N/C. The y and z components of the
electric field are zero in this region. If the electric potential at the

�
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B A q

(a)

d2

B

Aq

(b)

d1

d2

d1+ +

Figure 24-36 Problem 14.

••9 An infinite nonconducting sheet has a surface charge density
s 5.80 pC/m2. (a) How much work is done by the electric field
due to the sheet if a particle of charge q � �1.60 	 10�19 C is
moved from the sheet to a point P at distance d � 3.56 cm from the
sheet? (b) If the electric potential V is defined to be zero on the
sheet, what is V at P?

•••10 Two uniformly charged, infinite, nonconducting planes are
parallel to a yz plane and positioned at x 50 cm and x 50
cm. The charge densities on the planes are 50 nC/m2 and 25
nC/m2, respectively. What is the magnitude of the potential differ-
ence between the origin and the point on the x axis at x � �80 cm?
(Hint: Use Gauss’ law.)

•••11 A nonconducting sphere has radius R � 2.31 cm and uni-
formly distributed charge q � �3.50 fC. Take the electric potential
at the sphere’s center to be V0 0. What is V at radial distance
(a) r � 1.45 cm and (b) r � R. (Hint: See Module 23-6.)

Module 24-3 Potential Due to a Charged Particle
•12 As a space shuttle moves through the dilute ionized gas of
Earth’s ionosphere, the shuttle’s potential is typically changed by
�1.0 V during one revolution. Assuming the shuttle is a sphere of
radius 10 m, estimate the amount of charge it collects.

•13 What are (a) the charge and (b) the charge density on the
surface of a conducting sphere of radius 0.15 m whose potential is
200 V (with V � 0 at infinity)?

•14 Consider a particle with charge q � 1.0 mC, point A at distance
d1 � 2.0 m from q, and point B at distance d2 � 1.0 m. (a) If A and B
are diametrically opposite each other, as in Fig. 24-36a, what is the
electric potential difference VA � VB? (b) What is that electric
potential difference if A and B are located as in Fig. 24-36b?

�

��
� �� �

��

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 24-1 Electric Potential
•1 A particular 12 V car battery can send a total charge ofSSM

Electric
field
line

Equipotentials

A

B

C

Figure 24-34 Problem  6.

Figure 24-35 Problem 8.

E x
 (

N
/C

)

–Exs

Exs

0

x (m)

1 2 3 4 5 6

••15 A spherical drop of water carrying a charge of 30
pC has a potential of 500 V at its surface (with V 0 at infinity).
(a) What is the radius of the drop? (b) If two such drops of the
same charge and radius combine to form a single spherical drop,
what is the potential at the surface
of the new drop?

••16 Figure 24-37 shows a rec-
tangular array of charged particles
fixed in place, with distance a 39.0
cm and the charges shown as integer
multiples of q1 � 3.40 pC and q2 �
6.00 pC. With V � 0 at infinity, what

�

�

ILWSSM

a

a

a

a

a a 

–q1 +4q2 +2q1

+2q1 +4q2 –3q1

Figure 24-37 Problem 16.

origin is 10 V, (a) what is the electric
potential at x 2.0 m, (b) what is
the greatest positive value of the elec-
tric potential for points on the x axis
for which 0 � x � 6.0 m, and (c) for
what value of x is the electric poten-
tial zero?

�
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an electric dipole, on the positive side of the dipole. (The origin of z
is at the center of the dipole.) The particle is then moved along a
circular path around the dipole center until it is at coordinate z �
�20 nm, on the negative side of the dipole axis. Figure 24-41b gives
the work Wa done by the force moving the particle versus the angle u
that locates the particle relative to the positive direction of the z
axis. The scale of the vertical axis is set by Was � 4.0 	 10�30 J. What
is the magnitude of the dipole moment?

Module 24-5 Potential Due to a Continuous 
Charge Distribution
•23 (a) Figure 24-42a shows a nonconducting rod of length L �
6.00 cm and uniform linear charge density l � �3.68 pC/m.Assume
that the electric potential is defined to be V � 0 at infinity.What is V
at point P at distance d � 8.00 cm along the rod’s perpendicular bi-
sector? (b) Figure 24-42b shows an identical rod except that one half
is now negatively charged. Both halves have a linear charge density
of magnitude 3.68 pC/m.With V � 0 at infinity, what is V at P?

is the net electric potential at the
rectangle’s center? (Hint: Thought-
ful examination of the arrangement
can reduce the calculation.)

••17 In Fig. 24-38, what is the net
electric potential at point P due to
the four particles if V 0 at infinity,
q 5.00 fC, and d 4.00 cm?

••18 Two charged particles are
shown in Fig. 24-39a. Particle 1, with
charge q1, is fixed in place at distance d. Particle 2, with charge q2,
can be moved along the x axis. Figure 24-39b gives the net electric
potential V at the origin due to the two particles as a function of
the x coordinate of particle 2. The scale of the x axis is set by xs

16.0 cm. The plot has an asymptote of V � 5.76 	 10�7 V as x : �.
What is q2 in terms of e?
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Figure 24-38 Problem 17.

Figure 24-39 Problem 18.
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Figure 24-40 Problems 19
and 20.

••19 In Fig. 24-40, particles with
the charges q1 � �5e and q2 � �15e
are fixed in place with a separation of
d � 24.0 cm. With electric potential
defined to be V 0 at infinity, what
are the finite (a) positive and (b) neg-
ative values of x at which the net elec-
tric potential on the x axis is zero?

�

Figure 24-41 Problem 22.

Figure 24-42 Problem 23.
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•24 In Fig. 24-43, a plastic rod having a uni-
formly distributed charge Q � �25.6 pC
has been bent into a circular arc of radius 
R � 3.71 cm and central angle f � 120�.With
V � 0 at infinity, what is the electric potential
at P, the center of curvature of the rod?

•25 A plastic rod has been bent into a circle
of radius R � 8.20 cm. It has a charge Q1 �
�4.20 pC uniformly distributed along one-
quarter of its circumference and a charge
Q2 � �6Q1 uniformly distributed along the
rest of the circumference (Fig. 24-44). With

••20 Two particles, of charges q1 and q2, are separated by distance
d in Fig. 24-40. The net electric field due to the particles is zero at 
x � d/4. With V � 0 at infinity, locate (in terms of d) any point on
the x axis (other than at infinity) at which the electric potential due
to the two particles is zero.

Module 24-4 Potential Due to an Electric Dipole
•21 The ammonia molecule NH3 has a permanent electric
dipole moment equal to 1.47 D, where 1 D 1 debye unit
3.34 10�30 C �m. Calculate the electric potential due to an am-
monia molecule at a point 52.0 nm away along the axis of the
dipole. (Set V � 0 at infinity.)

	
��
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••22 In Fig. 24-41a, a particle of elementary charge �e is initially
at coordinate z � 20 nm on the dipole axis (here a z axis) through

V � 0 at infinity, what is the electric potential at (a) the center C of
the circle and (b) point P, on the central axis of the circle at dis-
tance D � 6.71 cm from the center?

••26 Figure 24-45 shows a thin
rod with a uniform charge density
of 2.00 mC/m. Evaluate the electric
potential at point P if d D �
L/4.00. Assume that the potential is
zero at infinity.
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Figure 24-44 Problem 25.

d

D
L

P

x
Rod

Figure 24-45 Problem 26.
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••30 The smiling face of Fig. 24-
49 consists of three items:

1. a thin rod of charge �3.0 mC that
forms a full circle of radius 6.0 cm;

2. a second thin rod of charge 2.0 mC
that forms a circular arc of radius
4.0 cm, subtending an angle of 90�
about the center of the full circle;

3. an electric dipole with a dipole Figure 24-49 Problem 30.

y
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2.00RR
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θ 

Figure 24-48 Problem 29.

Figure 24-47 Problems 28, 33,
38, and 40.
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Figure 24-51 Problem 39.

••27 In Fig. 24-46, three thin plas-
tic rods form quarter-circles with a
common center of curvature at the
origin. The uniform charges on the
three rods are Q1 � �30 nC, Q2 �
�3.0Q1, and Q3 � �8.0Q1. What is
the net electric potential at the ori-
gin due to the rods?

••28 Figure 24-47 shows a thin
plastic rod of length L 12.0 cm
and uniform positive charge Q
56.1 fC lying on an x axis.With V � 0
at infinity, find the electric potential
at point P1 on the axis, at distance 
d � 2.50 cm from the rod.

••29 In Fig. 24-48, what is the net
electric potential at the origin due
to the circular arc of charge Q1 �
�7.21 pC and the two particles of

�
�

x (cm) 

y (cm) 
4.0

2.0
1.0

Q 2
Q 3

Q 1

Figure 24-46 Problem 27.

charges Q2 � 4.00Q1 and Q3 � �2.00Q1? The arc’s center of curva-
ture is at the origin and its radius is R � 2.00 m; the angle indicated
is u � 20.0�.

•••32 A nonuniform linear charge distribution given by l �
bx, where b is a constant, is located along an x axis from x 0 to
x 0.20 m. If b � 20 nC/m2 and V � 0 at infinity, what is the
electric potential at (a) the origin and (b) the point y � 0.15 m
on the y axis?

•••33 The thin plastic rod shown in Fig. 24-47 has length L
12.0 cm and a nonuniform linear charge density l cx, where 
c 28.9 pC/m2. With V � 0 at infinity, find the electric potential
at point P1 on the axis, at distance d � 3.00 cm from one end.

Module 24-6 Calculating the Field from the Potential
•34 Two large parallel metal plates are 1.5 cm apart and have
charges of equal magnitudes but opposite signs on their facing sur-
faces. Take the potential of the negative plate to be zero. If the
potential halfway between the plates is then �5.0 V, what is the
electric field in the region between the plates?

•35 The electric potential at points in an xy plane is given by 
V � (2.0 V/m2)x2 � (3.0 V/m2)y2. In unit-vector notation, what is
the electric field at the point (3.0 m, 2.0 m)?

•36 The electric potential V in the space between two flat parallel
plates 1 and 2 is given (in volts) by V � 1500x2, where x (in meters)
is the perpendicular distance from plate 1. At x � 1.3 cm, (a) what
is the magnitude of the electric field and (b) is the field directed to-
ward or away from plate 1?

••37 What is the magnitude of the electric field at the point
if the electric potential in the region is

given by V 2.00xyz2, where V is in volts and coordinates x, y,
and z are in meters?

••38 Figure 24-47 shows a thin plastic rod of length L � 13.5 cm
and uniform charge 43.6 fC. (a) In terms of distance d, find an ex-
pression for the electric potential at point P1. (b) Next, substitute
variable x for d and find an expression for the magnitude of the
component Ex of the electric field at P1. (c) What is the direction of
Ex relative to the positive direction of the x axis? (d) What is the
value of Ex at P1 for x � d � 6.20 cm? (e) From the symmetry in
Fig. 24-47, determine Ey at P1.

••39 An electron is placed in an xy plane where the electric po-
tential depends on x and y as shown, for the coordinate axes, in
Fig. 24-51 (the potential does not depend on z). The scale of the
vertical axis is set by Vs 500 V. In unit-vector notation, what is
the electric force on the electron?

�

�
(3.00î � 2.00ĵ � 4.00k̂) m

SSM
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moment that is perpendicular to a
radial line and has a magnitude of
1.28 	 10�21 C �m.

What is the net electric potential at
the center?

••31 A plastic disk of
radius R 64.0 cm is charged on
one side with a uniform surface
charge density s 7.73 fC/m2,
and then three quadrants of the disk

�

�
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Figure 24-50 Problem 31.
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are removed. The remaining quadrant is shown in Fig. 24-50. With
V � 0 at infinity, what is the potential due to the remaining quad-
rant at point P, which is on the central axis of the original disk at
distance D � 25.9 cm from the original center?

•••40 The thin plastic rod of length L � 10.0 cm in Fig. 24-47
has a nonuniform linear charge density l cx, where c
49.9 pC/m2. (a) With V � 0 at infinity, find the electric potential at
point P2 on the y axis at y � D � 3.56 cm. (b) Find the electric field
component Ey at P2. (c) Why cannot the field component Ex at P2

be found using the result of (a)?

��
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infinity to the indicated point near
two fixed particles of charges q1 �
�4e and q2 � �q1/2? Distance d �
1.40 cm, u1 � 43�, and u2 � 60�.

••51 In the rectangle of Fig. 24-
55, the sides have lengths 5.0 cm and
15 cm, q1 � �5.0 mC, and q2 � �2.0
mC.With V � 0 at infinity, what is the
electric potential at (a) corner A and
(b) corner B? (c) How much work is
required to move a charge q3 � �3.0
mC from B to A along a diagonal of
the rectangle? (d) Does this work in-
crease or decrease the electric po-
tential energy of the three-charge
system? Is more, less, or the same
work required if q3 is moved along a
path that is (e) inside the rectangle but not on a diagonal and (f)
outside the rectangle?

••52 Figure 24-56a shows an
electron moving along an electric
dipole axis toward the negative
side of the dipole. The dipole is
fixed in place. The electron was
initially very far from the dipole,
with kinetic energy 100 eV. Figure
24-56b gives the kinetic energy K
of the electron versus its distance
r from the dipole center. The
scale of the horizontal axis is set
by rs � 0.10 m.What is the magni-
tude of the dipole moment?

••53 Two tiny metal spheres A and B, mass mA � 5.00 g and mB �
10.0 g, have equal positive charge q � 5.00 mC. The spheres are con-
nected by a massless nonconducting string of length d � 1.00 m,
which is much greater than the radii of the spheres. (a) What is the
electric potential energy of the system? (b) Suppose you cut
the string.At that instant, what is the acceleration of each sphere? (c)
A long time after you cut the string, what is the speed of each sphere?

••54 A positron (charge �e,
mass equal to the electron mass) is
moving at 1.0 107 m/s in the posi-
tive direction of an x axis when, at 
x � 0, it encounters an electric field
directed along the x axis.The electric
potential V associated with the field
is given in Fig. 24-57.The scale of the
vertical axis is set by Vs � 500.0 V.
(a) Does the positron emerge from
the field at x � 0 (which means its motion is reversed) or at x � 0.50
m (which means its motion is not reversed)? (b) What is its speed
when it emerges?

••55 An electron is projected with an initial speed of 3.2 	 105 m/s
directly toward a proton that is fixed in place. If the electron is ini-
tially a great distance from the proton, at what distance from the
proton is the speed of the electron instantaneously equal to twice
the initial value?

••56 Particle 1 (with a charge of �5.0 mC) and particle 2 (with
a charge of �3.0 mC) are fixed in place with separation d � 4.0 cm

	

Module 24-7 Electric Potential Energy of a System 
of Charged Particles
•41 A particle of charge �7.5 mC is released from rest at the
point x � 60 cm on an x axis. The particle begins to move due to
the presence of a charge Q that remains fixed at the origin.What is
the kinetic energy of the particle at the instant it has moved 40 cm
if (a) Q � �20 mC and (b) Q � �20 mC?

•42 (a) What is the electric potential energy of two electrons
separated by 2.00 nm? (b) If the separation increases, does the po-
tential energy increase or decrease?

•43 How much work is
required to set up the arrangement of 
Fig. 24-52 if q 2.30 pC, a 64.0 cm, and
the particles are initially infinitely far apart
and at rest?

•44 In Fig. 24-53, seven charged particles are
fixed in place to form a square with an edge
length of 4.0 cm. How much work must we do
to bring a particle of charge �6e initially at
rest from an infinite distance to the center of
the square?
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••45 A particle of charge q is fixed at point P, and a second
particle of mass m and the same charge q is initially held a distance
r1 from P.The second particle is then released. Determine its speed
when it is a distance r2 from P. Let q � 3.1 mC, m � 20 mg, r1 �
0.90 mm, and r2 � 2.5 mm.

••46 A charge of �9.0 nC is uniformly distributed around a thin
plastic ring lying in a yz plane with the ring center at the origin. A
�6.0 pC particle is located on the x axis at x � 3.0 m. For a ring ra-
dius of 1.5 m, how much work must an external force do on the
particle to move it to the origin?

••47 What is the escape speed for an electron initially at rest on
the surface of a sphere with a radius of 1.0 cm and a uniformly dis-
tributed charge of 1.6 	 10�15 C? That is, what initial speed must
the electron have in order to reach an infinite distance from the
sphere and have zero kinetic energy when it gets there?

••48 A thin, spherical, conducting shell of radius R is mounted
on an isolating support and charged to a potential of �125 V. An
electron is then fired directly toward the center of the shell, from
point P at distance r from the center of the shell . What ini-
tial speed v0 is needed for the electron to just reach the shell before
reversing direction?

••49 Two electrons are fixed 2.0 cm apart. Another electron is
shot from infinity and stops midway between the two. What is its
initial speed?

••50 In Fig. 24-54, how much work must we do to bring a particle,
of charge Q � �16e and initially at rest, along the dashed line from

(r � R)
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Figure 24-57 Problem 54.
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on the x axis shown in Fig. 24-58a. Particle 3 can be moved along
the x axis to the right of particle 2. Figure 24-58b gives the electric
potential energy U of the three-particle system as a function of the
x coordinate of particle 3. The scale of the vertical axis is set by
Us � 5.0 J.What is the charge of particle 3?

the circle. (b) With that addition of the electron to the system of 12
charged particles, what is the change in the electric potential en-
ergy of the system?

••57 Identical 50 mC charges are fixed on an x axis at SSM
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Figure 24-58 Problem 56.
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Figure 24-61 Problem 60.

x � �3.0 m.A particle of charge q � �15 mC is then released from
rest at a point on the positive part of the y axis. Due to the symme-
try of the situation, the particle moves along the y axis and has ki-
netic energy 1.2 J as it passes through the point x � 0, y � 4.0 m.
(a) What is the kinetic energy of the particle as it passes through
the origin? (b) At what negative value of y will the particle mo-
mentarily stop?

••58 Proton in a
well. Figure 24-59
shows electric poten-
tial V along an x axis.
The scale of the ver-
tical axis is set by
Vs 10.0 V. A pro-
ton is to be released
at x � 3.5 cm with
initial kinetic energy 4.00 eV. (a) If it is initially moving in the neg-
ative direction of the axis, does it reach a turning point (if so, what
is the x coordinate of that point) or does it escape from the plotted
region (if so, what is its speed at x � 0)? (b) If it is initially moving
in the positive direction of the axis, does it reach a turning point (if
so, what is the x coordinate of that point) or does it escape from the
plotted region (if so, what is its speed at x � 6.0 cm)? What are the
(c) magnitude F and (d) direction (positive or negative direction of
the x axis) of the electric force on the proton if the proton moves
just to the left of x 3.0 cm? What are (e) F and (f) the direction if
the proton moves just to the right of x � 5.0 cm?

�

�

••59 In Fig. 24-60, a charged particle
(either an electron or a proton) is moving
rightward between two parallel charged
plates separated by distance d � 2.00 mm.
The plate potentials are V1 � �70.0 V and
V2 � �50.0 V. The particle is slowing from
an initial speed of 90.0 km/s at the left
plate. (a) Is the particle an electron or a
proton? (b) What is its speed just as it
reaches plate 2?

••60 In Fig. 24-61a, we move an electron from an infinite distance
to a point at distance R � 8.00 cm from a tiny charged ball. The
move requires work W � 2.16 � 10�13 J by us. (a) What is the
charge Q on the ball? In Fig. 24-61b, the ball has been sliced up and
the slices spread out so that an equal amount of charge is at the
hour positions on a circular clock face of radius R � 8.00 cm. Now
the electron is brought from an infinite distance to the center of

d

V1 V2

Figure 24-60
Problem 59.
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Figure 24-59 Problem 58.

•••61 Suppose N electrons can be placed in either of two
configurations. In configuration 1, they are all placed on the cir-
cumference of a narrow ring of radius R and are uniformly distrib-
uted so that the distance between adjacent electrons is the same
everywhere. In configuration 2, N � 1 electrons are uniformly
distributed on the ring and one electron is placed in the center of the
ring. (a) What is the smallest value of N for which the second config-
uration is less energetic than the first? (b) For that value of N, con-
sider any one circumference electron—call it e0. How many other
circumference electrons are closer to e0 than the central electron is?

Module 24-8 Potential of a Charged Isolated Conductor
•62 Sphere 1 with radius R1 has positive charge q. Sphere 2 with
radius 2.00R1 is far from sphere 1 and initially uncharged.After the
separated spheres are connected with a wire thin enough to retain
only negligible charge, (a) is potential V1 of sphere 1 greater than,
less than, or equal to potential V2 of sphere 2? What fraction of q
ends up on (b) sphere 1 and (c) sphere 2? (d) What is the ratio
s1/s2 of the surface charge densities of the spheres?

•63 Two metal spheres, each of radius 3.0 cm, have a
center-to-center separation of 2.0 m. Sphere 1 has charge 1.0 
10�8 C; sphere 2 has charge �3.0 � 10�8 C. Assume that the sepa-
ration is large enough for us to say that the charge on each sphere
is uniformly distributed (the spheres do not affect each other).
With V � 0 at infinity, calculate (a) the potential at the point
halfway between the centers and the potential on the surface of
(b) sphere 1 and (c) sphere 2.

•64 A hollow metal sphere has a potential of �400 V with respect
to ground (defined to be at V � 0) and a charge of 5.0 � 10�9 C. Find
the electric potential at the center of the sphere.

•65 What is the excess charge on a conducting sphere of
radius r 0.15 m if the potential of the sphere is 1500 V and 
V 0 at infinity?

••66 Two isolated, concentric, conducting spherical shells have
radii R1 � 0.500 m and R2 � 1.00 m, uniform charges q1 � �2.00 mC
and q2 � �1.00 mC, and negligible thicknesses. What is the magni-
tude of the electric field E at radial distance (a) r � 4.00 m, (b) r �
0.700 m, and (c) r � 0.200 m? With V � 0 at infinity, what is V at
(d) r � 4.00 m, (e) r � 1.00 m, (f) r � 0.700 m, (g) r � 0.500 m,
(h) r � 0.200 m, and (i) r � 0? ( j) Sketch E(r) and V(r).

••67 A metal sphere of radius 15 cm has a net charge of 3.0 �
10�8 C. (a) What is the electric field at the sphere’s surface? (b) If 
V � 0 at infinity, what is the electric potential at the sphere’s sur-
face? (c) At what distance from the sphere’s surface has the elec-
tric potential decreased by 500 V?

�
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Additional Problems
68 Here are the charges and coordinates of two charged parti-
cles located in an xy plane: q1 � �3.00 � 10�6 C, x � �3.50 cm,
y � �0.500 cm and q2 ��4.00 � 10�6 C, x � �2.00 cm, y �
�1.50 cm. How much work must be done to locate these charges
at their given positions, starting from infinite separation?

69 A long, solid, conducting cylinder has a radius of 2.0 cm.
The electric field at the surface of the cylinder is 160 N/C, directed
radially outward. Let A, B, and C be points that are 1.0 cm, 2.0 cm,
and 5.0 cm, respectively, from the central axis of the cylinder. What
are (a) the magnitude of the electric field at C and the electric po-
tential differences (b) VB�VC and (c) VA�VB?

70 The chocolate crumb mystery. This story begins with
Problem 60 in Chapter 23. (a) From the answer to part (a) of that
problem, find an expression for the electric potential as a function
of the radial distance r from the center of the pipe. (The electric
potential is zero on the grounded pipe wall.) (b) For the typical
volume charge density r � �1.1 � 10�3 C/m3, what is the differ-
ence in the electric potential between the pipe’s center and its in-
side wall? (The story continues with Problem 60 in Chapter 25.)

71 Starting from Eq. 24-30, derive an expression for the
electric field due to a dipole at a point on the dipole axis.

72 The magnitude E of an electric field depends on the radial dis-
tance r according to E � A/r4, where A is a constant with the unit
volt–cubic meter. As a multiple of A, what is the magnitude of the
electric potential difference between r � 2.00 m and r � 3.00 m?

73 (a) If an isolated conducting sphere 10 cm in radius has a net
charge of 4.0 mC and if V � 0 at infinity, what is the potential on the
surface of the sphere? (b) Can this situation actually occur, given that
the air around the sphere undergoes electrical
breakdown when the field exceeds 3.0 MV/m?

74 Three particles, charge q1 � �10 mC,
q2 � �20 mC, and q3 � �30 mC, are posi-
tioned at the vertices of an isosceles triangle
as shown in Fig. 24-62. If a � 10 cm and b �
6.0 cm, how much work must an external
agent do to exchange the positions of (a) q1

and q3 and, instead, (b) q1 and q2?

75 An electric field of approximately
100 V/m is often observed near the surface of
Earth. If this were the field over the entire

SSM

SSM

pC, q2 � �2.00q1, q3 � �3.00q1. With V � 0 at infinity, what is the net
electric potential of the arcs at the common center of curvature?

79 An electron is released from rest on the axis of an electric di-
pole that has charge e and charge separation d � 20 pm and that is
fixed in place.The release point is on the positive side of the dipole,
at distance 7.0d from the dipole center. What is the electron’s
speed when it reaches a point 5.0d from the dipole center?

80 Figure 24-64 shows a ring of
outer radius R � 13.0 cm, inner radius
r � 0.200R, and uniform surface
charge density s � 6.20 pC/m2. With
V � 0 at infinity, find the electric po-
tential at point P on the central axis of
the ring, at distance z � 2.00R from
the center of the ring.

81 Electron in a well. Figure 24-
65 shows electric potential
V along an x axis. The scale
of the vertical axis is set by
Vs 8.0 V. An electron is
to be released at x � 4.5
cm with initial kinetic en-
ergy 3.00 eV. (a) If it is ini-
tially moving in the nega-
tive direction of the axis,
does it reach a turning point (if so, what is the x coordinate of that
point) or does it escape from the plotted region (if so, what is its speed
at x � 0)? (b) If it is initially moving in the positive direction of the
axis, does it reach a turning point (if so, what is the x coordinate of that
point) or does it escape from the plotted region (if so, what is its speed
at x � 7.0 cm)? What are the (c) magnitude F and (d) direction (posi-
tive or negative direction of the x axis) of the electric force on the elec-
tron if the electron moves just to the left of x � 4.0 cm? What are (e) F
and (f) the direction if it moves just to the right of x � 5.0 cm?

82 (a) If Earth had a uniform surface charge density of 
1.0 electron/m2 (a very artificial assumption), what would its
potential be? (Set V � 0 at infinity.) What would be the (b) magni-
tude and (c) direction (radially inward or outward) of the electric
field due to Earth just outside its surface?

83 In Fig. 24-66, point P is at distance
d1 4.00 m from particle 1 (q1 2e)
and distance d2 2.00 m from particle
2 (q2 2e), with both particles fixed
in place. (a) With V 0 at infinity, what
is V at P? If we bring a particle of
charge q3 2e from infinity to P,
(b) how much work do we do and
(c) what is the potential energy of the three-particle system?

84 A solid conducting sphere of radius 3.0 cm has a charge of 30 nC
distributed uniformly over its surface. Let A be a point 1.0 cm from
the center of the sphere, S be a point on the surface of the sphere,
and B be a point 5.0 cm from the cen-
ter of the sphere. What are the electric
potential differences (a) VS�VB and
(b) VA�VB?

85 In Fig. 24-67, we move a particle of
charge �2e in from infinity to the x axis.
How much work do we do? Distance D
is 4.00 m.
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surface, what would be the electric potential of a point on the sur-
face? (Set V � 0 at infinity.)

76 A Gaussian sphere of radius 4.00 cm is centered on a ball that has
a radius of 1.00 cm and a uniform charge distribution. The total (net)
electric flux through the surface of the
Gaussian sphere is �5.60 � 104 N �m2/C.
What is the electric potential 12.0 cm
from the center of the ball?

77 In a Millikan oil-drop experiment
(Module 22-6), a uniform electric field
of 1.92 � 105 N/C is maintained in the
region between two plates separated
by 1.50 cm. Find the potential differ-
ence between the plates.

78 Figure 24-63 shows three circular,
nonconducting arcs of radius R � 8.50
cm.The charges on the arcs are q1 � 4.52

R

45.0° 45.0° 

q2

q3

q1

x

y

Figure 24-63 Problem 78.



98 In Fig. 24-71, a metal sphere
with charge q � 5.00 mC and radius
r 3.00 cm is concentric with a
larger metal sphere with charge Q �
15.0 mC and radius R � 6.00 cm. (a)
What is the potential difference be-
tween the spheres? If we connect the
spheres with a wire, what then is the
charge on (b) the smaller sphere and
(c) the larger sphere?

99 (a) Using Eq. 24-32, show that
the electric potential at a point on
the central axis of a thin ring (of
charge q and radius R) and at dis-
tance z from the ring is

(b) From this result, derive an expression for the electric field mag-
nitude E at points on the ring’s axis; compare your result with the
calculation of E in Module 22-4.

100 An alpha particle (which has two protons) is sent directly to-
ward a target nucleus containing 92 protons. The alpha particle has
an initial kinetic energy of 0.48 pJ. What is the least center-to-center
distance the alpha particle will be from the target nucleus, assum-
ing the nucleus does not move?

101 In the quark model of fundamental particles, a proton is
composed of three quarks: two “up” quarks, each having charge
�2e/3, and one “down” quark, having charge �e/3. Suppose that
the three quarks are equidistant from one another. Take that sepa-
ration distance to be 1.32 � 10�15 m and calculate the electric
potential energy of the system of (a) only the two up quarks and
(b) all three quarks.

102 A charge of 1.50 � 10�8 C lies on an isolated metal sphere of
radius 16.0 cm. With V � 0 at infinity, what is the electric potential
at points on the sphere’s surface?

103 In Fig. 24-72, two particles of
charges q1 and q2 are fixed to an x
axis. If a third particle, of charge
�6.0 mC, is brought from an infinite
distance to point P, the three-parti-
cle system has the same electric potential energy as the original
two-particle system.What is the charge ratio q1/q2?

V �
1

4p´0

q

2z2 � R2
.

�
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86 Figure 24-68 shows a hemi-
sphere with a charge of 4.00 mC dis-
tributed uniformly through its vol-
ume. The hemisphere lies on an xy
plane the way half a grapefruit might
lie face down on a kitchen table.
Point P is located on the plane, along a radial line from the hemi-
sphere’s center of curvature, at radial distance 15 cm. What is the
electric potential at point P due to the hemisphere?

87 Three �0.12 C charges form an equilateral triangle 1.7 m
on a side. Using energy supplied at the rate of 0.83 kW, how many
days would be required to move one of the charges to the midpoint
of the line joining the other two charges?

88 Two charges q � �2.0 mC are
fixed a distance d � 2.0 cm apart (Fig.
24-69). (a) With V � 0 at infinity, what is
the electric potential at point C? (b)
You bring a third charge q � �2.0 mC
from infinity to C. How much work
must you do? (c) What is the potential
energy U of the three-charge configura-
tion when the third charge is in place?

89 Initially two electrons are fixed in place with a separation of
2.00 mm. How much work must we do to bring a third electron in
from infinity to complete an equilateral triangle?

90 A particle of positive charge Q is fixed at point P. A second
particle of mass m and negative charge �q moves at constant
speed in a circle of radius r1, centered at P. Derive an expression
for the work W that must be done by an external agent on
the second particle to increase the radius of the circle of
motion to r2.

91 Two charged, parallel, flat conducting surfaces are spaced d �
1.00 cm apart and produce a potential difference �V � 625 V be-
tween them. An electron is projected from one surface directly to-
ward the second. What is the initial speed of the electron if it stops
just at the second surface?

92 In Fig. 24-70, point P is at the
center of the rectangle. With V � 0 at
infinity, q1 � 5.00 fC, q2 � 2.00 fC,
q3 � 3.00 fC, and d � 2.54 cm, what is
the net electric potential at P due to
the six charged particles?

93 A uniform charge of  16.0
mC is on a thin circular ring lying in
an xy plane and centered on the origin.The ring’s radius is 3.00 cm.
If point A is at the origin and point B is on the z axis at z � 4.00
cm, what is VB � VA?

94 Consider a particle with charge q � 1.50 � 10�8 C, and take 
V � 0 at infinity. (a) What are the shape and dimensions of an
equipotential surface having a potential of 30.0 V due to q alone?
(b) Are surfaces whose potentials differ by a constant amount
(1.0 V, say) evenly spaced?

95 A thick spherical shell of charge Q and uniform volume
charge density r is bounded by radii r1 and r2 r1. With V 0 at
infinity, find the electric potential V as a function of distance r from
the center of the distribution, considering regions (a) r 	 r2,
(b) r2 	 r 	 r1, and (c) r 
 r1. (d) Do these solutions agree with
each other at r � r2 and r � r1? (Hint: See Module 23-6.)

�	

SSM

�SSM

SSM

96 A charge q is distributed uniformly throughout a spherical
volume of radius R. Let V � 0 at infinity. What are (a) V at radial
distance r 
 R and (b) the potential difference between points at 
r � R and the point at r � 0?

97 A solid copper sphere whose radius is 1.0 cm has a very
thin surface coating of nickel. Some of the nickel atoms are
radioactive, each atom emitting an electron as it decays. Half
of these electrons enter the copper sphere, each depositing 100 keV
of energy there.The other half of the electrons escape, each carrying
away a charge �e.The nickel coating has an activity of 3.70 � 108 ra-
dioactive decays per second. The sphere is hung from a long, non-
conducting string and isolated from its surroundings. (a) How long
will it take for the potential of the sphere to increase by 1000 V? (b)
How long will it take for the temperature of the sphere to increase
by 5.0 K due to the energy deposited by the electrons? The heat
capacity of the sphere is 14 J/K.

SSM

Figure 24-70 Problem 92.
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C H A P T E R  2 5

Capacitance

What Is Physics?
One goal of physics is to provide the basic science for practical devices designed
by engineers. The focus of this chapter is on one extremely common 
example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
capacitor. The batteries can supply energy at only a modest rate, too slowly for
the photoflash unit to emit a flash of light. However, once the capacitor is
charged, it can supply energy at a much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is
modeled by meteorologists as being produced by a huge spherical capacitor that
partially discharges via lightning. The charge that skis collect as they slide along
snow can be modeled as being stored in a capacitor that frequently discharges as
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much
charge can be stored.This “how much” is called capacitance.

Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2
shows the basic elements of any capacitor — two isolated conductors of any

25-1 CAPACITANCE

After reading this module, you should be able to . . .

25.01 Sketch a schematic diagram of a circuit with a parallel-
plate capacitor, a battery, and an open or closed switch.

25.02 In a circuit with a battery, an open switch, and an un-
charged capacitor, explain what happens to the conduc-
tion electrons when the switch is closed.

25.03 For a capacitor, apply the relationship between the
magnitude of charge q on either plate (“the charge on the
capacitor”), the potential difference V between the plates
(“the potential across the capacitor”), and the capacitance
C of the capacitor.

● A capacitor consists of two isolated conductors (the plates)
with charges �q and �q. Its capacitance C is defined from

q � CV,

where V is the potential difference between the plates.

● When a circuit with a battery, an open switch, and an
uncharged capacitor is completed by closing the switch,
conduction electrons shift, leaving the capacitor plates with
opposite charges.

Learning Objectives

Key Ideas

Figure 25-2 Two conductors, isolated electrically from each other and from their surroundings,
form a capacitor. When the capacitor is charged, the charges on the conductors, or plates as
they are called, have the same magnitude q but opposite signs.

Figure 25-1 An assortment of capacitors.

+q –q

Paul Silvermann/Fundamental Photographs
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Figure 25-4 (a) Battery B, switch S, and plates
h and l of capacitor C, connected in a
circuit. (b) A schematic diagram with the
circuit elements represented by their
symbols.

l

V+
–

(b)

C

B

Terminal

S

(a)

–+
B

S

h
l

C

h

Terminal

shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (��) is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Module 25-5, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: �q and �q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the �V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q � CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad � 1 F � 1 coulomb per volt � 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF � 10�6 F) and the picofarad (1 pF � 10�12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device
that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled � and is often called the
positive terminal; the terminal of lower potential is labeled � and is often called
the negative terminal.

Figure 25-3 (a) A parallel-plate capacitor,
made up of two plates of area A separated
by a distance d.The charges on the facing
plate surfaces have the same magnitude q
but opposite signs. (b) As the field lines
show, the electric field due to the charged
plates is uniform in the central region be-
tween the plates.The field is not uniform at
the edges of the plates, as indicated by the
“fringing” of the field lines there.

Area A V

d

Top side of 
bottom
plate has 
charge –q

A

–q

+q

(b)(a)

Bottom side of 
top plate has 
charge +q

Electric field lines 
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The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires at-
tached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Checkpoint 1
Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is tripled?

25-2 CALCULATING THE CAPACITANCE

After reading this module, you should be able to . . .

25.04 Explain how Gauss’ law is used to find the capacitance of a parallel-plate capacitor.
25.05 For a parallel-plate capacitor, a cylindrical capacitor, a spherical capacitor, and an isolated sphere, calculate the capacitance.

Learning Objectives

● We generally determine the capacitance of a particular
capacitor configuration by (1) assuming a charge q to have
been placed on the plates, (2) finding the electric field due
to this charge, (3) evaluating the potential difference V be-
tween the plates, and (4) calculating C from q � CV. Some
results are the following:

● A parallel-plate capacitor with flat parallel plates of area A
and spacing d has capacitance

● A cylindrical capacitor (two long coaxial cylinders) of length

C �
´0A

d
.

E
:

L and radii a and b has capacitance

● A spherical capacitor with concentric spherical plates of
radii a and b has capacitance

● An isolated sphere of radius R has capacitance

C � 4p´0R.

C � 4p´0
ab

b � a
.

C � 2p´0
L

ln(b
a)

.

Key Ideas

25-2 CALCULATING THE CAPACITANCE
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Figure 25-5 A charged parallel-plate capaci-
tor. A Gaussian surface encloses the charge
on the positive plate. The integration of
Eq. 25-6 is taken along a path extending
directly from the negative plate to the
positive plate.

+ + + + + + + + + +

– – – – – – – – – –

Gaussian
surface

Path of
integration

+q

–q

Ad

We use Gauss’ law to relate
q and E. Then we integrate the
E to get the potential difference.

Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field
and the potential difference by making certain assumptions. We discuss each in
turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q � ´0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is
a flux. For convenience, we shall always draw the Gaussian surface in such a way
that it completely encloses the charge on the positive plate; see Fig. 25-5 for an
example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf � Vi, we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the � and � remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field

V � ��

�

E ds

�
E
:

� ds:d s:E
:

Vf � Vi � ��f

i
E
:

� ds:,

E
:

dA
:

E
:

E
:

� E
:

� dA
:

´0
 E
:

� dA
:

� q.

E
:

E
:

E
:
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at the edges of the plates, taking to be constant throughout the region between
the plates.

We draw a Gaussian surface that encloses just the charge q on the positive
plate, as in Fig. 25-5. From Eq. 25-4 we can then write

q � ´0EA, (25-7)

where A is the area of the plate.
Equation 25-6 yields

(25-8)

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec-
ond integral then is simply the plate separation d.

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation 
q � CV (Eq. 25-1), we find

(parallel-plate capacitor). (25-9)

Thus, the capacitance does indeed depend only on geometrical factors—namely,
the plate area A and the plate separation d. Note that C increases as we increase
area A or decrease separation d.

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing
the electrostatic constant in Coulomb’s law in the form 1/4p´0. If we had not
done so, Eq. 25-9—which is used more often in engineering practice than
Coulomb’s law—would have been less simple in form. We note further that
Eq. 25-9 permits us to express the permittivity constant ´0 in a unit more appro-
priate for use in problems involving capacitors; namely,

´0 � 8.85 � 10�12 F/m � 8.85 pF/m. (25-10)

We have previously expressed this constant as

´0 � 8.85 � 10�12 C2/N �m2. (25-11)

A Cylindrical Capacitor
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed by
two coaxial cylinders of radii a and b. We assume that L � b so that we can
neglect the fringing of the electric field that occurs at the ends of the cylinders.
Each plate contains a charge of magnitude q.

As a Gaussian surface, we choose a cylinder of length L and radius r, closed
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders
and encloses the central cylinder and thus also the charge q on that cylinder.
Equation 25-4 then relates that charge and the field magnitude E as

q � ´0EA � ´0E(2prL),

in which 2prL is the area of the curved part of the Gaussian surface. There is
no flux through the end caps. Solving for E yields

(25-12)

Substitution of this result into Eq. 25-6 yields

(25-13)

where we have used the fact that here ds � �dr (we integrated radially inward).

V � ��

�

E ds � �
q

2p´0L
�a

b

dr
r

�
q

2p´0L
 ln� b

a �,

E �
q

2p´0Lr
.

C �
�0A

d

V � ��

�

E ds � E �d

0
ds � Ed.

E
:

Figure 25-6 A cross section of a long cylindri-
cal capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of
integration along which Eq. 25-6 is to be
applied.This figure also serves to illustrate
a spherical capacitor in a cross section
through its center.
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Checkpoint 2
For capacitors charged by the same battery, does the charge stored by the capacitor
increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical
shell of a spherical capacitor is increased.

From the relation C � q/V, we then have

(cylindrical capacitor). (25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate
capacitor, depends only on geometrical factors, in this case the length L and the
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q � ´0EA � ´0E(4pr 2),

in which 4pr2 is the area of the spherical Gaussian surface.We solve this equation
for E, obtaining

(25-15)

which we recognize as the expression for the electric field due to a uniform
spherical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

(25-16)

where again we have substituted �dr for ds. If we now substitute Eq. 25-16 into
Eq. 25-1 and solve for C, we find

(spherical capacitor). (25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R
by assuming that the “missing plate” is a conducting sphere of infinite radius.
After all, the field lines that leave the surface of a positively charged isolated
conductor must end somewhere; the walls of the room in which the conductor is
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

If we then let b : 
 and substitute R for a, we find

C � 4p´0R (isolated sphere). (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9,
25-14, and 25-17) involve the constant ´0 multiplied by a quantity that has the
dimensions of a length.

C � 4p´0
a

1 � a/b
.

C � 4p´0
ab

b � a

V � ��

�

E ds � �
q

4p´0
�a

b

dr
r2 �

q
4p´0

� 1
a

�
1
b � �

q
4p´0

b � a
ab

,

E �
1

4p´0

q
r2  ,

C � 2p´0
L

ln(b/a)
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Additional examples, video, and practice available at WileyPLUS

magnitude that collects there is

q � CV � (0.25 � 10�6 F)(12 V)

� 3.0 � 10�6 C.

Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

� 1.873 � 1013 electrons.

These electrons come from a volume that is the product of the
face area A and the depth d we seek.Thus, from the density of
conduction electrons (number per volume), we can write

or

� 1.1 � 10�12 m � 1.1 pm. (Answer)

We commonly say that electrons move from the battery to
the negative face but, actually, the battery sets up an electric
field in the wires and plate such that electrons very close to
the plate face move up to the negative face.

d �
N

An
�

1.873 � 1013 electrons
(2.0 � 10�4 m2)(8.49 � 1028 electrons/m3)

n �
N

Ad
,

N �
q
e

�
3.0 � 10�6 C

1.602 � 10�19 C

Sample Problem 25.01 Charging the plates in a parallel-plate capacitor

In Fig. 25-7a, switch S is closed to connect the uncharged
capacitor of capacitance C � 0.25 mF to the battery of poten-
tial difference V � 12 V. The lower capacitor plate has thick-
ness L � 0.50 cm and face area A � 2.0 � 10�4 m2, and it
consists of copper, in which the density of conduction elec-
trons is n � 8.49 � 1028 electrons/m3. From what depth d
within the plate (Fig. 25-7b) must electrons move to the plate
face as the capacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by
Eq. 25-1 (q � CV).

Calculations: Because the lower plate is connected to the
negative terminal of the battery, conduction electrons move
up to the face of the plate. From Eq. 25-1, the total charge

Figure 25-7 (a) A
battery and ca-
pacitor circuit.
(b) The lower ca-
pacitor plate.

C

S

(a) (b)

– – – – – – 
d

25-3 CAPACITORS IN PARALLEL AND IN SERIES

After reading this module, you should be able to . . .

25.06 Sketch schematic diagrams for a battery and (a) three
capacitors in parallel and (b) three capacitors in series.

25.07 Identify that capacitors in parallel have the same poten-
tial difference, which is the same value that their equivalent
capacitor has.

25.08 Calculate the equivalent of parallel capacitors.
25.09 Identify that the total charge stored on parallel capacitors is

the sum of the charges stored on the individual capacitors.
25.10 Identify that capacitors in series have the same charge,

which is the same value that their equivalent capacitor has.
25.11 Calculate the equivalent of series capacitors.
25.12 Identify that the potential applied to capacitors in series is

equal to the sum of the potentials across the individual capacitors.

25.13 For a circuit with a battery and some capacitors in
parallel and some in series, simplify the circuit in steps by
finding equivalent capacitors, until the charge and potential
on the final equivalent capacitor can be determined, and
then reverse the steps to find the charge and potential on
the individual capacitors.

25.14 For a circuit with a battery, an open switch, and one or
more uncharged capacitors, determine the amount of
charge that moves through a point in the circuit when the
switch is closed.

25.15 When a charged capacitor is connected in parallel to one or
more uncharged capacitors, determine the charge and potential
difference on each capacitor when equilibrium is reached.

Learning Objectives

● The equivalent capacitances Ceq of combinations of individual
capacitors connected in parallel and in series can be found from

(n capacitors in parallel)Ceq � �
n

j�1
Cj

Key Idea

and                       (n capacitors in series).

Equivalent capacitances can be used to calculate the capaci-
tances of more complicated series – parallel combinations.

1
Ceq

� �
n

j�1

1
Cj

25-3 CAPACITORS IN PARALLEL AND IN SERIES
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When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors in Parallel and in Series
When there is a combination of capacitors in a circuit, we can sometimes replace
that combination with an equivalent capacitor—that is, a single capacitor that
has the same capacitance as the actual combination of capacitors. With such a
replacement, we can simplify the circuit, affording easier solutions for unknown
quantities of the circuit. Here we discuss two basic combinations of capacitors
that allow such a replacement.

Capacitors in Parallel
Figure 25-8a shows an electric circuit in which three capacitors are connected in par-
allel to battery B. This description has little to do with how the capacitor plates are
drawn. Rather, “in parallel” means that the capacitors are directly wired together at
one plate and directly wired together at the other plate, and that the same potential
difference V is applied across the two groups of wired-together plates.Thus, each ca-
pacitor has the same potential difference V, which produces charge on the capacitor.
(In Fig.25-8a, the applied potential V is maintained by the battery.) In general:

Figure 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V
+q3

V–
+

Terminal

C3

B

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal

–q3

+q2

–q2 C2

V
+q1

–q1 C1

V

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
parallel, that potential difference V is applied across each capacitor.The total
charge q stored on the capacitors is the sum of the charges stored on all the capacitors.

Capacitors connected in parallel can be replaced with an equivalent capacitor that has
the same total charge q and the same potential difference V as the actual capacitors.

(You might remember this result with the nonsense word “par-V,” which is close to
“party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows the
equivalent capacitor (with equivalent capacitance Ceq) that has replaced the three ca-
pacitors (with actual capacitances C1,C2,and C3) of Fig.25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 � C1V, q2 � C2V, and q3 � C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q � q1 � q2 � q3 � (C1 � C2 � C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is

Ceq � �
n

j�1
Cj

Ceq �
q
V

� C1 � C2 � C3,
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Figure 25-9 (a) Three capacitors connected
in series to battery B.The battery main-
tains potential difference V between the
top and bottom plates of the series combi-
nation. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

V

(b)

Ceq

V
+
–

(a)

B

+q

C1

C2

C3

V1

V2

V3

–
+

B

Terminal

Terminal

–q

+q

–q

–q

+q

–q

+q

Series capacitors and
their equivalent have
the same q (“seri-q”).

applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Capacitors that are connected in series can be replaced with an equivalent capaci-
tor that has the same charge q and the same total potential difference V as the
actual series capacitors.

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum 

The equivalent capacitance is then

or
1

Ceq
�

1
C1

�
1

C2
�

1
C3

.

Ceq �
q
V

�
1

1/C1 � 1/C2 � 1/C3
,

V � V1 � V2 � V3 � q � 1
C1

�
1

C2
�

1
C3

�.

V1 �
q
C1

, V2 �
q
C2

, and V3 �
q
C3

.

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following a
chain reaction of events, in which the charging of each capacitor causes the charging
of the next capacitor.We start with capacitor 3 and work upward to capacitor 1.When
the battery is first connected to the series of capacitors, it produces charge �q on the
bottom plate of capacitor 3. That charge then repels negative charge from the top
plate of capacitor 3 (leaving it with charge �q).The repelled negative charge moves
to the bottom plate of capacitor 2 (giving it charge �q). That charge on the bottom
plate of capacitor 2 then repels negative charge from the top plate of capacitor 2
(leaving it with charge �q) to the bottom plate of capacitor 1 (giving it charge �q).
Finally, the charge on the bottom plate of capacitor 1 helps move negative charge
from the top plate of capacitor 1 to the battery, leaving that top plate with charge �q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit.Thus, its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:
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Checkpoint 3
A battery of potential V stores charge q on a combination of two identical capacitors.
What are the potential difference across and the charge on either capacitor if the ca-
pacitors are (a) in parallel and (b) in series?

parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the bot-

Sample Problem 25.02 Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 � 12.0 mF, C2 � 5.30 mF, and C3 � 4.50 mF.

KEY IDEA

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in

A

(a)

C1 =
12.0 μF

C2 =
5.30 μF

C12 =
17.3 μF

C123 =
3.57 μF

C3 =
4.50 μF

C3 =
4.50 μF

A

B
B

A

(b) (c)

V

C12 =
17.3 μF

C3 =
4.50 μF

q3 =
44.6 μC

( f )

12.5 V

V
C123 =

3.57 μF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 μF

q123 =
44.6 μC

q12 =
44.6 μC

C12 =
17.3 μF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 μF

q3 =
44.6 μC

(g)

12.5 V

q12 =
44.6 μC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 μF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 μF

C3 =
4.50 μF

q3 =
44.6 μC12.5 V

(i )

C1 =
12.0 μF

q1 =
31.0 μC

q2 =
13.7 μC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 μF

C3 =
4.50 μF

q3 =
44.6 μC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

Figure 25-10 (a)–(d) Three capacitors are reduced to one equivalent capacitor. (e)–(i) Working backwards to get the charges.

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
Ceq

� �
n

j�1

1
Cj
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tom plates of both capacitor 1 and capacitor 2. Because
there is more than one route for the shifting charge, capaci-
tor 3 is not in series with capacitor 1 (or capacitor 2). Any
time you think you might have two capacitors in series, ap-
ply this check about the shifting charge.

Are capacitor 1 and capacitor 2 in parallel? Yes. Their
top plates are directly wired together and their bottom
plates are directly wired together, and electric potential
is applied between the top-plate pair and the bottom-plate
pair. Thus, capacitor 1 and capacitor 2 are in parallel, and
Eq. 25-19 tells us that their equivalent capacitance C12 is

C12 � C1 � C2 � 12.0 mF � 5.30 mF � 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.
From Eq. 25-20, we have

from which

(Answer)C123 �
1

0.280 mF�1 � 3.57 mF.

�
1

17.3 mF
�

1
4.50 mF

� 0.280 mF�1,

1
C123

�
1

C12
�

1
C3

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V � 12.5 V.What is the charge on C1?

KEY IDEAS

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (� 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q � CV) gives us

q123 � C123V � (3.57 mF)(12.5 V) � 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f ).
Thus, capacitor 12 has charge q12 � q123 � 44.6 mC. From
Eq. 25-1 and Fig. 25-10g, the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 � V12 � 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer)� 31.0 mC.

q1 � C1V1 � (12.0 mF)(2.58 V)

V12 �
q12

C12
�

44.6 mC
17.3 mF

� 2.58 V.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached
when the two potentials are equal because, with no potential
difference between connected plates of the capacitors, there

Sample Problem 25.03 One capacitor charging up another capacitor

Capacitor 1, with C1 3.55 mF, is charged to a potential �

Figure 25-11 A potential difference
V0 is applied to capacitor 1 and the
charging battery is removed. Switch
S is then closed so that the charge
on capacitor 1 is shared with
capacitor 2.

S

C2C1

q0

After the switch is closed,
charge is transferred until
the potential differences
match.

difference V0 � 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 � 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

KEY IDEAS

The situation here differs from the previous example be-
cause here an applied electric potential is not maintained
across a combination of capacitors by a battery or some
other source. Here, just after switch S is closed, the only ap-
plied electric potential is that of capacitor 1 on capacitor 2,
and that potential is decreasing. Thus, the capacitors in
Fig. 25-11 are not connected in series; and although they are
drawn parallel, in this situation they are not in parallel.
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Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. We can imagine
doing the work ourselves by transferring electrons from one plate to the other,
one by one. As the charges build, so does the electric field between the plates,
which opposes the continued transfer. So, greater amounts of work are required.
Actually, a battery does all this for us, at the expense of its stored chemical en-
ergy. We visualize the work as being stored as electric potential energy in the
electric field between the plates.

Additional examples, video, and practice available at WileyPLUS

25-4 ENERGY STORED IN AN ELECTRIC FIELD

After reading this module, you should be able to . . .

25.16 Explain how the work required to charge a capacitor
results in the potential energy of the capacitor.

25.17 For a capacitor, apply the relationship between the
potential energy U, the capacitance C, and the potential
difference V.

25.18 For a capacitor, apply the relationship between the

potential energy, the internal volume, and the internal
energy density.

25.19 For any electric field, apply the relationship between
the potential energy density u in the field and the field’s
magnitude E.

25.20 Explain the danger of sparks in airborne dust.

Learning Objectives

● The electric potential energy U of a charged capacitor,

is equal to the work required to charge the capacitor. This en-
ergy can be associated with the capacitor’s electric field .E

:

U �
q2

2c
� 1

2CV 2,

Key Ideas
● Every electric field, in a capacitor or from any other source,
has an associated stored energy. In vacuum, the energy den-
sity u (potential energy per unit volume) in a field of magni-
tude E is

u � 1
2´0E2.

is no electric field within the connecting wires to move con-
duction electrons. The initial charge on capacitor 1 is then
shared between the two capacitors.

Calculations: Initially, when capacitor 1 is connected to the
battery, the charge it acquires is, from Eq. 25-1,

q0 � C1V0 � (3.55 � 10�6 F)(6.30 V)

� 22.365 � 10�6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins
to charge capacitor 2, the electric potential and charge on
capacitor 1 decrease and those on capacitor 2 increase until

V1 � V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).
q1

C1
�

q2

C2

Because the total charge cannot magically change, the total
after the transfer must be

q1 � q2 � q0 (charge conservation);

thus q2 � q0 � q1.

We can now rewrite the second equilibrium equation as

Solving this for q1 and substituting given data, we find

q1 � 6.35 mC. (Answer)

The rest of the initial charge (q0 � 22.365 mC) must be on
capacitor 2:

q2 � 16.0 mC. (Answer)

q1

C1
�

q0 � q1

C2
.
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The potential energy of a charged capacitor may be viewed as being stored in the
electric field between its plates.

Suppose that, at a given instant, a charge q� has been transferred from one
plate of a capacitor to the other.The potential difference V� between the plates at
that instant will be q�/C. If an extra increment of charge dq� is then transferred,
the increment of work required will be, from Eq. 24-6,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-

plate capacitors that are identical except that capacitor 1 has twice the plate
separation of capacitor 2. Then capacitor 1 has twice the volume between its
plates and also, from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-
4 tells us that if both capacitors have the same charge q, the electric fields be-
tween their plates are identical. And Eq. 25-21 tells us that capacitor 1 has twice
the stored potential energy of capacitor 2. Thus, of two otherwise identical ca-
pacitors with the same charge and same electric field, the one with twice the
volume between its plates has twice the stored potential energy.Arguments like
this tend to verify our earlier assumption:

U � 1
2 CV 2

U �
q2

2C

W � � dW �
1
C
�q

0
q� dq� �

q2

2C
.

dW � V� dq� �
q�

C
dq�.

Explosions in Airborne Dust
As we discussed in Module 24-8, making contact with certain materials, such as
clothing, carpets, and even playground slides, can leave you with a significant
electrical potential. You might become painfully aware of that potential if a
spark leaps between you and a grounded object, such as a faucet. In many in-
dustries involving the production and transport of powder, such as in the cos-
metic and food industries, such a spark can be disastrous. Although the powder
in bulk may not burn at all, when individual powder grains are airborne and
thus surrounded by oxygen, they can burn so fiercely that a cloud of the grains
burns as an explosion. Safety engineers cannot eliminate all possible sources of
sparks in the powder industries. Instead, they attempt to keep the amount of
energy available in the sparks below the threshold value Ut (� 150 mJ) typi-
cally required to ignite airborne grains.

Suppose a person becomes charged by contact with various surfaces as he walks
through an airborne powder.We can roughly model the person as a spherical capaci-
tor of radius R � 1.8 m. From Eq. 25-18 and Eq. 25-22 , we
see that the energy �f the capacitor is

U � 1
2 (4p´0R)V 2.

(U � 1
2CV 2)(C � 4p´0R)
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From this we see that the threshold energy corresponds to a potential of 

� 3.9 � 104 V.

Safety engineers attempt to keep the potential of the personnel below this level
by “bleeding” off the charge through, say, a conducting floor.

Energy Density
In a parallel-plate capacitor, neglecting fringing, the electric field has the same
value at all points between the plates. Thus, the energy density u—that is, the
potential energy per unit volume between the plates—should also be uniform.
We can find u by dividing the total potential energy by the volume Ad of the
space between the plates. Using Eq. 25-22, we obtain

(25-23)

With Eq. 25-9 (C � ´0A/d), this result becomes

(25-24)

However, from Eq. 24-42 (E � ��V/�s), V/d equals the electric field magnitude E; so

(energy density). (25-25)

Although we derived this result for the special case of an electric field of a
parallel-plate capacitor, it holds for any electric field. If an electric field ex-
ists at any point in space, that site has an electric potential energy with a den-
sity (amount per unit volume) given by Eq. 25-25.

E
:

u � 1
2 ´0E2

u � 1
2 ´0 � V

d �
2

.

u �
U

Ad
�

CV 2

2Ad
.

V � A
2Ut

4p 0́R
� A

2(150 � 10�3 J)
4p(8.85 � 10�12 C2/N �m2)(1.8 m)

Additional examples, video, and practice available at WileyPLUS

(b) What is the energy density at the surface of the sphere?

KEY IDEA

The density u of the energy stored in an electric field
depends on the magnitude E of the field, according to 
Eq. 25-25 .

Calculations: Here we must first find E at the surface of
the sphere, as given by Eq. 23-15:

The energy density is then

(Answer)� 2.54 � 10�5 J/m3 � 25.4 mJ/m3.

�
(1.25 � 10�9 C)2

(32p 2)(8.85 � 10�12 C2/N�m2)(0.0685 m)4

u � 1
2´0E2 �

q2

32p 2´0R4

E �
1

4p´0

q
R2 .

(u � 1
2´0E2)

Sample Problem 25.04 Potential energy and energy density of an electric field

An isolated conducting sphere whose radius R is 6.85 cm
has a charge q � 1.25 nC.

(a) How much potential energy is stored in the electric field
of this charged conductor?

KEY IDEAS

(1) An isolated sphere has capacitance given by Eq. 25-18
(C � 4p´0R). (2) The energy U stored in a capacitor de-
pends on the capacitor’s charge q and capacitance C accord-
ing to Eq. 25-21 (U � q2/2C).

Calculation: Substituting C � 4p´0R into Eq. 25-21 gives us

(Answer)� 1.03 � 10�7 J � 103 nJ. 

�
(1.25 � 10�9 C)2

(8p)(8.85 � 10�12 F/m)(0.0685 m)

U �
q2

2C
�

q2

8p´0R
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Capacitor with a Dielectric
If you fill the space between the plates of a capacitor with a dielectric, which is
an insulating material such as mineral oil or plastic, what happens to the capaci-
tance? Michael Faraday — to whom the whole concept of capacitance is largely
due and for whom the SI unit of capacitance is named — first looked into this
matter in 1837. Using simple equipment much like that shown in Fig. 25-12, he
found that the capacitance increased by a numerical factor k, which he called

25-5 CAPACITOR WITH A DIELECTRIC

After reading this module, you should be able to . . .

25.21 Identify that capacitance is increased if the space
between the plates is filled with a dielectric material.

25.22 For a capacitor, calculate the capacitance with and
without a dielectric.

25.23 For a region filled with a dielectric material with a
given dielectric constant k, identify that all electrostatic
equations containing the permittivity constant ´0 are
modified by multiplying that constant by the dielectric
constant to get k´0.

25.24 Name some of the common dielectrics.
25.25 In adding a dielectric to a charged capacitor, distin-

guish the results for a capacitor (a) connected to a battery
and (b) not connected to a battery.

25.26 Distinguish polar dielectrics from nonpolar dielectrics.
25.27 In adding a dielectric to a charged capacitor,

explain what happens to the electric field between the
plates in terms of what happens to the atoms in the
dielectric.

Learning Objectives

● If the space between the plates of a capacitor is completely
filled with a dielectric material, the capacitance C in vacuum
(or, effectively, in air) is multiplied by the material’s dielectric
constant k, which is a number greater than 1.

● In a region that is completely filled by a dielectric, all
electrostatic equations containing the permittivity constant
´0 must be modified by replacing ́ 0 with k´0.

Key Ideas
● When a dielectric material is placed in an external electric
field, it develops an internal electric field that is oriented
opposite the external field, thus reducing the magnitude of
the electric field inside the material.

● When a dielectric material is placed in a capacitor with a
fixed amount of charge on the surface, the net electric field
between the plates is decreased.

The Royal Institute, England/Bridgeman Art Library/NY

Figure 25-12 The simple electrostatic apparatus used by Faraday. An assembled apparatus
(second from left) forms a spherical capacitor consisting of a central brass ball and a
concentric brass shell. Faraday placed dielectric materials in the space between the ball
and the shell.



the dielectric constant of the insulating material. Table 25-1 shows some dielec-
tric materials and their dielectric constants. The dielectric constant of a vacuum
is unity by definition. Because air is mostly empty space, its measured dielectric
constant is only slightly greater than unity. Even common paper can signifi-
cantly increase the capacitance of a capacitor, and some materials, such as
strontium titanate, can increase the capacitance by more than two orders of
magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form

C � ´0�, (25-26)

in which � has the dimension of length. For example, � � A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C � k´0� � kCair, (25-27)

where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q � CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:
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Table 25-1 Some Properties of Dielectricsa

Dielectric Dielectric 
Constant Strength 

Material k (kV/mm)

Air (1 atm) 1.00054 3
Polystyrene 2.6 24
Paper 3.5 16
Transformer 

oil 4.5
Pyrex 4.7 14
Ruby mica 5.4
Porcelain 6.5
Silicon 12
Germanium 16
Ethanol 25
Water (20°C) 80.4
Water (25°C) 78.5
Titania 

ceramic 130
Strontium

titanate 310 8

For a vacuum, k � unity.

aMeasured at room temperature,except for the 
water.

Figure 25-13 (a) If the potential difference between the plates of a capacitor is maintained, as by battery B, the effect of a
dielectric is to increase the charge on the plates. (b) If the charge on the capacitor plates is maintained, as in this case,
the effect of a dielectric is to reduce the potential difference between the plates.The scale shown is that of a potentiometer,
a device used to measure potential difference (here, between the plates).A capacitor cannot discharge through a 
potentiometer.

(a)

B B

  ++++++++
κ

V = a constant

(b)

q = a constant

+ ++ +

––––  ––––––––

+ ++ +

––––

+

–

+ ++ +

––––

+

–
κ0

VOLTS

0

VOLTS

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant �0 are to be modified 
by replacing ´0 with k´0.



Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.

E �
s

k´0
.

E �
1

4pk´0

q
r2 .
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KEY IDEA

Because the battery has been disconnected, the charge on
the capacitor cannot change when the dielectric is inserted.
However, the potential does change.

Calculations: Thus, we must now use Eq. 25-21 to write the
final potential energy Uf , but now that the slab is within the
capacitor, the capacitance is kC.We then have

(Answer)

When the slab is introduced, the potential energy decreases
by a factor of k.

The “missing” energy, in principle, would be apparent to
the person who introduced the slab.The capacitor would ex-
ert a tiny tug on the slab and would do work on it, in amount

W � Ui � Uf � (1055 � 162) pJ � 893 pJ.

If the slab were allowed to slide between the plates with no
restraint and if there were no friction, the slab would oscillate
back and forth between the plates with a (constant) mechani-
cal energy of 893 pJ, and this system energy would transfer
back and forth between kinetic energy of the moving slab and
potential energy stored in the electric field.

� 162 pJ � 160 pJ.

Uf �
q2

2kC
�

Ui

k
�

1055 pJ
6.50

Sample Problem 25.05 Work and energy when a dielectric is inserted into a capacitor

A parallel-plate capacitor whose capacitance C is 13.5 pF is
charged by a battery to a potential difference V � 12.5 V
between its plates. The charging battery is now discon-
nected, and a porcelain slab (k � 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the
slab is inserted?

KEY IDEA

We can relate the potential energy Ui of the capacitor to the
capacitance C and either the potential V (with Eq. 25-22) or
the charge q (with Eq. 25-21):

Calculation: Because we are given the initial potential V
(� 12.5 V), we use Eq. 25-22 to find the initial stored
energy:

(Answer)

(b) What is the potential energy of the capacitor–slab device
after the slab is inserted? 

� 1.055 � 10�9 J � 1055 pJ � 1100 pJ.

Ui � 1
2CV 2 � 1

2(13.5 � 10�12 F)(12.5 V)2

Ui � 1
2CV 2 �

q2

2C
.

Additional examples, video, and practice available at WileyPLUS

Dielectrics: An Atomic View
What happens, in atomic and molecular terms, when we put a dielectric in an
electric field? There are two possibilities, depending on the type of molecule:

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent
electric dipole moments. In such materials (called polar dielectrics), the 
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Figure 25-15 (a) A nonpolar dielectric slab.
The circles represent the electrically neu-
tral atoms within the slab. (b) An electric
field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and neg-
ative charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field in-
side the dielectric (the vector sum of 
and ) has the same direction as but a
smaller magnitude.
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:
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Figure 25-14 (a) Molecules with a permanent
electric dipole moment, showing their
random orientation in the absence of an
external electric field. (b) An electric field is
applied, producing partial alignment of the
dipoles.Thermal agitation prevents complete
alignment.
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p

electric dipoles tend to line up with an external electric field as in Fig. 25-14.
Because the molecules are continuously jostling each other as a result of their
random thermal motion, this alignment is not complete, but it becomes more
complete as the magnitude of the applied field is increased (or as the temper-
ature, and thus the jostling, are decreased). The alignment of the electric
dipoles produces an electric field that is directed opposite the applied field
and is smaller in magnitude.

2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Module 24-4 (see Fig. 24-14), we saw 
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the
electric field produced by the permanent electric dipoles in Fig. 25-14 act in the
same way—they oppose the applied field . Thus, the effect of both polar and
nonpolar dielectrics is to weaken any applied field within them, as between the
plates of a capacitor.
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Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Module 25-5.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5: We enclose the charge �q on
the top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 rep-
resent the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
charge �q on the top plate, but it now also encloses the induced charge �q� on
the top face of the dielectric. The charge on the conducting plate is said to be free
charge because it can move if we change the electric potential of the plate; the
induced charge on the surface of the dielectric is not free charge because it
cannot move from that surface.

E0 �
q

´0A
.

´0
 E
:

� dA
:

� ´0EA � q,

E
:

0

73525-6 DIELECTRICS AND GAUSS’ LAW

25-6 DIELECTRICS AND GAUSS’ LAW

After reading this module, you should be able to . . .

25.28 In a capacitor with a dielectric, distinguish free charge
from induced charge.

25.29 When a dielectric partially or fully fills the space in a

capacitor, find the free charge, the induced charge, the elec-
tric field between the plates (if there is a gap, there is more
than one field value), and the potential between the plates.

Learning Objectives

● Inserting a dielectric into a capacitor causes induced
charge to appear on the faces of the dielectric and weakens
the electric field between the plates.

● The induced charge is less than the free charge on the
plates.

● When a dielectric is present, Gauss’ law may be

Key Ideas
generalized to

where q is the free charge. Any induced surface charge is
accounted for by including the dielectric constant k inside
the integral.

´0
 kE
:

� dA
:

� q,

Figure 25-16 A parallel-plate capacitor (a) without and (b) with a dielectric slab inserted.
The charge q on the plates is assumed to be the same in both cases.
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The net charge enclosed by the Gaussian surface in Fig. 25-16b is q � q�, so
Gauss’ law now gives

(25-32)

or (25-33)

The effect of the dielectric is to weaken the original field E0 by a factor of k; so we
may write

(25-34)

Comparison of Eqs. 25-33 and 25-34 shows that

(25-35)

Equation 25-35 shows correctly that the magnitude q� of the induced surface
charge is less than that of the free charge q and is zero if no dielectric is present
(because then k � 1 in Eq. 25-35).

By substituting for q � q� from Eq. 25-35 in Eq. 25-32, we can write Gauss’
law in the form

(Gauss’ law with dielectric). (25-36)

This equation, although derived for a parallel-plate capacitor, is true generally
and is the most general form in which Gauss’ law can be written. Note:

1. The flux integral now involves not just (The vector is sometimes 
called the electric displacement so that Eq. 25-36 can be written in the form

2. The charge q enclosed by the Gaussian surface is now taken to be the free
charge only. The induced surface charge is deliberately ignored on the right
side of Eq. 25-36, having been taken fully into account by introducing the
dielectric constant k on the left side.

3. Equation 25-36 differs from Eq. 23-7, our original statement of Gauss’ law,
only in that �0 in the latter equation has been replaced by k�0. We keep k
inside the integral of Eq. 25-36 to allow for cases in which k is not constant
over the entire Gaussian surface.

� D
:

� dA
:

� q.)
D
:

,
´0kE

:
E
:

.kE
:

,

´0
 kE
:

� dA
:

� q

q � q� �
q
k

.

E �
E0

k
�

q
k´0A

.

E �
q � q�

´0A
.

´0
 E
:

� dA
:

� ´0EA � q � q�,
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Sample Problem 25.06 Dielectric partially filling the gap in a capacitor

Figure 25-17 shows a parallel-plate capacitor of plate area
A and plate separation d. A potential difference V0 is ap-
plied between the plates by connecting a battery between
them. The battery is then disconnected, and a dielectric slab
of thickness b and dielectric constant k is placed between
the plates as shown. Assume A � 115 cm2, d � 1.24 cm,
V0 � 85.5 V, b � 0.780 cm, and k � 2.61.

(a) What is the capacitance C0 before the dielectric slab is
inserted?

Figure 25-17 A parallel-plate capacitor containing a dielectric slab
that only partially fills the space between the plates.

Gaussian
surface I 

–q' – – – – 

+q

–q
Gaussian
surface II 

+ + + + + + + + 

– – – – – – – – 

+ + + + κ +q'
b d
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KEY IDEA

Now we apply Gauss’ law in the form of  Eq. 25-36 to
Gaussian surface II in Fig. 25-17.

Calculations: Only the free charge �q is in Eq. 25-36, so 

(25-37)

The first minus sign in this equation comes from the dot
product along the top of the Gaussian surface be-
cause now the field vector is directed downward and the
area vector (which, as always, points outward from the
interior of a closed Gaussian surface) is directed upward.
With 180� between the vectors, the dot product is negative.
Now k � 2.61.Thus, Eq. 25-37 gives us

(Answer)

(e) What is the potential difference V between the plates
after the slab has been introduced?

KEY IDEA

We find V by integrating along a straight line directly from
the bottom plate to the top plate.

Calculation: Within the dielectric, the path length is b and
the electric field is E1. Within the two gaps above and below
the dielectric, the total path length is d � b and the electric
field is E0. Equation 25-6 then yields

(Answer)

This is less than the original potential difference of 85.5 V.

(f) What is the capacitance with the slab in place?

KEY IDEA

The capacitance C is related to q and V via Eq. 25-1.

Calculation: Taking q from (b) and V from (e), we have

(Answer)

This is greater than the original capacitance of 8.21 pF.

� 1.34 � 10�11 F � 13.4 pF.

C �
q
V

�
7.02 � 10�10 C

52.3 V

� 52.3 V.

� (2640 V/m)(0.00780 m)

� (6900 V/m)(0.0124 m � 0.00780 m)

V � ��

�

E ds � E0(d � b) � E1b

� 2.64 kV/m.

E1 �
q

´0kA
�

E0

k
�

6.90 kV/m
2.61

dA
:

E
:

1

E
:

1 � dA
:

´0
kE
:

1 � dA
:

� �´0kE1A � �q.

Calculation: From Eq. 25-9 we have

(Answer)

(b) What free charge appears on the plates?

Calculation: From Eq. 25-1,

(Answer)

Because the battery was disconnected before the slab was
inserted, the free charge is unchanged.

(c) What is the electric field E0 in the gaps between the
plates and the dielectric slab?

KEY IDEA

We need to apply Gauss’ law, in the form of Eq. 25-36, to
Gaussian surface I in Fig. 25-17.

Calculations: That surface passes through the gap, and so it
encloses only the free charge on the upper capacitor plate.
Electric field pierces only the bottom of the Gaussian surface.
Because there the area vector and the field vector are
both directed downward, the dot product in Eq. 25-36 becomes

Equation 25-36 then becomes

The integration now simply gives the surface area A of the
plate.Thus, we obtain

´0kE0A � q,

or

We must put k � 1 here because Gaussian surface I does
not pass through the dielectric.Thus, we have

(Answer)

Note that the value of E0 does not change when the slab is
introduced because the amount of charge enclosed by
Gaussian surface I in Fig. 25-17 does not change.

(d) What is the electric field E1 in the dielectric slab?

� 6900 V/m � 6.90 kV/m.

E0 �
q

´0kA
�

7.02 � 10�10 C
(8.85 � 10�12 F/m)(1)(115 � 10�4 m2)

E0 �
q

´0kA
.

´0kE0
 dA � q.

E
:

0 � dA
:

� E0 dA cos 0� � E0 dA.

E
:

0dA
:

� 7.02 � 10�10 C � 702 pC.

q � C0V0 � (8.21 � 10�12 F)(85.5 V)

� 8.21 � 10�12  F � 8.21 pF.

C0 �
�0 A

d
�

(8.85 � 10�12 F/m)(115 � 10�4 m2)
1.24 � 10�2 m

Additional examples, video, and practice available at WileyPLUS
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1 Figure 25-18 shows plots of
charge versus potential difference
for three parallel-plate capacitors
that have the plate areas and sepa-
rations given in the table. Which
plot goes with which capacitor?

Questions

a

b
c

V

q

Figure 25-18 Question 1.

Capacitor Area Separation

1 A d

2 2A d

3 A 2d

+
–

(a)

C1 C2 +
–

(b)

C1C2

C3

C3

+
–

(c)

C1 C2

C3

(d)

C1

C2

C3

+
–

Figure 25-19 Question 3.

3 (a) In Fig. 25-19a, are capacitors 1 and 3 in series? (b) In the same

Capacitor; Capacitance A capacitor consists of two isolated
conductors (the plates) with charges �q and �q. Its capacitance C
is defined from

q � CV, (25-1)

where V is the potential difference between the plates.

Determining Capacitance We generally determine the
capacitance of a particular capacitor configuration by (1) assuming a
charge q to have been placed on the plates, (2) finding the electric field

due to this charge, (3) evaluating the potential difference V, and (4)
calculating C from Eq.25-1.Some specific results are the following:

A parallel-plate capacitor with flat parallel plates of area A
and spacing d has capacitance

(25-9)

A cylindrical capacitor (two long coaxial cylinders) of length
L and radii a and b has capacitance

(25-14)

A spherical capacitor with concentric spherical plates of radii
a and b has capacitance

(25-17)

An isolated sphere of radius R has capacitance

C � 4p´0R. (25-18)

Capacitors in Parallel and in Series The equivalent
capacitances Ceq of combinations of individual capacitors con-
nected in parallel and in series can be found from

(n capacitors in parallel) (25-19)

and (n capacitors in series). (25-20)
1

Ceq
� �

n

j�1

1
Cj

Ceq � �
n

j�1
Cj

C � 4p´0
ab

b � a
.

C � 2p´0
L

ln(b/a)
.

C �
´0A

d
.

E
:

Review & Summary

Equivalent capacitances can be used to calculate the capacitances
of more complicated series–parallel combinations.

Potential Energy and Energy Density The electric poten-
tial energy U of a charged capacitor,

(25-21, 25-22)

is equal to the work required to charge the capacitor. This energy
can be associated with the capacitor’s electric field By extension
we can associate stored energy with any electric field. In vacuum,
the energy density u, or potential energy per unit volume, within an
electric field of magnitude E is given by

(25-25)

Capacitance with a Dielectric If the space between the
plates of a capacitor is completely filled with a dielectric material,
the capacitance C is increased by a factor k, called the dielectric
constant, which is characteristic of the material. In a region that
is completely filled by a dielectric, all electrostatic equations con-
taining �0 must be modified by replacing �0 with k�0.

The effects of adding a dielectric can be understood physically
in terms of the action of an electric field on the permanent or
induced electric dipoles in the dielectric slab. The result is the for-
mation of induced charges on the surfaces of the dielectric, which
results in a weakening of the field within the dielectric for a given
amount of free charge on the plates.

Gauss’ Law with a Dielectric When a dielectric is present,
Gauss’ law may be generalized to

(25-36)

Here q is the free charge; any induced surface charge is accounted
for by including the dielectric constant k inside the integral.

´0
kE
:

� dA
:

� q.

u � 1
2´0 E2.

E
:

.

U �
q2

2C
� 1

2 CV2,

2 What is Ceq of three capacitors, each of capacitance C, if they
are connected to a battery (a) in series with one another and (b) in
parallel? (c) In which arrangement is there more charge on the
equivalent capacitance?



•2 The capacitor in Fig. 25-25 has a
capacitance of 25 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?
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figure, are capacitors 1 and 2 in parallel? (c) Rank the equivalent
capacitances of the four circuits shown in Fig. 25-19, greatest first.

4 Figure 25-20 shows three circuits, each consisting of a switch
and two capacitors, initially charged as indicated (top plate
positive). After the switches have been closed, in which circuit
(if any) will the charge on the left-hand capacitor (a) increase,
(b) decrease, and (c) remain the same?

8 Figure 25-22 shows an open
switch, a battery of potential differ-
ence V, a current-measuring meter
A, and three identical uncharged
capacitors of capacitance C. When
the switch is closed and the circuit
reaches equilibrium, what are (a) the
potential difference across each capacitor and (b) the charge on
the left plate of each capacitor? (c) During charging, what net
charge passes through the meter?

9 A parallel-plate capacitor is connected to a battery of elec-
tric potential difference V. If the plate separation is decreased,
do the following quantities increase, decrease, or remain the
same: (a) the capacitor’s capacitance, (b) the potential difference
across the capacitor, (c) the charge on the capacitor, (d) the en-
ergy stored by the capacitor, (e) the magnitude of the electric
field between the plates, and (f) the energy density of that elec-
tric field?

10 When a dielectric slab is inserted
between the plates of one of the two
identical capacitors in Fig. 25-23, do the
following properties of that capacitor in-
crease, decrease, or remain the same:
(a) capacitance, (b) charge, (c) potential
difference, and (d) potential energy?
(e) How about the same properties of the
other capacitor?

11 You are to connect capacitances C1 and C2, with C1 	 C2, to
a battery, first individually, then in series, and then in parallel.
Rank those arrangements according to the amount of charge
stored, greatest first.

Figure 25-20 Question 4.
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5 Initially, a single capacitance C1 is wired to a battery. Then ca-
pacitance C2 is added in parallel. Are (a) the potential difference
across C1 and (b) the charge q1 on C1 now more than, less than, or
the same as previously? (c) Is the equivalent capacitance C12 of C1

and C2 more than, less than, or equal to C1? (d) Is the charge stored
on C1 and C2 together more than, less than, or equal to the charge
stored previously on C1?

6 Repeat Question 5 for C2 added in series rather than in parallel.

7 For each circuit in Fig. 25-21, are the capacitors connected in
series, in parallel, or in neither mode?

Module 25-2 Calculating the Capacitance
•3 A parallel-plate capacitor has circular plates of 8.20 cm
radius and 1.30 mm separation. (a) Calculate the capacitance.
(b) Find the charge for a potential difference of 120 V.

•4 The plates of a spherical capacitor have radii 38.0 mm and
40.0 mm. (a) Calculate the capacitance. (b) What must be the plate
area of a parallel-plate capacitor with the same plate separation
and capacitance?

•5 What is the capacitance of a drop that results when two
mercury spheres, each of radius R � 2.00 mm, merge?

•6 You have two flat metal plates, each of area 1.00 m2, with
which to construct a parallel-plate capacitor. (a) If the capac-
itance of the device is to be 1.00 F, what must be the separation
between the plates? (b) Could this capacitor actually be
constructed?

•7 If an uncharged parallel-plate capacitor (capacitance C) is
connected to a battery, one plate becomes negatively charged as

SSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 25-1 Capacitance
•1 The two metal objects in Fig. 25-24 have net charges of 
�70 pC and �70 pC, which result in a 20 V potential difference
between them. (a) What is the capacitance of the system? (b) If the
charges are changed to �200 pC and �200 pC, what does the capac-
itance become? (c) What does the potential difference become?

Figure 25-24 Problem 1.

C
+
–

S

Figure 25-25 Problem 2.
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•11 In Fig. 25-29, find the equivalent capacitance of the
combination. Assume that C1 10.0 mF, C2 5.00 mF, and C3

4.00 mF.
���

ILW

electrons move to the plate face (area
A). In Fig. 25-26, the depth d from which
the electrons come in the plate in a par-
ticular capacitor is plotted against a
range of values for the potential differ-
ence V of the battery. The density of con-
duction electrons in the copper plates is
8.49 � 1028 electrons/m3. The vertical
scale is set by ds � 1.00 pm, and the hori-
zontal scale is set by Vs � 20.0 V. What is
the ratio C/A?

Module 25-3 Capacitors in Parallel and in Series
•8 How many 1.00 mF capacitors must be connected in parallel to
store a charge of 1.00 C with a potential of 110 V across the 
capacitors?

•9 Each of the uncharged capaci-
tors in Fig. 25-27 has a capacitance
of 25.0 mF. A potential difference
of V � 4200 V is established when
the switch is closed. How many
coulombs of charge then pass
through meter A?

•10 In Fig. 25-28, find the equiva-
lent capacitance of the combination. Assume that C1 is 10.0 mF, C2

is 5.00 mF, and C3 is 4.00 mF.

capacitor drops to 35 V, what is the capacitance of this second
capacitor?

••14 In Fig. 25-30, the battery has
a potential difference of V 10.0 V
and the five capacitors each have a
capacitance of 10.0 mF. What is
the charge on (a) capacitor 1 and
(b) capacitor 2?

••15 In Fig. 25-31, a 20.0 V bat-
tery is connected across capacitors
of capacitances C1 � C6 � 3.00 mF
and C3 � C5 � 2.00C2 � 2.00C4 � 4.00 mF. What are (a) the equiv-
alent capacitance Ceq of the capacitors and (b) the charge stored by
Ceq? What are (c) V1 and (d) q1 of capacitor 1, (e) V2 and (f) q2 of
capacitor 2, and (g) V3 and (h) q3 of capacitor 3?
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Figure 25-27 Problem 9.

Figure 25-28 Problems 10 and 34.
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Figure 25-30 Problem 14.
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••16 Plot 1 in Fig. 25-32a gives the charge q that can be stored
on capacitor 1 versus the electric potential V set up across it. The
vertical scale is set by qs � 16.0 mC, and the horizontal scale is set
by Vs � 2.0 V. Plots 2 and 3 are similar plots for capacitors 2 and
3, respectively. Figure 25-32b shows a circuit with those three
capacitors and a 6.0 V battery. What is the charge stored on
capacitor 2 in that circuit?

••17 In Fig. 25-29, a potential difference of V 100.0 V is ap-
plied across a capacitor arrangement with capacitances C1 10.0 mF,
C2 5.00 mF, and C3 4.00 mF. If capacitor 3 undergoes electrical
breakdown so that it becomes equivalent to conducting wire, what
is the increase in (a) the charge on capacitor 1 and (b) the potential
difference across capacitor 1?

••18 Figure 25-33 shows a circuit section of four air-filled capacitors
that is connected to a larger circuit.The graph below the section shows
the electric potential V(x) as a function of position x along the lower
part of the section, through capacitor 4. Similarly, the graph above the
section shows the electric potential V(x) as a function of position x
along the upper part of the section, through capacitors 1, 2, and 3.

��
�
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0

Figure 25-26 Problem 7.

••12 Two parallel-plate capacitors, 6.0 mF each, are connected in
parallel to a 10 V battery. One of the capacitors is then squeezed so
that its plate separation is 50.0% of its initial value. Because of the
squeezing, (a) how much additional charge is transferred to the ca-
pacitors by the battery and (b) what is the increase in the total
charge stored on the capacitors?

••13 A 100 pF capacitor is charged to a potential dif-
ference of 50 V, and the charging battery is disconnected. The
capacitor is then connected in parallel with a second (initially
uncharged) capacitor. If the potential difference across the first

ILWSSM



••20 Figure 25-35 shows a
variable “air gap” capacitor for
manual tuning. Alternate plates
are connected together; one
group of plates is fixed in posi-
tion, and the other group is
capable of rotation. Consider a
capacitor of n � 8 plates of al-
ternating polarity, each plate
having area A � 1.25 cm2 and
separated from adjacent plates by distance d � 3.40 mm.What is the
maximum capacitance of the device?

••21 In Fig. 25-36, the
capacitances are C1 1.0 mF and
C2 3.0 mF, and both capacitors are
charged to a potential difference of
V � 100 V but with opposite polar-
ity as shown. Switches S1 and S2 are
now closed. (a) What is now the po-
tential difference between points a and b? What now is the charge
on capacitor (b) 1 and (c) 2?

••22 In Fig. 25-37, V � 10 V, C1 � 10
mF, and C2 � C3 � 20 mF. Switch S is
first thrown to the left side until capac-
itor 1 reaches equilibrium. Then the
switch is thrown to the right. When
equilibrium is again reached, how
much charge is on capacitor 1?

�
�
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•••27 Figure 25-42 shows a 12.0 V
battery and four uncharged capaci-
tors of capacitances C1 1.00 mF,
C2 2.00 mF,C3 3.00 mF,and C4 �
4.00 mF. If only switch S1 is closed,
what is the charge on (a) capacitor 1,
(b) capacitor 2, (c) capacitor 3, and
(d) capacitor 4? If both switches are
closed, what is the charge on (e) ca-
pacitor 1, (f) capacitor 2, (g) capacitor
3,and (h) capacitor 4?

��
�

••19 In Fig. 25-34, the battery has potential difference V 9.0
V, C2 3.0 mF, C4 4.0 mF, and all the capacitors are initially un-
charged. When switch S is closed, a total charge of 12 mC passes
through point a and a total charge of 8.0 mC passes through point
b.What are (a) C1 and (b) C3?

��
�

Capacitor 3 has a capacitance of 0.80 mF. What are the capaci-
tances of (a) capacitor 1 and (b) capacitor 2?

••23 The capacitors in Fig. 25-38 are ini-
tially uncharged. The capacitances are 
C1 � 4.0 mF, C2 � 8.0 mF, and C3 � 12 mF,
and the battery’s potential difference is 
V � 12 V. When switch S is closed, how
many electrons travel through (a) point a,
(b) point b, (c) point c, and (d) point d? In
the figure, do the electrons travel up or down through (e) point b and
(f) point c?

••24 Figure 25-39 represents two air-filled cylindrical capacitors
connected in series across a battery with potential V 10 V.
Capacitor 1 has an inner plate radius of 5.0 mm, an outer plate radius
of 1.5 cm, and a length of 5.0 cm. Capacitor 2 has an inner plate radius
of 2.5 mm, an outer plate radius of 1.0 cm, and a length of 9.0 cm.The
outer plate of capacitor 2 is a conducting
organic membrane that can be stretched,
and the capacitor can be inflated to in-
crease the plate separation. If the outer
plate radius is increased to 2.5 cm by in-
flation, (a) how many electrons move
through point P and (b) do they move to-
ward or away from the battery?

••25 In Fig. 25-40, two parallel-plate
capacitors (with air between the plates)
are connected to a battery. Capacitor 1
has a plate area of 1.5 cm2 and an electric
field (between its plates) of magnitude
2000 V/m. Capacitor 2 has a plate area of
0.70 cm2 and an electric field of magnitude 1500 V/m. What is the
total charge on the two capacitors?

•••26 Capacitor 3 in Fig. 25-41a is a variable capacitor (its
capacitance C3 can be varied). Figure 25-41b gives the electric po-
tential V1 across capacitor 1 versus C3.The horizontal scale is set by
C3s = 12.0 mF. Electric potential V1 approaches an asymptote of
10 V as C3 : 
. What are (a) the electric potential V across the
battery, (b) C1, and (c) C2?
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•••28 Figure 25-43 displays a 12.0
V battery and 3 uncharged capaci-
tors of capacitances C1 4.00 mF,
C2 6.00 mF, and C3 � 3.00 mF. The
switch is thrown to the left side until
capacitor 1 is fully charged. Then the
switch is thrown to the right. What is
the final charge on (a) capacitor 1,
(b) capacitor 2, and (c) capacitor 3?

Module 25-4 Energy Stored in an Electric Field
•29 What capacitance is required to store an energy of 10 kW �h
at a potential difference of 1000 V?

•30 How much energy is stored in 1.00 m3 of air due to the “fair
weather” electric field of magnitude 150 V/m?

•31 A 2.0 mF capacitor and a 4.0 mF capacitor are connected
in parallel across a 300 V potential difference. Calculate the total
energy stored in the capacitors.

•32 A parallel-plate air-filled capacitor having area 40 cm2 and
plate spacing 1.0 mm is charged to a potential difference of 600 V.
Find (a) the capacitance, (b) the magnitude of the charge on each
plate, (c) the stored energy, (d) the electric field between the
plates, and (e) the energy density between the plates.

••33 A charged isolated metal sphere of diameter 10 cm has a po-
tential of 8000 V relative to V � 0 at infinity. Calculate the energy
density in the electric field near the surface of the sphere.

••34 In Fig. 25-28, a potential difference V � 100 V is applied
across a capacitor arrangement with capacitances C1 � 10.0 mF,
C2 � 5.00 mF, and C3 � 4.00 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••35 Assume that a stationary electron is a point of charge. What
is the energy density u of its electric field at radial distances (a) r �
1.00 mm, (b) r � 1.00 mm, (c) r � 1.00 nm, and (d) r � 1.00 pm?
(e) What is u in the limit as r : 0?

••36 As a safety engineer,
you must evaluate the practice of
storing flammable conducting liq-
uids in nonconducting containers.
The company supplying a certain
liquid has been using a squat, cylin-
drical plastic container of radius 
r � 0.20 m and filling it to height
h � 10 cm, which is not the con-
tainer’s full interior height (Fig. 25-44). Your investigation reveals
that during handling at the company, the exterior surface of the
container commonly acquires a negative charge density of magni-
tude 2.0 mC/m2 (approximately uniform). Because the liquid is a
conducting material, the charge on the container induces charge
separation within the liquid. (a) How much negative charge is
induced in the center of the liquid’s bulk? (b) Assume the capaci-
tance of the central portion of the liquid relative to ground is
35 pF. What is the potential energy associated with the negative
charge in that effective capacitor? (c) If a spark occurs between
the ground and the central portion of the liquid (through the vent-
ing port), the potential energy can be fed into the spark. The mini-
mum spark energy needed to ignite the liquid is 10 mJ. In this
situation, can a spark ignite the liquid?

SSM

�
�

••37 The parallel plates in a capacitor, with a
plate area of 8.50 cm2 and an air-filled separation of 3.00 mm, are
charged by a 6.00 V battery. They are then disconnected from the
battery and pulled apart (without discharge) to a separation of
8.00 mm. Neglecting fringing, find (a) the potential difference be-
tween the plates, (b) the initial stored energy, (c) the final stored
energy, and (d) the work required to separate the plates.

••38 In Fig. 25-29, a potential difference V � 100 V is applied
across a capacitor arrangement with capacitances C1 � 10.0 mF,
C2 5.00 mF, and C3 15.0 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••39 In Fig. 25-45, C1 � 10.0
mF, C2 20.0 mF, and C3

25.0 mF. If no capacitor can
withstand a potential differ-
ence of more than 100 V without failure, what are (a) the magni-
tude of the maximum potential difference that can exist between
points A and B and (b) the maximum energy that can be stored in
the three-capacitor arrangement?

Module 25-5 Capacitor with a Dielectric
•40 An air-filled parallel-plate capacitor has a capacitance of
1.3 pF. The separation of the plates is doubled, and wax is inserted
between them. The new capacitance is 2.6 pF. Find the dielectric
constant of the wax.

•41 A coaxial cable used in a transmission line has an inner
radius of 0.10 mm and an outer radius of 0.60 mm. Calculate the
capacitance per meter for the cable. Assume that the space
between the conductors is filled with polystyrene.

•42 A parallel-plate air-filled capacitor has a capacitance of
50 pF. (a) If each of its plates has an area of 0.35 m2, what is the
separation? (b) If the region between the plates is now filled with
material having k � 5.6, what is the capacitance?

•43 Given a 7.4 pF air-filled capacitor, you are asked to convert it to
a capacitor that can store up to 7.4 mJ with a maximum potential dif-
ference of 652 V. Which dielectric in Table 25-1 should you use to fill
the gap in the capacitor if you do not allow for a margin of error?

••44 You are asked to construct a capacitor having a capacitance
near 1 nF and a breakdown potential in excess of 10 000 V. You
think of using the sides of a tall Pyrex drinking glass as a dielectric,
lining the inside and outside curved surfaces with aluminum foil to
act as the plates. The glass is 15 cm tall with an inner radius of
3.6 cm and an outer radius of 3.8 cm. What are the (a) capacitance
and (b) breakdown potential of this capacitor?

••45 A certain parallel-plate capacitor is filled with a dielectric
for which k � 5.5. The area of each plate is 0.034 m2, and the plates
are separated by 2.0 mm.The capacitor will fail (short out and burn
up) if the electric field between the plates exceeds 200 kN/C. What
is the maximum energy that can be stored in the capacitor?

••46 In Fig. 25-46, how much charge is
stored on the parallel-plate capacitors
by the 12.0 V battery? One is filled
with air, and the other is filled with a di-
electric for which k � 3.00; both capaci-
tors have a plate area of 5.00 � 10�3 m2

and a plate separation of 2.00 mm.

SSM
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Figure 25-44 Problem 36.
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58 (a) If C � 50 mF in Fig. 25-52, what
is the equivalent capacitance between
points A and B? (Hint: First imagine
that a battery is connected between
those two points.) (b) Repeat for points
A and D.

59 In Fig. 25-53, V � 12 V, C1 � C4 �
2.0 mF, C2 � 4.0 mF, and C3 � 1.0 mF.
What is the charge on capacitor 4?

60 The chocolate crumb mystery.
This story begins with Problem 60 in
Chapter 23. As part of the investigation
of the biscuit factory explosion, the elec-
tric potentials of the workers were
measured as they emptied sacks of
chocolate crumb powder into the load-
ing bin, stirring up a cloud of the powder
around themselves. Each worker had an
electric potential of about 7.0 kV relative to the ground, which was
taken as zero potential. (a) Assuming that each worker was effec-
tively a capacitor with a typical capacitance of 200 pF, find the energy
stored in that effective capacitor. If a single spark between the
worker and any conducting object connected to the ground neutral-
ized the worker, that energy would be transferred to the spark.
According to measurements, a spark that could ignite a cloud of
chocolate crumb powder, and thus set off an explosion, had to have
an energy of at least 150 mJ. (b) Could a spark from a worker have
set off an explosion in the cloud of
powder in the loading bin? (The
story continues with Problem 60 in
Chapter 26.)

61 Figure 25-54 shows capacitor
1 (C1 � 8.00 mF), capacitor 2 (C2

� 6.00 mF), and capacitor 3 (C3 �

••47 A certain substance has a dielectric constant of
2.8 and a dielectric strength of 18 MV/m. If it is used as the dielec-
tric material in a parallel-plate capacitor, what minimum area
should the plates of the capacitor have to obtain a capacitance of
7.0 � 10�2 mF and to ensure that the capacitor will be able to with-
stand a potential difference of 4.0 kV?

••48 Figure 25-47 shows a parallel-
plate capacitor with a plate area A
� 5.56 cm2 and separation d � 5.56
mm. The left half of the gap is filled
with material of dielectric constant
k1 � 7.00; the right half is filled with
material of dielectric constant k2 �
12.0.What is the capacitance?

••49 Figure 25-48 shows a parallel-plate ca-
pacitor with a plate area A � 7.89 cm2 and
plate separation d � 4.62 mm. The top half of
the gap is filled with material of dielectric
constant k1 � 11.0; the bottom half is filled
with material of dielectric constant k2 � 12.0.
What is the capacitance?

ILWSSM material. (b) Determine the magnitude of the charge induced on
each dielectric surface.

••55 The space between two concentric conducting spherical shells
of radii b � 1.70 cm and a � 1.20 cm is filled with
a substance of dielectric constant k 23.5. A
potential difference V � 73.0 V is applied across
the inner and outer shells. Determine (a) the ca-
pacitance of the device, (b) the free charge q on
the inner shell, and (c) the charge q� induced
along the surface of the inner shell.

Additional Problems
56 In Fig. 25-50, the battery potential
difference V is 10.0 V and each of the seven
capacitors has capacitance 10.0 mF. What is the
charge on (a) capacitor 1 and (b) capacitor 2?

57 In Fig. 25-51, V � 9.0 V, C1 � C2 30
mF, and C3 C4 15 mF.What is the charge on capacitor 4?��
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••50 Figure 25-49 shows a parallel-
plate capacitor of plate area A � 10.5
cm2 and plate separation 2d � 7.12 mm.
The left half of the gap is filled with ma-
terial of dielectric constant k1 � 21.0;
the top of the right half is filled with ma-
terial of dielectric constant k2 � 42.0;
the bottom of the right half is filled
with material of dielectric constant k3 �
58.0.What is the capacitance?

Module 25-6 Dielectrics and Gauss’ Law
•51 A parallel-plate capacitor has a capacitance of
100 pF, a plate area of 100 cm2, and a mica dielectric (k 5.4)
completely filling the space between the plates. At 50 V potential
difference, calculate (a) the electric field magnitude E in the mica,
(b) the magnitude of the free charge on the plates, and (c) the mag-
nitude of the induced surface charge on the mica.

•52 For the arrangement of Fig. 25-17, suppose that the battery
remains connected while the dielectric slab is being introduced.
Calculate (a) the capacitance, (b) the charge on the capacitor
plates, (c) the electric field in the gap, and (d) the electric field in
the slab, after the slab is in place.

••53 A parallel-plate capacitor has plates of area 0.12 m2 and a
separation of 1.2 cm. A battery charges the plates to a potential dif-
ference of 120 V and is then disconnected.A dielectric slab of thick-
ness 4.0 mm and dielectric constant 4.8 is then placed symmetrically
between the plates. (a) What is the capacitance before the slab is in-
serted? (b) What is the capacitance with the slab in place? What is
the free charge q (c) before and (d) after the slab is inserted? What is
the magnitude of the electric field (e) in the space between the
plates and dielectric and (f) in the dielectric itself? (g) With the slab
in place, what is the potential difference across the plates? (h) How
much external work is involved in inserting the slab?

••54 Two parallel plates of area 100 cm2 are given charges of
equal magnitudes 8.9 � 10�7 C but opposite signs. The electric
field within the dielectric material filling the space between the
plates is 1.4 � 106 V/m. (a) Calculate the dielectric constant of the
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8.00 mF) connected to a 12.0 V battery.When switch S is closed so as
to connect uncharged capacitor 4 (C4 6.00 mF), (a) how much
charge passes through point P from the battery and (b) how much
charge shows up on capacitor 4? (c) Explain the discrepancy in
those two results.

62 Two air-filled, parallel-plate capacitors are to be connected to a
10 V battery, first individually, then in series, and then in parallel. In
those arrangements, the energy stored in the capacitors turns out to
be, listed least to greatest: 75 mJ, 100 mJ, 300 mJ, and 400 mJ. Of the
two capacitors, what is the (a) smaller and (b) greater capacitance?

63 Two parallel-plate capacitors, 6.0 mF each, are connected
in series to a 10 V battery. One of the capacitors is then squeezed
so that its plate separation is halved. Because of the squeezing,
(a) how much additional charge is transferred to the capacitors by
the battery and (b) what is the increase in the total charge stored
on the capacitors (the charge on the positive plate of one capacitor
plus the charge on the positive plate of the other capacitor)?

64 In Fig. 25-55, V � 12 V, C1

C5 C6 6.0 mF, and C2 C3 C4

4.0 mF. What are (a) the net charge
stored on the capacitors and (b) the
charge on capacitor 4?

65 In Fig. 25-56, the parallel-plate
capacitor of plate area 2.00 10�2 m2

is filled with two dielectric slabs, each
with thickness 2.00 mm. One slab has di-
electric constant 3.00, and the other,
4.00. How much charge does the 7.00 V
battery store on the capacitor?

66 A cylindrical capacitor has radii a
and b as in Fig. 25-6. Show that half the
stored electric potential energy lies
within a cylinder whose radius is

67 A capacitor of capacitance C1 �
6.00 mF is connected in series with a capacitor of capacitance C2 �
4.00 mF, and a potential difference of 200 V is applied across the
pair. (a) Calculate the equivalent capacitance. What are (b) charge
q1 and (c) potential difference V1 on capacitor 1 and (d) q2 and (e)
V2 on capacitor 2?

68 Repeat Problem 67 for the same two capacitors but with them
now connected in parallel.

69 A certain capacitor is charged to a potential difference V. If
you wish to increase its stored energy by 10%, by what percentage
should you increase V?

70 A slab of copper of thickness
b � 2.00 mm is thrust into a parallel-
plate capacitor of plate area A � 2.40
cm2 and plate separation d � 5.00
mm, as shown in Fig. 25-57; the slab is
exactly halfway between the plates.
(a) What is the capacitance after the
slab is introduced? (b) If a charge 
q � 3.40 mC is maintained on the
plates, what is the ratio of the stored energy before to that after the
slab is inserted? (c) How much work is done on the slab as it is in-
serted? (d) Is the slab sucked in or must it be pushed in?

r � 1ab.

�

SSM

�����
�

�
71 Repeat Problem 70, assuming that a potential difference V �
85.0 V, rather than the charge, is held constant.

72 A potential difference of 300 V is applied to a series
connection of two capacitors of capacitances C1 � 2.00 mF and
C2 � 8.00 mF. What are (a) charge q1 and (b) potential difference
V1 on capacitor 1 and (c) q2 and (d) V2 on capacitor 2? The charged
capacitors are then disconnected from each other and from the
battery. Then the capacitors are reconnected with plates of the
same signs wired together (the battery is not used). What now are
(e) q1, (f) V1, (g) q2, and (h) V2? Suppose, instead, the capacitors
charged in part (a) are reconnected with plates of opposite signs
wired together.What now are (i) q1, ( j) V1, (k) q2, and (l) V2?

73 Figure 25-58 shows a four-
capacitor arrangement that is con-
nected to a larger circuit at points A
and B. The capacitances are C1 �
10 mF and C2 � C3 � C4 � 20 mF.
The charge on capacitor 1 is 30 mC.
What is the magnitude of the poten-
tial difference VA � VB?

74 You have two plates of copper, a sheet of mica (thickness �
0.10 mm, k � 5.4), a sheet of glass (thickness � 2.0 mm, k � 7.0),
and a slab of paraffin (thickness � 1.0 cm, k � 2.0). To make a
parallel-plate capacitor with the largest C, which sheet should you
place between the copper plates?

75 A capacitor of unknown capacitance C is charged to 100 V and
connected across an initially uncharged 60 mF capacitor. If the final
potential difference across the 60 mF capacitor is 40 V, what is C?

76 A 10 V battery is connected to a series of n capacitors, each of
capacitance 2.0 mF. If the total stored energy is 25 mJ, what is n?

77 In Fig. 25-59, two parallel-
plate capacitors A and B are con-
nected in parallel across a 600 V
battery. Each plate has area 80.0 cm2;
the plate separations are 3.00 mm.
Capacitor A is filled with air; capaci-
tor B is filled with a dielectric of dielectric constant k 2.60.
Find the magnitude of the electric field within (a) the dielectric of
capacitor B and (b) the air of capacitor A. What are the free charge
densities s on the higher-potential plate of (c) capacitor A and
(d) capacitor B? (e) What is the induced charge density s� on the
top surface of the dielectric?

78 You have many 2.0 mF capacitors, each capable of with-
standing 200 V without undergoing electrical breakdown (in which
they conduct charge instead of storing it). How would you assem-
ble a combination having an equivalent capacitance of (a) 0.40 mF
and (b) 1.2 mF, each combination capable of withstanding 1000 V?

79 A parallel-plate capacitor has charge q and plate area A.
(a) By finding the work needed to increase the plate separation
from x to x � dx, determine the force between the plates. (Hint:
See Eq. 8-22.) (b) Then show that the force per unit area (the elec-
trostatic stress) acting on either plate is equal to the energy density
´0E2/2 between the plates.

80 A capacitor is charged until its stored energy is 4.00 J. A sec-
ond capacitor is then connected to it in parallel. (a) If the charge
distributes equally, what is the total energy stored in the electric
fields? (b) Where did the missing energy go?

�
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Current and Resistance

What Is Physics?
In the last five chapters we discussed electrostatics—the physics of stationary
charges. In this and the next chapter, we discuss the physics of electric currents—
that is, charges in motion.

Examples of electric currents abound and involve many professions. Mete-
orologists are concerned with lightning and with the less dramatic slow flow of
charge through the atmosphere. Biologists, physiologists, and engineers work-
ing in medical technology are concerned with the nerve currents that control
muscles and especially with how those currents can be reestablished after
spinal cord injuries. Electrical engineers are concerned with countless electri-
cal systems, such as power systems, lightning protection systems, information
storage systems, and music systems. Space engineers monitor and study the
flow of charged particles from our Sun because that flow can wipe out telecom-
munication systems in orbit and even power transmission systems on the
ground. In addition to such scholarly work, almost every aspect of daily life
now depends on information carried by electric currents, from stock trades to
ATM transfers and from video entertainment to social networking.

In this chapter we discuss the basic physics of electric currents and why they
can be established in some materials but not in others. We begin with the mean-
ing of electric current.

26-1 ELECTRIC CURRENT

After reading this module, you should be able to . . .

26.01 Apply the definition of current as the rate at which
charge moves through a point, including solving for the
amount of charge that passes the point in a given time
interval.

26.02 Identify that current is normally due to the motion of
conduction electrons that are driven by electric fields
(such as those set up in a wire by a battery).

26.03 Identify a junction in a circuit and apply the fact 
that (due to conservation of charge) the total current 
into a junction must equal the total current out of the
junction.

26.04 Explain how current arrows are drawn in a schematic
diagram of a circuit, and identify that the arrows are not
vectors.

● An electric current i in a conductor is defined by

where dq is the amount of positive charge that passes in 
time dt.

i �
dq
dt

,

● By convention, the direction of electric current is taken
as the direction in which positive charge carriers would
move even though (normally) only conduction electrons
can move.

Learning Objectives

Key Ideas



Electric Current
Although an electric current is a stream of moving charges, not all moving
charges constitute an electric current. If there is to be an electric current through
a given surface, there must be a net flow of charge through that surface. Two
examples clarify our meaning.

1. The free electrons (conduction electrons) in an isolated length of copper wire are
in random motion at speeds of the order of 106 m/s. If you pass a hypothetical
plane through such a wire, conduction electrons pass through it in both directions
at the rate of many billions per second—but there is no net transport of charge
and thus no current through the wire. However, if you connect the ends of the wire
to a battery, you slightly bias the flow in one direction, with the result that there
now is a net transport of charge and thus an electric current through the wire.

2. The flow of water through a garden hose represents the directed flow of
positive charge (the protons in the water molecules) at a rate of perhaps sev-
eral million coulombs per second.There is no net transport of charge, however,
because there is a parallel flow of negative charge (the electrons in the water
molecules) of exactly the same amount moving in exactly the same direction.

In this chapter we restrict ourselves largely to the study—within the frame-
work of classical physics—of steady currents of conduction electrons moving
through metallic conductors such as copper wires.

As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up the
loop, exerting forces on the conduction electrons, causing them to move and thus
establishing a current. After a very short time, the electron flow reaches a con-
stant value and the current is in its steady state (it does not vary with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in which
current has been established. If charge dq passes through a hypothetical plane
(such as aa�) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.
Under steady-state conditions, the current is the same for planes aa�, bb�, and

cc� and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa� for every electron that passes through plane cc�. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere � 1 A � 1 coulomb per second � 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.

q � � dq � �t

0
i dt,

i �
dq
dt
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(a)

(b)

Battery

+ – ii

i

i
i

Figure 26-2 The current i through the con-
ductor has the same value at planes aa�,
bb�, and cc�.

Figure 26-1 (a) A loop of copper in electro-
static equilibrium.The entire loop is at a
single potential, and the electric field is zero
at all points inside the copper. (b) Adding a
battery imposes an electric potential differ-
ence between the ends of the loop that are
connected to the terminals of the battery.
The battery thus produces an electric field
within the loop, from terminal to terminal,
and the field causes charges to move
around the loop.This movement of charges
is a current i.

i i

a

a'

b

b'

c

c'

The current is the same in 
any cross section.



Current, as defined by Eq. 26-1, is a scalar because both charge and time in
that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 � i1 � i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

The Directions of Currents
In Fig. 26-1b we drew the current arrows in the direction in which positively
charged particles would be forced to move through the loop by the electric field.
Such positive charge carriers, as they are often called, would move away from the
positive battery terminal and toward the negative terminal. Actually, the charge
carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively
charged.The electric field forces them to move in the direction opposite the current
arrows, from the negative terminal to the positive terminal. For historical reasons,
however, we use the following convention:

74726-1 ELECTRIC CURRENT

Figure 26-3 The relation i0 i1 i2 is true at
junction a no matter what the orientation
in space of the three wires. Currents are
scalars, not vectors.

��

i 0

a

i 1

i 2

(a)

(b)

a
i 2

i1

i 0

The current into the
junction must equal
the current out
(charge is conserved).

Checkpoint 1
The figure here shows a portion of a circuit.
What are the magnitude and direction of the
current i in the lower right-hand wire?

A current arrow is drawn in the direction in which positive charge carriers would
move, even if the actual charge carriers are negative and move in the opposite
direction.

1 A 

2 A 

3 A 4 A 

2 A 

2 A 

i

We can use this convention because in most situations, the assumed motion
of positive charge carriers in one direction has the same effect as the actual
motion of negative charge carriers in the opposite direction. (When the effect is
not the same, we shall drop the convention and describe the actual motion.)

Calculations: We can write the current in terms of the num-
ber of molecules that pass through such a plane per second as

or i � (e)(10)
dN
dt

.

i � � charge
per

electron � �
electrons

per
molecule � �

molecules
per

second �

Sample Problem 26.01 Current is the rate at which charge passes a point

Water flows through a garden hose at a volume flow rate
dV/dt of 450 cm3/s. What is the current of negative charge?

KEY IDEAS

The current i of negative charge is due to the electrons in
the water molecules moving through the hose.The current is
the rate at which that negative charge passes through any
plane that cuts completely across the hose.
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26-2 CURRENT DENSITY

After reading this module, you should be able to . . .

26.05 Identify a current density and a current density vector.
26.06 For current through an area element on a cross section

through a conductor (such as a wire), identify the element’s
area vector .

26.07 Find the current through a cross section of a conductor
by integrating the dot product of the current density
vector and the element area vector over the
full cross section.

26.08 For the case where current is uniformly spread over
a cross section in a conductor, apply the relationship

dA
:

J
:

dA
:

between the current i, the current density magnitude J,
and the area A.

26.09 Identify streamlines.
26.10 Explain the motion of conduction electrons in terms of

their drift speed.
26.11 Distinguish the drift speeds of conduction electrons from

their random-motion speeds, including relative magnitudes.
26.12 Identify carrier charge density n.
26.13 Apply the relationship between current density J,

charge carrier density n, and charge carrier drift speed vd.

Learning Objectives

● Current i (a scalar quantity) is related to current density 
(a vector quantity) by

where is a vector perpendicular to a surface element 
of area dA and the integral is taken over any surface
cutting across the conductor. The current density has
the same direction as the velocity of the moving charges if

J
:

dA
:

i � � J
:

� dA
:

,

J
: they are positive and the opposite direction if they are

negative.

● When an electric field is established in a conductor, the
charge carriers (assumed positive) acquire a drift speed vd in
the direction of .

● The drift velocity is related to the current density by

where ne is the carrier charge density.

J
:

� (ne)vd
: ,

vd
:

E
:

E
:

Key Ideas

Additional examples, video, and practice available at WileyPLUS

We substitute 10 electrons per molecule because a water
(H2O) molecule contains 8 electrons in the single oxygen
atom and 1 electron in each of the two hydrogen atoms.

We can express the rate dN/dt in terms of the given vol-
ume flow rate dV/dt by first writing

“Molecules per mole” is Avogadro’s number NA. “Moles per
unit mass” is the inverse of the mass per mole, which is the
molar mass M of water.“Mass per unit volume” is the (mass)
density rmass of water. The volume per second is the volume
flow rate dV/dt.Thus, we have

dN
dt

� NA� 1
M �rmass� dV

dt � �
NArmass

M
dV
dt

.

� � mass
per unit
volume ��

volume
per

second �.

�molecules
per

second � � �molecules
per

mole �� moles
per unit

mass �

Substituting this into the equation for i, we find

We know that Avogadro’s number NA is 6.02 � 1023 mole-
cules/mol, or 6.02 � 1023 mol�1, and from Table 15-1 we
know that the density of water rmass under normal condi-
tions is 1000 kg/m3.We can get the molar mass of water from
the molar masses listed in Appendix F (in grams per mole):
We add the molar mass of oxygen (16 g/mol) to twice the
molar mass of hydrogen (1 g/mol), obtaining 18 g/mol �
0.018 kg/mol. So, the current of negative charge due to the
electrons in the water is

(Answer)

This current of negative charge is exactly compensated by a
current of positive charge associated with the nuclei of the
three atoms that make up the water molecule. Thus, there is
no net flow of charge through the hose.

�  24.1 MA.

�  2.41 � 10 7 C/s � 2.41 � 10 7 A

� (0.018 kg/mol)�1(1000 kg/m3)(450 � 10 �6 m3/s)

i � (10)(1.6 � 10 �19 C)(6.02 � 10 23 mol�1)

i � 10eNAM�1rmass
dV
dt

.
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Figure 26-4 Streamlines representing current
density in the flow of charge through a con-
stricted conductor.

i

Figure 26-5 Positive charge carriers
drift at speed vd in the direction
of the applied electric field By
convention, the direction of the
current density and the sense
of the current arrow are drawn in
that same direction.

J
:

E
:

.

L
i

+
+

+
+

+

vd

E

J

Current is said to be due to positive charges that
are propelled by the electric field.

Current Density
Sometimes we are interested in the current i in a particular conductor. At other
times we take a localized view and study the flow of charge through a cross sec-
tion of the conductor at a particular point. To describe this flow, we can use the
current density which has the same direction as the velocity of the moving
charges if they are positive and the opposite direction if they are negative. For
each element of the cross section, the magnitude J is equal to the current per unit
area through that element. We can write the amount of current through the ele-
ment as where is the area vector of the element, perpendicular to the
element.The total current through the surface is then

(26-4)

If the current is uniform across the surface and parallel to then is also uni-
form and parallel to Then Eq. 26-4 becomes

so (26-5)

where A is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI
unit for current density is the ampere per square meter (A/m2).

In Chapter 22 we saw that we can represent an electric field with electric
field lines. Figure 26-4 shows how current density can be represented with a
similar set of lines, which we can call streamlines. The current, which is toward the
right in Fig. 26-4, makes a transition from the wider conductor at the left to the
narrower conductor at the right. Because charge is conserved during the transition,
the amount of charge and thus the amount of current cannot change. However,
the current density does change—it is greater in the narrower conductor. The
spacing of the streamlines suggests this increase in current density; streamlines
that are closer together imply greater current density.

Drift Speed
When a conductor does not have a current through it, its conduction electrons
move randomly, with no net motion in any direction. When the conductor does
have a current through it, these electrons actually still move randomly, but now
they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10�5 or 10�4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons in
a current through a wire to the magnitude J of the current density in the wire. For

J �
i
A

,

i � � J dA � J � dA � JA,

dA
:

.
J
:

dA
:

,

i � � J
:

� dA
:

.

dA
:

J
:

� dA
:

,

J
:

,



convenience, Fig. 26-5 shows the equivalent drift of positive charge carriers in the
direction of the applied electric field Let us assume that these charge carriers
all move with the same drift speed vd and that the current density J is uniform
across the wire’s cross-sectional area A. The number of charge carriers in a length
L of the wire is nAL, where n is the number of carriers per unit volume.The total
charge of the carriers in the length L, each with charge e, is then

q � (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J � i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d

J
:

v:dJ
:

J
:

� (ne)v:d.

vd �
i

nAe
�

J
ne

i �
q
t

�
nALe
L/vd

� nAevd.

t �
L
vd

.

E
:

.
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Checkpoint 2
The figure shows conduction electrons moving
leftward in a wire.Are the following leftward or
rightward: (a) the current i, (b) the current density

(c) the electric field in the wire?E
:

J
:

,

Sample Problem 26.02 Current density, uniform and nonuniform

(a) The current density in a cylindrical wire of radius R
2.0 mm is uniform across a cross section of the wire and is J �
2.0 � 105 A/m2.What is the current through the outer portion
of the wire between radial distances R/2 and R (Fig. 26-6a)?

KEY IDEA

Because the current density is uniform across the cross
section, the current density J, the current i, and the cross-
sectional area A are related by Eq. 26-5 (J � i/A).

Calculations: We want only the current through a reduced
cross-sectional area A� of the wire (rather than the entire

� area), where

�
3p

4
 (0.0020 m)2 � 9.424 � 10 �6 m2.

A� � pR2 � p � R
2 �

2

� p � 3R2

4 �

So, we rewrite Eq. 26-5 as

i � JA�

and then substitute the data to find

(Answer)� 1.9 A.

i � (2.0 � 10 5 A/m2)(9.424 � 10�6 m2)
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R/2
R

(a)

R

(e)

R/2

(d)

(b)

dr

(c)

We want the current in the area 
between these two radii.

Our job is to sum the current in 
all rings from this smallest one ... ... to this largest one.

Its area is the product of the 
circumference and the width.

The current within the ring is 
the product of the current density
and the ring’s area.

If the current is nonuniform, we start with a 
ring that is so thin that we can approximate 
the current density as being uniform within it.

Figure 26-6 (a) Cross section of a wire of
radius R. If the current density is uni-
form, the current is just the product of
the current density and the area. (b)–(e)
If the current is nonuniform, we must
first find the current through a thin ring
and then sum (via integration) the cur-
rents in all such rings in the given area.

A

(b) Suppose, instead, that the current density through a
cross section varies with radial distance r as J � ar2, in which
a � 3.0 � 1011 A/m4 and r is in meters. What now is the
current through the same outer portion of the wire?

KEY IDEA

Because the current density is not uniform across a cross
section of the wire, we must resort to Eq. 26-4 
and integrate the current density over the portion of the
wire from r � R/2 to r � R.

Calculations: The current density vector (along the
wire’s length) and the differential area vector (per-
pendicular to a cross section of the wire) have the same
direction.Thus,

J
:

� dA
:

� J dA cos 0 � J dA.

dA
:

J
:

(i � � J
:

� dA
:

)

We need to replace the differential area dA with some-
thing we can actually integrate between the limits r � R/2
and r � R.The simplest replacement (because J is given as a
function of r) is the area 2pr dr of a thin ring of circumfer-
ence 2pr and width dr (Fig. 26-6b). We can then integrate
with r as the variable of integration. Equation 26-4 then
gives us

(Answer)

�
15
32

p(3.0 � 10 11 A/m4)(0.0020 m)4 � 7.1 A.

� 2pa 	 r4

4 

R

R/2
�

pa
2 	R4 �

R4

16 
 �
15
32

 paR4

� �R

R/2
ar2 2pr dr � 2pa� R

R/2
r3 dr

i � �J
:

� dA
:

� � J dA

Additional examples, video, and practice available at WileyPLUS



752 CHAPTER 26 CURRENT AND RESISTANCE

Taking copper’s molar mass M and density rmass from
Appendix F, we then have (with some conversions of units)

or n � 8.49 � 1028 m�3.

Next let us combine the first two key ideas by writing

Substituting for A with pr 2 (� 2.54 � 10�6 m2) and solving
for vd, we then find

(Answer)

which is only 1.8 mm/h, slower than a sluggish snail.

Lights are fast: You may well ask: “If the electrons drift so
slowly, why do the room lights turn on so quickly when I throw
the switch?” Confusion on this point results from not distin-
guishing between the drift speed of the electrons and the
speed at which changes in the electric field configuration
travel along wires.This latter speed is nearly that of light; elec-
trons everywhere in the wire begin drifting almost at once, in-
cluding into the lightbulbs. Similarly, when you open the valve
on your garden hose with the hose full of water, a pressure
wave travels along the hose at the speed of sound in water.
The speed at which the water itself moves through the hose—
measured perhaps with a dye marker—is much slower.

� 4.9 � 10 �7 m/s,

�
17 � 10 �3 A

(8.49 � 10 28 m�3)(1.6 � 10 �19 C)(2.54 � 10 �6 m2)

vd �
i

ne(pr2)

i
A

� nevd.

� 8.49 � 10 28 electrons/m3

n �
(6.02 � 10 23 mol�1)(8.96 � 10 3 kg/m3)

63.54 � 10 �3 kg/mol

Sample Problem 26.03 In a current, the conduction electrons move very slowly

What is the drift speed of the conduction electrons in a
copper wire with radius r � 900 mm when it has a uniform
current i � 17 mA? Assume that each copper atom con-
tributes one conduction electron to the current and that
the current density is uniform across the wire’s cross
section.

KEY IDEAS

1. The drift speed vd is related to the current density and
the number n of conduction electrons per unit volume
according to Eq. 26-7, which we can write as J � nevd.

2. Because the current density is uniform, its magnitude J is
related to the given current i and wire size by Eq. 26-5
(J � i/A, where A is the cross-sectional area of the wire).

3. Because we assume one conduction electron per atom,
the number n of conduction electrons per unit volume is
the same as the number of atoms per unit volume.

Calculations: Let us start with the third idea by writing

The number of atoms per mole is just Avogadro’s number
NA (� 6.02 � 1023 mol�1). Moles per unit mass is the inverse
of the mass per mole, which here is the molar mass M of
copper. The mass per unit volume is the (mass) density rmass

of copper.Thus,

n � NA� 1
M �rmass �

NArmass

M
.

n � � atoms
per unit
volume � � �atoms

per
mole � � moles

per unit
mass � � mass

per unit
volume �.

J
:

Additional examples, video, and practice available at WileyPLUS

26-3 RESISTANCE AND RESISTIVITY

After reading this module, you should be able to . . .

26.14 Apply the relationship between the potential difference 
V applied across an object, the object’s resistance R,
and the resulting current i through the object, between the
application points.

26.15 Identify a resistor.
26.16 Apply the relationship between the electric field magni-

tude E set up at a point in a given material, the material’s
resistivity r, and the resulting current density magnitude
J at that point.

26.17 For a uniform electric field set up in a wire, apply 
the relationship between the electric field magnitude E,

the potential difference V between the two ends, and
the wire’s length L.

26.18 Apply the relationship between resistivity r and
conductivity s.

26.19 Apply the relationship between an object’s resistance
R, the resistivity of its material r, its length L, and its cross-
sectional area A.

26.20 Apply the equation that approximately gives a
conductor’s resistivity r as a function of temperature T.

26.21 Sketch a graph of resistivity r versus temperature T for
a metal.

Learning Objectives



Resistance and Resistivity
If we apply the same potential difference between the ends of geometrically simi-
lar rods of copper and of glass, very different currents result. The characteristic
of the conductor that enters here is its electrical resistance. We determine the re-
sistance between any two points of a conductor by applying a potential difference
V between those points and measuring the current i that results. The resistance R
is then

(definition of R). (26-8)

The SI unit for resistance that follows from Eq. 26-8 is the volt per ampere.This com-
bination occurs so often that we give it a special name, the ohm (symbol �); that is,

(26-9)

A conductor whose function in a circuit is to provide a specified resistance is
called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and
a resistance with the symbol . If we write Eq. 26-8 as

we see that, for a given V, the greater the resistance, the smaller the current.
The resistance of a conductor depends on the manner in which the potential

difference is applied to it. Figure 26-8, for example, shows a given potential dif-
ference applied in two different ways to the same conductor. As the current
density streamlines suggest, the currents in the two cases—hence the measured
resistances—will be different. Unless otherwise stated, we shall assume that any
given potential difference is applied as in Fig. 26-8b.

i �
V
R

,

� 1 V/A.

 1 ohm � 1 � � 1 volt per ampere

R �
V
i
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● The resistance R of a conductor is defined as

where V is the potential difference across the conductor and
i is the current.

● The resistivity r and conductivity s of a material are related by

where E is the magnitude of the applied electric field and J is
the magnitude of the current density.

● The electric field and current density are related to the
resistivity by

E
:

� rJ
:

.

r �
1
s

�
E
J

,

R �
V
i

,

● The resistance R of a conducting wire of length L and
uniform cross section is

where A is the cross-sectional area.

● The resistivity r for most materials changes with tempera-
ture. For many materials, including metals, the relation
between r and temperature T is approximated by the
equation

r � r0 � r0a(T � T0).

Here T0 is a reference temperature, r0 is the resistivity at
T0, and a is the temperature coefficient of resistivity for the
material.

R � r
L
A

,

Key Ideas

Figure 26-7 An assortment of resistors.The
circular bands are color-coding marks
that identify the value of the resistance.
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Figure 26-8 Two ways of applying a potential difference to a conducting rod.The gray
connectors are assumed to have negligible resistance.When they are arranged as in
(a) in a small region at each rod end, the measured resistance is larger than when they
are arranged as in (b) to cover the entire rod end.

(a) (b)



As we have done several times in other connections, we often wish to take a
general view and deal not with particular objects but with materials. Here we do
so by focusing not on the potential difference V across a particular resistor but on
the electric field at a point in a resistive material. Instead of dealing with the
current i through the resistor, we deal with the current density at the point in
question. Instead of the resistance R of an object, we deal with the resistivity r of
the material:

(definition of r). (26-10)

(Compare this equation with Eq. 26-8.)
If we combine the SI units of E and J according to Eq. 26-10, we get, for the

unit of r, the ohm-meter (��m):

(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which
is an instrument that measures resistance.) Table 26-1 lists the resistivities of
some materials.

We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (��m)�1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form

(26-13)

Calculating Resistance from Resistivity
We have just made an important distinction:

J
:

� sE
:

.

s �
1
r

E
:

� rJ
:

.

unit (E)
unit (J)

�
V/m
A/m2 �

V
A

 m � ��m.

r �
E
J

J
:

E
:

754 CHAPTER 26 CURRENT AND RESISTANCE

Table 26-1 Resistivities of Some Materials 
at Room Temperature (20�C)

Temperature  
Coefficient

Resistivity, r of Resistivity,
Material (��m) a (K�1)

Typical Metals

Silver 1.62 � 10�8 4.1 � 10�3

Copper 1.69 � 10�8 4.3 � 10�3

Gold 2.35 � 10�8 4.0 � 10�3

Aluminum 2.75 � 10�8 4.4 � 10�3

Manganina 4.82 � 10�8 0.002 � 10�3

Tungsten 5.25 � 10�8 4.5 � 10�3

Iron 9.68 � 10�8 6.5 � 10�3

Platinum 10.6 � 10�8 3.9 � 10�3

Typical Semiconductors
Silicon,
pure 2.5 � 103 �70 � 10�3

Silicon,
n-typeb 8.7 � 10�4

Silicon,
p-typec 2.8 � 10�3

Typical Insulators
Glass 1010�1014

Fused
quartz �1016

aAn alloy specifically designed to have a small
value of a.
bPure silicon doped with phosphorus impurities
to a charge carrier density of 1023 m�3.
cPure silicon doped with aluminum impurities to
a charge carrier density of 1023 m�3.

Figure 26-9 A potential difference V is applied
between the ends of a wire of length L and
cross section A, establishing a current i.

L

i i

A
V

Current is driven by
a potential difference.

Resistance is a property of an object. Resistivity is a property of a material.

If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are
uniform throughout the wire, the electric field and the current density will
be constant for all points within the wire and, from Eqs. 24-42 and 26-5, will have
the values

E � V/L and J � i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)r �
E
J

�
V/L
i/A

.
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However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.

R � r
L
A

.

Checkpoint 3
The figure here shows three cylindrical copper conductors along with their face areas
and lengths. Rank them according to the current through them, greatest first, when
the same potential difference V is placed across their lengths.

(a) (b)

A

L

(c)

1.5L
A_
2

A_
2

L/2

Variation with Temperature
The values of most physical properties vary with temperature, and resistivity is no
exception. Figure 26-10, for example, shows the variation of this property for
copper over a wide temperature range. The relation between temperature and
resistivity for copper—and for metals in general—is fairly linear over a rather
broad temperature range. For such linear relations we can write an empirical
approximation that is good enough for most engineering purposes:

r � r0 � r0a(T �T0). (26-17)

Here T0 is a selected reference temperature and r0 is the resistivity at that temper-
ature. Usually T0 � 293 K (room temperature), for which r0 � 1.69 � 10�8 ��m
for copper.

Because temperature enters Eq. 26-17 only as a difference, it does not matter
whether you use the Celsius or Kelvin scale in that equation because the sizes of
degrees on these scales are identical. The quantity a in Eq. 26-17, called the
temperature coefficient of resistivity, is chosen so that the equation gives good
agreement with experiment for temperatures in the chosen range. Some values of
a for metals are listed in Table 26-1.

Figure 26-10 The resistivity of copper as a function of temperature.The dot on the curve
marks a convenient reference point at temperature T0 � 293 K and resistivity r0 � 1.69 �
10�8 ��m.
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Ohm’s Law
As we just discussed, a resistor is a conductor with a specified resistance. It has
that same resistance no matter what the magnitude and direction (polarity) of
the applied potential difference are. Other conducting devices, however, might
have resistances that change with the applied potential difference.

756 CHAPTER 26 CURRENT AND RESISTANCE

Calculations: For arrangement 1, we have L 15 cm
0.15 m and

A � (1.2 cm)2 � 1.44 � 10�4 m2.

Substituting into Eq. 26-16 with the resistivity r from
Table 26-1, we then find that for arrangement 1,

(Answer)

Similarly, for arrangement 2, with distance L � 1.2 cm
and area A � (1.2 cm)(15 cm), we obtain

(Answer)� 6.5 � 10 �7 � � 0.65 m�.

R �
rL
A

�
(9.68 � 10 �8 ��m)(1.2 � 10 �2 m)

1.80 � 10 �3 m2

� 1.0 � 10 �4 � � 100 m�.

R �
rL
A

�
(9.68 � 10 �8 ��m)(0.15 m)

1.44 � 10 �4 m2

��

Sample Problem 26.04 A material has resistivity, a block of the material has resistance

A rectangular block of iron has dimensions 1.2 cm
1.2 cm � 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that
those sides are equipotential surfaces (as in Fig. 26-8b).
What is the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions 1.2 cm �
1.2 cm) and (2) two rectangular sides (with dimensions
1.2 cm � 15 cm)?

KEY IDEA

The resistance R of an object depends on how the electric
potential is applied to the object. In particular, it depends
on the ratio L/A, according to Eq. 26-16 (R � rL/A),
where A is the area of the surfaces to which the potential
difference is applied and L is the distance between those
surfaces.

�

Additional examples, video, and practice available at WileyPLUS

26-4 OHM’S LAW

After reading this module, you should be able to . . .

26.22 Distinguish between an object that obeys Ohm’s law
and one that does not.

26.23 Distinguish between a material that obeys Ohm’s law
and one that does not.

26.24 Describe the general motion of a conduction electron
in a current.

26.25 For the conduction electrons in a conductor, explain
the relationship between the mean free time t, the effective
speed, and the thermal (random) motion.

26.26 Apply the relationship between resistivity r, number
density n of conduction electrons, and the mean free time
t of the electrons.

Learning Objectives

● A given device (conductor, resistor, or any other 
electrical device) obeys Ohm’s law if its resistance 
R (� V/i) is independent of the applied potential 
difference V.

● A given material obeys Ohm’s law if its resistivity r (� E/J)
is independent of the magnitude and direction of the applied
electric field .

● The assumption that the conduction electrons in a metal
are free to move like the molecules in a gas leads to an

E
:

expression for the resistivity of a metal:

Here n is the number of free electrons per unit volume and t
is the mean time between the collisions of an electron with
the atoms of the metal.

● Metals obey Ohm’s law because the mean free time t is
approximately independent of the magnitude E of any electric
field applied to a metal.

r �
m

e2nt
.

Key Ideas



Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line) is
the same for all values of V. This means that the resistance R � V/i of the device is
independent of the magnitude and polarity of the applied potential difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
Ohm’s law and the other does not.
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Figure 26-11 (a) A potential difference V is
applied to the terminals of a device, estab-
lishing a current i. (b) A plot of current i
versus applied potential difference V when
the device is a 1000 � resistor. (c) A plot
when the device is a semiconducting pn
junction diode.

(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 �
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is
independent of the magnitude and polarity of the applied potential difference.

It is often contended that V � iR is a statement of Ohm’s law.That is not true!
This equation is the defining equation for resistance, and it applies to all conducting
devices, whether they obey Ohm’s law or not. If we measure the potential differ-
ence V across, and the current i through, any device, even a pn junction diode, we
can find its resistance at that value of V as R V/i.The essence of Ohm’s law, how-
ever, is that a plot of i versus V is linear; that is, R is independent of V.We can gener-
alize this for conducting materials by using Eq. 26-11 (E

:
� r J

:
):

�

Checkpoint 4
The following table gives the current i (in
amperes) through two devices for several
values of potential difference V (in volts).
From these data, determine which device
does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, how-
ever, there are departures from Ohm’s law in all cases.



A Microscopic View of Ohm’s Law
To find out why particular materials obey Ohm’s law, we must look into the
details of the conduction process at the atomic level. Here we consider only con-
duction in metals, such as copper. We base our analysis on the free-electron
model, in which we assume that the conduction electrons in the metal are free to
move throughout the volume of a sample, like the molecules of a gas in a closed
container. We also assume that the electrons collide not with one another but
only with atoms of the metal.

According to classical physics, the electrons should have a Maxwellian speed dis-
tribution somewhat like that of the molecules in a gas (Module 19-6),and thus the av-
erage electron speed should depend on the temperature. The motions of electrons
are, however, governed not by the laws of classical physics but by those of quantum
physics. As it turns out, an assumption that is much closer to the quantum reality is
that conduction electrons in a metal move with a single effective speed veff, and this
speed is essentially independent of the temperature. For copper, veff � 1.6 � 106 m/s.

When we apply an electric field to a metal sample, the electrons modify their
random motions slightly and drift very slowly—in a direction opposite that of
the field—with an average drift speed vd. The drift speed in a typical metallic
conductor is about 5 � 10�7 m/s, less than the effective speed (1.6 � 106 m/s) by
many orders of magnitude. Figure 26-12 suggests the relation between these two
speeds.The gray lines show a possible random path for an electron in the absence
of an applied field; the electron proceeds from A to B, making six collisions along
the way. The green lines show how the same events might occur when an electric
field is applied.We see that the electron drifts steadily to the right, ending at B�
rather than at B. Figure 26-12 was drawn with the assumption that vd � 0.02veff.
However, because the actual value is more like vd � (10�13)veff, the drift dis-
played in the figure is greatly exaggerated.

The motion of conduction electrons in an electric field is thus a combina-
tion of the motion due to random collisions and that due to When we consider
all the free electrons, their random motions average to zero and make no con-
tribution to the drift speed. Thus, the drift speed is due only to the effect of the
electric field on the electrons.

If an electron of mass m is placed in an electric field of magnitude E, the elec-
tron will experience an acceleration given by Newton’s second law:

(26-18)

After a typical collision, each electron will—so to speak—completely lose its
memory of its previous drift velocity, starting fresh and moving off in a random di-
rection. In the average time t between collisions, the average electron will acquire a
drift speed of vd � at. Moreover, if we measure the drift speeds of all the electrons at
any instant, we will find that their average drift speed is also at.Thus, at any instant,
on average, the electrons will have drift speed vd � at.Then Eq. 26-18 gives us

(26-19)vd � at �
eEt

m
.

a �
F
m

�
eE
m

.

E
:

.
E
:

E
:
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Figure 26-12 The gray lines show an electron moving
from A to B, making six collisions en route.The green
lines show what the electron’s path might be in the
presence of an applied electric field Note the steady
drift in the direction of (Actually, the green lines
should be slightly curved, to represent the parabolic
paths followed by the electrons between collisions, un-
der the influence of an electric field.)
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E
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Combining this result with Eq. 26-7 in magnitude form, yields

(26-20)

which we can write as

(26-21)

Comparing this with Eq. 26-11 in magnitude form, leads to

(26-22)

Equation 26-22 may be taken as a statement that metals obey Ohm’s law if we
can show that, for metals, their resistivity r is a constant, independent of the
strength of the applied electric field Let’s consider the quantities in Eq. 26-22.
We can reasonably assume that n, the number of conduction electrons per vol-
ume, is independent of the field, and m and e are constants. Thus, we only need to
convince ourselves that t, the average time (or mean free time) between colli-
sions, is a constant, independent of the strength of the applied electric field.
Indeed, t can be considered to be a constant because the drift speed vd caused by
the field is so much smaller than the effective speed veff that the electron speed—
and thus t— is hardly affected by the field. Thus, because the right side of 
Eq. 26-22 is independent of the field magnitude, metals obey Ohm’s law.

E
:

.

r �
m

e2nt
.

(E
:

� r J
:

),

E � � m
e2nt � J.

vd �
J

ne
�

eEt

m
,

( J
:

� nev:d),
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Using these results and substituting for the electron mass m,
we then have

(Answer)

(b) The mean free path l of the conduction electrons in a
conductor is the average distance traveled by an electron
between collisions. (This definition parallels that in
Module 19-5 for the mean free path of molecules in a gas.)
What is l for the conduction electrons in copper, assuming
that their effective speed veff is 1.6 � 10 6 m/s?

KEY IDEA

The distance d any particle travels in a certain time t at a
constant speed v is d � vt.

Calculation: For the electrons in copper, this gives us

(26-24)

(Answer)

This is about 150 times the distance between nearest-
neighbor atoms in a copper lattice. Thus, on the average,
each conduction electron passes many copper atoms before
finally hitting one.

� 4.0 � 10 �8 m � 40 nm.

� (1.6 � 10 6 m/s)(2.5 � 10 �14 s)

l � vefft

t �
9.1 � 10 �31 kg

3.67 � 10 �17 kg/s
� 2.5 � 10 �14 s.

Sample Problem 26.05 Mean free time and mean free distance

(a) What is the mean free time t between collisions for the
conduction electrons in copper?

KEY IDEAS

The mean free time t of copper is approximately constant,
and in particular does not depend on any electric field that
might be applied to a sample of the copper. Thus, we need
not consider any particular value of applied electric field.
However, because the resistivity r displayed by copper
under an electric field depends on t, we can find the mean
free time t from Eq. 26-22 (r � m/e2nt).

Calculations: That equation gives us

(26-23)

The number of conduction electrons per unit volume in cop-
per is 8.49 � 1028 m�3.We take the value of r from Table 26-1.
The denominator then becomes

where we converted units as

C2 ��

m2 �
C2 �V
m2 �A

�
C2 �J/C
m2 �C/s

�
kg �m2/s2

m2/s
�

kg
s

.

� 3.67 � 10 �17 C2 ��/m2 � 3.67 � 10 �17 kg/s,

(8.49 � 10 28 m�3)(1.6 � 10 �19 C)2(1.69 � 10 �8 ��m)

t �
m

ne2r
.

Additional examples, video, and practice available at WileyPLUS
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26-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS

After reading this module, you should be able to . . .

26.27 Explain how conduction electrons in a circuit lose
energy in a resistive device.

26.28 Identify that power is the rate at which energy is
transferred from one type to another.

26.29 For a resistive device, apply the relationships 
between power P, current i, voltage V, and 
resistance R.

26.30 For a battery, apply the relationship between power P,
current i, and potential difference V.

26.31 Apply the conservation of energy to a circuit with a
battery and a resistive device to relate the energy transfers
in the circuit.

26.32 Distinguish conductors, semiconductors, and
superconductors.

Learning Objectives

● The power P, or rate of energy transfer, in an electrical
device across which a potential difference V is maintained is

P � iV.

● If the device is a resistor, the power can also be written as

● In a resistor, electric potential energy is converted to internal

P � i2R �
V2

R
.

thermal energy via collisions between charge carriers and atoms.

● Semiconductors are materials that have few conduction
electrons but can become conductors when they are doped
with other atoms that contribute charge carriers.

● Superconductors are materials that lose all electrical resis-
tance. Most such materials require very low temperatures,
but some become superconducting at temperatures as high
as room temperature.

Key Ideas

Power in Electric Circuits
Figure 26-13 shows a circuit consisting of a battery B that is connected by
wires, which we assume have negligible resistance, to an unspecified conducting
device. The device might be a resistor, a storage battery (a rechargeable battery),
a motor, or some other electrical device. The battery maintains a potential
difference of magnitude V across its own terminals and thus (because of the
wires) across the terminals of the unspecified device, with a greater potential at
terminal a of the device than at terminal b.

Because there is an external conducting path between the two terminals of the
battery, and because the potential differences set up by the battery are maintained,
a steady current i is produced in the circuit, directed from terminal a to terminal b.
The amount of charge dq that moves between those terminals in time interval dt is
equal to i dt.This charge dq moves through a decrease in potential of magnitude V,
and thus its electric potential energy decreases in magnitude by the amount

dU � dq V � i dt V. (26-25)

The principle of conservation of energy tells us that the decrease in electric
potential energy from a to b is accompanied by a transfer of energy to some other
form. The power P associated with that transfer is the rate of transfer dU/dt,
which is given by Eq. 26-25 as

P � iV (rate of electrical energy transfer). (26-26)

Moreover, this power P is also the rate at which energy is transferred from the
battery to the unspecified device. If that device is a motor connected to a me-
chanical load, the energy is transferred as work done on the load. If the device is a
storage battery that is being charged, the energy is transferred to stored chemical
energy in the storage battery. If the device is a resistor, the energy is transferred
to internal thermal energy, tending to increase the resistor’s temperature.

Figure 26-13 A battery B sets up a current i
in a circuit containing an unspecified
conducting device.

+
–

i

B

i

?

a

b

i

i

i

i

The battery at the left
supplies energy to the
conduction electrons
that form the current.



The unit of power that follows from Eq. 26-26 is the volt-ampere (V �A).
We can write it as

As an electron moves through a resistor at constant drift speed, its average
kinetic energy remains constant and its lost electric potential energy appears as
thermal energy in the resistor and the surroundings. On a microscopic scale this
energy transfer is due to collisions between the electron and the molecules of the
resistor, which leads to an increase in the temperature of the resistor lattice.
The mechanical energy thus transferred to thermal energy is dissipated (lost)
because the transfer cannot be reversed.

For a resistor or some other device with resistance R, we can combine
Eqs. 26-8 (R � V/i) and 26-26 to obtain, for the rate of electrical energy dissipa-
tion due to a resistance, either

P � i2R (resistive dissipation) (26-27)

or (resistive dissipation). (26-28)

Caution: We must be careful to distinguish these two equations from Eq. 26-26:
P � iV applies to electrical energy transfers of all kinds; P � i2R and P � V 2/R
apply only to the transfer of electric potential energy to thermal energy in a
device with resistance.

P �
V 2

R

1 V �A � �1
J
C � �1

C
s � � 1

J
s

� 1 W.
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Checkpoint 5
A potential difference V is connected across a device with resistance R, causing cur-
rent i through the device. Rank the following variations according to the change in the
rate at which electrical energy is converted to thermal energy due to the resistance,
greatest change first: (a) V is doubled with R unchanged, (b) i is doubled with R
unchanged, (c) R is doubled with V unchanged, (d) R is doubled with i unchanged.

(Answer)

In situation 2, the resistance of each half of the wire is
(72 �)/2, or 36 �.Thus, the dissipation rate for each half is

and that for the two halves is

P � 2P� � 800 W. (Answer)

This is four times the dissipation rate of the full length of
wire. Thus, you might conclude that you could buy a heating
coil, cut it in half, and reconnect it to obtain four times the
heat output.Why is this unwise? (What would happen to the
amount of current in the coil?)

P� �
(120 V)2

36 �
� 400 W,

P �
V 2

R
�

(120 V)2

72 �
� 200 W.

Sample Problem 26.06 Rate of energy dissipation in a wire carrying current

You are given a length of uniform heating wire made of a
nickel–chromium–iron alloy called Nichrome; it has a re-
sistance R of 72 �. At what rate is energy dissipated in each
of the following situations? (1) A potential difference of 
120 V is applied across the full length of the wire. (2) The
wire is cut in half, and a potential difference of 120 V is
applied across the length of each half.

KEY IDEA

Current in a resistive material produces a transfer of
mechanical energy to thermal energy; the rate of transfer
(dissipation) is given by Eqs. 26-26 to 26-28.

Calculations: Because we know the potential V and resis-
tance R, we use Eq. 26-28, which yields, for situation 1,

Additional examples, video, and practice available at WileyPLUS



Semiconductors
Semiconducting devices are at the heart of the microelectronic revolution that
ushered in the information age. Table 26-2 compares the properties of silicon—
a typical semiconductor—and copper—a typical metallic conductor. We see that
silicon has many fewer charge carriers, a much higher resistivity, and a temperature
coefficient of resistivity that is both large and negative.Thus, although the resistivity
of copper increases with increasing temperature, that of pure silicon decreases.

Pure silicon has such a high resistivity that it is effectively an insulator and
thus not of much direct use in microelectronic circuits. However, its resistivity can
be greatly reduced in a controlled way by adding minute amounts of specific
“impurity” atoms in a process called doping. Table 26-1 gives typical values of
resistivity for silicon before and after doping with two different impurities.

We can roughly explain the differences in resistivity (and thus in conductivity)
between semiconductors, insulators, and metallic conductors in terms of the ener-
gies of their electrons. (We need quantum physics to explain in more detail.) In a
metallic conductor such as copper wire, most of the electrons are firmly locked in
place within the atoms; much energy would be required to free them so they
could move and participate in an electric current. However, there are also some
electrons that, roughly speaking, are only loosely held in place and that require
only little energy to become free. Thermal energy can supply that energy, as can
an electric field applied across the conductor. The field would not only free these
loosely held electrons but would also propel them along the wire; thus, the field
would drive a current through the conductor.

In an insulator, significantly greater energy is required to free electrons so
they can move through the material. Thermal energy cannot supply enough en-
ergy, and neither can any reasonable electric field applied to the insulator. Thus,
no electrons are available to move through the insulator, and hence no current
occurs even with an applied electric field.

A semiconductor is like an insulator except that the energy required to free
some electrons is not quite so great. More important, doping can supply electrons
or positive charge carriers that are very loosely held within the material and thus
are easy to get moving. Moreover, by controlling the doping of a semiconductor,
we can control the density of charge carriers that can participate in a current and
thereby can control some of its electrical properties. Most semiconducting
devices, such as transistors and junction diodes, are fabricated by the selective
doping of different regions of the silicon with impurity atoms of different kinds.

Let us now look again at Eq. 26-22 for the resistivity of a conductor:

(26-29)

where n is the number of charge carriers per unit volume and t is the mean time
between collisions of the charge carriers. The equation also applies to semicon-
ductors. Let’s consider how n and t change as the temperature is increased.

In a conductor, n is large but very nearly constant with any change in temper-
ature. The increase of resistivity with temperature for metals (Fig. 26-10) is due
to an increase in the collision rate of the charge carriers, which shows up in
Eq. 26-29 as a decrease in t, the mean time between collisions.

r �
m

e2nt
,
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Table 26-2 Some Electrical Properties of Copper and Silicon

Property Copper Silicon

Type of material Metal Semiconductor
Charge carrier density, m�3 8.49 � 1028 1 � 1016

Resistivity, ��m 1.69 � 10�8 2.5 � 103

Temperature coefficient of resistivity, K�1 �4.3 � 10�3 �70 � 10�3



Courtesy Shoji Tonaka/International 
Superconductivity Technology Center, 
Tokyo, Japan

In a semiconductor, n is small but increases very rapidly with temperature as
the increased thermal agitation makes more charge carriers available.This causes
a decrease of resistivity with increasing temperature, as indicated by the negative
temperature coefficient of resistivity for silicon in Table 26-2. The same increase
in collision rate that we noted for metals also occurs for semiconductors, but its
effect is swamped by the rapid increase in the number of charge carriers.

Superconductors
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mer-
cury absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phe-
nomenon of superconductivity is of vast potential importance in technology be-
cause it means that charge can flow through a superconducting conductor without
losing its energy to thermal energy. Currents created in a superconducting ring, for
example, have persisted for several years without loss; the electrons making up the
current require a force and a source of energy at start-up time but not thereafter.

Prior to 1986, the technological development of superconductivity was throt-
tled by the cost of producing the extremely low temperatures required to achieve
the effect. In 1986, however, new ceramic materials were discovered that become
superconducting at considerably higher (and thus cheaper to produce) tempera-
tures. Practical application of superconducting devices at room temperature may
eventually become commonplace.

Superconductivity is a phenomenon much different from conductivity. In
fact, the best of the normal conductors, such as silver and copper, cannot become
superconducting at any temperature, and the new ceramic superconductors are
actually good insulators when they are not at low enough temperatures to be in
a superconducting state.

One explanation for superconductivity is that the electrons that make up the
current move in coordinated pairs. One of the electrons in a pair may electrically dis-
tort the molecular structure of the superconducting material as it moves through, cre-
ating nearby a short-lived concentration of positive charge.The other electron in the
pair may then be attracted toward this positive charge.According to the theory, such
coordination between electrons would prevent them from colliding with the mole-
cules of the material and thus would eliminate electrical resistance. The theory
worked well to explain the pre-1986, lower temperature superconductors, but new
theories appear to be needed for the newer,higher temperature superconductors.
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Figure 26-14 The resistance of mercury drops
to zero at a temperature of about 4 K.

A disk-shaped magnet is levitated above a
superconducting material that has been
cooled by liquid nitrogen.The goldfish is
along for the ride.

Current An electric current i in a conductor is defined by

(26-1)

Here dq is the amount of (positive) charge that passes in time dt
through a hypothetical surface that cuts across the conductor. By
convention, the direction of electric current is taken as the direc-
tion in which positive charge carriers would move. The SI unit of
electric current is the ampere (A): 1 A � 1 C/s.

Current Density Current (a scalar) is related to current
density (a vector) by

(26-4)

where is a vector perpendicular to a surface element of area dA
and the integral is taken over any surface cutting across the conduc-
tor. has the same direction as the velocity of the moving charges if
they are positive and the opposite direction if they are negative.

J
:

dA
:

i � � J
:

� dA
:

,

J
:

i �
dq
dt

.

Review & Summary

Drift Speed of the Charge Carriers When an electric field
is established in a conductor, the charge carriers (assumed posi-

tive) acquire a drift speed vd in the direction of the velocity is
related to the current density by

(26-7)

where ne is the carrier charge density.

Resistance of a Conductor The resistance R of a conductor
is defined as

(definition of R), (26-8)

where V is the potential difference across the conductor and i is the
current.The SI unit of resistance is the ohm (�): 1 � � 1 V/A. Similar
equations define the resistivity r and conductivity s of a material:

(definitions of r and s), (26-12, 26-10)r �
1
s

�
E
J

R �
V
i

J
:

� (ne)v:d,

v:dE
:

;
E
:



3 Figure 26-17 shows a rectangular
solid conductor of edge lengths L, 2L,
and 3L. A potential difference V is to
be applied uniformly between pairs of
opposite faces of the conductor as in
Fig. 26-8b. (The potential difference is
applied between the entire face on
one side and the entire face on the
other side.) First V is applied between the left–right faces, then be-
tween the top–bottom faces, and then between the front–back faces.
Rank those pairs, greatest first, according to the following (within the
conductor): (a) the magnitude of the electric field, (b) the current den-
sity, (c) the current,and (d) the drift speed of the electrons.

4 Figure 26-18 shows plots of the current i through a certain cross
section of a wire over four different time periods. Rank the periods
according to the net charge that passes through the cross section
during the period, greatest first.
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1 Figure 26-15 shows cross sections through three long conduc-
tors of the same length and material, with square cross sections of
edge lengths as shown. Conductor B fits snugly within conductor
A, and conductor C fits snugly within conductor B. Rank the fol-
lowing according to their end-to-end resistances, greatest first: the
individual conductors and the combinations of A � B (B inside A),
B � C (C inside B), and A � B � C (B inside A inside C).

Questions

Figure 26-15 Question 1.

A

C
B

√3 l
√2 l

l

4

4

(a)
2

5

(b)
3

6

(c)

Figure 26-16 Question 2.

L

2L

3L

Figure 26-17 Question 3.

i

t

dc
b

a

0

Figure 26-18 Question 4.

2 Figure 26-16 shows cross sections through three wires of identi-
cal length and material; the sides are given in millimeters. Rank the
wires according to their resistance (measured end to end along
each wire’s length), greatest first.

where E is the magnitude of the applied electric field. The SI unit
of resistivity is the ohm-meter (��m). Equation 26-10 corresponds
to the vector equation

(26-11)

The resistance R of a conducting wire of length L and uniform
cross section is

(26-16)

where A is the cross-sectional area.

Change of r with Temperature The resistivity r for most
materials changes with temperature. For many materials, including
metals, the relation between r and temperature T is approximated
by the equation

r � r0 � r0a(T � T0). (26-17)

Here T0 is a reference temperature, r0 is the resistivity at T0, and a
is the temperature coefficient of resistivity for the material.

Ohm’s Law A given device (conductor, resistor, or any other
electrical device) obeys Ohm’s law if its resistance R, defined by
Eq. 26-8 as V/i, is independent of the applied potential difference
V. A given material obeys Ohm’s law if its resistivity, defined by
Eq. 26-10, is independent of the magnitude and direction of the ap-
plied electric field 

Resistivity of a Metal By assuming that the conduction elec-
trons in a metal are free to move like the molecules of a gas, it is

E
:

.

R � r
L
A

,

E
:

� r J
:

.

possible to derive an expression for the resistivity of a metal:

(26-22)

Here n is the number of free electrons per unit volume and t is the
mean time between the collisions of an electron with the atoms of
the metal. We can explain why metals obey Ohm’s law by pointing
out that t is essentially independent of the magnitude E of any
electric field applied to a metal.

Power The power P, or rate of energy transfer, in an electrical
device across which a potential difference V is maintained is

P � iV (rate of electrical energy transfer). (26-26)

Resistive Dissipation If the device is a resistor, we can write
Eq. 26-26 as

(resistive dissipation). (26-27, 26-28)

In a resistor, electric potential energy is converted to internal ther-
mal energy via collisions between charge carriers and atoms.

Semiconductors Semiconductors are materials that have few
conduction electrons but can become conductors when they are
doped with other atoms that contribute charge carriers.

Superconductors Superconductors are materials that lose all
electrical resistance at low temperatures. Some materials are su-
perconducting at surprisingly high temperatures.

P � i2R �
V 2

R

r �
m

e2nt
.



Rod Length Diameter Potential Difference

1 L 3d V

2 2L d 2V

3 3L 2d 2V

9 Figure 26-22 gives the drift speed
vd of conduction electrons in a copper
wire versus position x along the wire.
The wire consists of three sections
that differ in radius. Rank the three
sections according to the following
quantities, greatest first: (a) radius,
(b) number of conduction electrons per cubic meter, (c) magnitude
of electric field, (d) conductivity.

10 Three wires, of the same diameter, are connected in turn be-
tween two points maintained at a constant potential difference.
Their resistivities and lengths are r and L (wire A), 1.2r and 1.2L
(wire B), and 0.9r and L (wire C). Rank the wires according to the
rate at which energy is transferred to thermal energy within them,
greatest first.

11 Figure 26-23 gives, for three
wires of radius R, the current den-
sity J(r) versus radius r, as meas-
ured from the center of a circular
cross section through the wire. The
wires are all made from the same
material. Rank the wires according
to the magnitude of the electric
field (a) at the center, (b) halfway to the surface, and (c) at the sur-
face, greatest first.
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+ + +
7 C/s 3 C/s 2 C/s 

4 C/s 

6 C/s 

5 C/s 1 C/s 

(a) (b) (c) (d)

Figure 26-19 Question 5.

vd

A B C 
x

Figure 26-22 Question 9.

a

b

c
J

r R

Figure 26-23 Question 11.

5 Figure 26-19 shows four situations in which positive and nega-
tive charges move horizontally and gives the rate at which each
charge moves. Rank the situations according to the effective cur-
rent through the regions, greatest first.

6 In Fig. 26-20, a wire that carries a
current consists of three sections
with different radii. Rank the sec-
tions according to the following
quantities, greatest first: (a) current,
(b) magnitude of current density,
and (c) magnitude of electric field.

7 Figure 26-21 gives the electric
potential V(x) versus position x
along a copper wire carrying cur-
rent. The wire consists of three sec-
tions that differ in radius. Rank the
three sections according to the mag-
nitude of the (a) electric field and
(b) current density, greatest first.

8 The following table gives the
lengths of three copper rods, their
diameters, and the potential differences between their ends. Rank
the rods according to (a) the magnitude of the electric field within
them, (b) the current density within them, and (c) the drift speed of
electrons through them, greatest first.

A B C 

2R0 1.5R0R0

Figure 26-20 Question 6.

V

x
CBA

Figure 26-21 Question 7.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 26-1 Electric Current
•1 During the 4.0 min a 5.0 A current is set up in a wire, how
many (a) coulombs and (b) electrons pass through any cross sec-
tion across the wire’s width?

••2 An isolated conducting sphere has a 10 cm radius. One wire
carries a current of 1.000 002 0 A into it. Another wire carries a
current of 1.000 000 0 A out of it. How long would it take for the
sphere to increase in potential by 1000 V?

••3 A charged belt, 50 cm wide, travels at 30 m/s between a source of
charge and a sphere.The belt carries charge into the sphere at a rate cor-
responding to 100 mA. Compute the surface charge density on the belt.

Module 26-2 Current Density
•4 The (United States) National Electric Code, which sets maxi-
mum safe currents for insulated copper wires of various diameters,
is given (in part) in the table. Plot the safe current density as a
function of diameter.Which wire gauge has the maximum safe cur-
rent density? (“Gauge” is a way of identifying wire diameters, and
1 mil � 10�3 in.)

Gauge 4 6 8 10 12 14 16 18
Diameter, mils 204 162 129 102 81 64 51 40
Safe current, A 70 50 35 25 20 15 6 3

•5 A beam contains 2.0 � 108 doubly charged posi-
tive ions per cubic centimeter, all of which are moving north with
a speed of 1.0 � 105 m/s.What are the (a) magnitude and (b) direc-
tion of the current density (c) What additional quantity do you
need to calculate the total current i in this ion beam?

•6 A certain cylindrical
wire carries current. We draw
a circle of radius r around its
central axis in Fig. 26-24a to
determine the current i
within the circle. Figure 26-
24b shows current i as a func-
tion of r2. The vertical scale is
set by is � 4.0 mA, and the

J
:

?

WWWSSM

Figure 26-24 Problem 6.

r

is

0
r 2 (mm2)

rs
2

i(
m

A
)

(a)

(b)



766 CHAPTER 26 CURRENT AND RESISTANCE

horizontal scale is set by � 4.0 mm2. (a) Is the current density uni-
form? (b) If so, what is its magnitude?

•7 A fuse in an electric circuit is a wire that is designed to melt,
and thereby open the circuit, if the current exceeds a predeter-
mined value. Suppose that the material to be used in a fuse melts
when the current density rises to 440 A/cm2. What diameter of
cylindrical wire should be used to make a fuse that will limit the
current to 0.50 A?

•8 A small but measurable current of 1.2 � 10�10 A exists in a
copper wire whose diameter is 2.5 mm.The number of charge carri-
ers per unit volume is 8.49 � 1028 m�3. Assuming the current is uni-
form, calculate the (a) current density and (b) electron drift speed.

••9 The magnitude J(r) of the current density in a certain cylin-
drical wire is given as a function of radial distance from the center
of the wire’s cross section as J(r) � Br, where r is in meters, J is in
amperes per square meter, and B � 2.00 � 105 A/m3.This function
applies out to the wire’s radius of 2.00 mm. How much current is
contained within the width of a thin ring concentric with the wire if
the ring has a radial width of 10.0 mm and is at a radial distance of
1.20 mm?

••10 The magnitude J of the current density in a certain lab
wire with a circular cross section of radius R � 2.00 mm is given by
J � (3.00 � 108)r 2, with J in amperes per square meter and radial
distance r in meters. What is the current through the outer section
bounded by r � 0.900R and r � R?

••11 What is the current in a wire of radius R � 3.40 mm if the
magnitude of the current density is given by (a) Ja � J0r/R and
(b) Jb � J0(1 � r/R), in which r is the radial distance and J0 �
5.50 � 104 A/m2? (c) Which function maximizes the current
density near the wire’s surface?

••12 Near Earth, the density of protons in the solar wind
(a stream of particles from the Sun) is 8.70 cm�3, and their speed
is 470 km/s. (a) Find the current density of these protons. (b) If
Earth’s magnetic field did not deflect the protons, what total cur-
rent would Earth receive?

••13 How long does it take electrons to get from a car
battery to the starting motor? Assume the current is 300 A and the
electrons travel through a copper wire with cross-sectional area
0.21 cm2 and length 0.85 m. The number of charge carriers per unit
volume is 8.49 � 1028 m�3.

Module 26-3 Resistance and Resistivity
•14 A human being can be electrocuted if a current as
small as 50 mA passes near the heart. An electrician working
with sweaty hands makes good contact with the two conductors
he is holding, one in each hand. If his resistance is 2000 �, what
might the fatal voltage be?

•15 A coil is formed by winding 250 turns of insulated
16-gauge copper wire (diameter 1.3 mm) in a single layer
on a cylindrical form of radius 12 cm. What is the resistance
of the coil? Neglect the thickness of the insulation. (Use Table  26-1.)

•16 Copper and aluminum are being considered for a
high-voltage transmission line that must carry a current of 60.0 A.
The resistance per unit length is to be 0.150 �/km. The densities of
copper and aluminum are 8960 and 2600 kg/m3, respectively.
Compute (a) the magnitude J of the current density and (b) the
mass per unit length l for a copper cable and (c) J and (d) l for an
aluminum cable.

�

SSM

ILW

r2
s •17 A wire of Nichrome (a nickel – chromium – iron alloy com-

monly used in heating elements) is 1.0 m long and 1.0 mm2 in
cross-sectional area. It carries a current of 4.0 A when a 2.0 V
potential difference is applied between its ends. Calculate the
conductivity s of Nichrome.

•18 A wire 4.00 m long and 6.00 mm in diameter has a resistance
of 15.0 m�.A potential difference of 23.0 V is applied between the
ends. (a) What is the current in the wire? (b) What is the magnitude
of the current density? (c) Calculate the resistivity of the wire ma-
terial. (d) Using Table 26-1, identify the material.

•19 What is the resistivity of a wire of 1.0 mm diameter, 2.0 m
length, and 50 m resistance?

•20 A certain wire has a resistance R. What is the resistance of a
second wire, made of the same material, that is half as long and has
half the diameter?

••21 A common flashlight bulb is rated at 0.30 A and 2.9 V
(the values of the current and voltage under operating conditions).
If the resistance of the tungsten bulb filament at room temperature
(20�C) is 1.1 �, what is the temperature of the filament when the
bulb is on?

••22 Kiting during a storm. The legend that Benjamin
Franklin flew a kite as a storm approached is only a legend—he
was neither stupid nor suicidal. Suppose a kite string of radius 
2.00 mm extends directly upward by 0.800 km and is coated with a
0.500 mm layer of water having resistivity 150 ��m. If the potential
difference between the two ends of the string is 160 MV, what is the
current through the water layer? The danger is not this current but
the chance that the string draws a lightning strike, which can have a
current as large as 500 000 A (way beyond just being lethal).

••23 When 115 V is applied across a wire that is 10 m long and
has a 0.30 mm radius, the magnitude of the current density is 1.4 �
108 A/m2. Find the resistivity of the wire.

••24 Figure 26-25a gives the magnitude E(x) of the electric
fields that have been set up by a battery along a resistive rod of
length 9.00 mm (Fig. 26-25b).The vertical scale is set by Es � 4.00 �
103 V/m. The rod consists of three sections of the same material but
with different radii. (The schematic diagram of Fig. 26-25b does not
indicate the different radii.) The radius of section 3 is 2.00 mm.
What is the radius of (a) section 1 and (b) section 2?

ILW

�

SSM
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Figure 26-25 Problem 24.

••25 A wire with a resistance of 6.0 � is drawn out
through a die so that its new length is three times its original
length. Find the resistance of the longer wire, assuming that the re-
sistivity and density of the material are unchanged.

••26 In Fig. 26-26a, a 9.00 V battery is connected to a resistive
strip that consists of three sections with the same cross-sectional
areas but different conductivities. Figure 26-26b gives the electric

ILWSSM
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electric field strength is 120 V/m and the field is directed verti-
cally down.This field causes singly charged positive ions, at a den-
sity of 620 cm�3, to drift downward and singly charged negative
ions, at a density of 550 cm�3, to drift upward (Fig. 26-28). The
measured conductivity of the air in that region is 2.70 � 10 �14

(��m)�1. Calculate (a) the magnitude of the current density and
(b) the ion drift speed, assumed to be the same for positive and
negative ions.

••33 A block in the shape of a rectangular solid has a cross-
sectional area of 3.50 cm2 across its width, a front-to-rear length
of 15.8 cm, and a resistance of 935 �. The block’s material con-
tains 5.33 � 10 22 conduction electrons/m3. A potential difference
of 35.8 V is maintained between its front and rear faces. (a) What
is the current in the block? (b) If the current density is uniform,
what is its magnitude? What are (c) the drift velocity of the con-
duction electrons and (d) the mag-
nitude of the electric field in the
block?

•••34 Figure 26-29 shows wire
section 1 of diameter D1 4.00R
and wire section 2 of diameter D2 �
2.00R, connected by a tapered sec-
tion. The wire is copper and carries a current. Assume that the cur-
rent is uniformly distributed across any cross-sectional area
through the wire’s width. The electric potential change V along the
length L � 2.00 m shown in section 2 is 10.0 mV. The number of
charge carriers per unit volume is 8.49 � 1028 m�3. What is the drift
speed of the conduction electrons in section 1?

•••35 In Fig. 26-30, current is set up through a truncated right
circular cone of resistivity 731 , left radius a 2.00 mm, right
radius b � 2.30 mm, and length L � 1.94 cm. Assume that the cur-
rent density is uniform across any cross section taken perpendicu-
lar to the length.What is the resistance of the cone?
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Figure 26-26 Problem 26.
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Figure 26-28 Problem 32.

•••36 Swimming during a
storm. Figure 26-31 shows a swim-
mer at distance D 35.0 m from a
lightning strike to the water, with
current I 78 kA. The water has
resistivity 30 ��m, the width of
the swimmer along a radial line from
the strike is 0.70 m, and his resist-
ance across that width is 4.00 k�.
Assume that the current spreads
through the water over a hemi-
sphere centered on the strike point.What is the current through the
swimmer?

Module 26-4 Ohm’s Law
••37 Show that, according to the free-electron model of electrical
conduction in metals and classical physics, the resistivity of metals
should be proportional to where T is the temperature in
kelvins. (See Eq. 19-31.)

1T,

�

�

potential V(x) versus position x along the strip. The horizontal
scale is set by xs 8.00 mm. Section 3 has conductivity 3.00 
107 (��m)�1.What is the conductivity of section (a) 1 and (b) 2?

��

••27 Two conductors are made of the same material
and have the same length. Conductor A is a solid wire of diameter
1.0 mm. Conductor B is a hollow tube of outside diameter 2.0 mm
and inside diameter 1.0 mm. What is the resistance ratio RA/RB,
measured between their ends?

••28 Figure 26-27 gives the
electric potential V(x) along a cop-
per wire carrying uniform current,
from a point of higher potential
Vs � 12.0 mV at x � 0 to a point of
zero potential at xs � 3.00 m. The
wire has a radius of 2.00 mm. What
is the current in the wire?

••29 A potential difference of
3.00 nV is set up across a 2.00 cm
length of copper wire that has a radius of 2.00 mm. How much
charge drifts through a cross section in 3.00 ms?

••30 If the gauge number of a wire is increased by 6, the diameter
is halved; if a gauge number is increased by 1, the diameter
decreases by the factor 21/6 (see the table in Problem 4). Knowing
this, and knowing that 1000 ft of 10-gauge copper wire has a resist-
ance of approximately 1.00 �, estimate the resistance of 25 ft of
22-gauge copper wire.

••31 An electrical cable consists of 125 strands of fine wire, each
having 2.65 m� resistance. The same potential difference is
applied between the ends of all the strands and results in a total
current of 0.750 A. (a) What is the current in each strand?
(b) What is the applied potential difference? (c) What is the
resistance of the cable?

••32 Earth’s lower atmosphere contains negative and positive
ions that are produced by radioactive elements in the soil
and cosmic rays from space. In a certain region, the atmospheric
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Module 26-5 Power, Semiconductors, Superconductors
•38 In Fig. 26-32a, a 20 � resistor is connected to a battery.
Figure 26-32b shows the increase of thermal energy Eth in the
resistor as a function of time t. The vertical scale is set by Eth,s �
2.50 mJ, and the horizontal scale is set by ts � 4.0 s. What is the
electric potential across the battery?

has a 2.60 � 10 �6 m2 cross section. Nichrome has a resistivity of
5.00 � 10 �7 ��m. (a) If the element dissipates 5000 W, what is its
length? (b) If 100 V is used to obtain the same dissipation rate,
what should the length be?

••48 Exploding shoes. The rain-soaked shoes of a person
may explode if ground current from nearby lightning vaporizes
the water. The sudden conversion of water to water vapor
causes a dramatic expansion that can rip apart shoes. Water has
density 1000 kg/m3 and requires 2256 kJ/kg to be vaporized. If
horizontal current lasts 2.00 ms and encounters water with resis-
tivity 150 ��m, length 12.0 cm, and vertical cross-sectional area
15 � 10�5 m2, what average current is required to vaporize the
water?

••49 A 100 W lightbulb is plugged into a standard 120 V outlet.
(a) How much does it cost per 31-day month to leave the light
turned on continuously? Assume electrical energy costs
US$0.06/kW �h. (b) What is the resistance of the bulb? (c) What
is the current in the bulb?

••50 The current through the battery and resistors 1 and 2 in
Fig. 26-34a is 2.00 A. Energy is transferred from the current to
thermal energy Eth in both resistors. Curves 1 and 2 in Fig. 26-34b
give that thermal energy Eth for resistors 1 and 2, respectively, as
a function of time t. The vertical scale is set by Eth,s 40.0 mJ,
and the horizontal scale is set by ts 5.00 s. What is the power of
the battery?

�
�

•39 A certain brand of hot-dog cooker works by applying a
potential difference of 120 V across opposite ends of a hot dog
and allowing it to cook by means of the thermal energy
produced. The current is 10.0 A, and the energy required to
cook one hot dog is 60.0 kJ. If the rate at which energy is
supplied is unchanged, how long will it take to cook three hot
dogs simultaneously?

•40 Thermal energy is produced in a resistor at a rate of 100 W
when the current is 3.00 A.What is the resistance?

•41 A 120 V potential difference is applied to a space heater
whose resistance is 14 when hot. (a) At what rate is electrical en-
ergy transferred to thermal energy? (b) What is the cost for 5.0 h at
US$0.05/kW �h?

•42 In Fig. 26-33, a battery of potential dif-
ference V � 12 V is connected to a resistive
strip of resistance R � 6.0 �. When an elec-
tron moves through the strip from one end
to the other, (a) in which direction in the fig-
ure does the electron move, (b) how much
work is done on the electron by the electric
field in the strip, and (c) how much energy is transferred to the
thermal energy of the strip by the electron?

•43 An unknown resistor is connected between the ter-
minals of a 3.00 V battery. Energy is dissipated in the resistor
at the rate of 0.540 W. The same resistor is then connected
between the terminals of a 1.50 V battery. At what rate is energy
now dissipated?

•44 A student kept his 9.0 V, 7.0 W radio turned on at full volume
from 9:00 P.M. until 2:00 A.M. How much charge went through it?

•45 A 1250 W radiant heater is constructed to operate
at 115 V. (a) What is the current in the heater when the unit is oper-
ating? (b) What is the resistance of the heating coil? (c) How much
thermal energy is produced in 1.0 h?

••46 A copper wire of cross-sectional area 2.00 � 10�6 m2 and
length 4.00 m has a current of 2.00 A uniformly distributed across
that area. (a) What is the magnitude of the electric field along the
wire? (b) How much electrical energy is transferred to thermal
energy in 30 min?

••47 A heating element is made by maintaining a potential
difference of 75.0 V across the length of a Nichrome wire that
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••51 Wire C and
wire D are made from different
materials and have length LC � LD

� 1.0 m. The resistivity and diame-
ter of wire C are 2.0 � 10 �6 ��m
and 1.00 mm, and those of wire D
are 1.0 � 10 �6 ��m and 0.50 mm.
The wires are joined as shown in Fig. 26-35, and a current of 2.0
A is set up in them. What is the electric potential difference be-
tween (a) points 1 and 2 and (b) points 2 and 3? What is the rate
at which energy is dissipated between (c) points 1 and 2 and
(d) points 2 and 3?

••52 The current-density magnitude in a certain circular wire is
J (2.75 1010 A/m4)r 2, where r is the radial distance out to the
wire’s radius of 3.00 mm. The potential applied to the wire (end to
end) is 60.0 V. How much energy is converted to thermal energy in
1.00 h?

••53 A 120 V potential difference is applied to a space heater that
dissipates 500 W during operation. (a) What is its resistance during
operation? (b) At what rate do electrons flow through any cross
section of the heater element?

��
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•••54 Figure 26-36a shows a rod
of resistive material. The resistance
per unit length of the rod increases
in the positive direction of the x axis.
At any position x along the rod, the
resistance dR of a narrow (differen-
tial) section of width dx is given by 
dR � 5.00x dx, where dR is in ohms
and x is in meters. Figure 26-36b
shows such a narrow section. You are to slice off a length of the rod
between x 0 and some position x L and then connect that length
to a battery with potential difference V 5.0 V (Fig. 26-36c). You
want the current in the length to transfer energy to thermal energy
at the rate of 200 W. At what position x � L should you cut the rod?

Additional Problems
55 A Nichrome heater dissipates 500 W when the applied
potential difference is 110 V and the wire temperature is 800 C.
What would be the dissipation rate if the wire temperature were
held at 200 C by immersing the wire in a bath of cooling oil? The
applied potential difference remains the same, and a for Nichrome
at 800 C is 4.0 � 10�4 K�1.

56 A potential difference of 1.20 V will be applied to a 33.0 m
length of 18-gauge copper wire (diameter � 0.0400 in.). Calculate
(a) the current, (b) the magnitude of the current density, (c) the
magnitude of the electric field within the wire, and (d) the rate at
which thermal energy will appear in the wire.

57 An 18.0 W device has 9.00 V across it. How much charge goes
through the device in 4.00 h?

58 An aluminum rod with a square cross section is 1.3 m long and
5.2 mm on edge. (a) What is the resistance between its ends?
(b) What must be the diameter of a cylindrical copper rod of length
1.3 m if its resistance is to be the same as that of the aluminum rod?

59 A cylindrical metal rod is 1.60 m long and 5.50 mm in
diameter. The resistance between its two ends (at 20°C) is 1.09 �
10�3 �. (a) What is the material? (b) A round disk, 2.00 cm in di-
ameter and 1.00 mm thick, is formed of the same material. What is
the resistance between the round faces, assuming that each face is
an equipotential surface?

60 The chocolate crumb mystery. This story begins with
Problem 60 in Chapter 23 and continues through Chapters 24 and
25.The chocolate crumb powder moved to the silo through a pipe of
radius R with uniform speed v and uniform charge density r.
(a) Find an expression for the current i (the rate at which charge on
the powder moved) through a perpendicular cross section of the
pipe. (b) Evaluate i for the conditions at the factory: pipe radius R �
5.0 cm, speed v � 2.0 m/s, and charge density r � 1.1 � 10�3 C/m3.

If the powder were to flow through a change V in electric
potential, its energy could be transferred to a spark at the rate 
P � iV. (c) Could there be such a transfer within the pipe due to the
radial potential difference discussed in Problem 70 of Chapter 24?

As the powder flowed from the pipe into the silo, the electric
potential of the powder changed.The magnitude of that change was
at least equal to the radial potential difference within the pipe (as
evaluated in Problem 70 of Chapter 24). (d) Assuming that value for
the potential difference and using the current found in (b) above,
find the rate at which energy could have been transferred from the
powder to a spark as the powder exited the pipe. (e) If a spark did
occur at the exit and lasted for 0.20 s (a reasonable expectation),
how much energy would have been transferred to the spark? Recall

8
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from Problem 60 in Chapter 23 that a minimum energy transfer of
150 mJ is needed to cause an explosion. (f) Where did the powder
explosion most likely occur: in the powder cloud at the unloading
bin (Problem 60 of Chapter 25), within the pipe, or at the exit of
the pipe into the silo?

61 A steady beam of alpha particles (q 2e) traveling
with constant kinetic energy 20 MeV carries a current of 0.25 mA.
(a) If the beam is directed perpendicular to a flat surface, how many
alpha particles strike the surface in 3.0 s? (b) At any instant, how
many alpha particles are there in a given 20 cm length of the beam?
(c) Through what potential difference is it necessary to accelerate
each alpha particle from rest to bring it to an energy of 20 MeV?

62 A resistor with a potential difference of 200 V across it trans-
fers electrical energy to thermal energy at the rate of 3000 W.What
is the resistance of the resistor?

63 A 2.0 kW heater element from a dryer has a length of 80 cm.
If a 10 cm section is removed, what power is used by the now short-
ened element at 120 V?

64 A cylindrical resistor of radius 5.0 mm and length 2.0 cm is
made of material that has a resistivity of 3.5 � 10�5 ��m.What are
(a) the magnitude of the current density and (b) the potential dif-
ference when the energy dissipation rate in the resistor is 1.0 W?

65 A potential difference V is applied to a wire of cross-sectional
area A, length L, and resistivity r. You want to change the applied
potential difference and stretch the wire so that the energy dissipa-
tion rate is multiplied by 30.0 and the current is multiplied by 4.00.
Assuming the wire’s density does not change, what are (a) the ratio
of the new length to L and (b) the ratio of the new cross-sectional
area to A?

66 The headlights of a moving car require about 10 A from the
12 V alternator, which is driven by the engine. Assume the alterna-
tor is 80% efficient (its output electrical power is 80% of its input
mechanical power), and calculate the horsepower the engine must
supply to run the lights.

67 A 500 W heating unit is designed to operate with an applied
potential difference of 115 V. (a) By what percentage will its heat
output drop if the applied potential difference drops to 110 V?
Assume no change in resistance. (b) If you took the variation of re-
sistance with temperature into account, would the actual drop in
heat output be larger or smaller than that calculated in (a)?

68 The copper windings of a motor have a resistance of 50 � at
20°C when the motor is idle. After the motor has run for several
hours, the resistance rises to 58 �. What is the temperature of the
windings now? Ignore changes in the dimensions of the windings.
(Use Table 26-1.)

69 How much electrical energy is transferred to thermal energy
in 2.00 h by an electrical resistance of 400 � when the potential
applied across it is 90.0 V?

70 A caterpillar of length 4.0 cm crawls in the direction of electron
drift along a 5.2-mm-diameter bare copper wire that carries a uni-
form current of 12 A. (a) What is the potential difference between
the two ends of the caterpillar? (b) Is its tail positive or negative rela-
tive to its head? (c) How much time does the caterpillar take to crawl
1.0 cm if it crawls at the drift speed of the electrons in the wire? (The
number of charge carriers per unit volume is 8.49 � 1028 m�3.)

71 (a) At what temperature would the resistance of a cop-
per conductor be double its resistance at 20.0 C? (Use 20.0 C as
the reference point in Eq. 26-17; compare your answer with
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Fig. 26-10.) (b) Does this same “doubling temperature” hold for all
copper conductors, regardless of shape or size?

72 A steel trolley-car rail has a cross-sectional area of 56.0 cm2.
What is the resistance of 10.0 km of rail? The resistivity of the steel
is 3.00 � 10�7 ��m.

73 A coil of current-carrying Nichrome wire is immersed in a liq-
uid. (Nichrome is a nickel–chromium–iron alloy commonly used
in heating elements.) When the potential difference across the coil
is 12 V and the current through the coil is 5.2 A, the liquid evapo-
rates at the steady rate of 21 mg/s. Calculate the heat of vaporiza-
tion of the liquid (see Module 18-4).

74 The current density in a wire is uniform and has magnitude
2.0 106 A/m2, the wire’s length is 5.0 m, and the density of con-
duction electrons is 8.49 � 1028 m�3. How long does an electron
take (on the average) to travel the length of the wire?

75 A certain x-ray tube operates at a current of 7.00 mA and a 
potential difference of 80.0 kV.What is its power in watts?

76 A current is established in a gas discharge tube when a suffi-
ciently high potential difference is applied across the two electrodes
in the tube. The gas ionizes; electrons move toward the positive ter-
minal and singly charged positive ions toward the negative termi-
nal. (a) What is the current in a hydrogen discharge tube in which
3.1 � 1018 electrons and 1.1 � 1018 protons move past a cross-
sectional area of the tube each second? (b) Is the direction of the
current density toward or away from the negative terminal?

77 In Fig. 26-37, a resistance coil, wired
to an external battery, is placed inside a
thermally insulated cylinder fitted with a
frictionless piston and containing an
ideal gas. A current i � 240 mA flows
through the coil, which has a resistance 
R � 550 �. At what speed v must the pis-
ton, of mass m � 12 kg, move upward in
order that the temperature of the gas
remains unchanged?

78 An insulating belt moves at speed
30 m/s and has a width of 50 cm. It carries
charge into an experimental device at a
rate corresponding to 100 mA. What is the surface charge density
on the belt?

J
:
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79 In a hypothetical fusion research lab, high temperature helium
gas is completely ionized and each helium atom is separated into
two free electrons and the remaining positively charged nucleus,
which is called an alpha particle. An applied electric field causes the
alpha particles to drift to the east at 25.0 m/s while the electrons drift
to the west at 88.0 m/s.The alpha particle density is 2.80 � 1015 cm�3.
What are (a) the net current density and (b) the current direction?

80 When a metal rod is heated, not only its resistance but also its
length and cross-sectional area change. The relation R � rL/A sug-
gests that all three factors should be taken into account in measur-
ing r at various temperatures. If the temperature changes by 1.0 C°,
what percentage changes in (a) L, (b) A, and (c) R occur for a cop-
per conductor? (d) What conclusion do you draw? The coefficient
of linear expansion is 1.70 � 10�5 K�1.

81 A beam of 16 MeV deuterons from a cyclotron strikes a cop-
per block. The beam is equivalent to current of 15 mA. (a) At what
rate do deuterons strike the block? (b) At what rate is thermal en-
ergy produced in the block?

82 A linear accelerator produces a pulsed beam of electrons.The
pulse current is 0.50 A, and the pulse duration is 0.10 ms. (a) How
many electrons are accelerated per pulse? (b) What is the average
current for a machine operating at 500 pulses/s? If the electrons
are accelerated to an energy of 50 MeV, what are the (c) average
power and (d) peak power of the accelerator?

83 An electric immersion heater normally takes 100 min to bring
cold water in a well-insulated container to a certain temperature,
after which a thermostat switches the heater off. One day the line
voltage is reduced by 6.00% because of a laboratory overload.
How long does heating the water now take? Assume that the re-
sistance of the heating element does not change.

84 A 400 W immersion heater is placed in a pot containing 2.00 L
of water at 20�C. (a) How long will the water take to rise to the
boiling temperature, assuming that 80% of the available energy is
absorbed by the water? (b) How much longer is required to evapo-
rate half of the water?

85 A 30 mF capacitor is connected across a programmed power
supply. During the interval from t � 0 to t � 3.00 s the output volt-
age of the supply is given by V(t) � 6.00 � 4.00t � 2.00t2 volts. At 
t � 0.500 s find (a) the charge on the capacitor, (b) the current into
the capacitor, and (c) the power output from the power supply.

Figure 26-37 Problem 77.
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Circuits

27-1 SINGLE-LOOP CIRCUITS

After reading this module, you should be able to . . .

27.01 Identify the action of an emf source in terms of the work
it does.

27.02 For an ideal battery, apply the relationship between
the emf, the current, and the power (rate of energy transfer).

27.03 Draw a schematic diagram for a single-loop circuit
containing a battery and three resistors.

27.04 Apply the loop rule to write a loop equation that relates
the potential differences of the circuit elements around a
(complete) loop.

27.05 Apply the resistance rule in crossing through a resistor.
27.06 Apply the emf rule in crossing through an emf.
27.07 Identify that resistors in series have the same cur-

rent, which is the same value that their equivalent
resistor has.

27.08 Calculate the equivalent of series resistors.
27.09 Identify that a potential applied to resistors wired in

series is equal to the sum of the potentials across the
individual resistors.

27.10 Calculate the potential difference between any two
points in a circuit.

27.11 Distinguish a real battery from an ideal battery and, in a
circuit diagram, replace a real battery with an ideal battery
and an explicitly shown resistance.

27.12 With a real battery in a circuit, calculate the potential dif-
ference between its terminals for current in the direction of
the emf and in the opposite direction.

27.13 Identify what is meant by grounding a circuit, and draw a
schematic diagram for such a connection.

27.14 Identify that grounding a circuit does not affect the
current in a circuit.

27.15 Calculate the dissipation rate of energy in a real battery.
27.16 Calculate the net rate of energy transfer in a real battery for

current in the direction of the emf and in the opposite direction.

● An emf device does work on charges to maintain a potential dif-
ference between its output terminals. If dW is the work the device
does to force positive charge dq from the negative to the positive
terminal, then the emf (work per unit charge) of the device is

(definition of �).

● An ideal emf device is one that lacks any internal resistance. 
The potential difference between its terminals is equal to the emf.

● A real emf device has internal resistance. The potential
difference between its terminals is equal to the emf only if there
is no current through the device.

● The change in potential in traversing a resistance R in the di-
rection of the current is �iR; in the opposite direction it is �iR
(resistance rule). 

● The change in potential in traversing an ideal emf device in
the direction of the emf arrow is ��; in the opposite direction it
is �� (emf rule). 

● Conservation of energy leads to the loop rule:
Loop Rule. The algebraic sum of the changes in potential encoun-

� �
dW
dq

tered in a complete traversal of any loop of a circuit must be zero.

Conservation of charge leads to the junction rule (Chapter 26):
Junction Rule. The sum of the currents entering any junction
must be equal to the sum of the currents leaving that junction.

● When a real battery of emf � and internal resistance r does
work on the charge carriers in a current i through the battery,
the rate P of energy transfer to the charge carriers is

P � iV,

where V is the potential across the terminals of the battery.

● The rate Pr at which energy is dissipated as thermal energy
in the battery is Pr � i2r.

● The rate Pemf at which the chemical energy in the battery
changes is Pemf � i�.

● When resistances are in series, they have the same current. The
equivalent resistance that can replace a series combination of re-
sistances is

(n resistances in series).Req � �
n

j�1
Rj

Learning Objectives

Key Ideas



What Is Physics?
You are surrounded by electric circuits. You might take pride in the number of
electrical devices you own and might even carry a mental list of the devices you
wish you owned. Every one of those devices, as well as the electrical grid that
powers your home, depends on modern electrical engineering. We cannot easily
estimate the current financial worth of electrical engineering and its products, but
we can be certain that the financial worth continues to grow yearly as more and
more tasks are handled electrically. Radios are now tuned electronically instead
of manually. Messages are now sent by email instead of through the postal
system. Research journals are now read on a computer instead of in a library
building, and research papers are now copied and filed electronically instead of
photocopied and tucked into a filing cabinet. Indeed, you may be reading an elec-
tronic version of this book.

The basic science of electrical engineering is physics. In this chapter we
cover the physics of electric circuits that are combinations of resistors and bat-
teries (and, in Module 27-4, capacitors). We restrict our discussion to circuits
through which charge flows in one direction, which are called either direct-
current circuits or DC circuits. We begin with the question: How can you get
charges to flow?

“Pumping” Charges
If you want to make charge carriers flow through a resistor, you must establish a
potential difference between the ends of the device. One way to do this is to con-
nect each end of the resistor to one plate of a charged capacitor.The trouble with
this scheme is that the flow of charge acts to discharge the capacitor, quickly
bringing the plates to the same potential. When that happens, there is no longer
an electric field in the resistor, and thus the flow of charge stops.

To produce a steady flow of charge, you need a “charge pump,” a device
that—by doing work on the charge carriers—maintains a potential difference
between a pair of terminals.We call such a device an emf device, and the device is
said to provide an emf �, which means that it does work on charge carriers.
An emf device is sometimes called a seat of emf. The term emf comes from the
outdated phrase electromotive force, which was adopted before scientists clearly
understood the function of an emf device.

In Chapter 26, we discussed the motion of charge carriers through a circuit in
terms of the electric field set up in the circuit—the field produces forces that
move the charge carriers. In this chapter we take a different approach:We discuss
the motion of the charge carriers in terms of the required energy—an emf device
supplies the energy for the motion via the work it does.

A common emf device is the battery, used to power a wide variety of
machines from wristwatches to submarines. The emf device that most influences
our daily lives, however, is the electric generator, which, by means of electrical
connections (wires) from a generating plant, creates a potential difference in our
homes and workplaces. The emf devices known as solar cells, long familiar as the
wing-like panels on spacecraft, also dot the countryside for domestic applications.
Less familiar emf devices are the fuel cells that powered the space shuttles and
the thermopiles that provide onboard electrical power for some spacecraft and
for remote stations in Antarctica and elsewhere. An emf device does not have to
be an instrument—living systems, ranging from electric eels and human beings to
plants, have physiological emf devices.

Although the devices we have listed differ widely in their modes of opera-
tion, they all perform the same basic function—they do work on charge carriers
and thus maintain a potential difference between their terminals.
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Courtesy Southern California Edison Company

The world’s largest battery energy storage
plant (dismantled in 1996) connected over
8000 large lead-acid batteries in 8 strings at
1000 V each with a capability of 10 MW of
power for 4 hours. Charged up at night, the
batteries were then put to use during peak
power demands on the electrical system.



Work, Energy, and Emf
Figure 27-1 shows an emf device (consider it to be a battery) that is part of a
simple circuit containing a single resistance R (the symbol for resistance and a
resistor is ). The emf device keeps one of its terminals (called the positive
terminal and often labeled �) at a higher electric potential than the other termi-
nal (called the negative terminal and labeled �).We can represent the emf of the
device with an arrow that points from the negative terminal toward the positive
terminal as in Fig. 27-1. A small circle on the tail of the emf arrow distinguishes it
from the arrows that indicate current direction.

When an emf device is not connected to a circuit, the internal chemistry of
the device does not cause any net flow of charge carriers within it. However,
when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net
flow of positive charge carriers from the negative terminal to the positive termi-
nal, in the direction of the emf arrow. This flow is part of the current that is set up
around the circuit in that same direction (clockwise in Fig. 27-1).

Within the emf device, positive charge carriers move from a region of low
electric potential and thus low electric potential energy (at the negative terminal)
to a region of higher electric potential and higher electric potential energy (at
the positive terminal). This motion is just the opposite of what the electric field
between the terminals (which is directed from the positive terminal toward the
negative terminal) would cause the charge carriers to do.

Thus, there must be some source of energy within the device, enabling it to
do work on the charges by forcing them to move as they do. The energy source
may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as
in an electric generator. Temperature differences may supply the energy, as in a
thermopile; or the Sun may supply it, as in a solar cell.

Let us now analyze the circuit of Fig. 27-1 from the point of view of work and
energy transfers. In any time interval dt, a charge dq passes through any cross sec-
tion of this circuit, such as aa�. This same amount of charge must enter the emf
device at its low-potential end and leave at its high-potential end. The device
must do an amount of work dW on the charge dq to force it to move in this way.
We define the emf of the emf device in terms of this work:

(definition of �). (27-1)

In words, the emf of an emf device is the work per unit charge that the device
does in moving charge from its low-potential terminal to its high-potential termi-
nal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that
unit as the volt.

An ideal emf device is one that lacks any internal resistance to the internal
movement of charge from terminal to terminal.The potential difference between
the terminals of an ideal emf device is equal to the emf of the device. For exam-
ple, an ideal battery with an emf of 12.0 V always has a potential difference of
12.0 V between its terminals.

A real emf device, such as any real battery, has internal resistance to the
internal movement of charge. When a real emf device is not connected to a
circuit, and thus does not have current through it, the potential difference
between its terminals is equal to its emf. However, when that device has current
through it, the potential difference between its terminals differs from its emf. We
shall discuss such real batteries near the end of this module.

When an emf device is connected to a circuit, the device transfers energy to
the charge carriers passing through it. This energy can then be transferred from
the charge carriers to other devices in the circuit, for example, to light a bulb.
Figure 27-2a shows a circuit containing two ideal rechargeable (storage) batteries
A and B, a resistance R, and an electric motor M that can lift an object by using

� �
dW
dq
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Figure 27-1 A simple electric circuit, in which
a device of emf � does work on the charge
carriers and maintains a steady current i in
a resistor of resistance R.
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Figure 27-2 (a) In the circuit, �B 	 �A; so bat-
tery B determines the direction of the cur-
rent. (b) The energy transfers in the circuit.



energy it obtains from charge carriers in the circuit. Note that the batteries are
connected so that they tend to send charges around the circuit in opposite direc-
tions. The actual direction of the current in the circuit is determined by the
battery with the larger emf, which happens to be battery B, so the chemical
energy within battery B is decreasing as energy is transferred to the charge
carriers passing through it. However, the chemical energy within battery A is
increasing because the current in it is directed from the positive terminal to the
negative terminal. Thus, battery B is charging battery A. Battery B is also pro-
viding energy to motor M and energy that is being dissipated by resistance R.
Figure 27-2b shows all three energy transfers from battery B; each decreases that
battery’s chemical energy.

Calculating the Current in a Single-Loop Circuit
We discuss here two equivalent ways to calculate the current in the simple single-
loop circuit of Fig. 27-3; one method is based on energy conservation considerations,
and the other on the concept of potential. The circuit consists of an ideal battery B
with emf �, a resistor of resistance R, and two connecting wires. (Unless otherwise
indicated, we assume that wires in circuits have negligible resistance.Their function,
then, is merely to provide pathways along which charge carriers can move.)

Energy Method
Equation 26-27 (P � i 2R) tells us that in a time interval dt an amount of energy
given by i2R dt will appear in the resistor of Fig. 27-3 as thermal energy. As noted
in Module 26-5, this energy is said to be dissipated. (Because we assume the wires
to have negligible resistance, no thermal energy will appear in them.) During the
same interval, a charge dq � i dt will have moved through battery B, and the
work that the battery will have done on this charge, according to Eq. 27-1, is

dW � � dq � �i dt.

From the principle of conservation of energy, the work done by the (ideal) bat-
tery must equal the thermal energy that appears in the resistor:

�i dt � i2R dt.

This gives us

� � iR.

The emf � is the energy per unit charge transferred to the moving charges by the
battery. The quantity iR is the energy per unit charge transferred from the mov-
ing charges to thermal energy within the resistor. Therefore, this equation means
that the energy per unit charge transferred to the moving charges is equal to the
energy per unit charge transferred from them. Solving for i, we find

(27-2)

Potential Method
Suppose we start at any point in the circuit of Fig. 27-3 and mentally proceed
around the circuit in either direction, adding algebraically the potential differ-
ences that we encounter. Then when we return to our starting point, we must
also have returned to our starting potential. Before actually doing so, we shall
formalize this idea in a statement that holds not only for single-loop circuits such
as that of Fig. 27-3 but also for any complete loop in a multiloop circuit, as we
shall discuss in Module 27-2:

i �
�

R
.
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Figure 27-3 A single-loop circuit in which a
resistance R is connected across an ideal
battery B with emf �.The resulting current
i is the same throughout the circuit.
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The battery drives current
through the resistor, from
high potential to low potential.



This is often referred to as Kirchhoff’s loop rule (or Kirchhoff’s voltage law), after
German physicist Gustav Robert Kirchhoff. This rule is equivalent to saying that
each point on a mountain has only one elevation above sea level. If you start
from any point and return to it after walking around the mountain, the algebraic
sum of the changes in elevation that you encounter must be zero.

In Fig. 27-3, let us start at point a, whose potential is Va, and mentally walk
clockwise around the circuit until we are back at a, keeping track of potential
changes as we move. Our starting point is at the low-potential terminal of the bat-
tery. Because the battery is ideal, the potential difference between its terminals is
equal to �. When we pass through the battery to the high-potential terminal, the
change in potential is ��.

As we walk along the top wire to the top end of the resistor, there is no
potential change because the wire has negligible resistance; it is at the same
potential as the high-potential terminal of the battery. So too is the top end of the
resistor. When we pass through the resistor, however, the potential changes
according to Eq. 26-8 (which we can rewrite as V � iR). Moreover, the potential
must decrease because we are moving from the higher potential side of the resis-
tor.Thus, the change in potential is �iR.

We return to point a by moving along the bottom wire.Because this wire also has
negligible resistance, we again find no potential change. Back at point a, the potential
is again Va. Because we traversed a complete loop, our initial potential, as modified
for potential changes along the way,must be equal to our final potential; that is,

Va � � � iR � Va.

The value of Va cancels from this equation, which becomes

� � iR � 0.

Solving this equation for i gives us the same result, i � �/R, as the energy method
(Eq. 27-2).

If we apply the loop rule to a complete counterclockwise walk around the
circuit, the rule gives us

�� � iR � 0

and we again find that i � �/R. Thus, you may mentally circle a loop in either
direction to apply the loop rule.

To prepare for circuits more complex than that of Fig. 27-3, let us set down
two rules for finding potential differences as we move around a loop:
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LOOP RULE: The algebraic sum of the changes in potential encountered in a
complete traversal of any loop of a circuit must be zero.

RESISTANCE RULE: For a move through a resistance in the direction of the 
current, the change in potential is �iR; in the opposite direction it is �iR.

EMF RULE: For a move through an ideal emf device in the direction of the emf 
arrow, the change in potential is ��; in the opposite direction it is ��.

Checkpoint 1
The figure shows the current i in a single-loop circuit
with a battery B and a resistance R (and wires of neg-
ligible resistance). (a) Should the emf arrow at B be
drawn pointing leftward or rightward? At points a, b,
and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the
electric potential energy of the charge carriers, greatest first.

a b c
B

i

R



If we apply the loop rule clockwise beginning at point a, the changes in
potential give us

� � ir � iR � 0. (27-3)

Solving for the current, we find

. (27-4)

Note that this equation reduces to Eq. 27-2 if the battery is ideal—that is, if r � 0.
Figure 27-4b shows graphically the changes in electric potential around the

circuit. (To better link Fig. 27-4b with the closed circuit in Fig. 27-4a, imagine
curling the graph into a cylinder with point a at the left overlapping point a at
the right.) Note how traversing the circuit is like walking around a (potential)
mountain back to your starting point—you return to the starting elevation.

In this book, when a battery is not described as real or if no internal resist-
ance is indicated, you can generally assume that it is ideal—but, of course, in the
real world batteries are always real and have internal resistance.

Resistances in Series
Figure 27-5a shows three resistances connected in series to an ideal battery with
emf �. This description has little to do with how the resistances are drawn.
Rather, “in series” means that the resistances are wired one after another and
that a potential difference V is applied across the two ends of the series. In
Fig. 27-5a, the resistances are connected one after another between a and b, and a
potential difference is maintained across a and b by the battery. The potential
differences that then exist across the resistances in the series produce identical
currents i in them. In general,

i �
�

R � r

Other Single-Loop Circuits
Next we extend the simple circuit of Fig. 27-3 in two ways.

Internal Resistance
Figure 27-4a shows a real battery, with internal resistance r, wired to an external
resistor of resistance R. The internal resistance of the battery is the electrical
resistance of the conducting materials of the battery and thus is an unremov-
able feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it
could be separated into an ideal battery with emf � and a resistor of resistance
r. The order in which the symbols for these separated parts are drawn does not
matter.
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Figure 27-4 (a) A single-loop circuit containing a real battery having internal resistance
r and emf �. (b) The same circuit, now spread out in a line.The potentials encountered
in traversing the circuit clockwise from a are also shown.The potential Va is arbitrarily
assigned a value of zero, and other potentials in the circuit are graphed relative to Va.

Figure 27-5 (a) Three resistors are connected
in series between points a and b. (b) An
equivalent circuit, with the three resistors
replaced with their equivalent resistance Req.
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When a potential difference V is applied across resistances connected in series,
the resistances have identical currents i. The sum of the potential differences
across the resistances is equal to the applied potential difference V.

Resistances connected in series can be replaced with an equivalent resistance Req

that has the same current i and the same total potential difference V as the actual
resistances.

Checkpoint 2
In Fig. 27-5a, if R1 	 R2 	 R3, rank the three resistances according to (a) the current
through them and (b) the potential difference across them, greatest first.

You might remember that Req and all the actual series resistances have the same
current i with the nonsense word “ser-i.” Figure 27-5b shows the equivalent resis-
tance Req that can replace the three resistances of Fig. 27-5a.

To derive an expression for Req in Fig. 27-5b, we apply the loop rule to both
circuits. For Fig. 27-5a, starting at a and going clockwise around the circuit, we
find

� � iR1 � iR2 � iR3 � 0,

or (27-5)

For Fig. 27-5b, with the three resistances replaced with a single equivalent resist-
ance Req, we find

� � iReq � 0,

or (27-6)

Comparison of Eqs. 27-5 and 27-6 shows that

Req � R1 � R2 � R3.

The extension to n resistances is straightforward and is

(n resistances in series). (27-7)

Note that when resistances are in series, their equivalent resistance is greater
than any of the individual resistances.

Req � �
n

j�1
Rj

i �
�

Req
.

i �
�

R1 � R2 � R3
.

Potential Difference Between Two Points
We often want to find the potential difference between two points in a circuit. For 
example, in Fig. 27-6, what is the potential difference Vb � Va between points a
and b? To find out, let’s start at point a (at potential Va) and move through the
battery to point b (at potential Vb) while keeping track of the potential changes
we encounter. When we pass through the battery’s emf, the potential increases
by �. When we pass through the battery’s internal resistance r, we move in the
direction of the current and thus the potential decreases by ir. We are then at the

Figure 27-6 Points a and b, which are at the
terminals of a real battery, differ in potential.

R = 4.0 Ω 

i

r = 2.0 Ω 

 = 12 V 

ia

b +

–

The internal resistance reduces
the potential difference between
the terminals.

Note that charge moving through the series resistances can move along only a
single route. If there are additional routes, so that the currents in different resis-
tances are different, the resistances are not connected in series.



potential of point b and we have

Va � � � ir � Vb,

or Vb � Va � � � ir. (27-8)

To evaluate this expression, we need the current i. Note that the circuit is the
same as in Fig. 27-4a, for which Eq. 27-4 gives the current as

(27-9)

Substituting this equation into Eq. 27-8 gives us

(27-10)

Now substituting the data given in Fig. 27-6, we have

(27-11)

Suppose, instead, we move from a to b counterclockwise, passing through
resistor R rather than through the battery. Because we move opposite the
current, the potential increases by iR.Thus,

Va � iR � Vb

or Vb � Va � iR. (27-12)

Substituting for i from Eq. 27-9, we again find Eq. 27-10. Hence, substitution of
the data in Fig. 27-6 yields the same result, Vb � Va � 8.0 V. In general,

Vb � Va �
12 V

4.0 � � 2.0 �
 4.0 � � 8.0 V.

�
�

R � r
R.

Vb � Va � � �
�

R � r
r

i �
�

R � r
.
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To find the potential between any two points in a circuit, start at one point and 
traverse the circuit to the other point, following any path, and add algebraically
the changes in potential you encounter.

Potential Difference Across a Real Battery
In Fig. 27-6, points a and b are located at the terminals of the battery. Thus, the
potential difference Vb � Va is the terminal-to-terminal potential difference V
across the battery. From Eq. 27-8, we see that

V � � � ir. (27-13)

If the internal resistance r of the battery in Fig. 27-6 were zero, Eq. 27-13 tells
us that V would be equal to the emf � of the battery—namely, 12 V. However,
because r � 2.0 �, Eq. 27-13 tells us that V is less than �. From Eq. 27-11, we
know that V is only 8.0 V. Note that the result depends on the value of the current
through the battery. If the same battery were in a different circuit and had a
different current through it, V would have some other value.

Grounding a Circuit
Figure 27-7a shows the same circuit as Fig. 27-6 except that here point a is directly
connected to ground, as indicated by the common symbol . Grounding a cir-
cuit usually means connecting the circuit to a conducting path to Earth’s surface
(actually to the electrically conducting moist dirt and rock below ground). Here,
such a connection means only that the potential is defined to be zero at the
grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to
be Va � 0. Equation 27-11 then tells us that the potential at b is Vb � 8.0 V.



Figure 27-7b is the same circuit except that point b is now directly connected
to ground. Thus, the potential there is defined to be Vb � 0. Equation 27-11 now
tells us that the potential at a is Va � �8.0 V.

Power, Potential, and Emf
When a battery or some other type of emf device does work on the charge car-
riers to establish a current i, the device transfers energy from its source of en-
ergy (such as the chemical source in a battery) to the charge carriers. Because a
real emf device has an internal resistance r, it also transfers energy to internal
thermal energy via resistive dissipation (Module 26-5). Let us relate these
transfers.

The net rate P of energy transfer from the emf device to the charge carriers is
given by Eq. 26-26:

P � iV, (27-14)

where V is the potential across the terminals of the emf device. From Eq. 27-13,
we can substitute V � � � ir into Eq. 27-14 to find

P � i(� � ir) � i� � i2r. (27-15)

From Eq. 26-27, we recognize the term i2r in Eq. 27-15 as the rate Pr of energy
transfer to thermal energy within the emf device:

Pr � i2r (internal dissipation rate). (27-16)

Then the term i� in Eq. 27-15 must be the rate Pemf at which the emf device
transfers energy both to the charge carriers and to internal thermal energy.
Thus,

Pemf � i� (power of emf device). (27-17)

If a battery is being recharged, with a “wrong way” current through it, the
energy transfer is then from the charge carriers to the battery—both to the
battery’s chemical energy and to the energy dissipated in the internal resistance r.
The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissi-
pation is given by Eq. 27-16, and the rate at which the carriers supply energy is
given by Eq. 27-14.
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Figure 27-7 (a) Point a is directly connected to ground. (b) Point b is directly connected to
ground.

R = 4.0 Ω 
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r = 2.0 Ω 

 = 12 V 
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–

(a)

R = 4.0 Ω

i

r = 2.0 Ω

 = 12 V

ia

b +

–

(b)Ground is taken
to be zero potential.

Checkpoint 3
A battery has an emf of 12 V and an internal resistance of 2 �. Is the terminal-to-
terminal potential difference greater than, less than, or equal to 12 V if the current in
the battery is (a) from the negative to the positive terminal, (b) from the positive to
the negative terminal, and (c) zero?
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two batteries. Because �1 is greater than �2, battery 1 con-
trols the direction of i, so the direction is clockwise. Let us
then apply the loop rule by going counterclockwise—
against the current—and starting at point a. (These deci-
sions about where to start and which way you go are
arbitrary but, once made, you must be consistent with
decisions about the plus and minus signs.) We find

��1 � ir1 � iR � ir2 � �2 � 0.

Check that this equation also results if we apply the loop
rule clockwise or start at some point other than a. Also,
take the time to compare this equation term by term with
Fig. 27-8b, which shows the potential changes graphically
(with the potential at point a arbitrarily taken to be zero).

Solving the above loop equation for the current i, we
obtain

(Answer)

(b) What is the potential difference between the terminals
of battery 1 in Fig. 27-8a?

KEY IDEA

We need to sum the potential differences between points a
and b.

Calculations: Let us start at point b (effectively the nega-
tive terminal of battery 1) and travel clockwise through
battery 1 to point a (effectively the positive terminal),
keeping track of potential changes.We find that

Vb � ir1 � �1 � Va,

which gives us

(Answer)

which is less than the emf of the battery. You can verify this
result by starting at point b in Fig. 27-8a and traversing the
circuit counterclockwise to point a. We learn two points
here. (1) The potential difference between two points in a
circuit is independent of the path we choose to go from one
to the other. (2) When the current in the battery is in the
“proper” direction, the terminal-to-terminal potential dif-
ference is low, that is, lower than the stated emf for the bat-
tery that you might find printed on the battery.

� �3.84 V � 3.8 V,

� �(0.2396 A)(2.3 �) � 4.4 V

Va � Vb � �ir1 � � 1

� 0.2396 A � 240 mA.

i �
� 1 � � 2

R � r1 � r2
�

4.4 V � 2.1 V
5.5 � � 2.3 � � 1.8 �

Sample Problem 27.01 Single-loop circuit with two real batteries

The emfs and resistances in the circuit of Fig. 27-8a have the
following values:

�1 � 4.4 V, �2 � 2.1 V,

r1 � 2.3 �, r2 � 1.8 �, R � 5.5 �.

(a) What is the current i in the circuit?

KEY IDEA

We can get an expression involving the current i in this
single-loop circuit by applying the loop rule, in which we
sum the potential changes around the full loop.

Calculations: Although knowing the direction of i is not
necessary, we can easily determine it from the emfs of the

Additional examples, video, and practice available at WileyPLUS

Figure 27-8 (a) A single-loop circuit containing two real batteries
and a resistor.The batteries oppose each other; that is, they tend to
send current in opposite directions through the resistor. (b) A
graph of the potentials, counterclockwise from point a, with the
potential at a arbitrarily taken to be zero. (To better link the circuit
with the graph, mentally cut the circuit at a and then unfold the left
side of the circuit toward the left and the right side of the circuit
toward the right.)
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Multiloop Circuits
Figure 27-9 shows a circuit containing more than one loop. For simplicity, we
assume the batteries are ideal. There are two junctions in this circuit, at b and d,
and there are three branches connecting these junctions.The branches are the left
branch (bad), the right branch (bcd), and the central branch (bd). What are the
currents in the three branches?

We arbitrarily label the currents, using a different subscript for each branch.
Current i1 has the same value everywhere in branch bad, i2 has the same value
everywhere in branch bcd, and i3 is the current through branch bd. The directions
of the currents are assumed arbitrarily.

Consider junction d for a moment: Charge comes into that junction via
incoming currents i1 and i3, and it leaves via outgoing current i2. Because there is
no variation in the charge at the junction, the total incoming current must equal
the total outgoing current:

i1 � i3 � i2. (27-18)

You can easily check that applying this condition to junction b leads to exactly
the same equation. Equation 27-18 thus suggests a general principle:
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27-2 MULTILOOP CIRCUITS

After reading this module, you should be able to . . .

27.17 Apply the junction rule.
27.18 Draw a schematic diagram for a battery and three

parallel resistors and distinguish it from a diagram with a
battery and three series resistors.

27.19 Identify that resistors in parallel have the same potential
difference, which is the same value that their equivalent
resistor has.

27.20 Calculate the resistance of the equivalent resistor of
several resistors in parallel.

27.21 Identify that the total current through parallel resistors
is the sum of the currents through the individual resistors.

27.22 For a circuit with a battery and some resistors in parallel
and some in series, simplify the circuit in steps by finding

equivalent resistors, until the current through the battery
can be determined, and then reverse the steps to find
the currents and potential differences of the individual
resistors.

27.23 If a circuit cannot be simplified by using equivalent
resistors, identify the several loops in the circuit, choose
names and directions for the currents in the branches, set
up loop equations for the various loops, and solve these
simultaneous equations for the unknown currents.

27.24 In a circuit with identical real batteries in series, replace
them with a single ideal battery and a single resistor.

27.25 In a circuit with identical real batteries in parallel, re-
place them with a single ideal battery and a single resistor.

Learning Objectives

● When resistances are in parallel, they have the same potential difference. The equivalent resistance that can replace a parallel
combination of resistances is given by

(n resistances in parallel).
1

Req
� �

n

j�1

1
Rj

Key Idea

Figure 27-9 A multiloop circuit consisting of
three branches: left-hand branch bad, right-
hand branch bcd, and central branch bd.
The circuit also consists of three loops: left-
hand loop badb, right-hand loop bcdb, and
big loop badcb.

R 2R3R1

a b  c  

d

 i 1  i 3  i 2

+ – 
1 2 

– + 

The current into the junction
must equal the current out
(charge is conserved).

JUNCTION RULE: The sum of the currents entering any junction must be
equal to the sum of the currents leaving that junction.

This rule is often called Kirchhoff’s junction rule (or Kirchhoff’s current law). It is
simply a statement of the conservation of charge for a steady flow of charge—
there is neither a buildup nor a depletion of charge at a junction. Thus, our basic
tools for solving complex circuits are the loop rule (based on the conservation of
energy) and the junction rule (based on the conservation of charge).



Equation 27-18 is a single equation involving three unknowns. To solve the
circuit completely (that is, to find all three currents), we need two more equations
involving those same unknowns. We obtain them by applying the loop rule twice.
In the circuit of Fig. 27-9, we have three loops from which to choose: the left-hand
loop (badb), the right-hand loop (bcdb), and the big loop (badcb). Which two
loops we choose does not matter—let’s choose the left-hand loop and the right-
hand loop.

If we traverse the left-hand loop in a counterclockwise direction from point
b, the loop rule gives us

�1 � i1R1 � i3R3 � 0. (27-19)

If we traverse the right-hand loop in a counterclockwise direction from point b,
the loop rule gives us

�i3R3 � i2R2 � �2 � 0. (27-20)

We now have three equations (Eqs. 27-18, 27-19, and 27-20) in the three unknown
currents, and they can be solved by a variety of techniques.

If we had applied the loop rule to the big loop, we would have obtained
(moving counterclockwise from b) the equation

�1 � i1R1 � i2R2 � �2 � 0.

However, this is merely the sum of Eqs. 27-19 and 27-20.

Resistances in Parallel
Figure 27-10a shows three resistances connected in parallel to an ideal battery
of emf �. The term “in parallel” means that the resistances are directly wired
together on one side and directly wired together on the other side, and that a
potential difference V is applied across the pair of connected sides.Thus, all three
resistances have the same potential difference V across them, producing a cur-
rent through each. In general,
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Figure 27-10 (a) Three resistors connected in parallel across points a and b. (b) An equiva-
lent circuit, with the three resistors replaced with their equivalent resistance Req.

When a potential difference V is applied across resistances connected in parallel,
the resistances all have that same potential difference V.

In Fig. 27-10a, the applied potential difference V is maintained by the battery. In
Fig. 27-10b, the three parallel resistances have been replaced with an equivalent
resistance Req.

b

iR eq

(b)

a

i

+
–

i

R3R1

a

b

 i 1  i 3 i 2
+
– R 2

(a)

i

i

i2 + i3

i2 + i3

Parallel resistors and their
equivalent have the same
potential difference (“par-V”).
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Resistances connected in parallel can be replaced with an equivalent resistance
Req that has the same potential difference V and the same total current i as the
actual resistances.

You might remember that Req and all the actual parallel resistances have the
same potential difference V with the nonsense word “par-V.”

To derive an expression for Req in Fig. 27-10b, we first write the current in
each actual resistance in Fig. 27-10a as

where V is the potential difference between a and b. If we apply the junction rule
at point a in Fig. 27-10a and then substitute these values, we find

(27-21)

If we replaced the parallel combination with the equivalent resistance Req

(Fig. 27-10b), we would have

(27-22)

Comparing Eqs. 27-21 and 27-22 leads to

(27-23)

Extending this result to the case of n resistances, we have

(n resistances in parallel). (27-24)

For the case of two resistances, the equivalent resistance is their product divided
by their sum; that is,

(27-25)

Note that when two or more resistances are connected in parallel, the equivalent
resistance is smaller than any of the combining resistances.Table 27-1 summarizes the
equivalence relations for resistors and capacitors in series and in parallel.

Req �
R1R2

R1 � R2
.

1
Req

� �
n

j�1

1
Rj

1
Req

�
1

R1
�

1
R2

�
1

R3
.

i �
V

Req
.

i � i1 � i2 � i3 � V � 1
R1

�
1

R2
�

1
R3

�.

i1 �
V
R1

,  i2 �
V
R2

,  and  i3 �
V
R3

,

Table 27-1 Series and Parallel Resistors and Capacitors

Series Parallel Series Parallel

Resistors Capacitors

Eq. 27-7 Eq. 27-24 Eq. 25-20 Eq. 25-19

Same current through Same potential difference Same charge on all Same potential difference 
all resistors across all resistors capacitors across all capacitors

Ceq � �
n

j�1
Cj

1
Ceq

� �
n

j�1

1
Cj

1
Req

� �
n

j�1

1
Rj

Req � �
n

j�1
Rj

Checkpoint 4
A battery, with potential V across it, is connected to a combination of two identical re-
sistors and then has current i through it.What are the potential difference across and
the current through either resistor if the resistors are (a) in series and (b) in parallel?
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We can now redraw the circuit as in Fig. 27-11c; note that
the current through R23 must be i1 because charge that
moves through R1 and R4 must also move through R23. For
this simple one-loop circuit, the loop rule (applied clockwise
from point a as in Fig. 27-11d) yields

�� � i1R1 � i1R23 � i1R4 � 0.

Substituting the given data, we find

12 V � i1(20 �) � i1(12 �) � i1(8.0 �) � 0,

which gives us

(Answer)

(b) What is the current i2 through R2?

KEY IDEAS

(1) we must now work backward from the equivalent circuit
of Fig. 27-11d, where R23 has replaced R2 and R3. (2) Because
R2 and R3 are in parallel, they both have the same potential
difference across them as R23.

Working backward: We know that the current through R23

is i1 � 0.30 A. Thus, we can use Eq. 26-8 (R � V/i) and
Fig. 27-11e to find the potential difference V23 across R23.
Setting R23 � 12 � from (a), we write Eq. 26-8 as  

V23 � i1R23 � (0.30 A)(12 �) � 3.6 V.

The potential difference across R2 is thus also 3.6 V 
(Fig. 27-11f), so the current i2 in R2 must be, by Eq. 26-8 and
Fig. 27-11g,

(Answer)

(c) What is the current i3 through R3?

KEY IDEAS

We can answer by using either of two techniques: (1) Apply
Eq. 26-8 as we just did. (2) Use the junction rule, which tells
us that at point b in Fig. 27-11b, the incoming current i1 and
the outgoing currents i2 and i3 are related by

i1 � i2 � i3.

Calculation: Rearranging this junction-rule result yields
the result displayed in Fig. 27-11g:

i3 � i1 � i2 � 0.30 A � 0.18 A

� 0.12 A. (Answer)

i2 �
V2

R2
�

3.6 V
20 �

� 0.18 A.

i1 �
12 V
40 �

� 0.30 A.

Sample Problem 27.02 Resistors in parallel and in series 

Figure 27-11a shows a multiloop circuit containing one ideal
battery and four resistances with the following values:

(a) What is the current through the battery?

KEY IDEA

Noting that the current through the battery must also be
the current through R1, we see that we might find the
current by applying the loop rule to a loop that includes R1

because the current would be included in the potential
difference across R1.

Incorrect method: Either the left-hand loop or the big loop
should do. Noting that the emf arrow of the battery points
upward, so the current the battery supplies is clockwise, we
might apply the loop rule to the left-hand loop, clockwise
from point a. With i being the current through the battery,
we would get

�� � iR1 � iR2 � iR4 � 0 (incorrect).

However, this equation is incorrect because it assumes
that R1, R2, and R4 all have the same current i. Resistances
R1 and R4 do have the same current, because the current
passing through R4 must pass through the battery and then
through R1 with no change in value. However, that current
splits at junction point b—only part passes through R2, the
rest through R3.

Dead-end method: To distinguish the several currents in
the circuit, we must label them individually as in Fig. 27-11b.
Then, circling clockwise from a, we can write the loop rule
for the left-hand loop as

�� � i1R1 � i2R2 � i1R4 � 0.

Unfortunately, this equation contains two unknowns, i1 and
i2; we would need at least one more equation to find them.

Successful method: A much easier option is to simplify
the circuit of Fig. 27-11b by finding equivalent resistances.
Note carefully that R1 and R2 are not in series and thus
cannot be replaced with an equivalent resistance.
However, R2 and R3 are in parallel, so we can use either
Eq. 27-24 or Eq. 27-25 to find their equivalent resistance
R23. From the latter,

R23 �
R2R3

R2 � R3
�

(20 �)(30 �)
50 �

� 12 �.

R3 � 30 �,  R4 � 8.0 �.

R1 � 20 �,  R2 � 20 �,  � � 12 V,

Additional examples, video, and practice available at WileyPLUS
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Figure 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their equivalent.
(d)–(g) Working backward to find the currents through the parallel resistors.

R 2

(a)

a

+
–

R 4

R 1

c

b

R 3

R 2

a

+
–

R 4

R 1

c

b

R 3

 i 2

 i 1

 i 1  i 3

(b)

a c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b

 i 1
R 23 = 12 Ω

 i 1

 i 1

(c)

The equivalent of parallel
resistors is smaller.

a

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1 = 0.30 A

 i 1 = 0.30 A

 i 1 = 0.30 A

(d)

R 23 = 12 Ω= 12 V

a cc

c c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1 = 0.30 A

 i 1 = 0.30 A

 i 1 = 0.30 A

(e)

R 23 = 12 ΩV 23 = 3.6 V= 12 V

Applying the loop rule
yields the current.

Applying V = iR yields
the potential difference.

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1 = 0.30 A

 i 1 = 0.30 A

 i 2

 i 3

( f )

R 2 = 20 ΩV 2 = 3.6 V

V 3 = 3.6 V

= 12 V

R 3 = 30 Ω

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1 = 0.30 A

 i 1 = 0.30 A
(g)

R 2 = 20 Ω
i 2 = 0.18 A

i 3 = 0.12 A

V 2 = 3.6 V

V 3 = 3.6 V

= 12 V

R 3 = 30 Ω

Parallel resistors and
their equivalent have
the same V (“par-V”).

Applying i = V/R
yields the current.

b b

A
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The total resistance Rrow along a row is the sum of the inter-
nal resistances of the 5000 electroplaques:

Rrow � 5000r � (5000)(0.25 �) � 1250 �.

We can now represent each of the 140 identical rows as hav-
ing a single emf �row and a single resistance Rrow (Fig. 27-12b).

In Fig. 27-12b, the emf between point a and point b on
any row is �row � 750 V. Because the rows are identical and
because they are all connected together at the left in
Fig. 27-12b, all points b in that figure are at the same electric
potential. Thus, we can consider them to be connected so
that there is only a single point b. The emf between point a
and this single point b is �row � 750 V, so we can draw the
circuit as shown in Fig. 27-12c.

Between points b and c in Fig. 27-12c are 140 resistances
Rrow � 1250 �, all in parallel. The equivalent resistance Req

of this combination is given by Eq. 27-24 as

or Req �
Rrow

140
�

1250 �

140
� 8.93 �.

1
Req

� �
140

j�1

1
Rj

� 140
1

Rrow
,

Sample Problem 27.03 Many real batteries in series and in parallel in an electric fish

Electric fish can generate current with biological emf cells
called electroplaques. In the South American eel they are
arranged in 140 rows, each row stretching horizontally along
the body and each containing 5000 cells, as suggested by
Fig. 27-12a. Each electroplaque has an emf � of 0.15 V and
an internal resistance r of 0.25 �.The water surrounding the
eel completes a circuit between the two ends of the electro-
plaque array, one end at the head of the animal and the
other near the tail.

(a) If the surrounding water has resistance Rw � 800 �, how
much current can the eel produce in the water?

KEY IDEA

We can simplify the circuit of Fig. 27-12a by replacing 
combinations of emfs and internal resistances with equiva-
lent emfs and resistances.

Calculations: We first consider a single row. The total emf
�row along a row of 5000 electroplaques is the sum of the emfs:

�row � 5000� � (5000)(0.15 V) � 750 V.

Figure 27-12 (a) A model of the electric circuit of an eel in water. Along each of 140 rows extending from the head to the tail of the eel, there are
5000 electroplaques.The surrounding water has resistance Rw. (b) The emf �row and resistance Rrow of each row. (c) The emf between points a
and b is �row. Between points b and c are 140 parallel resistances Rrow. (d) The simplified circuit.

Rw

i

(b)

a c

row Rrow

row Rrow

row Rrow

b

b

b

Rw

(c)

a
c

row

Rrow

b

= 750 V

Rw

(d)

row

Req

+ –
i

Rw
(a)

r

Electroplaque

 5000 electroplaques per row

140 rows

–+

750 V

–+ –+

–+ –+ –+

–+ –+ –+

–+

–+

–+

–+

Rrow

Rrow

a b c

First, reduce each row to one emf and one resistance.

Emfs in parallel
act as a single emf.

Replace the parallel
resistances with their
equivalent.

Points with the same
potential can be taken
as though connected.
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Replacing the parallel combination with Req, we obtain the
simplified circuit of Fig. 27-12d. Applying the loop rule to
this circuit counterclockwise from point b, we have

�row � iRw � iReq � 0.

Solving for i and substituting the known data, we find

(Answer)

If the head or tail of the eel is near a fish, some of this
current could pass along a narrow path through the fish,
stunning or killing it.

� 0.927 A � 0.93 A.

i �
� row

Rw � Req
�

750 V
800 � � 8.93 �

(b) How much current irow travels through each row of 
Fig. 27-12a?

KEY IDEA

Because the rows are identical, the current into and out of
the eel is evenly divided among them.

Calculation: Thus, we write

(Answer)

Thus, the current through each row is small, so that the eel
need not stun or kill itself when it stuns or kills a fish.

irow �
i

140
�

0.927 A
140

� 6.6 � 10 �3 A.

Combining equations: We now have a system of two equa-
tions (Eqs. 27-27 and 27-28) in two unknowns (i1 and i2) to
solve either “by hand” (which is easy enough here) or with a
“math package.” (One solution technique is Cramer’s rule,
given in Appendix E.) We find

i1 � �0.50 A. (27-29)

(The minus sign signals that our arbitrary choice of direction
for i1 in Fig. 27-13 is wrong, but we must wait to correct it.)
Substituting i1 � �0.50 A into Eq. 27-28 and solving for
i2 then give us

i2 � 0.25 A. (Answer)

With Eq. 27-26 we then find that

i3 � i1 � i2 � �0.50 A � 0.25 A

� �0.25 A.

The positive answer we obtained for i2 signals that our choice of
direction for that current is correct. However, the negative an-
swers for i1 and i3 indicate that our choices for those currents are
wrong.Thus,as a last step here,we correct the answers by revers-
ing the arrows for i1 and i3 in Fig.27-13 and then writing

i1 � 0.50 A and i3 � 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

Figure 27-13 shows a circuit whose elements have the fol-
lowing values:

The three batteries are ideal batteries. Find the mag-
nitude and direction of the current in each of the three
branches.

KEY IDEAS

It is not worthwhile to try to simplify this circuit, because no
two resistors are in parallel, and the resistors that are in series
(those in the right branch or those in the left branch) present
no problem. So, our plan is to apply the junction and loop rules.

Junction rule: Using arbitrarily chosen directions for the cur-
rents as shown in Fig. 27-13, we apply the junction rule at point
a by writing

i3 � i1 � i2. (27-26)

An application of the junction rule at junction b gives only
the same equation, so we next apply the loop rule to any two
of the three loops of the circuit.

Left-hand loop: We first arbitrarily choose the left-hand
loop, arbitrarily start at point b, and arbitrarily traverse the
loop in the clockwise direction, obtaining

�i1R1 � �1 � i1R1 � (i1 � i2)R2 � �2 � 0,

where we have used (i1 � i2) instead of i3 in the middle
branch. Substituting the given data and simplifying yield

i1(8.0 �) � i2(4.0 �) � �3.0 V. (27-27)

Right-hand loop: For our second application of the loop
rule, we arbitrarily choose to traverse the right-hand loop
counterclockwise from point b, finding

�i2R1 � �2 � i2R1 � (i1 � i2)R2 � �2 � 0.

Substituting the given data and simplifying yield

i1(4.0 �) � i2(8.0 �) � 0. (27-28)

4.0 �.
R2 �R1 � 2.0 �,� 1 � 3.0 V, � 2 � 6.0 V,

Figure 27-13 A multi-
loop circuit with three
ideal batteries and five
resistances.

+
–1

2
R 2

R1 R1
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i1 i2
a
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Additional examples, video, and practice available at WileyPLUS

Sample Problem 27.04 Multiloop circuit and simultaneous loop equations



The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the ammeter
so that the current to be measured passes through the meter. (In Fig. 27-14, amme-
ter A is set up to measure current i.) It is essential that the resistance RA of the am-
meter be very much smaller than other resistances in the circuit. Otherwise, the
very presence of the meter will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.) It is essen-
tial that the resistance RV of a voltmeter be very much larger than the resistance
of any circuit element across which the voltmeter is connected. Otherwise, the
meter alters the potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.
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27-3 THE AMMETER AND THE VOLTMETER

After reading this module, you should be able to . . .

27.26 Explain the use of an ammeter and a voltmeter, includ-

Learning Objective

● Here are three measurement instruments used with cir-
cuits: An ammeter measures current. A voltmeter measures

Key Idea

+
– R2

A R1

r

a

b

c

d

V

i

i

Figure 27-14 A single-loop circuit, showing
how to connect an ammeter (A) and a
voltmeter (V).

27-4 RC CIRCUITS

After reading this module, you should be able to . . .

27.27 Draw schematic diagrams of charging and discharging
RC circuits.

27.28 Write the loop equation (a differential equation) for a
charging RC circuit.

27.29 Write the loop equation (a differential equation) for a
discharging RC circuit.

27.30 For a capacitor in a charging or discharging RC circuit,
apply the relationship giving the charge as a function of time.

27.31 From the function giving the charge as a function of
time in a charging or discharging RC circuit, find the ca-
pacitor’s potential difference as a function of time.

27.32 In a charging or discharging RC circuit, find the resis-
tor’s current and potential difference as functions of time.

27.33 Calculate the capacitive time constant t.
27.34 For a charging RC circuit and a discharging RC circuit,

determine the capacitor’s charge and potential difference
at the start of the process and then a long time later.

Learning Objectives

● When an emf is applied to a resistance R and capacitance C
in series, the charge on the capacitor increases according to

q � C �(1 � e�t/RC) (charging a capacitor),

in which C � � q0 is the equilibrium (final) charge and RC � t
is the capacitive time constant of the circuit. 

● During the charging, the current is

(charging a capacitor).i �
dq
dt

� � �

R �e�t/RC

�

Key Ideas
● When a capacitor discharges through a resistance R, the
charge on the capacitor decays according to

q � q0e�t/RC (discharging a capacitor).

● During the discharging, the current is

(discharging a capacitor).i �
dq
dt

� �� q0

RC �e�t/RC

ing the resistance required of each in order not to affect the
measured quantities.

voltage (potential differences). A multimeter can be used to
measure current, voltage, or resistance.



RC Circuits
In preceding modules we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf �, and a resistance R.

From Module 25-1, we already know that as soon as the circuit is com-
plete, charge begins to flow (current exists) between a capacitor plate and a
battery terminal on each side of the capacitor. This current increases the
charge q on the plates and the potential difference VC (� q/C) across the ca-
pacitor. When that potential difference equals the potential difference across
the battery (which here is equal to the emf �), the current is zero. From Eq.
25-1 (q � CV), the equilibrium (final) charge on the then fully charged capacitor
is equal to C �.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q � 0 at t � 0.

We shall soon show that the solution to Eq. 27-32 is

q � C �(1 � e�t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.)
Note that Eq. 27-33 does indeed satisfy our required initial condition, because
at t � 0 the term e�t/RC is unity; so the equation gives q � 0. Note also that as t
goes to infinity (that is, a long time later), the term e�t/RC goes to zero; so
the equation gives the proper value for the full (equilibrium) charge on the
capacitor — namely, q � C �. A plot of q(t) for the charging process is given in
Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)i �
dq
dt

� � �

R �e�t/RC

R
dq
dt

�
q
C

� �

i �
dq
dt

.

� � iR �
q
C

� 0.
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Figure 27-15 When switch S is closed on a, the
capacitor is charged through the resistor.
When the switch is afterward closed on b, the
capacitor discharges through the resistor.

C
+
–

S

Rb

a

Figure 27-16 (a) A plot of Eq. 27-33, which
shows the buildup of charge on the capaci-
tor of Fig. 27-15. (b) A plot of Eq. 27-34,
which shows the decline of the charging
current in the circuit of Fig. 27-15.The
curves are plotted for R � 2000 �, C � 1 mF,
and � � 10 V; the small triangles represent
successive intervals of one time constant t.
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A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value �/R and that it decreases to zero as the capacitor becomes
fully charged.
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A capacitor that is being charged initially acts like ordinary connecting wire 
relative to the charging current. A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q � CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC � 0 at t � 0 and that VC � � when the capacitor becomes
fully charged as t : 
.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and
because, in fact, 1.0 � � 1.0 F � 1.0 s). The product RC is called the capacitive
time constant of the circuit and is represented with the symbol t:

t � RC (time constant). (27-36)

From Eq. 27-33, we can now see that at time t � t (� RC), the charge on the
initially uncharged capacitor of Fig. 27-15 has increased from zero to

q � C �(1 � e�1) � 0.63C �. (27-37)

In words, during the first time constant t the charge has increased from zero to
63% of its final value C �. In Fig. 27-16, the small triangles along the time axes
mark successive intervals of one time constant during the charging of the capaci-
tor.The charging times for RC circuits are often stated in terms of t . For example,
a circuit with t � 1 ms charges quickly while one with t � 100 s charges much
more slowly,

Discharging a Capacitor
Assume now that the capacitor of Fig. 27-15 is fully charged to a potential V0

equal to the emf � of the battery.At a new time t � 0, switch S is thrown from a to
b so that the capacitor can discharge through resistance R. How do the charge
q(t) on the capacitor and the current i(t) through the discharge loop of capacitor
and resistance now vary with time?

The differential equation describing q(t) is like Eq. 27-32 except that now,
with no battery in the discharge loop, � � 0.Thus,

(discharging equation). (27-38)

The solution to this differential equation is

q � q0e�t/RC (discharging a capacitor), (27-39)

where q0 (� CV0) is the initial charge on the capacitor.You can verify by substitu-
tion that Eq. 27-39 is indeed a solution of Eq. 27-38.

R
dq
dt

�
q
C

� 0

VC �
q
C

� �(1 � e�t/RC)



Equation 27-39 tells us that q decreases exponentially with time, at a rate that
is set by the capacitive time constant t � RC. At time t � t, the capacitor’s
charge has been reduced to q0e�1, or about 37% of the initial value. Note that a
greater t means a greater discharge time.

Differentiating Eq. 27-39 gives us the current i(t):

(discharging a capacitor). (27-40)

This tells us that the current also decreases exponentially with time, at a rate set
by t. The initial current i0 is equal to q0/RC. Note that you can find i0 by simply
applying the loop rule to the circuit at t � 0; just then the capacitor’s initial poten-
tial V0 is connected across the resistance R, so the current must be i0 � V0/R �
(q0/C)/R � q0/RC. The minus sign in Eq. 27-40 can be ignored; it merely means
that the capacitor’s charge q is decreasing.

Derivation of Eq. 27-33
To solve Eq. 27-32, we first rewrite it as

(27-41)

The general solution to this differential equation is of the form

q � qp � Ke�at, (27-42)

where qp is a particular solution of the differential equation, K is a constant to
be evaluated from the initial conditions, and a � 1/RC is the coefficient of q in
Eq. 27-41. To find qp, we set dq/dt � 0 in Eq. 27-41 (corresponding to the final
condition of no further charging), let q � qp, and solve, obtaining

qp � C �. (27-43)

To evaluate K, we first substitute this into Eq. 27-42 to get

q � C � � Ke�at.

Then substituting the initial conditions q � 0 and t � 0 yields

0 � C � � K,

or K � �C �. Finally, with the values of qp, a, and K inserted, Eq. 27-42 becomes

q � C � � C �e�t/RC,

which, with a slight modification, is Eq. 27-33.

dq
dt

�
q

RC
�

�

R
.

i �
dq
dt

� �� q0

RC �e�t/RC
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Checkpoint 5
The table gives four sets of values for the circuit elements in Fig. 27-15. Rank the
sets according to (a) the initial current (as the switch is closed on a) and (b) the time
required for the current to decrease to half its initial value, greatest first.

1 2 3 4

� (V) 12 12 10 10
R (�) 2 3 10 5
C (mF) 3 2 0.5 2
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Sample Problem 27.05 Discharging an RC circuit to avoid a fire in a race car pit stop

As a car rolls along pavement, electrons move from the
pavement first onto the tires and then onto the car body.The
car stores this excess charge and the associated electric poten-
tial energy as if the car body were one plate of a capacitor and
the pavement were the other plate (Fig. 27-17a).When the car
stops, it discharges its excess charge and energy through the
tires, just as a capacitor can discharge through a resistor. If a
conducting object comes within a few centimeters of the car
before the car is discharged, the remaining energy can be
suddenly transferred to a spark between the car and the
object. Suppose the conducting object is a fuel dispenser. The
spark will not ignite the fuel and cause a fire if the spark
energy is less than the critical value Ufire � 50 mJ.

When the car of Fig. 27-17a stops at time t � 0, the car–
ground potential difference is V0 � 30 kV. The car–ground
capacitance is C � 500 pF, and the resistance of each tire is
Rtire � 100 G�. How much time does the car take to discharge
through the tires to drop below the critical value Ufire?

KEY IDEAS

(1) At any time t, a capacitor’s stored electric potential energy U
is related to its stored charge q according to Eq. 25-21 (U �
q2/2C). (2) While a capacitor is discharging, the charge de-
creases with time according to Eq.27-39 (q � q0e�t/RC).

Calculations: We can treat the tires as resistors that are
connected to one another at their tops via the car body and
at their bottoms via the pavement. Figure 27-17b shows how
the four resistors are connected in parallel across the car’s
capacitance, and Fig. 27-17c shows their equivalent resist-
ance R. From Eq. 27-24, R is given by

or (27-44)

When the car stops, it discharges its excess charge and
energy through R.We now use our two Key Ideas to analyze
the discharge. Substituting Eq. 27-39 into Eq. 25-21 gives

(27-45)

From Eq. 25-1 (q � CV ), we can relate the initial charge q0

on the car to the given initial potential difference V0: q0 �
CV0. Substituting this equation into Eq. 27-45 brings us to

U �
(CV0)2

2C
e�2t/RC �

CV 0
2

2
e�2t/RC,

�
q0

2

2C
e�2t/RC.

U �
q2

2C
�

(q0e�t/RC)2

2C

R �
Rtire

4
�

100 � 10 9 �

4
� 25 � 10 9 �.

1
R

�
1

Rtire
�

1
Rtire

�
1

Rtire
�

1
Rtire

,

Additional examples, video, and practice available at WileyPLUS

or (27-46)

Taking the natural logarithms of both sides, we obtain

or (27-47)

Substituting the given data, we find that the time the car
takes to discharge to the energy level Ufire � 50 mJ is

(Answer)

Fire or no fire: This car requires at least 9.4 s before fuel can be
brought safely near it.A pit crew cannot wait that long. So the
tires include some type of conducting material (such as carbon
black) to lower the tire resistance and thus increase the dis-
charge rate. Figure 27-17d shows the stored energy U versus
time t for tire resistances of R � 100 G� (our value) and R �
10 G�. Note how much more rapidly a car discharges to level
Ufire with the lower R value.

� 9.4 s.

� ln� 2(50 � 10 �3 J)
(500 � 10 �12 F)(30 � 10 3 V)2 �

t � �
(25 � 10 9 �)(500 � 10 �12 F)

2

t � �
RC
2

 ln� 2U
CV0

2 �.

�
2t

RC
� ln� 2U

CV0
2 �,

e�2t/RC �
2U

CV 0
2 .

Tire
resistanceEffective

capacitance

DRIVE    THRUDRIVE    THRU

3N
Bomman

SchtuffMDOG
WNFR

True Vales RPM

XP3I

6
ULTRA

MOTEL
PST4

R tire R tire R tire R tireC RC

(a)

(b) (c)

(d)

U

Ufire

0.94
t (s)

9.4

10 GΩ

100 GΩ

Figure 27-17 (a) A charged car and the
pavement acts like a capacitor that can
discharge through the tires. (b) The
effective circuit of the car–pavement
capacitor, with four tire resistances Rtire

connected in parallel. (c) The equivalent
resistance R of the tires. (d) The electric
potential energy U in the car–pavement
capacitor decreases during discharge.
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Emf An emf device does work on charges to maintain a potential
difference between its output terminals. If dW is the work the device
does to force positive charge dq from the negative to the positive ter-
minal, then the emf (work per unit charge) of the device is

(definition of �). (27-1)

The volt is the SI unit of emf as well as of potential difference.An ideal
emf device is one that lacks any internal resistance. The potential dif-
ference between its terminals is equal to the emf. A real emf device
has internal resistance.The potential difference between its terminals
is equal to the emf only if there is no current through the device.

Analyzing Circuits The change in potential in traversing a
resistance R in the direction of the current is �iR; in the opposite
direction it is �iR (resistance rule). The change in potential in tra-
versing an ideal emf device in the direction of the emf arrow is ��;
in the opposite direction it is �� (emf rule). Conservation of
energy leads to the loop rule:

Loop Rule. The algebraic sum of the changes in potential encountered
in a complete traversal of any loop of a circuit must be zero.

Conservation of charge gives us the junction rule:

Junction Rule. The sum of the currents entering any junction
must be equal to the sum of the currents leaving that junction.

Single-Loop Circuits The current in a single-loop circuit con-
taining a single resistance R and an emf device with emf � and in-
ternal resistance r is

(27-4)

which reduces to i � �/R for an ideal emf device with r � 0.

Power When a real battery of emf � and internal resistance r
does work on the charge carriers in a current i through the battery,
the rate P of energy transfer to the charge carriers is

P � iV, (27-14)

i �
�

R � r
,

� �
dW
dq

Review & Summary

where V is the potential across the terminals of the battery.The rate
Pr at which energy is dissipated as thermal energy in the battery is

Pr � i2r. (27-16)

The rate Pemf at which the chemical energy in the battery changes is

Pemf � i�. (27-17)

Series Resistances When resistances are in series, they have
the same current. The equivalent resistance that can replace a se-
ries combination of resistances is

(n resistances in series). (27-7)

Parallel Resistances When resistances are in parallel,
they have the same potential difference. The equivalent resistance
that can replace a parallel combination of resistances is given by

(n resistances in parallel). (27-24)

RC Circuits When an emf � is applied to a resistance R and ca-
pacitance C in series, as in Fig. 27-15 with the switch at a, the charge
on the capacitor increases according to

q � C �(1 � e�t/RC) (charging a capacitor), (27-33)

in which C� � q0 is the equilibrium (final) charge and RC � t is the ca-
pacitive time constant of the circuit. During the charging, the current is

(charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on
the capacitor decays according to

q � q0e�t/RC (discharging a capacitor). (27-39)

During the discharging, the current is

(discharging a capacitor). (27-40)i �
dq
dt

� �� q0

RC �e�t/RC

i �
dq
dt

� � �

R �e�t/RC

1
Req

� �
n

j�1

1
Rj

Req � �
n

j�1
Rj

1 (a) In Fig. 27-18a, with R1 R2, is the potential difference	

Questions

Figure 27-18 Questions 1 and 2.

(a)

+
–

R1 R2

R3

(b)

+
–

R3

R1R2

(d)(c)

R2R1
+
–

R3

R3

+
–

R1

R2

across R2 more than, less than, or equal to that across R1? (b) Is the
current through resistor R2 more than, less than, or equal to that
through resistor R1?

2 (a) In Fig. 27-18a, are resistors R1 and R3 in series? (b) Are 
resistors R1 and R2 in parallel? (c) Rank the equivalent resistances
of the four circuits shown in Fig. 27-18, greatest first.

3 You are to connect resistors R1 and R2, with R1 	 R2, to a bat-
tery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of current through the
battery, greatest first.

4 In Fig. 27-19, a circuit consists of
a battery and two uniform resistors,
and the section lying along an x axis
is divided into five segments of equal
lengths. (a) Assume that R1 � R2 and
rank the segments according to the
magnitude of the average electric Figure 27-19 Question 4.

+ – 

R1 R2

a b c d e 

x
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field in them, greatest first. (b) Now assume that R1 	 R2 and then
again rank the segments. (c) What is the direction of the electric
field along the x axis?

5 For each circuit in Fig. 27-20, are the resistors connected in se-
ries, in parallel, or neither?

Figure 27-21 Question 6.

R

Figure 27-20 Question 5.
Figure 27-22 Question 10.

+–

+– +
–

(a) (b) (c)

6 Res-monster maze. In Fig. 27-21, all the resistors have a resis-
tance of 4.0 � and all the (ideal) batteries have an emf of 4.0 V.
What is the current through resistor R? (If you can find the proper
loop through this maze, you can answer the question with a few
seconds of mental calculation.)

7 A resistor R1 is wired to a battery, then resistor R2 is added
in series. Are (a) the potential difference across R1 and (b) the
current i1 through R1 now more than, less than, or the same as pre-
viously? (c) Is the equivalent resistance R12 of R1 and R2 more
than, less than, or equal to R1?

8 What is the equivalent resistance of three resistors, each of
resistance R, if they are connected to an ideal battery (a) in se-
ries with one another and (b) in parallel with one another? (c)
Is the potential difference across the series arrangement
greater than, less than, or equal to that across the parallel
arrangement?

9 Two resistors are wired to a battery. (a) In which arrangement,
parallel or series, are the potential differences across each resistor
and across the equivalent resistance all equal? (b) In which
arrangement are the currents through each resistor and through
the equivalent resistance all equal?

10 Cap-monster maze. In Fig. 27-22, all the capacitors have a
capacitance of 6.0 mF, and all the batteries have an emf of 10 V.
What is the charge on capacitor C? (If you can find the proper loop
through this maze, you can answer the question with a few seconds
of mental calculation.)

11 Initially, a single resistor R1 is wired to a battery. Then resistor
R2 is added in parallel. Are (a) the potential difference across R1

and (b) the current i1 through R1 now more than, less than, or the
same as previously? (c) Is the equivalent resistance R12 of R1 and
R2 more than, less than, or equal to R1? (d) Is the total current
through R1 and R2 together more than, less than, or equal to the
current through R1 previously?

12 After the switch in Fig. 27-15 is closed on point a, there is cur-
rent i through resistance R. Figure 27-23 gives that current for four
sets of values of R and capacitance C: (1) R0 and C0, (2) 2R0 and C0,
(3) R0 and 2C0, (4) 2R0 and 2C0. Which set goes with which curve?

(1) (2) 

(3)

C

i

dc

a

b

t

Figure 27-24 Question 13.

Figure 27-23 Question 12.

13 Figure 27-24 shows three sections of circuit that are to be con-
nected in turn to the same battery via a switch as in Fig. 27-15. The
resistors are all identical, as are the capacitors. Rank the sections
according to (a) the final (equilibrium) charge on the capacitor and
(b) the time required for the capacitor to reach 50% of its final
charge, greatest first.
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•5 A 5.0 A current is set up in a circuit for 6.0 min by a recharge-
able battery with a 6.0 V emf. By how much is the chemical energy
of the battery reduced?

VA

0

0

x

x

4

1 2 3 

ΔVB ΔVC

V

V
(V

)

Figure 27-27
Problem 4.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 27-1 Single-Loop Circuits
•1 In Fig. 27-25, the ideal
batteries have emfs V and

V. What are (a) the current,
the dissipation rate in (b) resistor 1 (4.0

) and (c) resistor 2 (8.0 �), and the en-
ergy transfer rate in (d) battery 1 and
(e) battery 2? Is energy being supplied
or absorbed by (f) battery 1 and (g) bat-
tery 2?

•2 In Fig. 27-26, the ideal batteries 
have emfs �1 � 150 V and �2 � 50 V
and the resistances are R1 � 3.0 � and
R2 � 2.0 �. If the potential at P is 100 V,
what is it at Q?

•3 A car battery with a 12 V emf
and an internal resistance of 0.040 is
being charged with a current of 50 A.
What are (a) the potential difference V across the terminals, (b)
the rate Pr of energy dissipation inside the battery, and (c) the rate
Pemf of energy conversion to chemical form? When the battery is
used to supply 50 A to the starter motor, what are (d) V and (e) Pr?

•4 Figure 27-27 shows a circuit of four resistors that are con-
nected to a larger circuit. The graph below the circuit shows the
electric potential V(x) as a function of position x along the lower
branch of the circuit, through resistor 4; the potential VA is 12.0 V.
The graph above the circuit shows the electric potential V(x)
versus position x along the upper branch of the circuit, through
resistors 1, 2, and 3; the potential differences are �VB � 2.00 V and
�VC � 5.00 V. Resistor 3 has a resistance of 200 �. What is the
resistance of (a) resistor 1 and (b) resistor 2?

�

ILW

�

�2 � 6.0
�1 � 12

WWWSSM

–
+

– +

1

2

R1

R2

Figure 27-25
Problem 1.

–
+

–
+

Q

P

R1

R2

1 2

Figure 27-26 Problem 2.

•6 A standard flashlight battery can deliver about 2.0 W �h of
energy before it runs down. (a) If a battery costs US$0.80, what is
the cost of operating a 100 W lamp for 8.0 h using batteries?
(b) What is the cost if energy is provided at the rate of US$0.06 per
kilowatt-hour?

•7 A wire of resistance 5.0 � is connected to a battery whose emf
� is 2.0 V and whose internal resistance is 1.0 �. In 2.0 min, how
much energy is (a) transferred from chemical form in the battery,
(b) dissipated as thermal energy in the wire, and (c) dissipated as
thermal energy in the battery?

•8 A certain car battery with a 12.0 V emf has an initial charge of
120 A �h. Assuming that the potential across the terminals stays
constant until the battery is completely discharged, for how many
hours can it deliver energy at the rate of 100 W?

•9 (a) In electron-volts, how much work does an ideal battery
with a 12.0 V emf do on an electron that passes through the battery
from the positive to the negative terminal? (b) If 3.40 � 1018 elec-
trons pass through each second, what is the power of the battery in
watts?

••10 (a) In Fig. 27-28, what value
must R have if the current in the
circuit is to be 1.0 mA? Take �1 � 2.0
V, �2 � 3.0 V, and r1 � r2 � 3.0 �. (b)
What is the rate at which thermal en-
ergy appears in R?

••11 In Fig. 27-29, circuit sec-
tion AB absorbs energy at a rate of
50 W when current i � 1.0 A
through it is in the indicated
direction. Resistance R � 2.0 �. (a)
What is the potential difference be-
tween A and B? Emf device X lacks
internal resistance. (b) What is its
emf? (c) Is point B connected to the positive terminal of X or to
the negative terminal?

••12 Figure 27-30 shows a resistor of resis-
tance R � 6.00 � connected to an ideal battery
of emf � � 12.0 V by means of two copper
wires. Each wire has length 20.0 cm and radius
1.00 mm. In dealing with such circuits in this
chapter, we generally neglect the potential
differences along the wires and the transfer of
energy to thermal energy in them. Check
the validity of this neglect for the circuit of
Fig. 27-30: What is the potential difference
across (a) the resistor and (b) each of the two sections of wire?
At what rate is energy lost to thermal energy in (c) the resistor
and (d) each section of wire?

••13 A 10-km-long underground cable extends east to west and
consists of two parallel wires, each of which has resistance 13 /km.
An electrical short develops at distance x from the west end when

�

SSM

–
+

r1

1 –
+

r2

2

R

Figure 27-28 Problem 10.

X

i

A B R

Figure 27-29 Problem 11.

Wire 1 

Wire 2 

R

Figure 27-30
Problem 12.



•21 Four 18.0 � resistors are con-
nected in parallel across a 25.0 V
ideal battery. What is the current
through the battery?

•22 Figure 27-34 shows five 5.00 �
resistors. Find the equivalent resis-
tance between points (a) F and H and
(b) F and G. (Hint: For each pair of
points, imagine that a battery is con-
nected across the pair.)

•23 In Fig. 27-35, R1 � 100 �, R2 �
50 �, and the ideal batteries have
emfs �1 � 6.0 V, �2 � 5.0 V, and 
�3 � 4.0 V. Find (a) the current in re-
sistor 1, (b) the current in resistor 2,
and (c) the potential difference be-
tween points a and b.

•24 In Fig. 27-36, R1 � R2 � 4.00 �
and R3 � 2.50 �. Find the equivalent
resistance between points D and E.
(Hint: Imagine that a battery is con-
nected across those points.)

•25 Nine copper wires of length
l and diameter d are connected in par-
allel to form a single composite con-
ductor of resistance R. What must be
the diameter D of a single copper wire
of length l if it is to have the same re-
sistance?

••26 Figure 27-37 shows a battery
connected across a uniform resistor
R0. A sliding contact can move across
the resistor from x � 0 at the left to 
x � 10 cm at the right. Moving
the contact changes how much resist-
ance is to the left of the contact and
how much is to the right. Find the
rate at which energy is dissipated in
resistor R as a function of x. Plot the
function for � � 50 V, R � 2000 �,
and R0 � 100 �.

••27 Side flash. Figure 27-38
indicates one reason no one should
stand under a tree during a lightning
storm. If lightning comes down the
side of the tree, a portion can jump
over to the person, especially if the
current on the tree reaches a dry re-
gion on the bark and thereafter must
travel through air to reach the
ground. In the figure, part of the lightning jumps through distance
d in air and then travels through the person (who has negligible
resistance relative to that of air because of the highly conducting
salty fluids within the body).The rest of the current travels through
air alongside the tree, for a distance h. If d/h � 0.400 and the total
current is I � 5000 A, what is the current through the person?

••28 The ideal battery in Fig. 27-39a has emf � � 6.0 V. Plot 1 in
Fig. 27-39b gives the electric potential difference V that can appear
across resistor 1 versus the current i in that resistor when the resistor

SSM

a conducting path of resistance R
connects the wires (Fig. 27-31). The
resistance of the wires and the short
is then 100 � when measured from
the east end and 200 � when meas-
ured from the west end. What are
(a) x and (b) R?

••14 In Fig. 27-32a, both batteries have emf � � 1.20 V and the
external resistance R is a variable resistor. Figure 27-32b gives the
electric potentials V between the terminals of each battery as func-
tions of R: Curve 1 corresponds to battery 1, and curve 2 corre-
sponds to battery 2.The horizontal scale is set by Rs � 0.20 �.What
is the internal resistance of (a) battery 1 and (b) battery 2?
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Figure 27-32 Problem 14.
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Figure 27-31 Problem 13.
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Figure 27-37 Problem 26.
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Figure 27-35 Problem 23.
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Figure 27-36 Problem 24.
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Figure 27-38 Problem 27.

••15 The current in a single-loop circuit with one resistance R
is 5.0 A. When an additional resistance of 2.0 is inserted in series
with R, the current drops to 4.0 A.What is R?

•••16 A solar cell generates a potential difference of 0.10 V when
a 500 � resistor is connected across it, and a potential difference of
0.15 V when a 1000 � resistor is substituted. What are the (a) inter-
nal resistance and (b) emf of the solar cell? (c) The area of the cell is
5.0 cm2, and the rate per unit area at which it receives energy from
light is 2.0 mW/cm2. What is the efficiency of the cell for converting
light energy to thermal energy in the 1000 � external resistor?

•••17 In Fig. 27-33, battery 1 has emf
V and internal resistance r1

0.016 and battery 2 has emf V
and internal resistance r2 0.012 . The
batteries are connected in series with an ex-
ternal resistance R. (a) What R value makes
the terminal-to-terminal potential differ-
ence of one of the batteries zero? (b) Which
battery is that?

Module 27-2 Multiloop Circuits
•18 In Fig. 27-9, what is the potential difference Vd � Vc between
points d and c if �1 � 4.0 V, �2 � 1.0 V, R1 � R2 � 10 �, and R3 �
5.0 �, and the battery is ideal?

•19 A total resistance of 3.00 � is to be produced by connecting
an unknown resistance to a 12.0 � resistance. (a) What must be the
value of the unknown resistance, and (b) should it be connected in
series or in parallel?

•20 When resistors 1 and 2 are connected in series, the equivalent
resistance is 16.0 �. When they are connected in parallel, the
equivalent resistance is 3.0 �. What are (a) the smaller resistance
and (b) the larger resistance of these two resistors?

��
�2 � 12.0�

��1 � 12.0
SSM
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battery is opposite the direction of that battery’s emf. What are (a)
emf �1, (b) resistance R1, and (c) resistance R2?

••33 In Fig. 27-44, the current in resistance 6 is i6 � 1.40 A
and the resistances are R1 R2 R3 2.00 , R4 16.0 , R5

8.00 , and R6 � 4.00 �.What is the emf of the ideal battery?�
�������

is individually tested by putting a variable potential across it. The
scale of the V axis is set by Vs � 18.0 V, and the scale of the i axis is
set by is � 3.00 m�. Plots 2 and 3 are similar plots for resistors 2
and 3, respectively, when they are individually tested by putting a
variable potential across them. What is the current in resistor 2 in
the circuit of Fig. 27-39a?

••34 The resistances in Figs. 27-45a and b are all 6.0 �, and the batter-
ies are ideal 12 V batteries. (a) When switch S in Fig. 27-45a is closed,
what is the change in the electric potential V1 across resistor 1, or does
V1 remain the same? (b) When switch S in Fig. 27-45b is closed, what is
the change in V1 across resistor 1,or does V1 remain the same?

••35 In Fig. 27-46, � � 12.0 V,
R1 2000 , R2 3000 , and 
R3 4000 . What are the potential
differences (a) VA VB, (b) VB � VC,
(c) VC � VD, and (d) VA � VC?

••36 In Fig. 27-47, V,
V, R1 100 ,

and R3 300 . One point of the cir-
cuit is grounded (V � 0). What are
the (a) size and (b) direction (up or
down) of the current through resist-
ance 1, the (c) size and (d) direction
(left or right) of the current through
resistance 2, and the (e) size and
(f) direction of the current through
resistance 3? (g) What is the electric
potential at point A?

••37 In Fig. 27-48, the resistances
are R1 � 2.00 �, R2 � 5.00 �, and the
battery is ideal. What value of R3

maximizes the dissipation rate in
resistance 3?

••38 Figure 27-49 shows a section of
a circuit. The resistances are R1 � 2.0
�, R2 � 4.0 �, and R3 � 6.0 �, and the
indicated current is i � 6.0 A.
The electric potential difference be-
tween points A and B that connect
the section to the rest of the circuit is
VA � VB � 78 V. (a) Is the device rep-
resented by “Box” absorbing or pro-
viding energy to the circuit, and (b) at
what rate?
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••29 In Fig. 27-40, R1 � 6.00 �,
R2 � 18.0 �, and the ideal battery
has emf � � 12.0 V. What are the
(a) size and (b) direction (left or
right) of current i1? (c) How much
energy is dissipated by all four resis-
tors in 1.00 min?

••30 In Fig. 27-41, the ideal
batteries have emfs V and

2 0.500 1, and the resistances are
each 4.00 . What is the current in
(a) resistance 2 and (b) resistance 3?

••31 In Fig. 27-42, the
ideal batteries have emfs 1 5.0 V
and V, the resistances are
each 2.0 , and the potential is de-
fined to be zero at the grounded
point of the circuit. What are poten-
tials (a) V1 and (b) V2 at the indi-
cated points?

••32 Both batteries in Fig. 27-43a
are ideal. Emf �1 of battery 1 has a
fixed value, but emf �2 of battery 2
can be varied between 1.0 V and 10
V. The plots in Fig. 27-43b give the
currents through the two batteries as
a function of �2. The vertical scale is
set by is � 0.20 A. You must decide

�
�2 � 12

��
SSM

�
���

�1 � 10.0

which plot corresponds to which battery, but for both plots, a nega-
tive current occurs when the direction of the current through the
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through the battery as a function of R3. The horizontal scale is
set by R3s � 20 �. The curve has an asymptote of 2.0 mA as R3 :

. What are (a) resistance R1 and (b) resistance R2?

••39 In Fig. 27-50, two batteries with an
emf V and an internal resistance 
r � 0.300 � are connected in parallel across
a resistance R. (a) For what value of R is the
dissipation rate in the resistor a maximum?
(b) What is that maximum?

••40 Two identical batteries of emf � �
12.0 V and internal resistance r 0.200 are
to be connected to an external resistance R,
either in parallel (Fig. 27-50) or in series
(Fig. 27-51). If R � 2.00r, what is the current i
in the external resistance in the (a) parallel
and (b) series arrangements? (c) For which
arrangement is i greater? If R �
r/2.00, what is i in the external resist-
ance in the (d) parallel arrangement
and (e) series arrangement? (f) For
which arrangement is i greater now?

••41 In Fig. 27-41, �1 � 3.00 V, �2 �
1.00 V, R1 � 4.00 �, R2 � 2.00 �, R3 �
5.00 �, and both batteries are ideal.
What is the rate at which energy is dis-
sipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery
1 and (e) battery 2?

••42 In Fig. 27-52, an array of n par-
allel resistors is connected in series to
a resistor and an ideal battery. All the
resistors have the same resistance. If
an identical resistor were added in
parallel to the parallel array, the cur-
rent through the battery would
change by 1.25%. What is the value
of n?

••43 You are given a number of 10 � resistors, each capable of
dissipating only 1.0 W without being destroyed. What is the mini-
mum number of such resistors that you need to combine in series
or in parallel to make a 10 � resist-
ance that is capable of dissipating at
least 5.0 W?

••44 In Fig. 27-53, R1 100 ,
R2 R3 50.0 , R4 75.0 , and
the ideal battery has emf � � 6.00 V.
(a) What is the equivalent resistance?
What is i in (b) resistance 1, (c) resist-
ance 2, (d) resistance 3, and (e) resist-
ance 4?

••45 In Fig. 27-54, the resistances
are R1 1.0 and R2 2.0 ,
and the ideal batteries have emfs 
�1 � 2.0 V and �2 � �3 � 4.0 V. What
are the (a) size and (b) direction (up
or down) of the current in battery 1,
the (c) size and (d) direction of the
current in battery 2, and the (e) size
and (f) direction of the current in battery 3? (g) What is the poten-
tial difference Va � Vb?

••46 In Fig. 27-55a, resistor 3 is a variable resistor and the ideal
battery has emf � � 12 V. Figure 27-55b gives the current i

����

ILW

�����
��

��

� � 12.0

+ – 

+ – 
r

r

R

Figure 27-50
Problems 39 

and 40.

+ – + – 
rr

R

RR

R

n resistors 
in parallel

R3R2

R1

i(
m

A
)

6

4

2

0
R3 (Ω)

R3s

(a) (b)

+
–

+
–3

R1+
– 2

R2+
– 1

R1R1

R1

a

b

R2
+
–

R1

R3

R4

Figure 27-53
Problems 44 and 48.

Figure 27-51 Problem 40.

Figure 27-52 Problem 42.

Figure 27-54 Problem 45.

Figure 27-55 Problem 46.

minum jacket of outer radius b 0.380 mm. There is a current i �
2.00 A in the composite wire. Using Table 26-1, calculate the cur-
rent in (a) the copper and (b) the aluminum. (c) If a potential dif-
ference V � 12.0 V between the ends maintains the current, what
is the length of the composite wire?

•••48 In Fig. 27-53, the resistors have the values R1 � 7.00 �,

�

R2 12.0 , and R3 4.00 , and the ideal battery’s emf is 
� � 24.0 V. For what value of R4 will the rate at which the battery
transfers energy to the resistors equal (a) 60.0 W, (b) the maximum
possible rate Pmax, and (c) the minimum possible rate Pmin? What
are (d) Pmax and (e) Pmin?

Module 27-3 The Ammeter and
the Voltmeter
••49 (a) In Fig. 27-56, what cur-
rent does the ammeter read if 
5.0 V (ideal battery), R1 � 2.0 �, R2 �
4.0 �, and R3 � 6.0 �? (b) The am-
meter and battery are now inter-
changed. Show that the ammeter
reading is unchanged.

••50 In Fig. 27-57, R1 2.00R, the
ammeter resistance is zero, and the
battery is ideal. What multiple of �/R
gives the current in the ammeter?

••51 In Fig. 27-58, a voltmeter of
resistance RV � 300 � and an am-
meter of resistance RA � 3.00 � are
being used to measure a resistance
R in a circuit that also contains a re-
sistance R0 � 100 � and an ideal
battery with an emf of � � 12.0 V.
Resistance R is given by R � V/i,
where V is the potential across R
and i is the ammeter reading. The
voltmeter reading is V�, which is
V plus the potential difference
across the ammeter. Thus, the ratio
of the two meter readings is not R but only an apparent resist-
ance R� � V�/i. If R � 85.0 �, what are (a) the ammeter reading,
(b) the voltmeter reading, and (c) R�? (d) If RA is decreased,
does the difference between R� and R increase, decrease, or
remain the same?

••52 A simple ohmmeter is made by connecting a 1.50 V flash-
light battery in series with a resistance R and an ammeter that

�

� �
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Module 27-4 RC Circuits
•57 Switch S in Fig. 27-63 is closed at
time t � 0, to begin charging an initially
uncharged capacitor of capacitance C �
15.0 mF through a resistor of resistance 
R � 20.0 �. At what time is the potential
across the capacitor equal to that across
the resistor?

•58 In an RC series circuit, emf � � 12.0 V, resistance R �
1.40 M�, and capacitance C � 1.80 mF. (a) Calculate the time con-
stant. (b) Find the maximum charge that will appear on the capaci-
tor during charging. (c) How long does it take for the charge to
build up to 16.0 mC?

•59 What multiple of the time constant t gives the time
taken by an initially uncharged capacitor in an RC series circuit to
be charged to 99.0% of its final charge?

•60 A capacitor with initial charge q0 is discharged through a
resistor. What multiple of the time constant t gives the time the
capacitor takes to lose (a) the first one-third of its charge and
(b) two-thirds of its charge?

•61 A 15.0 k� resistor and a capacitor are connected in se-
ries, and then a 12.0 V potential difference is suddenly applied
across them. The potential difference across the capacitor rises to
5.00 V in 1.30 ms. (a) Calculate the time constant of the circuit.
(b) Find the capacitance of the capacitor.

••62 Figure 27-64 shows the circuit of
a flashing lamp, like those attached to
barrels at highway construction sites.
The fluorescent lamp L (of negligible
capacitance) is connected in parallel
across the capacitor C of an RC circuit.
There is a current through the lamp
only when the potential difference
across it reaches the breakdown volt-
age VL; then the capacitor discharges completely through the lamp
and the lamp flashes briefly. For a lamp with breakdown voltage 
VL � 72.0 V, wired to a 95.0 V ideal battery and a 0.150 mF capacitor,
what resistance R is needed for two flashes per second?

••63 In the circuit of Fig.WWWSSM

ILW

SSM

reads from 0 to 1.00 mA, as shown in
Fig. 27-59. Resistance R is adjusted
so that when the clip leads are
shorted together, the meter deflects
to its full-scale value of 1.00 mA.
What external resistance across the
leads results in a deflection of (a)
10.0%, (b) 50.0%, and (c) 90.0% of full scale? (d) If the ammeter
has a resistance of 20.0 � and the internal resistance of the battery
is negligible, what is the value of R?

••53 In Fig. 27-14, assume that � � 3.0 V, r � 100 �, R1 � 250 �,
and R2 � 300 �. If the voltmeter resistance RV is 5.0 k�, what per-
cent error does it introduce into the measurement of the potential
difference across R1? Ignore the presence of the ammeter.

••54 When the lights of a car are
switched on, an ammeter in series with
them reads 10.0 A and a voltmeter
connected across them reads 12.0 V (Fig.
27-60). When the electric starting motor is
turned on, the ammeter reading drops to
8.00 A and the lights dim somewhat. If the
internal resistance of the battery is 0.0500
� and that of the ammeter is negligible,
what are (a) the emf of the battery and (b)
the current through the starting motor
when the lights are on?

••55 In Fig. 27-61, Rs is to be adjusted in
value by moving the sliding contact across
it until points a and b are brought to the
same potential. (One tests for this condition by momentarily con-
necting a sensitive ammeter be-
tween a and b; if these points are at
the same potential, the ammeter
will not deflect.) Show that when
this adjustment is made, the follow-
ing relation holds: Rx � RsR2/R1.
An unknown resistance (Rx) can be
measured in terms of a standard
(Rs) using this device, which is
called a Wheatstone bridge.

••56 In Fig. 27-62, a voltmeter of
resistance RV � 300 � and an am-
meter of resistance RA � 3.00 �
are being used to measure a resist-
ance R in a circuit that also con-
tains a resistance R0 � 100 � and
an ideal battery of emf � � 12.0 V.
Resistance R is given by R � V/i,
where V is the voltmeter reading
and i is the current in resistance R.
However, the ammeter reading is
not i but rather i�, which is i plus the
current through the voltmeter.
Thus, the ratio of the two meter
readings is not R but only an appar-

Figure 27-59 Problem 52.
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ent resistance R� � V/i�. If R � 85.0 �, what are (a) the ammeter
reading, (b) the voltmeter reading, and (c) R�? (d) If RV is in-
creased, does the difference between R� and R increase, decrease,
or remain the same?
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27-65, kV, C 6.5 mF, R1 �
R2 � R3 � 0.73 M�. With C completely
uncharged, switch S is suddenly closed
(at t � 0). At t � 0, what are (a) current
i1 in resistor 1, (b) current i2 in resistor 2,
and (c) current i3 in resistor 3? At t � 

(that is, after many time constants),

�� � 1.2

what are (d) i1, (e) i2, and (f) i3? What is the potential difference V2

across resistor 2 at (g) t � 0 and (h) t � 
? (i) Sketch V2 versus t be-
tween these two extreme times.

••64 A capacitor with an initial potential difference of 100 V is dis-
charged through a resistor when a switch between them is closed at
t � 0.At t � 10.0 s, the potential differ-
ence across the capacitor is 1.00 V. (a)
What is the time constant of the
circuit? (b) What is the potential differ-
ence across the capacitor at t � 17.0 s?

••65 In Fig. 27-66, R1 � 10.0 k�,
R2 15.0 k , C 0.400 mF, and the���

+
– R2

R1

C

Figure 27-66
Problems 65 and 99.
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73 Wires A and B, having equal lengths of 40.0 m and equal
diameters of 2.60 mm, are connected in series. A potential
difference of 60.0 V is applied between the ends of the composite
wire. The resistances are RA � 0.127 � and RB � 0.729 �. For wire
A, what are (a) magnitude J of the current density and (b) poten-
tial difference V? (c) Of what type material is wire A made (see
Table 26-1)? For wire B, what are (d) J and (e) V? (f) Of what type
material is B made?

74 What are the (a) size and (b) direction (up or down) of cur-
rent i in Fig. 27-71, where all resistances are 4.0 � and all batteries
are ideal and have an emf of 10 V? (Hint: This can be answered us-
ing only mental calculation.)

SSMideal battery has emf V. First, the switch is closed a long
time so that the steady state is reached. Then the switch is opened
at time t � 0.What is the current in resistor 2 at t � 4.00 ms?

••66 Figure 27-67 displays two cir-
cuits with a charged capacitor that
is to be discharged through a resis-
tor when a switch is closed. In Fig.
27-67a, R1 � 20.0 � and C1 � 5.00
mF. In Fig. 27-67b, R2 � 10.0 � and
C2 � 8.00 mF. The ratio of the initial
charges on the two capacitors is
q02/q01 � 1.50. At time t � 0, both switches are closed. At what
time t do the two capacitors have the same charge?

••67 The potential difference between the plates of a leaky
(meaning that charge leaks from one plate to the other) 2.0 mF
capacitor drops to one-fourth its initial value in 2.0 s. What is the
equivalent resistance between the capacitor plates?

••68 A 1.0 mF capacitor with an initial stored energy of 0.50 J is
discharged through a 1.0 M� resistor. (a) What is the initial charge
on the capacitor? (b) What is the current through the resistor when
the discharge starts? Find an expression that gives, as a function of
time t, (c) the potential difference VC across the capacitor, (d) the
potential difference VR across the resistor, and (e) the rate at which
thermal energy is produced in the resistor.

•••69 A 3.00 M� resistor and a 1.00 mF capacitor are
connected in series with an ideal battery of emf V.At 1.00 s
after the connection is made, what is the rate at which (a) the
charge of the capacitor is increasing, (b) energy is being stored in
the capacitor, (c) thermal energy is appearing in the resistor, and
(d) energy is being delivered by the battery?

Additional Problems
70 Each of the six real batteries in
Fig. 27-68 has an emf of 20 V and a resistance
of 4.0 . (a) What is the current through the
(external) resistance R 4.0 ? (b) What is
the potential difference across each battery?
(c) What is the power of each battery? (d) At
what rate does each battery transfer energy
to internal thermal energy?

71 In Fig. 27-69, R1 20.0 , R2

10.0 , and the ideal battery has emf
� 120 V. What is the current at
point a if we close (a) only switch S1,
(b) only switches S1 and S2, and (c) all
three switches?

72 In Fig. 27-70, the ideal battery has
emf � 30.0 V, and the resistances
are R1 R2 14 , R3 R4

R5 6.0 , R6 2.0 , and R7 1.5
.What are currents (a) i2, (b) i4, (c) i1, (d) i3, and (e) i5?�
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75 Suppose that, while you are sitting in a chair, charge
separation between your clothing and the chair puts you at a
potential of 200 V, with the capacitance between you and the
chair at 150 pF. When you stand up, the increased separation
between your body and the chair decreases the capacitance to
10 pF. (a) What then is the potential of your body? That poten-
tial is reduced over time, as the charge on you drains through
your body and shoes (you are a capacitor discharging through a
resistance). Assume that the resistance along that route is 300
G�. If you touch an electrical component while your potential
is greater than 100 V, you could ruin the component. (b) How
long must you wait until your potential reaches the safe level of
100 V?

If you wear a conducting wrist strap that is connected to
ground, your potential does not increase as much when you stand
up; you also discharge more rapidly because the resistance through
the grounding connection is much less than through your body and
shoes. (c) Suppose that when you stand up, your potential is 1400 V
and the chair-to-you capacitance is 10 pF. What resistance in that
wrist-strap grounding connection will allow you to discharge to 100
V in 0.30 s, which is less time than you would need to reach for, say,
your computer?

76 In Fig. 27-72, the ideal batteries have emfs �1 � 20.0 V,
V, and V, and the resistances are each 2.00 .

What are the (a) size and (b) direction (left or right) of current i1?
(c) Does battery 1 supply or absorb energy, and (d) what is its
power? (e) Does battery 2 supply or absorb energy, and (f) what is

��3 � 5.00�2 � 10.0
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unit is a float connected to a variable resistor whose resistance
varies linearly with the volume of gasoline. The resistance is 140 �
when the tank is empty and 20 � when the tank is full. Find the
current in the circuit when the tank is (a) empty, (b) half-full, and
(c) full.Treat the battery as ideal.

85 The starting motor of a car is turning too slowly, and
the mechanic has to decide whether to replace the motor, the ca-
ble, or the battery. The car’s manual says that the 12 V battery
should have no more than 0.020 � internal resistance, the motor no
more than 0.200 � resistance, and the cable no more than 0.040 �
resistance. The mechanic turns on the motor and measures 11.4 V
across the battery, 3.0 V across the cable, and a current of 50 A.
Which part is defective?

86 Two resistors R1 and R2 may be connected either in series or in
parallel across an ideal battery with emf �. We desire the rate of en-
ergy dissipation of the parallel combination to be five times that of
the series combination. If R1 � 100 �, what are the (a) smaller and
(b) larger of the two values of R2 that result in that dissipation rate?

87 The circuit of Fig. 27-75 shows a
capacitor, two ideal batteries, two
resistors, and a switch S. Initially S has
been open for a long time. If it is then
closed for a long time, what is the
change in the charge on the capacitor?
Assume C � 10 mF, �1 � 1.0 V, �2 � 3.0
V, R1 � 0.20 �, and R2 � 0.40 �.

88 In Fig. 27-41, R1 � 10.0 �, R2 �
20.0 �, and the ideal batteries have emfs
�1 � 20.0 V and �2 � 50.0 V. What
value of R3 results in no current through
battery 1?

89 In Fig. 27-76, R � 10 �. What is the
equivalent resistance between points A
and B? (Hint: This circuit section might
look simpler if you first assume that points
A and B are connected to a battery.)

90 (a) In Fig. 27-4a, show that the rate
at which energy is dissipated in R as
thermal energy is a maximum when 
R � r. (b) Show that this maximum
power is P � �2/4r.

91 In Fig. 27-77, the ideal batteries
have emfs �1 � 12.0 V and �2 � 4.00
V, and the resistances are each 4.00 �.
What are the (a) size and (b) direction
(up or down) of i1 and the (c) size and
(d) direction of i2? (e) Does battery 1
supply or absorb energy, and (f) what
is its energy transfer rate? (g) Does
battery 2 supply or absorb energy, and
(h) what is its energy transfer rate?

92 Figure 27-78 shows a portion of a
circuit through which there is a current
I � 6.00 A. The resistances are R1 �
R2 � 2.00R3 � 2.00R4 � 4.00 �. What
is the current i1 through resistor 1?

93 Thermal energy is to be gener-
ated in a 0.10 � resistor at the rate of

SSM

its power? (g) Does battery 3 supply or absorb energy, and (h)
what is its power?
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Figure 27-72 Problem 76.

77 A temperature-stable resistor is made by connecting a
resistor made of silicon in series with one made of iron. If the re-
quired total resistance is 1000 � in a wide temperature range
around 20�C, what should be the resistance of the (a) silicon resis-
tor and (b) iron resistor? (See Table 26-1.)

78 In Fig. 27-14, assume that � � 5.0 V, r � 2.0 �, R1 � 5.0 �, and
R2 � 4.0 �. If the ammeter resistance RA is 0.10 �, what percent
error does it introduce into the measurement of the current?
Assume that the voltmeter is not present.

79 An initially uncharged capacitor C is fully charged by a
device of constant emf connected in series with a resistor R.
(a) Show that the final energy stored in the capacitor is half the en-
ergy supplied by the emf device. (b) By direct integration of i2R
over the charging time, show that the thermal energy dissipated by
the resistor is also half the energy supplied by the emf device.

80 In Fig. 27-73, R1 � 5.00 �, R2 �
10.0 �, R3 � 15.0 �, C1 � 5.00 mF,
C2 � 10.0 mF, and the ideal battery
has emf � � 20.0 V.Assuming that the
circuit is in the steady state,what is the
total energy stored in the two
capacitors?

81 In Fig. 27-5a, find the potential
difference across R2 if � � 12 V, R1

� 3.0 �, R2 � 4.0 �, and R3 � 5.0 �.

82 In Fig. 27-8a, calculate the potential difference between a and
c by considering a path that contains R, r1, and �1.

83 A controller on an electronic arcade game consists of
a variable resistor connected across the plates of a 0.220 mF capaci-
tor.The capacitor is charged to 5.00 V, then discharged through the
resistor. The time for the potential difference across the plates to
decrease to 0.800 V is measured by a
clock inside the game. If the range of
discharge times that can be handled
effectively is from 10.0 ms to 6.00 ms,
what should be the (a) lower value
and (b) higher value of the resist-
ance range of the resistor?

84 An automobile gasoline gauge
is shown schematically in Fig. 27-74.
The indicator (on the dashboard)
has a resistance of 10 �. The tank
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�3 � 5.00 V, and �4 � 5.00 V, and the resistances are each 2.00 �.
What are the (a) size and (b) direction (left or right) of current i1 and
the (c) size and (d) direction of current i2? (This can be answered
with only mental calculation.) (e) At what rate is energy being trans-
ferred in battery 4, and (f) is the energy being supplied or absorbed
by the battery?

101 In Fig. 27-82, an ideal battery
of emf � � 12.0 V is connected to a
network of resistances R1 � 6.00 �,
R2 � 12.0 �, R3 � 4.00 �, R4 � 3.00 �,
and R5 � 5.00 �. What is the poten-
tial difference across resistance 5?

102 The following table gives the
electric potential difference VT

across the terminals of a battery as a
function of current i being drawn
from the battery. (a) Write an equation that represents the rela-
tionship between VT and i. Enter the data into your graphing calcu-
lator and perform a linear regression fit of VT versus i. From the
parameters of the fit, find (b) the battery’s emf and (c) its internal
resistance.

i(A): 50.0 75.0 100 125 150 175 200
VT(V): 10.7 9.00 7.70 6.00 4.80 3.00 1.70

103 In Fig. 27-83, �1 � 6.00 V, �2 �
12.0 V, R1 � 200 �, and R2 � 100 �.
What are the (a) size and (b) direction
(up or down) of the current through
resistance 1, the (c) size and (d) direc-
tion of the current through resistance
2, and the (e) size and (f) direction of
the current through battery 2?

104 A three-way 120 V lamp bulb that contains two filaments is
rated for 100-200-300 W. One filament burns out. Afterward, the
bulb operates at the same intensity (dissipates energy at the same
rate) on its lowest as on its highest switch positions but does not
operate at all on the middle position. (a) How are the two fila-
ments wired to the three switch positions? What are the (b) smaller
and (c) larger values of the filament resistances?

105 In Fig. 27-84, R1 � R2 � 2.0 �, R3 � 4.0 �, R4 � 3.0 �, R5 �
1.0 �, and R6 � R7 � R8 � 8.0 �, and the ideal batteries have emfs
�1 � 16 V and �2 � 8.0 V. What are the (a) size and (b) direction
(up or down) of current i1 and the (c) size and (d) direction of
current i2? What is the energy transfer rate in (e) battery 1 and
(f) battery 2? Is energy being supplied or absorbed in (g) battery 1
and (h) battery 2?
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10 W by connecting the resistor to a battery whose emf is 1.5 V. (a)
What potential difference must exist across the resistor? (b) What
must be the internal resistance of the battery?

94 Figure 27-79 shows three 20.0 �
resistors. Find the equivalent resist-
ance between points (a) A and B, (b)
A and C, and (c) B and C. (Hint:
Imagine that a battery is connected
between a given pair of points.)

95 A 120 V power line is protected by a 15 A fuse. What is the
maximum number of 500 W lamps that can be simultaneously op-
erated in parallel on this line without “blowing” the fuse because
of an excess of current?

96 Figure 27-63 shows an ideal battery of emf � � 12 V,
a resistor of resistance R � 4.0 �, and an uncharged capacitor of
capacitance C � 4.0 mF.After switch S is closed, what is the current
through the resistor when the charge on the capacitor is 8.0 mC?

97 A group of N identical batteries of emf � and internal re-
sistance r may be connected all in series (Fig. 27-80a) or all in par-
allel (Fig. 27-80b) and then across a resistor R. Show that both
arrangements give the same current in R if R � r.
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98 In Fig. 27-48, R1 � R2

10.0 , and the ideal battery has emf
V. (a) What value of R3

maximizes the rate at which the bat-
tery supplies energy and (b) what is
that maximum rate?

99 In Fig. 27-66, the ideal bat-SSM

� � 12.0
�

�SSM

tery has emf � � 30 V, the 
resistances are R1 20 k and
R2 10 k , and the capacitor is un-
charged. When the switch is closed at
time t � 0, what is the current in (a)
resistance 1 and (b) resistance 2? (c)
A long time later, what is the current
in resistance 2?

100 In Fig. 27-81, the ideal batteries
have emfs �1 � 20.0 V, �2 � 10.0 V,
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Figure 27-84 Problem 105.

i2

i1R1

R2 R3 R4

R5R6

R7R8

1

+
–

– + 
2



803

C H A P T E R  2 8

Magnetic Fields

What Is Physics?
As we have discussed, one major goal of physics is the study of how an electric
field can produce an electric force on a charged object. A closely related goal is
the study of how a magnetic field can produce a magnetic force on a (moving)
charged particle or on a magnetic object such as a magnet. You may already have
a hint of what a magnetic field is if you have ever attached a note to a refrigerator
door with a small magnet or accidentally erased a credit card by moving it near
a magnet.The magnet acts on the door or credit card via its magnetic field.

The applications of magnetic fields and magnetic forces are countless and
changing rapidly every year. Here are just a few examples. For decades, the
entertainment industry depended on the magnetic recording of music and images
on audiotape and videotape. Although digital technology has largely replaced

28-1 MAGNETIC FIELDS AND THE DEFINITION OF B
:

After reading this module, you should be able to . . .

28.01 Distinguish an electromagnet from a permanent
magnet.

28.02 Identify that a magnetic field is a vector quantity and
thus has both magnitude and direction.

28.03 Explain how a magnetic field can be defined in terms
of what happens to a charged particle moving through
the field.

28.04 For a charged particle moving through a uniform mag-
netic field, apply the relationship between force magnitude
FB, charge q, speed v, field magnitude B, and the angle f
between the directions of the velocity vector and the
magnetic field vector .

28.05 For a charged particle sent through a uniform 
magnetic field, find the direction of the magnetic force 

by (1) applying the right-hand rule to find the directionF
:

B

B
:

v:

of the cross product and (2) determining what
effect the charge q has on the direction.

28.06 Find the magnetic force acting on a moving charged
particle by evaluating the cross product in 
unit-vector notation and magnitude-angle notation.

28.07 Identify that the magnetic force vector must always
be perpendicular to both the velocity vector and the
magnetic field vector .

28.08 Identify the effect of the magnetic force on the
particle’s speed and kinetic energy.

28.09 Identify a magnet as being a magnetic dipole.
28.10 Identify that opposite magnetic poles attract each

other and like magnetic poles repel each other.
28.11 Explain magnetic field lines, including where they origi-

nate and terminate and what their spacing represents.
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● When a charged particle moves through a magnetic field ,
a magnetic force acts on the particle as given by

where q is the particle’s charge (sign included) and is the
particle’s velocity.

● The right-hand rule for cross products gives the direction 
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of . The sign of q then determines whether is 
in the same direction as or in the opposite 
direction.

● The magnitude of is given by

FB � vB sin f,�q�
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where f is the angle between and .B
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magnetic recording, the industry still depends on the magnets that control CD
and DVD players and computer hard drives; magnets also drive the speaker
cones in headphones, TVs, computers, and telephones. A modern car comes
equipped with dozens of magnets because they are required in the motors for
engine ignition, automatic window control, sunroof control, and windshield wiper
control. Most security alarm systems, doorbells, and automatic door latches
employ magnets. In short, you are surrounded by magnets.

The science of magnetic fields is physics; the application of magnetic fields is
engineering. Both the science and the application begin with the question “What
produces a magnetic field?”

What Produces a Magnetic Field?
Because an electric field is produced by an electric charge, we might reason-
ably expect that a magnetic field is produced by a magnetic charge. Although
individual magnetic charges (called magnetic monopoles) are predicted by cer-
tain theories, their existence has not been confirmed. How then are magnetic
fields produced? There are two ways.

One way is to use moving electrically charged particles, such as a current in
a wire, to make an electromagnet. The current produces a magnetic field that can
be used, for example, to control a computer hard drive or to sort scrap metal
(Fig. 28-1). In Chapter 29, we discuss the magnetic field due to a current.

The other way to produce a magnetic field is by means of elementary parti-
cles such as electrons because these particles have an intrinsic magnetic field
around them. That is, the magnetic field is a basic characteristic of each particle
just as mass and electric charge (or lack of charge) are basic characteristics.As we
discuss in Chapter 32, the magnetic fields of the electrons in certain materials add
together to give a net magnetic field around the material. Such addition is the
reason why a permanent magnet, the type used to hang refrigerator notes, has a
permanent magnetic field. In other materials, the magnetic fields of the electrons
cancel out, giving no net magnetic field surrounding the material. Such cancella-
tion is the reason you do not have a permanent field around your body, which is
good because otherwise you might be slammed up against a refrigerator door
every time you passed one.

Our first job in this chapter is to define the magnetic field . We do so by
using the experimental fact that when a charged particle moves through a 
magnetic field, a magnetic force acts on the particle.

The Definition of 
We determined the electric field at a point by putting a test particle of charge
q at rest at that point and measuring the electric force acting on the particle.
We then defined as

(28-1)

If a magnetic monopole were available, we could define in a similar way.
Because such particles have not been found, we must define in another way,
in terms of the magnetic force exerted on a moving electrically charged test
particle.

Moving Charged Particle. In principle, we do this by firing a charged parti-
cle through the point at which is to be defined, using various directions and
speeds for the particle and determining the force that acts on the particle at
that point. After many such trials we would find that when the particle’s velocity
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Figure 28-1 Using an electromagnet to collect
and transport scrap metal at a steel mill.



is along a particular axis through the point, force is zero. For all other direc-
tions of , the magnitude of is always proportional to v sin f, where f is the
angle between the zero-force axis and the direction of . Furthermore, the direc-
tion of is always perpendicular to the direction of . (These results suggest
that a cross product is involved.)

The Field. We can then define a magnetic field to be a vector quantity that
is directed along the zero-force axis. We can next measure the magnitude of 

when is directed perpendicular to that axis and then define the magnitude
of in terms of that force magnitude:

where q is the charge of the particle.
We can summarize all these results with the following vector equation:

(28-2)

that is, the force on the particle is equal to the charge q times the cross product
of its velocity and the field (all measured in the same reference frame).
Using Eq. 3-24 for the cross product, we can write the magnitude of as

FB � vB sin f, (28-3)

where f is the angle between the directions of velocity and magnetic field .

Finding the Magnetic Force on a Particle
Equation 28-3 tells us that the magnitude of the force acting on a particle in
a magnetic field is proportional to the charge q and speed v of the particle. Thus,
the force is equal to zero if the charge is zero or if the particle is stationary.
Equation 28-3 also tells us that the magnitude of the force is zero if and areB
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Figure 28-2 (a)–(c) The right-hand rule (in which is swept into through the smaller an-
gle f between them) gives the direction of as the direction of the thumb. (d) If q is
positive, then the direction of is in the direction of (e) If q is negative,
then the direction of is opposite that of v: � B
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Force on positive
particle

Force on negative
particlevCross   into     to get the new vectorB Bv � .

Bv � Bv �

either parallel (f � 0 ) or antiparallel (f � 180 ), and the force is at its maximum
when and are perpendicular to each other.

Directions. Equation 28-2 tells us all this plus the direction of . From
Module 3-3, we know that the cross product in Eq. 28-2 is a vector that is
perpendicular to the two vectors and . The right-hand rule (Figs. 28-2a
through c) tells us that  the thumb of the right hand points in the direction
of when the fingers sweep into . If q is positive, then (by Eq. 28-2) the
force has the same sign as and thus must be in the same direction; that
is, for positive q, is directed along the thumb (Fig. 28-2d). If q is negative, thenF
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the force and cross product have opposite signs and thus must be in
opposite directions. For negative q, is directed opposite the thumb (Fig. 28-2e).
Heads up: Neglect of this effect of negative q is a very common error on exams.

Regardless of the sign of the charge, however,
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B
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The force acting on a charged particle moving with velocity through a
magnetic field is always perpendicular to and .B

:
v:B

:
v:F

:

B

Thus, never has a component parallel to . This means that cannot change
the particle’s speed v (and thus it cannot change the particle’s kinetic energy).
The force can change only the direction of (and thus the direction of travel);
only in this sense can accelerate the particle.

To develop a feeling for Eq. 28-2, consider Fig. 28-3, which shows some tracks
left by charged particles moving rapidly through a bubble chamber. The chamber,
which is filled with liquid hydrogen, is immersed in a strong uniform magnetic
field that is directed out of the plane of the figure. An incoming gamma ray 
particle—which leaves no track because it is uncharged—transforms into an
electron (spiral track marked e�) and a positron (track marked e�) while it
knocks an electron out of a hydrogen atom (long track marked e�). Check with
Eq. 28-2 and Fig. 28-2 that the three tracks made by these two negative particles
and one positive particle curve in the proper directions.

Unit. The SI unit for that follows from Eqs. 28-2 and 28-3 is the newton
per coulomb-meter per second. For convenience, this is called the tesla (T):

Recalling that a coulomb per second is an ampere, we have

(28-4)

An earlier (non-SI) unit for , still in common use, is the gauss (G), and

1 tesla � 104 gauss. (28-5)

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth’s
magnetic field near the planet’s surface is about 10�4 T (� 100 mT or 1 G).
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Figure 28-3 The tracks of two electrons (e�)
and a positron (e�) in a bubble chamber
that is immersed in a uniform magnetic field
that is directed out of the plane of the page.

Table 28-1 Some Approximate 
Magnetic Fields

At surface of neutron star 108 T
Near big electromagnet 1.5 T
Near small bar magnet 10�2 T
At Earth’s surface 10�4 T
In interstellar space 10�10 T
Smallest value in 

magnetically
shielded room 10�14 T

Checkpoint 1
The figure shows three sit-
uations in which a charged
particle with velocity 
travels through a uniform
magnetic field . In each
situation, what is the di-
rection of the magnetic
force on the particle?F
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Magnetic Field Lines
We can represent magnetic fields with field lines, as we did for electric fields.
Similar rules apply: (1) the direction of the tangent to a magnetic field line at
any point gives the direction of at that point, and (2) the spacing of the lines
represents the magnitude of —the magnetic field is stronger where the lines
are closer together, and conversely.
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Figure 28-4a shows how the magnetic field near a bar magnet (a permanent
magnet in the shape of a bar) can be represented by magnetic field lines.The lines
all pass through the magnet, and they all form closed loops (even those that are not
shown closed in the figure). The external magnetic effects of a bar magnet are
strongest near its ends, where the field lines are most closely spaced. Thus, the
magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near
the two ends of the magnet.

Two Poles. The (closed) field lines enter one end of a magnet and exit the
other end. The end of a magnet from which the field lines emerge is called the
north pole of the magnet; the other end, where field lines enter the magnet, is
called the south pole. Because a magnet has two poles, it is said to be a magnetic
dipole. The magnets we use to fix notes on refrigerators are short bar magnets.
Figure 28-5 shows two other common shapes for magnets: a horseshoe magnet
and a magnet that has been bent around into the shape of a C so that the pole
faces are facing each other. (The magnetic field between the pole faces can then
be approximately uniform.) Regardless of the shape of the magnets, if we place
two of them near each other we find:
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Figure 28-4 (a) The magnetic field lines for a
bar magnet. (b) A “cow magnet”—a bar
magnet that is intended to be slipped down
into the rumen of a cow to prevent acciden-
tally ingested bits of scrap iron from reach-
ing the cow’s intestines.The iron filings at
its ends reveal the magnetic field lines.

N

S

(a)

(b)

Courtesy Dr. Richard Cannon, 
Southeast Missouri State 
University, Cape Girardeau

Opposite magnetic poles attract each other, and like magnetic poles repel 
each other.

When you hold two magnets near each other with your hands, this attraction or
repulsion seems almost magical because there is no contact between the two to
visibly justify the pulling or pushing. As we did with the electrostatic force be-
tween two charged particles, we explain this noncontact force in terms of a field
that you cannot see, here the magnetic field.

Earth has a magnetic field that is produced in its core by still unknown
mechanisms. On Earth’s surface, we can detect this magnetic field with a com-
pass, which is essentially a slender bar magnet on a low-friction pivot. This bar
magnet, or this needle, turns because its north-pole end is attracted toward the
Arctic region of Earth. Thus, the south pole of Earth’s magnetic field must be lo-
cated toward the Arctic. Logically, we then should call the pole there a south
pole. However, because we call that direction north, we are trapped into the
statement that Earth has a geomagnetic north pole in that direction.

With more careful measurement we would find that in the Northern Hemi-
sphere, the magnetic field lines of Earth generally point down into Earth and
toward the Arctic. In the Southern Hemisphere, they generally point up out of
Earth and away from the Antarctic—that is, away from Earth’s geomagnetic
south pole.

Figure 28-5 (a) A horseshoe magnet and (b) a C-shaped magnet. (Only some of the external
field lines are shown.)

N S 

S

N

(a) (b)

The field lines run from
the north pole to the
south pole.
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Direction: To find the direction of , we use the fact that
has the direction of the cross product Because

the charge q is positive, must have the same direction as
which can be determined with the right-hand rule

for cross products (as in Fig. 28-2d). We know that is di-
rected horizontally from south to north and is directed
vertically up. The right-hand rule shows us that the deflect-
ing force must be directed horizontally from west to east,
as Fig. 28-6 shows. (The array of dots in the figure represents
a magnetic field directed out of the plane of the figure. An
array of Xs would have represented a magnetic field di-
rected into that plane.)

If the charge of the particle were negative, the magnetic
deflecting force would be directed in the opposite direction—
that is, horizontally from east to west.This is predicted auto-
matically by Eq. 28-2 if we substitute a negative value for q.
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6.1 � 10�15 N
1.67 � 10�27 kg

� 3.7 � 1012 m/s2.

Sample Problem 28.01 Magnetic force on a moving charged particle

A uniform magnetic field , with magnitude 1.2 mT, is
directed vertically upward throughout the volume of a labo-
ratory chamber.A proton with kinetic energy 5.3 MeV enters
the chamber, moving horizontally from south to north.What
magnetic deflecting force acts on the proton as it enters the
chamber? The proton mass is 1.67 � 10�27 kg. (Neglect
Earth’s magnetic field.)

KEY IDEAS

Because the proton is charged and moving through a mag-
netic field, a magnetic force can act on it. Because the ini-
tial direction of the proton’s velocity is not along a magnetic
field line, is not simply zero.

Magnitude: To find the magnitude of , we can use Eq. 28-3
provided we first find the proton’s speed v.

We can find v from the given kinetic energy because
. Solving for v, we obtain

Equation 28-3 then yields

(Answer)

This may seem like a small force, but it acts on a particle of
small mass, producing a large acceleration; namely,

� 6.1 � 10�15 N.

� (1.2 � 10�3 T)(sin 90�)

� (1.60 � 10�19 C)(3.2 � 107 m/s)

FB � �q�vB sin f

� 3.2 � 107 m/s.

v � A
2K
m

� A
(2)(5.3 MeV)(1.60 � 10�13 J/MeV)

1.67 � 10�27 kg

K � 1
2 mv2

(FB � �q�vB sin f)
F
:

B

F
:

B

F
:

B

B
:
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Figure 28-6 An overhead view of a proton moving from south to
north with velocity in a chamber. A magnetic field is directed
vertically upward in the chamber, as represented by the array of
dots (which resemble the tips of arrows).The proton is deflected
toward the east.
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28-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON

After reading this module, you should be able to . . .

28.12 Describe the experiment of J. J. Thomson.
28.13 For a charged particle moving through a magnetic field

and an electric field, determine the net force on the particle
in both magnitude-angle notation and unit-vector notation.

28.14 In situations where the magnetic force and electric
force on a particle are in opposite directions, determine
the speeds at which the forces cancel, the magnetic force
dominates, and the electric force dominates.

Learning Objectives

● If a charged particle moves through a region containing
both an electric field and a magnetic field, it can be
affected by both an electric force and a magnetic 
force.

● If the fields are perpendicular to each other, they are said to
be crossed fields.

● If the forces are in opposite directions, a particular speed
will result in no deflection of the particle.

Key Ideas



Crossed Fields: Discovery of the Electron
Both an electric field and a magnetic field can produce a force on a charged
particle. When the two fields are perpendicular to each other, they are said to be
crossed fields. Here we shall examine what happens to charged particles—
namely, electrons—as they move through crossed fields. We use as our example
the experiment that led to the discovery of the electron in 1897 by J. J. Thomson
at Cambridge University.

Two Forces. Figure 28-7 shows a modern, simplified version of Thomson’s
experimental apparatus—a cathode ray tube (which is like the picture tube in an
old-type television set). Charged particles (which we now know as electrons) are
emitted by a hot filament at the rear of the evacuated tube and are accelerated by
an applied potential difference V. After they pass through a slit in screen C, they
form a narrow beam. They then pass through a region of crossed and fields,
headed toward a fluorescent screen S, where they produce a spot of light (on a
television screen the spot is part of the picture). The forces on the charged parti-
cles in the crossed-fields region can deflect them from the center of the screen.
By controlling the magnitudes and directions of the fields, Thomson could thus
control where the spot of light appeared on the screen. Recall that the force on a
negatively charged particle due to an electric field is directed opposite the field.
Thus, for the arrangement of Fig. 28-7, electrons are forced up the page by electric
field and down the page by magnetic field ; that is, the forces are in opposi-
tion. Thomson’s procedure was equivalent to the following series of steps.

1. Set E � 0 and B � 0 and note the position of the spot on screen S due to the
undeflected beam.

2. Turn on and measure the resulting beam deflection.

3. Maintaining , now turn on and adjust its value until the beam returns to the
undeflected position. (With the forces in opposition, they can be made to cancel.)

We discussed the deflection of a charged particle moving through an electric
field between two plates (step 2 here) in Sample Problem 22.04. We found that
the deflection of the particle at the far end of the plates is

(28-6)

where v is the particle’s speed, m its mass, and q its charge, and L is the length of
the plates. We can apply this same equation to the beam of electrons in Fig. 28-7;
if need be, we can calculate the deflection by measuring the deflection of the
beam on screen S and then working back to calculate the deflection y at the end
of the plates. (Because the direction of the deflection is set by the sign of the
particle’s charge, Thomson was able to show that the particles that were lighting
up his screen were negatively charged.)

y �
�q� EL2

2mv2 ,

E
:

B
:

E
:

E
:

B
:

E
:

B
:

E
:

B
:

E
:
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Figure 28-7 A modern version of J. J.
Thomson’s apparatus for measuring the ra-
tio of mass to charge for the electron. An
electric field is established by connecting
a battery across the deflecting-plate termi-
nals.The magnetic field is set up by means
of a current in a system of coils (not shown).
The magnetic field shown is into the plane
of the figure, as represented by the array of
Xs (which resemble the feathered ends of
arrows).
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● When a uniform magnetic field B is applied to a conducting
strip carrying current i, with the field perpendicular to the
direction of the current, a Hall-effect potential difference V is
set up across the strip.

● The electric force on the charge carriers is then balanced
by the magnetic force on them.

● The number density n of the charge carriers can then be de-
termined from

F
:

B

F
:

E

where l is the thickness of the strip (parallel to ).

● When a conductor moves through a uniform magnetic field
at speed v, the Hall-effect potential difference V across it is

where d is the width perpendicular to both velocity and field .B
:

v:
V � vBd,

B
:

B
:

n �
Bi
Vle

,

Key Ideas

Canceling Forces. When the two fields in Fig. 28-7 are adjusted so that the
two deflecting forces cancel (step 3), we have from Eqs. 28-1 and 28-3

E � vB sin(90�) � �q�vB

or (opposite forces canceling). (28-7)

Thus, the crossed fields allow us to measure the speed of the charged particles
passing through them. Substituting Eq. 28-7 for v in Eq. 28-6 and rearranging yield

(28-8)

in which all quantities on the right can be measured.Thus, the crossed fields allow us
to measure the ratio m/ of the particles moving through Thomson’s apparatus.
(Caution: Equation 28-7 applies only when the electric and magnetic forces are in
opposite directions.You might see other situations in the homework problems.)

Thomson claimed that these particles are found in all matter.He also claimed that
they are lighter than the lightest known atom (hydrogen) by a factor of more than
1000. (The exact ratio proved later to be 1836.15.) His m/ measurement, coupled
with the boldness of his two claims, is considered to be the “discovery of the electron.”

�q�

�q�

m
�q�

�
B2L2

2yE
,

v �
E
B

�q��q�
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Checkpoint 2
The figure shows four directions for the velocity
vector of a positively charged particle moving
through a uniform electric field (directed out
of the page and represented with an encircled dot)
and a uniform magnetic field . (a) Rank directions
1, 2, and 3 according to the magnitude of the net
force on the particle, greatest first. (b) Of all four
directions, which might result in a net force of zero?

B
:

E
:

v:
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28-3 CROSSED FIELDS: THE HALL EFFECT

After reading this module, you should be able to . . .

28.15 Describe the Hall effect for a metal strip carrying
current, explaining how the electric field is set up and
what limits its magnitude.

28.16 For a conducting strip in a Hall-effect situation, draw the
vectors for the magnetic field and electric field. For the con-
duction electrons, draw the vectors for the velocity, mag-
netic force, and electric force.

28.17 Apply the relationship between the Hall potential

difference V, the electric field magnitude E, and the width of
the strip d.

28.18 Apply the relationship between charge-carrier number
density n, magnetic field magnitude B, current i, and 
Hall-effect potential difference V.

28.19 Apply the Hall-effect results to a conducting object mov-
ing through a uniform magnetic field, identifying the width
across which a Hall-effect potential difference V is set up
and calculating V.

Learning Objectives



Crossed Fields: The Hall Effect
As we just discussed, a beam of electrons in a vacuum can be deflected by a
magnetic field. Can the drifting conduction electrons in a copper wire also be
deflected by a magnetic field? In 1879, Edwin H. Hall, then a 24-year-old grad-
uate student at the Johns Hopkins University, showed that they can. This Hall
effect allows us to find out whether the charge carriers in a conductor are posi-
tively or negatively charged. Beyond that, we can measure the number of such
carriers per unit volume of the conductor.

Figure 28-8a shows a copper strip of width d, carrying a current i whose
conventional direction is from the top of the figure to the bottom. The charge
carriers are electrons and, as we know, they drift (with drift speed vd) in the
opposite direction, from bottom to top. At the instant shown in Fig. 28-8a,
an external magnetic field , pointing into the plane of the figure, has just 
been turned on. From Eq. 28-2 we see that a magnetic deflecting force will act
on each drifting electron, pushing it toward the right edge of the strip.

As time goes on, electrons move to the right, mostly piling up on the right
edge of the strip, leaving uncompensated positive charges in fixed positions at the
left edge.The separation of positive charges on the left edge and negative charges
on the right edge produces an electric field within the strip, pointing from left
to right in Fig. 28-8b. This field exerts an electric force on each electron, tend-
ing to push it to the left. Thus, this electric force on the electrons, which opposes
the magnetic force on them, begins to build up.

Equilibrium. An equilibrium quickly develops in which the electric force on
each electron has increased enough to match the magnetic force. When this hap-
pens, as Fig. 28-8b shows, the force due to and the force due to are in balance.
The drifting electrons then move along the strip toward the top of the page at ve-
locity with no further collection of electrons on the right edge of the strip and
thus no further increase in the electric field .

A Hall potential difference V is associated with the electric field across strip
width d. From Eq. 24-21, the magnitude of that potential difference is

V � Ed. (28-9)

By connecting a voltmeter across the width, we can measure the potential differ-
ence between the two edges of the strip. Moreover, the voltmeter can tell us
which edge is at higher potential. For the situation of Fig. 28-8b, we would find
that the left edge is at higher potential, which is consistent with our assumption
that the charge carriers are negatively charged.

For a moment, let us make the opposite assumption, that the charge carriers in
current i are positively charged (Fig. 28-8c). Convince yourself that as these charge
carriers move from top to bottom in the strip, they are pushed to the right edge by 
and thus that the right edge is at higher potential. Because that last statement is con-
tradicted by our voltmeter reading, the charge carriers must be negatively charged.

Number Density. Now for the quantitative part. When the electric and mag-
netic forces are in balance (Fig. 28-8b), Eqs. 28-1 and 28-3 give us

eE � evdB. (28-10)

From Eq. 26-7, the drift speed vd is

(28-11)

in which J (� i/A) is the current density in the strip, A is the cross-sectional area of
the strip,and n is the number density of charge carriers (number per unit volume).

In Eq. 28-10, substituting for E with Eq. 28-9 and substituting for vd with
Eq. 28-11, we obtain

(28-12)n �
Bi
Vle

,

vd �
J
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Figure 28-8 A strip of copper carrying a cur-
rent i is immersed in a magnetic field .
(a) The situation immediately after the
magnetic field is turned on.The curved
path that will then be taken by an electron
is shown. (b) The situation at equilibrium,
which quickly follows. Note that negative
charges pile up on the right side of the strip,
leaving uncompensated positive charges on
the left.Thus, the left side is at a higher po-
tential than the right side. (c) For the same
current direction, if the charge carriers
were positively charged, they would pile up
on the right side, and the right side would
be at the higher potential.
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tive direction of the x axis (Fig. 28-9b). Thus, acts in the
negative direction of the x axis, toward the left face of the
cube (Fig. 28-9c).

Most of the electrons are fixed in place in the atoms
of the cube. However, because the cube is a metal, it con-
tains conduction electrons that are free to move. Some of
those conduction electrons are deflected by to the left
cube face, making that face negatively charged and
leaving the right face positively charged (Fig. 28-9d). This
charge separation produces an electric field directed
from the positively charged right face to the negatively
charged left face (Fig. 28-9e). Thus, the left face is at
a lower electric potential, and the right face is at a higher
electric potential.

(b) What is the potential difference between the faces of
higher and lower electric potential?

KEY IDEAS

1. The electric field created by the charge separation
produces an electric force on each electronF

:

E � qE
:

E
:

E
:

F
:

B

F
:

B

Sample Problem 28.02 Potential difference set up across a moving conductor

Figure 28-9a shows a solid metal cube, of edge length 
d � 1.5 cm, moving in the positive y direction at a constant
velocity of magnitude 4.0 m/s. The cube moves through a
uniform magnetic field of magnitude 0.050 T in the posi-
tive z direction.

(a) Which cube face is at a lower electric potential and
which is at a higher electric potential because of the motion
through the field?

KEY IDEA

Because the cube is moving through a magnetic field , a
magnetic force acts on its charged particles, including its
conduction electrons.

Reasoning: When the cube first begins to move through
the magnetic field, its electrons do also. Because each elec-
tron has charge q and is moving through a magnetic field
with velocity the magnetic force acting on the electron
is given by Eq. 28-2. Because q is negative, the direction of

is opposite the cross product , which is in the posi-� B
:

v:F
:

B

F
:

Bv:,

F
:

B

B
:

B
:

v:

in which l (� A/d) is the thickness of the strip. With this equation we can find n
from measurable quantities.

Drift Speed. It is also possible to use the Hall effect to measure directly the
drift speed vd of the charge carriers, which you may recall is of the order of cen-
timeters per hour. In this clever experiment, the metal strip is moved mechani-
cally through the magnetic field in a direction opposite that of the drift velocity
of the charge carriers. The speed of the moving strip is then adjusted until the
Hall potential difference vanishes. At this condition, with no Hall effect, the
velocity of the charge carriers with respect to the laboratory frame must be zero,
so the velocity of the strip must be equal in magnitude but opposite the direction
of the velocity of the negative charge carriers.

Moving Conductor. When a conductor begins to move at speed v through a
magnetic field, its conduction electrons do also. They are then like the moving
conduction electrons in the current in Figs. 28-8a and b, and an electric field 
and potential difference V are quickly set up. As with the current, equilibrium of
the electric and magnetic forces is established, but we now write that condition in
terms of the conductor’s speed v instead of the drift speed vd in a current as we
did in Eq. 28-10:

eE � evB.

Substituting for E with Eq. 28-9, we find that the potential difference is

V � vBd. (28-13)

Such a motion-caused circuit potential difference can be of serious concern in
some situations, such as when a conductor in an orbiting satellite moves through
Earth’s magnetic field. However, if a conducting line (said to be an electrody-
namic tether) dangles from the satellite, the potential produced along the line
might be used to maneuver the satellite.

E
:
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electric force.
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The forces now
balance. No more
electrons move to
the left face.
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creates a greater
electric field.
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(d)

Electrons are forced
to the left face, leaving
the right face positive.

E

Bv �

Figure 28-9 (a) A solid metal cube moves at constant velocity through a uniform magnetic field. (b)–(d) In these front views,
the magnetic force acting on an electron forces the electron to the left face, making that face negative and leaving the oppo-
site face positive. (e)–(f) The resulting weak electric field creates a weak electric force on the next electron, but it too is
forced to the left face. Now (g) the electric field is stronger and (h) the electric force matches the magnetic force.

Calculations: We seek the potential difference V between
the left and right cube faces after equilibrium was reached
(which occurred quickly). We can obtain V with Eq. 28-9 
(V Ed) provided we first find the magnitude E of the
electric field at equilibrium. We can do so with the equation
for the balance of forces (FE � FB).

For FE, we substitute E, and then for FB, we substitute
vB sin f from Eq. 28-3. From Fig. 28-9a, we see that the

angle f between velocity vector and magnetic field vector
is 90 ; thus sin f 1 and FE FB yields

E � vB sin 90� � vB.

This gives us E � vB; so V � Ed becomes

V � vBd.

Substituting known values tells us that the potential differ-
ence between the left and right cube faces is

(Answer)� 0.0030 V � 3.0 mV.

V � (4.0 m/s)(0.050 T)(0.015 m)

�q��q��q�

���B
:

v:
�q�

�q�

�

(Fig. 28-9f ). Because q is negative, this force is directed
opposite the field —that is, rightward. Thus on each
electron, acts toward the right and acts toward
the left.

2. When the cube had just begun to move through the mag-
netic field and the charge separation had just begun, the
magnitude of began to increase from zero. Thus, the
magnitude of also began to increase from zero and was
initially smaller than the magnitude of . During this
early stage, the net force on any electron was dominated
by , which continuously moved additional electrons to
the left cube face, increasing the charge separation be-
tween the left and right cube faces (Fig. 28-9g).

3. However, as the charge separation increased, eventually
magnitude FE became equal to magnitude FB (Fig. 28-9h).
Because the forces were in opposite directions, the net
force on any electron was then zero, and no additional
electrons were moved to the left cube face. Thus, the
magnitude of could not increase further, and the elec-
trons were then in equilibrium.
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Additional examples, video, and practice available at WileyPLUS



A Circulating Charged Particle
If a particle moves in a circle at constant speed, we can be sure that the net force
acting on the particle is constant in magnitude and points toward the center of
the circle, always perpendicular to the particle’s velocity. Think of a stone tied to
a string and whirled in a circle on a smooth horizontal surface, or of a satellite
moving in a circular orbit around Earth. In the first case, the tension in the string
provides the necessary force and centripetal acceleration. In the second case,
Earth’s gravitational attraction provides the force and acceleration.

Figure 28-10 shows another example: A beam of electrons is projected into
a chamber by an electron gun G. The electrons enter in the plane of the page with
speed v and then move in a region of uniform magnetic field directed out of
that plane. As a result, a magnetic force continuously deflects the
electrons, and because and are always perpendicular to each other, this
deflection causes the electrons to follow a circular path. The path is visible in the
photo because atoms of gas in the chamber emit light when some of the circulat-
ing electrons collide with them.

We would like to determine the parameters that characterize the circular
motion of these electrons, or of any particle of charge magnitude �q� and mass m
moving perpendicular to a uniform magnetic field at speed v. From Eq. 28-3,
the force acting on the particle has a magnitude of . From Newton’s second�q� vB

B
:

B
:

v:
F
:

B � qv: � B
:

B
:
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28-4 A CIRCULATING CHARGED PARTICLE

After reading this module, you should be able to . . .

28.20 For a charged particle moving through a uniform
magnetic field, identify under what conditions it will travel
in a straight line, in a circular path, and in a helical path.

28.21 For a charged particle in uniform circular motion due to
a magnetic force, start with Newton’s second law and
derive an expression for the orbital radius r in terms of the
field magnitude B and the particle’s mass m, charge
magnitude q, and speed v.

28.22 For a charged particle moving along a circular path in
a magnetic field, calculate and relate speed, centripetal
force, centripetal acceleration, radius, period, frequency,
and angular frequency, and identify which of the quantities
do not depend on speed.

28.23 For a positive particle and a negative particle moving

along a circular path in a uniform magnetic field, sketch the
path and indicate the magnetic field vector, the velocity
vector, the result of the cross product of the velocity and
field vectors, and the magnetic force vector.

28.24 For a charged particle moving in a helical path in a
magnetic field, sketch the path and indicate the magnetic
field, the pitch, the radius of curvature, the velocity
component parallel to the field, and the velocity compo-
nent perpendicular to the field.

28.25 For helical motion in a magnetic field, apply the
relationship between the radius of curvature and one of
the velocity components.

28.26 For helical motion in a magnetic field, identify pitch p
and relate it to one of the velocity components.

Learning Objectives

● A charged particle with mass m and charge magnitude 
moving with velocity perpendicular to a uniform magnetic
field will travel in a circle. 

● Applying Newton’s second law to the circular motion
yields

from which we find the radius r of the circle to be

�q�vB �
mv2

r
,

B
:

v:
�q�

● The frequency of revolution f, the angular frequency v, and
the period of the motion T are given by

● If the velocity of the particle has a component parallel to the mag-
netic field, the particle moves in a helical path about field vector .B

:

f �
v

2p
�

1
T

�
�q�B
2pm

.

r �
mv
�q�B

.

Key Ideas

law applied to uniform circular motion (Eq. 6-18),

(28-14)F � m
v2

r
,

(F
:

� ma:)
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B
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Courtesy Jearl Walker

Figure 28-10 Electrons circulating in a chamber containing gas at low pressure (their path
is the glowing circle). A uniform magnetic field , pointing directly out of the plane of
the page, fills the chamber. Note the radially directed magnetic force ; for circular motion to
occur, must point toward the center of the circle.Use the right-hand rule for cross products to
confirm that gives the proper direction.(Don’t forget the sign of q.)F
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we have

(28-15)

Solving for r, we find the radius of the circular path as

(radius). (28-16)

The period T (the time for one full revolution) is equal to the circumference 
divided by the speed:

(period). (28-17)

The frequency f (the number of revolutions per unit time) is

(frequency). (28-18)

The angular frequency v of the motion is then

(angular frequency). (28-19)

The quantities T, f, and v do not depend on the speed of the particle (provided
the speed is much less than the speed of light). Fast particles move in large circles
and slow ones in small circles, but all particles with the same charge-to-mass ratio

/m take the same time T (the period) to complete one round trip. Using Eq. 28-2,�q�

v � 2p f �
�q�B
m

f �
1
T

�
�q�B
2pm

T �
2pr

v
�

2p

v
 

mv
�q�B

�
2pm
�q�B

r �
mv
�q�B

�q �vB �
mv2

r
.

you can show that if you are looking in the direction of , the direction of ro-
tation for a positive particle is always counterclockwise, and the direction for
a negative particle is always clockwise.
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The velocity component 
perpendicular to the field 
causes circling, which is
stretched upward by the 
parallel component.

Checkpoint 3
The figure here shows the circular paths of two particles that travel
at the same speed in a uniform magnetic field , which is directed
into the page. One particle is a proton; the other is an electron
(which is less massive). (a) Which particle follows the smaller circle,
and (b) does that particle travel clockwise or counterclockwise?

B
:

B

Calculations: Using Eqs. 28-20 and 28-17, we find

(28-21)

Calculating the electron’s speed v from its kinetic energy, we
find that v � 2.81 � 106 m/s, and so Eq. 28-21 gives us

(Answer)� 9.16 cm.

�
2p(9.11 � 10�31 kg)

(1.60 � 10�19 C)(4.55 � 10�4 T)

p � (2.81 � 106 m/s)(cos 65.5�)

p � v,T � (v cos f)
2p m
� q �B

.

Sample Problem 28.03 Helical motion of a charged particle in a magnetic field

An electron with a kinetic energy of 22.5 eV moves into a
region of uniform magnetic field of magnitude 4.55 �
10�4 T. The angle between the directions of and the elec-
tron’s velocity is 65.5°. What is the pitch of the helical
path taken by the electron?

KEY IDEAS

(1) The pitch p is the distance the electron travels parallel to
the magnetic field during one period T of circulation.
(2) The period T is given by Eq. 28-17 for any nonzero angle
between and .B

:
v:

B
:

v:
B
:

B
:

Additional examples, video, and practice available at WileyPLUS

Helical Paths
If the velocity of a charged particle has a component parallel to the (uniform) mag-
netic field, the particle will move in a helical path about the direction of the field
vector. Figure 28-11a, for example, shows the velocity vector of such a particlev:

816 CHAPTER 28 MAGNETIC FIELDS

Figure 28-11 (a) A charged particle moves in
a uniform magnetic field , the particle’s
velocity making an angle f with the field
direction. (b) The particle follows a helical
path of radius r and pitch p. (c) A charged
particle spiraling in a nonuniform magnetic
field. (The particle can become trapped in
this magnetic bottle, spiraling back and
forth between the strong field regions at
either end.) Note that the magnetic force
vectors at the left and right sides have a
component pointing toward the center of
the figure.

v:
B
:

resolved into two components, one parallel to and one perpendicular to it:

(28-20)

The parallel component determines the pitch p of the helix—that is, the distance
between adjacent turns (Fig. 28-11b). The perpendicular component determines
the radius of the helix and is the quantity to be substituted for v in Eq. 28-16.

Figure 28-11c shows a charged particle spiraling in a nonuniform magnetic
field. The more closely spaced field lines at the left and right sides indicate that
the magnetic field is stronger there.When the field at an end is strong enough, the
particle “reflects” from that end.

v, � v cos f  and  v� � v sin f.

B
:
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we get

or (28-22)

Finding mass: Substituting this value for v into Eq. 28-16
gives us

Thus,

Solving this for m and substituting the given data yield

(Answer)� 3.3863 � 10�25 kg � 203.93 u.

�
(0.080000 T)2(1.6022 � 10�19 C)(1.6254 m)2

8(1000.0 V)

m �
B2qx2

8V

x � 2r �
2
B A

2mV
q

.

r �
mv
qB

�
m
qB A

2qV
m

�
1
B A

2mV
q

.

v � A
2qV
m

.

1
2 mv2 � qV � 0

Sample Problem 28.04 Uniform circular motion of a charged particle in a magnetic field

Figure 28-12 shows the essentials of a mass spectrometer,
which can be used to measure the mass of an ion; an ion of
mass m (to be measured) and charge q is produced in source
S. The initially stationary ion is accelerated by the electric
field due to a potential difference V.The ion leaves S and en-
ters a separator chamber in which a uniform magnetic field 
is perpendicular to the path of the ion. A wide detector lines
the bottom wall of the chamber, and the causes the ion to
move in a semicircle and thus strike the detector. Suppose
that B � 80.000 mT, V � 1000.0 V, and ions of charge q �
�1.6022 � 10�19 C strike the detector at a point that lies at 
x � 1.6254 m. What is the mass m of the individual ions, in
atomic mass units (Eq. 1-7: 1 u � 1.6605 � 10�27 kg)?

KEY IDEAS

(1) Because the (uniform) magnetic field causes the
(charged) ion to follow a circular path, we can relate the ion’s
mass m to the path’s radius r with Eq. 28-16 (r � mv/ B).�q�

B
:

B
:

Additional examples, video, and practice available at WileyPLUS

x

S

V
+q

r

–

+

B

Detector

Figure 28-12 A positive
ion is  accelerated
from its source S by
a potential differ-
ence V, enters a
chamber of uniform
magnetic field ,
travels through a
semicircle of radius r,
and strikes a detector
at a distance x.

B
:

28-5 CYCLOTRONS AND SYNCHROTRONS

After reading this module, you should be able to . . .

28.27 Describe how a cyclotron works, and in a sketch
indicate a particle’s path and the regions where the kinetic
energy is increased.

28.28 Identify the resonance condition.

28.29 For a cyclotron, apply the relationship between the par-
ticle’s mass and charge, the magnetic field, and the fre-
quency of circling.

28.30 Distinguish between a cyclotron and a synchrotron.

Learning Objectives

● In a cyclotron, charged particles are accelerated by elec-
tric forces as they circle in a magnetic field.

● A synchrotron is needed for particles accelerated to nearly
the speed of light.

Key Ideas

From Fig. 28-12 we see that r � x/2 (the radius is half the
diameter). From the problem statement, we know the magni-
tude B of the magnetic field. However, we lack the ion’s
speed v in the magnetic field after the ion has been acceler-
ated due to the potential difference V. (2) To relate v and V,
we use the fact that mechanical energy (Emec � K � U ) is
conserved during the acceleration.

Finding speed: When the ion emerges from the source, its
kinetic energy is approximately zero. At the end of the 
acceleration, its kinetic energy is . Also, during the ac-
celeration, the positive ion moves through a change in 
potential of �V.Thus, because the ion has positive charge q,
its potential energy changes by �qV. If we now write the
conservation of mechanical energy as

�K � �U � 0,

1
2mv2



Figure 28-13 The elements of a cyclotron,
showing the particle source S and the dees.
A uniform magnetic field is directed up
from the plane of the page. Circulating pro-
tons spiral outward within the hollow dees,
gaining energy every time they cross the
gap between the dees.

DeeDee

Beam

Deflector
plate

Oscillator

S

The protons spiral outward
in a cyclotron, picking up
energy in the gap.

Cyclotrons and Synchrotrons
Beams of high-energy particles, such as high-energy electrons and protons, have
been enormously useful in probing atoms and nuclei to reveal the fundamental
structure of matter. Such beams were instrumental in the discovery that atomic
nuclei consist of protons and neutrons and in the discovery that protons and
neutrons consist of quarks and gluons. Because electrons and protons are
charged, they can be accelerated to the required high energy if they move
through large potential differences. The required acceleration distance is reason-
able for electrons (low mass) but unreasonable for protons (greater mass).

A clever solution to this problem is first to let protons and other massive
particles move through a modest potential difference (so that they gain a modest
amount of energy) and then use a magnetic field to cause them to circle back
and move through a modest potential difference again. If this procedure is
repeated thousands of times, the particles end up with a very large energy.

Here we discuss two accelerators that employ a magnetic field to repeatedly
bring particles back to an accelerating region, where they gain more and more
energy until they finally emerge as a high-energy beam.

The Cyclotron
Figure 28-13 is a top view of the region of a cyclotron in which the particles
(protons, say) circulate. The two hollow D-shaped objects (each open on its
straight edge) are made of sheet copper.These dees, as they are called, are part of
an electrical oscillator that alternates the electric potential difference across the
gap between the dees. The electrical signs of the dees are alternated so that the
electric field in the gap alternates in direction, first toward one dee and then
toward the other dee, back and forth. The dees are immersed in a large magnetic
field directed out of the plane of the page. The magnitude B of this field is set via
a control on the electromagnet producing the field.

Suppose that a proton, injected by source S at the center of the cyclotron in
Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate
toward this dee and enter it. Once inside, it is shielded from electric fields by the
copper walls of the dee; that is, the electric field does not enter the dee. The mag-
netic field, however, is not screened by the (nonmagnetic) copper dee, so the
proton moves in a circular path whose radius, which depends on its speed, is given
by Eq. 28-16 (r � mv/ B).

Let us assume that at the instant the proton emerges into the center gap from
the first dee, the potential difference between the dees is reversed. Thus, the pro-
ton again faces a negatively charged dee and is again accelerated. This process
continues, the circulating proton always being in step with the oscillations of the
dee potential, until the proton has spiraled out to the edge of the dee system.
There a deflector plate sends it out through a portal.

Frequency. The key to the operation of the cyclotron is that the frequency f
at which the proton circulates in the magnetic field (and that does not depend on
its speed) must be equal to the fixed frequency fosc of the electrical oscillator, or

f � fosc (resonance condition). (28-23)

This resonance condition says that, if the energy of the circulating proton is to
increase, energy must be fed to it at a frequency fosc that is equal to the natural
frequency f at which the proton circulates in the magnetic field.

Combining Eqs. 28-18 ( f � B/2pm) and 28-23 allows us to write the
resonance condition as

B � 2pmfosc. (28-24)

The oscillator (we assume) is designed to work at a single fixed frequency fosc.We

�q�

�q�

�q�
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KEY IDEAS

(1) The kinetic energy of a deuteron exiting the
cyclotron is equal to the kinetic energy it had just before exit-
ing, when it was traveling in a circular path with a radius
approximately equal to the radius R of the cyclotron dees.
(2)We can find the speed v of the deuteron in that circular path
with Eq.28-16 (r � mv/�q�B).

Calculations: Solving that equation for v, substituting R for
r, and then substituting known data, we find

This speed corresponds to a kinetic energy of

(Answer)

or about 17 MeV.

� 2.7 � 10�12 J,

� 1
2(3.34 � 10�27 kg)(3.99 � 107 m/s)2

K � 1
2 mv2

� 3.99 � 107 m/s.

v �
R �q� B

m
�

(0.53 m)(1.60 � 10�19 C)(1.57 T)
3.34 � 10�27 kg

(1
2 mv2)

Sample Problem 28.05 Accelerating a charged particle in a cyclotron

Suppose a cyclotron is operated at an oscillator frequency of
12 MHz and has a dee radius R � 53 cm.

(a) What is the magnitude of the magnetic field needed for
deuterons to be accelerated in the cyclotron? The deuteron
mass is m � 3.34 � 10�27 kg (twice the proton mass).

KEY IDEA

For a given oscillator frequency fosc, the magnetic field mag-
nitude B required to accelerate any particle in a cyclotron
depends on the ratio m/ of mass to charge for the particle,
according to Eq. 28-24 ( B 2pmfosc).

Calculation: For deuterons and the oscillator frequency fosc �
12 MHz,we find

(Answer)

Note that, to accelerate protons, B would have to be reduced
by a factor of 2, provided the oscillator frequency remained
fixed at 12 MHz.

(b) What is the resulting kinetic energy of the deuterons?

� 1.57 T � 1.6 T.

B �
2pmfosc

�q�
�

(2p)(3.34 � 10�27 kg)(12 � 106 s�1)
1.60 � 10�19 C

��q�
�q�

Additional examples, video, and practice available at WileyPLUS

then “tune” the cyclotron by varying B until Eq. 28-24 is satisfied, and then many
protons circulate through the magnetic field, to emerge as a beam.

The Proton Synchrotron
At proton energies above 50 MeV, the conventional cyclotron begins to fail because
one of the assumptions of its design—that the frequency of revolution of a charged
particle circulating in a magnetic field is independent of the particle’s speed—is
true only for speeds that are much less than the speed of light. At greater proton
speeds (above about 10% of the speed of light), we must treat the problem relativis-
tically.According to relativity theory, as the speed of a circulating proton approaches
that of light, the proton’s frequency of revolution decreases steadily. Thus, the pro-
ton gets out of step with the cyclotron’s oscillator—whose frequency remains fixed
at f osc—and eventually the energy of the still circulating proton stops increasing.

There is another problem. For a 500 GeV proton in a magnetic field of 1.5 T,
the path radius is 1.1 km.The corresponding magnet for a conventional cyclotron
of the proper size would be impossibly expensive, the area of its pole faces being
about 4 � 106 m2.

The proton synchrotron is designed to meet these two difficulties. The mag-
netic field B and the oscillator frequency fosc, instead of having fixed values as
in the conventional cyclotron, are made to vary with time during the accelerat-
ing cycle. When this is done properly, (1) the frequency of the circulating pro-
tons remains in step with the oscillator at all times, and (2) the protons follow a
circular — not a spiral — path. Thus, the magnet need extend only along that cir-
cular path, not over some 4 � 106 m2. The circular path, however, still must be
large if high energies are to be achieved.



28-6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

After reading this module, you should be able to . . .

28.31 For the situation where a current is perpendicular to a
magnetic field, sketch the current, the direction of the mag-
netic field, and the direction of the magnetic force on the
current (or wire carrying the current).

28.32 For a current in a magnetic field, apply the relationship
between the magnetic force magnitude FB, the current i,
the length of the wire L, and the angle f between the
length vector and the field vector .

28.33 Apply the right-hand rule for cross products to find
B
:

L
:

the direction of the magnetic force on a current in a
magnetic field.

28.34 For a current in a magnetic field, calculate the
magnetic force with a cross product of the length
vector and the field vector , in magnitude-angle and
unit-vector notations.

28.35 Describe the procedure for calculating the force on a
current-carrying wire in a magnetic field if the wire is not
straight or if the field is not uniform.

B
:

L
:

F
:

B

Learning Objectives

● A straight wire carrying a current i in a uniform magnetic
field experiences a sideways force

● The force acting on a current element i in a magnetic dL
:

F
:

B � iL
:

� B
:

.

field is

● The direction of the length vector or is that of the
current i.

dL
:

L
:

dF
:

B � i dL
:

� B
:

.

Key Ideas

Magnetic Force on a Current-Carrying Wire
We have already seen (in connection with the Hall effect) that a magnetic field
exerts a sideways force on electrons moving in a wire. This force must then be
transmitted to the wire itself, because the conduction electrons cannot escape
sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both
ends, extends through the gap between the vertical pole faces of a magnet.
The magnetic field between the faces is directed outward from the page. In
Fig. 28-14b, a current is sent upward through the wire; the wire deflects to the
right. In Fig. 28-14c, we reverse the direction of the current and the wire deflects
to the left.

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one
of the conduction electrons, drifting downward with an assumed drift speed vd.
Equation 28-3, in which we must put f � 90�, tells us that a force of magnitude
evdB must act on each such electron. From Eq. 28-2 we see that this force must
be directed to the right. We expect then that the wire as a whole will experience
a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field or
the direction of the current, the force on the wire would reverse, being directed now
to the left. Note too that it does not matter whether we consider negative charges

F
:

B
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Figure 28-14 A flexible wire passes between
the pole faces of a magnet (only the farther
pole face is shown). (a) Without current
in the wire, the wire is straight. (b) With
upward current, the wire is deflected right-
ward. (c) With downward current, the
deflection is leftward.The connections for
getting the current into the wire at one end
and out of it at the other end are not shown.

i = 0 i

i

i

i

(a) (b) (c)

B B B

A force acts on
a current through
a B field.

L

x

i

x

FB

B

vd

Figure 28-15 A close-up view of a section of the wire of Fig. 28-14b.
The current direction is upward, which means that electrons drift
downward.A magnetic field that emerges from the plane of the
page causes the electrons and the wire to be deflected to the right.



drifting downward in the wire (the actual case) or positive charges drifting up-
ward. The direction of the deflecting force on the wire is the same. We are safe
then in dealing with a current of positive charge, as we usually do in dealing with
circuits.

Find the Force. Consider a length L of the wire in Fig. 28-15. All the conduc-
tion electrons in this section of wire will drift past plane xx in Fig. 28-15 in a time
t � L/vd.Thus, in that time a charge given by

will pass through that plane. Substituting this into Eq. 28-3 yields

or FB � iLB. (28-25)

Note that this equation gives the magnetic force that acts on a length L of straight
wire carrying a current i and immersed in a uniform magnetic field that is per-
pendicular to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the
magnetic force is given by a generalization of Eq. 28-25:

(force on a current). (28-26)

Here is a length vector that has magnitude L and is directed along the wire
segment in the direction of the (conventional) current. The force magnitude FB is

FB � iLB sin f, (28-27)

where f is the angle between the directions of and . The direction of is
that of the cross product because we take current i to be a positive quan-
tity. Equation 28-26 tells us that is always perpendicular to the plane defined
by vectors and , as indicated in Fig. 28-16.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the
defining equation for . In practice, we define from Eq. 28-26 because it is
much easier to measure the magnetic force acting on a wire than that on a single
moving charge.

Crooked Wire. If a wire is not straight or the field is not uniform, we can
imagine the wire broken up into small straight segments and apply Eq. 28-26 to
each segment. The force on the wire as a whole is then the vector sum of all the
forces on the segments that make it up. In the differential limit, we can write

(28-28)

and we can find the resultant force on any given arrangement of currents by
integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated
current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.

dF
:

B � i dL
:

� B
:

,

B
:

B
:

B
:

L
:

F
:

B

L
:

� B
:

F
:

BB
:

L
:

L
:

F
:

B � iL
:

� B
:

B
:

FB � qvdB sin f �
iL
vd

 vdB sin 90�

q � it � i
L
vd
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Checkpoint 4
The figure shows a current i through a wire in a uni-
form magnetic field , as well as the magnetic force

acting on the wire.The field is oriented so that the
force is maximum. In what direction is the field?
F
:

B

B
:

FB

i

y

x

z

Figure 28-16 A wire carrying current i makes
an angle f with magnetic field .The wire
has length L in the field and length vector

(in the direction of the current).A mag-
netic force acts on the wire.F

:

B � iL
:

� B
:

L
:

B
:

φ i

L

FB

B

The force is perpendicular
to both the field and the length.



cular to the wire. We then have sin f 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)

This is about 160 times the strength of Earth’s magnetic field.

� 1.6 � 10�2 T.

B �
(46.6 � 10�3 kg/m)(9.8 m/s2)

28 A

B �
mg

iL sin f
�

(m/L)g
i

.

�

Additional examples, video, and practice available at WileyPLUS

28-7 TORQUE ON A CURRENT LOOP

After reading this module, you should be able to . . .

28.36 Sketch a rectangular loop of current in a magnetic
field, indicating the magnetic forces on the four sides,
the direction of the current, the normal vector , and the
direction in which a torque from the forces tends to rotate
the loop.

n:

28.37 For a current-carrying coil in a magnetic field, apply
the relationship between the torque magnitude t, the
number of turns N, the area of each turn A, the current i,
the magnetic field magnitude B, and the angle u between
the normal vector and the magnetic field vector .B

:
n:

Learning Objectives

● Various magnetic forces act on the sections of a current-
carrying coil lying in a uniform external magnetic field, but the
net force is zero.

● The net torque acting on the coil has a magnitude given by

t � NiAB sin u,

where N is the number of turns in the coil, A is the area of
each turn, i is the current, B is the field magnitude, and u is
the angle between the magnetic field and the normal
vector to the coil .n:

B
:

Key Ideas

Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

822 CHAPTER 28 MAGNETIC FIELDS

where mg is the magnitude of and m is the mass of theF
:

g

Sample Problem 28.06 Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i � 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

KEY IDEAS

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The direction
of is related to the directions of and the wire’s length
vector by Eq. 28-26 

Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-
hand rule for cross products tell us that must be horizon-
tal and rightward (in Fig. 28-17) to give the required
upward .F

:
B

B
:

L
:

(F
:

B � iL
:

� B
:

).L
:

B
:

F
:

B

F
:

B

F
:

g

B
:

F
:

B

B
:

Figure 28-17 A wire (shown in cross section)
carrying current out of the page.

L B

FB

mg

wire. We also want the minimal field magnitude B for toF
:

B

balance . Thus, we need to maximize sin f in Eq. 28-29. ToF
:

g

The magnitude of is FB � iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f mg, (28-29)�

F
:

gF
:

B

F
:

B

do so, we set f 90 , thereby arranging for to be perpendi-B
:

��



Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and 
produce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector 

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

Net Torque. The net force on the loop is the vector sum of the forces acting
on its four sides. For side 2 the vector in Eq. 28-26 points in the direction of the
current and has magnitude b.The angle between and for side 2 (see Fig. 28-19c)
is 90� � u.Thus, the magnitude of the force acting on this side is

F2 � ibB sin(90� � u) � ibB cos u. (28-31)

You can show that the force acting on side 4 has the same magnitude as 2 but
the opposite direction. Thus, and cancel out exactly. Their net force is zero
and, because their common line of action is through the center of the loop, their
net torque is also zero.

The situation is different for sides 1 and 3. For them, is perpendicular to ,
so the forces and have the common magnitude iaB. Because these two
forces have opposite directions, they do not tend to move the loop up or down.
However, as Fig. 28-19c shows, these two forces do not share the same line of
action; so they do produce a net torque. The torque tends to rotate the loop so
as to align its normal vector with the direction of the magnetic field . That
torque has moment arm (b/2) sin u about the central axis of the loop. The magni-
tude t	 of the torque due to forces and is then (see Fig. 28-19c)

(28-32)

Coil. Suppose we replace the single loop of current with a coil of N loops, or
turns. Further, suppose that the turns are wound tightly enough that they can be

t 	 � �iaB
b
2

 sin u� � �iaB
b
2

 sin u� � iabB sin u.

F
:

3F
:

1

B
:

n:

F
:

3F
:

1

B
:

L
:

F
:

4F
:

2

F
:

F
:

4

B
:

L
:

L
:

B
:

n:.

n:
n:

B
:

�F
:

F
:

B
:
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Figure 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying
a current and free to rotate about a fixed
axis, is placed in a magnetic field. Magnetic
forces on the wire produce a torque that
rotates it.A commutator (not shown)
reverses the direction of the current every
half-revolution so that the torque always
acts in the same direction.

i

i

N S

F

–FB

Side 2

Side 4 Side 1

i

(b)

n

τ

Side 1

Side 4

Side 2

Side 3

i

b

(a) a
F3

F2

F1

F4

B

θ
b

i

Side 2

Side 3

Side 1

(c)

Rotation

n

F1

F3

B

Figure 28-19 A rectangular loop, of length a
and width b and carrying a current i, is lo-
cated in a uniform magnetic field.A torque t
acts to align the normal vector with the di-
rection of the field. (a) The loop as seen by
looking in the direction of the magnetic
field. (b) A perspective of the loop showing
how the right-hand rule gives the direction
of , which is perpendicular to the plane of
the loop. (c) A side view of the loop, from
side 2.The loop rotates as indicated.

n:

n:



28-8 THE MAGNETIC DIPOLE MOMENT

After reading this module, you should be able to . . .

28.38 Identify that a current-carrying coil is a magnetic dipole
with a magnetic dipole moment that has the direction of
the normal vector , as given by a right-hand rule.

28.39 For a current-carrying coil, apply the relationship
between the magnitude m of the magnetic dipole moment,
the number of turns N, the area A of each turn, and the
current i.

28.40 On a sketch of a current-carrying coil, draw the direction
of the current, and then use a right-hand rule to determine the
direction of the magnetic dipole moment vector .

28.41 For a magnetic dipole in an external magnetic field, ap-
ply the relationship between the torque magnitude t, the
dipole moment magnitude m, the magnetic field magnitude
B, and the angle u between the dipole moment vector 
and the magnetic field vector .

28.42 Identify the convention of assigning a plus or minus
sign to a torque according to the direction of rotation.

28.43 Calculate the torque on a magnetic dipole by evaluat-
ing a cross product of the dipole moment vector and them:

B
:

m:

m:

n:
m:

external magnetic field vector , in magnitude-angle nota-
tion and unit-vector notation.

28.44 For a magnetic dipole in an external magnetic field,
identify the dipole orientations at which the torque magni-
tude is minimum and maximum.

28.45 For a magnetic dipole in an external magnetic field,
apply the relationship between the orientation energy U,
the dipole moment magnitude m, the external magnetic
field magnitude B, and the angle u between the dipole
moment vector and the magnetic field vector .

28.46 Calculate the orientation energy U by taking a dot prod-
uct of the dipole moment vector and the external magnetic
field vector , in magnitude-angle and unit-vector notations.

28.47 Identify the orientations of a magnetic dipole in an ex-
ternal magnetic field that give the minimum and maximum
orientation energies.

28.48 For a magnetic dipole in a magnetic field, relate the ori-
entation energy U to the work Wa done by an external
torque as the dipole rotates in the magnetic field.

B
:

m:

B
:

m:

B
:

Learning Objectives

● A coil (of area A and N turns, carrying current i) in a uni-
form magnetic field will experience a torque given by

Here is the magnetic dipole moment of the coil, with
magnitude m NiA and direction given by the right-
hand rule.

● The orientation energy of a magnetic dipole in a magnetic

�
m:

t: � m: � B
:

.

t:B
:

field is

● If an external agent rotates a magnetic dipole from an initial
orientation ui to some other orientation uf and the dipole is
stationary both initially and finally, the work Wa done on the
dipole by the agent is

Wa � �U � Uf � Ui.

U(u) � �m: � B
:

.

Key Ideas

approximated as all having the same dimensions and lying in a plane. Then the
turns form a flat coil, and a torque t	 with the magnitude given in Eq. 28-32 acts
on each of them.The total torque on the coil then has magnitude

t � Nt	 � NiabB sin u � (NiA)B sin u, (28-33)

in which A ( ab) is the area enclosed by the coil. The quantities in parentheses
(NiA) are grouped together because they are all properties of the coil: its number
of turns, its area, and the current it carries. Equation 28-33 holds for all flat coils,
no matter what their shape, provided the magnetic field is uniform. For example,
for the common circular coil, with radius r, we have

t �(Nipr2)B sin u. (28-34)

Normal Vector. Instead of focusing on the motion of the coil, it is simpler to
keep track of the vector , which is normal to the plane of the coil. Equation 28-33
tells us that a current-carrying flat coil placed in a magnetic field will tend to
rotate so that has the same direction as the field. In a motor, the current in
the coil is reversed as begins to line up with the field direction, so that a torque
continues to rotate the coil. This automatic reversal of the current is done via
a commutator that electrically connects the rotating coil with the stationary con-
tacts on the wires that supply the current from some source.

n:
n:

n:

�
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The Magnetic Dipole Moment
As we have just discussed, a torque acts to rotate a current-carrying coil placed in
a magnetic field. In that sense, the coil behaves like a bar magnet placed in the
magnetic field.Thus, like a bar magnet, a current-carrying coil is said to be a mag-
netic dipole. Moreover, to account for the torque on the coil due to the magnetic
field, we assign a magnetic dipole moment to the coil. The direction of is that
of the normal vector to the plane of the coil and thus is given by the same right-
hand rule shown in Fig. 28-19. That is, grasp the coil with the fingers of your right
hand in the direction of current i; the outstretched thumb of that hand gives the
direction of .The magnitude of is given by

m � NiA (magnetic moment), (28-35)

in which N is the number of turns in the coil, i is the current through the coil, and
A is the area enclosed by each turn of the coil. From this equation, with i in
amperes and A in square meters, we see that the unit of is the ampere – square
meter (A �m2).

Torque. Using , we can rewrite Eq. 28-33 for the torque on the coil due to a
magnetic field as

t � mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

Energy. A magnetic dipole in an external magnetic field has an energy that
depends on the dipole’s orientation in the field. For electric dipoles we have
shown (Eq. 22-38) that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (� �mB cos 0 � �mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy ( mB cos 180 mB) when is directed opposite the field. From 
Eq. 28-38, with U in joules and in teslas, we see that the unit of can be the
joule per tesla (J/T) instead of the ampere – square meter as suggested by 
Eq. 28-35.

Work. If an applied torque (due to “an external agent”) rotates a magnetic
dipole from an initial orientation ui to another orientation uf, then work Wa is
done on the dipole by the applied torque. If the dipole is stationary before and
after the change in its orientation, then work Wa is

Wa � Uf � Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.

m:B
:

m:� ��� �
m:

U(u) � �m: � B
:

.

U(u ) � �p: � E
:

.

t: � p: � E
:

.

t: � m: � B
:

,

B
:

m:

m:

m:

m:m:

n:
m:m:
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Figure 28-20 The orientations of highest and
lowest energy of a magnetic dipole (here
a coil carrying current) in an external mag-
netic field .The direction of the current i
gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:

m:

B
:

i i
μ μ 

μ μ 

Highest
energy

Lowest
energy

B

The magnetic moment vector
attempts to align with the
magnetic field.



Table 28-2 Some Magnetic Dipole
Moments

Small bar magnet 5 J/T
Earth 8.0 � 1022 J/T
Proton 1.4 � 10�26 J/T
Electron 9.3 � 10�24 J/T

Checkpoint 5
The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.

m:

μ μ μ μ 

μ μ μ μ 

Bθ 
θ 

θ 
θ 

1

4

2

3

tial orientation, so that is perpendicular to and the coil
is again at rest?

KEY IDEA

The work Wa done by the applied torque would be equal to
the change in the coil’s orientation energy due to its change
in orientation.

Calculations: From Eq. 28-39 (Wa � Uf � Ui), we find

Substituting for m from Eq.28-35 (m � NiA),we find that

(Answer)

Similarly, we can show that to change the orientation by an-
other 90°, so that the dipole moment is opposite the field,
another 5.4 mJ is required.

� 5.355 � 10�6 J � 5.4 mJ.

� (250)(100 � 10�6 A)(2.52 � 10�4 m2)(0.85 T)

Wa � (NiA)B

� mB.

� �mB cos 90� � (�mB cos 0�) � 0 � mB

Wa � U(90�) � U(0�)

B
:

m:

Sample Problem 28.07 Rotating a magnetic dipole in a magnetic field

Figure 28-21 shows a circular coil with 250 turns, an area A
of 2.52 � 10�4 m2, and a current of 100 mA.The coil is at rest
in a uniform magnetic field of magnitude B � 0.85 T, with
its magnetic dipole moment initially aligned with .

(a) In Fig. 28-21, what is the direction of the current in the
coil?

Right-hand rule: Imagine cupping the coil with your right
hand so that your right thumb is outstretched in the direc-
tion of .The direction in which your fingers curl around the
coil is the direction of the current in the coil.Thus, in the wires
on the near side of the coil—those we see in Fig. 28-21—the
current is from top to bottom.

(b) How much work would the torque applied by an exter-
nal agent have to do on the coil to rotate it 90� from its ini-

m:

B
:

m:

Additional examples, video, and practice available at WileyPLUS

Figure 28-21 A side view of a circular coil carrying a current and ori-
ented so that its magnetic dipole moment  is aligned with magnetic
field .B

:

μ μ 

B

So far, we have identified only a current-carrying coil and a permanent mag-
net as a magnetic dipole. However, a rotating sphere of charge is also a magnetic
dipole, as is Earth itself (approximately). Finally, most subatomic particles, in-
cluding the electron, the proton, and the neutron, have magnetic dipole mo-
ments. As you will see in Chapter 32, all these quantities can be viewed as cur-
rent loops. For comparison, some approximate magnetic dipole moments are
shown in Table 28-2.

Language. Some instructors refer to U in Eq. 28-38 as a potential energy and
relate it to work done by the magnetic field when the orientation of the dipole
changes. Here we shall avoid the debate and say that U is an energy associated
with the dipole orientation.
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827QUESTIONS

Magnetic Field A magnetic field is defined in terms of the
force acting on a test particle with charge q moving through the
field with velocity :

(28-2)

The SI unit for is the tesla (T): 1 T � 1 N/(A 
m) � 104 gauss.

The Hall Effect When a conducting strip carrying a current i is
placed in a uniform magnetic field , some charge carriers (with
charge e) build up on one side of the conductor, creating a poten-
tial difference V across the strip.The polarities of the sides indicate
the sign of the charge carriers.

A Charged Particle Circulating in a Magnetic Field A
charged particle with mass m and charge magnitude moving with�q�

B
:

B
:

F
:

B � qv: � B
:

.

v:
F
:

B

B
:B

:

Review & Summary

Magnetic Force on a Current-Carrying Wire A straight
wire carrying a current i in a uniform magnetic field experiences a
sideways force

(28-26)

The force acting on a current element i in a magnetic field is

(28-28)

The direction of the length vector or is that of the current i.

Torque on a Current-Carrying Coil A coil (of area A and N
turns, carrying current i) in a uniform magnetic field will
experience a torque given by

(28-37)

Here is the magnetic dipole moment of the coil, with magnitude
NiA and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole The orienta-
tion energy of a magnetic dipole in a magnetic field is

(28-38)

If an external agent rotates a magnetic dipole from an initial orien-
tation ui to some other orientation uf and the dipole is stationary
both initially and finally, the work Wa done on the dipole by the
agent is

Wa � �U � Uf � Ui. (28-39)

U(u) � �m: � B
:

.

m �
m:

t: � m: � B
:

.

�:
B
:

dL
:

L
:

dF
:

B � i dL
:

� B
:

.

dL
:

F
:

B � iL
:

� B
:

.

ther the positive or negative direction.
(a) Rank the six choices according to the
potential difference set up across the
solid, greatest first. (b) For which choice
is the front face at lower potential?

4 Figure 28-25 shows the path of a
particle through six regions of uniform
magnetic field, where the path is either
a half-circle or a quarter-circle. Upon leaving the last region, the
particle travels between two charged, parallel plates and is
deflected toward the plate of higher potential. What is the
direction of the magnetic field in each of the six regions?

1 Figure 28-22 shows three situations in which a positively charged
particle moves at velocity through a uniform magnetic field 
and experiences a magnetic force In each situation, determine
whether the orientations of the vectors are physically reasonable.

F
:

B.
B
:

v:

Questions

2 Figure 28-23 shows a wire that car-
ries current to the right through a uni-
form magnetic field. It also shows four
choices for the direction of that field.
(a) Rank the choices according to the
magnitude of the electric potential
difference that would be set up across
the width of the wire, greatest first. (b) For which choice is the top
side of the wire at higher potential than the bottom side of the wire?

3 Figure 28-24 shows a metallic, rectangular solid that is to move
at a certain speed v through the uniform magnetic field . The
dimensions of the solid are multiples of d, as shown. You have six
choices for the direction of the velocity: parallel to x, y, or z in ei-

B
:

FB

(a) (b) (c)

B

B

B

FB

FB

v v

v

Figure 28-22 Question 1.

i
Wire

3
4

1
2

Choices for B

Figure 28-23 Question 2.

Figure 28-24 Question 3.

x

y

z 3d
d

2d
B

Figure 28-25 Question 4.

a

d

b

c

e

f

velocity perpendicular to a uniform magnetic field will travel in a
circle.Applying Newton’s second law to the circular motion yields

(28-15)

from which we find the radius r of the circle to be

(28-16)

The frequency of revolution f, the angular frequency v, and the 
period of the motion T are given by

(28-19, 28-18, 28-17)f �
v

2p
�

1
T

�
�q�B

2pm
.

r �
mv
�q�B

.

�q�vB �
mv2

r
,

B
:

v:



Table 28-3 Question 6

Particle Charge Speed Particle Charge Speed

1 � Less 6 � Greater
2 � Greater 7 � Less
3 � Less 8 � Greater
4 � Greater 9 � Less
5 � Less 10 � Greater

11 In Fig. 28-30, a charged particle
enters a uniform magnetic field 
with speed v0, moves through a half-
circle in time T0, and then leaves the
field. (a) Is the charge positive or
negative? (b) Is the final speed of
the particle greater than, less than,
or equal to v0? (c) If the initial speed
had been 0.5v0, would the time spent in field have been greater
than, less than, or equal to T0? (d) Would the path have been a
half-circle, more than a half-circle, or less than a half-circle?

B
:

B
:
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5 In Module 28-2, we discussed a charged particle moving
through crossed fields with the forces and in opposition. We
found that the particle moves in a straight line (that is, neither
force dominates the motion) if its speed is given by Eq. 28-7 (v �
E/B). Which of the two forces dominates if the speed of the parti-
cle is (a) v � E/B and (b) v 
 E/B?

6 Figure 28-26 shows crossed uniform electric and magnetic
fields and and, at a certain instant, the velocity vectors of the
10 charged particles listed in Table 28-3. (The vectors are not
drawn to scale.) The speeds given in the table are either less than
or greater than E/B (see Question 5). Which particles will move
out of the page toward you after the instant shown in Fig. 28-26?

B
:

E
:

F
:

BF
:

E

particle in the table? (The direction of the magnetic field can be
determined by means of one of the paths, which is unique.)

B

E
3 5

7
4

1

9 10
6

8
2

Figure 28-26 Question 6.
Table 28-4 Question 10

Particle Mass Charge Speed

1 2m q v

2 m 2q v

3 m/2 q 2v

4 3m 3q 3v

5 2m q 2v

6 m �q 2v

7 m �4q v

8 m �q v

9 2m �2q 3v

10 m �2q 8v

11 3m 0 3v

Figure 28-29 Question 10.

c

b

j d a g 

i

fhke

Figure 28-31 Question 12.

B

v
v

v

BB

(3)(2)(1)

Figure 28-30 Question 11.

B

7 Figure 28-27 shows the path of an
electron that passes through two regions
containing uniform magnetic fields of
magnitudes B1 and B2. Its path in each
region is a half-circle. (a) Which field is
stronger? (b) What is the direction of
each field? (c) Is the time spent by the
electron in the region greater than,
less than, or the same as the time spent
in the region?

8 Figure 28-28 shows the path of
an electron in a region of uniform
magnetic field. The path consists of
two straight sections, each between
a pair of uniformly charged plates,
and two half-circles. Which plate is
at the higher electric potential in (a)
the top pair of plates and (b) the
bottom pair? (c) What is the direction of the magnetic field?

9 (a) In Checkpoint 5, if the dipole moment is rotated from ori-
entation 2 to orientation 1 by an external agent, is the work done
on the dipole by the agent positive, negative, or zero? (b) Rank the
work done on the dipole by the agent for these three rotations,
greatest first: 2 : 1, 2 : 4, 2 : 3.

10 Particle roundabout. Figure 28-29 shows 11 paths through a
region of uniform magnetic field. One path is a straight line; the
rest are half-circles. Table 28-4 gives the masses, charges, and
speeds of 11 particles that take these paths through the field in the
directions shown. Which path in the figure corresponds to which

m:

B
:

2

B
:

1

B1

B2

Figure 28-27 Question 7.

Figure 28-28 Question 8.
12 Figure 28-31 gives snapshots for three situations in which a
positively charged particle passes through a uniform magnetic field

. The velocities of the particle differ in orientation in the three
snapshots but not in magnitude. Rank the situations according to
(a) the period, (b) the frequency, and (c) the pitch of the particle’s
motion, greatest first.

v:B
:



829PROBLEMS

V2 100 V.The lower plate is at the lower potential. Neglect fring-
ing and assume that the electron’s velocity vector is perpendicular
to the electric field vector between the plates. In unit-vector nota-
tion, what uniform magnetic field allows the electron to travel in a
straight line in the gap?

••10 A proton travels through uniform magnetic and electric
fields. The magnetic field is At one instant the
velocity of the proton is At that instant and in
unit-vector notation, what is the net force acting on the proton
if the electric field is (a) (b) , and
(c) ?

••11 An ion source is producing 6Li ions, which have charge �e
and mass 9.99 10�27 kg. The ions are accelerated by a potential
difference of 10 kV and pass horizontally into a region in which
there is a uniform vertical magnetic field of magnitude B � 1.2 T.
Calculate the strength of the smallest electric field, to be set up
over the same region, that will allow the 6Li ions to pass through
undeflected.

•••12 At time t1, an electron is
sent along the positive direction of
an x axis, through both an electric
field and a magnetic field , with

directed parallel to the y axis.
Figure 28-33 gives the y component
Fnet,y of the net force on the electron
due to the two fields, as a function of
the electron’s speed v at time t1. The
scale of the velocity axis is set by
vs � 100.0 m/s. The x and z compo-
nents of the net force are zero at t1.
Assuming Bx � 0, find (a) the magni-
tude E and (b) in unit-vector notation.

Module 28-3 Crossed Fields: The Hall Effect
•13 A strip of copper 150 mm thick and 4.5 mm wide is placed in
a uniform magnetic field of magnitude 0.65 T, with perpendi-
cular to the strip. A current i � 23 A is then sent through the strip
such that a Hall potential difference V appears across the width of
the strip. Calculate V. (The number of charge carriers per unit vol-
ume for copper is 8.47 1028 electrons/m3.)

•14 A metal strip 6.50 cm long,
0.850 cm wide, and 0.760 mm thick
moves with constant velocity 
through a uniform magnetic field B �
1.20 mT directed perpendicular to the
strip, as shown in Fig. 28-34. A poten-
tial difference of 3.90 mV is measured
between points x and y across the strip.
Calculate the speed v.

••15 A conducting rectangular
solid of dimensions dx 5.00 m, dy

3.00 m, and dz � 2.00 m moves with a
constant velocity through a uniform magnetic fieldv: � (20.0 m/s)î

��

v:

�

B
:

B
:

B
:

E
:

B
:

E
:

�

4.00î V/m
�4.00k̂ V/m4.00k̂ V/m,

v: � 2000ĵ m/s.
B
:

� �2.50î mT.

�

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 28-1 Magnetic Fields and the Definition of 
•1 A proton traveling at 23.0° with respect to the di-
rection of a magnetic field of strength 2.60 mT experiences a mag-
netic force of 6.50 � 10�17 N. Calculate (a) the proton’s speed and
(b) its kinetic energy in electron-volts.

•2 A particle of mass 10 g and charge 80 mC moves through a
uniform magnetic field, in a region where the free-fall acceleration
is . The velocity of the particle is a constant ,
which is perpendicular to the magnetic field. What, then, is the
magnetic field?

•3 An electron that has an instantaneous velocity of

is moving through the uniform magnetic field 
(a) Find the force on the electron due to the magnetic

field. (b) Repeat your calculation for a proton having the same
velocity.

•4 An alpha particle travels at a velocity of magnitude 550 m/s
through a uniform magnetic field of magnitude 0.045 T. (An al-
pha particle has a charge of �3.2 � 10�19 C and a mass of 6.6 �
10�27 kg.) The angle between and is 52°. What is the magni-
tude of (a) the force acting on the particle due to the field and
(b) the acceleration of the particle due to ? (c) Does the speed
of the particle increase, decrease, or remain the same?

••5 An electron moves through a uniform magnetic field given

F
:

B

F
:

B

B
:

v:

B
:

v:

(0.15 T)ĵ.
B
:

� (0.030 T)î �

v: � (2.0 � 106 m/s)î � (3.0 � 106 m/s)ĵ

20î km/s�9.8ĵ m/s2

ILWSSM

B
:

Figure 28-34 Problem 14.

x y 
B

v

At time t1, the proton has a velocity
given by and the magnetic force onv: � vxî � vyĵ � (2.0 km/s)k̂
B
:

� (10î � 20ĵ � 30k̂) mT.

the proton is At that
instant, what are (a) vx and (b) vy?

Module 28-2 Crossed Fields: Discovery of the Electron
•7 An electron has an initial velocity of km/s and
a constant acceleration of in a region in which
uniform electric and magnetic fields are present. If 
find the electric field .

•8 An electric field of 1.50 kV/m and a perpendicular magnetic
field of 0.400 T act on a moving electron to produce no net force.
What is the electron’s speed?

•9 In Fig. 28-32, an electron accelerated from rest through po-
tential difference V1 1.00 kV enters the gap between two paral-
lel plates having separation d � 20.0 mm and potential difference

�

ILW

E
:

B
:

� (400 mT)î,
(2.00 � 1012 m/s2)î

(12.0ĵ � 15.0k̂)

(2.0 � 10�17 N)ĵ.F
:

B � (4.0 � 10�17 N)î �

y

x

V1

V2d

Figure 28-32 Problem 9.

by At a particular instant, the electron has ve-
locity and the magnetic force acting on it is

. Find Bx.

••6 A proton moves through a uniform magnetic field given by

(6.4 � 10�19 N)k̂
v: � (2.0 î � 4.0 ĵ) m/s

B
:

� Bxî � (3.0Bx)ĵ.

F n
et

,y
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–1

9  N
) 
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Figure 28-33 Problem 12.



(Fig. 28-35). What are the resulting (a) electric
field within the solid, in unit-vector notation, and (b) potential dif-
ference across the solid?

•••16 Figure 28-35 shows a metal-
lic block, with its faces parallel to
coordinate axes.The block is in a uni-
form magnetic field of magnitude
0.020 T. One edge length of the block
is 25 cm; the block is not drawn to
scale. The block is moved at 3.0 m/s
parallel to each axis, in turn, and the
resulting potential difference V that
appears across the block is meas-
ured. With the motion parallel to the
y axis, V � 12 mV; with the motion parallel to the z axis, V � 18
mV; with the motion parallel to the x axis, V � 0. What are the
block lengths (a) dx, (b) dy, and (c) dz?

Module 28-4 A Circulating Charged Particle
•17 An alpha particle can be produced in certain radioactive
decays of nuclei and consists of two protons and two neutrons. The
particle has a charge of q � �2e and a mass of 4.00 u, where u is
the atomic mass unit, with 1 u � 1.661 � 10�27 kg. Suppose an al-
pha particle travels in a circular path of radius 4.50 cm in a uniform
magnetic field with B � 1.20 T. Calculate (a) its speed, (b) its
period of revolution, (c) its kinetic energy, and (d) the potential
difference through which it would have to be accelerated to
achieve this energy.

•18 In Fig. 28-36, a particle moves along a
circle in a region of uniform magnetic field of
magnitude B � 4.00 mT. The particle is either a
proton or an electron (you must decide which).
It experiences a magnetic force of magnitude
3.20 � 10�15 N. What are (a) the particle’s speed,
(b) the radius of the circle, and (c) the period of
the motion?

•19 A certain particle is sent into a uniform magnetic field, with
the particle’s velocity vector perpendicular to the direction of the
field. Figure 28-37 gives the period T of the particle’s motion ver-
sus the inverse of the field magnitude B. The vertical axis scale is
set by , and the horizontal axis scale is set by

What is the ratio m/q of the particle’s mass to the
magnitude of its charge?
B�1

s � 5.0 T�1.
Ts � 40.0 ns

B
:

� (30.0 mT)ĵ undergoes uniform circular motion.
Figure 28-38 gives the radius r of that
motion versus V1/2. The vertical axis
scale is set by , and the
horizontal axis scale is set by

What is the magni-
tude of the magnetic field?

•21 An electron of kinetic en-
ergy 1.20 keV circles in a plane per-
pendicular to a uniform magnetic
field.The orbit radius is 25.0 cm. Find
(a) the electron’s speed, (b) the magnetic field magnitude, (c) the
circling frequency, and (d) the period of the motion.

•22 In a nuclear experiment a proton with kinetic energy
1.0 MeV moves in a circular path in a uniform magnetic field.What
energy must (a) an alpha particle (q � �2e, m � 4.0 u) and (b) a
deuteron (q � �e, m � 2.0 u) have if they are to circulate in the
same circular path?

•23 What uniform magnetic field, applied perpendicular to a
beam of electrons moving at 1.30 � 106 m/s, is required to make
the electrons travel in a circular arc of radius 0.350 m?

•24 An electron is accelerated from rest by a potential differ-
ence of 350 V. It then enters a uniform magnetic field of magni-
tude 200 mT with its velocity perpendicular to the field. Calculate
(a) the speed of the electron and (b) the radius of its path in the
magnetic field.

•25 (a) Find the frequency of revolution of an electron with
an energy of 100 eV in a uniform magnetic field of magnitude
35.0 mT. (b) Calculate the radius of the path of this electron if its
velocity is perpendicular to the magnetic field.

••26 In Fig. 28-39, a charged parti-
cle moves into a region of uniform
magnetic field , goes through half
a circle, and then exits that region.
The particle is either a proton or an
electron (you must decide which).
It spends 130 ns in the region.
(a) What is the magnitude of ? (b) If the particle is sent back
through the magnetic field (along the same initial path) but with
2.00 times its previous kinetic energy, how much time does it spend
in the field during this trip?

••27 A mass spectrometer (Fig. 28-12) is used to separate ura-
nium ions of mass 3.92 � 10�25 kg and charge 3.20 � 10�19 C from
related species. The ions are accelerated through a potential differ-
ence of 100 kV and then pass into a uniform magnetic field, where
they are bent in a path of radius 1.00 m. After traveling through
180° and passing through a slit of width 1.00 mm and height
1.00 cm, they are collected in a cup. (a) What is the magnitude of
the (perpendicular) magnetic field in the separator? If the machine
is used to separate out 100 mg of material per hour, calculate
(b) the current of the desired ions in the machine and (c) the ther-
mal energy produced in the cup in 1.00 h.

••28 A particle undergoes uniform circular motion of radius
26.1 mm in a uniform magnetic field. The magnetic force on the
particle has a magnitude of 1.60 � 10�17 N. What is the kinetic
energy of the particle?

••29 An electron follows a helical path in a uniform magnetic
field of magnitude 0.300 T.The pitch of the path is 6.00 mm, and the

B
:

B
:

SSM

Vs
1/2 � 40.0 V1/2.

rs � 3.0 mm

Figure 28-37 Problem 19.

T
 (

n
s)

 

Ts

0
B –1 (T–1)

Bs
–1

B

Figure 28-36
Problem 18.

r 
(m

m
) 

rs

0

V 1/2 (V1/2)

V s
1/2

Figure 28-38 Problem 20.

Figure 28-39 Problem 26.

B

x

y

z

dx

dz

dy
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•20 An electron is accelerated from rest through potential differ-
ence V and then enters a region of uniform magnetic field, where it
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magnitude of the magnetic force on the electron is 2.00 10�15 N.
What is the electron’s speed?

••30 In Fig. 28-40, an electron with an
initial kinetic energy of 4.0 keV enters re-
gion 1 at time t � 0. That region contains a
uniform magnetic field directed into the
page, with magnitude 0.010 T.The electron
goes through a half-circle and then exits
region 1, headed toward region 2 across a
gap of 25.0 cm. There is an electric poten-
tial difference �V � 2000 V across the
gap, with a polarity such that the electron’s
speed increases uniformly as it traverses
the gap. Region 2 contains a uniform magnetic field directed out of
the page, with magnitude 0.020 T.The electron goes through a half-
circle and then leaves region 2. At what time t does it leave?

••31 A particular type of fundamental particle decays by trans-
forming into an electron e� and a positron e�. Suppose the decay-
ing particle is at rest in a uniform magnetic field of magnitude
3.53 mT and the e� and e� move away from the decay point in
paths lying in a plane perpendicular to . How long after the decay
do the e� and e� collide?

••32 A source injects an electron of speed v � 1.5 � 107 m/s into
a uniform magnetic field of magnitude B � 1.0 � 10�3 T. The ve-
locity of the electron makes an angle u � 10° with the direction of
the magnetic field. Find the distance d from the point of injection
at which the electron next crosses the field line that passes through
the injection point.

••33 A positron with kinetic energy 2.00 keV is pro-WWWSSM

B
:

B
:

� ••37 Estimate the total path length traveled by a deuteron in a
cyclotron of radius 53 cm and operating frequency 12 MHz during
the (entire) acceleration process. Assume that the accelerating
potential between the dees is 80 kV.

••38 In a certain cyclotron a proton moves in a circle of radius
0.500 m. The magnitude of the magnetic field is 1.20 T. (a) What is
the oscillator frequency? (b) What is the kinetic energy of the pro-
ton, in electron-volts?

Module 28-6 Magnetic Force on a Current-Carrying Wire
•39 A horizontal power line carries a current of 5000 A
from south to north. Earth’s magnetic field (60.0 mT) is directed
toward the north and inclined downward at 70.0° to the horizontal.
Find the (a) magnitude and (b) direction of the magnetic force on
100 m of the line due to Earth’s field.

•40 A wire 1.80 m long carries a current of 13.0 A and makes
an angle of 35.0° with a uniform magnetic field of magnitude B �
1.50 T. Calculate the magnetic force on the wire.

•41 A 13.0 g wire of length
L 62.0 cm is suspended by a pair
of flexible leads in a uniform mag-
netic field of magnitude 0.440 T
(Fig. 28-41). What are the (a) magni-
tude and (b) direction (left or right)
of the current required to remove
the tension in the supporting leads?

•42 The bent wire shown in Fig. 28-
42 lies in a uniform magnetic field.
Each straight section is 2.0 m long
and makes an angle of u � 60° with
the x axis, and the wire carries a cur-
rent of 2.0 A. What is the net mag-
netic force on the wire in unit-vector
notation if the magnetic field is
given by (a) and (b) ?

•43 A single-turn current loop, car-
rying a current of 4.00 A, is in the
shape of a right triangle with sides 50.0, 120, and 130 cm. The loop
is in a uniform magnetic field of magnitude 75.0 mT whose direc-
tion is parallel to the current in the 130 cm side of the loop.What is
the magnitude of the magnetic force on (a) the 130 cm side, (b) the
50.0 cm side, and (c) the 120 cm side? (d) What is the magnitude of
the net force on the loop?

••44 Figure 28-43 shows a wire
ring of radius a � 1.8 cm that is per-
pendicular to the general direction
of a radially symmetric, diverging
magnetic field. The magnetic field at
the ring is everywhere of the same
magnitude B � 3.4 mT, and its
direction at the ring everywhere
makes an angle u � 20° with a nor-
mal to the plane of the ring. The twisted lead wires have no effect
on the problem. Find the magnitude of the force the field exerts on
the ring if the ring carries a current i � 4.6 mA.

••45 A wire 50.0 cm long carries a 0.500 A current in the posi-
tive direction of an x axis through a magnetic field 

In unit-vector notation, what is the mag-
netic force on the wire?
(3.00 mT)ĵ � (10.0 mT)k̂.
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jected into a uniform magnetic field of magnitude 0.100 T, with
its velocity vector making an angle of 89.0° with . Find (a) the pe-
riod, (b) the pitch p, and (c) the radius r of its helical path.

••34 An electron follows a helical path in a uniform magnetic
field given by At time t � 0, the elec-
tron’s velocity is given by (a) What is
the angle f between and ? The electron’s velocity changes
with time. Do (b) its speed and (c) the angle f change with time?
(d) What is the radius of the helical path?

Module 28-5 Cyclotrons and Synchrotrons
••35 A proton circulates in a cyclotron, beginning approximately
at rest at the center. Whenever it passes through the gap between
dees, the electric potential difference between the dees is 200 V.
(a) By how much does its kinetic energy increase with each pas-
sage through the gap? (b) What is its kinetic energy as it completes
100 passes through the gap? Let r100 be the radius of the proton’s
circular path as it completes those 100 passes and enters a dee,
and let r101 be its next radius, as it enters a dee the next time. (c) By
what percentage does the radius increase when it changes from
r100 to r101? That is, what is

••36 A cyclotron with dee radius 53.0 cm is operated at an oscil-
lator frequency of 12.0 MHz to accelerate protons. (a) What mag-
nitude B of magnetic field is required to achieve resonance? (b) At
that field magnitude, what is the kinetic energy of a proton emerg-
ing from the cyclotron? Suppose, instead, that B � 1.57 T. (c) What
oscillator frequency is required to achieve resonance now? (d) At
that frequency, what is the kinetic energy of an emerging proton?

percentage increase �
r101 � r100

r100
 100%?
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•••47 A 1.0 kg copper rod rests on two horizontal rails 
1.0 m apart and carries a current of 50 A from one rail to the other.
The coefficient of static friction between rod and rails is 0.60.What
are the (a) magnitude and (b) angle (relative to the vertical) of the
smallest magnetic field that puts the rod on the verge of sliding?

•••48 A long, rigid conductor, lying along an x axis, carries a
current of 5.0 A in the negative x direction. A magnetic field 

is present, given by with x in meters and in
milliteslas. Find, in unit-vector notation, the force on the 2.0 m seg-
ment of the conductor that lies between x � 1.0 m and x � 3.0 m.

Module 28-7 Torque on a Current Loop
•49 Figure 28-45 shows a rec-
tangular 20-turn coil of wire, of di-
mensions 10 cm by 5.0 cm. It carries
a current of 0.10 A and is hinged
along one long side. It is mounted in
the xy plane, at angle u � 30� to the
direction of a uniform magnetic field
of magnitude 0.50 T. In unit-vector
notation, what is the torque acting
on the coil about the hinge line?

••50 An electron moves in a circle
of radius r � 5.29 � 10�11 m with
speed 2.19 � 106 m/s. Treat the circular path as a current loop
with a constant current equal to the ratio of the electron’s charge
magnitude to the period of the motion. If the circle lies in a uni-
form magnetic field of magnitude B � 7.10 mT, what is the maxi-
mum possible magnitude of the torque produced on the loop by
the field?

••51 Figure 28-46 shows a wood cylinder of mass m � 0.250 kg
and length L � 0.100 m, with N � 10.0 turns of wire wrapped
around it longitudinally, so that the
plane of the wire coil contains the
long central axis of the cylinder. The
cylinder is released on a plane in-
clined at an angle u to the horizontal,
with the plane of the coil parallel to
the incline plane. If there is a vertical
uniform magnetic field of magnitude
0.500 T, what is the least current i
through the coil that keeps the cylin-
der from rolling down the plane?

SSM

B
:

B
:

� 3.0î � 8.0x2ĵ,B
:

••46 In Fig. 28-44, a metal wire of mass m 24.1 mg can slide
with negligible friction on two horizontal parallel rails separated
by distance d � 2.56 cm. The track lies in a vertical uniform mag-
netic field of magnitude 56.3 mT. At time t � 0, device G is con-
nected to the rails, producing a constant current i � 9.13 mA in the
wire and rails (even as the wire moves). At t � 61.1 ms, what are
the wire’s (a) speed and (b) direction of motion (left or right)?

� ••52 In Fig. 28-47, a rectangular loop car-
rying current lies in the plane of a uniform
magnetic field of magnitude 0.040 T. The
loop consists of a single turn of flexible con-
ducting wire that is wrapped around a flexi-
ble mount such that the dimensions of the
rectangle can be changed. (The total length
of the wire is not changed.) As edge length x
is varied from approximately zero to its
maximum value of approximately 4.0 cm, the magnitude t of
the torque on the loop changes. The maximum value of t is 4.80 �
10�8 N 
m.What is the current in the loop?

••53 Prove that the relation t � NiAB sin u holds not only for the
rectangular loop of Fig. 28-19 but also for a closed loop of any
shape. (Hint: Replace the loop of arbitrary shape with an assembly
of adjacent long, thin, approximately rectangular loops that are
nearly equivalent to the loop of arbitrary shape as far as the distri-
bution of current is concerned.)

Module 28-8 The Magnetic Dipole Moment
•54 A magnetic dipole with a dipole moment of magnitude
0.020 J/T is released from rest in a uniform magnetic field of mag-
nitude 52 mT. The rotation of the dipole due to the magnetic force
on it is unimpeded. When the dipole rotates through the orienta-
tion where its dipole moment is aligned with the magnetic field, its
kinetic energy is 0.80 mJ. (a) What is the initial angle between the
dipole moment and the magnetic field? (b) What is the angle
when the dipole is next (momentarily) at rest?

•55 Two concentric, circular
wire loops, of radii r1 20.0 cm and
r2 � 30.0 cm, are located in an xy
plane; each carries a clockwise cur-
rent of 7.00 A (Fig. 28-48). (a) Find
the magnitude of the net magnetic
dipole moment of the system.
(b) Repeat for reversed current in
the inner loop.

•56 A circular wire loop of radius
15.0 cm carries a current of 2.60 A.
It is placed so that the normal to its
plane makes an angle of 41.0° with a
uniform magnetic field of magni-
tude 12.0 T. (a) Calculate the magnitude of the magnetic dipole
moment of the loop. (b) What is the magnitude of the torque acting
on the loop?

•57 A circular coil of 160 turns has a radius of 1.90 cm.
(a) Calculate the current that results in a magnetic dipole moment
of magnitude 2.30 A 
m2. (b) Find the maximum magnitude of the
torque that the coil, carrying this current, can experience in a uni-
form 35.0 mT magnetic field.

•58 The magnetic dipole moment of Earth has magnitude 8.00 �
1022 J/T.Assume that this is produced by charges flowing in Earth’s
molten outer core. If the radius of their circular path is 3500 km,
calculate the current they produce.

•59 A current loop, carrying a current of 5.0 A, is in the shape of
a right triangle with sides 30, 40, and 50 cm.The loop is in a uniform
magnetic field of magnitude 80 mT whose direction is parallel to
the current in the 50 cm side of the loop. Find the magnitude of
(a) the magnetic dipole moment of the loop and (b) the torque on
the loop.
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••60 Figure 28-49 shows a current
loop ABCDEFA carrying a current i �
5.00 A.The sides of the loop are parallel
to the coordinate axes shown, with
AB � 20.0 cm, BC � 30.0 cm, and FA �
10.0 cm. In unit-vector notation, what is
the magnetic dipole moment of this
loop? (Hint: Imagine equal and oppo-
site currents i in the line segment AD;
then treat the two rectangular loops
ABCDA and ADEFA.)

••61 The coil in Fig. 28-50 carries
current i 2.00 A in the direction indicated, is parallel to an xz
plane, has 3.00 turns and an area of 4.00 � 10�3 m2, and lies in a
uniform magnetic field What
are (a) the orientation energy of the coil in the magnetic field and
(b) the torque (in unit-vector notation) on the coil due to the
magnetic field?

B
:

� (2.00î � 3.00ĵ � 4.00k̂) mT.

�

SSM

and clockwise rotations yield negative values. The dipole is to be
released at angle f � 0 with a rotational kinetic energy of 6.7 �
10�4 J, so that it rotates counterclockwise. To what maximum value
of f will it rotate? (In the language of Module 8-3, what value f is
the turning point in the potential well of Fig. 28-52?)
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••62 In Fig. 28-51a, two concentric coils, lying in the same
plane, carry currents in opposite directions. The current in the
larger coil 1 is fixed. Current i2 in coil 2 can be varied. Figure 28-51b
gives the net magnetic moment of the two-coil system as a function
of i2. The vertical axis scale is set by and
the horizontal axis scale is set by i2s 10.0 mA. If the current in
coil 2 is then reversed, what is the magnitude of the net magnetic
moment of the two-coil system when i2 � 7.0 mA?

�
2.0 � 10�5 A 
m2,mnet,s �

••63 A circular loop of wire having a radius of 8.0 cm carries a
current of 0.20 A. A vector of unit length and parallel to the dipole
moment of the loop is given by . (This unit vector
gives the orientation of the magnetic dipole moment vector.) If the
loop is located in a uniform magnetic field given by 

find (a) the torque on the loop (in unit-vec-
tor notation) and (b) the orientation energy of the loop.

••64 Figure 28-52 gives the orientation energy U of a magnetic

(0.25 T)î � (0.30 T)k̂,
B
:

�

0.60î � 0.80ĵm:

dipole in an external magnetic field , as a function of angle f
between the directions of and the dipole moment. The vertical
axis scale is set by . The dipole can be rotated
about an axle with negligible friction in order to change f.
Counterclockwise rotation from f � 0 yields positive values of f,

Us � 2.0 � 10�4 J
B
:

B
:

••65 A wire of length 25.0 cm carrying a current of
4.51 mA is to be formed into a circular coil and placed in a uniform
magnetic field of magnitude 5.71 mT. If the torque on the coil
from the field is maximized, what are (a) the angle between and
the coil’s magnetic dipole moment and (b) the number of turns in
the coil? (c) What is the magnitude of that maximum torque?

Additional Problems
66 A proton of charge �e and mass m enters a uniform magnetic
field with an initial velocity Find an expres-
sion in unit-vector notation for its velocity at any later time t.

67 A stationary circular wall clock has a face with a radius of
15 cm. Six turns of wire are wound around its perimeter; the wire
carries a current of 2.0 A in the clockwise direction. The clock is
located where there is a constant, uniform external magnetic field
of magnitude 70 mT (but the clock still keeps perfect time). At
exactly 1:00 P.M., the hour hand of the clock points in the direction
of the external magnetic field. (a) After how many minutes will the
minute hand point in the direction of the torque on the winding
due to the magnetic field? (b) Find the torque magnitude.

68 A wire lying along a y axis from y � 0 to y � 0.250 m carries a
current of 2.00 mA in the negative direction of the axis. The wire
fully lies in a nonuniform magnetic field that is given by

In unit-vector notation, what
is the magnetic force on the wire?

69 Atom 1 of mass 35 u and atom 2 of mass 37 u are both singly
ionized with a charge of �e. After being introduced into a mass
spectrometer (Fig. 28-12) and accelerated from rest through a po-
tential difference V � 7.3 kV, each ion follows a circular path in a
uniform magnetic field of magnitude B � 0.50 T. What is the dis-
tance �x between the points where the ions strike the detector?

70 An electron with kinetic energy 2.5 keV moving along the
positive direction of an x axis enters a region in which a uniform
electric field of magnitude 10 kV/m is in the negative direction of
the y axis. A uniform magnetic field is to be set up to keep the
electron moving along the x axis, and the direction of is to be
chosen to minimize the required magnitude of . In unit-vector
notation, what should be set up?

71 Physicist S. A. Goudsmit devised a method for measuring the
mass of heavy ions by timing their period of revolution in a known
magnetic field. A singly charged ion of iodine makes 7.00 rev in a
45.0 mT field in 1.29 ms. Calculate its mass in atomic mass units.
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72 A beam of electrons whose
kinetic energy is K emerges from a
thin-foil “window” at the end of an
accelerator tube.A metal plate at dis-
tance d from this window is perpendi-
cular to the direction of the emerging
beam (Fig. 28-53). (a) Show that we
can prevent the beam from hitting
the plate if we apply a uniform mag-
netic field  such that

in which m and e are the electron mass and charge. (b) How should
be oriented?

73 At time t � 0, an electron with kinetic energy 12 keV
moves through x 0 in the positive direction of an x axis that is
parallel to the horizontal component of Earth’s magnetic field .
The field’s vertical component is downward and has magnitude
55.0 mT. (a) What is the magnitude of the electron’s acceleration
due to ? (b) What is the electron’s distance from the x axis when
the electron reaches coordinate x � 20 cm?

74 A particle with charge 2.0 C moves through a uniform mag-
netic field. At one instant the velocity of the particle is

and the magnetic force on the particle is
. The x and y components of the magnetic

field are equal.What is ?

75 A proton, a deuteron (q � �e, m � 2.0 u), and an alpha parti-
cle (q � �2e, m � 4.0 u) all having the same kinetic energy enter a
region of uniform magnetic field , moving perpendicular to .
What is the ratio of (a) the radius rd of the deuteron path to the ra-
dius rp of the proton path and (b) the radius ra of the alpha particle
path to rp?

76 Bainbridge’s mass spectrometer,
shown in Fig. 28-54, separates ions
having the same velocity. The ions, af-
ter entering through slits, S1 and S2,
pass through a velocity selector com-
posed of an electric field produced by
the charged plates P and P	, and a
magnetic field perpendicular to the
electric field and the ion path. The
ions that then pass undeviated
through the crossed and fields
enter into a region where a second
magnetic field 	 exists, where they are made to follow circular
paths. A photographic plate (or a modern detector) registers their
arrival. Show that, for the ions, q/m � E/rBB	, where r is the radius
of the circular orbit.

77 In Fig. 28-55, an electron
moves at speed v 100 m/s along an
x axis through uniform electric and
magnetic fields. The magnetic field 
is directed into the page and has
magnitude 5.00 T. In unit-vector no-
tation, what is the electric field?

78 (a) In Fig. 28-8, show that the ratio of the Hall electric field
magnitude E to the magnitude EC of the electric field
responsible for moving charge (the current) along the length of
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the strip is

where r is the resistivity of the material and n is the number den-
sity of the charge carriers. (b) Compute this ratio numerically for
Problem 13. (See Table 26-1.)

79 A proton, a deuteron (q � �e, m � 2.0 u), and an alpha
particle (q 2e, m 4.0 u) are accelerated through the same
potential difference and then enter the same region of uniform
magnetic field , moving perpendicular to . What is the ratio
of (a) the proton’s kinetic energy Kp to the alpha particle’s kinetic
energy Ka and (b) the deuteron’s kinetic energy Kd to Ka? If the
radius of the proton’s circular path is 10 cm, what is the radius of
(c) the deuteron’s path and (d) the alpha particle’s path?

80 An electron is moving at 7.20 � 106 m/s in a magnetic field of
strength 83.0 mT. What is the (a) maximum and (b) minimum
magnitude of the force acting on the electron due to the field?
(c) At one point the electron has an acceleration of magnitude
4.90 � 1014 m/s2. What is the angle between the electron’s velocity
and the magnetic field?

81 A 5.0 mC particle moves through a region containing the uni-
form magnetic field and the uniform electric field

. At a certain instant the velocity of the particle is
. At that instant and in unit-vector nota-

tion, what is the net electromagnetic force (the sum of the electric
and magnetic forces) on the particle?

82 In a Hall-effect experiment, a current of 3.0 A sent length-
wise through a conductor 1.0 cm wide, 4.0 cm long, and 10 mm
thick produces a transverse (across the width) Hall potential dif-
ference of 10 mV when a magnetic field of 1.5 T is passed perpen-
dicularly through the thickness of the conductor. From these
data, find (a) the drift velocity of the charge carriers and (b) the
number density of charge carriers. (c) Show on a diagram the po-
larity of the Hall potential difference with assumed current and
magnetic field directions, assuming also that the charge carriers
are electrons.

83 A particle of mass 6.0 g moves at 4.0 km/s in an xy plane,
in a region with a uniform magnetic field given by . At one
instant, when the particle’s velocity is directed 37° counterclock-
wise from the positive direction of the x axis, the magnetic force on
the particle is .What is the particle’s charge?

84 A wire lying along an x axis from x � 0 to x � 1.00 m 
carries a current of 3.00 A in the positive x direction. The wire is
immersed in a nonuniform magnetic field that is given by 

In unit-vector notation, what is
the magnetic force on the wire?

85 At one instant, is the ve-
locity of a proton in a uniform magnetic field 

At that instant, what are (a) the magnetic force
acting on the proton, in unit-vector notation, (b) the angle 

between and , and (c) the angle between and ?

86 An electron has velocity as it enters a
uniform magnetic field What are (a) the radius of the
helical path taken by the electron and (b) the pitch of that path?
(c) To an observer looking into the magnetic field region from the
entrance point of the electron, does the electron spiral clockwise or
counterclockwise as it moves?
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B
:

v:F
:

v:
F
:
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� (�2.00î � 4.00ĵ � 6.00k̂) m/sv:

(4.00 T/m2)x2î � (0.600 T/m2)x2ĵ.
B
:

�

0.48k̂ N

5.0î mT
SSM

(17î � 11ĵ � 7.0k̂) km/s
300ĵ V/m

�20î mT

B
:

B
:

�� �

SSM

E
EC

�
B

ner
,

d

Electron
beam

Foil
window

Plate
Tube

Figure 28-53 Problem 72.
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r

Plate

S1
S2

+ –
B
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Figure 28-54 Problem 76.

B

v

y

x

Figure 28-55 Problem 77.
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87 Figure 28-56 shows a homopolar generator, which has a solid
conducting disk as rotor and which is rotated by a motor (not
shown). Conducting brushes connect this emf device to a circuit
through which the device drives current. The device can produce a
greater emf than wire loop rotors because they can spin at a much
higher angular speed without rupturing. The disk has radius R �
0.250 m and rotation frequency f � 4000 Hz, and the device is in a
uniform magnetic field of magnitude B � 60.0 mT that is perpendi-
cular to the disk. As the disk is rotated, conduction electrons along
the conducting path (dashed line) are forced to move through the
magnetic field. (a) For the indicated rotation, is the magnetic force
on those electrons up or down in the figure? (b) Is the magnitude
of that force greater at the rim or near the center of the disk?
(c) What is the work per unit charge done by that force in moving
charge along the radial line, between the rim and the center?
(d) What, then, is the emf of the device? (e) If the current is 50.0 A,
what is the power at which electrical energy is being produced?

relationship with momentum (Eq. 9-31). Also consider the
relationship between charge and current (Eq. 26-2).

89 In Fig. 28-58, an electron of
mass m, charge �e, and low (negligi-
ble) speed enters the region between
two plates of potential difference 
V and plate separation d, initially
headed directly toward the top
plate. A uniform magnetic field of
magnitude B is normal to the plane
of the figure. Find the minimum value of B such that the electron
will not strike the top plate.

90 A particle of charge q moves in a circle of radius r with speed v.
Treating the circular path as a current loop with an average current,
find the maximum torque exerted on the loop by a uniform field of
magnitude B.

91 In a Hall-effect experiment, express the number density of
charge carriers in terms of the Hall-effect electric field magnitude
E, the current density magnitude J, and the magnetic field magni-
tude B.

92 An electron that is moving through a uniform magnetic field
has velocity when it experiences
a force due to the magnetic field. If 
Bx 0, calculate the magnetic field .B

:
�

� �(4.2 fN)î � (4.8 fN)ĵF
:

� (40 km/s)î � (35 km/s)ĵv:

i

i

B

Brush

Brush

Conducting path

Figure 28-56 Problem 87.

B

i

m

Hg

L

Figure 28-57 Problem 88.

dV

Figure 28-58 Problem 89.

88 In Fig. 28-57, the two ends of a U-shaped wire of mass m �
10.0 g and length L � 20.0 cm are immersed in mercury (which is a
conductor).The wire is in a uniform field of magnitude B � 0.100 T.
A switch (unshown) is rapidly closed and then reopened, sending a
pulse of current through the wire, which causes the wire to jump up-
ward. If jump height h � 3.00 m, how much charge was in the pulse?
Assume that the duration of the pulse is much less than the time
of flight. Consider the definition of impulse (Eq. 9-30) and its



C H A P T E R  2 9

Magnetic Fields Due to Currents

836

What Is Physics?
One basic observation of physics is that a moving charged particle produces a
magnetic field around itself. Thus a current of moving charged particles produces
a magnetic field around the current. This feature of electromagnetism, which is
the combined study of electric and magnetic effects, came as a surprise to the
people who discovered it. Surprise or not, this feature has become enormously
important in everyday life because it is the basis of countless electromagnetic
devices. For example, a magnetic field is produced in maglev trains and other
devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in
a very small section of current-carrying wire. Then we shall find the magnetic
field due to the entire wire for several different arrangements of the wire.

29-1 MAGNETIC FIELD DUE TO A CURRENT

After reading this module, you should be able to . . .

29.01 Sketch a current-length element in a wire and indicate
the direction of the magnetic field that it sets up at a given
point near the wire.

29.02 For a given point near a wire and a given current-element
in the wire, determine the magnitude and direction of the
magnetic field due to that element.

29.03 Identify the magnitude of the magnetic field set up by a
current-length element at a point in line with the direction
of that element.

29.04 For a point to one side of a long straight wire carrying
current, apply the relationship between the magnetic field
magnitude, the current, and the distance to the point.

29.05 For a point to one side of a long straight wire carrying

current, use a right-hand rule to determine the direction of
the field vector.

29.06 Identify that around a long straight wire carrying cur-
rent, the magnetic field lines form circles.

29.07 For a point to one side of the end of a semi-infinite wire
carrying current, apply the relationship between the magnetic
field magnitude, the current, and the distance to the point.

29.08 For the center of curvature of a circular arc of wire car-
rying current, apply the relationship between the magnetic
field magnitude, the current, the radius of curvature, and
the angle subtended by the arc (in radians).

29.09 For a point to one side of a short straight wire carrying
current, integrate the Biot–Savart law to find the magnetic
field set up at the point by the current.

● The magnetic field set up by a current-carrying conductor can
be found from the Biot–Savart law. This law asserts that the
contribution to the field produced by a current-length ele-
ment at a point P located a distance r from the current ele-
ment is

(Biot–Savart law).

Here is a unit vector that points from the element toward P.
The quantity m0, called the permeability constant, has the value

4p � 10�7 T 
m/A � 1.26 � 10�6 T 
m/A.

r̂

dB
:

�
m0

4p

ids: � r̂
r2

i ds:
dB

:

● For a long straight wire carrying a current i, the Biot–Savart
law gives, for the magnitude of the magnetic field at a perpen-
dicular distance R from the wire,

(long straight wire).

● The magnitude of the magnetic field at the center of a circular
arc, of radius R and central angle f (in radians), carrying current
i, is

(at center of circular arc).B �
m 0 if
4pR

B �
m 0 i
2pR

Learning Objectives

Key Ideas
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Calculating the Magnetic Field Due to a Current
Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into
differential elements ds and then define for each element a length vector that
has length ds and whose direction is the direction of the current in ds. We can
then define a differential current-length element to be i ; we wish to calculate
the field produced at P by a typical current-length element. From experiment
we find that magnetic fields, like electric fields, can be superimposed to find a net
field. Thus, we can calculate the net field at P by summing, via integration, the
contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

Magnitude. The magnitude of the field produced at point P at distance r
by a current-length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m0 is a constant, called the permeability constant,
whose value is defined to be exactly

m0 � 4p � 10�7 T 
m/A � 1.26 � 10�6 T 
m/A. (29-2)

Direction. The direction of , shown as being into the page in Fig. 29-1, is
that of the cross product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Here is one easy distribution: If current in a wire is either directly toward or
directly away from a point P of measurement, can you see from Eq. 29-1 that the
magnetic field at P from the current is simply zero (the angle u is either 0� for to-
ward or 180° for away, and both result in sin u � 0)?

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 showsB

:

B �
m 0 i
2pR

B
:

dB
:

�
m 0

4p

i ds: � r̂
r2

ds: � r̂
dB

:

r̂ds:

dB �
m 0

4p

i ds sin u
r2 ,

ds:
dB

:

ds:

dB
:

B
:

dB
:

ds:

ds:
B
:

Figure 29-1 A current-length element i
produces a differential magnetic field at
point P.The green (the tail of an arrow)
at the dot for point P indicates that is
directed into the page there.

dB
:

�
dB

:
ds:

d B (into
page)

Current
distribution

i

P

θ  
ds

ids

r
r̂

This element of current creates a 
magnetic field at P, into the page.

Figure 29-2 The magnetic field lines produced by a current in a long straight wire form
concentric circles around the wire. Here the current is into the page, as indicated by the �.

Wire with current 
into the page 

B

B

The magnetic field vector
at any point is tangent to
a circle.



and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.

Directions. Plugging values into Eq. 29-4 to find the field magnitude B at a
given radius is easy. What is difficult for many students is finding the direction of
a field vector at a given point.The field lines form circles around a long straight
wire, and the field vector at any point on a circle must be tangent to the circle.
That means it must be perpendicular to a radial line extending to the point from
the wire. But there are two possible directions for that perpendicular vector, as
shown in Fig. 29-4. One is correct for current into the figure, and the other is cor-
rect for current out of the figure. How can you tell which is which? Here is a sim-
ple right-hand rule for telling which vector is correct:

B
:

B
:

B
:
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Figure 29-3 Iron filings that have been sprinkled onto cardboard collect in concentric circles
when current is sent through the central wire.The alignment, which is along magnetic field
lines, is caused by the magnetic field produced by the current.

Courtesy Education Development Center

B r

Figure 29-4 The magnetic field vector is
perpendicular to the radial line extending
from a long straight wire with current, but
which of the two perpendicular vectors is it?

B
:

Curled–straight right-hand rule: Grasp the element in your right hand with your ex-
tended thumb pointing in the direction of the current.Your fingers will then natu-
rally curl around in the direction of the magnetic field lines due to that element.

The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-5a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-5, it is perpendicular to a dashed radial
line connecting the point and the current.

B
:

B
:

Figure 29-5 A right-hand rule gives the direc-
tion of the magnetic field due to a current in
a wire. (a) The situation of Fig. 29-2, seen
from the side.The magnetic field at any
point to the left of the wire is perpendicular
to the dashed radial line and directed into
the page, in the direction of the fingertips, as
indicated by the �. (b) If the current is re-
versed, at any point to the left is still per-
pendicular to the dashed radial line but now
is directed out of the page, as indicated by
the dot.

B
:

B
:

B B

(a)

i

(b)

i
The thumb is in the
current’s direction.
The fingers reveal
the field vector’s
direction, which is
tangent to a circle.
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Proof of Equation 29-4
Figure 29-6, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-6 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to �.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-6. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-6 shows
that they are related by

and

With these substitutions and integral 19 in Appendix E, Eq. 29-5 becomes

(29-6)

as we wanted. Note that the magnetic field at P due to either the lower half or the
upper half of the infinite wire in Fig. 29-6 is half this value; that is,

(semi-infinite straight wire). (29-7)

Magnetic Field Due to a Current in a Circular Arc of Wire
To find the magnetic field produced at a point by a current in a curved wire, we
would again use Eq. 29-1 to write the magnitude of the field produced by a single
current-length element, and we would again integrate to find the net field
produced by all the current-length elements. That integration can be difficult,
depending on the shape of the wire; it is fairly straightforward, however, when the
wire is a circular arc and the point is the center of curvature.

Figure 29-7a shows such an arc-shaped wire with central angle f, radius R,
and center C, carrying current i. At C, each current-length element i of the
wire produces a magnetic field of magnitude dB given by Eq. 29-1. Moreover, as
Fig. 29-7b shows, no matter where the element is located on the wire, the angle u

ds:

B �
m 0i
4pR

�
m 0i
2pR 	 s

(s2 � R2)1/2 

0

�

�
m 0i
2pR

,

B �
m 0i
2p

��

0

R ds
(s2 � R2)3/2

sin u � sin(p � u) �
R

1s2 � R2
.

r � 2s2 � R2

B � 2��

0
dB �

m 0 i
2p

��

0

sin u ds
r2 .

B
:

ds:

ds:

dB
:

ds: � r̂dB
:

dB �
m 0

4p

i ds sin u
r2 .

ds:

B
:

Figure 29-6 Calculating the magnetic field
produced by a current i in a long straight
wire.The field at P associated with the
current-length element i is directed into
the page, as shown.

ds:
dB

:

This element of current
creates a magnetic field
at P, into the page.

i

θ  

d B

P
R

s r

ds

r̂

Figure 29-7 (a) A wire in the shape of a
circular arc with center C carries current i.
(b) For any element of wire along the arc,
the angle between the directions of and

is 90°. (c) Determining the direction of
the magnetic field at the center C due to the
current in the wire; the field is out of the
page, in the direction of the fingertips, as
indicated by the colored dot at C.

r̂
ds:

r

B

C φ 

R

i C ds

(a) (b)

C

i

(c)

r̂

The right-hand rule
reveals the field’s
direction at the center.



between the vectors and is 90°; also, r � R. Thus, by substituting R for r and
90° for u in Eq. 29-1, we obtain

(29-8)

The field at C due to each current-length element in the arc has this magnitude.
Directions. How about the direction of the differential field set up by

an element? From above we know that the vector must be perpendicular to a
radial line extending through point C from the element, either into the plane of
Fig. 29-7a or out of it.To tell which direction is correct, we use the right-hand rule
for any of the elements, as shown in Fig. 29-7c. Grasping the wire with the thumb
in the direction of the current and bringing the fingers into the region near C, we
see that the vector due to any of the differential elements is out of the plane
of the figure, not into it.

Total Field. To find the total field at C due to all the elements on the arc,
we need to add all the differential field vectors . However, because the vectors
are all in the same direction, we do not need to find components. We just sum the
magnitudes dB as given by Eq. 29-8. Since we have a vast number of those magni-
tudes, we sum via integration. We want the result to indicate how the total field
depends on the angle f of the arc (rather than the arc length). So, in Eq. 29-8 we
switch from ds to df by using the identity ds � R df. The summation by integra-
tion then becomes

Integrating, we find that

(at center of circular arc). (29-9)

Heads Up. Note that this equation gives us the magnetic field only at the
center of curvature of a circular arc of current. When you insert data into the
equation, you must be careful to express f in radians rather than degrees. For ex-
ample, to find the magnitude of the magnetic field at the center of a full circle of
current, you would substitute 2p rad for f in Eq. 29-9, finding

(at center of full circle). (29-10)B �
m 0i(2p)

4pR
�

m 0i
2R

B �
m0if
4pR

B � �dB � �f

0

m 0

4p

iR df

R2 �
m 0i
4pR

�f

0
df.

dB
:

dB
:

dB
:

dB �
m 0

4p

i ds sin 90�

R2 �
m 0

4p

i ds
R2 .

r̂ds:
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straight section at the left, (2) the straight section at the right,
and (3) the circular arc.

Straight sections: For any current-length element in
section 1, the angle u between and is zero (Fig. 29-8b);
so Eq. 29-1 gives us

Thus, the current along the entire length of straight section 1
contributes no magnetic field at C:

B1 � 0.

dB1 �
m 0

4p

i ds sin u
r2 �

m 0

4p

i ds sin 0
r2 � 0.

r̂ds:

Sample Problem 29.01 Magnetic field at the center of a circular arc of current

The wire in Fig. 29-8a carries a current i and consists of a 
circular arc of radius R and central angle p/2 rad, and two
straight sections whose extensions intersect the center C of
the arc. What magnetic field (magnitude and direction)
does the current produce at C?

KEY IDEAS

We can find the magnetic field at point C by applying the
Biot–Savart law of Eq. 29-3 to the wire, point by point along
the full length of the wire. However, the application of
Eq. 29-3 can be simplified by evaluating separately for the
three distinguishable sections of the wire—namely, (1) the

B
:

B
:

B
:
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direction of the current. The direction in which your fingers
curl around the wire indicates the direction of the magnetic
field lines around the wire. They form circles around the
wire, coming out of the page above the arc and going into
the page inside the arc. In the region of point C (inside the
arc), your fingertips point into the plane of the page.Thus,
is directed into that plane.

Net field: Generally, we combine multiple magnetic fields as
vectors. Here, however, only the circular arc produces a
magnetic field at point C. Thus, we can write the magnitude
of the net field as

(Answer)

The direction of is the direction of —namely, into the
plane of Fig. 29-8.

B
:

3B
:

B � B1 � B2 � B3 � 0 � 0 �
m 0i
8R

�
m 0i
8R

.

B
:

B
:

3

The same situation prevails in straight section 2, where
the angle u between and for any current-length element
is 180°.Thus,

B2 � 0.

Circular arc: Application of the Biot–Savart law to evalu-
ate the magnetic field at the center of a circular arc leads to
Eq. 29-9 (B � m0if/4pR). Here the central angle f of the arc
is p/2 rad.Thus from Eq. 29-9, the magnitude of the magnetic
field at the arc’s center C is

To find the direction of , we apply the right-hand rule
displayed in Fig. 29-5. Mentally grasp the circular arc with
your right hand as in Fig. 29-8c, with your thumb in the 

B
:

3

B3 �
m 0i(p/2)

4pR
�

m 0i
8R

.

B
:

3

r̂ds:

Figure 29-8 (a) A wire consists of two straight sections
(1 and 2) and a circular arc (3),and carries current i.
(b) For a current-length element in section 1, the an-
gle between and is zero. (c) Determining the di-
rection of magnetic field at C due to the current in
the circular arc; the field is into the page there.

B
:

3

r̂ds:

i

1 2 3

C

R

C

ds

ii

(a) (b) (c)
B3

C

i

r

r̂

Current directly toward or
away from C does not
create any field there.

Sample Problem 29.02 Magnetic field off to the side of two long straight currents

Figure 29-9a shows two long parallel wires carrying currents
i1 and i2 in opposite directions. What are the magnitude and
direction of the net magnetic field at point P? Assume the
following values: i1 � 15 A, i2 � 32 A, and d � 5.3 cm.

KEY IDEAS

(1) The net magnetic field at point P is the vector sum of
the magnetic fields due to the currents in the two wires. (2)
We can find the magnetic field due to any current by apply-
ing the Biot–Savart law to the current. For points near the
current in a long straight wire, that law leads to Eq. 29-4.

Finding the vectors: In Fig. 29-9a, point P is distance R
from both currents i1 and i2. Thus, Eq. 29-4 tells us that at
point P those currents produce magnetic fields and 
with magnitudes

In the right triangle of Fig. 29-9a, note that the base angles
(between sides R and d) are both 45°.This allows us to write

B1 �
m 0i1

2pR
  and  B2 �

m 0i2

2pR
.

B
:

2B
:

1

B
:

Figure 29-9 (a) Two wires carry currents i1 and i2 in opposite directions
(out of and into the page). Note the right angle at P. (b) The separate
fields and are combined vectorially to yield the net field .B

:
B
:

2B
:

1

(a)

P

d
i2

R R 

i1

B2

x

B1

P

d
i2i1

45° 45° 

φ 

(b)

y
B

The two currents create
magnetic fields that must
be added as vectors to get
the net field.

cos 45° � R/d and replace R with d cos 45°. Then the field
magnitudes B1 and B2 become

B1 �
m 0i1

2pd cos 45�
  and  B2 �

m 0i2

2pd cos 45�
.
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Additional examples, video, and practice available at WileyPLUS

We want to combine and to find their vector sum,
which is the net field at P. To find the directions of and

, we apply the right-hand rule of Fig. 29-5 to each current
in Fig. 29-9a. For wire 1, with current out of the page, we
mentally grasp the wire with the right hand, with the thumb
pointing out of the page. Then the curled fingers indicate
that the field lines run counterclockwise. In particular, in the
region of point P, they are directed upward to the left.
Recall that the magnetic field at a point near a long, straight
current-carrying wire must be directed perpendicular to a
radial line between the point and the current. Thus, must
be directed upward to the left as drawn in Fig. 29-9b. (Note
carefully the perpendicular symbol between vector and
the line connecting point P and wire 1.)

Repeating this analysis for the current in wire 2, we find
that is directed upward to the right as drawn in Fig. 29-9b.

Adding the vectors: We can now vectorially add and 
to find the net magnetic field at point P, either by using a
vector-capable calculator or by resolving the vectors into
components and then combining the components of .B

:

B
:

B
:

2B
:

1

B
:

2

B
:

1

B
:

1

B
:

2

B
:

1B
:

B
:

2B
:

1 However, in Fig. 29-9b, there is a third method: Because 
and are perpendicular to each other, they form the legs
of a right triangle, with as the hypotenuse. So,

(Answer)

The angle f between the directions of and in Fig. 29-9b
follows from

which, with B1 and B2 as given above, yields

The angle between and the x axis shown in Fig. 29-9b is
then

f � 45° � 25° � 45° � 70°. (Answer)

B
:

f � tan�1 i1

i2
� tan�1 15 A

32 A
� 25�.

f � tan�1 B1

B2
,

B
:

2B
:

� 1.89 � 10�4 T � 190 mT.

�
(4p � 10�7 T 
m/A)2(15 A)2 � (32 A)2

(2p)(5.3 � 10�2 m)(cos 45�)

B � 2B1
2 � B2

2 �
m 0

2pd(cos 45�)
2i1

2 � i2
2

B
:

B
:

2

B
:

1

29-2 FORCE BETWEEN TWO PARALLEL CURRENTS
Learning Objectives

29.11 Identify that parallel currents attract each other, and an-
tiparallel currents repel each other.

29.12 Describe how a rail gun works.

● Parallel wires carrying currents in the same direction attract
each other, whereas parallel wires carrying currents in oppo-
site directions repel each other. The magnitude of the force
on a length L of either wire is

After reading this module, you should be able to . . . 

29.10 Given two parallel or antiparallel currents, find the
magnetic field of the first current at the location of the
second current and then find the force acting on that
second current.

Key Ideas

Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-10
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-10 due to the current in wire a.
That current produces a magnetic field and it is this magnetic field that actu-
ally causes the force we seek. To find the force, then, we need the magnitude and
direction of the field at the site of wire b.The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)Ba �
m0 ia

2pd
.

B
:

aB
:

a

B
:

a,

where d is the wire separation, and ia and ib are the currents
in the wires.

Fba � ibLBa sin 90� �
m 0Liaib

2pd
,
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The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-10 shows. Now that we have the field, we can find the force it pro-
duces on wire b. Equation 28-26 tells us that the force on a length L of wire b
due to the external magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-10, vectors and are per-
pendicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-10, we see that 
is directly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:

F
:

baB
:

aL
:

L
:

� B
:

a.F
:

ba

Fba � ibLBa sin 90� �
m0Liaib

2pd
.

B
:

aL
:

L
:

F
:

ba � ibL
:

� B
:

a,

B
:

a

F
:

ba

B
:

a

To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the
force on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 � 10�7 newton per meter of wire length.

Rail Gun
The basics of a rail gun are shown in Fig. 29-11a. A large current is sent out along
one of two parallel conducting rails, across a conducting “fuse” (such as a narrow
piece of copper) between the rails, and then back to the current source along the
second rail. The projectile to be fired lies on the far side of the fuse and fits
loosely between the rails. Immediately after the current begins, the fuse element
melts and vaporizes, creating a conducting gas between the rails where the fuse
had been.

The curled–straight right-hand rule of Fig. 29-5 reveals that the currents in the
rails of Fig. 29-11a produce magnetic fields that are directed downward between the
rails.The net magnetic field exerts a force on the gas due to the current i through
the gas (Fig. 29-11b). With Eq. 29-12 and the right-hand rule for cross products, we
find that points outward along the rails.As the gas is forced outward along the rails,
it pushes the projectile, accelerating it by as much as 5 � 106g, and then launches it
with a speed of 10 km/s, all within 1 ms. Someday rail guns may be used to launch 
materials into space from mining operations on the Moon or an asteroid.

F
:

F
:

B
:

Figure 29-10 Two parallel wires carrying cur-
rents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:

a

F
:

ba

B
:

a

Figure 29-11 (a) A rail gun, as a current i is
set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.

F
:

B
:

Projectile

Conducting fuse 

Conducting rail

i

i

Conducting
gas

(a)

(b)

i

i iB

F

ia

ib

d
a

b

L

Fba

Ba (due to ia ) 

L

The field due to a
at the position of b
creates a force on b.

Checkpoint 1
The figure here shows three long, straight, parallel, equally spaced wires with identical cur-
rents either into or out of the page. Rank the wires according to the magnitude of the force
on each due to the currents in the other two wires, greatest first.

a b c 
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29-3 AMPERE’S LAW

After reading this module, you should be able to . . .

29.13 Apply Ampere’s law to a loop that encircles current.
29.14 With Ampere’s law, use a right-hand rule for determin-

ing the algebraic sign of an encircled current.
29.15 For more than one current within an Amperian loop, de-

termine the net current to be used in Ampere’s law.

29.16 Apply Ampere’s law to a long straight wire with current,
to find the magnetic field magnitude inside and outside the
wire, identifying that only the current encircled by the
Amperian loop matters.

● Ampere’s law states that

(Ampere’s law).

The line integral in this equation is evaluated around a closed loop called an Amperian loop. The current i on the right side is the
net current encircled by the loop.


 B
:

� ds: � m 0 ienc

Learning Objectives

Key Idea

Ampere’s Law
We can find the net electric field due to any distribution of charges by first writ-
ing the differential electric field due to a charge element and then summing
the contributions of from all the elements. However, if the distribution is
complicated, we may have to use a computer. Recall, however, that if the distribu-
tion has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to
find the net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distri-
bution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first apply
Ampere’s law to the general situation of Fig. 29-12. The figure shows cross sections
of three long straight wires that carry currents i1, i2, and i3 either directly into
or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of inte-
gration for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vec-
tor elements that are everywhere directed along the tangent to the loop in
the direction of integration. Assume that at the location of the element 
shown in Fig. 29-12, the net magnetic field due to the three currents is .
Because the wires are perpendicular to the page, we know that the magnetic

B
:

ds:
ds:

B
:

� ds:

B
:

� ds:


 B
:

� ds: � m0ienc

dB
:

dB
:

dE
:

dE
:
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field at due to each current is in the plane of Fig. 29-12; thus, their net mag-
netic field at must also be in that plane. However, we do not know the ori-
entation of within the plane. In Fig. 29-12, is arbitrarily drawn at an angle u
to the direction of . The scalar product on the left side of Eq. 29-14 is
equal to B cos u ds.Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

Signs. When we can actually perform this integration, we do not need to
know the direction of before integrating. Instead, we arbitrarily assume to be
generally in the direction of integration (as in Fig. 29-12).Then we use the follow-
ing curled–straight right-hand rule to assign a plus sign or a minus sign to each of
the currents that make up the net encircled current ienc:

B
:

B
:

B
:

� ds:


 B
:

� ds: � 
 B cos u ds � m0ienc.

B
:

� ds:ds:
B
:

B
:

ds:B
:

ds:

Figure 29-12 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3

i1

i2

Direction of 
integration

ds
θ 

Amperian
loop

B

Only the currents
encircled by the
loop are used in
Ampere’s law.

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration.A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

Net Current. In Fig. 29-13 we apply the curled–straight right-hand rule for
Ampere’s law to the situation of Fig. 29-12. With the indicated counterclockwise
direction of integration, the net current encircled by the loop is

ienc � i1 � i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-12 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 � i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-14 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire; that is,
the field has cylindrical symmetry about the wire. We can take advantage of that
symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and 29-15) if we en-
circle the wire with a concentric circular Amperian loop of radius r, as in Fig. 29-14.
The magnetic field  then has the same magnitude B at every point on the loop. We
shall integrate counterclockwise, so that has the direction shown in Fig. 29-14.ds:

B
:

B
:


 B cos u ds � m0(i1 � i2).

B
:

B
:

B
:

Figure 29-13 A right-hand rule for Ampere’s
law, to determine the signs for currents
encircled by an Amperian loop.The situa-
tion is that of Fig. 29-12.

+i1

–i2
Direction of 
integration

This is how to assign a
sign to a current used in
Ampere’s law.

Figure 29-14 Using Ampere’s law to find the
magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i

(   = 0) θ 

r

Amperian
loopWire

surface

B

ds

All of the current is
encircled and thus all
is used in Ampere’s law.



We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u � cos 0° � 1.The integral in Eq. 29-15 then becomes

Note that � ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-14.The right
side of Ampere’s law becomes �m0i, and we then have

B(2pr) � m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-14.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-15 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-15, where now r � R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

Because the current is uniformly distributed, the current ienc encircled by the loop
is proportional to the area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r � R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B � � m0i
2pR2 � r

B(2pr) � m0i
pr2

pR2

ienc � i
pr2

pR2 .


 B
:

� ds: � B
 ds � B(2pr).

B
:

B
:

B
:

B �
m0i
2pr


 B
:

� ds: � 
 B cos u ds � B
 ds � B(2pr).

B
:

ds:

ds:B
:

ds:
B
:
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Figure 29-15 Using Ampere’s law to find the
magnetic field that a current i produces in-
side a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R

Amperian
loop

r

Wire
surface

i

ds

B

Only the current encircled
by the loop is used in
Ampere’s law.

Checkpoint 2
The figure here shows three equal currents i (two parallel
and one antiparallel) and four Amperian loops. Rank the
loops according to the magnitude of along each,
greatest first.

� B
:

� ds:

c d 

b

a

ii

i
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Sample Problem 29.03 Ampere’s law to find the field inside a long cylinder of current

A

Figure 29-16 (a)–(b) To find the magnetic field at a point within this conducting cylinder, we use a concentric Amperian
loop through the point.We then need the current encircled by the loop. (c)–(h) Because the current density is nonuni-
form, we start with a thin ring and then sum (via integration) the currents in all such rings in the encircled area.

Amperian
loop

r
a

r

b

We want the
magnetic field at
the dot at radius r.

We start with a ring
that is so thin that
we can approximate
the current density as
being uniform within it.

a

Our job is to sum
the currents in all
rings from this
smallest one ...

r

... to this largest
one, which has the
same radius as the
Amperian loop.

dr

Its area dA is the
product of the ring’s
circumference
and the width dr.

dA

The current within the
ring is the product of
the current density J
and the ring’s area dA.

So, we put a concentric
Amperian loop through
the dot.

We need to find the
current in the area
encircled by the loop.

(g) (h)(e) ( f )

(a) (b) (c) (d)

Figure 29-16a shows the cross section of a long conducting
cylinder with inner radius a � 2.0 cm and outer radius 
b � 4.0 cm.The cylinder carries a current out of the page, and
the magnitude of the current density in the cross section is
given by J � cr2, with c � 3.0 � 106 A/m4 and r in meters.
What is the magnetic field at the dot in Fig. 29-16a, which is
at radius r � 3.0 cm from the central axis of the cylinder?

KEY IDEAS

The point at which we want to evaluate is inside the mate-
rial of the conducting cylinder, between its inner and outer
radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any
given radius). Thus, the symmetry allows us to use Ampere’s
law to find at the point. We first draw the Amperian loop
shown in Fig. 29-16b. The loop is concentric with the cylin-
der and has radius r � 3.0 cm because we want to evaluate

at that distance from the cylinder’s central axis.B
:

B
:

B
:

B
:

Next, we must compute the current ienc that is encircled
by the Amperian loop. However, we cannot set up a propor-
tionality as in Eq. 29-19, because here the current is not uni-
formly distributed. Instead, we must integrate the current
density magnitude from the cylinder’s inner radius a to the
loop radius r , using the steps shown in Figs. 29-16c through h.

Calculations: We write the integral as

Note that in these steps we took the differential area dA to
be the area of the thin ring in Figs. 29-16d–f and then

�
pc(r 4 � a4)

2
.

� 2pc �r

a
r 3 dr � 2pc 	 r 4

4 

a

r

ienc � � J dA � �r

a
cr2(2pr dr)
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29-4 SOLENOIDS AND TOROIDS
Learning Objectives

unit length n of the solenoid.
29.20 Explain how Ampere’s law is used to find the magnetic

field inside a toroid.
29.21 Apply the relationship between a toroid’s internal mag-

netic field B, the current i, the radius r, and the total num-
ber of turns N.

After reading this module, you should be able to . . . 

29.17 Describe a solenoid and a toroid and sketch their
magnetic field lines.

29.18 Explain how Ampere’s law is used to find the magnetic
field inside a solenoid.

29.19 Apply the relationship between a solenoid’s internal
magnetic field B, the current i, and the number of turns per

Additional examples, video, and practice available at WileyPLUS

replaced it with its equivalent, the product of the ring’s cir-
cumference 2pr and its thickness dr.

For the Amperian loop, the direction of integration indi-
cated in Fig. 29-16b is (arbitrarily) clockwise. Applying the
right-hand rule for Ampere’s law to that loop, we find that we
should take ienc as negative because the current is directed out
of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere’s law 
as we did in Fig. 29-15, and we again obtain Eq. 29-18. Then
Ampere’s law,

gives us

B(2pr) � �
m 0pc

2
 (r 4 � a 4).


 B
:

� ds: � m 0ienc ,

Solving for B and substituting known data yield

Thus, the magnetic field at a point 3.0 cm from the central
axis has magnitude

B � 2.0 � 10�5 T (Answer)

and forms magnetic field lines that are directed opposite our
direction of integration, hence counterclockwise in Fig. 29-16b.

B
:

� �2.0 � 10�5 T.

� [(0.030 m)4 � (0.020 m)4]

� �
(4p � 10 �7 T 
m/A)(3.0 � 10 6 A/m4)

4(0.030 m)

B � �
m0c
4r

 (r4 � a4)

● Inside a long solenoid carrying current i, at points not near
its ends, the magnitude B of the magnetic field is

B � m0in (ideal solenoid),

where n is the number of turns per unit length.

● At a point inside a toroid, the magnitude B of the magnetic
field is

(toroid),

where r is the distance from the center of the toroid to the point.

B �
m 0 iN

2p

1
r

Key Ideas

Solenoids and Toroids
Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampere’s law proves
useful. It concerns the magnetic field produced by the current in a long, tightly
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-17). We assume
that the length of the solenoid is much greater than the diameter.

Figure 29-18 shows a section through a portion of a “stretched-out” sole-
noid. The solenoid’s magnetic field is the vector sum of the fields produced by
the individual turns (windings) that make up the solenoid. For points veryFigure 29-17 A solenoid carrying current i.

i

i
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close to a turn, the wire behaves magnetically almost like a long straight wire,
and the lines of there are almost concentric circles. Figure 29-18 suggests
that the field tends to cancel between adjacent turns. It also suggests that, at
points inside the solenoid and reasonably far from the wire, is approxi-
mately parallel to the (central) solenoid axis. In the limiting case of an ideal
solenoid, which is infinitely long and consists of tightly packed (close-packed)
turns of square wire, the field inside the coil is uniform and parallel to the so-
lenoid axis.

At points above the solenoid, such as P in Fig. 29-18, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked �)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked �), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-19 shows the lines of for a real solenoid. The spacing of these
lines in the central region shows that the field inside the coil is fairly strong
and uniform over the cross section of the coil. The external field, however, is
relatively weak.

Ampere’s Law. Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-20, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as
the sum of four integrals, one for each loop segment:

(29-22)� �d

c
B
:

� ds: � �a

d
B
:

� ds:.
 B
:

� ds: � �b

a
B
:

� ds: � �c

b
B
:

� ds:

� B
:

� ds:
B
:


 B
:

� ds: � m 0 ienc ,

B
:

B
:

B
:

Figure 29-18 A vertical cross section through the central axis of a “stretched-out” solenoid.
The back portions of five turns are shown, as are the magnetic field lines due to a current
through the solenoid. Each turn produces circular magnetic field lines near itself. Near the
solenoid’s axis, the field lines combine into a net magnetic field that is directed along the
axis.The closely spaced field lines there indicate a strong magnetic field. Outside the sole-
noid the field lines are widely spaced; the field there is very weak.

P

Figure 29-19 Magnetic field lines for a real
solenoid of finite length.The field is strong
and uniform at interior points such as P1

but relatively weak at external points such
as P2.

P2

P1

Figure 29-20 Application of Ampere’s law to
a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rec-
tangle abcda.

a b

d c
h

i

B
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i

(a)

Amperian loop 

r

i

(b)

B

Figure 29-21 (a) A toroid carrying a current i.
(b) A horizontal cross section of the toroid.
The interior magnetic field (inside the
bracelet-shaped tube) can be found by ap-
plying Ampere’s law with the Amperian
loop shown.

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
Net Current. The net current ienc encircled by the rectangular Amperian

loop in Fig. 29-20 is not the same as the current i in the solenoid windings because
the windings pass more than once through this loop. Let n be the number of turns
per unit length of the solenoid; then the loop encloses nh turns and

ienc � i(nh).

Ampere’s law then gives us

Bh � m0inh

or B � m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-21a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-21b. Let us choose a concentric circle of
radius r as an Amperian loop and traverse it in the clockwise direction. Ampere’s
law (Eq. 29-14) yields

(B)(2pr) � m0iN,

where i is the current in the toroid windings (and is positive for those windings
enclosed by the Amperian loop) and N is the total number of turns.This gives

(toroid). (29-24)

In contrast to the situation for a solenoid, B is not constant over the cross section
of a toroid.

It is easy to show, with Ampere’s law, that B � 0 for points outside an ideal
toroid (as if the toroid were made from an ideal solenoid). The direction of the
magnetic field within a toroid follows from our curled–straight right-hand rule:
Grasp the toroid with the fingers of your right hand curled in the direction of
the current in the windings; your extended right thumb points in the direction
of the magnetic field.

B �
m 0iN

2p

1
r

B
:

B
:

� B
:

� ds:
�

B
:

� ds:
B
:

B
:
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Calculation: Because B does not depend on the diameter of
the windings, the value of n for five identical layers is simply
five times the value for each layer. Equation 29-23 then tells us

(Answer)

To a good approximation, this is the field magnitude through-
out most of the solenoid.

� 2.42 � 10 �2 T � 24.2 mT.

B � m0 in � (4p � 10 �7 T 
m/A)(5.57 A) 
5 � 850 turns

1.23 m

Sample Problem 29.04 The field inside a solenoid (a long coil of current)

A solenoid has length L � 1.23 m and inner diameter 
d � 3.55 cm, and it carries a current i � 5.57 A. It consists of
five close-packed layers, each with 850 turns along length L.
What is B at its center?

KEY IDEA

The magnitude B of the magnetic field along the solenoid’s
central axis is related to the solenoid’s current i and number
of turns per unit length n by Eq. 29-23 (B � m0 in).

Additional examples, video, and practice available at WileyPLUS

29-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE
Learning Objectives

current i, number of turns N, and area per turn A.
29.24 For a point along the central axis, apply the relationship

between the magnetic field magnitude B, the magnetic
moment m, and the distance z from the center of the coil.

● The magnetic field produced by a current-carrying coil, which is a magnetic dipole, at a point P located a distance z along the
coil’s perpendicular central axis is parallel to the axis and is given by

where is the dipole moment of the coil. This equation applies only when z is much greater than the dimensions of the coil.m:

B
:

(z) �
m 0

2p

m:

z3 ,

After reading this module, you should be able to . . . 

29.22 Sketch the magnetic field lines of a flat coil that is
carrying current.

29.23 For a current-carrying coil, apply the relationship be-
tween the dipole moment magnitude m and the coil’s

Key Idea

A Current-Carrying Coil as a Magnetic Dipole
So far we have examined the magnetic fields produced by current in a long
straight wire, a solenoid, and a toroid. We turn our attention here to the field
produced by a coil carrying a current. You saw in Module 28-8 that such a coil
behaves as a magnetic dipole in that, if we place it in an external magnetic field ,
a torque given by

(29-25)

acts on it. Here is the magnetic dipole moment of the coil and has the magni-
tude NiA, where N is the number of turns, i is the current in each turn, and A is
the area enclosed by each turn. (Caution: Don’t confuse the magnetic dipole
moment with the permeability constant m0.)

Recall that the direction of is given by a curled–straight right-hand rule:
Grasp the coil so that the fingers of your right hand curl around it in the direction
of the current; your extended thumb then points in the direction of the dipole
moment .m:

m:
m:

m:

t: � m: � B
:

t:
B
:



Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

Large z. For axial points far from the loop, we have z R in Eq. 29-26. With
that approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-22 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )m:

B
:

(z) �
m0

2p

m:

z3

m �
m:B

:

B(z) �
m 0

2p

NiA
z3 .

B(z) �
m 0iR2

2z3 .

�

m:B
:

B(z) �
m 0 iR2

2(R2 � z2)3/2 ,
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N

S

i

i

B

μμ

Figure 29-22 A current loop produces a magnetic field like that of a bar magnet and thus has
associated north and south poles.The magnetic dipole moment of the loop, its direction
given by a curled–straight right-hand rule, points from the south pole to the north pole, in
the direction of the field within the loop.B

:

m:



and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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Checkpoint 3
The figure here shows four arrangements of circular loops of radius r or 2r, centered
on vertical axes (perpendicular to the loops) and carrying identical currents in the di-
rections indicated. Rank the arrangements according to the magnitude of the net
magnetic field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d)

Figure 29-23 Cross section through a current
loop of radius R.The plane of the loop is
perpendicular to the page, and only the
back half of the loop is shown.We use the
law of Biot and Savart to find the magnetic
field at point P on the central perpendicu-
lar axis of the loop.

α 

z

P
α 

⊥ dB

dB
dB<

R

ds

r

r̂

The perpendicular 
components
just cancel. We add 
only the parallel 
components.

Proof of Equation 29-26
Figure 29-23 shows the back half of a circular loop of radius R carrying a current
i. Consider a point P on the central axis of the loop, a distance z from its plane.
Let us apply the law of Biot and Savart to a differential element ds of the loop,
located at the left side of the loop. The length vector for this element points
perpendicularly out of the page.The angle u between and in Fig. 29-23 is 90°;
the plane formed by these two vectors is perpendicular to the plane of the page
and contains both and From the law of Biot and Savart (and the right-hand
rule), the differential field produced at point P by the current in this element
is perpendicular to this plane and thus is directed in the plane of the figure,
perpendicular to , as indicated in Fig. 29-23.

Let us resolve into two components: dB, along the axis of the loop and
perpendicular to this axis. From the symmetry, the vector sum of all the per-

pendicular components due to all the loop elements ds is zero. This leaves
only the axial (parallel) components dB, and we have

For the element in Fig. 29-23, the law of Biot and Savart (Eq. 29-1) tells us
that the magnetic field at distance r is

We also have
dB, � dB cos a.

Combining these two relations, we obtain

(29-28)

Figure 29-23 shows that r and a are related to each other. Let us express each in
terms of the variable z, the distance between point P and the center of the loop.
The relations are

(29-29)r � 2R2 � z2

dB,�
m 0 i cos a ds

4pr2 .

dB �
m 0

4p

i ds sin 90�

r2 .

ds:

B � � dB,.

dB�

dB�

dB
:

r̂

dB
:

ds:.r̂

r̂ds:
ds:



and (29-30)

Substituting Eqs. 29-29 and 29-30 into Eq. 29-28, we find

Note that i, R, and z have the same values for all elements ds around the loop; so
when we integrate this equation, we find that

or, because is simply the circumference 2pR of the loop,

This is Eq. 29-26, the relation we sought to prove.

B(z) �
m 0iR2

2(R2 � z2)3/2 .

� ds

�
m 0 iR

4p(R2 � z2)3/2 � ds

B � � dB,

dB,�
m 0iR

4p(R2 � z2)3/2 ds.

cos a �
R
r

�
R

1R2 � z2
.

854 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

The Biot–Savart Law The magnetic field set up by a current-
carrying conductor can be found from the Biot–Savart law. This
law asserts that the contribution to the field produced by a 
current-length element at a point P located a distance r from
the current element is

(Biot–Savart law). (29-3)

Here is a unit vector that points from the element toward P. The
quantity m0, called the permeability constant, has the value

4p � 10�7 T 
m/A � 1.26 � 10�6 T 
m/A.

Magnetic Field of a Long Straight Wire For a long
straight wire carrying a current i, the Biot–Savart law gives, for the
magnitude of the magnetic field at a perpendicular distance R
from the wire,

(long straight wire). (29-4)

Magnetic Field of a Circular Arc The magnitude of the
magnetic field at the center of a circular arc, of radius R and central
angle f (in radians), carrying current i, is

(at center of circular arc). (29-9)

Force Between Parallel Currents Parallel wires carrying
currents in the same direction attract each other, whereas parallel
wires carrying currents in opposite directions repel each other.The
magnitude of the force on a length L of either wire is

(29-13)

where d is the wire separation, and ia and ib are the currents in the
wires.

Fba � ibLBa sin 90� �
m 0Liaib

2pd
,

B �
m 0 if
4pR

B �
m 0 i
2pR

r̂

dB
:

�
m0

4p

ids: � r̂
r2

i ds:
dB

:

Review & Summary

Ampere’s Law Ampere’s law states that

(Ampere’s law). (29-14)

The line integral in this equation is evaluated around a closed loop
called an Amperian loop. The current i on the right side is the net
current encircled by the loop. For some current distributions,
Eq. 29-14 is easier to use than Eq. 29-3 to calculate the magnetic
field due to the currents.

Fields of a Solenoid and a Toroid Inside a long solenoid
carrying current i, at points not near its ends, the magnitude B of
the magnetic field is

B � m0in (ideal solenoid), (29-23)

where n is the number of turns per unit length. Thus the internal
magnetic field is uniform. Outside the solenoid, the magnetic field
is approximately zero.

At a point inside a toroid, the magnitude B of the magnetic
field is

(toroid), (29-24)

where r is the distance from the center of the toroid to the point.

Field of a Magnetic Dipole The magnetic field produced by
a current-carrying coil, which is a magnetic dipole, at a point P lo-
cated a distance z along the coil’s perpendicular central axis is par-
allel to the axis and is given by

(29-27)

where is the dipole moment of the coil. This equation applies
only when z is much greater than the dimensions of the coil.

m:

B
:

(z) �
m 0

2p

m:

z3 ,

B �
m 0 iN

2p

1
r


 B
:

� ds: � m 0 ienc
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Questions

1 Figure 29-24 shows three circuits, each consisting of two radial
lengths and two concentric circular arcs, one of radius r and the
other of radius R 
 r. The circuits have the same current through
them and the same angle between the two radial lengths. Rank the
circuits according to the magnitude of the net magnetic field at the
center, greatest first.

of radii r, 2r, and 3r). The circuits carry the same current. Rank
them according to the magnitude of the magnetic field produced at
the center of curvature (the dot), greatest first.

6 Figure 29-29 gives, as a function of radial distance r, the magni-
tude B of the magnetic field inside and outside four wires (a, b, c, and
d), each of which carries a current that is uniformly distributed across
the wire’s cross section. Overlapping portions of the plots (drawn
slightly separated) are indicated by double labels. Rank the wires ac-
cording to (a) radius, (b) the magnitude of the magnetic field on the
surface, and (c) the value of the current, greatest first. (d) Is the mag-
nitude of the current density in wire a greater than, less than, or equal
to that in wire c?

Figure 29-24 Question 1.

(a) (b) (c)

2 Figure 29-25 represents a snap-
shot of the velocity vectors of four
electrons near a wire carrying cur-
rent i. The four velocities have the
same magnitude; velocity is di-
rected into the page. Electrons 1 and
2 are at the same distance from the
wire, as are electrons 3 and 4. Rank
the electrons according to the mag-
nitudes of the magnetic forces on
them due to current i, greatest first.

3 Figure 29-26 shows four arrangements in which long parallel wires
carry equal currents directly into or out of the page at the corners of
identical squares. Rank the arrangements according to the magnitude
of the net magnetic field at the center of the square,greatest first.

n:2

i

v3
v4

v1
v2

Figure 29-25 Question 2.

Figure 29-26 Question 3.

(a) (b) (c) (d)

Figure 29-28 Question 5.

(a) (b) (c)

7 Figure 29-30 shows four circular
Amperian loops (a, b, c, d) concentric
with a wire whose current is directed
out of the page. The current is uniform
across the wire’s circular cross section
(the shaded region). Rank the loops ac-
cording to the magnitude of 
around each, greatest first.

� B
:

� ds:

Figure 29-29 Question 6.

B

r

a, b

c, d
b, d

a, c

a

b c 

4 Figure 29-27 shows cross sections
of two long straight wires; the left-
hand wire carries current i1 directly
out of the page. If the net magnetic
field due to the two currents is to be zero at point P, (a) should the
direction of current i2 in the right-hand wire be directly into or out of
the page and (b) should i2 be greater than, less than, or equal to i1?

5 Figure 29-28 shows three circuits consisting of straight radial
lengths and concentric circular arcs (either half- or quarter-circles

P i1 i2

Figure 29-27 Question 4.

8 Figure 29-31 shows four arrangements in which long, parallel,
equally spaced wires carry equal currents directly into or out of the
page. Rank the arrangements according to the magnitude of the
net force on the central wire due to the currents in the other wires,
greatest first.

Figure 29-30 Question 7.

a

b

c

d

Figure 29-31 Question 8.

(a)

(b)

(c)

(d)

9 Figure 29-32 shows four circu-
lar Amperian loops (a, b, c, d) and,
in cross section, four long circular
conductors (the shaded regions),
all of which are concentric. Three
of the conductors are hollow cylin-
ders; the central conductor is a
solid cylinder. The currents in the
conductors are, from smallest
radius to largest radius, 4 A out of Figure 29-32 Question 9.

a

b

c

d



856 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

the page, 9 A into the page, 5 A out of the page, and 3 A into the
page. Rank the Amperian loops according to the magnitude of

around each, greatest first.

10 Figure 29-33 shows four identical currents i and five Amperian
paths (a through e) encircling them. Rank the paths according to the
value of taken in the directions shown, most positive first.� B

:
� ds:

� B
:

� ds:

Figure 29-33 Question 10.

(a)

(b)

(c)

(d)

(e)

i

i i i 

11 Figure 29-34 shows three arrangements of three long straight
wires carrying equal currents directly into or out of the page.
(a) Rank the arrangements according to the magnitude of the net
force on wire A due to the currents in the other wires, greatest first.
(b) In arrangement 3, is the angle between the net force on wire A
and the dashed line equal to, less than, or more than 45°?

Figure 29-34 Question 11.

D
d

(1)

Dd

D
d

(2)

(3)

A A 

A

•4 A straight conductor carrying cur-
rent i � 5.0 A splits into identical semi-
circular arcs as shown in Fig. 29-36.
What is the magnetic field at the center
C of the resulting circular loop?
•5 In Fig. 29-37, a current i � 10 A
is set up in a long hairpin conductor
formed by bending a wire into a
semicircle of radius R � 5.0 mm. Point
b is midway between the straight sec-
tions and so distant from the semicir-
cle that each straight section can be
approximated as being an infinite
wire. What are the (a) magnitude and
(b) direction (into or out of the page)
of at a and the (c) magnitude and
(d) direction of at b?

•6 In Fig. 29-38, point P is at perpendicular distance R � 2.00 cm
from a very long straight wire carrying a current.The magnetic field

set up at point P is due to contributions from all the identical cur-
rent-length elements i along the wire.What is the distance s to theds:
B
:

B
:

B
:

Module 29-1 Magnetic Field Due to a Current
•1 A surveyor is using a magnetic
compass 6.1 m below a power line
in which there is a steady current of
100 A. (a) What is the magnetic
field at the site of the compass due
to the power line? (b) Will this field
interfere seriously with the com-
pass reading? The horizontal com-
ponent of Earth’s magnetic field at
the site is 20 mT.

•2 Figure 29-35a shows an ele-
ment of length ds � 1.00 mm in a
very long straight wire carrying
current. The current in that ele-
ment sets up a differential mag-
netic field at points in the
surrounding space. Figure 29-35b
gives the magnitude dB of the field
for points 2.5 cm from the element,
as a function of angle u between the wire and a straight line to the
point. The vertical scale is set by dBs � 60.0 pT. What is the magni-
tude of the magnetic field set up by the entire wire at perpendicular
distance 2.5 cm from the wire?
•3 At a certain location in the Philippines, Earth’s magnetic
field of 39 mT is horizontal and directed due north. Suppose the
net field is zero exactly 8.0 cm above a long, straight, horizontal
wire that carries a constant current. What are the (a) magnitude
and (b) direction of the current?

SSM

dB
:

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Wireds

θ 

(a)

(b)

dBs

0

dB
 (

pT
) 

π π /2
θ  (rad) 

Figure 29-35 Problem 2.

Figure 29-36 Problem 4.

i i

C

Figure 29-37 Problem 5.

i
R

ba

Figure 29-38 Problem 6.

Wire

R

P

s



25.1 cm from one end of a straight wire of length L � 13.6 cm car-
rying current i � 0.693 A. (Note that the wire is not long.) What is
the magnitude of the magnetic field at P2?

••18 A current is set up in a wire
loop consisting of a semicircle of ra-
dius 4.00 cm, a smaller concentric
semicircle, and two radial straight
lengths, all in the same plane. Figure
29-47a shows the arrangement but is
not drawn to scale. The magnitude
of the magnetic field produced at
the center of curvature is 47.25 mT. The smaller semicircle is then
flipped over (rotated) until the loop is again entirely in the same
plane (Fig. 29-47b).The magnetic field produced at the (same) cen-
ter of curvature now has magnitude 15.75 mT, and its direction is
reversed from the initial magnetic field. What is the radius of the
smaller semicircle?

••19 One long wire lies along an x axis and carries a current of 30
A in the positive x direction.A second long wire is perpendicular to
the xy plane, passes through the point (0, 4.0 m, 0), and carries a cur-
rent of 40 A in the positive z direction.What is the magnitude of the
resulting magnetic field at the point (0, 2.0 m, 0)?

••16 In Fig. 29-46, two concen-
tric circular loops of wire carrying
current in the same direction lie in
the same plane. Loop 1 has radius
1.50 cm and carries 4.00 mA. Loop 2
has radius 2.50 cm and carries 6.00
mA. Loop 2 is to be rotated about a diameter while the net mag-
netic field set up by the two loops at their common center is
measured. Through what angle must loop 2 be rotated so that the
magnitude of that net field is 100 nT?

••17 In Fig. 29-44, point P2 is at perpendicular distance R �SSM

B
:

cated at distance d2 � 1.50 cm from
wire 2?

•12 In Fig. 29-43, two long straight
wires at separation d � 16.0 cm carry
currents i1 � 3.61 mA and i2 � 3.00i1

out of the page. (a) Where on the x axis
is the net magnetic field equal to zero?
(b) If the two currents are doubled, is
the zero-field point shifted toward wire
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element making (a) the greatest contribution to field and (b) 10.0%
of the greatest contribution?

•7 In Fig. 29-39, two circular
arcs have radii a � 13.5 cm and b �
10.7 cm, subtend angle u � 74.0°,
carry current i � 0.411 A, and share
the same center of curvature P. What
are the (a) magnitude and (b) direc-
tion (into or out of the page) of the
net magnetic field at P?

•8 In Fig. 29-40, two semicircular
arcs have radii R2 � 7.80 cm and 
R1 � 3.15 cm, carry current i � 0.281
A, and have the same center of cur-
vature C.What are the (a) magnitude
and (b) direction (into or out of the
page) of the net magnetic field at C?

•9 Two long straight wires
are parallel and 8.0 cm apart. They
are to carry equal currents such that the magnetic field at a point
halfway between them has magnitude 300 mT. (a) Should the
currents be in the same or opposite directions? (b) How much
current is needed?

•10 In Fig. 29-41, a wire forms a semi-
circle of radius R � 9.26 cm and two
(radial) straight segments each of
length L � 13.1 cm. The wire carries
current i � 34.8 mA. What are the (a)
magnitude and (b) direction (into or
out of the page) of the net magnetic field at the semicircle’s cen-
ter of curvature C?

•11 In Fig. 29-42, two long straight
wires are perpendicular to the page and
separated by distance d1 � 0.75 cm.
Wire 1 carries 6.5 A into the page. What
are the (a) magnitude and (b) direction
(into or out of the page) of the current
in wire 2 if the net magnetic field due to
the two currents is zero at point P lo-

SSM

B
:

current i � 58.2 mA. (Note that the wire is not long.) What is the
magnitude of the magnetic field at P1 due to i?

••14 Equation 29-4 gives the magnitude B of the magnetic field
set up by a current in an infinitely long straight wire, at a point P
at perpendicular distance R from the wire. Suppose that point P
is actually at perpendicular distance R from the midpoint of a
wire with a finite length L. Using Eq. 29-4 to calculate B then re-
sults in a certain percentage error. What value must the ratio
L/R exceed if the percentage error is to be less than 1.00%? That
is, what L/R gives

••15 Figure 29-45 shows two cur-
rent segments. The lower segment
carries a current of i1 � 0.40 A and
includes a semicircular arc with 
radius 5.0 cm, angle 180°, and center
point P. The upper segment carries
current i2 � 2i1 and includes a circu-
lar arc with radius 4.0 cm, angle 120°,
and the same center point P. What

(B from Eq. 29-4) � (B actual)
(B actual)

 (100%) � 1.00%?

P

i i
θ 

a

b

Figure 29-39 Problem 7.

C

R1

R2i
i

Figure 29-40 Problem 8.

Figure 29-41 Problem 10.

i

C

i

LL

R

P

d1

d2

Wire 1 

Wire 2 

Figure 29-43 Problem 12.

y

x
i1 i2

d

Figure 29-42 Problem 11.

Figure 29-45 Problem 15.

θ 

P

i1

i2

21

Figure 29-46 Problem 16.

Figure 29-47 Problem 18.

(a) (b)

1, shifted toward wire 2, or unchanged?

••13 In Fig. 29-44, point P1 is at distance R � 13.1 cm on the per-
pendicular bisector of a straight wire of length L � 18.0 cm carrying

Figure 29-44 Problems 13 and 17. L

i
R

P 2

R

P 1

are the (a) magnitude and (b) direction of the net magnetic field
at P for the indicated current directions? What are the (c) magni-
tude and (d) direction of if i1 is reversed?B

:

B
:



Figure 29-56 Problem 28.

R

i1

i2

R__
2

(a) (b)

0 i2s

B

i2 (A) 
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u and runs along the circumference of
the circle. The arc and the two straight
sections all lie in the same plane. If B �
0 at the circle’s center, what is u?

••26 In Fig. 29-54a, wire 1 consists of a circular arc and two

••20 In Fig. 29-48, part of a long in-
sulated wire carrying current 
i � 5.78 mA is bent into a circular
section of radius R � 1.89 cm. In
unit-vector notation, what is the
magnetic field at the center of curva-
ture C if the circular section (a) lies
in the plane of the page as shown
and (b) is perpendicular to the plane
of the page after being rotated 90°
counterclockwise as indicated?

••21 Figure 29-49 shows two
very long straight wires (in cross sec-
tion) that each carry a current of
4.00 A directly out of the page.
Distance d1 � 6.00 m and distance
d2 � 4.00 m. What is the magnitude
of the net magnetic field at point P,
which lies on a perpendicular bisec-
tor to the wires?

••22 Figure 29-50a shows, in cross section, two long, parallel
wires carrying current and separated by distance L. The ratio i1/i2

of their currents is 4.00; the directions of the currents are not indi-
cated. Figure 29-50b shows the y component By of their net mag-
netic field along the x axis to the right of wire 2.The vertical scale is
set by Bys � 4.0 nT, and the horizontal scale is set by xs � 20.0 cm.
(a) At what value of x 
 0 is By maximum? (b) If i2 � 3 mA, what is
the value of that maximum? What is the direction (into or out of the
page) of (c) i1 and (d) i2?

must you move wire 3 along the x axis to rotate by 30° back to its
initial orientation?

••25 A wire with current SSM
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Figure 29-54 Problem 26.

••27 In Fig. 29-55, two long straight
wires (shown in cross section) carry
the currents i1 � 30.0 mA and i2 �
40.0 mA directly out of the page.
They are equal distances from the
origin, where they set up a magnetic
field . To what value must current i1

be changed in order to rotate 20.0°
clockwise?

••28 Figure 29-56a shows two
wires, each carrying a current. Wire 1 consists of a circular arc of 

B
:

B
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y
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i2

Figure 29-55 Problem 27.

••23 Figure 29-51 shows a snap-ILW

shot of a proton moving at velocity
toward a long straight

wire with current i 350 mA. At the
instant shown, the proton’s distance
from the wire is d � 2.89 cm. In unit-
vector notation, what is the magnetic
force on the proton due to the current?

••24 Figure 29-52 shows, in cross
section, four thin wires that are paral-
lel, straight, and very long. They carry
identical currents in the directions in-
dicated. Initially all four wires are at
distance d � 15.0 cm from the origin
of the coordinate system, where they
create a net magnetic field . (a) To
what value of x must you move wire 1
along the x axis in order to rotate 
counterclockwise by 30°? (b) With wire
1 in that new position, to what value of x

B
:

B
:

�
(�200 m/s)ĵv: �

Figure 29-51 Problem 23.
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i � 3.00 A is shown in Fig. 29-53. Two
semi-infinite straight sections, both tan-
gent to the same circle, are connected
by a circular arc that has a central angle

radial lengths; it carries current i1 � 0.50 A in the direction
indicated. Wire 2, shown in cross section, is long, straight, and per-
pendicular to the plane of the figure. Its distance from the center of
the arc is equal to the radius R of the arc, and it carries a current i2

that can be varied. The two currents set up a net magnetic field at
the center of the arc. Figure 29-54b gives the square of the field’s
magnitude B2 plotted versus the square of the current . The verti-
cal scale is set by What angle is subtended by
the arc?

Bs
2 � 10.0 � 10�10 T2.

i2
2

B
:
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radius R and two radial lengths; it carries current i1 � 2.0 A in the
direction indicated.Wire 2 is long and straight; it carries a current i2

that can be varied; and it is at distance R/2 from the center of the
arc. The net magnetic field due to the two currents is measured
at the center of curvature of the arc. Figure 29-56b is a plot of
the component of in the direction perpendicular to the figure as
a function of current i2. The horizontal scale is set by i2s � 1.00 A.
What is the angle subtended by the arc?

••29 In Fig. 29-57, four long straight wires are perpendicular
to the page, and their cross sections form a square of edge length
a � 20 cm. The currents are out of the page in wires 1 and 4 and
into the page in wires 2 and 3, and each wire carries 20 A. In
unit-vector notation, what is the net magnetic field at the
square’s center?

SSM

B
:

B
:

•••31 In Fig. 29-59, length a is 4.7 cm
(short) and current i is 13 A. What are
the (a) magnitude and (b) direction
(into or out of the page) of the magnetic
field at point P?

•••32 The current-carrying wire
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Figure 29-57 Problems 29, 37, and 40.
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•••33 Figure 29-61 shows
a cross section of a long thin ribbon
of width w � 4.91 cm that is carrying
a uniformly distributed total current 
i � 4.61 mA into the page. In unit-vec-
tor notation, what is the magnetic
field at a point P in the plane of the
ribbon at a distance d � 2.16 cm from
its edge? (Hint: Imagine the ribbon as
being constructed from many long,
thin, parallel wires.)

•••34 Figure 29-62 shows, in
cross section, two long straight wires
held against a plastic cylinder of ra-
dius 20.0 cm. Wire 1 carries current 
i1 � 60.0 mA out of the page and is
fixed in place at the left side of the
cylinder. Wire 2 carries current i2 �
40.0 mA out of the page and can be
moved around the cylinder. At what
(positive) angle u2 should wire 2 be
positioned such that, at the origin,
the net magnetic field due to the two
currents has magnitude 80.0 nT?

Module 29-2 Force Between
Two Parallel Currents
•35 Figure 29-63 shows wire
1 in cross section; the wire is long

SSM
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Figure 29-61 Problem 33.
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•••30 Two long straight thin wires with current lie against an
equally long plastic cylinder, at radius R � 20.0 cm from the cylin-
der’s central axis. Figure 29-58a shows, in cross section, the cylinder
and wire 1 but not wire 2.With wire 2 fixed in place, wire 1 is moved
around the cylinder, from angle u1 � 0° to angle u1 � 180°, through
the first and second quadrants of the xy coordinate system. The net
magnetic field at the center of the cylinder is measured as a
function of u1. Figure 29-58b gives the x component Bx of that field
as a function of u1 (the vertical scale is set by Bxs � 6.0 mT), and Fig.
29-58c gives the y component By (the vertical scale is set by Bys � 4.0
mT). (a) At what angle u2 is wire 2 located? What are the (b) size and
(c) direction (into or out of the page) of the current in wire 1 and the
(d) size and (e) direction of the current in wire 2?
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Figure 29-63 Problem 35.
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to the plane (Fig. 29-60b). Figure 29-60c gives the magnitude of the
net magnetic field at the center of curvature versus angle u. The
vertical scale is set by Ba � 10.0 mT and Bb � 12.0 mT. What is
the radius of the smaller semicircle?

loop in Fig. 29-60a lies all in one plane
and consists of a semicircle of radius 10.0
cm, a smaller semicircle with the same
center, and two radial lengths. The
smaller semicircle is rotated out of that
plane by angle u, until it is perpendicular



•46 Eight wires cut the page per-
pendicularly at the points shown in
Fig. 29-70. A wire labeled with the
integer k (k � 1, 2, . . . , 8) carries
the current ki, where i � 4.50 mA.
For those wires with odd k, the cur-
rent is out of the page; for those
with even k, it is into the page.
Evaluate along the closed
path indicated and in the direction
shown.

••47 The current density in-
side a long, solid, cylindrical wire of radius a 3.1 mm is in the di-
rection of the central axis, and its magnitude varies linearly with
radial distance r from the axis according to J � J0r/a, where J0 �

�
J
:

ILW

� B
:

� ds:
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What is the value of when that line integral is calculated
along a closed path consisting of the three straight-line seg-
ments from (x, y, z) coordinates (4d, 0, 0) to
(4d, 3d, 0) to (0, 0, 0) to (4d, 0, 0), where d �
20 cm?

•43 Figure 29-67 shows a cross section
across a diameter of a long cylindrical con-
ductor of radius a � 2.00 cm carrying uniform
current 170 A. What is the magnitude of the
current’s magnetic field at radial distance (a)
0, (b) 1.00 cm, (c) 2.00 cm (wire’s surface),
and (d) 4.00 cm?

•44 Figure 29-68 shows two closed
paths wrapped around two conduct-
ing loops carrying currents i1 � 5.0 A
and i2 � 3.0 A. What is the value of
the integral for (a) path
1 and (b) path 2?

•45 Each of the eight conductors in Fig. 29-69 carries 2.0 A of
current into or out of the page. Two paths are indicated for the line
integral .What is the value of the integral for (a) path 1 and
(b) path 2?

� B
:

� ds:

SSM

� B
:

� ds:

� B
:

� ds:

and straight, carries a current of 4.00 mA out of the page, and is
at distance d1 � 2.40 cm from a surface. Wire 2, which is parallel
to wire 1 and also long, is at horizontal distance d2 � 5.00 cm
from wire 1 and carries a current of 6.80 mA into the page. What
is the x component of the magnetic force per unit length on wire
2 due to wire 1?

••36 In Fig. 29-64, five long parallel
wires in an xy plane are separated by
distance d � 8.00 cm, have lengths of
10.0 m, and carry identical currents
of 3.00 A out of the page. Each wire
experiences a magnetic force due to
the currents in the other wires. In
unit-vector notation, what is the net
magnetic force on (a) wire 1, (b) wire 2, (c) wire 3, (d) wire 4, and (e)
wire 5?

••37 In Fig. 29-57, four long straight wires are perpendicular
to the page, and their cross sections form a square of edge length 
a � 13.5 cm. Each wire carries 7.50 A, and the currents are out of
the page in wires 1 and 4 and into the page in wires 2 and 3. In unit-
vector notation, what is the net magnetic force per meter of wire
length on wire 4?

••38 Figure 29-65a shows, in cross section, three current-
carrying wires that are long, straight, and parallel to one another.
Wires 1 and 2 are fixed in place on an x axis, with separation d.
Wire 1 has a current of 0.750 A, but the direction of the current is
not given. Wire 3, with a current of 0.250 A out of the page, can be
moved along the x axis to the right of wire 2. As wire 3 is moved,
the magnitude of the net magnetic force on wire 2 due to the
currents in wires 1 and 3 changes. The x component of that force is
F2x and the value per unit length of wire 2 is F2x/L2. Figure 29-65b
gives F2x/L2 versus the position x of wire 3. The plot has an asymp-
tote F2x/L2 � �0.627 mN/m as x : �. The horizontal scale is set by
xs � 12.0 cm. What are the (a) size and (b) direction (into or out of
the page) of the current in wire 2?

F
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•••41 In Fig. 29-66, a longILW

Figure 29-64 Problems 36
and 39.

y

z

1 2 3 4 5 

d d d d

Figure 29-65 Problem 38.

y

x
1 2 3 

d

x (cm) 

xs0

–0.5

0

0.5

1.0

F 2
x/

L
2 

( 
 N

/m
)

μ 

(a) (b)

••39 In Fig. 29-64, five long parallel wires in an xy plane are
separated by distance d � 50.0 cm. The currents into the page
are i1 � 2.00 A, i3 � 0.250 A, i4 � 4.00 A, and i5 � 2.00 A;
the current out of the page is i2 � 4.00 A. What is the magnitude
of the net force per unit length acting on wire 3 due to the cur-
rents in the other wires?

••40 In Fig. 29-57, four long straight wires are perpendicular to
the page, and their cross sections form a square of edge length 
a � 8.50 cm. Each wire carries 15.0 A, and all the currents are out of
the page. In unit-vector notation, what is the net magnetic force per
meter of wire length on wire 1?
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straight wire carries a current i1 �
30.0 A and a rectangular loop car-
ries current i2 � 20.0 A. Take the di-
mensions to be a � 1.00 cm, b �
8.00 cm, and L � 30.0 cm. In unit-
vector notation, what is the net force
on the loop due to i1?

Module 29-3 Ampere’s Law
•42 In a particular region there is
a uniform current density of 15
A/m2 in the positive z direction.
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310 A/m2. Find the magnitude of the mag-
netic field at (a) r � 0, (b) r � a/2, and 
(c) r � a.

••48 In Fig. 29-71, a long circular pipe
with outside radius R � 2.6 cm carries a
(uniformly distributed) current i �
8.00 mA into the page.A wire runs parallel
to the pipe at a distance of 3.00R from cen-
ter to center. Find the (a) magnitude and
(b) direction (into or out of the page) of the
current in the wire such that the net mag-
netic field at point P has the same magni-
tude as the net magnetic field at the center
of the pipe but is in the opposite direction.

Module 29-4 Solenoids and Toroids
•49 A toroid having a square cross section, 5.00 cm on a side, and
an inner radius of 15.0 cm has 500 turns and carries a current of 0.800
A. (It is made up of a square solenoid—instead of a round one as in
Fig. 29-17—bent into a doughnut shape.) What is the magnetic field
inside the toroid at (a) the inner radius and (b) the outer radius?

•50 A solenoid that is 95.0 cm long has a radius of 2.00 cm and
a winding of 1200 turns; it carries a current of 3.60 A. Calculate
the magnitude of the magnetic field inside the solenoid.

•51 A 200-turn solenoid having a length of 25 cm and a diameter
of 10 cm carries a current of 0.29 A. Calculate the magnitude of the
magnetic field inside the solenoid.

•52 A solenoid 1.30 m long and 2.60 cm in diameter carries a cur-
rent of 18.0 A. The magnetic field inside the solenoid is 23.0 mT.
Find the length of the wire forming the solenoid.

••53 A long solenoid has 100 turns/cm and carries current i. An
electron moves within the solenoid in a circle of radius 2.30 cm
perpendicular to the solenoid axis. The speed of the electron is
0.0460c (c � speed of light). Find the current i in the solenoid.

••54 An electron is shot into one end of a solenoid. As it
enters the uniform magnetic field within the solenoid, its speed
is 800 m/s and its velocity vector makes an angle of 30° with the
central axis of the solenoid. The solenoid carries 4.0 A and has
8000 turns along its length. How many revolutions does the elec-
tron make along its helical path within the solenoid by the time it
emerges from the solenoid’s opposite end? (In a real solenoid,
where the field is not uniform at the two ends, the number of rev-
olutions would be slightly less than the answer here.)

••55 A long solenoid with 10.0 turns/cm and a
radius of 7.00 cm carries a current of 20.0 mA. A current of 6.00 A
exists in a straight conductor located along the central axis of the sole-
noid. (a) At what radial distance from the axis will the direction of the
resulting magnetic field be at 45.0° to
the axial direction? (b) What is the
magnitude of the magnetic field there?

Module 29-5 A Current-Carrying
Coil as a Magnetic Dipole
•56 Figure 29-72 shows an arrange-
ment known as a Helmholtz coil. It
consists of two circular coaxial coils,
each of 200 turns and radius 
R � 25.0 cm, separated by a distance 

WWWILWSSM

B
:

s � R.The two coils carry equal currents i � 12.2 mA in the same di-
rection. Find the magnitude of the net magnetic field at P, midway
between the coils.

•57 A student makes a short electromagnet by windingSSM
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Figure 29-74 Problem 60.

••61 A circular loop of radius 12 cm carries a current of 15 A. A
flat coil of radius 0.82 cm, having 50 turns and a current of 1.3 A, is
concentric with the loop. The plane of the loop is perpendicular to
the plane of the coil. Assume the
loop’s magnetic field is uniform
across the coil. What is the magni-
tude of (a) the magnetic field 
produced by the loop at its center
and (b) the torque on the coil due
to the loop?

••62 In Fig. 29-75, current i �
56.2 mA is set up in a loop having
two radial lengths and two semicir-

300 turns of wire around a wooden cylinder of diameter d � 5.0 cm.
The coil is connected to a battery producing a current of 4.0 A in
the wire. (a) What is the magnitude of the magnetic dipole moment
of this device? (b) At what axial distance d will the magnetic
field have the magnitude 5.0 mT (approximately one-tenth that of
Earth’s magnetic field)?

•58 Figure 29-73a shows a length of
wire carrying a current i and bent into
a circular coil of one turn. In Fig. 29-
73b the same length of wire has been
bent to give a coil of two turns, each of
half the original radius. (a) If Ba and Bb

are the magnitudes of the magnetic
fields at the centers of the two coils,
what is the ratio Bb/Ba? (b) What is the
ratio mb/ma of the dipole moment mag-
nitudes of the coils?

•59 What is the magnitude of the magnetic dipole moment
of the solenoid described in Problem 51?

••60 In Fig. 29-74a, two circular loops, with different 
currents but the same radius of 4.0 cm, are centered on a y axis.
They are initially separated by distance L � 3.0 cm, with loop 2 po-
sitioned at the origin of the axis. The currents in the two loops pro-
duce a net magnetic field at the origin, with y component By. That
component is to be measured as loop 2 is gradually moved in the
positive direction of the y axis. Figure 29-74b gives By as a function
of the position y of loop 2. The curve approaches an asymptote of
By � 7.20 mT as y : �. The horizontal scale is set by ys � 10.0 cm.
What are (a) current i1 in loop 1 and (b) current i2 in loop 2?

m:
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Figure 29-73 Problem 58.
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Figure 29-75 Problem 62.

b

a
P

i



862 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

cles of radii a � 5.72 cm and b � 9.36 cm with a common center
P. What are the (a) magnitude and (b) direction (into or out of
the page) of the magnetic field at P and the (c) magnitude and
(d) direction of the loop’s magnetic dipole moment?

••63 In Fig. 29-76, a conductor car-
ries 6.0 A along the closed path
abcdefgha running along 8 of the 12
edges of a cube of edge length 10 cm.
(a) Taking the path to be a combina-
tion of three square current loops
(bcfgb, abgha, and cdefc), find the net
magnetic moment of the path in unit-
vector notation. (b) What is the mag-
nitude of the net magnetic field at the
xyz coordinates of (0, 5.0 m, 0)?

Additional Problems
64 In Fig. 29-77, a closed loop carries
current i � 200 mA. The loop consists
of two radial straight wires and two
concentric circular arcs of radii 2.00 m
and 4.00 m.The angle u is p/4 rad.What
are the (a) magnitude and (b) direction
(into or out of the page) of the net
magnetic field at the center of
curvature P?

65 A cylindrical cable of radius 8.00
mm carries a current of 25.0 A, uni-
formly spread over its cross-sectional area. At what distance from
the center of the wire is there a point within the wire where the
magnetic field magnitude is 0.100 mT?

66 Two long wires lie in an xy plane, and each carries a current in
the positive direction of the x axis.Wire 1 is at y � 10.0 cm and car-
ries 6.00 A; wire 2 is at y � 5.00 cm and carries 10.0 A. (a) In unit-
vector notation, what is the net magnetic field at the origin? (b)
At what value of y does ? (c) If the current in wire 1 is re-
versed, at what value of y does ?

67 Two wires, both of length L, are formed into a circle and a
square, and each carries current i. Show that the square produces a
greater magnetic field at its center than the circle produces at its
center.

68 A long straight wire carries a current of 50 A. An electron,
traveling at 1.0 � 107 m/s, is 5.0 cm from the wire.What is the mag-
nitude of the magnetic force on the electron if the electron velocity
is directed (a) toward the wire, (b) parallel to the wire in the direc-
tion of the current, and (c) perpendicular to the two directions de-
fined by (a) and (b)?

69 Three long wires are parallel to
a z axis, and each carries a current of
10 A in the positive z direction.Their
points of intersection with the xy
plane form an equilateral triangle
with sides of 50 cm, as shown in Fig.
29-78. A fourth wire (wire b) passes
through the midpoint of the base of
the triangle and is parallel to the
other three wires. If the net magnetic
force on wire a is zero, what are the
(a) size and (b) direction (�z or �z) of the current in wire b?

B
:

� 0
B
:

� 0
B
:

70 Figure 29-79 shows a closed loop
with current i � 2.00 A. The loop con-
sists of a half-circle of radius 4.00 m,
two quarter-circles each of radius 2.00
m, and three radial straight wires.
What is the magnitude of the net mag-
netic field at the common center of the
circular sections?

71 A 10-gauge bare copper wire
(2.6 mm in diameter) can carry a current of 50 A without overheat-
ing. For this current, what is the magnitude of the magnetic field at
the surface of the wire?

72 A long vertical wire carries an unknown current. Coaxial with
the wire is a long, thin, cylindrical conducting surface that carries a
current of 30 mA upward. The cylindrical surface has a radius of
3.0 mm. If the magnitude of the magnetic field at a point 5.0 mm
from the wire is 1.0 mT, what are the (a) size and (b) direction of
the current in the wire?

73 Figure 29-80 shows a cross section of a
long cylindrical conductor of radius a � 4.00 cm
containing a long cylindrical hole of radius
b � 1.50 cm. The central axes of the cylinder
and hole are parallel and are distance d �
2.00 cm apart; current i � 5.25 A is uniformly
distributed over the tinted area. (a) What is
the magnitude of the magnetic field at the
center of the hole? (b) Discuss the two spe-
cial cases b � 0 and d � 0.

74 The magnitude of the magnetic field at a point 88.0 cm from
the central axis of a long straight wire is 7.30 mT. What is the cur-
rent in the wire?

75 Figure 29-81 shows a wire
segment of length s 3.0 cm, cen-
tered at the origin, carrying current
i � 2.0 A in the positive y direction (as
part of some complete circuit). To cal-
culate the magnitude of the magnetic
field produced by the segment at a
point several meters from the origin,
we can use B � (m0/4p)i �s (sin u)/r2 as
the Biot–Savart law. This is because r
and u are essentially constant over the
segment. Calculate (in unit-vector notation) at the (x, y, z) coor-
dinates (a) (0, 0, 5.0 m), (b) (0, 6.0 m, 0), (c) (7.0 m, 7.0 m, 0), and (d)
(�3.0 m,�4.0 m,0).

76 Figure 29-82 shows, in cross section, two long parallel
wires spaced by distance d 10.0 cm; each carries 100 A, out of the
page in wire 1. Point P is on a perpendicular bisector of the line con-
necting the wires. In unit-vector notation, what is the net magnetic
field at P if the current in wire 2 is (a) out of the page and (b) into the
page?
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77 In Fig. 29-83, two infinitely long wires
carry equal currents i. Each follows a 90°
arc on the circumference of the same cir-
cle of radius R. Show that the magnetic
field at the center of the circle is the
same as the field a distance R below an
infinite straight wire carrying a current i
to the left.

78 A long wire carrying 100 A is per-
pendicular to the magnetic field lines of
a uniform magnetic field of magnitude
5.0 mT. At what distance from the wire is the net magnetic field
equal to zero?

79 A long, hollow, cylindrical conductor (with inner radius 2.0
mm and outer radius 4.0 mm) carries a current of 24 A distrib-
uted uniformly across its cross section. A long thin wire that is co-
axial with the cylinder carries a current of 24 A in the opposite
direction. What is the magnitude of the magnetic field (a) 1.0 mm,
(b) 3.0 mm, and (c) 5.0 mm from the central axis of the wire and
cylinder?

80 A long wire is known to have a radius greater than 4.0 mm and
to carry a current that is uniformly distributed over its cross section.
The magnitude of the magnetic field due to that current is 0.28 mT
at a point 4.0 mm from the axis of the wire, and 0.20 mT at a point 10
mm from the axis of the wire.What is the radius of the wire?

81 Figure 29-84 shows a cross
section of an infinite conducting
sheet carrying a current per unit
x-length of l; the current emerges
perpendicularly out of the page. (a)
Use the Biot – Savart law and sym-
metry to show that for all points P
above the sheet and all points P	 be-
low it, the magnetic field is parallel to the sheet and directed as
shown. (b) Use Ampere’s law to prove that at all
points P and P .

82 Figure 29-85 shows, in cross sec-
tion, two long parallel wires that are
separated by distance d � 18.6 cm.
Each carries 4.23 A, out of the page
in wire 1 and into the page in wire 2.
In unit-vector notation, what is the
net magnetic field at point P at dis-
tance R � 34.2 cm, due to the two
currents?

83 In unit-vector notation,
what is the magnetic field at point
P in Fig. 29-86 if i � 10 A and a �
8.0 cm? (Note that the wires are
not long.)

84 Three long wires all lie in an xy
plane parallel to the x axis. They are
spaced equally, 10 cm apart. The two
outer wires each carry a current of
5.0 A in the positive x direction.
What is the magnitude of the force
on a 3.0 m section of either of the
outer wires if the current in the cen-

SSM
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ter wire is 3.2 A (a) in the positive x direction and (b) in the nega-
tive x direction?

85 Figure 29-87 shows a cross section
of a hollow cylindrical conductor of radii a
and b, carrying a uniformly distributed cur-
rent i. (a) Show that the magnetic field magni-
tude B(r) for the radial distance r in the range
b � r � a is given by

(b) Show that when r � a, this equation gives
the magnetic field magnitude B at the surface of a long straight
wire carrying current i; when r � b, it gives zero magnetic field;
and when b � 0, it gives the magnetic field inside a solid
conductor of radius a carrying current i. (c) Assume that a � 2.0
cm, b � 1.8 cm, and i � 100 A, and then plot B(r) for the range 
0 � r � 6 cm.

86 Show that the magnitude of the magnetic field produced at
the center of a rectangular loop of wire of length L and width W,
carrying a current i, is

87 Figure 29-88 shows a cross section of a
long conducting coaxial cable and gives its
radii (a, b, c). Equal but opposite currents i are
uniformly distributed in the two conductors.
Derive expressions for B(r) with radial dis-
tance r in the ranges (a) r � c, (b) c � r � b, (c)
b � r � a, and (d) r 
 a. (e) Test these expres-
sions for all the special cases that occur to you.
(f) Assume that a � 2.0 cm, b � 1.8 cm, c �
0.40 cm, and i � 120 A and plot the function
B(r) over the range 0 � r � 3 cm.

88 Figure 29-89 is an idealized schematic drawing of a rail gun.
Projectile P sits between two wide rails of circular cross section; a
source of current sends current through the rails and through the
(conducting) projectile (a fuse is not used). (a) Let w be the dis-
tance between the rails, R the radius of each rail, and i the current.
Show that the force on the projectile is directed to the right along
the rails and is given approximately by

(b) If the projectile starts from the left end of the rails at rest, find
the speed v at which it is expelled at the right. Assume that i �
450 kA, w � 12 mm, R � 6.7 cm, L � 4.0 m, and the projectile
mass is 10 g.

F �
i2m 0

2p
 ln 

w � R
R

.

B �
2m 0i

p

(L2 � W2)1/2

LW
.

B �
m 0 i

2p(a2 � b2)
r2 � b2

r
.
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Induction and Inductance

What Is Physics?
In Chapter 29 we discussed the fact that a current produces a magnetic field.That
fact came as a surprise to the scientists who discovered the effect. Perhaps even
more surprising was the discovery of the reverse effect: A magnetic field can
produce an electric field that can drive a current.This link between a magnetic field
and the electric field it produces (induces) is now called Faraday’s law of induction.

30-1 FARADAY’S LAW AND LENZ’S LAW

After reading this module, you should be able to . . .

30.01 Identify that the amount of magnetic field piercing a
surface (not skimming along the surface) is the magnetic
flux � through the surface.

30.02 Identify that an area vector for a flat surface is a vector
that is perpendicular to the surface and that has a magni-
tude equal to the area of the surface.

30.03 Identify that any surface can be divided into area ele-
ments (patch elements) that are each small enough and
flat enough for an area vector to be assigned to it, with
the vector perpendicular to the element and having a mag-
nitude equal to the area of the element.

30.04 Calculate the magnetic flux � through a surface by
integrating the dot product of the magnetic field vector 
and the area vector (for patch elements) over the sur-
face, in magnitude-angle notation and unit-vector notation.

30.05 Identify that a current is induced in a conducting loop
while the number of magnetic field lines intercepted by the
loop is changing.

dA
:

B
:

dA
:

30.06 Identify that an induced current in a conducting loop
is driven by an induced emf.

30.07 Apply Faraday’s law, which is the relationship between
an induced emf in a conducting loop and the rate at which
magnetic flux through the loop changes.

30.08 Extend Faraday’s law from a loop to a coil with multiple
loops.

30.09 Identify the three general ways in which the magnetic
flux through a coil can change.

30.10 Use a right-hand rule for Lenz’s law to determine 
the direction of induced emf and induced current in a
conducting loop.

30.11 Identify that when a magnetic flux through a loop
changes, the induced current in the loop sets up a
magnetic field to oppose that change.

30.12 If an emf is induced in a conducting loop containing
a battery, determine the net emf and calculate the corre-
sponding current in the loop.

● The magnetic flux �B through an area A in a magnetic field
is defined as

where the integral is taken over the area. The SI unit of
magnetic flux is the weber, where 1 Wb � 1 T 
m2.

● If is perpendicular to the area and uniform over it, the flux is

● If the magnetic flux �B through an area bounded by a
closed conducting loop changes with time, a current and

(B
:

� A, B
:

uniform).�B � BA

B
:

�B � � B
:

� dA
:

,

B
:

an emf are produced in the loop; this process is called
induction. The induced emf is

(Faraday’s law).

● If the loop is replaced by a closely packed coil of N turns, the
induced emf is

● An induced current has a direction such that the magnetic
field due to the current opposes the change in the magnetic
flux that induces the current. The induced emf has the same
direction as the induced current.

� � �N
d�B

dt
.

� � �
d�B

dt

Learning Objectives

Key Ideas
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The observations by Michael Faraday and other scientists that led to this law
were at first just basic science. Today, however, applications of that basic science
are almost everywhere. For example, induction is the basis of the electric guitars
that revolutionized early rock and still drive heavy metal and punk today. It is
also the basis of the electric generators that power cities and transportation lines
and of the huge induction furnaces that are commonplace in foundries where
large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two
simple experiments about Faraday’s law of induction.

Two Experiments
Let us examine two simple experiments to prepare for our discussion of Faraday’s
law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive
ammeter. Because there is no battery or other source of emf included, there is no
current in the circuit. However, if we move a bar magnet toward the loop, a current
suddenly appears in the circuit.The current disappears when the magnet stops. If we
then move the magnet away, a current again suddenly appears, but now in the oppo-
site direction. If we experimented for a while, we would discover the following:

1. A current appears only if there is relative motion between the loop and the
magnet (one must move relative to the other); the current disappears when
the relative motion between them ceases.

2. Faster motion produces a greater current.

3. If moving the magnet’s north pole toward the loop causes, say, clockwise
current, then moving the north pole away causes counterclockwise current.
Moving the south pole toward or away from the loop also causes currents, but
in the reversed directions.

The current produced in the loop is called an induced current; the work done
per unit charge to produce that current (to move the conduction electrons that
constitute the current) is called an induced emf; and the process of producing the
current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2,
with the two conducting loops close to each other but not touching. If we close
switch S, to turn on a current in the right-hand loop, the meter suddenly and
briefly registers a current—an induced current—in the left-hand loop. If we
then open the switch, another sudden and brief induced current appears in
the left-hand loop, but in the opposite direction. We get an induced current (and
thus an induced emf) only when the current in the right-hand loop is changing
(either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently
caused when something changes—but what is that “something”? Faraday knew.

Faraday’s Law of Induction
Faraday realized that an emf and a current can be induced in a loop, as in our
two experiments, by changing the amount of magnetic field passing through the
loop. He further realized that the “amount of magnetic field” can be visualized
in terms of the magnetic field lines passing through the loop. Faraday’s law of
induction, stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number
of magnetic field lines that pass through the loop is changing.

Figure 30-1 An ammeter registers a current
in the wire loop when the magnet is moving
with respect to the loop.

N

S

The magnet’s motion
creates a current in
the loop.

Figure 30-2 An ammeter registers a current
in the left-hand wire loop just as switch S is
closed (to turn on the current in the right-
hand wire loop) or opened (to turn off the
current in the right-hand loop). No motion
of the coils is involved.

S

+
–

Closing the switch
causes a current in
the left-hand loop.



The actual number of field lines passing through the loop does not matter; the
values of the induced emf and induced current are determined by the rate at
which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from
the north pole of the magnet. Thus, as we move the north pole closer to the loop,
the number of field lines passing through the loop increases.That increase appar-
ently causes conduction electrons in the loop to move (the induced current) and
provides energy (the induced emf) for their motion.When the magnet stops mov-
ing, the number of field lines through the loop no longer changes and the induced
current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current),
there are no field lines. However, when we turn on the current in the right-hand
loop, the increasing current builds up a magnetic field around that loop and at the
left-hand loop. While the field builds, the number of magnetic field lines through
the left-hand loop increases. As in the first experiment, the increase in field lines
through that loop apparently induces a current and an emf there. When the
current in the right-hand loop reaches a final, steady value, the number of field
lines through the left-hand loop no longer changes, and the induced current and
induced emf disappear.

A Quantitative Treatment
To put Faraday’s law to work, we need a way to calculate the amount of magnetic
field that passes through a loop. In Chapter 23, in a similar situation, we needed to
calculate the amount of electric field that passes through a surface. There we
defined an electric flux . Here we define a magnetic flux: Suppose
a loop enclosing an area A is placed in a magnetic field .Then the magnetic flux
through the loop is

(magnetic flux through area A). (30-1)

As in Chapter 23, is a vector of magnitude dA that is perpendicular to a
differential area dA. As with electric flux, we want the component of the field
that pierces the surface (not skims along it). The dot product of the field and the
area vector automatically gives us that piercing component.

Special Case. As a special case of Eq. 30-1, suppose that the loop lies in a
plane and that the magnetic field is perpendicular to the plane of the loop.
Then we can write the dot product in Eq. 30-1 as B dA cos 0° � B dA. If the
magnetic field is also uniform, then B can be brought out in front of the inte-
gral sign. The remaining then gives just the area A of the loop. Thus, Eq.
30-1 reduces to

(30-2)

Unit. From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the 
tesla–square meter, which is called the weber (abbreviated Wb):

1 weber � 1 Wb � 1 T 
m2. (30-3)

Faraday’s Law. With the notion of magnetic flux, we can state Faraday’s law
in a more quantitative and useful way:

(B
:

� area A, B
:

 uniform).�B � BA

� dA

dA
:

�B � �B
:

� dA
:

B
:

�E � � E
:

� dA
:
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The magnitude of the emf � induced in a conducting loop is equal to the rate at
which the magnetic flux �B through that loop changes with time.

As you will see below, the induced emf � tends to oppose the flux change, so
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Faraday’s law is formally written as

(Faraday’s law), (30-4)

with the minus sign indicating that opposition. We often neglect the minus sign in
Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf
appears in every turn and the total emf induced in the coil is the sum of these
individual induced emfs. If the coil is tightly wound (closely packed), so that
the same magnetic flux �B passes through all the turns, the total emf induced in
the coil is

(coil of N turns). (30-5)

Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.

2. Change either the total area of the coil or the portion of that area that lies
within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

3. Change the angle between the direction of the magnetic field and the plane
of the coil (for example, by rotating the coil so that field is first perpendicu-
lar to the plane of the coil and then is along that plane).

B
:

B
:

� � �N
d�B

dt

� � �
d�B

dt

Checkpoint 1
The graph gives the magnitude B(t) of a uniform
magnetic field that exists throughout a conduct-
ing loop, with the direction of the field perpendi-
cular to the plane of the loop. Rank the five
regions of the graph according to the magnitude
of the emf induced in the loop, greatest first.

a b c d e 
t

B

KEY IDEAS

1. Because it is located in the interior of the solenoid, coil C
lies within the magnetic field produced by current i in the 
solenoid; thus, there is a magnetic flux �B through coil C.

2. Because current i decreases, flux �B also decreases.
3. As �B decreases, emf � is induced in coil C.

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 (�B � BA).

5. The magnitude B of the magnetic field in the interior of
a solenoid depends on the solenoid’s current i and its
number n of turns per unit length, according to Eq. 29-23
(B � m0in).

B
:

B
:

Sample Problem 30.01 Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3 has
220 turns/cm and carries a current i � 1.5 A; its diameter D
is 3.2 cm. At its center we place a 130-turn closely packed
coil C of diameter d � 2.1 cm. The current in the solenoid is
reduced to zero at a steady rate in 25 ms. What is the magni-
tude of the emf that is induced in coil C while the current in
the solenoid is changing?

Figure 30-3 A coil C is located inside a solenoid S, which carries
current i.

Axis

i

i

C

S



Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

868 CHAPTER 30 INDUCTION AND INDUCTANCE

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)� 75 mV.

� 7.5 � 10 �2 V

� � N
d�B

dt
� (130 turns)(5.76 � 10 �4 V)

� �5.76 � 10 �4 V.

� �5.76 � 10 �4 Wb/s

�
(0 � 1.44 � 10 �5 Wb)

25 � 10 �3 s

d�B

dt
�

��B

�t
�

�B, f � �B,i

�t

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5 
(� � �N d�B/dt), where the number of turns N is 130 and
d�B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux �B also decreases at a steady rate, and so we
can write d�B/dt as ��B/�t. Then, to evaluate ��B, we need
the final and initial flux values. The final flux �B,f is zero be-
cause the final current in the solenoid is zero.To find the ini-
tial flux �B,i, we note that area A is pd 2 (� 3.464 � 10�4 m2)
and the number n is 220 turns/cm, or 22 000 turns/m. Sub- 
stituting Eq. 29-23 into Eq. 30-2 then leads to

� 1.44 � 10 �5 Wb.

� (3.464 � 10 �4 m2)

� (4p � 10 �7 T 
m/A)(1.5 A)(22 000 turns/m)

�B, i � BA � (m0 in)A

1
4

Additional examples, video, and practice available at WileyPLUS

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Furthermore, the direction of an induced emf is that of the induced current. The
key word in Lenz’s law is “opposition.” Let’s apply the law to the motion of the
north pole toward the conducting loop in Fig. 30-4.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-22, we know that the loop then acts as a
magnetic dipole with a south pole and a north pole, and that its magnetic
dipole moment is directed from south to north. To oppose the magnetic
flux increase being caused by the approaching magnet, the loop’s north pole
(and thus ) must face toward the approaching north pole so as to repel it
(Fig. 30-4). Then the curled – straight right-hand rule for (Fig. 29-22) tells
us that the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then
nears the loop with its magnetic field directed downward, the flux through
the loop increases. To oppose this increase in flux, the induced current i must
set up its own field directed upward inside the loop, as shown in Fig. 30-5a;
then the upward flux of field opposes the increasing downward flux of
field . The curled–straight right-hand rule of Fig. 29-22 then tells us that i
must be counterclockwise in Fig. 30-5a.

B
:

B
:

ind

B
:

ind

B
:

m:
m:

m:

Figure 30-4 Lenz’s law at work.As the mag-
net is moved toward the loop, a current is
induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise
as shown.

m:

N

S

i

N

S

μμ

The magnet’s motion
creates a magnetic
dipole that opposes
the motion.
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Heads Up. The flux of always opposes the change in the flux of , but 
is not always opposite . For example, if we next pull the magnet away

from the loop in Fig. 30-4, the magnet’s flux B is still downward through the
loop, but it is now decreasing. The flux of must now be downward inside
the loop, to oppose that decrease (Fig. 30-5b). Thus, and are now in the
same direction. In Figs. 30-5c and d, the south pole of the magnet approaches
and retreats from the loop, again with opposition to change.

B
:

B
:

ind

B
:

ind

�
B
:

B
:

ind

B
:

B
:

ind

A

Figure 30-5 The direction of the current i induced in a loop is such that the current’s magnetic field opposes the change in the magnetic
field inducing i.The field is always directed opposite an increasing field and in the same direction as a decreasing field

.The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.B
:

(b, d)
B
:

(a, c)B
:

indB
:

B
:

ind
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Bind

B

i

BindB

i

BBind

B
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i

i
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B

i

BindB
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B
Bind

B

Bind

i

i

Bind

B

i

BindB

i

BBindB

Bind

i

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

The induced 
current creates 
this field, trying
to offset the 
change.

The fingers are 
in the current's 
direction; the
thumb is in the 
induced field's 
direction.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

(a) (b) (c) (d)

Checkpoint 2
The figure shows three situations in which identical circular
conducting loops are in uniform magnetic fields that are either
increasing (Inc) or decreasing (Dec) in magnitude at identical rates.
In each, the dashed line coincides with a diameter. Rank the situa-
tions according to the magnitude of the current induced in the loops,
greatest first.

Inc

Inc

Inc

Dec

Dec

Inc

(a) (b) (c)
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At t � 10 s, then,

(Answer)

Direction: To find the direction of �ind, we first note that in
Fig. 30-6 the flux through the loop is out of the page and in-
creasing. Because the induced field Bind (due to the induced
current) must oppose that increase, it must be into the page.
Using the curled–straight right-hand rule (Fig. 30-5c), we find
that the induced current is clockwise around the loop, and
thus so is the induced emf �ind.

(b) What is the current in the loop at t � 10 s?

KEY IDEA

The point here is that two emfs tend to move charges
around the loop.

Calculation: The induced emf �ind tends to drive a current
clockwise around the loop; the battery’s emf �bat tends to
drive a current counterclockwise. Because �ind is greater
than �bat, the net emf �net is clockwise, and thus so is the
current. To find the current at t � 10 s, we use Eq. 27-2 
(i � �/R):

(Answer)�
5.152 V � 2.0 V

2.0 �
� 1.58 A � 1.6 A.

i �
enet

R
�
e ind � ebat

R

� 5.152 V � 5.2 V.

� ind �
p (0.20 m)2

2
 [8.0(10) � 2.0]

Figure 30-6 shows a conducting loop consisting of a half-circle
of radius r � 0.20 m and three straight sections. The half-
circle lies in a uniform magnetic field that is directed out
of the page; the field magnitude is given by B � 4.0t2 �
2.0t � 3.0, with B in teslas and t in seconds. An ideal battery
with emf �bat � 2.0 V is connected to the loop.The resistance
of the loop is 2.0 �.

(a) What are the magnitude and direction of the emf �ind

induced around the loop by field at t � 10 s?

KEY IDEAS

1. According to Faraday’s law, the magnitude of �ind is
equal to the rate d�B/dt at which the magnetic flux
through the loop changes.

2. The flux through the loop depends on how much of the
loop’s area lies within the flux and how the area is ori-
ented in the magnetic field .

3. Because is uniform and is perpendicular to the plane
of the loop, the flux is given by Eq. 30-2 (�B � BA).
(We don’t need to integrate B over the area to get
the flux.)

4. The induced field Bind (due to the induced current) must
always oppose the change in the magnetic flux.

Magnitude: Using Eq. 30-2 and realizing that only the field
magnitude B changes in time (not the area A), we rewrite
Faraday’s law, Eq. 30-4, as

Because the flux penetrates the loop only within the half-
circle, the area A in this equation is . Substituting this
and the given expression for B yields

�
p r2

2
 (8.0t � 2.0).

e ind � A
dB
dt

�
p r2

2
d
dt

 (4.0t 2 � 2.0t � 3.0)

1
2pr2

� ind �
d�B

dt
�

d(BA)
dt

� A
dB
dt

.

B
:

B
:

B
:

B
:

Figure 30-6 A battery is connected to a conducting loop that 
includes a half-circle of radius r lying in a uniform magnetic 
field.The field is directed out of the page; its magnitude is 
changing.

r

r/2

bat

– + 

Sample Problem 30.02 Induced emf and current due to a changing uniform B field

KEY IDEAS

1. Because the magnitude of the magnetic field is chang-
ing with time, the magnetic flux �B through the loop is
also changing.

2. The changing flux induces an emf � in the loop according
to Faraday’s law, which we can write as � � d�B/dt.

3. To use that law, we need an expression for the flux �B at

B
:

Sample Problem 30.03 Induced emf due to a changing nonuniform B field

Figure 30-7 shows a rectangular loop of wire immersed in a
nonuniform and varying magnetic field that is perpendi-
cular to and directed into the page. The field’s magnitude is
given by B � 4t2x2, with B in teslas, t in seconds, and x in
meters. (Note that the function depends on both time and
position.) The loop has width W � 3.0 m and height H �
2.0 m. What are the magnitude and direction of the induced
emf � around the loop at t � 0.10 s?

B
:
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dA to be the area of a vertical strip of height H and width dx
(as shown in Fig. 30-7). Then dA � H dx, and the flux
through the loop is

Treating t as a constant for this integration and inserting the
integration limits x � 0 and x � 3.0 m, we obtain

where we have substituted H � 2.0 m and �B is in webers.
Now we can use Faraday’s law to find the magnitude of � at
any time t :

in which � is in volts.At t � 0.10 s,

� � (144 V/s)(0.10 s) � 14 V. (Answer)

The flux of through the loop is into the page in
Fig. 30-7 and is increasing in magnitude because B is in-
creasing in magnitude with time. By Lenz’s law, the field Bind

of the induced current opposes this increase and so is di-
rected out of the page. The curled–straight right-hand rule
in Fig. 30-5a then tells us that the induced current is counter-
clockwise around the loop, and thus so is the induced emf �.

B
:

� �
d�B

dt
�

d(72t2)
dt

� 144t,

�B � 4t2H �3.0

0
x2 dx � 4t2H 	 x3

3 

0

3.0

� 72t2,

�B � � B
:

� dA
:

� �B dA � � BH dx � � 4t2x2H dx.

any time t. However, because B is not uniform over the
area enclosed by the loop, we cannot use Eq. 30-2 (�B �
BA) to find that expression; instead we must use Eq. 30-1

.

Calculations: In Fig. 30-7, is perpendicular to the plane
of the loop (and hence parallel to the differential area 
vector ); so the dot product in Eq. 30-1 gives B dA.
Because the magnetic field varies with the coordinate x but
not with the coordinate y, we can take the differential area

dA
:

B
:

(�B � �B
:

� dA
:

)

Additional examples, video, and practice available at WileyPLUS

Figure 30-7 A closed conducting loop, of width W and height H, lies
in a nonuniform, varying magnetic field that points directly into the
page. To apply Faraday’s law, we use the vertical strip of height H,
width dx, and area dA.

W

H

y

x
dx

dA

B

If the field varies with position,
we must integrate to get the
flux through the loop.

We start with a strip
so thin that we can
approximate the field as
being uniform within it.

30-2 INDUCTION AND ENERGY TRANSFERS

After reading this module, you should be able to . . .

30.13 For a conducting loop pulled into or out of a magnetic
field, calculate the rate at which energy is transferred to
thermal energy.

30.14 Apply the relationship between an induced current and
the rate at which it produces thermal energy.

30.15 Describe eddy currents.

Learning Objectives

● The induction of a current by a changing flux means that energy is being transferred to that current. The energy can then be
transferred to other forms, such as thermal energy.

Key Idea

Induction and Energy Transfers
By Lenz’s law, whether you move the magnet toward or away from the loop in
Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do
positive work. At the same time, thermal energy is produced in the material of
the loop because of the material’s electrical resistance to the current that is
induced by the motion. The energy you transfer to the closed loop � magnet sys-
tem via your applied force ends up in this thermal energy. (For now, we neglect
energy that is radiated away from the loop as electromagnetic waves during the



induction.) The faster you move the magnet, the more rapidly your applied force
does work and the greater the rate at which your energy is transferred to thermal
energy in the loop; that is, the power of the transfer is greater.

Regardless of how current is induced in a loop, energy is always transferred
to thermal energy during the process because of the electrical resistance of the
loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch S
is closed and a current is briefly induced in the left-hand loop, energy is trans-
ferred from the battery to thermal energy in that loop.

Figure 30-8 shows another situation involving induced current.A rectangular
loop of wire of width L has one end in a uniform external magnetic field that is
directed perpendicularly into the plane of the loop. This field may be produced,
for example, by a large electromagnet. The dashed lines in Fig. 30-8 show the
assumed limits of the magnetic field; the fringing of the field at its edges is
neglected.You are to pull this loop to the right at a constant velocity .

Flux Change. The situation of Fig. 30-8 does not differ in any essential way
from that of Fig. 30-1. In each case a magnetic field and a conducting loop are in
relative motion; in each case the flux of the field through the loop is changing
with time. It is true that in Fig. 30-1 the flux is changing because is changing and
in Fig. 30-8 the flux is changing because the area of the loop still in the magnetic
field is changing, but that difference is not important. The important difference
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu-
lations easier. Let us now calculate the rate at which you do mechanical work as
you pull steadily on the loop in Fig. 30-8.

Rate of Work. As you will see, to pull the loop at a constant velocity , you
must apply a constant force to the loop because a magnetic force of equal mag-
nitude but opposite direction acts on the loop to oppose you. From Eq. 7-48, the
rate at which you do work—that is, the power—is then

P � Fv, (30-6)

where F is the magnitude of your force. We wish to find an expression for P in
terms of the magnitude B of the magnetic field and the characteristics of the
loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within
the magnetic field decreases. Thus, the flux through the loop also decreases and,
according to Faraday’s law, a current is produced in the loop. It is the presence of
this current that causes the force that opposes your pull.

Induced emf. To find the current, we first apply Faraday’s law. When x is the
length of the loop still in the magnetic field, the area of the loop still in the field is
Lx.Then from Eq. 30-2, the magnitude of the flux through the loop is

�B � BA � BLx. (30-7)

F
:

v:

B
:

v:
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Figure 30-8 You pull a closed conduct-
ing loop out of a magnetic field at
constant velocity . While the loop
is moving, a clockwise current i is
induced in the loop, and the loop seg-
ments still within the magnetic field
experience forces , , and .F

:

3F
:

2F
:

1

v:

i

x

b

L
F1

F2

F3

B

v

Decreasing the area
decreases the flux,
inducing a current.
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As x decreases, the flux decreases. Faraday’s law tells us that with this flux
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and
using Eq. 30-7, we can write the magnitude of this emf as

(30-8)

in which we have replaced dx/dt with v, the speed at which the loop moves.
Figure 30-9 shows the loop as a circuit: induced emf � is represented on the

left, and the collective resistance R of the loop is represented on the right.
The direction of the induced current i is obtained with a right-hand rule as in
Fig. 30-5b for decreasing flux; applying the rule tells us that the current must be
clockwise, and � must have the same direction.

Induced Current. To find the magnitude of the induced current, we cannot
apply the loop rule for potential differences in a circuit because, as you will see in
Module 30-3, we cannot define a potential difference for an induced emf.
However, we can apply the equation i � �/R.With Eq. 30-8, this becomes

(30-9)

Because three segments of the loop in Fig. 30-8 carry this current through the
magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26
we know that such a deflecting force is, in general notation,

(30-10)

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are
marked and . Note, however, that from the symmetry, forces and 
are equal in magnitude and cancel. This leaves only force , which is directed
opposite your force on the loop and thus is the force opposing you. So, .

Using Eq. 30-10 to obtain the magnitude of and noting that the angle
between and the length vector for the left segment is 90 , we write

F � F1 � iLB sin 90� � iLB. (30-11)

Substituting Eq. 30-9 for i in Eq. 30-11 then gives us

(30-12)

Because B, L, and R are constants, the speed v at which you move the loop is con-
stant if the magnitude F of the force you apply to the loop is also constant.

Rate of Work. By substituting Eq. 30-12 into Eq. 30-6, we find the rate at
which you do work on the loop as you pull it from the magnetic field:

(rate of doing work). (30-13)

Thermal Energy. To complete our analysis, let us find the rate at which
thermal energy appears in the loop as you pull it along at constant speed. We
calculate it from Eq. 26-27,

P � i 2R. (30-14)

Substituting for i from Eq. 30-9, we find

(thermal energy rate), (30-15)

which is exactly equal to the rate at which you are doing work on the loop
(Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic
field appears as thermal energy in the loop.

P � � BLv
R �

2

R �
B2L2v2

R

P � Fv �
B2L2v2

R

F �
B2L2v

R
.

�L
:

B
:

F
:

1

F
:

� �F
:

1F
:

F
:

1

F
:

3F
:

2F
:

3F
:

2,F
:

1,

F
:

d � iL
:

� B
:

.

i �
BLv

R
.

� �
d�B

dt
�

d
dt

BLx � BL
dx
dt

� BLv,

Figure 30-9 A circuit diagram for the loop of
Fig. 30-8 while the loop is moving.

i

i
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Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting
plate. If we then move the plate out of the magnetic field as we did the loop 
(Fig. 30-10a), the relative motion of the field and the conductor again induces a
current in the conductor. Thus, we again encounter an opposing force and must
do work because of the induced current. With the plate, however, the conduc-
tion electrons making up the induced current do not follow one path as they
do with the loop. Instead, the electrons swirl about within the plate as if they
were caught in an eddy (whirlpool) of water. Such a current is called an eddy
current and can be represented, as it is in Fig. 30-10a, as if it followed a single
path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipa-
tion is more apparent in the arrangement of Fig. 30-10b; a conducting plate,
free to rotate about a pivot, is allowed to swing down through a magnetic field
like a pendulum. Each time the plate enters and leaves the field, a portion
of its mechanical energy is transferred to its thermal energy. After several
swings, no mechanical energy remains and the warmed-up plate just hangs
from its pivot.
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Figure 30-10 (a) As you pull a solid conduct-
ing plate out of a magnetic field, eddy cur-
rents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.

Checkpoint 3
The figure shows four wire loops, with edge lengths of either L or 2L.All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magni-
tude of the emf induced as they move through the field, greatest first.

B
:

a b 

c d 

B

Eddy
current
loop

(a)

B

Pivot

(b)

B

30-3 INDUCED ELECTRIC FIELDS

After reading this module, you should be able to . . .

30.16 Identify that a changing magnetic field induces an elec-
tric field, regardless of whether there is a conducting loop.

30.17 Apply Faraday’s law to relate the electric field 
induced along a closed path (whether it has conducting

E
:

material or not) to the rate of change d�/dt of the magnetic
flux encircled by the path.

30.18 Identify that an electric potential cannot be associated
with an induced electric field.

Learning Objectives

● An emf is induced by a changing magnetic flux even if the
loop through which the flux is changing is not a physical
conductor but an imaginary line. The changing magnetic field
induces an electric field at every point of such a loop; the
induced emf is related to by

� � 
 E
:

� ds:.

E
:

E
:

Key Ideas
● Using the induced electric field, we can write Faraday’s law
in its most general form as

(Faraday’s law).

A changing magnetic field induces an electric field .E
:


 E
:

� ds: � �
d�B

dt
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Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a. The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing
magnetic flux. This induced electric field is just as real as an electric field pro-
duced by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the

B
:

A changing magnetic field produces an electric field.

Figure 30-11 (a) If the magnetic field increases at a steady rate, a constant induced current
appears, as shown, in the copper ring of radius r. (b) An induced electric field exists even
when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.
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i
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circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic
field remains constant with time, there will be no induced electric field and thus
no electric field lines. If the magnetic field is decreasing with time (at a constant
rate), the electric field lines will still be concentric circles as in Fig. 30-11c, but
they will now have the opposite direction. All this is what we have in mind when
we say “A changing magnetic field produces an electric field.”

A Reformulation of Faraday’s Law
Consider a particle of charge q0 moving around the circular path of Fig. 30-11b.
The work W done on it in one revolution by the induced electric field is W � �q0,
where � is the induced emf—that is, the work done per unit charge in moving the
test charge around the path. From another point of view, the work is

(30-16)

where q0E is the magnitude of the force acting on the test charge and 2pr is the
distance over which that force acts. Setting these two expressions for W equal to
each other and canceling q0, we find that

� � 2prE. (30-17)

Next we rewrite Eq. 30-16 to give a more general expression for the work
done on a particle of charge q0 moving along any closed path:

(30-18)

(The loop on each integral sign indicates that the integral is to be taken around
the closed path.) Substituting �q0 for W, we find that

(30-19)

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of
Fig. 30-11b.

Meaning of emf. With Eq. 30-19, we can expand the meaning of induced emf.
Up to this point, induced emf has meant the work per unit charge done in maintain-
ing current due to a changing magnetic flux, or it has meant the work done per unit
charge on a charged particle that moves around a closed path in a changing mag-
netic flux. However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without
the need of a current or particle: An induced emf is the sum—via integration—of
quantities around a closed path, where is the electric field induced by
a changing magnetic flux and is a differential length vector along the path.ds:

E
:

E
:

� ds:

� � 
 E
:

� ds:.

W � 
 F
:

� ds: � q0
 E
:

� ds:.

W � � F
:

� ds: � (q0E)(2pr),
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*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:

If we combine Eq. 30-19 with Faraday’s law in Eq. 30-4 (� � �d�B/dt), we 
can rewrite Faraday’s law as

(Faraday’s law). (30-20)
 E
:

� ds: � �
d�B

dt
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This equation says simply that a changing magnetic field induces an electric field.
The changing magnetic field appears on the right side of this equation, the elec-
tric field on the left.

Faraday’s law in the form of Eq. 30-20 can be applied to any closed path that
can be drawn in a changing magnetic field. Figure 30-11d, for example, shows four
such paths, all having the same shape and area but located in different positions
in the changing field. The induced emfs for paths 1 and 2 are equal
because these paths lie entirely in the magnetic field and thus have the same
value of d�B/dt. This is true even though the electric field vectors at points along
these paths are different, as indicated by the patterns of electric field lines in the
figure. For path 3 the induced emf is smaller because the enclosed flux �B (hence
d�B/dt) is smaller, and for path 4 the induced emf is zero even though the electric
field is not zero at any point on the path.

A New Look at Electric Potential
Induced electric fields are produced not by static charges but by a changing mag-
netic flux.Although electric fields produced in either way exert forces on charged
particles, there is an important difference between them. The simplest evidence
of this difference is that the field lines of induced electric fields form closed loops,
as in Fig. 30-11c. Field lines produced by static charges never do so but must start
on positive charges and end on negative charges. Thus, a field line from a charge
can never loop around and back onto itself as we see for each of the field lines
in Fig. 30-11c.

In a more formal sense, we can state the difference between electric fields
produced by induction and those produced by static charges in these words:

� (� � E
:

� ds:)

Electric potential has meaning only for electric fields that are produced by static
charges; it has no meaning for electric fields that are produced by induction.

You can understand this statement qualitatively by considering what happens
to a charged particle that makes a single journey around the circular path in
Fig. 30-11b. It starts at a certain point and, on its return to that same point, has
experienced an emf � of, let us say, 5 V; that is, work of 5 J/C has been done on the
particle by the electric field, and thus the particle should then be at a point that is
5 V greater in potential. However, that is impossible because the particle is back
at the same point, which cannot have two different values of potential. Thus, po-
tential has no meaning for electric fields that are set up by changing magnetic
fields.

We can take a more formal look by recalling Eq. 24-18, which defines the
potential difference between two points i and f in an electric field in terms of
an integration between those points:

(30-21)

In Chapter 24 we had not yet encountered Faraday’s law of induction; so the elec-
tric fields involved in the derivation of Eq. 24-18 were those due to static charges.
If i and f in Eq. 30-21 are the same point, the path connecting them is a closed
loop, Vi and Vf are identical, and Eq. 30-21 reduces to

(30-22)

However, when a changing magnetic flux is present, this integral is not zero but
is �d�B/dt, as Eq. 30-20 asserts. Thus, assigning electric potential to an induced
electric field leads us to a contradiction. We must conclude that electric potential
has no meaning for electric fields associated with induction.


 E
:

� ds: � 0.

Vf � Vi � ��f

i
E
:

� ds:.

E
:
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Checkpoint 4
The figure shows five lettered regions in which a uniform magnetic field extends either
directly out of the page or into the page, with the direction indicated only for region a.
The field is increasing in magnitude at the same steady rate in all five regions; the
regions are identical in area.Also shown are four numbered paths along which 
has the magnitudes given below in terms of a quantity “mag.” Determine whether the
magnetic field is directed into or out of the page for regions b through e.

Path 1 2 3 4
mag 2(mag) 3(mag) 0� E

:
� ds:

� E
:

� ds:

1

3

2

4a

b d

c

e

the minus sign, we find that

or (Answer) (30-25)

Equation 30-25 gives the magnitude of the electric field at
any point for which r � R (that is, within the magnetic field).
Substituting given values yields, for the magnitude of at 
r � 5.2 cm,

(Answer)

(b) Find an expression for the magnitude E of the induced
electric field at points that are outside the magnetic field, at
radius r from the center of the magnetic field. Evaluate the
expression for r � 12.5 cm.

KEY IDEAS

Here again an electric field is induced by the changing mag-
netic field, according to Faraday’s law, except that now we
use a circular path of integration with radius r � R because
we want to evaluate E for points outside the magnetic field.
Proceeding as in (a), we again obtain Eq. 30-23. However,
we do not then obtain Eq. 30-24 because the new path of
integration is now outside the magnetic field, and so the
magnetic flux encircled by the new path is only that in the
area pR2 of the magnetic field region.

Calculations: We can now write

�B � BA � B(pR2). (30-26)

� 0.0034 V/m � 3.4 mV/m.

E �
(5.2 � 10 �2 m)

2
 (0.13 T/s)

E
:

E �
r
2

dB
dt

.

E(2pr) � (pr2)
dB
dt

Sample Problem 30.04 Induced electric field due to changing B field, inside and outside

In Fig. 30-11b, take R 8.5 cm and dB/dt 0.13 T/s.

(a) Find an expression for the magnitude E of the induced
electric field at points within the magnetic field, at radius r
from the center of the magnetic field. Evaluate the expres-
sion for r � 5.2 cm.

KEY IDEA

An electric field is induced by the changing magnetic field,
according to Faraday’s law.

Calculations: To calculate the field magnitude E, we ap-
ply Faraday’s law in the form of Eq. 30-20. We use a circu-
lar path of integration with radius r R because we want
E for points within the magnetic field. We assume from
the symmetry that in Fig. 30-11b is tangent to the circu-
lar path at all points. The path vector is also always tan-
gent to the circular path; so the dot product in Eq.
30-20 must have the magnitude E ds at all points on the
path. We can also assume from the symmetry that E has
the same value at all points along the circular path. Then
the left side of Eq. 30-20 becomes

(30-23)

(The integral is the circumference 2pr of the circular
path.)

Next, we need to evaluate the right side of Eq. 30-20.
Because is uniform over the area A encircled by the path
of integration and is directed perpendicular to that area, the
magnetic flux is given by Eq. 30-2:

�B � BA � B(pr 2). (30-24)

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping

B
:

� ds


 E
:

� ds: � 
 E ds � E
 ds � E(2pr).

E
:

� ds:
ds:

E
:

�

��
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Substituting this and Eq. 30-23 into Eq. 30-20 (without the
minus sign) and solving for E yield

(Answer) (30-27)

Because E is not zero here, we know that an electric field is
induced even at points that are outside the changing mag-
netic field, an important result that (as you will see in
Module 31-6) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of
at r � 12.5 cm:

(Answer)� 3.8 � 10 �3 V/m � 3.8 mV/m. 

E �
(8.5 � 10 �2 m)2

(2)(12.5 � 10 �2 m)
 (0.13 T/s)

E
:

E �
R2

2r
dB
dt

.

Additional examples, video, and practice available at WileyPLUS

Figure 30-12 A plot of the induced electric field E(r).
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Equations 30-25 and 30-27 give the same result for 
r � R. Figure 30-12 shows a plot of E(r). Note that the in-
side and outside plots meet at r � R.

30-4 INDUCTORS AND INDUCTANCE

After reading this module, you should be able to . . .

30.19 Identify an inductor.
30.20 For an inductor, apply the relationship between

inductance L, total flux N�, and current i.

30.21 For a solenoid, apply the relationship between the
inductance per unit length L/l, the area A of each turn,
and the number of turns per unit length n.

Learning Objectives

● An inductor is a device that can be used to produce a known
magnetic field in a specified region. If a current i is established
through each of the N windings of an inductor, a magnetic flux
�B links those windings. The inductance L of the inductor is

(inductance defined).L �
N�B

i

Key Ideas
● The SI unit of inductance is the henry (H), where 1 henry 
1 H � 1 T 
 m2/A.

● The inductance per unit length near the middle of a long so-
lenoid of cross-sectional area A and n turns per unit length is

(solenoid).
L
l

� m0 n2A

�

Inductors and Inductance
We found in Chapter 25 that a capacitor can be used to produce a desired elec-
tric field. We considered the parallel-plate arrangement as a basic type of ca-
pacitor. Similarly, an inductor (symbol ) can be used to produce a desired
magnetic field. We shall consider a long solenoid (more specifically, a short
length near the middle of a long solenoid, to avoid any fringing effects) as our
basic type of inductor.

If we establish a current i in the windings (turns) of the solenoid we are
taking as our inductor, the current produces a magnetic flux �B through the
central region of the inductor. The inductance of the inductor is then defined in
terms of that flux as

(inductance defined), (30-28)L �
N�B

i
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The crude inductors with which Michael
Faraday discovered the law of induction. In
those days amenities such as insulated wire
were not commercially available. It is said
that Faraday insulated his wires by wrap-
ping them with strips cut from one of his
wife’s petticoats.

The Royal Institution/Bridgeman Art Library/NY

in which N is the number of turns. The windings of the inductor are said to be
linked by the shared flux, and the product N�B is called the magnetic flux linkage.
The inductance L is thus a measure of the flux linkage produced by the inductor
per unit of current.

Because the SI unit of magnetic flux is the tesla–square meter, the SI unit of
inductance is the tesla–square meter per ampere (T 
m2/A). We call this the
henry (H), after American physicist Joseph Henry, the codiscoverer of the law of
induction and a contemporary of Faraday.Thus,

1 henry � 1 H � 1 T 
m2/A. (30-29)

Through the rest of this chapter we assume that all inductors, no matter what
their geometric arrangement, have no magnetic materials such as iron in their
vicinity. Such materials would distort the magnetic field of an inductor.

Inductance of a Solenoid
Consider a long solenoid of cross-sectional area A. What is the inductance
per unit length near its middle? To use the defining equation for inductance
(Eq. 30-28), we must calculate the flux linkage set up by a given current in the so-
lenoid windings. Consider a length l near the middle of this solenoid. The flux
linkage there is

N�B � (nl)(BA),

in which n is the number of turns per unit length of the solenoid and B is the 
magnitude of the magnetic field within the solenoid.

The magnitude B is given by Eq. 29-23,

B � m0in,

and so from Eq. 30-28,

(30-30)

Thus, the inductance per unit length near the center of a long solenoid is

(solenoid). (30-31)

Inductance—like capacitance—depends only on the geometry of the device.
The dependence on the square of the number of turns per unit length is to be
expected. If you, say, triple n, you not only triple the number of turns (N) but you
also triple the flux (�B � BA � m0inA) through each turn, multiplying the flux
linkage N�B and thus the inductance L by a factor of 9.

If the solenoid is very much longer than its radius, then Eq. 30-30 gives its
inductance to a good approximation. This approximation neglects the spreading
of the magnetic field lines near the ends of the solenoid, just as the parallel-plate
capacitor formula (C � ´0A/d) neglects the fringing of the electric field lines near
the edges of the capacitor plates.

From Eq. 30-30, and recalling that n is a number per unit length, we can see
that an inductance can be written as a product of the permeability constant m0

and a quantity with the dimensions of a length. This means that m0 can be ex-
pressed in the unit henry per meter:

(30-32)

The latter is the more common unit for the permeability constant.

� 4p � 10 �7 H/m.

m0 � 4p � 10 �7 T 
m/A

L
l

� m0n2A

� m0n2 lA.

L �
N�B

i
�

(nl)(BA)
i

�
(nl)(m 0 in)(A)

i



88130-5 SELF-INDUCTION

30-5 SELF-INDUCTION

After reading this module, you should be able to . . .

30.22 Identify that an induced emf appears in a coil when
the current through the coil is changing.

30.23 Apply the relationship between the induced emf in 
a coil, the coil’s inductance L, and the rate di/dt at
which the current is changing.

30.24 When an emf is induced in a coil because the current
in the coil is changing, determine the direction of the emf
by using Lenz’s law to show that the emf always opposes
the change in the current, attempting to maintain the initial
current.

Learning Objectives

● If a current i in a coil changes with time, an emf is induced in the coil. This self-induced emf is

● The direction of is found from Lenz’s law: The self-induced emf acts to oppose the change that produces it.�L

�L � �L
di
dt

.

Key Ideas

Self-Induction
If two coils—which we can now call inductors—are near each other, a current i in
one coil produces a magnetic flux �B through the second coil.We have seen that if
we change this flux by changing the current, an induced emf appears in the second
coil according to Faraday’s law.An induced emf appears in the first coil as well.

An induced emf �L appears in any coil in which the current is changing.

This process (see Fig. 30-13) is called self-induction, and the emf that appears is
called a self-induced emf. It obeys Faraday’s law of induction just as other
induced emfs do.

For any inductor, Eq. 30-28 tells us that

N�B � Li. (30-33)

Faraday’s law tells us that

(30-34)

By combining Eqs. 30-33 and 30-34 we can write

(self-induced emf). (30-35)

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf
appears whenever the current changes with time. The magnitude of the current
has no influence on the magnitude of the induced emf; only the rate of change of
the current counts.

Direction. You can find the direction of a self-induced emf from Lenz’s law.
The minus sign in Eq. 30-35 indicates that—as the law states—the self-induced
emf �L has the orientation such that it opposes the change in current i. We can
drop the minus sign when we want only the magnitude of �L.

Suppose that you set up a current i in a coil and arrange to have the current
increase with time at a rate di/dt. In the language of Lenz’s law, this increase in
the current in the coil is the “change” that the self-induction must oppose.
Thus, a self-induced emf must appear in the coil, pointing so as to oppose the
increase in the current, trying (but failing) to maintain the initial condition, as

�L � �L
di
dt

�L � �
d(N�B)

dt
.

Figure 30-13 If the current in a coil is changed
by varying the contact position on a vari-
able resistor, a self-induced emf �L will ap-
pear in the coil while the current is changing.

i

i

L–
+

R
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Figure 30-14 (a) The current i is increasing,
and the self-induced emf �L appears along
the coil in a direction such that it opposes
the increase.The arrow representing �L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced
emf appears in a direction such that it
opposes the decrease.

i (increasing)

(a)

i (decreasing)

(b)

L

L

L

L

The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Checkpoint 5
The figure shows an emf �L induced in a coil.Which of
the following can describe the current through the coil:
(a) constant and rightward, (b) constant and leftward,
(c) increasing and rightward, (d) decreasing and rightward, (e) increasing and left-
ward, (f) decreasing and leftward?

L

30-6 RL CIRCUITS

After reading this module, you should be able to . . .

30.25 Sketch a schematic diagram of an RL circuit in which
the current is rising.

30.26 Write a loop equation (a differential equation) for an
RL circuit in which the current is rising.

30.27 For an RL circuit in which the current is rising, apply
the equation i(t) for the current as a function of time.

30.28 For an RL circuit in which the current is rising, find equa-
tions for the potential difference V across the resistor, the rate
di/dt at which the current changes, and the emf of the inductor,
as functions of time.

30.29 Calculate an inductive time constant tL.
30.30 Sketch a schematic diagram of an RL circuit in which

the current is decaying.

30.31 Write a loop equation (a differential equation) for an
RL circuit in which the current is decaying.

30.32 For an RL circuit in which the current is decaying,
apply the equation i(t) for the current as a function of time.

30.33 From an equation for decaying current in an RL circuit,
find equations for the potential difference V across the
resistor, the rate di/dt at which current is changing, and the
emf of the inductor, as functions of time.

30.34 For an RL circuit, identify the current through the induc-
tor and the emf across it just as current in the circuit begins
to change (the initial condition) and a long time later when
equilibrium is reached (the final condition).

Learning Objectives

shown in Fig. 30-14a. If, instead, the current decreases with time, the self-induced
emf must point in a direction that tends to oppose the decrease (Fig. 30-14b),
again trying to maintain the initial condition.

Electric Potential. In Module 30-3 we saw that we cannot define an electric
potential for an electric field (and thus for an emf) that is induced by a changing
magnetic flux. This means that when a self-induced emf is produced in the induc-
tor of Fig. 30-13, we cannot define an electric potential within the inductor itself,
where the flux is changing. However, potentials can still be defined at points of
the circuit that are not within the inductor—points where the electric fields are
due to charge distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf �L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf �L. As with a real battery of emf
� and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

● If a constant emf is introduced into a single-loop circuit
containing a resistance R and an inductance L, the current
rises to an equilibrium value of �/R according to

(rise of current).i �
�

R
 (1 � e�t/tL)

�

Key Ideas
Here tL ( L/R) governs the rate of rise of the current and is
called the inductive time constant of the circuit. 

● When the source of constant emf is removed, the current
decays from a value i0 according to

(decay of current).i � i0 e�t/tL

�
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RL Circuits
In Module 27-4 we saw that if we suddenly introduce an emf � into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C� but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC � RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we intro-

duce an emf � into (or remove it from) a single-loop circuit containing a resis-
tor R and an inductor L. When the switch S in Fig. 30-15 is closed on a, for
example, the current in the resistor starts to rise. If the inductor were not pres-
ent, the current would rise rapidly to a steady value �/R. Because of the induc-
tor, however, a self-induced emf �L appears in the circuit; from Lenz’s law, this
emf opposes the rise of the current, which means that it opposes the battery
emf � in polarity. Thus, the current in the resistor responds to the difference be-
tween two emfs, a constant � due to the battery and a variable �L (� �L di/dt)
due to self-induction. As long as this �L is present, the current will be less
than �/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches �/R asymptotically.

We can generalize these results as follows:

q � q0e�t/tC.

q � C�(1 � e�t/tC).

Initially, an inductor acts to oppose changes in the current through it. A long time
later, it acts like ordinary connecting wire.

Figure 30-15 An RL circuit.When switch S is
closed on a, the current rises and approaches
a limiting value �/R.

Sa

b R

L–
+

Now let us analyze the situation quantitatively.With the switch S in Fig. 30-15
thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop
rule, starting at point x in this figure and moving clockwise around the loop along
with current i.

1. Resistor. Because we move through the resistor in the direction of current i,
the electric potential decreases by iR. Thus, as we move from point x to
point y, we encounter a potential change of �iR.

2. Inductor. Because current i is changing, there is a self-induced emf L in the
inductor.The magnitude of �L is given by Eq. 30-35 as L di/dt.The direction of
�L is upward in Fig. 30-16 because current i is downward through the inductor
and increasing. Thus, as we move from point y to point z, opposite the direc-
tion of �L, we encounter a potential change of �L di/dt.

3. Battery. As we move from point z back to starting point x, we encounter a
potential change of �� due to the battery’s emf.

Thus, the loop rule gives us

�iR � L
di
dt

� � � 0

�

Figure 30-16 The circuit of Fig. 30-15 with the
switch closed on a.We apply the loop rule
for the circuit clockwise, starting at x.

R

L–
+

i
yx

z

L
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Figure 30-17 The variation with time of (a) VR, the potential difference across the resistor in
the circuit of Fig. 30-16, and (b) VL, the potential difference across the inductor in that cir-
cuit.The small triangles represent successive intervals of one inductive time constant tL �
L/R.The figure is plotted for R � 2000 �, L � 4.0 H, and � � 10 V.

10
8
6
4
2

0 2 4 6 8 

V R
(V

)

t (ms) 

(a)

0 2 4 6 8

V L
 (

V
)

t (ms)

(b)

10
8
6
4
2

The resistor’s potential
difference turns on.
The inductor’s potential
difference turns off.

or (RL circuit). (30-39)

Equation 30-39 is a differential equation involving the variable i and its first
derivative di/dt. To solve it, we seek the function i(t) such that when i(t) and its
first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial
condition i(0) � 0 is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32
for an RC circuit, with i replacing q, L replacing R, and R replacing 1/C.The solu-
tion of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same
replacements.That solution is

(30-40)

which we can rewrite as

(rise of current). (30-41)

Here tL, the inductive time constant, is given by

(time constant). (30-42)

Let’s examine Eq. 30-41 for just after the switch is closed (at time t � 0) and
for a time long after the switch is closed . If we substitute t � 0 into
Eq. 30-41, the exponential becomes e�0 1. Thus, Eq. 30-41 tells us that the cur-
rent is initially i � 0, as we expected. Next, if we let t go to �, then the exponential
goes to e�� � 0. Thus, Eq. 30-41 tells us that the current goes to its equilibrium
value of �/R.

We can also examine the potential differences in the circuit. For example,
Fig. 30-17 shows how the potential differences VR (� iR) across the resistor and
VL (� L di/dt) across the inductor vary with time for particular values of �, L,
and R. Compare this figure carefully with the corresponding figure for an RC
circuit (Fig. 27-16).

�
(t : �)

tL �
L
R

i �
�

R
 (1 � e�t/tL)

i �
�

R
 (1 � e�Rt/L),

L
di
dt

� Ri � �
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To show that the quantity tL (� L/R) has the dimension of time (as it must,
because the argument of the exponential function in Eq. 30-41 must be dimen-
sionless), we convert from henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and
the second one is a conversion factor based on the relation V � iR.

Time Constant. The physical significance of the time constant follows from
Eq. 30-41. If we put t � tL � L/R in this equation, it reduces to

(30-43)

Thus, the time constant tL is the time it takes the current in the circuit to reach
about 63% of its final equilibrium value �/R. Since the potential difference VR

across the resistor is proportional to the current i, a graph of the increasing
current versus time has the same shape as that of VR in Fig. 30-17a.

Current Decay. If the switch S in Fig. 30-15 is closed on a long enough for the
equilibrium current �/R to be established and then is thrown to b, the effect will
be to remove the battery from the circuit. (The connection to b must actually be
made an instant before the connection to a is broken. A switch that does this is
called a make-before-break switch.) With the battery gone, the current through
the resistor will decrease. However, it cannot drop immediately to zero but must
decay to zero over time. The differential equation that governs the decay can be
found by putting � � 0 in Eq. 30-39:

(30-44)

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation
that satisfies the initial condition i(0) � i0 � �/R is

(decay of current). (30-45)

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL
circuit are governed by the same inductive time constant, tL.

We have used i0 in Eq. 30-45 to represent the current at time t � 0. In our
case that happened to be �/R, but it could be any other initial value.

i �
�

R
e�t/tL � i0e�t/tL

L
di
dt

� iR � 0.

i �
�

R
 (1 � e�1) � 0.63

�

R
.

1
H
�

� 1
H
� � 1 V 
 s

1 H 
A � � 1 �
A
1 V � � 1 s.

Checkpoint 6
The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3)
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Calculations: We now have a circuit with three identical 
resistors in parallel; from Eq. 27-23, their equivalent resist-
ance is Req � R/3 � (9.0 �)/3 � 3.0 �. The equivalent
circuit shown in Fig. 30-18d then yields the loop equation 
� � iReq � 0, or

(Answer)i �
�

Req
�

18 V
3.0 �

� 6.0 A.

Figure 30-18a shows a circuit that contains three identical
resistors with resistance R � 9.0 �, two identical inductors
with inductance L � 2.0 mH, and an ideal battery with emf
� � 18 V.

(a) What is the current i through the battery just after the
switch is closed?

KEY IDEA

Just after the switch is closed, the inductor acts to oppose a
change in the current through it.

Calculations: Because the current through each inductor
is zero before the switch is closed, it will also be zero just
afterward. Thus, immediately after the switch is closed, the
inductors act as broken wires, as indicated in Fig. 30-18b.
We then have a single-loop circuit for which the loop rule
gives us

� � iR � 0.

Substituting given data, we find that

(Answer)

(b) What is the current i through the battery long after the
switch has been closed?

KEY IDEA

Long after the switch has been closed, the currents in the
circuit have reached their equilibrium values, and the
inductors act as simple connecting wires, as indicated in
Fig. 30-18c.

i �
�

R
�

18 V
9.0 �

� 2.0 A.

Figure 30-18 (a) A multiloop RL circuit with an open switch. (b) The
equivalent circuit just after the switch has been closed. (c) The
equivalent circuit a long time later. (d) The single-loop circuit that
is equivalent to circuit (c).

L
–
+

R

R

R

L

–
+

R

R

R

(a) (b)

–
+

R

R

R

(c)

–
+

R/3

(d)

Initially, an inductor
acts like broken wire.

Long later, it acts
like ordinary wire.

Sample Problem 30.05 RL circuit, immediately after switching and after a long time

Calculations: According to that solution, current i in-
creases exponentially from zero to its final equilibrium
value of �/R. Let t0 be the time that current i takes to reach
half its equilibrium value.Then Eq. 30-41 gives us

We solve for t0 by canceling �/R, isolating the exponential,
and taking the natural logarithm of each side.We find

(Answer)� 0.10 s. 

t0 � tL ln 2 �
L
R

 ln 2 �
53 � 10 �3 H

0.37 �
 ln 2

1
2

�

R
�

�

R
 (1 � e�t0 /tL).

A solenoid has an inductance of 53 mH and a resistance of
0.37 �. If the solenoid is connected to a battery, how long
will the current take to reach half its final equilibrium
value? (This is a real solenoid because we are considering its
small, but nonzero, internal resistance.)

KEY IDEA

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in 
Fig. 30-16. Then application of the loop rule leads to 
Eq. 30-39, which has the solution of Eq. 30-41 for the current
i in the circuit.

Additional examples, video, and practice available at WileyPLUS

Sample Problem 30.06 RL circuit, current during the transition
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Energy Stored in a Magnetic Field
When we pull two charged particles of opposite signs away from each other, we
say that the resulting electric potential energy is stored in the electric field of the
particles. We get it back from the field by letting the particles move closer
together again. In the same way we say energy is stored in a magnetic field, but
now we deal with current instead of electric charges.

To derive a quantitative expression for that stored energy, consider again
Fig. 30-16, which shows a source of emf � connected to a resistor R and an induc-
tor L. Equation 30-39, restated here for convenience,

(30-46)

is the differential equation that describes the growth of current in this circuit.
Recall that this equation follows immediately from the loop rule and that the
loop rule in turn is an expression of the principle of conservation of energy for
single-loop circuits. If we multiply each side of Eq. 30-46 by i, we obtain

(30-47)

which has the following physical interpretation in terms of the work done by the
battery and the resulting energy transfers:

1. If a differential amount of charge dq passes through the battery of emf � in
Fig. 30-16 in time dt, the battery does work on it in the amount � dq. The
rate at which the battery does work is (� dq)/dt, or �i. Thus, the left side of
Eq. 30-47 represents the rate at which the emf device delivers energy to the
rest of the circuit.

2. The rightmost term in Eq. 30-47 represents the rate at which energy appears as
thermal energy in the resistor.

3. Energy that is delivered to the circuit but does not appear as thermal
energy must, by the conservation-of-energy hypothesis, be stored in the
magnetic field of the inductor. Because Eq. 30-47 represents the principle of
conservation of energy for RL circuits, the middle term must represent
the rate dUB/dt at which magnetic potential energy UB is stored in the
magnetic field.

Thus

(30-48)
dUB

dt
� Li

di
dt

.

� i � Li
di
dt

� i2R,

� � L
di
dt

� iR,

30-7 ENERGY STORED IN A MAGNETIC FIELD

After reading this module, you should be able to . . .

30.35 Describe the derivation of the equation for the
magnetic field energy of an inductor in an RL circuit
with a constant emf source. 

30.36 For an inductor in an RL circuit, apply the relationship
between the magnetic field energy U, the inductance L,
and the current i.

Learning Objectives

● If an inductor L carries a current i, the inductor’s magnetic field stores an energy given by

(magnetic energy).UB � 1
2Li2

Key Idea
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We can write this as

dUB � Li di.

Integrating yields

or (magnetic energy), (30-49)

which represents the total energy stored by an inductor L carrying a current i.
Note the similarity in form between this expression for the energy stored in a
magnetic field and the expression for the energy stored in an electric field by a
capacitor with capacitance C and charge q; namely,

(30-50)

(The variable i2 corresponds to q2, and the constant L corresponds to 1/C.)

UE �
q2

2C
.

UB � 1
2 Li2

�UB

0
dUB � �i

0
Li di

be satisfied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

or (30-52)

This equation tells us that, as the current increases from its
initial value of 0 to its final value of i�, the magnetic field
will have half its final stored energy when the current has in-
creased to this value. In general, we know that i is given by
Eq. 30-41, and here i� (see Eq. 30-51) is �/R; so Eq. 30-52
becomes

By canceling �/R and rearranging, we can write this as

which yields

or t � 1.2tL. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time 
constants after the emf is applied.

t
�L

� �ln 0.293 � 1.23

e�t/tL � 1 �
1
12

� 0.293,

�

R
 (1 � e�t/tL) �

�

12R
.

i � � 1
12 � i�.

1
2 Li2 � (1

2)
1
2 Li�

2

A coil has an inductance of 53 mH and a resistance of
0.35 �.

(a) If a 12 V emf is applied across the coil, how much energy
is stored in the magnetic field after the current has built up
to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq. 30-49 .

Calculations: Thus, to find the energy UB� stored at equi-
librium, we must first find the equilibrium current. From
Eq. 30-41, the equilibrium current is

(30-51)

Then substitution yields

(Answer)

(b) After how many time constants will half this equilibrium
energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time t will
the relation

UB � 1
2 UB�

� 31 J. 

UB� � 1
2 Li�

2 � (1
2)(53 � 10 �3 H)(34.3 A)2

i� �
�

R
�

12 V
0.35 �

� 34.3 A.

(UB � 1
2 Li2)

Additional examples, video, and practice available at WileyPLUS

Sample Problem 30.07 Energy stored in a magnetic field
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Energy Density of a Magnetic Field
Consider a length l near the middle of a long solenoid of cross-sectional area A
carrying current i; the volume associated with this length is Al. The energy UB

stored by the length l of the solenoid must lie entirely within this volume because
the magnetic field outside such a solenoid is approximately zero. Moreover,
the stored energy must be uniformly distributed within the solenoid because the
magnetic field is (approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is

or, since

we have

(30-53)

Here L is the inductance of length l of the solenoid.
Substituting for L/l from Eq. 30-31, we find

(30-54)

where n is the number of turns per unit length. From Eq. 29-23 (B � m0in) we can
write this energy density as

(magnetic energy density). (30-55)

This equation gives the density of stored energy at any point where the magni-
tude of the magnetic field is B. Even though we derived it by considering the
special case of a solenoid, Eq. 30-55 holds for all magnetic fields, no matter how
they are generated.The equation is comparable to Eq. 25-25,

(30-56)

which gives the energy density (in a vacuum) at any point in an electric field.
Note that both uB and uE are proportional to the square of the appropriate field
magnitude, B or E.

uE � 1
2 ´0E2,

uB �
B2

2m0

uB � 1
2m0n2i2,

uB �
Li2

2Al
�

L
l

i2

2A
.

UB � 1
2Li2,

uB �
UB

Al

30-8 ENERGY DENSITY OF A MAGNETIC FIELD

After reading this module, you should be able to . . .

30.37 Identify that energy is associated with any magnetic
field.

30.38 Apply the relationship between energy density uB of a
magnetic field and the magnetic field magnitude B.

Learning Objectives

● If B is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy
at that point is

(magnetic energy density).uB �
B2

2m0

Key Idea
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Mutual Induction
In this section we return to the case of two interacting coils, which we first dis-
cussed in Module 30-1, and we treat it in a somewhat more formal manner. We
saw earlier that if two coils are close together as in Fig. 30-2, a steady current i in
one coil will set up a magnetic flux � through the other coil (linking the other
coil). If we change i with time, an emf � given by Faraday’s law appears in the sec-
ond coil; we called this process induction. We could better have called it mutual
induction, to suggest the mutual interaction of the two coils and to distinguish it
from self-induction, in which only one coil is involved.

Let us look a little more quantitatively at mutual induction. Figure 30-19a
shows two circular close-packed coils near each other and sharing a common
central axis. With the variable resistor set at a particular resistance R, the battery
produces a steady current i1 in coil 1. This current creates a magnetic field repre-
sented by the lines of in the figure. Coil 2 is connected to a sensitive meter but
contains no battery; a magnetic flux �21 (the flux through coil 2 associated with
the current in coil 1) links the N2 turns of coil 2.

We define the mutual inductance M21 of coil 2 with respect to coil 1 as

(30-57)M21 �
N2�21

i1
,

B
:

1

Checkpoint 7
The table lists the number of turns per unit length, current, and cross-sectional area
for three solenoids. Rank the solenoids according to the magnetic energy density
within them, greatest first.

Turns per 
Solenoid Unit Length Current Area

a 2n1 i1 2A1

b n1 2i1 A1

c n1 i1 6A1

30-9 MUTUAL INDUCTION

After reading this module, you should be able to . . .

30.39 Describe the mutual induction of two coils and sketch
the arrangement.

30.40 Calculate the mutual inductance of one coil with respect
to a second coil (or some second current that is changing).

30.41 Calculate the emf induced in one coil by a second coil
in terms of the mutual inductance and the rate of change
of the current in the second coil.

Learning Objectives

● If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is
described by

and

where M (measured in henries) is the mutual inductance. 

� 1 � �M
di2

dt
,

� 2 � �M
di1

dt

Key Idea
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which has the same form as Eq. 30-28,

L � N�/i, (30-58)

the definition of inductance.We can recast Eq. 30-57 as

M21i1 � N2�21. (30-59)

If we cause i1 to vary with time by varying R, we have

(30-60)

The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf �2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,

(30-61)

which you should compare with Eq. 30-35 for self-induction (� � �L di/dt).
Interchange. Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b;

that is, we set up a current i2 in coil 2 by means of a battery, and this produces a
magnetic flux �12 that links coil 1. If we change i2 with time by varying R, we then
have, by the argument given above,

(30-62)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil. The proportionality constants M21 and M12

seem to be different. However, they turn out to be the same, although we cannot
prove that fact here. Thus, we have

M21 � M12 � M, (30-63)

and we can rewrite Eqs. 30-61 and 30-62 as

(30-64)

and (30-65)� 1 � �M
di2

dt
.

� 2 � �M
di1

dt

� 1 � �M12
di2

dt
.

� 2 � �M21
di1

dt
,

M21
di1

dt
� N2

d�21

dt
.

Figure 30-19 Mutual induction. (a) The mag-
netic field produced by current i1 in coil
1 extends through coil 2. If i1 is varied (by
varying resistance R), an emf is induced in
coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.

B
:

1

+ – 

i 1

N 1

Coil 1 Coil 2 

B1

N 2    21  Φ 

(a)

+ –

i 2

N 2

Coil 1 Coil 2

(b)

N 1    12Φ

B2

B2

B1

R R

0 0
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Substituting Eq. 30-68 for B1 and for A2 in Eq. 30-67
yields

.

Substituting this result into Eq. 30-66, we find

(Answer) (30-69)

(b) What is the value of M for N1 � N2 � 1200 turns,
R2 � 1.1 cm, and R1 � 15 cm?

Calculations: Equation 30-69 yields

(Answer)

Consider the situation if we reverse the roles of the two
coils—that is, if we produce a current i2 in the smaller coil
and try to calculate M from Eq. 30-57 in the form

The calculation of �12 (the nonuniform flux of the smaller
coil’s magnetic field encompassed by the larger coil) is not
simple. If we were to do the calculation numerically using
a computer, we would find M to be 2.3 mH, as above! This
emphasizes that Eq. 30-63 (M21 � M12 � M) is not obvious.

M �
N1�12

i2
.

� 2.29 � 10 �3 H � 2.3 mH. 

M �
(p)(4p � 10 �7 H/m)(1200)(1200)(0.011 m)2

(2)(0.15 m)

M �
N2 �21

i1
�

pm0 N1N2R2
2

2R1
.

N2 �21 �
pm0 N1N2 R2

2 i1

2R1

pR2
2

Figure 30-20 shows two circular close-packed coils, the
smaller (radius R2, with N2 turns) being coaxial with the
larger (radius R1, with N1 turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for
this arrangement of these two coils, assuming that R1 � R2.

KEY IDEA

The mutual inductance M for these coils is the ratio of the
flux linkage (N�) through one coil to the current i in the
other coil, which produces that flux linkage. Thus, we need
to assume that currents exist in the coils; then we need to
calculate the flux linkage in one of the coils.

Calculations: The magnetic field through the larger coil
due to the smaller coil is nonuniform in both magnitude and
direction; so the flux through the larger coil due to the
smaller coil is nonuniform and difficult to calculate.
However, the smaller coil is small enough for us to assume
that the magnetic field through it due to the larger coil is ap-
proximately uniform. Thus, the flux through it due to the
larger coil is also approximately uniform. Hence, to find M
we shall assume a current i1 in the larger coil and calculate
the flux linkage N2�21 in the smaller coil:

(30-66)

The flux �21 through each turn of the smaller coil is,
from Eq. 30-2,

�21 � B1A2,

where B1 is the magnitude of the magnetic field at points
within the small coil due to the larger coil and is
the area enclosed by the turn. Thus, the flux linkage in the
smaller coil (with its N2 turns) is

N2�21 � N2B1A2. (30-67)

To find B1 at points within the smaller coil, we can use
Eq. 29-26,

with z set to 0 because the smaller coil is in the plane of the
larger coil. That equation tells us that each turn of the larger
coil produces a magnetic field of magnitude m0i1/2R1 at
points within the smaller coil. Thus, the larger coil (with its
N1 turns) produces a total magnetic field of magnitude

(30-68)

at points within the smaller coil.

B1 � N1
m0 i1

2R1

B(z) �
m0 iR2

2(R2 � z2 )3/2 ,

A2 (� pR2
2)

M �
N2 �21

i1
.

Additional examples, video, and practice available at WileyPLUS

Sample Problem 30.08 Mutual inductance of two parallel coils

Figure 30-20 A small coil is located at the center of a large coil.The
mutual inductance of the coils can be determined by sending
current i1 through the large coil.

R1
R2

i1
+ – 
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1 If the circular conductor in Fig. 30-21 undergoes thermal
expansion while it is in a uniform mag-
netic field, a current is induced clockwise
around it. Is the magnetic field directed
into or out of the page?

2 The wire loop in Fig. 30-22a is sub-
jected, in turn, to six uniform magnetic
fields, each directed parallel to the z

Magnetic Flux The magnetic flux B through an area A in a
magnetic field is defined as 

(30-1)

where the integral is taken over the area. The SI unit of magnetic
flux is the weber, where 1 Wb � 1 T 
m2. If is perpendicular to
the area and uniform over it, Eq. 30-1 becomes

(30-2)

Faraday’s Law of Induction If the magnetic flux B through an
area bounded by a closed conducting loop changes with time, a current
and an emf are produced in the loop; this process is called induction.
The induced emf is

(Faraday’s law). (30-4)

If the loop is replaced by a closely packed coil of N turns, the induced
emf is

(30-5)

Lenz’s Law An induced current has a direction such that
the magnetic field due to the current opposes the change in the
magnetic flux that induces the current. The induced emf has the
same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by
a changing magnetic flux even if the loop through which the flux is
changing is not a physical conductor but an imaginary line. The
changing magnetic field induces an electric field at every point
of such a loop; the induced emf is related to by

(30-19)

where the integration is taken around the loop. From Eq. 30-19 we
can write Faraday’s law in its most general form,

(Faraday’s law). (30-20)

A changing magnetic field induces an electric field .

Inductors An inductor is a device that can be used to produce a
known magnetic field in a specified region. If a current i is estab-
lished through each of the N windings of an inductor, a magnetic
flux �B links those windings.The inductance L of the inductor is

(inductance defined). (30-28)L �
N�B

i

E
:


 E
:

� ds: � �
d�B

dt

� � 
 E
:

� ds:,

E
:

E
:

� � �N
d�B

dt
.

� � �
d�B

dt

�

(B
:

� A, B
:

uniform).�B � BA

B
:

�B � � B
:

� dA
:

,

B
:

�

Review & Summary

The SI unit of inductance is the henry (H), where 1 henry 1 H 
1 T 
m2/A.The inductance per unit length near the middle of a long
solenoid of cross-sectional area A and n turns per unit length is

(solenoid). (30-31)

Self-Induction If a current i in a coil changes with time, an emf
is induced in the coil.This self-induced emf is

(30-35)

The direction of �L is found from Lenz’s law: The self-induced emf
acts to oppose the change that produces it.

Series RL Circuits If a constant emf � is introduced into a sin-
gle-loop circuit containing a resistance R and an inductance L, the
current rises to an equilibrium value of �/R:

(rise of current). (30-41)

Here tL (� L/R) is the inductive time constant. When the source of
constant emf is removed, the current decays from a value i0

according to

(decay of current). (30-45)

Magnetic Energy If an inductor L carries a current i, the
inductor’s magnetic field stores an energy given by

(magnetic energy). (30-49)

If B is the magnitude of a magnetic field at any point (in an
inductor or anywhere else), the density of stored magnetic energy
at that point is

(magnetic energy density). (30-55)

Mutual Induction If coils 1 and 2 are near each other, a chang-
ing current in either coil can induce an emf in the other. This mu-
tual induction is described by

(30-64)

and (30-65)

where M (measured in henries) is the mutual inductance.

� 1 � �M
di2

dt
,

� 2 � �M
di1

dt

uB �
B2

2m0

UB � 1
2Li2

i � i0 e�t/tL

i �
�

R
 (1 � e�t/tL)

�L � �L
di
dt

.

L
l

� m0 n2A

��

Questions

Figure 30-21 Question 1. Figure 30-22 Question 2.

x

y

2
1

3

4
5

6

t

Bz

(a) (b)
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8 The switch in the circuit of 
Fig. 30-15 has been closed on a for a
very long time when it is then
thrown to b. The resulting current
through the inductor is indicated in
Fig. 30-28 for four sets of values for
the resistance R and inductance L:
(1) R0 and L0, (2) 2R0 and L0, (3) R0

and 2L0, (4) 2R0 and 2L0. Which set
goes with which curve?

9 Figure 30-29 shows three circuits
with identical batteries, inductors,
and resistors. Rank the circuits,
greatest first, according to the current through the resistor labeled
R (a) long after the switch is closed, (b) just after the switch is
reopened a long time later, and (c) long after it is reopened.

10 Figure 30-30 gives the variation
with time of the potential difference
VR across a resistor in three circuits
wired as shown in Fig. 30-16.The cir-
cuits contain the same resistance R
and emf � but differ in the induc-
tance L. Rank the circuits according
to the value of L, greatest first.

5 Figure 30-25 shows a circular region in which a decreasing uni-
form magnetic field is directed out of the page, as well as four con-
centric circular paths. Rank the paths according to the magnitude
of evaluated along them, greatest first.� E

:
� ds:

tion, rank the choices according to (a)
the work done per unit charge in set-
ting up the induced current and (b) that
induced current, greatest first. (c) For
each choice, what is the direction of the
induced current in the figure?

7 Figure 30-27 shows a circuit with
two identical resistors and an ideal in-
ductor. Is the current through the cen-
tral resistor more than, less than, or the same as that through the
other resistor (a) just after the closing of switch S, (b) a long time
after that, (c) just after S is reopened a long time later, and (d) a
long time after that?

axis, which is directed out of the plane of the figure. Figure 30-
22b gives the z components Bz of the fields versus time t. (Plots 1
and 3 are parallel; so are plots 4 and 6. Plots 2 and 5 are parallel
to the time axis.) Rank the six plots according to the emf induced
in the loop, greatest clockwise emf first, greatest counterclock-
wise emf last.

3 In Fig. 30-23, a long straight wire with current i passes (without
touching) three rectangular wire loops with edge lengths L, 1.5L,
and 2L. The loops are widely spaced (so as not to affect one an-
other). Loops 1 and 3 are symmetric about the long wire. Rank the
loops according to the size of the current induced in them if cur-
rent i is (a) constant and (b) increasing, greatest first.

Figure 30-23 Question 3.

i

32

1

Figure 30-24 Question 4.

v

v

(1) (2)

c

d
b

a

Figure 30-25 Question 5.

Figure 30-27 Question 7.

+
–

S

Figure 30-28 Question 8.
t

i

a

b

c

d

Figure 30-29 Question 9.

+
–

(1) (2) 

+
–R

R

+
–

R

(3)

z

x

y

c

b

a

Figure 30-26 Question 6.

Figure 30-30 Question 10.

V R

t

a
b

c

4 Figure 30-24 shows two circuits in which a conducting bar is slid
at the same speed v through the same uniform magnetic field and
along a U-shaped wire. The parallel lengths of the wire are sepa-
rated by 2L in circuit 1 and by L in circuit 2.The current induced in
circuit 1 is counterclockwise. (a) Is the magnetic field into or out of
the page? (b) Is the current induced in circuit 2 clockwise or coun-
terclockwise? (c) Is the emf induced in circuit 1 larger than, smaller
than, or the same as that in circuit 2?

6 In Fig. 30-26, a wire loop has been bent so that it has three seg-
ments: segment bc (a quarter-circle), ac (a square corner), and ab
(straight). Here are three choices for a magnetic field through the
loop:

(1) ,

(2) ,

(3) ,

where is in milliteslas and t is in seconds.Without written calcula-B
:

B
:

3 � 2î � 5t ĵ � 12k̂

B
:

2 � 5t î � 4ĵ � 15k̂

B
:

1 � 3î � 7ĵ � 5tk̂
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•5 In Fig. 30-36, a wire forms a closed circular loop, of radius 
R � 2.0 m and resistance 4.0 �. The circle is centered on a long
straight wire; at time t � 0, the current in the long straight wire
is 5.0 A rightward. Thereafter, the current changes according to 
i � 5.0 A � (2.0 A/s2)t2. (The straight wire is insulated; so there
is no electrical contact between it and the wire of the loop.)
What is the magnitude of the current induced in the loop at
times t 
 0?

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 30-1 Faraday’s Law and 
Lenz’s Law
•1 In Fig. 30-33, a circular loop of wire 10 cm
in diameter (seen edge-on) is placed with its
normal at an angle u � 30° with the direction
of a uniform magnetic field of magnitude
0.50 T. The loop is then rotated such that ro-
tates in a cone about the field direction at the
rate 100 rev/min; angle u remains unchanged
during the process. What is the emf induced in
the loop?

•2 A certain elastic conducting material is stretched into a cir-
cular loop of 12.0 cm radius. It is placed with its plane perpendi-
cular to a uniform 0.800 T magnetic field. When released, the ra-
dius of the loop starts to shrink at an instantaneous rate of
75.0 cm/s. What emf is induced in the loop at that instant?

•3 In Fig. 30-34, a 120-
turn coil of radius 1.8 cm and resist-
ance 5.3 � is coaxial with a solenoid
of 220 turns/cm and diameter 3.2 cm.
The solenoid current drops from
1.5 A to zero in time interval �t �
25 ms. What current is induced in the
coil during �t?

•4 A wire loop of radius 12 cm and re-
sistance 8.5 � is located in a uniform
magnetic field that changes in magni-
tude as given in Fig. 30-35. The vertical
axis scale is set by Bs � 0.50 T, and the
horizontal axis scale is set by ts � 6.00 s.
The loop’s plane is perpendicular to .
What emf is induced in the loop during time intervals (a) 0 to 2.0 s,
(b) 2.0 s to 4.0 s, and (c) 4.0 s to 6.0 s?

B
:

B
:

WWWSSM

N
:

B
:

N
:

page) at the same constant speed. The loops have edge lengths of
either L or 2L, as drawn. Rank the situations according to (a) the
magnitude of the force required of us and (b) the rate at which
energy is transferred from us to thermal energy of the loop,
greatest first.

11 Figure 30-31 shows three situations in which a wire loop lies
partially in a magnetic field.The magnitude of the field is either in-
creasing or decreasing, as indicated. In each situation, a battery is
part of the loop. In which situations are the induced emf and the
battery emf in the same direction along the loop?

Figure 30-31 Question 11.

Figure 30-32 Question 12.

B � 0
� �

(a)

B increasing

B � 0
� �

(b)

B decreasing

B � 0
� �

(c)

B decreasing

(1) (2) (3) (4)

B B B B

B

N
θ 

Loop

Figure 30-33
Problem 1.

Figure 30-34 Problem 3.

Coil

Solenoid

Figure 30-35 Problem 4.

Bs

0 ts

B
(T

)

t (s)

R

Figure 30-36 Problem 5.

Figure 30-37 Problem 6.

is

0
t (s) 

30

i (
m

A
) 

R

(a) (b)

•6 Figure 30-37a shows a circuit consisting of an ideal battery
with emf � � 6.00 mV, a resistance R, and a small wire loop of area
5.0 cm2. For the time interval t � 10 s to t � 20 s, an external mag-
netic field is set up throughout the loop. The field is uniform, its
direction is into the page in Fig. 30-37a, and the field magnitude is
given by B � at, where B is in teslas, a is a constant, and t is in
seconds. Figure 30-37b gives the current i in the circuit before, dur-
ing, and after the external field is set up. The vertical axis scale is
set by is � 2.0 mA. Find the constant a in the equation for the field
magnitude.

12 Figure 30-32 gives four situations in which we pull rectangu-
lar wire loops out of identical magnetic fields (directed into the
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••15 A square wire loop with
2.00 m sides is perpendicular to a
uniform magnetic field, with half the
area of the loop in the field as
shown in Fig. 30-43. The loop con-
tains an ideal battery with emf � �
20.0 V. If the magnitude of the field
varies with time according to B �
0.0420 � 0.870t, with B in teslas and
t in seconds, what are (a) the net emf
in the circuit and (b) the direction of
the (net) current around the loop?

••16 Figure 30-44a shows a wire that forms a rectangle 
(W 20 cm, H 30 cm) and has a resistance of 5.0 m . Its���

of the emf induced in the loop if 
What are (c) and (d) the

direction if What
are (e) and (f) the direction if 

What are (g) and (h) the
direction if What
are (i) and (j) the direction if 

••13 One hundred turns of (insulated) copper wire are
wrapped around a wooden cylindrical core of cross-sectional area
1.20 � 10�3 m2. The two ends of the wire are connected to a resis-
tor. The total resistance in the circuit is 13.0 �. If an externally ap-
plied uniform longitudinal magnetic field in the core changes from
1.60 T in one direction to 1.60 T in the opposite direction, how
much charge flows through a point in the circuit during the change?

••14 In Fig. 30-42a, a uniform magnetic field increases in
magnitude with time t as given by Fig. 30-42b, where the vertical
axis scale is set by Bs � 9.0 mT and the horizontal scale is set by
ts � 3.0 s. A circular conducting loop of area 8.0 � 10�4 m2 lies in
the field, in the plane of the page. The amount of charge q passing
point A on the loop is given in Fig. 30-42c as a function of t, with
the vertical axis scale set by qs � 6.0 mC and the horizontal axis
scale again set by ts � 3.0 s.What is the loop’s resistance?

B
:

ILW

10 �2 T/m 
s)yt î?
B
:

� (5.00 ��
B
:

� (3.00 � 10�2 T/m 
s)xt ĵ?
�10 �2 T/m 
s)ytk̂?

B
:

� (8.00 ��
B
:

� (6.00 � 10 �2 T/s)tk̂?
�10 �2 T/m)yk̂?

B
:

� (4.00 �•7 In Fig. 30-38, the magnetic flux
through the loop increases according to
the relation �B � 6.0t2 � 7.0t, where �B is
in milliwebers and t is in seconds. (a) What
is the magnitude of the emf induced in the
loop when t 2.0 s? (b) Is the direction of
the current through R to the right or left?

•8 A uniform magnetic field is per-
pendicular to the plane of a circular loop
of diameter 10 cm formed from wire of
diameter 2.5 mm and resistivity 1.69 �
10�8 �
m. At what rate must the magni-
tude of change to induce a 10 A current in the loop?

•9 A small loop of area 6.8 mm2 is placed inside a long solenoid
that has 854 turns/cm and carries a sinusoidally varying current i of
amplitude 1.28 A and angular frequency 212 rad/s.The central axes
of the loop and solenoid coincide.What is the amplitude of the emf
induced in the loop?

••10 Figure 30-39 shows a closed
loop of wire that consists of a pair of
equal semicircles, of radius 3.7 cm,
lying in mutually perpendicular
planes.The loop was formed by fold-
ing a flat circular loop along a diam-
eter until the two halves became
perpendicular to each other. A uni-
form magnetic field of magnitude
76 mT is directed perpendicular to
the fold diameter and makes equal
angles (of 45°) with the planes of the
semicircles. The magnetic field is reduced to zero at a uniform rate
during a time interval of 4.5 ms. During this interval, what are
the (a) magnitude and (b) direction (clockwise or counterclock-
wise when viewed along the direction of ) of the emf induced in
the loop?

••11 A rectangular coil of N turns and of length a and width b is
rotated at frequency f in a uniform magnetic field , as indicated in
Fig. 30-40. The coil is connected to co-rotating cylinders, against
which metal brushes slide to make contact. (a) Show that the emf
induced in the coil is given (as a function of time t) by

� � 2pfNabB sin(2pf t) � �0 sin(2pf t).

This is the principle of the commercial alternating-current gen-
erator. (b) What value of Nab gives an emf with �0 � 150 V
when the loop is rotated at 60.0 rev/s in a uniform magnetic field
of 0.500 T?
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••12 In Fig. 30-41, a wire loop of lengths L � 40.0 cm and W
25.0 cm lies in a magnetic field .What are the (a) magnitude and
(b) direction (clockwise or counterclockwise—or “none” if 0)� �
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by a distance x R. Consequently, the magnetic field due to the
counterclockwise current i in the larger loop is nearly uniform
throughout the smaller loop. Suppose that x is increasing at the
constant rate dx/dt � v. (a) Find an expression for the magnetic
flux through the area of the smaller loop as a function of x. (Hint:
See Eq. 29-27.) In the smaller loop, find (b) an expression for the
induced emf and (c) the direction of the induced current.

••24 A wire is bent into three
circular segments, each of radius r �
10 cm, as shown in Fig. 30-48. Each
segment is a quadrant of a circle,
ab lying in the xy plane, bc lying in
the yz plane, and ca lying in the zx
plane. (a) If a uniform magnetic
field points in the positive x direc-
tion, what is the magnitude of the
emf developed in the wire when B
increases at the rate of 3.0 mT/s?
(b) What is the direction of the
current in segment bc?

•••25 Two long, parallel copper wires of diameter 2.5 mm carry
currents of 10 A in opposite directions. (a) Assuming that their
central axes are 20 mm apart, calculate the magnetic flux per meter
of wire that exists in the space between those axes. (b) What per-
centage of this flux lies inside the wires? (c) Repeat part (a) for
parallel currents.

•••26 For the wire arrangement
in Fig. 30-49, a 12.0 cm and b
16.0 cm. The current in the long
straight wire is i � 4.50t2 � 10.0t,
where i is in amperes and t is in sec-
onds. (a) Find the emf in the square
loop at t � 3.00 s. (b) What is the
direction of the induced current in
the loop?

•••27 As seen in Fig. 30-50, a
square loop of wire has sides of
length 2.0 cm. A magnetic field is di-
rected out of the page; its magnitude
is given by B � 4.0t2y, where B is in
teslas, t is in seconds, and y is in me-
ters. At t � 2.5 s, what are the
(a) magnitude and (b) direction of
the emf induced in the loop?

•••28 In Fig. 30-51, a rectangular
loop of wire with length a 2.2 cm, width b 0.80 cm, and resist-
ance R � 0.40 m� is placed near an infinitely long wire carrying
current i � 4.7 A. The loop is then moved away from the wire at
constant speed v � 3.2 mm/s. When the center of the loop is at
distance r � 1.5b, what are (a) the magnitude of the magnetic flux
through the loop and (b) the current induced in the loop?
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�interior is split into three equal areas, with magnetic fields ,
and . The fields are uniform within each region and directly out
of or into the page as indicated. Figure 30-44b gives the change in
the z components Bz of the three fields with time t; the vertical axis
scale is set by Bs � 4.0 mT and Bb � �2.5Bs, and the horizontal axis
scale is set by ts � 2.0 s. What are the (a) magnitude and (b) direc-
tion of the current induced in the wire?

••17 A small circular loop of area 2.00 cm2 is placed in the plane
of, and concentric with, a large circular loop of radius 1.00 m. The
current in the large loop is changed at a constant rate from 200 A
to �200 A (a change in direction) in a time of 1.00 s, starting at 
t � 0. What is the magnitude of the magnetic field at the center
of the small loop due to the current in the large loop at (a) t � 0,
(b) t � 0.500 s, and (c) t � 1.00 s? (d) From t � 0 to t � 1.00 s, is 
reversed? Because the inner loop is small, assume is uniform over
its area. (e) What emf is induced in the small loop at t � 0.500 s?

••18 In Fig. 30-45, two straight con-
ducting rails form a right angle. A
conducting bar in contact with the
rails starts at the vertex at time t � 0
and moves with a constant velocity
of 5.20 m/s along them. A magnetic
field with B � 0.350 T is directed
out of the page. Calculate (a) the
flux through the triangle formed by the rails and bar at t � 3.00 s
and (b) the emf around the triangle at that time. (c) If the emf is
� � atn, where a and n are constants, what is the value of n?

••19 An electric generator contains a coil of 100 turns of wire,
each forming a rectangular loop 50.0 cm by 30.0 cm. The coil is
placed entirely in a uniform magnetic field with magnitude B �
3.50 T and with initially perpendicular to the coil’s plane. What
is the maximum value of the emf produced when the coil is spun at
1000 rev/min about an axis perpendicular to ?

••20 At a certain place, Earth’s magnetic field has magnitude 
B � 0.590 gauss and is inclined downward at an angle of 70.0� to
the horizontal. A flat horizontal circular coil of wire with a radius
of 10.0 cm has 1000 turns and a total resistance of 85.0 �. It is con-
nected in series to a meter with 140 � resistance.The coil is flipped
through a half-revolution about a diameter, so that it is again hori-
zontal. How much charge flows
through the meter during the flip?

••21 In Fig. 30-46, a stiff wire bent
into a semicircle of radius a � 2.0
cm is rotated at constant angular
speed 40 rev/s in a uniform 20 mT
magnetic field. What are the (a) fre-
quency and (b) amplitude of the emf
induced in the loop?

••22 A rectangular loop (area �
0.15 m2) turns in a uniform magnetic
field, B � 0.20 T.When the angle be-
tween the field and the normal to
the plane of the loop is p/2 rad and
increasing at 0.60 rad/s, what emf is
induced in the loop?

••23 Figure 30-47 shows two
parallel loops of wire having a com-
mon axis.The smaller loop (radius r)
is above the larger loop (radius R)
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•31 If 50.0 cm of copper wire (diameter � 1.00 mm) is
formed into a circular loop and placed perpendicular to a uniform
magnetic field that is increasing at the constant rate of 10.0 mT/s, at
what rate is thermal energy generated in the loop?

•32 A loop antenna of area 2.00 cm2 and resistance 5.21 m� is
perpendicular to a uniform magnetic field of magnitude 17.0 mT.
The field magnitude drops to zero in 2.96 ms. How much thermal
energy is produced in the loop by the change in field?

••33 Figure 30-54 shows a rod of
length L 10.0 cm that is forced to
move at constant speed v 5.00 m/s
along horizontal rails. The rod, rails,
and connecting strip at the right
form a conducting loop. The rod has
resistance 0.400 �; the rest of the
loop has negligible resistance. A cur-
rent i � 100 A through the long
straight wire at distance a � 10.0 mm
from the loop sets up a (nonuniform)
magnetic field through the loop. Find
the (a) emf and (b) current induced
in the loop. (c) At what rate is thermal energy generated in the
rod? (d) What is the magnitude of the force that must be applied to
the rod to make it move at constant speed? (e) At what rate does
this force do work on the rod?

••34 In Fig. 30-55, a long rectangular conducting loop, of width L,
resistance R, and mass m, is hung in a horizontal, uniform magnetic

�
�
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field that is directed into the page
and that exists only above line aa.
The loop is then dropped; during its
fall, it accelerates until it reaches a
certain terminal speed vt. Ignoring
air drag, find an expression for vt.

••35 The conducting rod shown in
Fig. 30-52 has length L and is being
pulled along horizontal, frictionless
conducting rails at a constant veloc-
ity . The rails are connected at one
end with a metal strip. A uniform
magnetic field , directed out of
the page, fills the region in which the rod moves. Assume that L �
10 cm, v � 5.0 m/s, and B � 1.2 T. What are the (a) magnitude and
(b) direction (up or down the page) of the emf induced in the rod?
What are the (c) size and (d) direction of the current in the con-
ducting loop? Assume that the resistance of the rod is 0.40 � and
that the resistance of the rails and metal strip is negligibly small.
(e) At what rate is thermal energy being generated in the rod?
(f) What external force on the rod is needed to maintain ? (g) At
what rate does this force do work on the rod?

Module 30-3 Induced Electric Fields
•36 Figure 30-56 shows two circu-
lar regions R1 and R2 with radii r1 �
20.0 cm and r2 � 30.0 cm. In R1

there is a uniform magnetic field of
magnitude B1 � 50.0 mT directed
into the page, and in R2 there is a
uniform magnetic field of magni-
tude B2 � 75.0 mT directed out of
the page (ignore fringing). Both
fields are decreasing at the rate of
8.50 mT/s. Calculate for
(a) path 1, (b) path 2, and (c) path 3.

•37 A long solenoid has a diameter of 12.0 cm.When a
current i exists in its windings, a uniform magnetic field of magni-
tude B � 30.0 mT is produced in its interior. By decreasing i, the
field is caused to decrease at the rate of 6.50 mT/s. Calculate the
magnitude of the induced electric field (a) 2.20 cm and (b) 8.20 cm
from the axis of the solenoid.

••38 A circular region in an xy
plane is penetrated by a uniform
magnetic field in the positive direc-
tion of the z axis. The field’s magni-
tude B (in teslas) increases with
time t (in seconds) according to B �
at, where a is a constant. The magni-
tude E of the electric field set up by
that increase in the magnetic field is
given by Fig. 30-57 versus radial dis-
tance r ; the vertical axis scale is set by Es � 300 mN/C, and the
horizontal axis scale is set by rs � 4.00 cm. Find a.

••39 The magnetic field of a cylindrical magnet that has a
pole-face diameter of 3.3 cm can be varied sinusoidally between
29.6 T and 30.0 T at a frequency of 15 Hz. (The current in a wire
wrapped around a permanent magnet is varied to give this varia-
tion in the net field.) At a radial distance of 1.6 cm, what is the
amplitude of the electric field induced by the variation?
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:Module 30-2 Induction and Energy Transfers

•29 In Fig. 30-52, a metal rod is
forced to move with constant veloc-
ity along two parallel metal rails,
connected with a strip of metal at
one end. A magnetic field of magni-
tude B � 0.350 T points out of the
page. (a) If the rails are separated
by L � 25.0 cm and the speed of the
rod is 55.0 cm/s, what emf is gener-
ated? (b) If the rod has a resistance of 18.0 � and the rails and con-
nector have negligible resistance, what is the current in the rod?
(c) At what rate is energy being transferred to thermal energy?

•30 In Fig. 30-53a, a circular loop of wire is concentric with a sole-
noid and lies in a plane perpendicular to the solenoid’s central axis.
The loop has radius 6.00 cm. The solenoid has radius 2.00 cm, con-
sists of 8000 turns/m, and has a current isol varying with time t as
given in Fig. 30-53b, where the vertical axis scale is set by is � 1.00
A and the horizontal axis scale is set by ts � 2.0 s. Figure 30-53c
shows, as a function of time, the energy Eth that is transferred
to thermal energy of the loop; the vertical axis scale is set by Es �
100.0 nJ.What is the loop’s resistance?
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••48 Inductors in parallel. Two inductors L1 and L2 are connected
in parallel and separated by a large distance so that the magnetic
field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

(Hint: Review the derivations for resistors in parallel and
capacitors in parallel. Which is similar here?) (b) What is the gen-
eralization of (a) for N inductors in parallel?

••49 The inductor arrangement of
Fig. 30-61, with L1 � 30.0 mH, L2 �
50.0 mH, L3 � 20.0 mH, and L4 �
15.0 mH, is to be connected to a
varying current source. What is the
equivalent inductance of the
arrangement? (First see Problems
47 and 48.)

Module 30-6 RL Circuits
•50 The current in an RL circuit builds up to one-third of its
steady-state value in 5.00 s. Find the inductive time constant.

•51 The current in an RL circuit drops from 1.0 A to 10 mA
in the first second following removal of the battery from the cir-
cuit. If L is 10 H, find the resistance R in the circuit.

•52 The switch in Fig. 30-15 is closed on a at time t � 0. What is
the ratio �L/� of the inductor’s self-induced emf to the battery’s
emf (a) just after t � 0 and (b) at t � 2.00tL? (c) At what multiple
of tL will �L/� � 0.500?

•53 A solenoid having an inductance of 6.30 mH is con-
nected in series with a 1.20 k resistor. (a) If a 14.0 V battery is
connected across the pair, how long will it take for the current
through the resistor to reach 80.0% of its final value? (b) What is
the current through the resistor at time t � 1.0tL?

•54 In Fig. 30-62, � � 100 V, R1 �
10.0 �, R2 � 20.0 �, R3 � 30.0 �, and
L � 2.00 H. Immediately after switch
S is closed, what are (a) i1 and (b) i2?
(Let currents in the indicated
directions have positive values and
currents in the opposite directions
have negative values.) A long time
later, what are (c) i1 and (d) i2? The
switch is then reopened. Just then,
what are (e) i1 and (f) i2? A long time later, what are (g) i1 and (h) i2?

•55 A battery is connected to a series RL circuit at time 
t 0. At what multiple of tL will the current be 0.100% less than
its equilibrium value?

•56 In Fig. 30-63, the inductor has 25 turns and the ideal battery
has an emf of 16 V. Figure 30-64 gives the magnetic flux � through
each turn versus the current i through the inductor. The vertical
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Module 30-4 Inductors and Inductance
•40 The inductance of a closely packed coil of 400 turns is
8.0 mH. Calculate the magnetic flux through the coil when the
current is 5.0 mA.

•41 A circular coil has a 10.0 cm radius and consists of 30.0
closely wound turns of wire. An externally produced magnetic
field of magnitude 2.60 mT is perpendicular to the coil. (a) If no
current is in the coil, what magnetic flux links its turns? (b) When
the current in the coil is 3.80 A in a certain direction, the net
flux through the coil is found to vanish. What is the inductance of
the coil?

••42 Figure 30-58 shows a copper strip of
width W � 16.0 cm that has been bent to form
a shape that consists of a tube of radius 
R � 1.8 cm plus two parallel flat extensions.
Current i � 35 mA is distributed uniformly
across the width so that the tube is effectively
a one-turn solenoid.Assume that the magnetic
field outside the tube is negligible and the
field inside the tube is uniform. What are (a)
the magnetic field magnitude inside the tube
and (b) the inductance of the tube (excluding
the flat extensions)?

••43 Two identical long wires of radius 
a 1.53 mm are parallel and carry identical
currents in opposite directions. Their center-to-center separation is
d � 14.2 cm. Neglect the flux within the wires but consider the flux
in the region between the wires. What is the inductance per unit
length of the wires?

Module 30-5 Self-Induction
•44 A 12 H inductor carries a current of 2.0 A.At what rate must
the current be changed to produce a 60 V emf in the inductor?

•45 At a given instant the current
and self-induced emf in an inductor
are directed as indicated in Fig. 30-59.
(a) Is the current increasing or de-
creasing? (b) The induced emf is
17 V, and the rate of change of the current is 25 kA/s; find the
inductance.

••46 The current i through a 4.6 H
inductor varies with time t as shown
by the graph of Fig. 30-60, where the
vertical axis scale is set by is � 8.0 A
and the horizontal axis scale is set by
ts � 6.0 ms. The inductor has a resist-
ance of 12 �. Find the magnitude of
the induced emf � during time inter-
vals (a) 0 to 2 ms, (b) 2 ms to 5 ms, and
(c) 5 ms to 6 ms. (Ignore the behavior
at the ends of the intervals.)

••47 Inductors in series. Two inductors L1 and L2 are connected in
series and are separated by a large distance so that the magnetic
field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

Leq � L1 � L2.

(Hint: Review the derivations for resistors in series and capacitors
in series. Which is similar here?) (b) What is the generalization of
(a) for N inductors in series?
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(a) How much energy is delivered by the battery during the first
2.00 s? (b) How much of this energy is stored in the magnetic field
of the inductor? (c) How much of this energy is dissipated in the
resistor?

Module 30-8 Energy Density of a Magnetic Field
•66 A circular loop of wire 50 mm in radius carries a current of
100 A. Find the (a) magnetic field strength and (b) energy density
at the center of the loop.

•67 A solenoid that is 85.0 cm long has a cross-sectional
area of 17.0 cm2. There are 950 turns of wire carrying a current of
6.60 A. (a) Calculate the energy density of the magnetic field in-
side the solenoid. (b) Find the total energy stored in the magnetic
field there (neglect end effects).

•68 A toroidal inductor with an inductance of 90.0 mH encloses
a volume of 0.0200 m3. If the average energy density in the toroid is
70.0 J/m3, what is the current through the inductor?

•69 What must be the magnitude of a uniform electric field if
it is to have the same energy density as that possessed by a 0.50 T
magnetic field?

••70 Figure 30-67a shows, in
cross section, two wires that are
straight, parallel, and very long.
The ratio i1/i2 of the current car-
ried by wire 1 to that carried by
wire 2 is 1/3. Wire 1 is fixed in
place. Wire 2 can be moved along
the positive side of the x axis so as
to change the magnetic energy
density uB set up by the two cur-
rents at the origin. Figure 30-67b
gives uB as a function of the posi-
tion x of wire 2. The curve has an
asymptote of uB � 1.96 nJ/m3 as

, and the horizontal axis
scale is set by xs � 60.0 cm. What is
the value of (a) i1 and (b) i2?

••71 A length of copper wire carries a current of 10 A uniformly
distributed through its cross section. Calculate the energy density
of (a) the magnetic field and (b) the electric field at the surface of
the wire. The wire diameter is 2.5 mm, and its resistance per unit
length is 3.3 �/km.

Module 30-9 Mutual Induction
•72 Coil 1 has L1 � 25 mH and N1 � 100 turns. Coil 2 has L2 �
40 mH and N2 � 200 turns. The coils are fixed in place; their mu-
tual inductance M is 3.0 mH.A 6.0 mA current in coil 1 is changing
at the rate of 4.0 A/s. (a) What magnetic flux �12 links coil 1, and
(b) what self-induced emf appears in that coil? (c) What magnetic
flux �21 links coil 2, and (d) what mutually induced emf appears in
that coil?

•73 Two coils are at fixed locations. When coil 1 has no
current and the current in coil 2 increases at the rate 15.0 A/s, the
emf in coil 1 is 25.0 mV. (a) What is their mutual inductance?
(b) When coil 2 has no current and coil 1 has a current of 3.60 A,
what is the flux linkage in coil 2?

•74 Two solenoids are part of the spark coil of an automobile.
When the current in one solenoid falls from 6.0 A to zero in 2.5 ms,
an emf of 30 kV is induced in the other solenoid. What is the
mutual inductance M of the solenoids?
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axis scale is set by �s � 4.0 � 10�4 T	m2, and the horizontal axis
scale is set by is � 2.00 A. If switch S is closed at time t � 0, at what
rate di/dt will the current be changing at t � 1.5tL?

••57 In Fig. 30-65, R � 15 �,
L 5.0 H, the ideal battery has

10 V, and the fuse in the upper
branch is an ideal 3.0 A fuse. It has
zero resistance as long as the cur-
rent through it remains less than
3.0 A. If the current reaches 3.0 A,
the fuse “blows” and thereafter has
infinite resistance. Switch S is closed
at time t 0. (a) When does the fuse blow? (Hint: Equation 30-41
does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the cur-
rent i through the inductor as a function of time. Mark the time at
which the fuse blows.

••58 Suppose the emf of the battery in the circuit shown in 
Fig. 30-16 varies with time t so that the current is given by i(t)
3.0 � 5.0t, where i is in amperes and t is in seconds. Take R � 4.0 �
and L � 6.0 H, and find an expression for the battery emf as a
function of t. (Hint: Apply the loop rule.)

•••59 In Fig. 30-66,
after switch S is closed at time t 0,
the emf of the source is automati-
cally adjusted to maintain a constant
current i through S. (a) Find the cur-
rent through the inductor as a func-
tion of time. (b) At what time is the
current through the resistor equal to
the current through the inductor?

•••60 A wooden toroidal core with a square cross section has an
inner radius of 10 cm and an outer radius of 12 cm. It is wound with
one layer of wire (of diameter 1.0 mm and resistance per meter
0.020 �/m).What are (a) the inductance and (b) the inductive time
constant of the resulting toroid? Ignore the thickness of the insula-
tion on the wire.

Module 30-7 Energy Stored in a Magnetic Field
•61 A coil is connected in series with a 10.0 k� resistor. An
ideal 50.0 V battery is applied across the two devices, and the cur-
rent reaches a value of 2.00 mA after 5.00 ms. (a) Find the induc-
tance of the coil. (b) How much energy is stored in the coil at this
same moment?

•62 A coil with an inductance of 2.0 H and a resistance of 10 � is
suddenly connected to an ideal battery with � � 100 V. At 0.10 s
after the connection is made, what is the rate at which (a) energy is
being stored in the magnetic field, (b) thermal energy is appearing
in the resistance, and (c) energy is being delivered by the battery?

•63 At t � 0, a battery is connected to a series arrangement
of a resistor and an inductor. If the inductive time constant is 37.0
ms, at what time is the rate at which energy is dissipated in the re-
sistor equal to the rate at which energy is stored in the inductor’s
magnetic field?

•64 At t � 0, a battery is connected to a series arrangement of a
resistor and an inductor. At what multiple of the inductive time
constant will the energy stored in the inductor’s magnetic field be
0.500 its steady-state value?

••65 For the circuit of Fig. 30-16, assume that � � 10.0 V, R �
6.70 , and L 5.50 H.The ideal battery is connected at time t 0.���
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Additional Problems
78 At time t � 0, a 12.0 V potential difference is suddenly
applied to the leads of a coil of inductance 23.0 mH and a certain
resistance R. At time t � 0.150 ms, the current through the induc-
tor is changing at the rate of 280 A/s. Evaluate R.

79 In Fig. 30-71, the battery is
ideal and 10 V, R1 5.0 ,
R2 � 10 �, and L � 5.0 H. Switch S
is closed at time t � 0. Just
afterwards, what are (a) i1, (b) i2,
(c) the current iS through the switch,
(d) the potential difference V2

across resistor 2, (e) the potential
difference VL across the inductor,
and (f) the rate of change di2/dt? A
long time later, what are (g) i1, (h) i2,
(i) iS, ( j) V2, (k) VL, and (l) di2/dt?

80 In Fig. 30-63, R � 4.0 k�, L � 8.0 mH, and the ideal battery
has � � 20 V. How long after switch S is closed is the current
2.0 mA?

��� �

SSM

81 Figure 30-72a shows a
rectangular conducting loop of
resistance R � 0.020 �, height 
H � 1.5 cm, and length D � 2.5
cm being pulled at constant speed
v � 40 cm/s through two regions
of uniform magnetic field. Figure
30-72b gives the current i induced
in the loop as a function of the
position x of the right side of the
loop. The vertical axis scale is set
by is � 3.0 mA. For example, a cur-
rent equal to is is induced clock-
wise as the loop enters region 1.
What are the (a) magnitude and
(b) direction (into or out of the page) of the magnetic field in
region 1? What are the (c) magnitude and (d) direction of the mag-
netic field in region 2?

82 A uniform magnetic field is perpendicular to the plane of a
circular wire loop of radius r. The magnitude of the field varies
with time according to B � B0e�t/t, where B0 and t are constants.
Find an expression for the emf in the loop as a function of time.

83 Switch S in Fig. 30-63 is closed at time t � 0, initiating the
buildup of current in the 15.0 mH inductor and the 20.0 � resistor.
At what time is the emf across the inductor equal to the potential
difference across the resistor?

84 Figure 30-73a shows two
concentric circular regions in
which uniform magnetic fields can
change. Region 1, with radius r1 �
1.0 cm, has an outward magnetic
field that is increasing in magni-
tude. Region 2, with radius r2

2.0 cm, has an outward magnetic
field that may also be changing.
Imagine that a conducting ring of
radius R is centered on the two re-
gions and then the emf � around
the ring is determined. Figure 
30-73b gives emf � as a function of
the square R2 of the ring’s radius,
to the outer edge of region 2. The
vertical axis scale is set by �s �
20.0 nV. What are the rates
(a) dB1/dt and (b) dB2/dt? (c) Is
the magnitude of increasing,
decreasing, or remaining constant?

85 Figure 30-74 shows a uni-
form magnetic field confined to
a cylindrical volume of radius R.
The magnitude of is decreasing
at a constant rate of 10 mT/s. In
unit-vector notation, what is the
initial acceleration of an electron
released at (a) point a (radial dis-
tance r � 5.0 cm), (b) point b (r �
0), and (c) point c (r � 5.0 cm)?

86 In Fig. 30-75a, switch S
has been closed on A long enough
to establish a steady current in the inductor of inductance 
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B
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SSM••75 A rectangular loop of N
closely packed turns is positioned
near a long straight wire as shown in
Fig. 30-68. What is the mutual induc-
tance M for the loop–wire combina-
tion if N � 100, a � 1.0 cm, b �
8.0 cm, and l � 30 cm?

••76 A coil C of N turns is placed
around a long solenoid S of radius
R and n turns per unit length, as in
Fig. 30-69. (a) Show that the mutual
inductance for the coil–solenoid
combination is given by M �
m0pR2nN. (b) Explain why M does
not depend on the shape, size, or pos-
sible lack of close packing of the coil.

••77 Two coils connected as
shown in Fig. 30-70 separately have inductances L1 and L2. Their
mutual inductance is M. (a) Show that this combination can be re-
placed by a single coil of equivalent inductance given by

Leq � L1 � L2 � 2M.

(b) How could the coils in Fig. 30-70 be reconnected to yield an
equivalent inductance of

Leq � L1 � L2 � 2M?

(This problem is an extension of Problem 47, but the requirement
that the coils be far apart has been removed.)
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101 A toroid has a 5.00 cm square cross section, an inside radius
of 15.0 cm, 500 turns of wire, and a current of 0.800 A. What is the
magnetic flux through the cross section?

87 A square wire loop 20 cm on a side, with resistance
20 m , has its plane normal to a uniform magnetic field of magni-
tude B � 2.0 T. If you pull two opposite sides of the loop away
from each other, the other two sides automatically draw toward
each other, reducing the area enclosed by the loop. If the area is re-
duced to zero in time 
t � 0.20 s, what are (a) the average emf and
(b) the average current induced in the loop during 
t?

88 A coil with 150 turns has a magnetic flux of 50.0 nT 	m2

through each turn when the current is 2.00 mA. (a) What is the in-
ductance of the coil? What are the (b) inductance and (c) flux
through each turn when the current is increased to 4.00 mA? (d)
What is the maximum emf � across the coil when the current
through it is given by i � (3.00 mA) cos(377t), with t in seconds?

89 A coil with an inductance of 2.0 H and a resistance of 10 � is
suddenly connected to an ideal battery with � � 100 V. (a) What is
the equilibrium current? (b) How much energy is stored in the
magnetic field when this current exists in the coil?

90 How long would it take, following the removal of the battery,
for the potential difference across the resistor in an RL circuit
(with L � 2.00 H, R � 3.00 �) to decay to 10.0% of its initial
value?

91 In the circuit of Fig. 30-76,
R1 20 k , R2 20 , L 50 mH,
and the ideal battery has � � 40 V.
Switch S has been open for a long
time when it is closed at time t � 0.
Just after the switch is closed, what
are (a) the current ibat through the
battery and (b) the rate dibat/dt?
At t � 3.0 ms, what are (c) ibat and
(d) dibat/dt? A long time later, what are (e) ibat and (f) dibat/dt?

92 The flux linkage through a certain coil of 0.75 � resistance
would be 26 mWb if there were a current of 5.5 A in it. (a)
Calculate the inductance of the coil. (b) If a 6.0 V ideal battery
were suddenly connected across the coil, how long would it take
for the current to rise from 0 to 2.5 A?

93 In Fig. 30-63, a 12.0 V ideal battery, a 20.0 � resistor, and an
inductor are connected by a switch at time t � 0.At what rate is the
battery transferring energy to the inductor’s field at t � 1.61tL?

94 A long cylindrical solenoid with 100 turns/cm has a radius of
1.6 cm. Assume that the magnetic field it produces is parallel to its
axis and is uniform in its interior. (a) What is its inductance per

�����

SSM

�

SSM

meter of length? (b) If the current changes at the rate of 13 A/s,
what emf is induced per meter?

95 In Fig. 30-77, R1 � 8.0 �, R2 � 10 �, L1 � 0.30 H, L2 � 0.20 H,
and the ideal battery has � � 6.0 V. (a) Just after switch S is closed,
at what rate is the current in inductor 1 changing? (b) When the
circuit is in the steady state, what is the current in inductor 1?

L1 5.00 mH and the resistor of resistance R1 25.0 .
Similarly, in Fig. 30-75b, switch S has been closed on A long
enough to establish a steady current in the inductor of inductance
L2 � 3.00 mH and the resistor of resistance R2 � 30.0 �. The ra-
tio �02/�01 of the magnetic flux through a turn in inductor 2 to
that in inductor 1 is 1.50. At time t � 0, the two switches are
closed on B. At what time t is the flux through a turn in the two
inductors equal?

���

Figure 30-77 Problem 95.
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96 A square loop of wire is held in a uniform 0.24 T magnetic
field directed perpendicular to the plane of the loop. The length of
each side of the square is decreasing at a constant rate of 5.0 cm/s.
What emf is induced in the loop when the length is 12 cm?

97 At time t � 0, a 45 V potential difference is suddenly applied
to the leads of a coil with inductance L � 50 mH and resistance 
R � 180 �. At what rate is the current through the coil increasing
at t � 1.2 ms?

98 The inductance of a closely wound coil is such that an emf of
3.00 mV is induced when the current changes at the rate of 5.00
A/s. A steady current of 8.00 A produces a magnetic flux of 40.0
mWb through each turn. (a) Calculate the inductance of the coil.
(b) How many turns does the coil have?

99 The magnetic field in the interstellar space of our galaxy has a
magnitude of about 10�10 T. How much energy is stored in this
field in a cube 10 light-years on edge? (For scale, note that the
nearest star is 4.3 light-years distant and the radius of the galaxy is
about 8 � 104 light-years.)

100 Figure 30-78 shows a wire that has been bent into a circular
arc of radius r � 24.0 cm, centered at O. A straight wire OP can be
rotated about O and makes sliding contact with the arc at P.
Another straight wire OQ completes the conducting loop. The
three wires have cross-sectional area 1.20 mm2 and resistivity
1.70 10�8 � 	 m, and the apparatus lies in a uniform magnetic
field of magnitude B � 0.150 T directed out of the figure. Wire OP
begins from rest at angle u � 0 and has constant angular accelera-
tion of 12 rad/s2. As functions of u (in rad), find (a) the loop’s
resistance and (b) the magnetic flux through the loop. (c) For what
u is the induced current maximum and (d) what is that maximum?

�
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Electromagnetic Oscillations
and Alternating Current

31-1 LC OSCILLATIONS

After reading this module, you should be able to . . .

31.01 Sketch an LC oscillator and explain which quantities
oscillate and what constitutes one period of the oscillation.

31.02 For an LC oscillator, sketch graphs of the potential
difference across the capacitor and the current through
the inductor as functions of time, and indicate the period
T on each graph.

31.03 Explain the analogy between a block–spring oscillator
and an LC oscillator.

31.04 For an LC oscillator, apply the relationships between
the angular frequency v (and the related frequency f
and period T ) and the values of the inductance and
capacitance.

31.05 Starting with the energy of a block–spring system,
explain the derivation of the differential equation for charge
q in an LC oscillator and then identify the solution for q(t).

31.06 For an LC oscillator, calculate the charge q on the ca-
pacitor for any given time and identify the amplitude Q of
the charge oscillations.

31.07 Starting from the equation giving the charge q(t)
on the capacitor in an LC oscillator, find the current i(t)
in the inductor as a function of time.

31.08 For an LC oscillator, calculate the current i in the
inductor for any given time and identify the amplitude I
of the current oscillations.

31.09 For an LC oscillator, apply the relationship between
the charge amplitude Q, the current amplitude I, and the
angular frequency v.

31.10 From the expressions for the charge q and the current
i in an LC oscillator, find the magnetic field energy UB(t)
and the electric field energy UE(t) and the total energy.

31.11 For an LC oscillator, sketch graphs of the magnetic
field energy UB(t), the electric field energy UE(t), and the
total energy, all as functions of time.

31.12 Calculate the maximum values of the magnetic field
energy UB and the electric field energy UE and also
calculate the total energy.

Learning Objectives

● In an oscillating LC circuit, energy is shuttled periodically
between the electric field of the capacitor and the magnetic
field of the inductor; instantaneous values of the two forms of
energy are

where q is the instantaneous charge on the capacitor and i is
the instantaneous current through the inductor. 

● The total energy U (� UE � UB) remains constant.

● The principle of conservation of energy leads to

(LC oscillations)

as the differential equation of LC oscillations (with no
resistance).

L
d2q
dt2 �

1
C

q � 0

UE �
q2

2C
  and  UB �

Li2

2
,

● The solution of this differential equation is

q � Q cos(vt � f) (charge),

in which Q is the charge amplitude (maximum charge 
on the capacitor) and the angular frequency v of the 
oscillations is

● The phase constant f is determined by the initial conditions
(at t � 0) of the system.

● The current i in the system at any time t is

i � �vQ sin(vt � f) (current),

in which vQ is the current amplitude I.

v �
1

1LC
.

Key Ideas
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What Is Physics?
We have explored the basic physics of electric and magnetic fields and how
energy can be stored in capacitors and inductors. We next turn to the associated
applied physics, in which the energy stored in one location can be transferred to
another location so that it can be put to use. For example, energy produced at a
power plant can show up at your home to run a computer. The total worth of this
applied physics is now so high that its estimation is almost impossible. Indeed,
modern civilization would be impossible without this applied physics.

In most parts of the world, electrical energy is transferred not as a direct
current but as a sinusoidally oscillating current (alternating current, or ac). The
challenge to both physicists and engineers is to design ac systems that transfer
energy efficiently and to build appliances that make use of that energy. Our first
step here is to study the oscillations in a circuit with inductance L and capacitance C.

LC Oscillations, Qualitatively
Of the three circuit elements, resistance R, capacitance C, and inductance L, we have
so far discussed the series combinations RC (in Module 27-4) and RL (in Module
30-6). In these two kinds of circuit we found that the charge, current, and potential
difference grow and decay exponentially. The time scale of the growth or decay is
given by a time constant t, which is either capacitive or inductive.

We now examine the remaining two-element circuit combination LC. You will
see that in this case the charge, current, and potential difference do not decay expo-
nentially with time but vary sinusoidally (with period T and angular frequency v).
The resulting oscillations of the capacitor’s electric field and the inductor’s magnetic
field are said to be electromagnetic oscillations. Such a circuit is said to oscillate.

Parts a through h of Fig. 31-1 show succeeding stages of the oscillations in
a simple LC circuit. From Eq. 25-21, the energy stored in the electric field of the

Figure 31-1 Eight stages in a single cycle of
oscillation of a resistanceless LC circuit.
The bar graphs by each figure show the
stored magnetic and electrical energies.The
magnetic field lines of the inductor and the
electric field lines of the capacitor are
shown. (a) Capacitor with maximum
charge, no current. (b) Capacitor discharg-
ing, current increasing. (c) Capacitor fully
discharged, current maximum. (d)
Capacitor charging but with polarity
opposite that in (a), current decreasing. (e)
Capacitor with maximum charge having
polarity opposite that in (a), no current. (f )
Capacitor discharging, current increasing
with direction opposite that in (b). (g)
Capacitor fully discharged, current
maximum. (h) Capacitor charging, current
decreasing.
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capacitor at any time is

(31-1)

where q is the charge on the capacitor at that time. From Eq. 30-49, the energy
stored in the magnetic field of the inductor at any time is

(31-2)

where i is the current through the inductor at that time.
We now adopt the convention of representing instantaneous values of the

electrical quantities of a sinusoidally oscillating circuit with small letters, such
as q, and the amplitudes of those quantities with capital letters, such as Q. With
this convention in mind, let us assume that initially the charge q on the capac-
itor in Fig. 31-1 is at its maximum value Q and that the current i through the
inductor is zero. This initial state of the circuit is shown in Fig. 31-1a. The bar
graphs for energy included there indicate that at this instant, with zero current
through the inductor and maximum charge on the capacitor, the energy UB of the
magnetic field is zero and the energy UE of the electric field is a maximum.As the
circuit oscillates, energy shifts back and forth from one type of stored energy to
the other, but the total amount is conserved.

The capacitor now starts to discharge through the inductor, positive charge
carriers moving counterclockwise, as shown in Fig. 31-1b. This means that a cur-
rent i, given by dq/dt and pointing down in the inductor, is established. As the
capacitor’s charge decreases, the energy stored in the electric field within the
capacitor also decreases. This energy is transferred to the magnetic field that
appears around the inductor because of the current i that is building up there.
Thus, the electric field decreases and the magnetic field builds up as energy is
transferred from the electric field to the magnetic field.

The capacitor eventually loses all its charge (Fig. 31-1c) and thus also loses its
electric field and the energy stored in that field. The energy has then been fully
transferred to the magnetic field of the inductor. The magnetic field is then at
its maximum magnitude, and the current through the inductor is then at its
maximum value I.

Although the charge on the capacitor is now zero, the counterclockwise
current must continue because the inductor does not allow it to change suddenly
to zero. The current continues to transfer positive charge from the top plate to
the bottom plate through the circuit (Fig. 31-1d). Energy now flows from the
inductor back to the capacitor as the electric field within the capacitor builds
up again. The current gradually decreases during this energy transfer. When,
eventually, the energy has been transferred completely back to the capacitor
(Fig. 31-1e), the current has decreased to zero (momentarily). The situation
of Fig. 31-1e is like the initial situation, except that the capacitor is now charged
oppositely.

The capacitor then starts to discharge again but now with a clockwise current
(Fig. 31-1f ). Reasoning as before, we see that the clockwise current builds to a
maximum (Fig. 31-1g) and then decreases (Fig. 31-1h), until the circuit eventually
returns to its initial situation (Fig. 31-1a). The process then repeats at some
frequency f and thus at an angular frequency v � 2pf. In the ideal LC circuit with
no resistance, there are no energy transfers other than that between the electric
field of the capacitor and the magnetic field of the inductor. Because of the con-
servation of energy, the oscillations continue indefinitely. The oscillations need
not begin with the energy all in the electric field; the initial situation could be any
other stage of the oscillation.

UB �
Li2

2
,

UE �
q2

2C
,
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To determine the charge q on the capacitor as a function of time, we can put
in a voltmeter to measure the time-varying potential difference (or voltage) vC

that exists across the capacitor C. From Eq. 25-1 we can write

which allows us to find q. To measure the current, we can connect a small resis-
tance R in series with the capacitor and inductor and measure the time-varying
potential difference vR across it; vR is proportional to i through the relation

vR � iR.

We assume here that R is so small that its effect on the behavior of the circuit is
negligible. The variations in time of vC and vR, and thus of q and i, are shown in
Fig. 31-2.All four quantities vary sinusoidally.

In an actual LC circuit, the oscillations will not continue indefinitely because
there is always some resistance present that will drain energy from the elec-
tric and magnetic fields and dissipate it as thermal energy (the circuit may
become warmer). The oscillations, once started, will die away as Fig. 31-3 sug-
gests. Compare this figure with Fig. 15-17, which shows the decay of mechanical
oscillations caused by frictional damping in a block–spring system.

vC � � 1
C � q,

Figure 31-3 An oscilloscope trace showing
how the oscillations in an RLC circuit actu-
ally die away because energy is dissipated in
the resistor as thermal energy.

Courtesy Agilent Technologies

Figure 31-2 (a) The potential difference 
across the capacitor in the circuit of Fig. 31-1 as a
function of time.This quantity is proportional to
the charge on the capacitor. (b) A potential pro-
portional to the current in the circuit of Fig. 31-1.
The letters refer to the correspondingly labeled
oscillation stages in Fig. 31-1.

v C
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C

)
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v R
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iR
)
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t
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Checkpoint 1
A charged capacitor and an inductor are connected in series at time t � 0. In terms
of the period T of the resulting oscillations, determine how much later the following
reach their maximum value: (a) the charge on the capacitor; (b) the voltage across
the capacitor, with its original polarity; (c) the energy stored in the electric field; and
(d) the current.

The Electrical–Mechanical Analogy
Let us look a little closer at the analogy between the oscillating LC system of
Fig. 31-1 and an oscillating block–spring system. Two kinds of energy are
involved in the block–spring system. One is potential energy of the compressed
or extended spring; the other is kinetic energy of the moving block. These two
energies are given by the formulas in the first energy column in Table 31-1.

Table 31-1 Comparison of the Energy in Two Oscillating Systems

Block–Spring System LC Oscillator

Element Energy Element Energy

Spring Potential, Capacitor Electrical,

Block Kinetic, Inductor Magnetic,

v � dx/dt i � dq/dt

1
2Li21

2mv2

1
2(1/C)q21

2kx2
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The table also shows, in the second energy column, the two kinds of energy
involved in LC oscillations. By looking across the table, we can see an analogy
between the forms of the two pairs of energies—the mechanical energies of the
block–spring system and the electromagnetic energies of the LC oscillator. The
equations for v and i at the bottom of the table help us see the details of the analogy.
They tell us that q corresponds to x and i corresponds to v (in both equations, the
former is differentiated to obtain the latter). These correspondences then suggest
that, in the energy expressions, 1/C corresponds to k and L corresponds to m. Thus,

q corresponds to x, 1/C corresponds to k,
i corresponds to v, and L corresponds to m.

These correspondences suggest that in an LC oscillator, the capacitor is mathemat-
ically like the spring in a block–spring system and the inductor is like the block.

In Module 15-1 we saw that the angular frequency of oscillation of a (fric-
tionless) block–spring system is

(block–spring system). (31-3)

The correspondences listed above suggest that to find the angular frequency of
oscillation for an ideal (resistanceless) LC circuit, k should be replaced by 1/C
and m by L, yielding

(LC circuit). (31-4)

LC Oscillations, Quantitatively
Here we want to show explicitly that Eq. 31-4 for the angular frequency of LC
oscillations is correct. At the same time, we want to examine even more closely the
analogy between LC oscillations and block–spring oscillations.We start by extend-
ing somewhat our earlier treatment of the mechanical block–spring oscillator.

The Block–Spring Oscillator
We analyzed block–spring oscillations in Chapter 15 in terms of energy transfers
and did not—at that early stage—derive the fundamental differential equation
that governs those oscillations. We do so now.

We can write, for the total energy U of a block–spring oscillator at any instant,

(31-5)

where Ub and Us are, respectively, the kinetic energy of the moving block and the
potential energy of the stretched or compressed spring. If there is no friction—
which we assume—the total energy U remains constant with time, even though
v and x vary. In more formal language, dU/dt � 0. This leads to

(31-6)

Substituting v � dx/dt and dv/dt � d 2x/dt2, we find

(block–spring oscillations). (31-7)

Equation 31-7 is the fundamental differential equation that governs the friction-
less block–spring oscillations.

The general solution to Eq. 31-7 is (as we saw in Eq. 15-3)

x � X cos(vt � f) (displacement), (31-8)

m
d2x
dt2 � kx � 0

dU
dt

�
d
dt

 (1
2 mv2 � 1

2 kx2) � mv
dv
dt

� kx
dx
dt

� 0.

U � Ub � Us � 1
2 mv2 � 1

2 kx2,

v �
1
1LC

v � A
k
m
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in which X is the amplitude of the mechanical oscillations (xm in Chapter 15),v is
the angular frequency of the oscillations, and f is a phase constant.

The LC Oscillator
Now let us analyze the oscillations of a resistanceless LC circuit, proceeding
exactly as we just did for the block–spring oscillator. The total energy U present
at any instant in an oscillating LC circuit is given by

(31-9)

in which UB is the energy stored in the magnetic field of the inductor and UE is the
energy stored in the electric field of the capacitor. Since we have assumed the cir-
cuit resistance to be zero, no energy is transferred to thermal energy and U remains
constant with time. In more formal language, dU/dt must be zero.This leads to

(31-10)

However, i � dq/dt and di/dt � d2q/dt2. With these substitutions, Eq. 31-10 becomes

(LC oscillations). (31-11)

This is the differential equation that describes the oscillations of a resistanceless
LC circuit. Equations 31-11 and 31-7 are exactly of the same mathematical form.

Charge and Current Oscillations
Since the differential equations are mathematically identical, their solutions must
also be mathematically identical. Because q corresponds to x, we can write the
general solution of Eq. 31-11, by analogy to Eq. 31-8, as

q � Q cos(vt � f) (charge), (31-12)

where Q is the amplitude of the charge variations, v is the angular frequency of
the electromagnetic oscillations, and f is the phase constant. Taking the first de-
rivative of Eq. 31-12 with respect to time gives us the current:

(current). (31-13)

The amplitude I of this sinusoidally varying current is

I � vQ, (31-14)

and so we can rewrite Eq. 31-13 as

i � �I sin(vt � f). (31-15)

Angular Frequencies
We can test whether Eq. 31-12 is a solution of Eq. 31-11 by substituting Eq. 31-12
and its second derivative with respect to time into Eq. 31-11. The first derivative
of Eq. 31-12 is Eq. 31-13. The second derivative is then

Substituting for q and d 2q/dt2 in Eq. 31-11, we obtain

�Lv2Q cos(vt � f) �
1
C

Q cos(vt � f) � 0.

d2q
dt2 � �v2Q cos(vt � f).

i �
dq
dt

� �vQ sin(vt � f)

L
d 2q
dt2 �

1
C

q � 0

dU
dt

�
d
dt �

Li2

2
�

q2

2C � � Li
di
dt

�
q
C

dq
dt

� 0.

U � UB � UE �
Li2

2
�

q2

2C
,
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Canceling Q cos(vt � f) and rearranging lead to

Thus, Eq. 31-12 is indeed a solution of Eq. 31-11 if v has the constant value
. Note that this expression for v is exactly that given by Eq. 31-4.

The phase constant f in Eq. 31-12 is determined by the conditions that exist
at any certain time—say, t � 0. If the conditions yield f � 0 at t � 0, Eq. 31-12
requires that q � Q and Eq. 31-13 requires that i � 0; these are the initial con-
ditions represented by Fig. 31-1a.

Electrical and Magnetic Energy Oscillations
The electrical energy stored in the LC circuit at time t is, from Eqs. 31-1 and 31-12,

(31-16)

The magnetic energy is, from Eqs. 31-2 and 31-13,

Substituting for v from Eq. 31-4 then gives us

(31-17)

Figure 31-4 shows plots of UE(t) and UB(t) for the case of f � 0. Note that

1. The maximum values of UE and UB are both Q2/2C.

2. At any instant the sum of UE and UB is equal to Q2/2C, a constant.

3. When UE is maximum, UB is zero, and conversely.

UB �
Q2

2C
 sin2(vt � f).

UB � 1
2Li2 � 1

2Lv2Q2 sin2(vt � f).

UE �
q2

2C
�

Q2

2C
 cos2(vt � f).

1/1LC

v �
1

1LC
.

Figure 31-4 The stored magnetic energy and
electrical energy in the circuit of Fig. 31-1
as a function of time. Note that their sum
remains constant. T is the period of
oscillation.

E
n

er
gy

T/2

Time

T

UB (t)

UE (t)

U (= UB + UE )

0

Q2

2C

The electrical and magnetic
energies vary but the total
is constant.

Checkpoint 2
A capacitor in an LC oscillator has a maximum potential difference of 17 V and a
maximum energy of 160 mJ.When the capacitor has a potential difference of 5 V and
an energy of 10 mJ, what are (a) the emf across the inductor and (b) the energy stored
in the magnetic field?

Calculations: At any time t during the oscillations, the loop
rule and Fig. 31-1 give us

vL(t) � vC(t); (31-18)

that is, the potential difference vL across the inductor must
always be equal to the potential difference vC across the
capacitor, so that the net potential difference around the
circuit is zero. Thus, we will find vL(t) if we can find vC(t),
and we can find vC(t) from q(t) with Eq. 25-1 (q � CV).

Because the potential difference vC(t) is maximum
when the oscillations begin at time t � 0, the charge q on the
capacitor must also be maximum then. Thus, phase constant
f must be zero; so Eq. 31-12 gives us

q � Q cos vt. (31-19)

Sample Problem 31.01 LC oscillator: potential change, rate of current change

A 1.5 mF capacitor is charged to 57 V by a battery, which is
then removed.At time t � 0, a 12 mH coil is connected in se-
ries with the capacitor to form an LC oscillator (Fig. 31-1).

(a) What is the potential difference vL(t) across the inductor
as a function of time?

KEY IDEAS

(1) The current and potential differences of the circuit (both
the potential difference of the capacitor and the potential
difference of the coil) undergo sinusoidal oscillations.
(2) We can still apply the loop rule to these oscillating
potential differences, just as we did for the nonoscillating
circuits of Chapter 27.
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31-2 DAMPED OSCILLATIONS IN AN RLC CIRCUIT

After reading this module, you should be able to . . .

31.13 Draw the schematic of a damped RLC circuit and
explain why the oscillations are damped.

31.14 Starting with the expressions for the field energies
and the rate of energy loss in a damped RLC circuit,
write the differential equation for the charge q on the
capacitor.

31.15 For a damped RLC circuit, apply the expression for
charge q(t).

31.16 Identify that in a damped RLC circuit, the charge
amplitude and the amplitude of the electric field energy
decrease exponentially with time.

31.17 Apply the relationship between the angular frequency
of a given damped RLC oscillator and the angular

frequency v of the circuit if R is removed.
31.18 For a damped RLC circuit, apply the expression for

the electric field energy UE as a function of time.

v�

Learning Objectives

● Oscillations in an LC circuit are damped when a 
dissipative element R is also present in the circuit. 
Then

(RLC circuit).L
d 2q
dt2 � R

dq
dt

�
1
C

q � 0

● The solution of this differential equation is

q � Qe�Rt/2L cos(v�t � f),

where

We consider only situations with small R and thus small
damping; then v� � v.

v� � 2v2 � (R/2L)2.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

(Note that this cosine function does indeed yield maximum
q (� Q) when t � 0.) To get the potential difference vC(t),
we divide both sides of Eq. 31-19 by C to write

and then use Eq. 25-1 to write

vC � VC cos vt. (31-20)

Here, VC is the amplitude of the oscillations in the potential
difference vC across the capacitor.

Next, substituting vC vL from Eq. 31-18, we find

vL � VC cos vt. (31-21)

We can evaluate the right side of this equation by first not-
ing that the amplitude VC is equal to the initial (maximum)
potential difference of 57 V across the capacitor. Then we
find v with Eq. 31-4:

Thus, Eq. 31-21 becomes

vL � (57 V) cos(7500 rad/s)t. (Answer)

� 7454 rad/s � 7500 rad/s.

v �
1

1LC
�

1
[(0.012 H)(1.5 � 10�6 F)]0.5

�

q
C

�
Q
C

 cos vt,

(b) What is the maximum rate (di/dt)max at which the current
i changes in the circuit?

KEY IDEA

With the charge on the capacitor oscillating as in Eq. 31-12,
the current is in the form of Eq. 31-13. Because f � 0, that
equation gives us

i � �vQ sin vt.

Calculations: Taking the derivative, we have

We can simplify this equation by substituting CVC for Q
(because we know C and VC but not Q) and for v
according to Eq. 31-4.We get

This tells us that the current changes at a varying (sinu-
soidal) rate, with its maximum rate of change being

(Answer)
VC

L
�

57 V
0.012 H

� 4750 A/s � 4800 A/s.

di
dt

� �
1

LC
CVC cos vt � �

VC

L
 cos vt.

1/1LC

di
dt

�
d
dt

 (�vQ sin vt) � �v2Q cos vt.
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Damped Oscillations in an RLC Circuit
A circuit containing resistance, inductance, and capacitance is called an RLC
circuit. We shall here discuss only series RLC circuits like that shown in Fig. 31-5.
With a resistance R present, the total electromagnetic energy U of the circuit (the
sum of the electrical energy and magnetic energy) is no longer constant; instead,
it decreases with time as energy is transferred to thermal energy in the resistance.
Because of this loss of energy, the oscillations of charge, current, and potential
difference continuously decrease in amplitude, and the oscillations are said to be
damped, just as with the damped block–spring oscillator of Module 15-5.

To analyze the oscillations of this circuit, we write an equation for the total
electromagnetic energy U in the circuit at any instant. Because the resistance
does not store electromagnetic energy, we can use Eq. 31-9:

(31-22)

Now, however, this total energy decreases as energy is transferred to thermal
energy. The rate of that transfer is, from Eq. 26-27,

(31-23)

where the minus sign indicates that U decreases. By differentiating Eq. 31-22 with
respect to time and then substituting the result in Eq. 31-23, we obtain

Substituting dq/dt for i and d 2q/dt2 for di/dt, we obtain

(RLC circuit), (31-24)

which is the differential equation for damped oscillations in an RLC circuit.
Charge Decay. The solution to Eq. 31-24 is

q � Qe�Rt/2L cos(v�t � f), (31-25)

in which

(31-26)

where , as with an undamped oscillator. Equation 31-25 tells us how
the charge on the capacitor oscillates in a damped RLC circuit; that equation is
the electromagnetic counterpart of Eq. 15-42, which gives the displacement of
a damped block–spring oscillator.

Equation 31-25 describes a sinusoidal oscillation (the cosine function) with
an exponentially decaying amplitude Qe�Rt/2L (the factor that multiplies the
cosine). The angular frequency v� of the damped oscillations is always less than
the angular frequency v of the undamped oscillations; however, we shall here
consider only situations in which R is small enough for us to replace v� with v.

Energy Decay. Let us next find an expression for the total electromagnetic
energy U of the circuit as a function of time. One way to do so is to monitor
the energy of the electric field in the capacitor, which is given by Eq. 31-1 
(UE � q2/2C). By substituting Eq. 31-25 into Eq. 31-1, we obtain

(31-27)

Thus, the energy of the electric field oscillates according to a cosine-squared
term, and the amplitude of that oscillation decreases exponentially with time.

UE �
q2

2C
�

[Qe�Rt/2L cos(v�t � f)]2

2C
�

Q2

2C
e�Rt/L cos2(v�t � f).

v � 1/1LC

v� � 2v2 � (R/2L)2 ,

L
d 2q
dt2 � R

dq
dt

�
1
C

q � 0

dU
dt

� Li
di
dt

�
q
C

dq
dt

� �i2R.

dU
dt

� �i2R,

U � UB � UE �
Li2

2
�

q2

2C
.

Figure 31-5 A series RLC circuit. As the
charge contained in the circuit oscillates
back and forth through the resistance,
electromagnetic energy is dissipated as
thermal energy, damping (decreasing the
amplitude of) the oscillations.

CL

R
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31-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

After reading this module, you should be able to . . .

31.19 Distinguish alternating current from direct current.
31.20 For an ac generator, write the emf as a function of

time, identifying the emf amplitude and driving angular
frequency.

31.21 For an ac generator, write the current as a function of
time, identifying its amplitude and its phase constant with
respect to the emf.

31.22 Draw a schematic diagram of a (series) RLC circuit
that is driven by a generator.

31.23 Distinguish driving angular frequency vd from natural
angular frequency v.

31.24 In a driven (series) RLC circuit, identify the conditions
for resonance and the effect of resonance on the current
amplitude.

31.25 For each of the three basic circuits (purely resistive
load, purely capacitive load, and purely inductive load),

draw the circuit and sketch graphs and phasor diagrams
for voltage v(t) and current i(t).

31.26 For the three basic circuits, apply equations for voltage
v(t) and current i(t).

31.27 On a phasor diagram for each of the basic circuits,
identify angular speed, amplitude, projection on the verti-
cal axis, and rotation angle.

31.28 For each basic circuit, identify the phase constant, and
interpret it in terms of the relative orientations of the cur-
rent phasor and voltage phasor and also in terms of lead-
ing and lagging.

31.29 Apply the mnemonic “ELI positively is the ICE man.”
31.30 For each basic circuit, apply the relationships between

the voltage amplitude V and the current amplitude I.
31.31 Calculate capacitive reactance XC and inductive

reactance XL.

Learning Objectives

Solving for t and then substituting given data yield

(Answer)

(b) How many oscillations are completed within this time?

KEY IDEA

The time for one complete oscillation is the period T �
2p/v, where the angular frequency for LC oscillations is
given by Eq. 31-4 .

Calculation: In the time interval 
t � 0.0111 s, the number
of complete oscillations is

(Answer)

Thus, the amplitude decays by 50% in about 13 complete
oscillations. This damping is less severe than that shown in
Fig. 31-3, where the amplitude decays by a little more than
50% in one oscillation.

�
0.0111 s

2p[(12 � 10�3 H)(1.6 � 10�6 F)]1/2 � 13.


t
T

�

t

2p1LC

(v � 1/1LC)

� 0.0111 s � 11 ms. 

t � �
2L
R

 ln 0.50 � �
(2)(12 � 10�3 H)(ln 0.50)

1.5 �

Sample Problem 31.02 Damped RLC circuit: charge amplitude

A series RLC circuit has inductance L 12 mH, capaci-
tance C � 1.6 mF, and resistance R � 1.5 � and begins to
oscillate at time t � 0.

(a) At what time t will the amplitude of the charge oscilla-
tions in the circuit be 50% of its initial value?  (Note that we
do not know that initial value.)

KEY IDEA

The amplitude of the charge oscillations decreases expo-
nentially with time t: According to Eq. 31-25, the charge
amplitude at any time t is Qe�Rt/2L, in which Q is the ampli-
tude at time t � 0.

Calculations: We want the time when the charge amplitude
has decreased to 0.50Q— that is, when

Qe�Rt/2L � 0.50Q.

We can now cancel Q (which also means that we can answer
the question without knowing the initial charge). Taking the
natural logarithms of both sides (to eliminate the exponen-
tial function), we have

�
Rt
2L

� ln 0.50.

�

Additional examples, video, and practice available at WileyPLUS
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Alternating Current
The oscillations in an RLC circuit will not damp out if an external emf device
supplies enough energy to make up for the energy dissipated as thermal energy
in the resistance R. Circuits in homes, offices, and factories, including countless
RLC circuits, receive such energy from local power companies. In most countries
the energy is supplied via oscillating emfs and currents—the current is said to be
an alternating current, or ac for short. (The nonoscillating current from a battery
is said to be a direct current, or dc.) These oscillating emfs and currents vary si-
nusoidally with time, reversing direction (in North America) 120 times per sec-
ond and thus having frequency f � 60 Hz.

Electron Oscillations. At first sight this may seem to be a strange arrange-
ment. We have seen that the drift speed of the conduction electrons in household
wiring may typically be 4 � 10�5 m/s. If we now reverse their direction every ,
such electrons can move only about 3 10�7 m in a half-cycle.At this rate, a typi-
cal electron can drift past no more than about 10 atoms in the wiring before it is
required to reverse its direction. How, you may wonder, can the electron ever get
anywhere?

Although this question may be worrisome, it is a needless concern. The con-
duction electrons do not have to “get anywhere.” When we say that the current in
a wire is one ampere, we mean that charge passes through any plane cutting
across that wire at the rate of one coulomb per second. The speed at which the
charge carriers cross that plane does not matter directly; one ampere may corre-
spond to many charge carriers moving very slowly or to a few moving very
rapidly. Furthermore, the signal to the electrons to reverse directions—which
originates in the alternating emf provided by the power company’s generator—
is propagated along the conductor at a speed close to that of light. All electrons,
no matter where they are located, get their reversal instructions at about the
same instant. Finally, we note that for many devices, such as lightbulbs and toast-
ers, the direction of motion is unimportant as long as the electrons do move so as
to transfer energy to the device via collisions with atoms in the device.

Why ac? The basic advantage of alternating current is this: As the current
alternates, so does the magnetic field that surrounds the conductor. This makes
possible the use of Faraday’s law of induction, which, among other things,
means that we can step up (increase) or step down (decrease) the magnitude of
an alternating potential difference at will, using a device called a transformer,
as we shall discuss later. Moreover, alternating current is more readily adapt-
able to rotating machinery such as generators and motors than is (nonalternat-
ing) direct current.

Emf and Current. Figure 31-6 shows a simple model of an ac generator. As
the conducting loop is forced to rotate through the external magnetic field , a
sinusoidally oscillating emf � is induced in the loop:

� � �m sin vdt. (31-28)

B
:

�

1
120 s

● A series RLC circuit may be set into forced oscillation at a
driving angular frequency vd by an external alternating emf

� � �m sin vdt.

● The current driven in the circuit is   

i � I sin(vdt � f),

where f is the phase constant of the current.

● The alternating potential difference across a resistor has

amplitude VR IR; the current is in phase with the potential
difference.

● For a capacitor, VC � IXC, in which XC � 1/vdC is the
capacitive reactance; the current here leads the potential
difference by 90� (f � �90� � �p/2 rad).

● For an inductor, VL � IXL, in which XL � vdL is the
inductive reactance; the current here lags the potential
difference by 90� (f � �90� � �p/2 rad).

�

Key Ideas

Figure 31-6 The basic mechanism of an
alternating-current generator is a conduct-
ing loop rotated in an external magnetic
field. In practice, the alternating emf
induced in a coil of many turns of wire is
made accessible by means of slip rings
attached to the rotating loop. Each ring is
connected to one end of the loop wire and
is electrically connected to the rest of the
generator circuit by a conducting brush
against which the ring slips as the loop
(and it) rotates.

Slip rings 

Metal
brush

i

i

i

i

B
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Figure 31-7 A single-loop circuit containing a
resistor, a capacitor, and an inductor.A
generator, represented by a sine wave in a
circle, produces an alternating emf that es-
tablishes an alternating current; the direc-
tions of the emf and current are indicated
here at only one instant.

i

i

iC

R

L

Figure 31-8 A resistor is connected across an
alternating-current generator.

iRR vR

The angular frequency vd of the emf is equal to the angular speed with which the
loop rotates in the magnetic field, the phase of the emf is vdt, and the amplitude of
the emf is �m (where the subscript stands for maximum). When the rotating loop
is part of a closed conducting path, this emf produces (drives) a sinusoidal (alter-
nating) current along the path with the same angular frequency vd, which then is
called the driving angular frequency. We can write the current as

i � I sin(vdt � f), (31-29)

in which I is the amplitude of the driven current. (The phase vdt � f of the cur-
rent is traditionally written with a minus sign instead of as vdt � f.) We include
a phase constant f in Eq. 31-29 because the current i may not be in phase with
the emf �. (As you will see, the phase constant depends on the circuit to which
the generator is connected.) We can also write the current i in terms of the
driving frequency fd of the emf, by substituting 2pfd for vd in Eq. 31-29.

Forced Oscillations
We have seen that once started, the charge, potential difference, and current in
both undamped LC circuits and damped RLC circuits (with small enough R)
oscillate at angular frequency . Such oscillations are said to be free
oscillations (free of any external emf), and the angular frequency v is said to be
the circuit’s natural angular frequency.

When the external alternating emf of Eq. 31-28 is connected to an RLC
circuit, the oscillations of charge, potential difference, and current are said to be
driven oscillations or forced oscillations. These oscillations always occur at the
driving angular frequency vd:

v � 1/1LC

Whatever the natural angular frequency v of a circuit may be, forced oscillations
of charge, current, and potential difference in the circuit always occur at the driv-
ing angular frequency vd.

However,as you will see in Module 31-4, the amplitudes of the oscillations very much
depend on how close vd is to v.When the two angular frequencies match—a condi-
tion known as resonance—the amplitude I of the current in the circuit is maximum.

Three Simple Circuits
Later in this chapter, we shall connect an external alternating emf device to 
a series RLC circuit as in Fig. 31-7. We shall then find expressions for the
amplitude I and phase constant f of the sinusoidally oscillating current in
terms of the amplitude �m and angular frequency vd of the external emf. First,
let’s consider three simpler circuits, each having an external emf and only one
other circuit element: R, C, or L. We start with a resistive element (a purely re-
sistive load).

A Resistive Load
Figure 31-8 shows a circuit containing a resistance element of value R and an
ac generator with the alternating emf of Eq. 31-28. By the loop rule, we have

� � vR � 0.

With Eq. 31-28, this gives us

vR � �m sin vdt.

Because the amplitude VR of the alternating potential difference (or voltage)
across the resistance is equal to the amplitude �m of the alternating emf, we can
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write this as
vR � VR sin vdt. (31-30)

From the definition of resistance (R � V/i), we can now write the current iR in the
resistance as

(31-31)

From Eq. 31-29, we can also write this current as

iR � IR sin(vdt � f), (31-32)

where IR is the amplitude of the current iR in the resistance. Comparing Eqs.
31-31 and 31-32, we see that for a purely resistive load the phase constant f � 0°.
We also see that the voltage amplitude and current amplitude are related by

VR � IRR (resistor). (31-33)

Although we found this relation for the circuit of Fig. 31-8, it applies to any
resistance in any ac circuit.

By comparing Eqs. 31-30 and 31-31, we see that the time-varying quantities
vR and iR are both functions of sin vdt with f � 0°. Thus, these two quantities are
in phase, which means that their corresponding maxima (and minima) occur at
the same times. Figure 31-9a, which is a plot of vR(t) and iR(t), illustrates this fact.
Note that vR and iR do not decay here because the generator supplies energy to
the circuit to make up for the energy dissipated in R.

The time-varying quantities vR and iR can also be represented geometrically
by phasors. Recall from Module 16-6 that phasors are vectors that rotate around
an origin. Those that represent the voltage across and current in the resistor of
Fig. 31-8 are shown in Fig. 31-9b at an arbitrary time t. Such phasors have the
following properties:

Angular speed: Both phasors rotate counterclockwise about the origin with an
angular speed equal to the angular frequency vd of vR and iR.

Length: The length of each phasor represents the amplitude of the alternating
quantity: VR for the voltage and IR for the current.

Projection: The projection of each phasor on the vertical axis represents the
value of the alternating quantity at time t: vR for the voltage and iR for
the current.

Rotation angle: The rotation angle of each phasor is equal to the phase of the

iR �
vR

R
�

VR

R
 sin vdt.

vR, iR

T

IR

 = 0° = 0 rad

VR

0

Instants
represented in (b)(a) (b)

iR
vR

VR

IR

Rotation of
phasors at

rate d

t dtω
vR

iR

T/2

ωφ

For a resistive load,
the current and potential
difference are in phase.

“In phase” means
that they peak at
the same time.

Figure 31-9 (a) The current iR and the potential difference vR across the resistor are plotted
on the same graph, both versus time t.They are in phase and complete one cycle in one
period T. (b) A phasor diagram shows the same thing as (a).
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Additional examples, video, and practice available at WileyPLUS

Figure 31-10 A capacitor is connected across
an alternating-current generator.

iC vCC

alternating quantity at time t. In Fig. 31-9b, the voltage and current are in
phase; so their phasors always have the same phase vdt and the same rotation
angle, and thus they rotate together.

Mentally follow the rotation. Can you see that when the phasors have
rotated so that vdt � 90° (they point vertically upward), they indicate that just
then vR � VR and iR � IR? Equations 31-30 and 31-32 give the same results.

Checkpoint 3
If we increase the driving frequency in a circuit with a purely resistive load, do 
(a) amplitude VR and (b) amplitude IR increase, decrease, or remain the same?

We can leave the argument of the sine in this form for con-
venience,or we can write it as (377 rad/s)t or as (377 s�1)t.

(b) What are the current iR(t) in the resistance and the 
amplitude IR of iR(t)?

KEY IDEA

In an ac circuit with a purely resistive load, the alternating
current iR(t) in the resistance is in phase with the alternating
potential difference vR(t) across the resistance; that is, the
phase constant f for the current is zero.

Calculations: Here we can write Eq. 31-29 as

iR � IR sin(vdt � f) � IR sin vdt. (31-35)

From Eq. 31-33, the amplitude IR is

(Answer)

Substituting this and vd � 2pfd � 120p into Eq. 31-35, we
have

iR � (0.180 A) sin(120pt). (Answer)

IR �
VR

R
�

36.0 V
200 �

� 0.180 A.

Sample Problem 31.03 Purely resistive load: potential difference and current 

In Fig. 31-8, resistance R is 200 and the sinusoidal alter-
nating emf device operates at amplitude �m � 36.0 V and
frequency fd � 60.0 Hz.

(a) What is the potential difference vR(t) across the resistance
as a function of time t, and what is the amplitude VR of vR(t)?

KEY IDEA

In a circuit with a purely resistive load, the potential differ-
ence vR(t) across the resistance is always equal to the potential
difference (t) across the emf device.

Calculations: For our situation, vR(t) �(t) and VR �m.
Since �m is given, we can write

VR � �m � 36.0 V. (Answer)

To find vR(t), we use Eq. 31-28 to write

vR(t) � �(t) � �m sin vdt (31-34)

and then substitute �m � 36.0 V and

vd � 2pfd � 2p(60 Hz) � 120p
to obtain

vR � (36.0 V) sin(120pt). (Answer)

��

�

�

A Capacitive Load
Figure 31-10 shows a circuit containing a capacitance and a generator with the
alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did when
we obtained Eq. 31-30, we find that the potential difference across the capacitor is

vC � VC sin vdt, (31-36)

where VC is the amplitude of the alternating voltage across the capacitor. From
the definition of capacitance we can also write

qC � CvC � CVC sin vdt. (31-37)

Our concern, however, is with the current rather than the charge. Thus, we differ-
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entiate Eq. 31-37 to find

(31-38)

We now modify Eq. 31-38 in two ways. First, for reasons of symmetry of nota-
tion, we introduce the quantity XC, called the capacitive reactance of a capacitor,
defined as

(capacitive reactance). (31-39)

Its value depends not only on the capacitance but also on the driving angular
frequency vd. We know from the definition of the capacitive time constant 
(t � RC) that the SI unit for C can be expressed as seconds per ohm. Applying
this to Eq. 31-39 shows that the SI unit of XC is the ohm, just as for resistance R.

Second, we replace cos vdt in Eq. 31-38 with a phase-shifted sine:

cos vdt � sin(vdt � 90°).

You can verify this identity by shifting a sine curve 90° in the negative direction.
With these two modifications, Eq. 31-38 becomes

(31-40)

From Eq. 31-29, we can also write the current iC in the capacitor of Fig. 31-10 as

iC � IC sin(vdt � f), (31-41)

where IC is the amplitude of iC. Comparing Eqs. 31-40 and 31-41, we see that for
a purely capacitive load the phase constant f for the current is �90°. We also
see that the voltage amplitude and current amplitude are related by

VC � ICXC (capacitor). (31-42)

Although we found this relation for the circuit of Fig. 31-10, it applies to any
capacitance in any ac circuit.

Comparison of Eqs. 31-36 and 31-40, or inspection of Fig. 31-11a, shows that
the quantities vC and iC are 90°, p/2 rad, or one-quarter cycle, out of phase.
Furthermore, we see that iC leads vC, which means that, if you monitored the
current iC and the potential difference vC in the circuit of Fig. 31-10, you would
find that iC reaches its maximum before vC does, by one-quarter cycle.

iC � � VC

XC
� sin(vdt � 90�).

XC �
1

vdC

iC �
dqC

dt
� vdCVC  cos vdt.

Figure 31-11 (a) The current in the capacitor leads
the voltage by 90° (� p/2 rad). (b) A phasor dia-
gram shows the same thing.

vC, iC

T
iC

vC

0

Instants
represented in (b)

(a) (b)

iC

vC VC

IC
Rotation of

phasors at
rate d

dtω
T/2

IC

VC

= –90° = –   /2 rad φ π ω

t

For a capacitive load, the
current leads the potential
difference by 90º.

“Leads” means that the
current peaks at an
earlier time than the
potential difference.
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An Inductive Load
Figure 31-12 shows a circuit containing an inductance and a generator with the al-
ternating emf of Eq. 31-28. Using the loop rule and proceeding as we did to
obtain Eq. 31-30, we find that the potential difference across the inductance is

vL � VL sin vdt, (31-45)

KEY IDEA

In an ac circuit with a purely capacitive load, the alternating
current iC(t) in the capacitance leads the alternating poten-
tial difference vC(t) by 90�; that is, the phase constant f for
the current is �90°, or �p/2 rad.

Calculations: Thus, we can write Eq. 31-29 as

iC � IC sin(vdt � f) � IC sin(vdt � p/2). (31-44)

We can find the amplitude IC from Eq. 31-42 (VC � ICXC) if
we first find the capacitive reactance XC. From Eq. 31-39
(XC � 1/vdC), with vd � 2pfd, we can write

Then Eq. 31-42 tells us that the current amplitude is

(Answer)

Substituting this and vd � 2pfd � 120p into Eq. 31-44, we
have

iC � (0.203 A) sin(120pt � p/2). (Answer)

IC �
VC

XC
�

36.0 V
177 �

� 0.203 A.

� 177 �.

XC �
1

2pfdC
�

1
(2p)(60.0 Hz)(15.0 � 10�6 F)

Sample Problem 31.04 Purely capacitive load: potential difference and current 

In Fig. 31-10, capacitance C is 15.0 mF and the sinusoidal 
alternating emf device operates at amplitude �m � 36.0 V
and frequency fd � 60.0 Hz.

(a) What are the potential difference vC(t) across the 
capacitance and the amplitude VC of vC(t)?

KEY IDEA

In a circuit with a purely capacitive load, the potential dif-
ference vC(t) across the capacitance is always equal to the
potential difference �(t) across the emf device.

Calculations: Here we have vC(t) � �(t) and VC � �m.
Since �m is given, we have

VC � �m � 36.0 V. (Answer)

To find vC(t), we use Eq. 31-28 to write

vC(t) � �(t) � �m sin vdt. (31-43)

Then, substituting �m � 36.0 V and vd � 2pfd � 120p into
Eq. 31-43, we have

vC � (36.0 V) sin(120pt). (Answer)

(b) What are the current iC(t) in the circuit as a function of
time and the amplitude IC of iC(t)?

Additional examples, video, and practice available at WileyPLUS

iL vLL

Figure 31-12 An inductor is connected across
an alternating-current generator.

This relation between iC and vC is illustrated by the phasor diagram of
Fig. 31-11b.As the phasors representing these two quantities rotate counterclock-
wise together, the phasor labeled IC does indeed lead that labeled VC, and by an
angle of 90°; that is, the phasor IC coincides with the vertical axis one-quarter
cycle before the phasor VC does. Be sure to convince yourself that the phasor
diagram of Fig. 31-11b is consistent with Eqs. 31-36 and 31-40.

Checkpoint 4
The figure shows, in (a), a sine curve S(t) � sin(vdt) and three
other sinusoidal curves A(t), B(t), and C(t), each of the form
sin(vdt � f). (a) Rank the three other curves according to the
value of f, most positive first and most negative last. (b) Which
curve corresponds to which phasor in (b) of the figure? (c)
Which curve leads the others?

t

A

B S
C

(a)

1
2 3

4

(b)
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vL, iL

T

iL
vL

0

Instants
represented in (b)

(a)

t

VL
IL

T/2

= +90° = +   /2 rad φ π 

For an inductive load,
the current lags the
potential difference
by 90º.

iL

vL VL

IL

  ω

Rotation of
phasors at

rate d

dtω

“Lags” means that the
current peaks at a
later time than the
potential difference.

(b)

Figure 31-13 (a) The current in the inductor
lags the voltage by 90° (� p/2 rad). (b) A
phasor diagram shows the same thing.

where VL is the amplitude of vL. From Eq. 30-35 (�L � �L di/dt), we can write
the potential difference across an inductance L in which the current is changing
at the rate diL/dt as

(31-46)

If we combine Eqs. 31-45 and 31-46, we have

(31-47)

Our concern, however, is with the current, so we integrate:

(31-48)

We now modify this equation in two ways. First, for reasons of symmetry of
notation, we introduce the quantity XL, called the inductive reactance of an
inductor, which is defined as

XL � vdL (inductive reactance). (31-49)

The value of XL depends on the driving angular frequency vd. The unit of the
inductive time constant tL indicates that the SI unit of XL is the ohm, just as it is
for XC and for R.

Second, we replace �cos vdt in Eq. 31-48 with a phase-shifted sine:

�cos vdt � sin(vdt � 90°).

You can verify this identity by shifting a sine curve 90° in the positive direction.
With these two changes, Eq. 31-48 becomes

(31-50)

From Eq. 31-29, we can also write this current in the inductance as

iL � IL sin(vdt � f), (31-51)

where IL is the amplitude of the current iL. Comparing Eqs. 31-50 and 31-51, we
see that for a purely inductive load the phase constant f for the current is �90°.
We also see that the voltage amplitude and current amplitude are related by

VL � ILXL (inductor). (31-52)

Although we found this relation for the circuit of Fig. 31-12, it applies to any
inductance in any ac circuit.

Comparison of Eqs. 31-45 and 31-50, or inspection of Fig. 31-13a, shows
that the quantities iL and vL are 90° out of phase. In this case, however, iL lags
vL; that is, monitoring the current iL and the potential difference vL in the cir-
cuit of Fig. 31-12 shows that iL reaches its maximum value after vL does, by
one-quarter cycle. The phasor diagram of Fig. 31-13b also contains this informa-
tion. As the phasors rotate counterclockwise in the figure, the phasor labeled IL

does indeed lag that labeled VL, and by an angle of 90°. Be sure to convince your-
self that Fig. 31-13b represents Eqs. 31-45 and 31-50.

iL � � VL

XL
� sin(vdt � 90�).

iL � �diL �
VL

L
� sin vd t dt � �� VL

vdL � cos vdt.

diL

dt
�

VL

L
 sin vdt.

vL � L
diL

dt
.

Checkpoint 5
If we increase the driving frequency in a circuit with a purely capacitive load, do
(a) amplitude VC and (b) amplitude IC increase, decrease, or remain the same? If,
instead, the circuit has a purely inductive load, do (c) amplitude VL and (d) amplitude
IL increase, decrease, or remain the same?
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(for inductor), and in it the letter I (for current) comes after
the letter E (for emf or voltage). Thus, for an inductor, the
current lags (comes after) the voltage. Similarly, ICE (which
contains a C for capacitor) means that the current leads
(comes before) the voltage.You might also use the modified
mnemonic “ELI positively is the ICE man” to remember
that the phase constant f is positive for an inductor.

If you have difficulty in remembering whether XC is
equal to vdC (wrong) or 1/vdC (right), try remembering that
C is in the “cellar”—that is, in the denominator.

Problem-Solving Tactics

Leading and Lagging in AC Circuits: Table 31-2 summa-
rizes the relations between the current i and the voltage v
for each of the three kinds of circuit elements we have con-
sidered. When an applied alternating voltage produces an
alternating current in these elements, the current is always
in phase with the voltage across a resistor, always leads the
voltage across a capacitor, and always lags the voltage
across an inductor.

Many students remember these results with the
mnemonic “ELI the ICE man.” ELI contains the letter L

Table 31-2 Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Resistance Phase of Phase Constant Amplitude
Element Symbol or Reactance the Current (or Angle) f Relation

Resistor R R In phase with vR 0� (� 0 rad) VR � IRR

Capacitor C XC � 1/vdC Leads vC by 90� (� p/2 rad) �90� (� �p/2 rad) VC � ICXC

Inductor L XL � vdL Lags vL by 90� (� p/2 rad) �90� (� �p/2 rad) VL � ILXL

KEY IDEA

In an ac circuit with a purely inductive load, the alternating
current iL(t) in the inductance lags the alternating potential
difference vL(t) by 90°. (In the mnemonic of the problem-
solving tactic, this circuit is “positively an ELI circuit,”
which tells us that the emf E leads the current I and that f is
positive.)

Calculations: Because the phase constant f for the 
current is �90°, or �p/2 rad, we can write Eq. 31-29 as

iL � IL sin(vdt � f) � IL sin(vdt � p/2). (31-54)

We can find the amplitude IL from Eq. 31-52 (VL � ILXL) if
we first find the inductive reactance XL. From Eq. 31-49 
(XL � vdL), with vd � 2pfd, we can write

Then Eq. 31-52 tells us that the current amplitude is

(Answer)

Substituting this and vd � 2pfd � 120p into Eq. 31-54, we
have

iL � (0.415 A) sin(120pt � p/2). (Answer)

IL �
VL

XL
�

36.0 V
86.7 �

� 0.415 A.

� 86.7 �.

XL � 2p fdL � (2p)(60.0 Hz)(230 � 10�3 H)

Sample Problem 31.05 Purely inductive load: potential difference and current

In Fig. 31-12, inductance L is 230 mH and the sinusoidal 
alternating emf device operates at amplitude �m � 36.0 V
and frequency fd � 60.0 Hz.

(a) What are the potential difference vL(t) across the induc-
tance and the amplitude VL of vL(t)?

KEY IDEA

In a circuit with a purely inductive load, the potential differ-
ence vL(t) across the inductance is always equal to the
potential difference �(t) across the emf device.

Calculations: Here we have vL(t) � �(t) and VL � �m.
Since �m is given, we know that

VL � �m � 36.0 V. (Answer)

To find vL(t), we use Eq. 31-28 to write

vL(t) � �(t) � �m sin vdt. (31-53)

Then, substituting �m � 36.0 V and vd � 2pfd � 120p into
Eq. 31-53, we have

vL � (36.0 V) sin(120pt). (Answer)

(b) What are the current iL(t) in the circuit as a function of
time and the amplitude IL of iL(t)?

Additional examples, video, and practice available at WileyPLUS
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The Series RLC Circuit
We are now ready to apply the alternating emf of Eq. 31-28,

� � �m sin vdt (applied emf), (31-55)

to the full RLC circuit of Fig. 31-7. Because R, L, and C are in series, the same
current

i � I sin(vdt � f) (31-56)

is driven in all three of them. We wish to find the current amplitude I and the
phase constant f and to investigate how these quantities depend on the driving
angular frequency vd . The solution is simplified by the use of phasor diagrams as
introduced for the three basic circuits of Module 31-3: capacitive load, inductive
load, and resistive load. In particular we shall make use of how the voltage phasor
is related to the current phasor for each of those basic circuits. We shall find that
series RLC circuits can be separated into three types: mainly capacitive circuits,
mainly inductive circuits, and circuits that are in resonance.

31-4 THE SERIES RLC CIRCUIT

After reading this module, you should be able to . . .

31.32 Draw the schematic diagram of a series RLC
circuit.

31.33 Identify the conditions for a mainly inductive circuit, a
mainly capacitive circuit, and a resonant circuit.

31.34 For a mainly inductive circuit, a mainly capacitive
circuit, and a resonant circuit, sketch graphs for voltage
v(t) and current i(t) and sketch phasor diagrams, indicat-
ing leading, lagging, or resonance.

31.35 Calculate impedance Z.
31.36 Apply the relationship between current amplitude I,

impedance Z, and emf amplitude �m.
31.37 Apply the relationships between phase constant f

and voltage amplitudes VL and VC, and also between 

phase constant f, resistance R, and reactances XL

and XC.
31.38 Identify the values of the phase constant f correspon-

ding to a mainly inductive circuit, a mainly capacitive
circuit, and a resonant circuit.

31.39 For resonance, apply the relationship between 
the driving angular frequency vd, the natural angular 
frequency v, the inductance L, and the capacitance C.

31.40 Sketch a graph of current amplitude versus the ratio
vd/v, identifying the portions corresponding to a mainly
inductive circuit, a mainly capacitive circuit, and a resonant
circuit and indicating what happens to the curve for an
increase in the resistance.

Learning Objectives

● For a series RLC circuit with an external emf given by

and current given by

the current amplitude is given by

(current amplitude).�
�m

1R2 � (vdL � 1/vdC)2

I �
em

1R2 � (XL � XC)2

i � I sin(vdt � f),

� � �m sin vdt,

● The phase constant is given by

(phase constant).

● The impedance Z of the circuit is

(impedance).

● We relate the current amplitude and the impedance with
I � �m /Z.

● The current amplitude I is maximum (I � �m /R) when the
driving angular frequency vd equals the natural angular fre-
quency v of the circuit, a condition known as resonance. Then
XC � XL, f � 0, and the current is in phase with the emf.

Z � 2R2 � (XL � XC)2

tan f �
XL � XC

R

Key Ideas
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Figure 31-14 (a) A phasor representing the
alternating current in the driven RLC cir-
cuit of Fig. 31-7 at time t.The amplitude I,
the instantaneous value i, and the phase
(vdt � f) are shown. (b) Phasors repre-
senting the voltages across the inductor,
resistor, and capacitor, oriented with re-
spect to the current phasor in (a). (c) A
phasor representing the alternating emf
that drives the current of (a). (d) The emf
phasor is equal to the vector sum of the
three voltage phasors of (b). Here, voltage
phasors VL and VC have been added vecto-
rially to yield their net phasor (VL � VC).

φ

(a)

 – ω

i I

dt

vR

(b)

vL

vC

VL

VR

VC

φ – ωdt

This is ahead
of I by 90º.

This is in
phase with I.

This is behind
I by 90º.

(c)

m

ωdt

(d)

VL – VC

VRφ

ωdt

m

φ – ωdt

This   is the angle
between I and the
driving emf.

φ

The Current Amplitude
We start with Fig. 31-14a, which shows the phasor representing the current of
Eq. 31-56 at an arbitrary time t. The length of the phasor is the current ampli-
tude I, the projection of the phasor on the vertical axis is the current i at time t, and
the angle of rotation of the phasor is the phase vdt � f of the current at time t.

Figure 31-14b shows the phasors representing the voltages across R, L, and C
at the same time t. Each phasor is oriented relative to the angle of rotation of
current phasor I in Fig. 31-14a, based on the information in Table 31-2:

Resistor: Here current and voltage are in phase; so the angle of rotation of volt-
age phasor VR is the same as that of phasor I.

Capacitor: Here current leads voltage by 90°; so the angle of rotation of voltage
phasor VC is 90� less than that of phasor I.

Inductor: Here current lags voltage by 90°; so the angle of rotation of voltage
phasor vL is 90� greater than that of phasor I.

Figure 31-14b also shows the instantaneous voltages vR, vC, and vL across R, C,
and L at time t; those voltages are the projections of the corresponding phasors
on the vertical axis of the figure.

Figure 31-14c shows the phasor representing the applied emf of Eq. 31-55.
The length of the phasor is the emf amplitude �m, the projection of the phasor
on the vertical axis is the emf � at time t, and the angle of rotation of the phasor is
the phase vdt of the emf at time t.

From the loop rule we know that at any instant the sum of the voltages vR, vC,
and vL is equal to the applied emf �:

� � vR � vC � vL. (31-57)

Thus, at time t the projection � in Fig. 31-14c is equal to the algebraic sum of the
projections vR, vC, and vL in Fig. 31-14b. In fact, as the phasors rotate together, this
equality always holds. This means that phasor �m in Fig. 31-14c must be equal to
the vector sum of the three voltage phasors VR, VC, and VL in Fig. 31-14b.

That requirement is indicated in Fig. 31-14d, where phasor �m is drawn as the
sum of phasors VR, VL, and VC. Because phasors VL and VC have opposite direc-
tions in the figure, we simplify the vector sum by first combining VL and VC to
form the single phasor VL � VC. Then we combine that single phasor with VR to
find the net phasor.Again, the net phasor must coincide with phasor �m, as shown.
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Both triangles in Fig. 31-14d are right triangles. Applying the Pythagorean
theorem to either one yields

(31-58)

From the voltage amplitude information displayed in the rightmost column of
Table 31-2, we can rewrite this as

(31-59)

and then rearrange it to the form

. (31-60)

The denominator in Eq. 31-60 is called the impedance Z of the circuit for the
driving angular frequency vd:

(impedance defined). (31-61)

We can then write Eq. 31-60 as

(31-62)

If we substitute for XC and XL from Eqs. 31-39 and 31-49, we can write
Eq. 31-60 more explicitly as

(current amplitude). (31-63)

We have now accomplished half our goal: We have obtained an expression
for the current amplitude I in terms of the sinusoidal driving emf and the circuit
elements in a series RLC circuit.

The value of I depends on the difference between vdL and 1/vdC in
Eq. 31-63 or, equivalently, the difference between XL and XC in Eq. 31-60. In
either equation, it does not matter which of the two quantities is greater because
the difference is always squared.

The current that we have been describing in this module is the steady-state
current that occurs after the alternating emf has been applied for some 
time. When the emf is first applied to a circuit, a brief transient current
occurs. Its duration (before settling down into the steady-state current) is
determined by the time constants tL � L/R and tC � RC as the inductive and
capacitive elements “turn on.” This transient current can, for example, destroy
a motor on start-up if it is not properly taken into account in the motor’s
circuit design.

The Phase Constant
From the right-hand phasor triangle in Fig. 31-14d and from Table 31-2 we can
write

(31-64)

which gives us

(phase constant). (31-65)

This is the other half of our goal: an equation for the phase constant f in the si-
nusoidally driven series RLC circuit of Fig. 31-7. In essence, it gives us three dif-

tan f �
XL � XC

R

tan 
 �
VL � VC

VR
�

IXL � IXC

IR
,

I �
em

2R2 � (vdL � 1/vdC)2

I �
�m

Z
.

Z � 2R2 � (XL � XC)2

I �
�m

2R2 � (XL � XC)2

� m
2 � (IR)2 � (IXL � IXC)2,

�m
2 � VR

2 � (VL � VC)2.
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(b)

m

I

, i

i

t

Positive φ

(c)

m

I

Negative   means that the
current leads the emf (ICE ) :
the phasor is vertical earlier
and the curve peaks earlier.

φ

(a)

m

I

Positive   means that the
current lags the emf (ELI ):
the phasor is vertical later
and the curve peaks later.

φ

(d)

m

I

, i

i

t

Negative φ

( f )

m

I

, i

i

t

Zero φ
Zero   means that the current
and emf are in phase: the
phasors are vertical together
and the curves peak together.

φ

(e)

m I

Figure 31-15 Phasor diagrams and
graphs of the alternating emf � and
current i for the driven RLC circuit
of Fig. 31-7. In the phasor diagram of
(a) and the graph of (b), the current i
lags the driving emf � and the cur-
rent’s phase constant f is positive. In
(c) and (d), the current i leads the
driving emf � and its phase constant
f is negative. In (e) and ( f ), the cur-
rent i is in phase with the driving emf
� and its phase constant f is zero.

ferent results for the phase constant, depending on the relative values of the
reactances XL and XC:

XL � XC: The circuit is said to be more inductive than capacitive. Equation 31-65
tells us that f is positive for such a circuit, which means that phasor I rotates
behind phasor �m (Fig. 31-15a). A plot of � and i versus time is like that in 
Fig. 31-15b. (Figures 31-14c and d were drawn assuming XL � XC.)

XC � XL: The circuit is said to be more capacitive than inductive. Equation 31-65
tells us that f is negative for such a circuit, which means that phasor I rotates
ahead of phasor �m (Fig. 31-15c). A plot of � and i versus time is like that in
Fig. 31-15d.

XC � XL: The circuit is said to be in resonance, a state that is discussed next.
Equation 31-65 tells us that f � 0� for such a circuit, which means that phasors
�m and I rotate together (Fig. 31-15e). A plot of � and i versus time is like that
in Fig. 31-15f.

As illustration, let us reconsider two extreme circuits: In the purely inductive
circuit of Fig. 31-12, where XL is nonzero and XC � R � 0, Eq. 31-65 tells us that 
the circuit’s phase constant is f � �90� (the greatest value of f), consistent with
Fig. 31-13b. In the purely capacitive circuit of Fig. 31-10, where XC is nonzero and
XL � R � 0, Eq. 31-65 tells us that the circuit’s phase constant is f � �90� (the
least value of f), consistent with Fig. 31-11b.

Resonance
Equation 31-63 gives the current amplitude I in an RLC circuit as a function of
the driving angular frequency vd of the external alternating emf. For a given
resistance R, that amplitude is a maximum when the quantity vdL � 1/vdC in the
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denominator is zero—that is, when

or (maximum I). (31-66)

Because the natural angular frequency v of the RLC circuit is also equal to
the maximum value of I occurs when the driving angular frequency

matches the natural angular frequency—that is, at resonance. Thus, in an RLC
circuit, resonance and maximum current amplitude I occur when

(resonance). (31-67)

Resonance Curves. Figure 31-16 shows three resonance curves for sinu-
soidally driven oscillations in three series RLC circuits differing only in R. Each
curve peaks at its maximum current amplitude I when the ratio vd/v is 1.00, but
the maximum value of I decreases with increasing R. (The maximum I is always
�m/R; to see why, combine Eqs. 31-61 and 31-62.) In addition, the curves in-
crease in width (measured in Fig. 31-16 at half the maximum value of I) with
increasing R.

vd � v �
1

1LC

1/1LC,

vd �
1

1LC

vdL �
1

vdC
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• high current amplitude
• circuit is in resonance
• equally capacitive and inductive
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• zero
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• low current amplitude
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• more capacitive
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Figure 31-16 Resonance curves for the
driven RLC circuit of Fig. 31-7 with 
L � 100 mH, C � 100 pF, and three
values of R.The current amplitude I of
the alternating current depends on how
close the driving angular frequency vd is
to the natural angular frequency v.The
horizontal arrow on each curve meas-
ures the curve’s half-width, which is the
width at the half-maximum level and is
a measure of the sharpness of the reso-
nance.To the left of vd/v � 1.00, the cir-
cuit is mainly capacitive, with XC � XL;
to the right, it is mainly inductive, with
XL � XC.
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We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

KEY IDEA

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC � XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

� �24.3� � �0.424 rad.

f � tan�1 XL � XC

R
� tan�1 86.7 � � 177 �

200 �

I �
�m

Z
�

36.0 V
219 �

� 0.164 A.

Sample Problem 31.06 Current amplitude, impedance, and phase constant

In Fig. 31-7, let R � 200 �, C � 15.0 mF, L � 230 mH,
fd � 60.0 Hz, and �m � 36.0 V. (These parameters are those
used in the earlier sample problems.)

(a) What is the current amplitude I?

KEY IDEA

The current amplitude I depends on the amplitude �m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I � �m/Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC � 177 �. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL � 86.7 �.Thus, the circuit’s impedance is

� 219 �.

� 2(200 �)2 � (86.7 � � 177 �)2

Z � 2R2 � (XL � XC)2

Additional examples, video, and practice available at WileyPLUS

To make physical sense of Fig. 31-16, consider how the reactances XL and
XC change as we increase the driving angular frequency vd, starting with a value
much less than the natural frequency v. For small vd, reactance XL (� vdL) is
small and reactance XC (� 1/vdC) is large. Thus, the circuit is mainly capacitive
and the impedance is dominated by the large XC, which keeps the current low.

As we increase vd, reactance XC remains dominant but decreases while reac-
tance XL increases. The decrease in XC decreases the impedance, allowing the
current to increase, as we see on the left side of any resonance curve in Fig. 31-16.
When the increasing XL and the decreasing XC reach equal values, the current is
greatest and the circuit is in resonance, with vd � v.

As we continue to increase vd, the increasing reactance XL becomes pro-
gressively more dominant over the decreasing reactance XC. The impedance
increases because of XL and the current decreases, as on the right side of any
resonance curve in Fig. 31-16. In summary, then: The low-angular-frequency side
of a resonance curve is dominated by the capacitor’s reactance, the high-angular-
frequency side is dominated by the inductor’s reactance, and resonance occurs in
the middle.

Checkpoint 6
Here are the capacitive reactance and inductive reactance, respectively, for three
sinusoidally driven series RLC circuits: (1) 50 �, 100 �; (2) 100 �, 50 �; (3) 50 �, 50 �.
(a) For each, does the current lead or lag the applied emf, or are the two in phase?
(b) Which circuit is in resonance?
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31-5 POWER IN ALTERNATING-CURRENT CIRCUITS

After reading this module, you should be able to . . .

31.41 For the current, voltage, and emf in an ac circuit,
apply the relationship between the rms values and the
amplitudes.

31.42 For an alternating emf connected across a capacitor,
an inductor, or a resistor, sketch graphs of the sinusoidal
variation of the current and voltage and indicate the peak
and rms values.

31.43 Apply the relationship between average power Pavg,
rms current Irms, and resistance R.

31.44 In a driven RLC circuit, calculate the power of each
element.

31.45 For a driven RLC circuit in steady state, explain what
happens to (a) the value of the average stored energy with
time and (b) the energy that the generator puts into the
circuit.

31.46 Apply the relationship between the power factor cos f,
the resistance R, and the impedance Z.

31.47 Apply the relationship between the average power
Pavg, the rms emf , the rms current Irms, and the power
factor cos f.

31.48 Identify what power factor is required in order to maxi-
mize the rate at which energy is supplied to a resistive load.

�rms

Learning Objectives

● In a series RLC circuit, the average power Pavg of the
generator is equal to the production rate of thermal energy in
the resistor:

Pavg � I 2
rmsR � �rmsIrms cos f.

● The abbreviation rms stands for root-mean-square; the
rms quantities are related to the maximum quantities by

and The term 
cos f is called the power factor of the circuit.

�rms � �m /12.V/12,Irms � I/12, Vrms �

Key Ideas

Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P � i2R � [I sin(vdt � f)]2R � I 2R sin2(vdt � f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)

We can now rewrite Eq. 31-69 as

(average power). (31-71)Pavg � I rms
2 R

Irms �
I

12

I/1 2

Pavg �
I 2R

2
� � I

12 �
2

R.

�1
2

1
2

Figure 31-17 (a) A plot of sin u versus u.The
average value over one cycle is zero. (b) A
plot of sin2 u versus u.The average value
over one cycle is .1
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Equation 31-71 has the same mathematical form as Eq. 26-27 (P � i2R); the
message here is that if we switch to the rms current, we can compute the aver-
age rate of energy dissipation for alternating-current circuits just as for direct-
current circuits.

We can also define rms values of voltages and emfs for alternating-current
circuits:

(rms voltage; rms emf). (31-72)

Alternating-current instruments, such as ammeters and voltmeters, are usually
calibrated to read Irms, Vrms, and �rms. Thus, if you plug an alternating-current
voltmeter into a household electrical outlet and it reads 120 V, that is an rms
voltage. The maximum value of the potential difference at the outlet is

or 170 V. Generally scientists and engineers report rms values in-
stead of maximum values.

Because the proportionality factor in Eqs. 31-70 and 31-72 is the same
for all three variables, we can write Eqs. 31-62 and 31-60 as

(31-73)

and, indeed, this is the form that we almost always use.
We can use the relationship Irms � �rms/Z to recast Eq. 31-71 in a useful

equivalent way.We write

(31-74)

From Fig. 31-14d, Table 31-2, and Eq. 31-62, however, we see that R/Z is just the
cosine of the phase constant f:

(31-75)

Equation 31-74 then becomes

(average power), (31-76)

in which the term cos f is called the power factor. Because cos f � cos(�f),
Eq. 31-76 is independent of the sign of the phase constant f.

To maximize the rate at which energy is supplied to a resistive load in an
RLC circuit, we should keep the power factor cos f as close to unity as possible.
This is equivalent to keeping the phase constant f in Eq. 31-29 as close to zero as
possible. If, for example, the circuit is highly inductive, it can be made less so by
putting more capacitance in the circuit, connected in series. (Recall that putting
an additional capacitance into a series of capacitances decreases the equivalent
capacitance Ceq of the series.) Thus, the resulting decrease in Ceq in the circuit
reduces the phase constant and increases the power factor in Eq. 31-76. Power
companies place series-connected capacitors throughout their transmission sys-
tems to get these results.

Pavg � �rmsIrms cos f

cos f �
VR

�m
�

IR
IZ

�
R
Z

.

Pavg �
�rms

Z
IrmsR � �rmsIrms

R
Z

.

Irms �
�rms

Z
�

�rms

2R2 � (XL � XC)2
,

1/12

12 � (120 V),

Vrms �
V

12
  and  �rms �

�m

12
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Checkpoint 7
(a) If the current in a sinusoidally driven series RLC circuit leads the emf, would we
increase or decrease the capacitance to increase the rate at which energy is supplied
to the resistance? (b) Would this change bring the resonant angular frequency of the
circuit closer to the angular frequency of the emf or put it farther away?
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determined by the rms value of the driving emf and the cir-
cuit’s impedance Z (which we know), according to Eq. 31-73:

Substituting this into Eq. 31-76 then leads to

(Answer)

Second way: Instead, we can write

(Answer)

(c) What new capacitance Cnew is needed to maximize Pavg if
the other parameters of the circuit are not changed?

KEY IDEAS

(1) The average rate Pavg at which energy is supplied
and dissipated is maximized if the circuit is brought into
resonance with the driving emf. (2) Resonance occurs
when XC � XL.

Calculations: From the given data, we have XC � XL. Thus,
we must decrease XC to reach resonance. From Eq. 31-39
(XC � 1/vdC), we see that this means we must increase C to
the new value Cnew.

Using Eq. 31-39, we can write the resonance condition
XC � XL as

Substituting 2pfd for vd (because we are given fd and not vd)
and then solving for Cnew, we find

(Answer)

Following the procedure of part (b), you can show that with
Cnew, the average power of energy dissipation Pavg would
then be at its maximum value of 

Pavg, max � 72.0 W.

� 3.32 � 10�5 F � 33.2 mF.

Cnew �
1

2p fdXL
�

1
(2p)(60 Hz)(80.0 �)

1
vdCnew

� XL.

�
(120 V)2

(211.90 �)2  (200 �) � 64.1 W.

Pavg � Irms
2 R �

�rms
2

Z2 R

�
(120 V)2

211.90 �
 (0.9438) � 64.1 W.

Pavg � �rmsIrms cos f �
�2

rms

Z
 cos f

Irms �
�rms

Z
.

Sample Problem 31.07 Driven RLC circuit: power factor and average power

A series RLC circuit, driven with at fre-
quency fd 60.0 Hz, contains a resistance R 200 , an���

�rms � 120 V

Additional examples, video, and practice available at WileyPLUS

inductance with inductive reactance XL � 80.0 �, and a
capacitance with capacitive reactance XC � 150 �.

(a) What are the power factor cos f and phase constant f of
the circuit?

KEY IDEA

The power factor cos f can be found from the resistance R
and impedance Z via Eq. 31-75 (cos f � R/Z).

Calculations: To calculate Z, we use Eq. 31-61:

Equation 31-75 then gives us

(Answer)

Taking the inverse cosine then yields

f � cos�1 0.944 � �19.3°.

The inverse cosine on a calculator gives only the positive an-
swer here, but both 19.3 and 19.3 have a cosine of 0.944.
To determine which sign is correct, we must consider
whether the current leads or lags the driving emf. Because
XC � XL, this circuit is mainly capacitive, with the current
leading the emf.Thus,f must be negative:

f � �19.3°. (Answer)

We could, instead, have found f with Eq. 31-65.A calculator
would then have given us the answer with the minus  sign.

(b) What is the average rate Pavg at which energy is
dissipated in the resistance?

KEY IDEAS

There are two ways and two ideas to use: (1) Because the
circuit is assumed to be in steady-state operation, the rate at
which energy is dissipated in the resistance is equal to the
rate at which energy is supplied to the circuit, as given by
Eq. 31-76 (Pavg � �rmsIrms cos f). (2) The rate at which
energy is dissipated in a resistance R depends on the square
of the rms current Irms through it, according to Eq. 31-71
(Pavg � I 2

rms R).

First way: We are given the rms driving emf �rms and we
already know cos f from part (a). The rms current Irms is

����

cos f �
R
Z

�
200 �

211.90 �
� 0.9438 � 0.944.

� 2(200 �)2 � (80.0 � � 150 �)2 � 211.90 �.

Z � 2R2 � (XL � XC)2
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Transformers
Energy Transmission Requirements
When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is 
cos 0° � 1 and the applied rms emf �rms is equal to the rms voltage Vrms across the
load. Thus, with an rms current Irms in the load, energy is supplied and dissipated
at the average rate of

Pavg � �I � IV. (31-77)

(In Eq. 31-77 and the rest of this module, we follow conventional practice and drop
the subscripts identifying rms quantities. Engineers and scientists assume that all
time-varying currents and voltages are reported as rms values; that is what the me-
ters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we
have a range of choices for I and V, provided only that the product IV is as required.

In electrical power distribution systems it is desirable for reasons of safety
and for efficient equipment design to deal with relatively low voltages at both the
generating end (the electrical power plant) and the receiving end (the home or
factory). Nobody wants an electric toaster to operate at, say, 10 kV. However, in
the transmission of electrical energy from the generating plant to the consumer,
we want the lowest practical current (hence the largest practical voltage) to mini-
mize I 2R losses (often called ohmic losses) in the transmission line.

As an example, consider the 735 kV line used to transmit electrical energy
from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away.
Suppose that the current is 500 A and the power factor is close to unity. Then
from Eq. 31-77, energy is supplied at the average rate

Pavg � �I � (7.35 � 105 V)(500 A) � 368 MW.

31-6 TRANSFORMERS

After reading this module, you should be able to . . .

31.49 For power transmission lines, identify why the
transmission should be at low current and high voltage.

31.50 Identify the role of transformers at the two ends of a
transmission line.

31.51 Calculate the energy dissipation in a transmission line.
31.52 Identify a transformer’s primary and secondary.
31.53 Apply the relationship between the voltage and

number of turns on the two sides of a transformer.
31.54 Distinguish between a step-down transformer and a

step-up transformer.

31.55 Apply the relationship between the current and number
of turns on the two sides of a transformer.

31.56 Apply the relationship between the power into and out
of an ideal transformer.

31.57 Identify the equivalent resistance as seen from the
primary side of a transformer.

31.58 Apply the relationship between the equivalent
resistance and the actual resistance.

31.59 Explain the role of a transformer in impedance
matching.

Learning Objectives

● A transformer (assumed to be ideal) is an iron core on
which are wound a primary coil of Np turns and a secondary
coil of Ns turns. If the primary coil is connected across an
alternating-current generator, the primary and secondary
voltages are related by

(transformation of voltage).

● The currents through the coils are related by

Vs � Vp
Ns

Np

(transformation of currents).

● The equivalent resistance of the secondary circuit, as seen
by the generator, is

where R is the resistive load in the secondary circuit. The
ratio Np/Ns is called the transformer’s turns ratio.

Req � � Np

Ns
�

2

R,

Is � Ip
Np

Ns

Key Ideas



The resistance of the transmission line is about 0.220 �/km; thus, there is a total
resistance of about 220 � for the 1000 km stretch. Energy is dissipated due to that
resistance at a rate of about

Pavg � I 2R � (500 A)2(220 �) � 55.0 MW,

which is nearly 15% of the supply rate.
Imagine what would happen if we doubled the current and halved the volt-

age. Energy would be supplied by the plant at the same average rate of 368 MW
as previously, but now energy would be dissipated at the rate of about

Pavg � I 2R � (1000 A)2(220 �) � 220 MW,

which is almost 60% of the supply rate. Hence the general energy transmission
rule:Transmit at the highest possible voltage and the lowest possible current.

The Ideal Transformer
The transmission rule leads to a fundamental mismatch between the requirement
for efficient high-voltage transmission and the need for safe low-voltage gener-
ation and consumption. We need a device with which we can raise (for trans-
mission) and lower (for use) the ac voltage in a circuit, keeping the product
current voltage essentially constant. The transformer is such a device. It has
no moving parts, operates by Faraday’s law of induction, and has no simple
direct-current counterpart.

The ideal transformer in Fig. 31-18 consists of two coils, with different num-
bers of turns, wound around an iron core. (The coils are insulated from the core.)
In use, the primary winding, of Np turns, is connected to an alternating-current
generator whose emf � at any time t is given by

� � �m sin vt. (31-78)

The secondary winding, of Ns turns, is connected to load resistance R, but its
circuit is an open circuit as long as switch S is open (which we assume for the
present). Thus, there can be no current through the secondary coil. We assume
further for this ideal transformer that the resistances of the primary and second-
ary windings are negligible. Well-designed, high-capacity transformers can have
energy losses as low as 1%; so our assumptions are reasonable.

For the assumed conditions, the primary winding (or primary) is a pure
inductance and the primary circuit is like that in Fig. 31-12. Thus, the (very small)
primary current, also called the magnetizing current Imag, lags the primary voltage
Vp by 90°; the primary’s power factor (� cos f in Eq. 31-76) is zero; so no power
is delivered from the generator to the transformer.

However, the small sinusoidally changing primary current Imag produces a
sinusoidally changing magnetic flux �B in the iron core. The core acts to
strengthen the flux and to bring it through the secondary winding (or secondary).
Because �B varies, it induces an emf �turn (� d�B/dt) in each turn of the
secondary. In fact, this emf per turn �turn is the same in the primary and the
secondary. Across the primary, the voltage Vp is the product of �turn and the num-
ber of turns Np; that is, Vp � �turnNp. Similarly, across the secondary the voltage is
Vs � �turnNs.Thus, we can write

or (transformation of voltage). (31-79)

If Ns � Np, the device is a step-up transformer because it steps the primary’s voltage
Vp up to a higher voltage Vs. Similarly, if Ns � Np, it is a step-down transformer.

Vs � Vp

Ns

Np

�turn �
Vp

Np
�

Vs

Ns
,

�
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Figure 31-18 An ideal transformer (two coils
wound on an iron core) in a basic trans-
former circuit.An ac generator produces
current in the coil at the left (the primary).
The coil at the right (the secondary) is con-
nected to the resistive load R when switch S
is closed.

RVp Vs

S

Np

Ns

Φ B

Primary Secondary 
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With switch S open, no energy is transferred from the generator to the rest of
the circuit, but when we close S to connect the secondary to the resistive load R,
energy is transferred. (In general, the load would also contain inductive and
capacitive elements, but here we consider just resistance R.) Here is the process:

1. An alternating current Is appears in the secondary circuit, with corresponding
energy dissipation rate in the resistive load.

2. This current produces its own alternating magnetic flux in the iron core, and
this flux induces an opposing emf in the primary windings.

3. The voltage Vp of the primary, however, cannot change in response to this
opposing emf because it must always be equal to the emf � that is provided by
the generator; closing switch S cannot change this fact.

4. To maintain Vp, the generator now produces (in addition to Imag) an alternat-
ing current Ip in the primary circuit; the magnitude and phase constant of
Ip are just those required for the emf induced by Ip in the primary to exactly
cancel the emf induced there by Is. Because the phase constant of Ip is not 90°
like that of Imag, this current Ip can transfer energy to the primary.

Energy Transfers. We want to relate Is to Ip. However, rather than analyze the
foregoing complex process in detail, let us just apply the principle of conservation
of energy.The rate at which the generator transfers energy to the primary is equal
to IpVp. The rate at which the primary then transfers energy to the secondary (via
the alternating magnetic field linking the two coils) is IsVs. Because we assume
that no energy is lost along the way, conservation of energy requires that

IpVp � IsVs.

Substituting for Vs from Eq. 31-79, we find that

(transformation of currents). (31-80)

This equation tells us that the current Is in the secondary can differ from the
current Ip in the primary, depending on the turns ratio Np/Ns.

Current Ip appears in the primary circuit because of the resistive load R in
the secondary circuit. To find Ip, we substitute Is � Vs/R into Eq. 31-80 and then
we substitute for Vs from Eq. 31-79.We find

(31-81)

This equation has the form Ip � Vp/Req, where equivalent resistance Req is

(31-82)

This Req is the value of the load resistance as “seen” by the generator; the genera-
tor produces the current Ip and voltage Vp as if the generator were connected to a
resistance Req.

Impedance Matching
Equation 31-82 suggests still another function for the transformer. For maximum
transfer of energy from an emf device to a resistive load, the resistance of the emf
device must equal the resistance of the load. The same relation holds for ac
circuits except that the impedance (rather than just the resistance) of the genera-
tor must equal that of the load. Often this condition is not met. For example, in
a music-playing system, the amplifier has high impedance and the speaker set has
low impedance. We can match the impedances of the two devices by coupling
them through a transformer that has a suitable turns ratio Np/Ns.

Req � � Np

Ns
�

2

R.

Ip �
1
R � Ns

Np
�

2

Vp.

Is � Ip

Np

Ns

I s
2R (� Vs

2/R)
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Checkpoint 8
An alternating-current emf device in a certain circuit has a smaller resistance than that
of the resistive load in the circuit; to increase the transfer of energy from the device to
the load, a transformer will be connected between the two. (a) Should Ns be greater
than or less than Np? (b) Will that make it a step-up or step-down transformer?

Eq. 31-77 yields

(Answer)

Similarly, in the secondary circuit,

(Answer)

You can check that Is � Ip(Np/Ns) as required by Eq.31-80.

(c) What is the resistive load Rs in the secondary circuit? What
is the corresponding resistive load Rp in the primary circuit?

One way: We can use V � IR to relate the resistive load to the
rms voltage and current.For the secondary circuit,we find

(Answer)

Similarly, for the primary circuit we find

(Answer)

Second way: We use the fact that Rp equals the equivalent re-
sistive load “seen” from the primary side of the transformer,
which is a resistance modified by the turns ratio and given by
Eq. 31-82 (Req � (Np/Ns)2R). If we substitute Rp for Req and Rs

for R, that equation yields

(Answer)� 926 � � 930 �.

Rp � � Np

Ns
�

2

Rs � (70.83)2(0.1846 �)

Rp �
Vp

Ip
�

8.5 � 10 3 V
9.176 A

� 926 � � 930 �.

Rs �
Vs

Is
�

120 V
650 A

� 0.1846 � � 0.18 �.

Is �
Pavg

Vs
�

78 � 10 3 W
120 V

� 650 A.

Ip �
Pavg

Vp
�

78 � 103 W
8.5 � 103 V

� 9.176 A � 9.2 A.

Sample Problem 31.08 Transformer: turns ratio, average power, rms currents

A transformer on a utility pole operates at Vp 8.5 kV on
the primary side and supplies electrical energy to a number
of nearby houses at Vs � 120 V, both quantities being rms
values.Assume an ideal step-down transformer, a purely resis-
tive load, and a power factor of unity.

(a) What is the turns ratio Np/Ns of the transformer?

KEY IDEA

The turns ratio Np/Ns is related to the (given) rms primary
and secondary voltages via Eq. 31-79 (Vs � VpNs/Np).

Calculation: We can write Eq. 31-79 as

(31-83)

(Note that the right side of this equation is the inverse of the
turns ratio.) Inverting both sides of Eq. 31-83 gives us

(Answer)

(b) The average rate of energy consumption (or dissipation) in
the houses served by the transformer is 78 kW.What are the rms
currents in the primary and secondary of the transformer?

KEY IDEA

For a purely resistive load, the power factor cos f is unity; thus,
the average rate at which energy is supplied and dissipated is
given by Eq.31-77 (Pavg � �I � IV).

Calculations: In the primary circuit, with Vp 8.5 kV,�

Np

Ns
�

Vp

Vs
�

8.5 � 10 3 V
120 V

� 70.83 � 71.

Vs

Vp
�

Ns

Np
.

�

Additional examples, video, and practice available at WileyPLUS

LC Energy Transfers In an oscillating LC circuit, energy is
shuttled periodically between the electric field of the capacitor and
the magnetic field of the inductor; instantaneous values of the two
forms of energy are

(31-1, 31-2)

where q is the instantaneous charge on the capacitor and i is the

UE �
q2

2C
  and  UB �

Li2

2
,

Review & Summary

instantaneous current through the inductor. The total energy 
U (� UE � UB) remains constant.

LC Charge and Current Oscillations The principle of con-
servation of energy leads to

(LC oscillations) (31-11)L
d2q
dt2 �

1
C

q � 0
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as the differential equation of LC oscillations (with no resistance).
The solution of Eq. 31-11 is

q � Q cos(vt � f) (charge), (31-12)

in which Q is the charge amplitude (maximum charge on the capac-
itor) and the angular frequency v of the oscillations is

(31-4)

The phase constant f in Eq. 31-12 is determined by the initial con-
ditions (at t � 0) of the system.

The current i in the system at any time t is

i � �vQ sin(vt � f) (current), (31-13)

in which vQ is the current amplitude I.

Damped Oscillations Oscillations in an LC circuit are damped
when a dissipative element R is also present in the circuit.Then

(RLC circuit). (31-24)

The solution of this differential equation is

q � Qe�Rt/2L cos(v�t � f), (31-25)

where (31-26)

We consider only situations with small R and thus small damping;
then v� � v.

Alternating Currents; Forced Oscillations A series RLC
circuit may be set into forced oscillation at a driving angular fre-
quency vd by an external alternating emf

� � �m sin vdt. (31-28)

The current driven in the circuit is   

i � I sin(vdt � f), (31-29)

where f is the phase constant of the current.

Resonance The current amplitude I in a series RLC circuit
driven by a sinusoidal external emf is a maximum (I � �m/R) when
the driving angular frequency vd equals the natural angular 
frequency v of the circuit (that is, at resonance). Then XC � XL,
f � 0, and the current is in phase with the emf.

Single Circuit Elements The alternating potential difference
across a resistor has amplitude VR � IR; the current is in phase
with the potential difference.

For a capacitor,VC � IXC, in which XC � 1/vdC is the capacitive
reactance; the current here leads the potential difference by 90°
(f � �90° � �p/2 rad).

v� � 2v2 � (R/2L)2.

L
d 2q
dt2 � R

dq
dt

�
1
C

q � 0

v �
1

1LC
.

For an inductor, VL � IXL, in which XL � vdL is the inductive
reactance; the current here lags the potential difference by 90°
(f � �90° � �p/2 rad).

Series RLC Circuits For a series RLC circuit with an alternat-
ing external emf given by Eq. 31-28 and a resulting alternating
current given by Eq. 31-29,

(current amplitude) (31-60, 31-63)

and (phase constant). (31-65)

Defining the impedance Z of the circuit as

(impedance) (31-61)

allows us to write Eq. 31-60 as I � �m/Z.

Power In a series RLC circuit, the average power Pavg of the
generator is equal to the production rate of thermal energy in the
resistor:

(31-71, 31-76)

Here rms stands for root-mean-square; the rms quantities are
related to the maximum quantities by 
and The term cos f is called the power factor of the
circuit.

Transformers A transformer (assumed to be ideal) is an iron core
on which are wound a primary coil of Np turns and a secondary coil of
Ns turns. If the primary coil is connected across an alternating-current
generator, the primary and secondary voltages are related by

(transformation of voltage). (31-79)

The currents through the coils are related by

(transformation of currents), (31-80)

and the equivalent resistance of the secondary circuit, as seen by
the generator, is

(31-82)

where R is the resistive load in the secondary circuit. The ratio
Np/Ns is called the transformer’s turns ratio.

Req � � Np

Ns
�

2

R,

Is � Ip
Np

Ns

Vs � Vp
Ns

Np

erms � em /12.
V/12,Irms � I/12, Vrms �

Pavg � I 2
rmsR � �rmsIrms cos f.

Z � 2R2 � (XL � XC)2

tan f �
XL � XC

R

�
�m

2R2 � (vdL � 1/vdC)2

I �
�m

2R2 � (XL � XC)2

1 Figure 31-19 shows three oscillating LC circuits with identical
inductors and capacitors. At a particular time, the charges on the
capacitor plates (and thus the electric fields between the plates)
are all at their maximum values. Rank the circuits according to the
time taken to fully discharge the capacitors during the oscillations,
greatest first.

Questions

Figure 31-19 Question 1.

(a) (b) (c)



3 A charged capacitor and an inductor are connected at time 
t � 0. In terms of the period T of the resulting oscillations, what is
the first later time at which the following reach a maximum: (a)
UB, (b) the magnetic flux through the inductor, (c) di/dt, and (d)
the emf of the inductor?

4 What values of phase constant f in Eq. 31-12 allow situations
(a), (c), (e), and (g) of Fig. 31-1 to occur at t � 0?

5 Curve a in Fig. 31-21 gives the
impedance Z of a driven RC circuit
versus the driving angular fre-
quency vd. The other two curves are
similar but for different values of
resistance R and capacitance C.
Rank the three curves according to
the corresponding value of R, great-
est first.

6 Charges on the capacitors in
three oscillating LC circuits vary as:
(1) q � 2 cos 4t, (2) q � 4 cos t, (3) q � 3 cos 4t (with q in coulombs
and t in seconds). Rank the circuits according to (a) the current
amplitude and (b) the period, greatest first.

7 An alternating emf source with a
certain emf amplitude is connected,
in turn, to a resistor, a capacitor, and
then an inductor. Once connected to
one of the devices, the driving fre-
quency fd is varied and the ampli-
tude I of the resulting current
through the device is measured and
plotted. Which of the three plots in
Fig. 31-22 corresponds to which of the three devices?
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8 The values of the phase constant f for four sinusoidally driven
series RLC circuits are (1) �15°, (2) �35°, (3) p/3 rad, and
(4) �p/6 rad. (a) In which is the load primarily capacitive? (b) In
which does the current lag the alternating emf?

9 Figure 31-23 shows the current i
and driving emf � for a series RLC
circuit. (a) Is the phase constant posi-
tive or negative? (b) To increase the
rate at which energy is transferred
to the resistive load, should L be in-
creased or decreased? (c) Should, in-
stead, C be increased or decreased?

10 Figure 31-24 shows three situations like those of Fig. 31-15. Is
the driving angular frequency greater than, less than, or equal to
the resonant angular frequency of the circuit in (a) situation 1, (b)
situation 2, and (c) situation 3?

2 Figure 31-20 shows graphs of capacitor voltage vC for LC
circuits 1 and 2, which contain identical capacitances and have the
same maximum charge Q. Are (a) the inductance L and (b) the
maximum current I in circuit 1 greater than, less than, or the same
as those in circuit 2?

Figure 31-20 Question 2.

vC

1
2

t

Figure 31-21 Question 5.

Z

ω d

c
b

a

Figure 31-22 Question 7.

I

fd

c

b

a

, i

i
t

Figure 31-23 Question 9.

Figure 31-24 Question 10.

m
m

m

I I I 

(1) (2) (3) 

11 Figure 31-25 shows the current
i and driving emf � for a series RLC
circuit. Relative to the emf curve,
does the current curve shift leftward
or rightward and does the amplitude
of that curve increase or decrease if
we slightly increase (a) L, (b) C, and
(c) vd?

, i

i

t

Figure 31-25 Questions 11
and 12.

12 Figure 31-25 shows the current i and driving emf � for a series
RLC circuit. (a) Does the current lead or lag the emf? (b) Is the
circuit’s load mainly capacitive or mainly inductive? (c) Is the an-
gular frequency vd of the emf greater than or
less than the natural angular frequency v?

13 Does the phasor diagram of Fig. 31-26 corre-
spond to an alternating emf source connected to a
resistor, a capacitor, or an inductor? (b) If the an-
gular speed of the phasors is increased, does the
length of the current phasor increase or decrease
when the scale of the diagram is maintained?

vd

V
I

Figure 31-26
Question 13.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 31-1 LC Oscillations
•1 An oscillating LC circuit consists of a 75.0 mH inductor and a
3.60 mF capacitor. If the maximum charge on the capacitor is
2.90 mC, what are (a) the total energy in the circuit and (b) the
maximum current?

•2 The frequency of oscillation of a certain LC circuit is 200 kHz.At
time t � 0, plate A of the capacitor has maximum positive charge. At
what earliest time t � 0 will (a) plate A again have maximum positive
charge, (b) the other plate of the capacitor have maximum positive
charge,and (c) the inductor have maximum magnetic field?
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•3 In a certain oscillating LC circuit, the total energy is converted
from electrical energy in the capacitor to magnetic energy in the
inductor in 1.50 ms. What are (a) the period of oscillation and
(b) the frequency of oscillation? (c) How long after the magnetic
energy is a maximum will it be a maximum again?

•4 What is the capacitance of an oscillating LC circuit if the maxi-
mum charge on the capacitor is 1.60 mC and the total energy is
140 mJ?

•5 In an oscillating LC circuit, L � 1.10 mH and C � 4.00 mF.
The maximum charge on the capacitor is 3.00 mC. Find the maxi-
mum current.

•6 A 0.50 kg body oscillates in SHM on a spring that, when ex-
tended 2.0 mm from its equilibrium position, has an 8.0 N restoring
force. What are (a) the angular frequency of oscillation, (b) the pe-
riod of oscillation, and (c) the capacitance of an LC circuit with the
same period if L is 5.0 H?

•7 The energy in an oscillating LC circuit containing a
1.25 H inductor is 5.70 mJ.The maximum charge on the capacitor is
175 mC. For a mechanical system with the same period, find the
(a) mass, (b) spring constant, (c) maximum displacement, and
(d) maximum speed.

•8 A single loop consists of inductors (L1, L2, . . .), capacitors (C1,
C2, . . .), and resistors (R1, R2, . . .) connected in series as shown, for
example, in Fig. 31-27a. Show that regardless of the sequence of
these circuit elements in the loop, the behavior of this circuit is
identical to that of the simple LC circuit shown in Fig. 31-27b.
(Hint: Consider the loop rule and see Problem 47 in Chapter 30.)

SSM

••13 In an oscillating LC circuit, L � 3.00 mH and C � 2.70 mF.
At t � 0 the charge on the capacitor is zero and the current is 2.00 A.
(a) What is the maximum charge that will appear on the capacitor?
(b) At what earliest time t � 0 is the rate at which energy is stored
in the capacitor greatest, and (c) what is that greatest rate?

••14 To construct an oscillating LC system, you can choose from
a 10 mH inductor, a 5.0 mF capacitor, and a 2.0 mF capacitor. What
are the (a) smallest, (b) second smallest, (c) second largest, and (d)
largest oscillation frequency that can be set up by these elements in
various combinations?

••15 An oscillating LC circuit consisting of a 1.0 nF capacitor
and a 3.0 mH coil has a maximum voltage of 3.0 V.What are (a) the
maximum charge on the capacitor, (b) the maximum current
through the circuit, and (c) the maximum energy stored in the
magnetic field of the coil?

••16 An inductor is connected across a capacitor whose
capacitance can be varied by turning a knob. We wish to make the
frequency of oscillation of this LC circuit vary linearly with the an-
gle of rotation of the knob, going from 2 � 105 to 4 � 105 Hz as the
knob turns through 180°. If L � 1.0 mH, plot the required capaci-
tance C as a function of the angle of rotation of the knob.

••17 In Fig. 31-28, R � 14.0
, C 6.20 mF, and L 54.0 mH,

and the ideal battery has emf � �
34.0 V. The switch is kept at a for a
long time and then thrown to posi-
tion b. What are the (a) frequency
and (b) current amplitude of the
resulting oscillations?

••18 An oscillating LC circuit has a
current amplitude of 7.50 mA, a potential amplitude of 250 mV,
and a capacitance of 220 nF. What are (a) the period of oscillation,
(b) the maximum energy stored in the capacitor, (c) the maximum
energy stored in the inductor, (d) the maximum rate at which the
current changes, and (e) the maximum rate at which the inductor
gains energy?

••19 Using the loop rule, derive the differential equation for an
LC circuit (Eq. 31-11).

••20 In an oscillating LC circuit in which C � 4.00 mF, the
maximum potential difference across the capacitor during the
oscillations is 1.50 V and the maximum current through the inductor
is 50.0 mA. What are (a) the inductance L and (b) the frequency of
the oscillations? (c) How much time is required for the charge on
the capacitor to rise from zero to its maximum value?

••21 In an oscillating LC circuit with C � 64.0 mF, the current
is given by i (1.60) sin(2500t 0.680), where t is in seconds, i in
amperes, and the phase constant in radians. (a) How soon after t � 0
will the current reach its maximum value? What are (b) the induc-
tance L and (c) the total energy?

••22 A series circuit containing inductance L1 and capacitance
C1 oscillates at angular frequency v. A second series circuit, con-
taining inductance L2 and capacitance C2, oscillates at the same
angular frequency. In terms of v, what is the angular frequency of
oscillation of a series circuit containing all four of these elements?
Neglect resistance. (Hint: Use the formulas for equivalent capaci-
tance and equivalent inductance; see Module 25-3 and Problem 47
in Chapter 30.)

��

ILW

���

ILW

ILW

Figure 31-27 Problem 8.

L C R

(b)(a)

L 2C 1
L 1 C 2

R 2R 1

•9 In an oscillating LC circuit with L � 50 mH and C �
4.0 mF, the current is initially a maximum. How long will it take
before the capacitor is fully charged for the first time?

•10 LC oscillators have been used in circuits connected to loud-
speakers to create some of the sounds of electronic music. What
inductance must be used with a 6.7 mF capacitor to produce a fre-
quency of 10 kHz, which is near the middle of the audible range of
frequencies?

••11 A variable capacitor with a range from 10 to
365 pF is used with a coil to form a variable-frequency LC circuit
to tune the input to a radio. (a) What is the ratio of maximum fre-
quency to minimum frequency that can be obtained with such a
capacitor? If this circuit is to obtain frequencies from 0.54 MHz
to 1.60 MHz, the ratio computed in (a) is too large. By adding a
capacitor in parallel to the variable capacitor, this range can be
adjusted. To obtain the desired frequency range, (b) what capaci-
tance should be added and (c) what inductance should the coil
have?

••12 In an oscillating LC circuit, when 75.0% of the total energy
is stored in the inductor’s magnetic field, (a) what multiple of the
maximum charge is on the capacitor and (b) what multiple of the
maximum current is in the inductor?

WWWSSM

ILW

Figure 31-28 Problem 17.

a

C

R

L

b
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the value of the capacitance, inductance, or resistance, as the case
may be?

••34 An ac generator with emf � � �m sin vdt, where �m �
25.0 V and vd 377 rad/s, is connected to a 4.15 mF capacitor.
(a) What is the maximum value of the current? (b) When the cur-
rent is a maximum, what is the emf of the generator? (c) When the
emf of the generator is �12.5 V and increasing in magnitude, what
is the current?

Module 31-4 The Series RLC Circuit
•35 A coil of inductance 88 mH and unknown resistance and
a 0.94 mF capacitor are connected in series with an alternating emf
of frequency 930 Hz. If the phase constant between the applied
voltage and the current is 75°, what is the resistance of the coil?

•36 An alternating source with a variable frequency, a capacitor
with capacitance C, and a resistor with resistance R are connected
in series. Figure 31-29 gives the impedance Z of the circuit versus
the driving angular frequency vd; the curve reaches an asymptote
of 500 �, and the horizontal scale is set by vds � 300 rad/s. The fig-
ure also gives the reactance XC for the capacitor versus vd. What
are (a) R and (b) C?

ILW

�

••23 In an oscillating LC circuit, L � 25.0 mH and C �
7.80 mF. At time t 0 the current is 9.20 mA, the charge on the
capacitor is 3.80 mC, and the capacitor is charging.What are (a) the
total energy in the circuit, (b) the maximum charge on the capaci-
tor, and (c) the maximum current? (d) If the charge on the capaci-
tor is given by q � Q cos(vt � f), what is the phase angle f?
(e) Suppose the data are the same, except that the capacitor is
discharging at t � 0.What then is f?

Module 31-2 Damped Oscillations in an RLC Circuit
••24 A single-loop circuit consists of a 7.20 � resistor, a 12.0 H
inductor, and a 3.20 mF capacitor. Initially the capacitor has a
charge of 6.20 mC and the current is zero. Calculate the charge on
the capacitor N complete cycles later for (a) N � 5, (b) N � 10, and
(c) N � 100.

••25 What resistance R should be connected in series with an
inductance L 220 mH and capacitance C 12.0 mF for the
maximum charge on the capacitor to decay to 99.0% of its initial
value in 50.0 cycles? (Assume v� � v.)

••26 In an oscillating series RLC circuit, find the time required
for the maximum energy present in the capacitor during an oscilla-
tion to fall to half its initial value.Assume q � Q at t � 0.

•••27 In an oscillating series RLC circuit, show that 
U/U,
the fraction of the energy lost per cycle of oscillation, is given to a
close approximation by 2pR/vL. The quantity vL/R is often called
the Q of the circuit (for quality). A high-Q circuit has low resis-
tance and a low fractional energy loss (� 2p/Q) per cycle.

Module 31-3 Forced Oscillations of Three Simple Circuits
•28 A 1.50 mF capacitor is connected as in Fig. 31-10 to an ac gen-
erator with �m � 30.0 V. What is the amplitude of the resulting
alternating current if the frequency of the emf is (a) 1.00 kHz and
(b) 8.00 kHz?

•29 A 50.0 mH inductor is connected as in Fig. 31-12 to an ac
generator with 30.0 V. What is the amplitude of the resulting
alternating current if the frequency of the emf is (a) 1.00 kHz and
(b) 8.00 kHz?

•30 A 50.0 � resistor is connected as in Fig. 31-8 to an ac genera-
tor with 30.0 V. What is the amplitude of the resulting alter-
nating current if the frequency of the emf is (a) 1.00 kHz and
(b) 8.00 kHz?

•31 (a) At what frequency would a 6.0 mH inductor and a 10 mF
capacitor have the same reactance? (b) What would the reactance
be? (c) Show that this frequency would be the natural frequency of
an oscillating circuit with the same L and C.

••32 An ac generator has emf � � �m sin vdt, with �m � 25.0 V
and 377 rad/s. It is connected to a 12.7 H inductor. (a) What is
the maximum value of the current? (b) When the current is a maxi-
mum, what is the emf of the generator? (c) When the emf of
the generator is �12.5 V and increasing in magnitude, what is the
current?

••33 An ac generator has emf � � �m sin(vdt � p/4), where
30.0 V and 350 rad/s. The current produced in a con-

nected circuit is i(t) I sin( t 3p/4), where I 620 mA. At
what time after t 0 does (a) the generator emf first reach a
maximum and (b) the current first reach a maximum? (c) The cir-
cuit contains a single element other than the generator. Is it a ca-
pacitor, an inductor, or a resistor? Justify your answer. (d) What is

�
���d�

�d ��m �

SSM

�d �

�m �

�m �

ILW
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Figure 31-29 Problem 36.

•37 An electric motor has an effective resistance of 32.0 � and an
inductive reactance of 45.0 � when working under load. The
voltage amplitude across the alternating source is 420 V. Calculate
the current amplitude.

•38 The current amplitude I versus
driving angular frequency vd for a
driven RLC circuit is given in Fig.
31-30, where the vertical axis scale is
set by Is � 4.00 A. The inductance
is 200 mH, and the emf amplitude is
8.0 V.What are (a) C and (b) R?

•39 Remove the inductor from
the circuit in Fig. 31-7 and set R �
200 �, C � 15.0 mF, fd � 60.0 Hz, and �m � 36.0 V. What are (a) Z,
(b) f, and (c) I? (d) Draw a phasor diagram.

•40 An alternating source drives a series RLC circuit with an emf
amplitude of 6.00 V, at a phase angle of �30.0°.When the potential
difference across the capacitor reaches its maximum positive value
of 5.00 V, what is the potential difference across the inductor
(sign included)?

•41 In Fig. 31-7, set R � 200 �, C � 70.0 mF, L � 230 mH,
fd 60.0 Hz, and 36.0 V. What are (a) Z, (b) f, and (c) I?
(d) Draw a phasor diagram.

•42 An alternating source with a variable frequency, an inductor

�m ��

SSM

�

I 
(A

) 
Is

0
10 30 

d (1000 rad/s) 
50

d (1000 rad/s) ω 

Figure 31-30 Problem 38.
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••49 In Fig. 31-33, a genera-
tor with an adjustable frequency
of oscillation is connected to re-
sistance R 100 , inductances
L1 � 1.70 mH and L2 � 2.30
mH, and capacitances C1 � 4.00
mF, C2 � 2.50 mF, and C3 � 3.50
mF. (a) What is the resonant fre-
quency of the circuit? (Hint: See Problem 47 in Chapter 30.) What
happens to the resonant frequency if (b) R is increased, (c) L1 is in-
creased, and (d) C3 is removed from the circuit?

••50 An alternating emf source with a variable frequency fd is con-
nected in series with an 80.0 � resistor and a 40.0 mH inductor.The
emf amplitude is 6.00 V. (a) Draw a phasor diagram for phasor VR

(the potential across the resistor) and phasor VL (the potential
across the inductor). (b) At what driving frequency fd do the two
phasors have the same length? At that driving frequency, what are
(c) the phase angle in degrees, (d) the angular speed at which the
phasors rotate, and (e) the current amplitude?

••51 The fractional half-width 
vd of a resonance curve,
such as the ones in Fig. 31-16, is the width of the curve at half the
maximum value of I. Show that 
vd/v � R(3C/L)1/2, where v is the
angular frequency at resonance. Note that the ratio 
vd/v in-
creases with R, as Fig. 31-16 shows.

Module 31-5 Power in Alternating-Current Circuits
•52 An ac voltmeter with large impedance is connected in turn
across the inductor, the capacitor, and the resistor in a series circuit
having an alternating emf of 100 V (rms); the meter gives the same
reading in volts in each case.What is this reading?

•53 An air conditioner connected to a 120 V rms ac line is
equivalent to a 12.0 resistance and a 1.30 inductive reactance
in series. Calculate (a) the impedance of the air conditioner and
(b) the average rate at which energy is supplied to the appliance.

•54 What is the maximum value of an ac voltage whose rms value
is 100 V?

•55 What direct current will produce the same amount of ther-
mal energy, in a particular resistor, as an alternating current that
has a maximum value of 2.60 A?

••56 A typical light dimmer used to
dim the stage lights in a theater con-
sists of a variable inductor L (whose
inductance is adjustable between
zero and Lmax) connected in series
with a lightbulb B, as shown in
Fig. 31-34. The electrical supply is
120 V (rms) at 60.0 Hz; the lightbulb is rated at 120 V, 1000 W.
(a) What Lmax is required if the rate of energy dissipation in
the lightbulb is to be varied by a factor of 5 from its upper limit of
1000 W? Assume that the resistance of the lightbulb is indepen-
dent of its temperature. (b) Could one use a variable resistor
(adjustable between zero and Rmax) instead of an inductor? (c) If
so, what Rmax is required? (d) Why isn’t this done?

••57 In an RLC circuit such as that of Fig. 31-7 assume that R �
5.00 �, L � 60.0 mH, fd � 60.0 Hz, and �m � 30.0 V. For what val-
ues of the capacitance would the average rate at which energy is
dissipated in the resistance be (a) a maximum and (b) a minimum?
What are (c) the maximum dissipation rate and the corresponding
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with inductance L, and a resistor
with resistance R are connected in
series. Figure 31-31 gives the imped-
ance Z of the circuit versus the driv-
ing angular frequency vd, with the
horizontal axis scale set by vds �
1600 rad/s. The figure also gives the
reactance XL for the inductor versus
vd.What are (a) R and (b) L?

•43 Remove the capacitor from
the circuit in Fig. 31-7 and set R �
200 �, L � 230 mH, fd � 60.0 Hz, and �m � 36.0 V.What are (a) Z,
(b) f, and (c) I? (d) Draw a phasor diagram.

••44 An ac generator with emf amplitude �m � 220 V and op-
erating at frequency 400 Hz causes oscillations in a series RLC cir-
cuit having R 220 �, L � 150 mH, and C � 24.0 mF. Find (a) the
capacitive reactance XC, (b) the impedance Z, and (c) the current
amplitude I. A second capacitor of the same capacitance is then
connected in series with the other components. Determine
whether the values of (d) XC, (e) Z, and (f) I increase, decrease, or
remain the same.

••45 (a) In an RLC circuit, can the amplitude of the volt-
age across an inductor be greater than the amplitude of the gener-
ator emf? (b) Consider an RLC circuit with emf amplitude �m �
10 V, resistance R � 10 �, inductance L � 1.0 H, and capacitance
C � 1.0 mF. Find the amplitude of the voltage across the inductor
at resonance.

••46 An alternating emf source with a variable frequency fd is
connected in series with a 50.0 resistor and a 20.0 mF capacitor.
The emf amplitude is 12.0 V. (a) Draw a phasor diagram for phasor
VR (the potential across the resistor) and phasor VC (the potential
across the capacitor). (b) At what driving frequency fd do the two
phasors have the same length? At that driving frequency, what are
(c) the phase angle in degrees, (d) the angular speed at which the
phasors rotate, and (e) the current amplitude?

••47 An RLC circuit such as that of Fig. 31-7 has 
R 5.00 , C 20.0 mF, L 1.00 H, and 30.0 V. (a) At
what angular frequency vd will the current amplitude have its max-
imum value, as in the resonance curves of Fig. 31-16? (b) What is
this maximum value? At what (c) lower angular frequency vd1 and
(d) higher angular frequency vd2 will the current amplitude be half
this maximum value? (e) For the resonance curve for this circuit,
what is the fractional half-width (vd1 � vd2)/v?

••48 Figure 31-32 shows a driven RLC circuit that contains two
identical capacitors and two switches. The emf amplitude is set at
12.0 V, and the driving frequency is set at 60.0 Hz. With both
switches open, the current leads the emf by 30.9°. With switch S1

closed and switch S2 still open, the emf leads the current by 15.0°.
With both switches closed, the current amplitude is 447 mA. What
are (a) R, (b) C, and (c) L?
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Figure 31-32 Problem 48.
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75.0 V and frequency 550 Hz. (a) What is the rms current? What is
the rms voltage across (b) R, (c) C, (d) L, (e) C and L together, and
(f) R, C, and L together? At what average rate is energy dissipated
by (g) R, (h) C, and (i) L?

••60 In a series oscillating RLC circuit, R 16.0 �, C 5
31.2 F, L 9.20 mH, and sin vdt with 45.0 V and 

3000 rad/s. For time t 0.442 ms find (a) the rate Pg

at which energy is being supplied by the generator, (b) the rate PC

at which the energy in the capacitor is changing, (c) the rate PL at
which the energy in the inductor is changing, and (d) the rate PR at
which energy is being dissipated in the resistor. (e) Is the sum
of PC, PL, and PR greater than, less than, or equal to Pg?

••61 Figure 31-36
shows an ac generator connected to a
“black box” through a pair of termi-
nals. The box contains an RLC cir-
cuit, possibly even a multiloop cir-
cuit, whose elements and connections
we do not know. Measurements out-
side the box reveal that

�(t) � (75.0 V) sin vdt

and i(t) � (1.20 A) sin(vdt � 42.0°).

(a) What is the power factor? (b) Does the current lead or lag the
emf? (c) Is the circuit in the box largely inductive or largely
capacitive? (d) Is the circuit in the box in resonance? (e) Must
there be a capacitor in the box? (f) An inductor? (g) A resistor?
(h) At what average rate is energy delivered to the box by the
generator? (i) Why don’t you need to know vd to answer all these
questions?

Module 31-6 Transformers
•62 A generator supplies 100 V to a transformer’s primary coil,
which has 50 turns. If the secondary coil has 500 turns, what is the
secondary voltage?

•63 A transformer has 500 primary turns and 10 sec-
ondary turns. (a) If Vp is 120 V (rms), what is Vs with an open
circuit? If the secondary now has a resistive
load of 15 �, what is the current in the (b)
primary and (c) secondary?

•64 Figure 31-37 shows an “autotrans-
former.” It consists of a single coil (with an
iron core). Three taps Ti are provided.
Between taps T1 and T2 there are 200 turns,
and between taps T2 and T3 there are 800
turns. Any two taps can be chosen as the pri-
mary terminals, and any two taps can be
chosen as the secondary terminals. For
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choices producing a step-up transformer, what are the (a) smallest,
(b) second smallest, and (c) largest values of the ratio Vs/Vp? For
a step-down transformer, what are the (d) smallest, (e) second
smallest, and (f) largest values of Vs/Vp?

••65 An ac generator provides emf to a resistive load in a remote
factory over a two-cable transmission line. At the factory a step-
down transformer reduces the voltage from its (rms) transmission
value Vt to a much lower value that is safe and convenient for use
in the factory. The transmission line resistance is 0.30 �/cable, and
the power of the generator is 250 kW. If Vt � 80 kV, what are
(a) the voltage decrease 
V along the transmission line and (b) the
rate Pd at which energy is dissipated in the line as thermal energy?
If Vt � 8.0 kV, what are (c) 
V and (d) Pd? If Vt � 0.80 kV, what
are (e) 
V and (f) Pd?

Additional Problems
66 In Fig. 31-35, let the rectangular box on the left represent the
(high-impedance) output of an audio amplifier, with r � 1000 �.
Let R � 10 � represent the (low-impedance) coil of a loud-
speaker. For maximum transfer of energy to the load R we must
have R � r, and that is not true in this case. However, a trans-
former can be used to “transform” resistances, making them be-
have electrically as if they were larger or smaller than they actu-
ally are. (a) Sketch the primary and secondary coils of a
transformer that can be introduced between the amplifier and
the speaker in Fig. 31-35 to match the impedances. (b) What must
be the turns ratio?

67 An ac generator produces emf � � �m sin(vdt � p/4),
where m 30.0 V and vd 350 rad/s. The current in the circuit
attached to the generator is i(t) � I sin(vdt � p/4), where I �
620 mA. (a) At what time after t � 0 does the generator emf first
reach a maximum? (b) At what time after t � 0 does the current
first reach a maximum? (c) The circuit contains a single element
other than the generator. Is it a capacitor, an inductor, or a resis-
tor? Justify your answer. (d) What is the value of the capacitance,
inductance, or resistance, as the case may be?

68 A series RLC circuit is driven by a generator at a frequency
of 2000 Hz and an emf amplitude of 170 V. The inductance is
60.0 mH, the capacitance is 0.400 mF, and the resistance is 200 �.
(a) What is the phase constant in radians? (b) What is the current
amplitude?

69 A generator of frequency 3000 Hz drives a series RLC circuit
with an emf amplitude of 120 V.The resistance is 40.0 �, the capac-
itance is 1.60 mF, and the inductance is 850 mH. What are (a) the
phase constant in radians and (b) the current amplitude? (c) Is the
circuit capacitive, inductive, or in resonance?

70 A 45.0 mH inductor has a reactance of 1.30 k�. (a) What is its
operating frequency? (b) What is the capacitance of a capacitor with
the same reactance at that frequency? If the frequency is doubled,
what is the new reactance of (c) the inductor and (d) the capacitor?

71 An RLC circuit is driven by a generator with an emf
amplitude of 80.0 V and a current amplitude of 1.25 A. The
current leads the emf by 0.650 rad. What are the (a) impedance
and (b) resistance of the circuit? (c) Is the circuit inductive, capaci-
tive, or in resonance?

72 A series RLC circuit is driven in such a way that the maxi-
mum voltage across the inductor is 1.50 times the maximum volt-
age across the capacitor and 2.00 times the maximum voltage
across the resistor. (a) What is f for the circuit? (b) Is the circuit

���

(d) phase angle and (e) power factor? What are (f) the minimum
dissipation rate and the corresponding (g) phase angle and
(h) power factor?

r

R

Figure 31-35 Problems 58 
and 66.

(t)

i(t)

?

Figure 31-36 Problem 61.

••58 For Fig. 31-35, show that the av-
erage rate at which energy is dissipated
in resistance R is a maximum when R is
equal to the internal resistance r of the
ac generator. (In the text discussion we
tacitly assumed that r � 0.)

••59 In Fig. 31-7, R � 15.0 �, C �

4.70 mF, and L � 25.0 mH. The gener-
ator provides an emf with rms voltage

T3

T2

T1

Figure 31-37
Problem 64.
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82 A 1.50 mH inductor in an oscillating LC circuit stores a maxi-
mum energy of 10.0 mJ.What is the maximum current?

83 A generator with an adjustable frequency of oscillation is
wired in series to an inductor of L � 2.50 mH and a capacitor of 
C � 3.00 mF. At what frequency does the generator produce the
largest possible current amplitude in the circuit?

84 A series RLC circuit has a resonant frequency of 6.00 kHz.
When it is driven at 8.00 kHz, it has an impedance of 1.00 k� and a
phase constant of 45°.What are (a) R, (b) L, and (c) C for this circuit?

85 An LC circuit oscillates at a frequency of 10.4 kHz. (a) If
the capacitance is 340 mF, what is the inductance? (b) If the maxi-
mum current is 7.20 mA, what is the total energy in the circuit?
(c) What is the maximum charge on the capacitor?

86 When under load and operating at an rms voltage of 220 V, a
certain electric motor draws an rms current of 3.00 A. It has a re-
sistance of 24.0 � and no capacitive reactance.What is its inductive
reactance?

87 The ac generator in Fig. 31-39
supplies 120 V at 60.0 Hz. With the
switch open as in the diagram, the
current leads the generator emf by
20.0°. With the switch in position 1,
the current lags the generator emf
by 10.0°.When the switch is in posi-
tion 2, the current amplitude is 2.00
A.What are (a) R, (b) L, and (c) C?

88 In an oscillating LC circuit, L � 8.00 mH and C � 1.40 mF. At
time t � 0, the current is maximum at 12.0 mA. (a) What is the
maximum charge on the capacitor during the oscillations? (b) At
what earliest time t � 0 is the rate of change of energy in the capac-
itor maximum? (c) What is that maximum rate of change?

89 For a sinusoidally driven series RLC circuit, show that
over one complete cycle with period T (a) the energy stored in the
capacitor does not change; (b) the energy stored in the inductor
does not change; (c) the driving emf device supplies energy

and (d) the resistor dissipates energy .
(e) Show that the quantities found in (c) and (d) are equal.

90 What capacitance would you connect across a 1.30 mH
inductor to make the resulting oscillator resonate at 3.50 kHz?

91 A series circuit with resistor– inductor–capacitor combina-
tion R1, L1, C1 has the same resonant frequency as a second circuit
with a different combination R2, L2, C2. You now connect the two
combinations in series. Show that this new circuit has the same res-
onant frequency as the separate circuits.

92 Consider the circuit shown
in Fig. 31-40. With switch S1

closed and the other two switches
open, the circuit has a time con-
stant tC. With switch S2 closed
and the other two switches open,
the circuit has a time constant tL.
With switch S3 closed and the
other two switches open, the cir-
cuit oscillates with a period T.Show that 

93 When the generator emf in Sample Problem 31.07 is a maxi-
mum, what is the voltage across (a) the generator, (b) the resis-
tance, (c) the capacitance, and (d) the inductance? (e) By summing
these with appropriate signs, verify that the loop rule is satisfied.

T � 2p1tCtL.

(1
2T)RI2(1

2T)� mI cos f;
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inductive, capacitive, or in resonance? The resistance is 49.9 �,
and the current amplitude is 200 mA. (c) What is the amplitude
of the driving emf?

73 A capacitor of capacitance 158 mF and an inductor form an
LC circuit that oscillates at 8.15 kHz, with a current amplitude of
4.21 mA. What are (a) the inductance, (b) the total energy in the
circuit, and (c) the maximum charge on the capacitor?

74 An oscillating LC circuit has an inductance of 3.00 mH and a
capacitance of 10.0 mF. Calculate the (a) angular frequency and
(b) period of the oscillation. (c) At time t � 0, the capacitor is
charged to 200 mC and the current is zero. Roughly sketch the
charge on the capacitor as a function of time.

75 For a certain driven series RLC circuit, the maximum genera-
tor emf is 125 V and the maximum current is 3.20 A. If the current
leads the generator emf by 0.982 rad, what are the (a) impedance
and (b) resistance of the circuit? (c) Is the circuit predominantly
capacitive or inductive?

76 A 1.50 mF capacitor has a capacitive reactance of 12.0 �.
(a) What must be its operating frequency? (b) What will be the
capacitive reactance if the frequency is doubled?

77 In Fig. 31-38, a three-phase generator G produces electri-
cal power that is transmitted by means of three wires. The electric
potentials (each relative to a common reference level) are V1 �
A sin vdt for wire 1, V2 � A sin(vdt � 120°) for wire 2, and V3 �
A sin(vdt � 240°) for wire 3. Some types of industrial equipment
(for example, motors) have three terminals and are designed to be
connected directly to these three wires. To use a more conventional
two-terminal device (for example, a
lightbulb), one connects it to any two
of the three wires. Show that the po-
tential difference between any two of
the wires (a) oscillates sinusoidally
with angular frequency vd and (b)
has an amplitude of .

78 An electric motor connected to a 120 V, 60.0 Hz ac outlet does
mechanical work at the rate of 0.100 hp (1 hp � 746 W). (a) If the
motor draws an rms current of 0.650 A, what is its effective resis-
tance, relative to power transfer? (b) Is this the same as the resis-
tance of the motor’s coils, as measured with an ohmmeter with the
motor disconnected from the outlet?

79 (a) In an oscillating LC circuit, in terms of the maximum
charge Q on the capacitor, what is the charge there when the
energy in the electric field is 50.0% of that in the magnetic field?
(b) What fraction of a period must elapse following the time the
capacitor is fully charged for this condition to occur? 

80 A series RLC circuit is driven by an alternating source at a
frequency of 400 Hz and an emf amplitude of 90.0 V. The
resistance is 20.0 �, the capacitance is 12.1 mF, and the inductance
is 24.2 mH. What is the rms potential difference across (a) the
resistor, (b) the capacitor, and (c) the inductor? (d) What is 
the average rate at which energy is dissipated?

81 In a certain series RLC circuit being driven at a
frequency of 60.0 Hz, the maximum voltage across the inductor
is 2.00 times the maximum voltage across the resistor and 2.00
times the maximum voltage across the capacitor. (a) By what angle
does the current lag the generator emf? (b) If the maximum gener-
ator emf is 30.0 V, what should be the resistance of the circuit to
obtain a maximum current of 300 mA?
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32-1 GAUSS’ LAW FOR MAGNETIC FIELDS

After reading this module, you should be able to . . .

32.01 Identify that the simplest magnetic structure is a
magnetic dipole.

32.02 Calculate the magnetic flux � through a surface by
integrating the dot product of the magnetic field vector 

● The simplest magnetic structures are magnetic dipoles. Magnetic monopoles do not exist (as far as we know). Gauss’ law for
magnetic fields,

states that the net magnetic flux through any (closed) Gaussian surface is zero. It implies that magnetic monopoles do not exist.
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Learning Objectives

Key Idea

and the area vector (for patch elements) over the
surface.

32.03 Identify that the net magnetic flux through a Gaussian
surface (which is a closed surface) is zero.

dA
:

B
:

What Is Physics?
This chapter reveals some of the breadth of physics because it ranges from the
basic science of electric and magnetic fields to the applied science and engi-
neering of magnetic materials. First, we conclude our basic discussion of elec-
tric and magnetic fields, finding that most of the physics principles in the last
11 chapters can be summarized in only four equations, known as Maxwell’s
equations.

Second, we examine the science and engineering of magnetic materials. The
careers of many scientists and engineers are focused on understanding why some
materials are magnetic and others are not and on how existing magnetic materi-
als can be improved. These researchers wonder why Earth has a magnetic field
but you do not.They find countless applications for inexpensive magnetic materi-
als in cars, kitchens, offices, and hospitals, and magnetic materials often show up
in unexpected ways. For example, if you have a tattoo (Fig. 32-1) and undergo an
MRI (magnetic resonance imaging) scan, the large magnetic field used in the
scan may noticeably tug on your tattooed skin because some tattoo inks contain
magnetic particles. In another example, some breakfast cereals are advertised as
being “iron fortified” because they contain small bits of iron for you to ingest.
Because these iron bits are magnetic, you can collect them by passing a magnet
over a slurry of water and cereal.

Our first step here is to revisit Gauss’ law, but this time for magnetic fields.

Figure 32-1 Some of the inks used for tattoos contain magnetic particles. O
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Gauss’ law for magnetic fields is a formal way of saying that magnetic
monopoles do not exist. The law asserts that the net magnetic flux �B through
any closed Gaussian surface is zero:

(Gauss’ law for magnetic fields). (32-1)

Contrast this with Gauss’ law for electric fields,

(Gauss’ law for electric fields).

In both equations, the integral is taken over a
closed Gaussian surface. Gauss’ law for electric
fields says that this integral (the net electric flux
through the surface) is proportional to the net
electric charge qenc enclosed by the surface.
Gauss’ law for magnetic fields says that there
can be no net magnetic flux through the surface
because there can be no net “magnetic charge”
(individual magnetic poles) enclosed by the sur-
face. The simplest magnetic structure that can
exist and thus be enclosed by a Gaussian surface
is a dipole, which consists of both a source and a
sink for the field lines. Thus, there must always
be as much magnetic flux into the surface as out
of it, and the net magnetic flux must always be
zero.

Gauss’ law for magnetic fields holds for
structures more complicated than a magnetic di-
pole, and it holds even if the Gaussian surface does not enclose the entire struc-
ture. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no poles, and
we can easily conclude that the net magnetic flux through it is zero. Gaussian sur-
face I is more difficult. It may seem to enclose only the north pole of the magnet
because it encloses the label N and not the label S. However, a south pole must be
associated with the lower boundary of the surface because magnetic field lines
enter the surface there. (The enclosed section is like one piece of the broken bar
magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic dipole, and the
net flux through the surface is zero.
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Richard Megna/Fundamental Photographs

Gauss’ Law for Magnetic Fields
Figure 32-2 shows iron powder that has been sprinkled onto a transparent sheet
placed above a bar magnet. The powder grains, trying to align themselves with
the magnet’s magnetic field, have fallen into a pattern that reveals the field. One
end of the magnet is a source of the field (the field lines diverge from it) and the
other end is a sink of the field (the field lines converge toward it). By convention,
we call the source the north pole of the magnet and the sink the south pole, and
we say that the magnet, with its two poles, is an example of a magnetic dipole.

Suppose we break a bar magnet into pieces the way we can break a piece of
chalk (Fig. 32-3). We should, it seems, be able to isolate a single magnetic pole,
called a magnetic monopole. However, we cannot—not even if we break the
magnet down to its individual atoms and then to its electrons and nuclei. Each
fragment has a north pole and a south pole.Thus:

942 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

Figure 32-2 A bar magnet is a magnetic dipole.
The iron filings suggest the magnetic field
lines. (Colored light fills the background.)

Figure 32-3 If you break a magnet,
each fragment becomes a sepa-
rate magnet, with its own north
and south poles.
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The simplest magnetic structure that can exist is a magnetic dipole. Magnetic
monopoles do not exist (as far as we know).

Figure 32-4 The field lines for the magnetic
field of a short bar magnet.The red
curves represent cross sections of closed,
three-dimensional Gaussian surfaces.
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Checkpoint 1
The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform
and perpendicular magnetic fields through those faces; the units of A and B are arbi-
trary but consistent. Rank the surfaces according to the magnitudes of the magnetic
flux through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-2 INDUCED MAGNETIC FIELDS

After reading this module, you should be able to . . .

32.04 Identify that a changing electric flux induces a magnetic field.
32.05 Apply Maxwell’s law of induction to relate the magnetic

field induced around a closed loop to the rate of change of
electric flux encircled by the loop.

32.06 Draw the field lines for an induced magnetic field inside

a capacitor with parallel circular plates that are being
charged, indicating the orientations of the vectors for the
electric field and the magnetic field.

32.07 For the general situation in which magnetic fields can
be induced, apply the Ampere–Maxwell (combined) law.

Learning Objectives

● A changing electric flux induces a magnetic field .
Maxwell’s law,

(Maxwell’s law of induction),

relates the magnetic field induced along a closed loop to the
changing electric flux �E through the loop. 
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d�E
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B
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● Ampere’s law, � , gives the magnetic field
generated by a current ienc encircled by a closed loop.
Maxwell’s law and Ampere’s law can be written as the single
equation

(Ampere–Maxwell law).
 B
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� ds: � m0´0
d�E
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� m0ienc

B
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Key Ideas

Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s

�B
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� ds: � �
d�B

dt



law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electricB
:
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d�E

dt
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Figure 32-5 (a) A circular parallel-plate
capacitor, shown in side view, is being
charged by a constant current i. (b) A view
from within the capacitor, looking toward
the plate at the right in (a).The electric
field is uniform, is directed into the page
(toward the plate), and grows in magnitude
as the charge on the capacitor increases.
The magnetic field induced by this
changing electric field is shown at four
points on a circle with a radius r less than
the plate radius R.
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(b)

(a)
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i i

2
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E

E

B

B

B

B

The changing of the
electric field between
the plates creates a
magnetic field.

flux �E in the region encircled by that loop.
Charging a Capacitor. As an example of this sort of induction, we con-

sider the charging of a parallel-plate capacitor with circular plates. (Although
we shall focus on this arrangement, a changing electric flux will always induce
a magnetic field whenever it occurs.) We assume that the charge on our capac-
itor (Fig. 32-5a) is being increased at a steady rate by a constant current i in
the connecting wires. Then the electric field magnitude between the plates
must also be increasing at a steady rate.

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between
the plates. The electric field is directed into the page. Let us consider a circu-
lar loop through point 1 in Figs. 32-5a and b, a loop that is concentric with the
capacitor plates and has a radius smaller than that of the plates. Because the
electric field through the loop is changing, the electric flux through the loop
must also be changing. According to Eq. 32-3, this changing electric flux in-
duces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such
a loop, directed as shown. This magnetic field has the same magnitude at every
point around the loop and thus has circular symmetry about the central axis of the
capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop—say, through point 2 outside the plates
in Figs. 32-5a and b—we find that a magnetic field is induced around that loop
as well. Thus, while the electric field is changing, magnetic fields are induced
between the plates, both inside and outside the gap. When the electric field stops
changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways.
First, Eq. 32-3 has the two extra symbols m0 and �0, but they appear only because
we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean-
ing that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations. To
see this opposition, examine Fig. 32-6, in which an increasing magnetic field ,
directed into the page, induces an electric field . The induced field is counter-
clockwise, opposite the induced magnetic field in Fig. 32-5b.

Ampere–Maxwell Law
Now recall that the left side of Eq. 32-3, the integral of the dot product 
around a closed loop, appears in another equation—namely,Ampere’s law:

(Ampere’s law), (32-4)
 B
:

� ds: � m0ienc

B
:

� ds:

B
:

E
:

E
:

B
:

B
:

E
:

B
:

Figure 32-6 A uniform magnetic field in a
circular region.The field, directed into the
page, is increasing in magnitude.The electric
field induced by the changing magnetic
field is shown at four points on a circle con-
centric with the circular region. Compare
this situation with that of Fig. 32-5b.

E
:

B
:

R r

E

E

E

E

B

B

The induced E direction here is opposite the
induced B direction in the preceding figure.



94532-2 INDUCED MAGNETIC FIELDS

where ienc is the current encircled by the closed loop.Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material
(that is, by a current and by a changing electric field) give the field in exactly the
same form.We can combine the two equations into the single equation

(Ampere–Maxwell law). (32-5)

When there is a current but no change in electric flux (such as with a wire
carrying a constant current), the first term on the right side of Eq. 32-5 is zero,
and so Eq. 32-5 reduces to Eq. 32-4,Ampere’s law.When there is a change in elec-
tric flux but no current (such as inside or outside the gap of a charging capacitor),
the second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to
Eq. 32-3, Maxwell’s law of induction.


 B
:

� ds: � m0´0
d�E

dt
� m0 ienc

B
:

Checkpoint 2
The figure shows graphs of the electric field magnitude
E versus time t for four uniform electric fields, all con-
tained within identical circular regions as in Fig. 32-5b.
Rank the fields according to the magnitudes of the
magnetic fields they induce at the edge of the region,
greatest first.

a

b

c

d

E

t

Due to the circular symmetry of the plates, we can also as-
sume that has the same magnitude at every point around
the loop. Thus, B can be taken outside the integral on the
right side of the above equation.The integral that remains is

, which simply gives the circumference 2pr of the loop.
The left side of Eq. 32-6 is then (B)(2pr).

Right side of Eq. 32-6: We assume that the electric field 
is uniform between the capacitor plates and directed per-

pendicular to the plates. Then the electric flux �E through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-6 is m0´0 d(EA)/dt.

Combining results: Substituting our results for the left and
right sides into Eq. 32-6, we get

Because A is a constant,we write d(EA) as A dE; so we have

(32-7)

The area A that is encircled by the Amperian loop within
the electric field is the full area pr2 of the loop because the
loop’s radius r is less than (or equal to) the plate radius R.
Substituting pr2 for A in Eq. 32-7 leads to, for r � R,

(Answer) (32-8)B �
m0´0r

2
dE
dt

.

(B)(2pr) � m0�0 A
dE
dt

.

(B)(2pr) � m0´0
d(EA)

dt
.

E
:

� ds

B
:

Sample Problem 32.01 Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r � R.

KEY IDEAS

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5. There is no current between the capacitor plates
of Fig. 32-5, but the electric flux there is changing. Thus,
Eq. 32-5 reduces to

(32-6)

We shall separately evaluate the left and right sides of this
equation.

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r � R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r � R—that is, inside the
capacitor.The magnetic field at all points along the loop is
tangent to the loop, as is the path element . Thus, and

are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here).Then


 B
:

� ds: � 
 B ds cos 0� � 
 B ds.

ds:
B
:

ds:
B
:


 B
:

� ds: � m0´0
d�E

dt
.
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loop in the electric field is not the full area pr 2 of the loop.
Rather, A is only the plate area pR2.

Substituting pR2 for A in Eq. 32-7 and solving the result
for B give us, for r � R,

(Answer) (32-9)

This equation tells us that, outside the capacitor, B
decreases with increased radial distance r, from a maximum
value at the plate edges (where r � R). By substituting r �
R into Eqs. 32-8 and 32-9, you can show that these equations
are consistent; that is, they give the same maximum value of
B at the plate radius.

The magnitude of the induced magnetic field calculated in
(b) is so small that it can scarcely be measured with simple ap-
paratus. This is in sharp contrast to the magnitudes of induced
electric fields (Faraday’s law), which can be measured easily.
This experimental difference exists partly because induced
emfs can easily be multiplied by using a coil of many turns. No
technique of comparable simplicity exists for multiplying in-
duced magnetic fields. In any case, the experiment suggested
by this sample problem has been done, and the presence of the
induced magnetic fields has been verified quantitatively.

B �
m0´0R2

2r
dE
dt

.

This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r � R/5 � 11.0 mm
and dE/dt � 1.50 � 1012 V/m 	s.

Calculation: From the answer to (a), we have

(Answer)

(c) Derive an expression for the induced magnetic field for
the case r � R.

Calculation: Our procedure is the same as in (a) except we
now use an Amperian loop with a radius r that is greater
than the plate radius R, to evaluate B outside the capacitor.
Evaluating the left and right sides of Eq. 32-6 again leads to
Eq. 32-7. However, we then need this subtle point: The elec-
tric field exists only between the plates, not outside the
plates. Thus, the area A that is encircled by the Amperian

� 9.18 � 10�8 T.

� (11.0 � 10�3 m)(1.50 � 1012 V/m 	 s)

� 1
2 (4p � 10�7 T 	 m/A)(8.85 � 10�12 C2/N 	 m2)

B �
1
2
m0´0r

dE
dt

Additional examples, video, and practice available at WileyPLUS

32-3 DISPLACEMENT CURRENT

After reading this module, you should be able to . . .

32.08 Identify that in the Ampere–Maxwell law, the contribution
to the induced magnetic field by the changing electric flux
can be attributed to a fictitious current (“displacement cur-
rent”) to simplify the expression.

32.09 Identify that in a capacitor that is being charged or
discharged, a displacement current is said to be spread uni-
formly over the plate area, from one plate to the other.

32.10 Apply the relationship between the rate of change of an
electric flux and the associated displacement current.

32.11 For a charging or discharging capacitor, relate
the amount of displacement current to the amount of actual

current and identify that the displacement current exists only
when the electric field within the capacitor is changing.

32.12 Mimic the equations for the magnetic field inside and
outside a wire with real current to write (and apply) the
equations for the magnetic field inside and outside a
region of displacement current.

32.13 Apply the Ampere–Maxwell law to calculate the
magnetic field of a real current and a displacement current.

32.14 For a charging or discharging capacitor with parallel
circular plates, draw the magnetic field lines due to the
displacement current.

32.15 List Maxwell’s equations and the purpose of each.

Learning Objectives

● We define the fictitious displacement current due to a
changing electric field as

● The Ampere–Maxwell law then becomes

(Ampere–Maxwell law),
 B
:

� ds: � m0id,enc � m0ienc

id � ´0
d�E

dt
.

where id,enc is the displacement current encircled by the
integration loop. 

● The idea of a displacement current allows us to retain the
notion of continuity of current through a capacitor. However,
displacement current is not a transfer of charge.

● Maxwell’s equations, displayed in Table 32-1, summarize
electromagnetism and form its foundation, including optics.

Key Ideas
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Displacement Current
If you compare the two terms on the right side of Eq. 32-5, you will see that the
product ´0(d�E/dt) must have the dimension of a current. In fact, that product has
been treated as being a fictitious current called the displacement current id:

(displacement current). (32-10)

“Displacement” is poorly chosen in that nothing is being displaced, but we are
stuck with the word. Nevertheless, we can now rewrite Eq. 32-5 as

(Ampere–Maxwell law), (32-11)

in which id,enc is the displacement current that is encircled by the integration loop.
Let us again focus on a charging capacitor with circular plates, as in

Fig. 32-7a.The real current i that is charging the plates changes the electric field 
between the plates. The fictitious displacement current id between the plates is
associated with that changing field . Let us relate these two currents.

The charge q on the plates at any time is related to the magnitude E of the
field between the plates at that time and the plate area A by Eq. 25-4:

q � ´0AE. (32-12)

To get the real current i, we differentiate Eq. 32-12 with respect to time, finding

(32-13)

To get the displacement current id, we can use Eq. 32-10. Assuming that the elec-
tric field between the two plates is uniform (we neglect any fringing), we canE

:

dq
dt

� i � ´0 A
dE
dt

.

E
:

E
:


 B
:

� ds: � m0 id,enc � m0 ienc

id � ´0
d�E

dt

(b)

(c)

id

–

BB

+ –

i

i i

+

i

(d) –+

(a)

B

BB B

Before charging, there
is no magnetic field.

After charging, there
is no magnetic field.

During charging, magnetic 
field is created by both 
the real and fictional currents. 

During charging, the 
right-hand rule works for both 
the real and fictional currents.

A

Figure 32-7 (a) Before and (d) after the plates
are charged, there is no magnetic field. (b)
During the charging, magnetic field is created
by both the real current and the (fictional)
displacement current. (c) The same right-
hand rule works for both currents to give the
direction of the magnetic field.



replace the electric flux �E in that equation with EA.Then Eq. 32-10 becomes

(32-14)

Same Value. Comparing Eqs. 32-13 and 32-14, we see that the real current i
charging the capacitor and the fictitious displacement current id between the
plates have the same value:

id � i (displacement current in a capacitor). (32-15)

Thus, we can consider the fictitious displacement current id to be simply a con-
tinuation of the real current i from one plate, across the capacitor gap, to the
other plate. Because the electric field is uniformly spread over the plates,
the same is true of this fictitious displacement current id, as suggested by the
spread of current arrows in Fig. 32-7b. Although no charge actually moves across
the gap between the plates, the idea of the fictitious current id can help us to
quickly find the direction and magnitude of an induced magnetic field, as follows.

Finding the Induced Magnetic Field
In Chapter 29 we found the direction of the magnetic field produced by a real
current i by using the right-hand rule of Fig. 29-5. We can apply the same rule to
find the direction of an induced magnetic field produced by a fictitious displace-
ment current id, as is shown in the center of Fig. 32-7c for a capacitor.

We can also use id to find the magnitude of the magnetic field induced by
a charging capacitor with parallel circular plates of radius R. We simply consider
the space between the plates to be an imaginary circular wire of radius R carrying
the imaginary current id. Then, from Eq. 29-20, the magnitude of the magnetic
field at a point inside the capacitor at radius r from the center is

(inside a circular capacitor). (32-16)

Similarly, from Eq. 29-17, the magnitude of the magnetic field at a point outside
the capacitor at radius r is

(outside a circular capacitor). (32-17)B �
m0 id

2pr

B � � m0 id

2pR2 �r

id � ´0
d�E

dt
� ´0

d(EA)
dt

� ´0A
dE
dt

.
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Checkpoint 3
The figure is a view of one plate of a parallel-plate
capacitor from within the capacitor.The dashed lines
show four integration paths (path b follows the edge of
the plate). Rank the paths according to the magnitude
of along the paths during the discharging of
the capacitor, greatest first.

� B
:

� ds:

a

b

c

d

KEY IDEA

A magnetic field can be set up by a current and by induction
due to a changing electric flux (Eq. 32-5). Between the
plates in Fig. 32-5, the current is zero and we can account for

Sample Problem 32.02 Treating a changing electric field as a displacement current

A circular parallel-plate capacitor with plate radius R is
being charged with a current i.

(a) Between the plates, what is the magnitude of , in
terms of m0 and i, at a radius r R/5 from their center?�

� B
:

� ds:
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Additional examples, video, and practice available at WileyPLUS

Maxwell’s Equations
Equation 32-5 is the last of the four fundamental equations of electromagnetism,
called Maxwell’s equations and displayed in Table 32-1. These four equations

the changing electric flux with a fictitious displacement cur-
rent id. Then integral is given by Eq. 32-11, but
because there is no real current i between the capacitor
plates, the equation reduces to

(32-18)

Calculations: Because we want to evaluate at
radius r R/5 (within the capacitor), the integration loop en-
circles only a portion id,enc of the total displacement current id.
Let’s assume that id is uniformly spread over the full plate
area. Then the portion of the displacement current encircled
by the loop is proportional to the area encircled by the loop:

This gives us

Substituting this into Eq. 32-18, we obtain

(32-19)

Now substituting id � i (from Eq. 32-15) and r � R/5 into
Eq. 32-19 leads to

(Answer)
 B
:

� ds: � m0i
(R/5)2

R2 �
m0i
25

.


 B
:

� ds: � m0 id
pr2

pR2 .

id,enc � id
pr2

pR2 .

�encircled displacement
current id,enc

�
�total displacement

current id
�

�
encircled area pr 2

full plate area pR2 .

�
� B

:
� ds:


 B
:

� ds: � m0id,enc.

� B
:

� ds:
(b) In terms of the maximum induced magnetic field, what is
the magnitude of the magnetic field induced at r � R/5,
inside the capacitor?

KEY IDEA

Because the capacitor has parallel circular plates, we can
treat the space between the plates as an imaginary wire of
radius R carrying the imaginary current id. Then we can use
Eq. 32-16 to find the induced magnetic field magnitude B at
any point inside the capacitor.

Calculations: At r � R/5, Eq. 32-16 yields

(32-20)

From Eq. 32-16, the maximum field magnitude Bmax within
the capacitor occurs at r � R. It is

(32-21)

Dividing Eq. 32-20 by Eq. 32-21 and rearranging the result,
we find that the field magnitude at r � R/5 is

(Answer)

We should be able to obtain this result with a little rea-
soning and less work. Equation 32-16 tells us that inside the
capacitor, B increases linearly with r. Therefore, a point the
distance out to the full radius R of the plates, where Bmax

occurs, should have a field B that is .1
5Bmax

1
5

B � 1
5Bmax.

Bmax � � m0id

2pR2 �R �
m0id

2pR
.

B � � m0id

2pR2 �r �
m0id(R/5)

2pR2 �
m0id

10pR
.

Table 32-1 Maxwell’s Equationsa

Name Equation

Gauss’ law for electricity Relates net electric flux to net enclosed electric charge

Gauss’ law for magnetism Relates net magnetic flux to net enclosed magnetic charge

Faraday’s law Relates induced electric field to changing magnetic flux

Ampere–Maxwell law Relates induced magnetic field to changing electric flux 
and to current

aWritten on the assumption that no dielectric or magnetic materials are present.
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:

� ds: � m0´0
d�E

dt
� m0ienc


 E
:

� ds: � �
d�B

dt


 B
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� dA
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� 0


 E
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� dA
:

� qenc/´0
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32-4 MAGNETS

After reading this module, you should be able to . . .

32.16 Identify lodestones.
32.17 In Earth’s magnetic field, identify that the field 

is approximately that of a dipole and also identify in 

which hemisphere the north geomagnetic pole is 
located.

32.18 Identify field declination and field inclination.

Learning Objectives

● Earth is approximately a magnetic dipole with a dipole
axis somewhat off the rotation axis and with the south pole
in the Northern Hemisphere.

● The local field direction is given by the field declination 
(the angle left or right from geographic north) and the field
inclination (the angle up or down from the horizontal).

Key Ideas

explain a diverse range of phenomena, from why a compass needle points north
to why a car starts when you turn the ignition key.They are the basis for the func-
tioning of such electromagnetic devices as electric motors, television transmitters
and receivers, telephones, scanners, radar, and microwave ovens.

Maxwell’s equations are the basis from which many of the equations you
have seen since Chapter 21 can be derived.They are also the basis of many of the
equations you will see in Chapters 33 through 36 concerning optics.

Figure 32-8 Earth’s magnetic field repre-
sented as a dipole field.The dipole axis
MM makes an angle of 11.5° with Earth’s
rotational axis RR.The south pole of the
dipole is in Earth’s Northern Hemisphere.
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N
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Geomagnetic
north pole 

Geographic
north pole 

B

For Earth, the south pole
of the dipole is actually
in the north.

Magnets
The first known magnets were lodestones, which are stones that have been mag-
netized (made magnetic) naturally.When the ancient Greeks and ancient Chinese
discovered these rare stones, they were amused by the stones’ ability to attract
metal over a short distance, as if by magic. Only much later did they learn to use
lodestones (and artificially magnetized pieces of iron) in compasses to determine
direction.

Today, magnets and magnetic materials are ubiquitous. Their magnetic prop-
erties can be traced to their atoms and electrons. In fact, the inexpensive magnet
you might use to hold a note on the refrigerator door is a direct result of the
quantum physics taking place in the atomic and subatomic material within the
magnet. Before we explore some of this physics, let’s briefly discuss the largest
magnet we commonly use—namely, Earth itself.

The Magnetism of Earth
Earth is a huge magnet; for points near Earth’s surface, its magnetic field can be 
approximated as the field of a huge bar magnet—a magnetic dipole—that strad-
dles the center of the planet. Figure 32-8 is an idealized symmetric depiction of
the dipole field, without the distortion caused by passing charged particles from
the Sun.

Because Earth’s magnetic field is that of a magnetic dipole, a magnetic dipole
moment is associated with the field. For the idealized field of Fig. 32-8, the mag-
nitude of is 8.0 1022 J/T and the direction of makes an angle of 11.5° with
the rotation axis (RR) of Earth.The dipole axis (MM in Fig. 32-8) lies along and
intersects Earth’s surface at the geomagnetic north pole off the northwest coast of
Greenland and the geomagnetic south pole in Antarctica. The lines of the mag-
netic field generally emerge in the Southern Hemisphere and reenter Earth in
the Northern Hemisphere. Thus, the magnetic pole that is in Earth’s Northern
Hemisphere and known as a “north magnetic pole” is really the south pole of
Earth’s magnetic dipole.

B
:

m:
m:�m:

m:



The direction of the magnetic field at any location on Earth’s surface is com-
monly specified in terms of two angles. The field declination is the angle (left or
right) between geographic north (which is toward 90° latitude) and the horizon-
tal component of the field. The field inclination is the angle (up or down) be-
tween a horizontal plane and the field’s direction.

Measurement. Magnetometers measure these angles and determine the field
with much precision. However, you can do reasonably well with just a compass
and a dip meter. A compass is simply a needle-shaped magnet that is mounted so
it can rotate freely about a vertical axis. When it is held in a horizontal plane, the
north-pole end of the needle points, generally, toward the geomagnetic north
pole (really a south magnetic pole, remember).The angle between the needle and
geographic north is the field declination. A dip meter is a similar magnet that can
rotate freely about a horizontal axis. When its vertical plane of rotation is aligned
with the direction of the compass, the angle between the meter’s needle and the
horizontal is the field inclination.

At any point on Earth’s surface, the measured magnetic field may differ
appreciably, in both magnitude and direction, from the idealized dipole field of
Fig. 32-8. In fact, the point where the field is actually perpendicular to Earth’s
surface and inward is not located at the geomagnetic north pole off Greenland as
we would expect; instead, this so-called dip north pole is located in the Queen
Elizabeth Islands in northern Canada, far from Greenland.

In addition, the field observed at any location on the surface of Earth varies
with time, by measurable amounts over a period of a few years and by substantial
amounts over, say, 100 years. For example, between 1580 and 1820 the direction
indicated by compass needles in London changed by 35°.

In spite of these local variations, the average dipole field changes only slowly
over such relatively short time periods. Variations over longer periods can be
studied by measuring the weak magnetism of the ocean floor on either side of the
Mid-Atlantic Ridge (Fig. 32-9). This floor has been formed by molten magma
that oozed up through the ridge from Earth’s interior, solidified, and was pulled
away from the ridge (by the drift of tectonic plates) at the rate of a few centime-
ters per year. As the magma solidified, it became weakly magnetized with its
magnetic field in the direction of Earth’s magnetic field at the time of solidifica-
tion. Study of this solidified magma across the ocean floor reveals that Earth’s
field has reversed its polarity (directions of the north pole and south pole) about
every million years. Theories explaining the reversals are still in preliminary
stages. In fact, the mechanism that produces Earth’s magnetic field is only
vaguely understood.

95132-4 MAGNETS

Figure 32-9 A magnetic profile of the seafloor on either side of the Mid-Atlantic Ridge.The
seafloor, extruded through the ridge and spreading out as part of the tectonic drift system,
displays a record of the past magnetic history of Earth’s core.The direction of the mag-
netic field produced by the core reverses about every million years.
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● An electron has an intrinsic angular momentum called spin
angular momentum (or spin) , with which an intrinsic spin
magnetic dipole moment is associated:

● For a measurement along a z axis, the component Sz can
have only the values given by

where h (� 6.63 � 10�34 J	s) is the Planck constant. 

● Similarly,

where mB is the Bohr magneton:

● The energy U associated with the orientation of the spin
magnetic dipole moment in an external magnetic field is

U � �m:s � B
:

ext � �ms,zBext.

B
:

ext

mB �
eh

4pm
� 9.27 � 10�24 J /T.

ms,z � �
eh

4pm
� �mB,

Sz � ms
h

2p
,   for ms � � 1

2,

m:s � �
e
m

S
:

.

m:s

S
:

● An electron in an atom has an additional angular 
momentum called its orbital angular momentum , 
with which an orbital magnetic dipole moment is
associated:

● Orbital angular momentum is quantized and can have only
measured values given by

● The associated magnetic dipole moment is given by

● The energy U associated with the orientation of the 
orbital magnetic dipole moment in an external magnetic
field is

U � �m:orb � B
:

ext � �morb,zBext.

B
:

ext

morb,z � �m�

eh
4pm

� �m�mB.

 for m� � 0, �1, �2, 			 , � (limit).

Lorb,z � m�

h
2p

,

m:orb � �
e

2m
L
:

orb.
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After reading this module, you should be able to . . .

32.19 Identify that a spin angular momentum (usually 
simply called spin) and a spin magnetic dipole moment 

are intrinsic properties of electrons (and also protons
and neutrons).

32.20 Apply the relationship between the spin vector and
the spin magnetic dipole moment vector .m:s

S
:

m:s

S
:

32.28 Apply the relationship between the orbital 
angular momentum orb and the orbital magnetic 
dipole moment orb.m:

L
:

Learning Objectives

32.21 Identify that and cannot be observed (measured);
only their components on an axis of measurement (usually
called the z axis) can be observed.

32.22 Identify that the observed components Sz and ms,z are
quantized and explain what that means.

32.23 Apply the relationship between the component Sz and
the spin magnetic quantum number ms, specifying the
allowed values of ms.

32.24 Distinguish spin up from spin down for the spin orien-
tation of an electron.

32.25 Determine the z components ms,z of the spin magnetic
dipole moment, both as a value and in terms of the Bohr
magneton mB.

32.26 If an electron is in an external magnetic field, determine
the orientation energy U of its spin magnetic dipole
moment .

32.27 Identify that an electron in an atom has an orbital
angular momentum orb and an orbital magnetic dipole
moment orb.m:

L
:

m:s

m:sS
:

32.29 Identity that orb and orb cannot be observed but 
their components Lorb,z and morb,z on a z (measurement)
axis can.

32.30 Apply the relationship between the component 
Lorb,z of the orbital angular momentum and the orbital
magnetic quantum number , specifying the allowed
values of .

32.31 Determine the z components morb,z of the orbital mag-
netic dipole moment, both as a value and in terms of the
Bohr magneton mB.

32.32 If an atom is in an external magnetic field, determine
the orientation energy U of the orbital magnetic dipole
moment orb.

32.33 Calculate the magnitude of the magnetic moment of a
charged particle moving in a circle or a ring of uniform
charge rotating like a merry-go-round at a constant angular
speed around a central axis.

32.34 Explain the classical loop model for an orbiting 
electron and the forces on such a loop in a nonuniform
magnetic field.

32.35 Distinguish diamagnetism, paramagnetism, and
ferromagnetism.
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m:L
:



Magnetism and Electrons
Magnetic materials, from lodestones to tattoos, are magnetic because of the elec-
trons within them.We have already seen one way in which electrons can generate
a magnetic field: Send them through a wire as an electric current, and their motion
produces a magnetic field around the wire.There are two more ways, each involving
a magnetic dipole moment that produces a magnetic field in the surrounding space.
However, their explanation requires quantum physics that is beyond the physics
presented in this book, and so here we shall only outline the results.

Spin Magnetic Dipole Moment
An electron has an intrinsic angular momentum called its spin angular momen-
tum (or just spin) ; associated with this spin is an intrinsic spin magnetic
dipole moment . (By intrinsic, we mean that and are basic characteristics
of an electron, like its mass and electric charge.) Vectors and are related by

(32-22)

in which e is the elementary charge (1.60 � 10�19 C) and m is the mass of an electron
(9.11 � 10�31 kg).The minus sign means that and are oppositely directed.

Spin is different from the angular momenta of Chapter 11 in two respects:

1. Spin itself cannot be measured. However, its component along any axis can
be measured.

2. A measured component of is quantized, which is a general term that means
it is restricted to certain values. A measured component of can have only
two values, which differ only in sign.

Let us assume that the component of spin is measured along the z axis of a
coordinate system. Then the measured component Sz can have only the two
values given by

, (32-23)

where ms is called the spin magnetic quantum number and h (� 6.63 � 10�34 J 	s)
is the Planck constant, the ubiquitous constant of quantum physics. The signs
given in Eq. 32-23 have to do with the direction of Sz along the z axis. When Sz is
parallel to the z axis, ms is and the electron is said to be spin up. When Sz is�1

2
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antiparallel to the z axis, ms is and the electron is said to be spin down.
The spin magnetic dipole moment of an electron also cannot be measured;

only its component along any axis can be measured, and that component too is
quantized, with two possible values of the same magnitude but different signs.We
can relate the component ms,z measured on the z axis to Sz by rewriting Eq. 32-22
in component form for the z axis as

Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.The quantity on the right is the Bohr magneton mB:

(Bohr magneton). (32-25)mB �
eh

4pm
� 9.27 � 10�24 J/T

ms,z � �
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,
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Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

� 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED,
reveals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

Energy. When an electron is placed in an external magnetic field , an
energy U can be associated with the orientation of the electron’s spin magnetic
dipole moment just as an energy can be associated with the orientation of the
magnetic dipole moment of a current loop placed in . From Eq. 28-38, the
orientation energy for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated
magnetic dipole field as in Fig. 32-10.Although we use the word “spin” here, elec-
trons do not spin like tops. How, then, can something have angular momentum
without actually rotating? Again, we would need quantum physics to provide the
answer.

Protons and neutrons also have an intrinsic angular momentum called spin
and an associated intrinsic spin magnetic dipole moment. For a proton those two
vectors have the same direction, and for a neutron they have opposite directions.
We shall not examine the contributions of these dipole moments to the magnetic
fields of atoms because they are about a thousand times smaller than that due to
an electron.
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Checkpoint 4
The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is at
lower energy?
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Sz

Figure 32-10 The spin , spin magnetic dipole
moment , and magnetic dipole field of
an electron represented as a microscopic
sphere.
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For an electron, the spin
is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.
Orbital angular momentum cannot be measured; only its component

along any axis can be measured, and that component is quantized. The compo-
nent along, say, a z axis can have only the values given by

(32-29)

in which is called the orbital magnetic quantum number and “limit” refers to
some largest allowed integer value for . The signs in Eq. 32-29 have to do with
the direction of Lorb,z along the z axis.
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The orbital magnetic dipole moment of an electron also cannot itself be
measured; only its component along an axis can be measured, and that compo-
nent is quantized. By writing Eq. 32-28 for a component along the same z axis
as above and then substituting for Lorb,z from Eq. 32-29, we can write the z
component morb,z of the orbital magnetic dipole moment as

(32-30)

and, in terms of the Bohr magneton, as

(32-31)

When an atom is placed in an external magnetic field , an energy U can be
associated with the orientation of the orbital magnetic dipole moment of each
electron in the atom. Its value is

(32-32)

where the z axis is taken in the direction of .
Although we have used the words “orbit” and “orbital” here, electrons do not

orbit the nucleus of an atom like planets orbiting the Sun. How can an electron
have an orbital angular momentum without orbiting in the common meaning of
the term? Once again, this can be explained only with quantum physics.

Loop Model for Electron Orbits
We can obtain Eq. 32-28 with the nonquantum derivation that follows, in which
we assume that an electron moves along a circular path with a radius that is much
larger than an atomic radius (hence the name “loop model”). However, the
derivation does not apply to an electron within an atom (for which we need
quantum physics).

We imagine an electron moving at constant speed v in a circular path of
radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative
charge of the electron is equivalent to a conventional current i (of positive
charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the or-
bital magnetic dipole moment of such a current loop is obtained from Eq. 28-35
with N � 1:

morb � iA, (32-33)

where A is the area enclosed by the loop. The direction of this magnetic dipole
moment is, from the right-hand rule of Fig. 29-21, downward in Fig. 32-11.

To evaluate Eq. 32-33, we need the current i. Current is, generally, the rate
at which charge passes some point in a circuit. Here, the charge of magnitude
e takes a time T � 2pr/v to circle from any point back through that point, so

(32-34)

Substituting this and the area A � pr 2 of the loop into Eq. 32-33 gives us

(32-35)

To find the electron’s orbital angular momentum , we use Eq. 11-18,
( ). Because and are perpendicular, has the magnitude

Lorb � mrv sin 90° � mrv. (32-36)

The vector is directed upward in Fig. 32-11 (see Fig. 11-12). CombiningL
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Figure 32-11 An electron moving at constant
speed v in a circular path of radius r that
encloses an area A.The electron has an
orbital angular momentum and an
associated orbital magnetic dipole moment

.A clockwise current i (of positive
charge) is equivalent to the counterclock-
wise circulation of the negatively charged
electron.
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Eqs. 32-35 and 32-36, generalizing to a vector formulation, and indicating the
opposite directions of the vectors with a minus sign yield

which is Eq. 32-28. Thus, by “classical” (nonquantum) analysis we have ob-
tained the same result, in both magnitude and direction, given by quantum
physics. You might wonder, seeing as this derivation gives the correct result for
an electron within an atom, why the derivation is invalid for that situation. The
answer is that this line of reasoning yields other results that are contradicted by
experiments.

Loop Model in a Nonuniform Field
We continue to consider an electron orbit as a current loop, as we did in
Fig. 32-11. Now, however, we draw the loop in a nonuniform magnetic field as
shown in Fig. 32-12a. (This field could be the diverging field near the north pole
of the magnet in Fig. 32-4.) We make this change to prepare for the next several
modules, in which we shall discuss the forces that act on magnetic materials when
the materials are placed in a nonuniform magnetic field. We shall discuss these
forces by assuming that the electron orbits in the materials are tiny current loops
like that in Fig. 32-12a.

Here we assume that the magnetic field vectors all around the electron’s
circular path have the same magnitude and form the same angle with the verti-
cal, as shown in Figs. 32-12b and d. We also assume that all the electrons in an
atom move either counterclockwise (Fig. 32-12b) or clockwise (Fig. 32-12d).
The associated conventional current i around the current loop and the orbital
magnetic dipole moment produced by i are shown for each direction of
motion.

Figures 32-12c and e show diametrically opposite views of a length element
of the loop that has the same direction as i, as seen from the plane of the orbit.

Also shown are the field and the resulting magnetic force on . Recall
that a current along an element in a magnetic field experiences a mag-
netic force as given by Eq. 28-28:

(32-37)

On the left side of Fig. 32-12c, Eq. 32-37 tells us that the force is directed
upward and rightward. On the right side, the force is just as large and is directed
upward and leftward. Because their angles are the same, the horizontal compo-
nents of these two forces cancel and the vertical components add.The same is true
at any other two symmetric points on the loop. Thus, the net force on the current
loop of Fig. 32-12b must be upward. The same reasoning leads to a downward net
force on the loop in Fig. 32-12d. We shall use these two results shortly when we ex-
amine the behavior of magnetic materials in nonuniform magnetic fields.

Magnetic Materials
Each electron in an atom has an orbital magnetic dipole moment and a spin
magnetic dipole moment that combine vectorially. The resultant of these two
vector quantities combines vectorially with similar resultants for all other elec-
trons in the atom, and the resultant for each atom combines with those for all
the other atoms in a sample of a material. If the combination of all these mag-
netic dipole moments produces a magnetic field, then the material is magnetic.
There are three general types of magnetism: diamagnetism, paramagnetism, and
ferromagnetism.
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Figure 32-12 (a) A loop model for an electron
orbiting in an atom while in a nonuniform
magnetic field . (b) Charge �e moves
counterclockwise; the associated conven-
tional current i is clockwise. (c) The mag-
netic forces on the left and right sides of
the loop, as seen from the plane of the loop.
The net force on the loop is upward. (d)
Charge �e now moves clockwise. (e) The
net force on the loop is now downward.
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1. Diamagnetism is exhibited by all common materials but is so feeble that it is
masked if the material also exhibits magnetism of either of the other two
types. In diamagnetism, weak magnetic dipole moments are produced in the
atoms of the material when the material is placed in an external magnetic field

; the combination of all those induced dipole moments gives the material
as a whole only a feeble net magnetic field.The dipole moments and thus their
net field disappear when is removed. The term diamagnetic material
usually refers to materials that exhibit only diamagnetism.

2. Paramagnetism is exhibited by materials containing transition elements, rare
earth elements, and actinide elements (see Appendix G). Each atom of such a ma-
terial has a permanent resultant magnetic dipole moment, but the moments are
randomly oriented in the material and the material as a whole lacks a net mag-
netic field. However, an external magnetic field can partially align the atomic
magnetic dipole moments to give the material a net magnetic field.The alignment
and thus its field disappear when is removed.The term paramagnetic material
usually refers to materials that exhibit primarily paramagnetism.

3. Ferromagnetism is a property of iron, nickel, and certain other elements (and
of compounds and alloys of these elements). Some of the electrons in these
materials have their resultant magnetic dipole moments aligned, which pro-
duces regions with strong magnetic dipole moments. An external field can
then align the magnetic moments of such regions, producing a strong magnetic
field for a sample of the material; the field partially persists when is
removed. We usually use the terms ferromagnetic material and magnetic mate-
rial to refer to materials that exhibit primarily ferromagnetism.

The next three modules explore these three types of magnetism.
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32-6 DIAMAGNETISM

After reading this module, you should be able to . . .

32.36 For a diamagnetic sample placed in an external
magnetic field, identify that the field produces a magnetic
dipole moment in the sample, and identify the relative
orientations of that moment and the field.

32.37 For a diamagnetic sample in a nonuniform magnetic
field, describe the force on the sample and the resulting
motion.

Learning Objectives

● Diamagnetic materials exhibit magnetism only when placed
in an external magnetic field; there they form magnetic
dipoles directed opposite the external field.

● In a nonuniform field, diamagnetic materials are repelled
from the region of greater magnetic field.

Key Ideas

Diamagnetism
We cannot yet discuss the quantum physical explanation of diamagnetism, but we
can provide a classical explanation with the loop model of Figs. 32-11 and 32-12.
To begin, we assume that in an atom of a diamagnetic material each electron can
orbit only clockwise as in Fig. 32-12d or counterclockwise as in Fig. 32-12b. To
account for the lack of magnetism in the absence of an external magnetic field ,
we assume the atom lacks a net magnetic dipole moment. This implies that before

is applied, the number of electrons orbiting in one direction is the same as that
orbiting in the opposite direction, with the result that the net upward magnetic di-
pole moment of the atom equals the net downward magnetic dipole moment.
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Now let’s turn on the nonuniform field of Fig. 32-12a, in which is
directed upward but is diverging (the magnetic field lines are diverging). We
could do this by increasing the current through an electromagnet or by moving
the north pole of a bar magnet closer to, and below, the orbits. As the magni-
tude of increases from zero to its final maximum, steady-state value, a clock-
wise electric field is induced around each electron’s orbital loop according to
Faraday’s law and Lenz’s law. Let us see how this induced electric field affects the
orbiting electrons in Figs. 32-12b and d.

In Fig. 32-12b, the counterclockwise electron is accelerated by the clockwise
electric field.Thus, as the magnetic field increases to its maximum value, the elec-
tron speed increases to a maximum value.This means that the associated conventional
current i and the downward magnetic dipole moment due to i also increase.

In Fig. 32-12d, the clockwise electron is decelerated by the clockwise electric
field. Thus, here, the electron speed, the associated current i, and the upward
magnetic dipole moment due to i all decrease. By turning on field , we have
given the atom a net magnetic dipole moment that is downward. This would also
be so if the magnetic field were uniform.

Force. The nonuniformity of field also affects the atom. Because the cur-
rent i in Fig. 32-12b increases, the upward magnetic forces in Fig. 32-12c also
increase, as does the net upward force on the current loop. Because current i in
Fig. 32-12d decreases, the downward magnetic forces in Fig. 32-12e also
decrease, as does the net downward force on the current loop.Thus, by turning on
the nonuniform field , we have produced a net force on the atom; moreover,
that force is directed away from the region of greater magnetic field.

We have argued with fictitious electron orbits (current loops), but we have
ended up with exactly what happens to a diamagnetic material: If we apply
the magnetic field of Fig. 32-12, the material develops a downward magnetic
dipole moment and experiences an upward force. When the field is removed,
both the dipole moment and the force disappear. The external field need not be
positioned as shown in Fig. 32-12; similar arguments can be made for other orien-
tations of . In general,B
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Figure 32-13 An overhead view of a frog that
is being levitated in a magnetic field
produced by current in a vertical solenoid
below the frog.

Courtesy A.K. Geim, University of 
Manchester, UK

A diamagnetic material placed in an external magnetic field develops a magnetic
dipole moment directed opposite . If the field is nonuniform, the diamagnetic mate-
rial is repelled from a region of greater magnetic field toward a region of lesser field.
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Checkpoint 5
The figure shows two diamagnetic spheres located
near the south pole of a bar magnet.Are (a) the
magnetic forces on the spheres and (b) the
magnetic dipole moments of the spheres directed toward or away from the bar magnet?
(c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2?

S N 
1 2 

The frog in Fig. 32-13 is diamagnetic (as is any other animal). When the frog
was placed in the diverging magnetic field near the top end of a vertical current-
carrying solenoid, every atom in the frog was repelled upward, away from the
region of stronger magnetic field at that end of the solenoid. The frog moved
upward into weaker and weaker magnetic field until the upward magnetic force
balanced the gravitational force on it, and there it hung in midair. The frog is not
in discomfort because every atom is subject to the same forces and thus there is
no force variation within the frog. The sensation is similar to the “weightless” sit-
uation of floating in water, which frogs like very much. If we went to the expense
of building a much larger solenoid, we could similarly levitate a person in midair
due to the person’s diamagnetism.



Paramagnetism
In paramagnetic materials, the spin and orbital magnetic dipole moments of the
electrons in each atom do not cancel but add vectorially to give the atom a net
(and permanent) magnetic dipole moment . In the absence of an external
magnetic field, these atomic dipole moments are randomly oriented, and the
net magnetic dipole moment of the material is zero. However, if a sample of the
material is placed in an external magnetic field , the magnetic dipole moments
tend to line up with the field, which gives the sample a net magnetic dipole
moment. This alignment with the external field is the opposite of what we saw
with diamagnetic materials.
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A paramagnetic material placed in an external magnetic field develops a
magnetic dipole moment in the direction of . If the field is nonuniform, the
paramagnetic material is attracted toward a region of greater magnetic field from
a region of lesser field.
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After reading this module, you should be able to . . .

32.38 For a paramagnetic sample placed in an external mag-
netic field, identify the relative orientations of the field and
the sample’s magnetic dipole moment.

32.39 For a paramagnetic sample in a nonuniform magnetic
field, describe the force on the sample and the resulting
motion.

32.40 Apply the relationship between a sample’s magnetiza-
tion M, its measured magnetic moment, and its volume.

32.41 Apply Curie’s law to relate a sample’s magnetization M

to its temperature T, its Curie constant C, and the
magnitude B of the external field.

32.42 Given a magnetization curve for a paramagnetic
sample, relate the extent of the magnetization for a given
magnetic field and temperature.

32.43 For a paramagnetic sample at a given temperature
and in a given magnetic field, compare the energy
associated with the dipole orientations and the thermal
motion.

Learning Objectives

● Paramagnetic materials have atoms with a permanent
magnetic dipole moment but the moments are randomly
oriented, with no net moment, unless the material is in an
external magnetic field , where the dipoles tend to align
with that field.

● The extent of alignment within a volume V is measured as
the magnetization M, given by

M �
measured magnetic moment

V
.

B
:

ext

● Complete alignment (saturation) of all N dipoles in the
volume gives a maximum value Mmax

● At low values of the ratio Bext /T,

(Curie’s law),

where T is the temperature (in kelvins) and C is a material’s
Curie constant.

● In a nonuniform external field, a paramagnetic material is
attracted to the region of greater magnetic field.

M � C
Bext

T

� Nm/V.

Key Ideas

Richard Megna/Fundamental Photographs

Liquid oxygen is suspended between the
two pole faces of a magnet because the
liquid is paramagnetic and is magnetically
attracted to the magnet.

A paramagnetic sample with N atoms would have a magnetic dipole moment
of magnitude Nm if alignment of its atomic dipoles were complete. However, ran-
dom collisions of atoms due to their thermal agitation transfer energy among the
atoms, disrupting their alignment and thus reducing the sample’s magnetic dipole
moment.

Thermal Agitation. The importance of thermal agitation may be measured
by comparing two energies. One, given by Eq. 19-24, is the mean translational ki-
netic energy of an atom at temperature T, where k is the Boltzmann
constant (1.38 10�23 J/K) and T is in kelvins (not Celsius degrees). The other,�

K (� 3
2 kT)



derived from Eq. 28-38, is the difference in energy 
UB (� 2mBext) between par-
allel alignment and antiparallel alignment of the magnetic dipole moment of an
atom and the external field. (The lower energy state is �mBext and the higher en-
ergy state is +mBext.) As we shall show below, , even for ordinary tem-
peratures and field magnitudes. Thus, energy transfers during collisions among
atoms can significantly disrupt the alignment of the atomic dipole moments,
keeping the magnetic dipole moment of a sample much less than Nm.

Magnetization. We can express the extent to which a given paramagnetic
sample is magnetized by finding the ratio of its magnetic dipole moment to its
volume V. This vector quantity, the magnetic dipole moment per unit volume, is
the magnetization of the sample, and its magnitude is

(32-38)

The unit of is the ampere–square meter per cubic meter, or ampere per meter
(A/m). Complete alignment of the atomic dipole moments, called saturation of
the sample, corresponds to the maximum value Mmax � Nm/V.

In 1895 Pierre Curie discovered experimentally that the magnetization of a
paramagnetic sample is directly proportional to the magnitude of the external
magnetic field and inversely proportional to the temperature T in kelvins:

(32-39)

Equation 32-39 is known as Curie’s law, and C is called the Curie constant. Curie’s
law is reasonable in that increasing Bext tends to align the atomic dipole moments
in a sample and thus to increase M, whereas increasing T tends to disrupt the
alignment via thermal agitation and thus to decrease M. However, the law is actu-
ally an approximation that is valid only when the ratio Bext/T is not too large.

Figure 32-14 shows the ratio M/Mmax as a function of Bext/T for a sample of
the salt potassium chromium sulfate, in which chromium ions are the para-
magnetic substance. The plot is called a magnetization curve. The straight line
for Curie’s law fits the experimental data at the left, for Bext/T below about
0.5 T/K. The curve that fits all the data points is based on quantum physics. The
data on the right side, near saturation, are very difficult to obtain because they
require very strong magnetic fields (about 100 000 times Earth’s field), even at
very low temperatures.
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M
:

M �
measured magnetic moment

V
.

M
:

K � 
UB
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2.00 K
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4.21 K

Greater Bext at same 
T gives greater dipole 
alignment.

Approximately linear

Quantum theory

Figure 32-14 A magnetization curve for potas-
sium chromium sulfate, a paramagnetic salt.
The ratio of magnetization M of the salt to
the maximum possible magnetization Mmax is
plotted versus the ratio of the applied mag-
netic field magnitude Bext to the temperature
T. Curie’s law fits the data at the left; quan-
tum theory fits all the data. Based on mea-
surements by W. E. Henry.

Checkpoint 6
The figure here shows two paramagnetic spheres
located near the south pole of a bar magnet.Are
(a) the magnetic forces on the spheres and (b) the
magnetic dipole moments of the spheres directed toward or away from the bar magnet?
(c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2?

S N 
1 2 



Ferromagnetism
When we speak of magnetism in everyday conversation, we almost always
have a mental picture of a bar magnet or a disk magnet (probably clinging to a
refrigerator door). That is, we picture a ferromagnetic material having strong,
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From Eq. 28-38 , we can write the difference
between parallel alignment ( 0°) and antiparallel

alignment ( 180 ) as

(Answer)

Here K is about 230 times ; so energy exchanges among
the atoms during their collisions with one another can easily
reorient any magnetic dipole moments that might be aligned
with the external magnetic field. That is, as soon as a mag-
netic dipole moment happens to become aligned with the
external field, in the dipole’s low energy state, chances are
very good that a neighboring atom will hit the atom, transfer-
ring enough energy to put the dipole in a higher energy state.
Thus, the magnetic dipole moment exhibited by the para-
magnetic gas must be due to fleeting partial alignments of
the atomic dipole moments.


UB

� 2.8 � 10�23 J � 0.000 17 eV.

� 2mBB � 2(9.27 � 10�24 J/T)(1.5 T)


UB � �mB cos 180� � (�mB cos 0�) � 2mB

�u �
u �
UB

(UB � �m: � B
:

)

Sample Problem 32.03 Orientation energy of a paramagnetic gas in a magnetic field

A paramagnetic gas at room temperature (T 300 K) is
placed in an external uniform magnetic field of magnitude
B � 1.5 T; the atoms of the gas have magnetic dipole mo-
ment m � 1.0mB. Calculate the mean translational kinetic en-
ergy K of an atom of the gas and the energy difference 
UB

between parallel alignment and antiparallel alignment of the
atom’s magnetic dipole moment with the external field.

KEY IDEAS

(1) The mean translational kinetic energy K of an atom in
a gas depends on the temperature of the gas. (2) The en-
ergy UB of a magnetic dipole in an external magnetic
field depends on the angle u between the directions of 

and .

Calculations: From Eq. 19-24, we have

(Answer)� 6.2 � 10�21 J � 0.039 eV.

K � 3
2 kT � 3

2 (1.38 � 10�23 J /K)(300 K)

B
:

m:
B
:

m:

�

Additional examples, video, and practice available at WileyPLUS
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After reading this module, you should be able to . . .

32.44 Identify that ferromagnetism is due to a quantum
mechanical interaction called exchange coupling.

32.45 Explain why ferromagnetism disappears when the
temperature exceeds the material’s Curie temperature.

32.46 Apply the relationship between the magnetization of a fer-
romagnetic sample and the magnetic moment of its atoms.

32.47 For a ferromagnetic sample at a given temperature and in
a given magnetic field, compare the energy associated with
the dipole orientations and the thermal motion.

32.48 Describe and sketch a Rowland ring.

32.49 Identify magnetic domains.
32.50 For a ferromagnetic sample placed in an external mag-

netic field, identify the relative orientations of the field and
the magnetic dipole moment.

32.51 Identify the motion of a ferromagnetic sample in a
nonuniform field.

32.52 For a ferromagnetic object placed in a uniform mag-
netic field, calculate the torque and orientation energy.

32.53 Explain hysteresis and a hysteresis loop.
32.54 Identify the origin of lodestones.

Learning Objectives

● The magnetic dipole moments in a ferromagnetic material
can be aligned by an external magnetic field and then, after
the external field is removed, remain partially aligned in
regions (domains).

● Alignment is eliminated at temperatures above a material’s
Curie temperature.
● In a nonuniform external field, a ferromagnetic material is
attracted to the region of greater magnetic field.

Key Ideas



permanent magnetism, and not a diamagnetic or paramagnetic material having
weak, temporary magnetism.

Iron, cobalt, nickel, gadolinium, dysprosium, and alloys containing these
elements exhibit ferromagnetism because of a quantum physical effect called
exchange coupling in which the electron spins of one atom interact with those
of neighboring atoms. The result is alignment of the magnetic dipole moments
of the atoms, in spite of the randomizing tendency of atomic collisions due to
thermal agitation.This persistent alignment is what gives ferromagnetic materials
their permanent magnetism.

Thermal Agitation. If the temperature of a ferromagnetic material is raised
above a certain critical value, called the Curie temperature, the exchange coupling
ceases to be effective. Most such materials then become simply paramagnetic;
that is, the dipoles still tend to align with an external field but much more weakly,
and thermal agitation can now more easily disrupt the alignment. The Curie tem-
perature for iron is 1043 K (� 770°C).

Measurement. The magnetization of a ferromagnetic material such as iron can
be studied with an arrangement called a Rowland ring (Fig. 32-15). The material is
formed into a thin toroidal core of circular cross section.A primary coil P having n
turns per unit length is wrapped around the core and carries current iP. (The coil is
essentially a long solenoid bent into a circle.) If the iron core were not present, the
magnitude of the magnetic field inside the coil would be, from Eq. 29-23,

B0 � m0iPn. (32-40)

However, with the iron core present, the magnetic field inside the coil is greater
than , usually by a large amount.We can write the magnitude of this field as

B � B0 � BM, (32-41)

where BM is the magnitude of the magnetic field contributed by the iron core.
This contribution results from the alignment of the atomic dipole moments
within the iron, due to exchange coupling and to the applied magnetic field B0,
and is proportional to the magnetization M of the iron. That is, the contribution
BM is proportional to the magnetic dipole moment per unit volume of the iron.
To determine BM we use a secondary coil S to measure B, compute B0 with
Eq. 32-40, and subtract as suggested by Eq. 32-41.

Figure 32-16 shows a magnetization curve for a ferromagnetic material in
a Rowland ring:The ratio BM/BM,max, where BM,max is the maximum possible value
of BM, corresponding to saturation, is plotted versus B0. The curve is like
Fig. 32-14, the magnetization curve for a paramagnetic substance: Both curves
show the extent to which an applied magnetic field can align the atomic dipole
moments of a material.

For the ferromagnetic core yielding Fig. 32-16, the alignment of the dipole
moments is about 70% complete for B0 � 1 � 10�3 T. If B0 were increased to 1 T,
the alignment would be almost complete (but B0 � 1 T, and thus almost complete
saturation, is quite difficult to obtain).

Magnetic Domains
Exchange coupling produces strong alignment of adjacent atomic dipoles in
a ferromagnetic material at a temperature below the Curie temperature. Why,
then, isn’t the material naturally at saturation even when there is no applied
magnetic field B0? Why isn’t every piece of iron a naturally strong magnet?

To understand this, consider a specimen of a ferromagnetic material such as
iron that is in the form of a single crystal; that is, the arrangement of the atoms
that make it up—its crystal lattice—extends with unbroken regularity through-
out the volume of the specimen. Such a crystal will, in its normal state, be made
up of a number of magnetic domains. These are regions of the crystal throughout
which the alignment of the atomic dipoles is essentially perfect. The domains,

B
:

0

B
:
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Figure 32-15 A Rowland ring. A primary coil
P has a core made of the ferromagnetic
material to be studied (here iron).The core
is magnetized by a current iP sent through
coil P. (The turns of the coil are represented
by dots.) The extent to which the core is
magnetized determines the total magnetic
field within coil P. Field can be mea-
sured by means of a secondary coil S.

B
:

B
:

P

iP

B

S
iS

Iron core iP

iS

Figure 32-16 A magnetization curve for a
ferromagnetic core material in the Rowland
ring of Fig. 32-15. On the vertical axis,
1.0 corresponds to complete alignment
(saturation) of the atomic dipoles within 
the material.
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however, are not all aligned. For the crystal as a whole, the domains are so ori-
ented that they largely cancel with one another as far as their external magnetic
effects are concerned.

Figure 32-17 is a magnified photograph of such an assembly of domains in a
single crystal of nickel. It was made by sprinkling a colloidal suspension of finely
powdered iron oxide on the surface of the crystal. The domain boundaries, which
are thin regions in which the alignment of the elementary dipoles changes from a
certain orientation in one of the domains forming the boundary to a different
orientation in the other domain, are the sites of intense, but highly localized and
nonuniform, magnetic fields. The suspended colloidal particles are attracted to
these boundaries and show up as the white lines (not all the domain boundaries
are apparent in Fig. 32-17). Although the atomic dipoles in each domain are
completely aligned as shown by the arrows, the crystal as a whole may have only
a very small resultant magnetic moment.

Actually, a piece of iron as we ordinarily find it is not a single crystal but an
assembly of many tiny crystals, randomly arranged; we call it a polycrystalline
solid. Each tiny crystal, however, has its array of variously oriented domains, just
as in Fig. 32-17. If we magnetize such a specimen by placing it in an external
magnetic field of gradually increasing strength, we produce two effects; together
they produce a magnetization curve of the shape shown in Fig. 32-16. One effect
is a growth in size of the domains that are oriented along the external field at the
expense of those that are not. The second effect is a shift of the orientation of the
dipoles within a domain, as a unit, to become closer to the field direction.

Exchange coupling and domain shifting give us the following result:

96332-8 FERROMAGNETISM

Figure 32-17 A photograph of domain
patterns within a single crystal of nickel;
white lines reveal the boundaries of the
domains. The white arrows superimposed
on the photograph show the orientations
of the magnetic dipoles within the domains
and thus the orientations of the net mag-
netic dipoles of the domains. The crystal
as a whole is unmagnetized if the net mag-
netic field (the vector sum over all the
domains) is zero.

Courtesy Ralph W. DeBlois

Figure 32-18 A magnetization curve (ab) for 
a ferromagnetic specimen and an associated
hysteresis loop (bcdeb).

B0

BM

c
b

a

e
d

A ferromagnetic material placed in an external magnetic field develops a
strong magnetic dipole moment in the direction of . If the field is nonuniform,
the ferromagnetic material is attracted toward a region of greater magnetic field
from a region of lesser field.

B
:

ext

B
:

ext

Hysteresis
Magnetization curves for ferromagnetic materials are not retraced as we increase
and then decrease the external magnetic field B0. Figure 32-18 is a plot of BM

versus B0 during the following operations with a Rowland ring: (1) Starting with
the iron unmagnetized (point a), increase the current in the toroid until
B0 (� m0in) has the value corresponding to point b; (2) reduce the current in the
toroid winding (and thus B0) back to zero (point c); (3) reverse the toroid current
and increase it in magnitude until B0 has the value corresponding to point d;
(4) reduce the current to zero again (point e); (5) reverse the current once more
until point b is reached again.

The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the
curve bcdeb is called a hysteresis loop. Note that at points c and e the iron core is
magnetized, even though there is no current in the toroid windings; this is the
familiar phenomenon of permanent magnetism.

Hysteresis can be understood through the concept of magnetic domains.
Evidently the motions of the domain boundaries and the reorientations of the
domain directions are not totally reversible. When the applied magnetic field B0

is increased and then decreased back to its initial value, the domains do not
return completely to their original configuration but retain some “memory” of
their alignment after the initial increase. This memory of magnetic materials is
essential for the magnetic storage of information.

This memory of the alignment of domains can also occur naturally. When
lightning sends currents along multiple tortuous paths through the ground,
the currents produce intense magnetic fields that can suddenly magnetize any
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Next, we can rewrite Eq. 32-43 in terms of the needle’s mass
m, the molar mass M, and Avogadro’s number NA:

(32-45)

The needle’s mass m is the product of its density and its 
volume.The volume works out to be 1.5 � 10�8 m3; so

N �
mNA

M
.

Sample Problem 32.04 Magnetic dipole moment of a compass needle

A compass needle made of pure iron (density 7900 kg/m3)
has a length L of 3.0 cm, a width of 1.0 mm, and a thickness
of 0.50 mm. The magnitude of the magnetic dipole moment
of an iron atom is mFe � 2.1 � 10�23 J/T. If the magnetiza-
tion of the needle is equivalent to the alignment of 10% of
the atoms in the needle, what is the magnitude of the nee-
dle’s magnetic dipole moment ?

KEY IDEAS

(1) Alignment of all N atoms in the needle would give a
magnitude of NmFe for the needle’s magnetic dipole mo-
ment . However, the needle has only 10% alignment (the
random orientation of the rest does not give any net contri-
bution to ).Thus,

m � 0.10NmFe. (32-42)

(2) We can find the number of atoms N in the needle from
the needle’s mass:

. (32-43)

Finding N: Iron’s atomic mass is not listed in Appendix F,
but its molar mass M is.Thus, we write

(32-44)iron’s atomic mass �
iron’s molar mass M

Avogadro’s number NA
.

N �
needle’s mass

iron’s atomic mass

m:

m:

m:

Additional examples, video, and practice available at WileyPLUS

� (Eq. 32-4), gives the magnetic field generated by a
current ienc encircled by a closed loop. Maxwell’s law and Ampere’s
law can be written as the single equation

(Ampere–Maxwell law). (32-5)

Displacement Current We define the fictitious displacement
current due to a changing electric field as

(32-10)

Equation 32-5 then becomes

(Ampere–Maxwell law), (32-11)

where id,enc is the displacement current encircled by the integration


 B
:

� ds: � m0id,enc � m0ienc

id � ´0
d�E

dt
.


 B
:

� ds: � m0´0
d�E

dt
� m0ienc

B
:

� ds: � m0iencGauss’ Law for Magnetic Fields The simplest magnetic
structures are magnetic dipoles. Magnetic monopoles do not exist
(as far as we know). Gauss’ law for magnetic fields,

(32-1)

states that the net magnetic flux through any (closed) Gaussian
surface is zero. It implies that magnetic monopoles do not exist.

Maxwell’s Extension of Ampere’s Law A changing elec-
tric flux induces a magnetic field . Maxwell’s law,

(Maxwell’s law of induction), (32-3)

relates the magnetic field induced along a closed loop to the
changing electric flux �E through the loop. Ampere’s law,


 B
:

� ds: � m0´0
d�E

dt

B
:

�B � 
 B
:

� dA
:

� 0,

Review & Summary

ferromagnetic material in nearby rock. Because of hysteresis, such rock
material retains some of that magnetization after the lightning strike (after the
currents disappear). Pieces of the rock—later exposed, broken, and loosened by
weathering—are then lodestones.

 needle’s mass m � (needle’s density)(needle’s volume)

Substituting into Eq. 32-45 with this value for m, and also
55.847 g/mol (� 0.055 847 kg/mol) for M and 6.02 � 1023 for
NA, we find

Finding m: Substituting our value of N and the value of mFe

into Eq. 32-42 then yields

(Answer)� 2.682 � 10�3 J /T � 2.7 � 10�3 J/T.

m � (0.10)(1.2774 � 1021)(2.1 � 10�23 J /T)

� 1.2774 � 1021.

N �
(1.185 � 10�4 kg)(6.02 � 1023)

0.055 847 kg/mol

� 1.185 � 10�4 kg.

� (7900 kg/m3)(1.5 � 10�8 m3)



loop. The idea of a displacement current allows us to retain the
notion of continuity of current through a capacitor. However, dis-
placement current is not a transfer of charge.

Maxwell’s Equations Maxwell’s equations, displayed in
Table 32-1, summarize electromagnetism and form its foundation,
including optics.

Earth’s Magnetic Field Earth’s magnetic field can be
approximated as being that of a magnetic dipole whose dipole mo-
ment makes an angle of 11.5° with Earth’s rotation axis, and with the
south pole of the dipole in the Northern Hemisphere. The direction
of the local magnetic field at any point on Earth’s surface is given by
the field declination (the angle left or right from geographic north)
and the field inclination (the angle up or down from the horizontal).

Spin Magnetic Dipole Moment An electron has an intrinsic
angular momentum called spin angular momentum (or spin) , with
which an intrinsic spin magnetic dipole moment is associated:

(32-22)

For a measurement along a z axis, the component Sz can have only
the values given by

(32-23)

where h (� 6.63 � 10�34 J 	s) is the Planck constant. Similarly,

(32-24, 32-26)

where mB is the Bohr magneton:

(32-25)

The energy U associated with the orientation of the spin magnetic
dipole moment in an external magnetic field is

(32-27)

Orbital Magnetic Dipole Moment An electron in an atom
has an additional angular momentum called its orbital angular
momentum , with which an orbital magnetic dipole moment

is associated:

(32-28)m:orb � �
e

2m
L
:

orb.

m:orb

L
:

orb

U � �m:s � B
:

ext � �ms,zBext.

B
:

ext

mB �
eh

4pm
� 9.27 � 10�24 J /T.

ms,z � �
eh

4pm
� �mB,

Sz � ms
h

2p
,   for ms � � 1

2,

m:s � �
e
m

S
:

.

m:s

S
:
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Orbital angular momentum is quantized and can have only measured
values given by

(32-29)

The associated magnetic dipole moment is given by

(32-30, 32-31)

The energy U associated with the orientation of the orbital mag-
netic dipole moment in an external magnetic field is

(32-32)

Diamagnetism Diamagnetic materials exhibit magnetism
only when placed in an external magnetic field; there they form
magnetic dipoles directed opposite the external field. In a
nonuniform field, they are repelled from the region of greater
magnetic field.

Paramagnetism Paramagnetic materials have atoms with a
permanent magnetic dipole moment but the moments are ran-
domly oriented unless the material is in an external magnetic field

, where the dipoles tend to align with the external field. The
extent of alignment within a volume V is measured as the magneti-
zation M, given by

(32-38)

Complete alignment (saturation) of all N dipoles in the volume gives
a maximum value Mmax � Nm/V.At low values of the ratio Bext/T,

(Curie’s law), (32-39)

where T is the temperature (kelvins) and C is a material’s Curie
constant.

In a nonuniform external field, a paramagnetic material is 
attracted to the region of greater magnetic field.

Ferromagnetism The magnetic dipole moments in a ferro-
magnetic material can be aligned by an external magnetic field and
then, after the external field is removed, remain partially aligned in
regions (domains). Alignment is eliminated at temperatures above
a material’s Curie temperature. In a nonuniform external field,
a ferromagnetic material is attracted to the region of greater
magnetic field.

M � C
Bext

T

M �
measured magnetic moment

V
.

B
:

ext

U � �m:orb � B
:

ext � �morb,zBext.

B
:

ext

morb,z � �m�

eh
4pm

� �m�mB.

for m� � 0, �1, �2, 			 , � (limit).

Lorb,z � m�

h
2p

,

1 Figure 32-19a shows a capacitor, with circular plates, that is be-
ing charged. Point a (near one of the connecting wires) and point b
(inside the capacitor gap) are equidistant from the central axis, as
are point c (not so near the wire) and point d (between the plates
but outside the gap). In Fig. 32-19b, one curve gives the variation
with distance r of the magnitude of the magnetic field inside and
outside the wire.The other curve gives the variation with distance r
of the magnitude of the magnetic field inside and outside the gap.
The two curves partially overlap. Which of the three points on the
curves correspond to which of the four points of Fig. 32-19a?

Questions

Figure 32-19 Question 1.

B

r0

2

1

3

(b)

a

c

b

d

(a)



12 Figure 32-26 shows four
steel bars; three are perma-
nent magnets. One of the poles
is indicated. Through experi-
ment we find that ends a and d
attract each other, ends c and f
repel, ends e and h attract, and
ends a and h attract. (a) Which
ends are north poles? (b)
Which bar is not a magnet?

5 An electron in an external magnetic field has its spin angu-
lar momentum Sz antiparallel to . If the electron undergoes a
spin-flip so that Sz is then parallel with , must energy be sup-
plied to or lost by the electron?

6 Does the magnitude of the net force on the current loop of
Figs. 32-12a and b increase, decrease, or remain the same if we in-
crease (a) the magnitude of and (b) the divergence of ?

7 Figure 32-23 shows a face-on
view of one of the two square plates
of a parallel-plate capacitor, as well
as four loops that are located be-
tween the plates. The capacitor is
being discharged. (a) Neglecting
fringing of the magnetic field, rank
the loops according to the magni-
tude of � along them, great-
est first. (b) Along which loop, if
any, is the angle between the directions of and constant ds:B

:

B
:

� ds:

B
:

extB
:

ext

B
:

ext

B
:

ext

B
:

ext

2 Figure 32-20 shows a parallel-plate ca-
pacitor and the current in the connecting
wires that is discharging the capacitor. Are
the directions of (a) electric field and
(b) displacement current id leftward or
rightward between the plates? (c) Is the
magnetic field at point P into or out of the
page?

3 Figure 32-21 shows, in two situations, an electric field vector 
and an induced magnetic field line. In each, is the magnitude of 
increasing or decreasing?

E
:
E
:

E
:
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(so that their dot product can easily be evaluated)? (c) Along
which loop, if any, is B constant (so that B can be brought in front
of the integral sign in Eq. 32-3)?

8 Figure 32-24 shows three loop models of an electron orbiting
counterclockwise within a magnetic field. The fields are nonuni-
form for models 1 and 2 and uniform for model 3. For each model,
are (a) the magnetic dipole moment of the loop and (b) the mag-
netic force on the loop directed up, directed down, or zero?

Figure 32-20
Question 2.

P

i i 

Figure 32-21 Question 3.

(a) (b)

E

E

B

B

Figure 32-22 Question 4.

a

a
b

b

c

c
Bext

U
BSz

Bext

(a) (b)

Sz

Figure 32-23 Question 7.

d

c
b

a

Figure 32-24 Questions 8, 9, and 10.

(1) (2) (3) 

B B B

Figure 32-25 Question 11.

(1) (2) 

Impurity line 

(3)

Figure 32-26 Question 12.

c

d

e

f

g

h

a

b

S

4 Figure 32-22a shows a pair of opposite spin orientations for an
electron in an external magnetic field . Figure 32-22b gives
three choices for the graph of the energies associated with those
orientations as a function of the magnitude of . Choices b and c
consist of intersecting lines, choice a of parallel lines. Which is the
correct choice?

B
:

ext

B
:

ext

9 Replace the current loops of Question 8 and Fig. 32-24 with
diamagnetic spheres. For each field, are (a) the magnetic dipole
moment of the sphere and (b) the magnetic force on the sphere
directed up, directed down, or zero?

10 Replace the current loops of Question 8 and Fig. 32-24 with
paramagnetic spheres. For each field, are (a) the magnetic dipole
moment of the sphere and (b) the magnetic force on the sphere
directed up, directed down, or zero?

11 Figure 32-25 represents three rectangular samples of a ferro-
magnetic material in which the magnetic dipoles of the domains
have been directed out of the page (encircled dot) by a very strong
applied field B0. In each sample, an island domain still has its mag-
netic field directed into the page (encircled �). Sample 1 is one
(pure) crystal. The other samples contain impurities collected
along lines; domains cannot easily spread across such lines.

The applied field is now to be reversed and its magnitude
kept moderate. The change causes the island domain to grow.
(a) Rank the three samples according to the success of that growth,
greatest growth first. Ferromagnetic materials in which the mag-
netic dipoles are easily changed are said to be magnetically soft;
when the changes are difficult, requiring strong applied fields, the
materials are said to be magnetically hard. (b) Of the three sam-
ples, which is the most magnetically hard?



what is the value of � around the
dashed path?

••7 Uniform electric flux. Figure 32-30
shows a circular region of radius R 3.00 cm in which a uniform
electric flux is directed out of the plane of the page. The total

�

B
:

� ds:
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electric flux through the region is given by 
�E (3.00 mV 	m/s)t, where t is in seconds.
What is the magnitude of the magnetic field
that is induced at radial distances (a) 2.00 cm
and (b) 5.00 cm?

••8 Nonuniform electric flux. Figure 32-30
shows a circular region of radius R 3.00 cm
in which an electric flux is directed out of the
plane of the page. The flux encircled by a
concentric circle of radius r is given by �E,enc �
(0.600 V 	m/s)(r/R)t, where r � R and t is in seconds. What is
the magnitude of the induced magnetic field at radial distances
(a) 2.00 cm and (b) 5.00 cm?

••9 Uniform electric field. In Fig. 32-30, a uniform electric field

�

�

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 32-1 Gauss’ Law for Magnetic Fields
•1 The magnetic flux through each of five faces of a die (singular
of “dice”) is given by �B � �N Wb, where N (� 1 to 5) is the num-
ber of spots on the face. The flux is positive (outward) for N even
and negative (inward) for N odd.What is the flux through the sixth
face of the die?

•2 Figure 32-27 shows a closed surface. Along
the flat top face, which has a radius of 2.0 cm, a
perpendicular magnetic field of magnitude
0.30 T is directed outward. Along the flat bot-
tom face, a magnetic flux of 0.70 mWb is
directed outward. What are the (a) magnitude
and (b) direction (inward or outward) of
the magnetic flux through the curved part of
the surface?

••3 A Gaussian surface in the shape
of a right circular cylinder with end caps has a radius of 12.0 cm
and a length of 80.0 cm. Through one end there is an inward mag-
netic flux of 25.0 mWb. At the other end there is a uniform mag-
netic field of 1.60 mT, normal to the surface and directed outward.
What are the (a) magnitude and (b) direction (inward or outward)
of the net magnetic flux through the curved surface?

•••4 Two wires, parallel to a
z axis and a distance 4r apart,
carry equal currents i in oppo-
site directions, as shown in
Fig. 32-28. A circular cylinder of
radius r and length L has its
axis on the z axis, midway be-
tween the wires. Use Gauss’ law
for magnetism to derive an ex-
pression for the net outward
magnetic flux through the half of the cylindrical surface above the
x axis. (Hint: Find the flux through the portion of the xz plane that
lies within the cylinder.)

Module 32-2 Induced Magnetic Fields
•5 The induced magnetic field at radial distance 6.0 mm
from the central axis of a circular parallel-plate capacitor is 2.0 
10�7 T. The plates have radius 3.0 mm. At what rate is the
electric field between the plates changing?

•6 A capacitor with square plates of edge
length L is being discharged by a current of
0.75 A. Figure 32-29 is a head-on view of
one of the plates from inside the capacitor.
A dashed rectangular path is shown. If
L 12 cm, W 4.0 cm, and H 2.0 cm,���
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Figure 32-30
Problems 7 to 10

and 19 to 22.

R

is directed out of the page within a circular region of radius R � 3.00
cm. The field magnitude is given by E � (4.50 � 10�3 V/m 	s)t,
where t is in seconds. What is the magnitude of the induced magnetic
field at radial distances (a) 2.00 cm and (b) 5.00 cm?

••10 Nonuniform electric field. In Fig. 32-30, an electric field is
directed out of the page within a circular region of radius R 3.00
cm. The field magnitude is E � (0.500 V/m 	s)(1 � r/R)t, where t is
in seconds and r is the radial distance (r � R). What is the magni-
tude of the induced magnetic field at radial distances (a) 2.00 cm
and (b) 5.00 cm?

••11 Suppose that a parallel-plate capacitor has circular plates
with radius R � 30 mm and a plate separation of 5.0 mm.
Suppose also that a sinusoidal potential difference with a maxi-
mum value of 150 V and a frequency of 60 Hz is applied across
the plates; that is,

V � (150 V) sin[2p(60 Hz)t].

(a) Find Bmax(R), the maximum value of the induced magnetic field
that occurs at r � R. (b) Plot Bmax(r) for 0 � r � 10 cm.

••12 A parallel-plate capacitor with circular plates of radius
40 mm is being discharged by a current of 6.0 A. At what radius
(a) inside and (b) outside the capacitor gap is the magnitude of the
induced magnetic field equal to 75% of its maximum value?
(c) What is that maximum value?

Module 32-3 Displacement Current
•13 At what rate must the potential difference between the
plates of a parallel-plate capacitor with a 2.0 mF capacitance be
changed to produce a displacement current of 1.5 A?

•14 A parallel-plate capacitor with circular plates of radius R is
being charged. Show that the magnitude of the current density of
the displacement current is Jd � ´0(dE/dt) for r � R.

•15 Prove that the displacement current in a parallel-plate
capacitor of capacitance C can be written as id C(dV/dt), where
V is the potential difference between the plates.

•16 A parallel-plate capacitor with circular plates of radius 0.10 m
is being discharged. A circular loop of radius 0.20 m is concentric

�
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••24 The magnitude of the electric field
between the two circular parallel plates in
Fig. 32-33 is E � (4.0 � 105) � (6.0 � 104t),
with E in volts per meter and t in seconds.
At t � 0, is upward.The plate area is 4.0 �
10�2 m2. For t � 0, what are the (a) magni-
tude and (b) direction (up or down) of the
displacement current between the plates
and (c) is the direction of the induced magnetic field clockwise or
counterclockwise in the figure?

••25 As a parallel-plate capacitor with circular plates 20 cm
in diameter is being charged, the current density of the displace-
ment current in the region between the plates is uniform and has a
magnitude of 20 A/m2. (a) Calculate the magnitude B of the mag-
netic field at a distance r � 50 mm from the axis of symmetry of
this region. (b) Calculate dE/dt in this region.

••26 A capacitor with parallel circular plates of radius R � 1.20
cm is discharging via a current of 12.0 A. Consider a loop of radius
R/3 that is centered on the central axis between the plates. (a) How
much displacement current is encircled by the loop? The maximum
induced magnetic field has a magnitude of 12.0 mT. At what radius
(b) inside and (c) outside the capacitor gap is the magnitude of the
induced magnetic field 3.00 mT?

••27 In Fig. 32-34, a uniform
electric field collapses. The verti-
cal axis scale is set by Es � 6.0 � 105

N/C, and the horizontal axis scale is
set by ts � 12.0 ms. Calculate the
magnitude of the displacement cur-
rent through a 1.6 m2 area perpen-
dicular to the field during each of
the time intervals a, b, and c shown
on the graph. (Ignore the behavior
at the ends of the intervals.)

••28 Figure 32-35a shows the
current i that is produced in a wire
of resistivity 1.62 � 10�8 �	m. The
magnitude of the current versus
time t is shown in Fig. 32-35b. The
vertical axis scale is set by is � 10.0
A, and the horizontal axis scale is
set by ts � 50.0 ms. Point P is at
radial distance 9.00 mm from the
wire’s center. Determine the mag-
nitude of the magnetic field at
point P due to the actual current i
in the wire at (a) t � 20 ms, (b) t �
40 ms, and (c) t � 60 ms. Next, as-
sume that the electric field driving
the current is confined to the wire.
Then determine the magnitude of
the magnetic field at point P
due to the displacement current id

in the wire at (d) t � 20 ms, (e) t �
40 ms, and (f) t � 60 ms. At point
P at t � 20 s, what is the direction
(into or out of the page) of (g) 
and (h) ?

•••29 In Fig. 32-36, a capacitor with
circular plates of radius R � 18.0 cm
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with the capacitor and halfway between the plates. The displace-
ment current through the loop is 2.0 A. At what rate is the electric
field between the plates changing?

••17 A silver wire has resistivity r � 1.62 � 10�8 �	m and
a cross-sectional area of 5.00 mm2. The current in the wire is uni-
form and changing at the rate of 2000 A/s when the current is
100 A. (a) What is the magnitude of the (uniform) electric field in
the wire when the current in the wire is 100 A? (b) What is the
displacement current in the wire at that time? (c) What is the ratio
of the magnitude of the magnetic field due to the displacement
current to that due to the current at a distance r from the wire?

••18 The circuit in Fig. 32-31 consists
of switch S, a 12.0 V ideal battery, a
20.0 M� resistor, and an air-filled capa-
citor. The capacitor has parallel circular
plates of radius 5.00 cm, separated by
3.00 mm. At time t � 0, switch S is
closed to begin charging the capacitor.
The electric field between the plates is
uniform. At t � 250 ms, what is the magnitude of the magnetic
field within the capacitor, at radial distance 3.00 cm?

••19 Uniform displacement-current density. Figure 32-30 shows a
circular region of radius R � 3.00 cm in which a displacement cur-
rent is directed out of the page. The displacement current has a
uniform density of magnitude Jd � 6.00 A/m2. What is the magni-
tude of the magnetic field due to the displacement current at radial
distances (a) 2.00 cm and (b) 5.00 cm?

••20 Uniform displacement current. Figure 32-30 shows a circular
region of radius R � 3.00 cm in which a uniform displacement cur-
rent id � 0.500 A is out of the page. What is the magnitude of the
magnetic field due to the displacement current at radial distances
(a) 2.00 cm and (b) 5.00 cm?

••21 Nonuniform displacement-current density. Figure 32-30
shows a circular region of radius R 3.00 cm in which a displace-
ment current is directed out of the page.The magnitude of the den-
sity of this displacement current is Jd � (4.00 A/m2)(1 � r/R),
where r is the radial distance (r � R).What is the magnitude of the
magnetic field due to the displacement current at (a) r � 2.00 cm
and (b) r � 5.00 cm?

••22 Nonuniform displacement current. Figure 32-30 shows a
circular region of radius R 3.00 cm in which a displacement
current id is directed out of the figure. The magnitude of the 
displacement current is id � (3.00 A)(r/R),
where r is the radial distance (r � R) from the
center. What is the magnitude of the mag-
netic field due to id at radial distances (a)
2.00 cm and (b) 5.00 cm?

••23 In Fig. 32-32, a parallel-plate
capacitor has square plates of edge length
L 1.0 m. A current of 2.0 A charges the ca-
pacitor, producing a uniform electric field 
between the plates, with perpendicular to
the plates. (a) What is the displacement cur-
rent id through the region between the
plates? (b) What is dE/dt in this region?
(c) What is the displacement current encir-
cled by the square dashed path of edge
length d � 0.50 m? (d) What is the value of 
� around this square dashed path?B
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the direction of (b) the loop’s net magnetic dipole moment ,
(c) the conventional current i in the loop (clockwise or counter-
clockwise in the figure), and (d) the magnetic force on the loop?

•••38 Assume that an electron of mass m and charge magnitude e
moves in a circular orbit of radius r about a nucleus. A uniform
magnetic field is then established perpendicular to the plane of
the orbit. Assuming also that the radius of the orbit does not
change and that the change in the speed of the electron due to field

is small, find an expression for the change in the orbital magnetic
dipole moment of the electron due to the field.

Module 32-7 Paramagnetism
•39 A sample of the paramagnetic salt to which the magnetization
curve of Fig. 32-14 applies is to be tested to see whether it obeys
Curie’s law. The sample is placed in a uniform 0.50 T magnetic field
that remains constant throughout the experiment. The magnetiza-
tion M is then measured at temperatures ranging from 10 to 300 K.
Will it be found that Curie’s law is valid under these conditions?

•40 A sample of the paramagnetic salt to which the magnetization
curve of Fig. 32-14 applies is held at room temperature (300 K).
At what applied magnetic field will the degree of magnetic satura-
tion of the sample be (a) 50% and (b) 90%? (c) Are these fields
attainable in the laboratory?

•41 A magnet in the form of a cylindrical rod has a
length of 5.00 cm and a diameter of 1.00 cm. It has a uniform mag-
netization of 5.30 � 103 A/m.What is its magnetic dipole moment?

•42 A 0.50 T magnetic field is applied to a paramagnetic gas
whose atoms have an intrinsic magnetic dipole moment of 1.0 �
10�23 J/T. At what temperature will the mean kinetic energy of
translation of the atoms equal the energy required to reverse such
a dipole end for end in this magnetic field?

••43 An electron with kinetic energy Ke travels in a circular path
that is perpendicular to a uniform magnetic field, which is in the
positive direction of a z axis. The electron’s motion is subject only
to the force due to the field. (a) Show that the magnetic dipole mo-
ment of the electron due to its orbital motion has magnitude m �
Ke/B and that it is in the direction opposite that of . What are the
(b) magnitude and (c) direction of the magnetic dipole moment of
a positive ion with kinetic energy Ki under the same circum-
stances? (d) An ionized gas consists of 5.3 � 1021 electrons/m3 and
the same number density of ions. Take the average electron kinetic
energy to be 6.2 � 10�20 J and the average ion kinetic energy to be
7.6 � 10�21 J. Calculate the magnetization of the gas when it is in a
magnetic field of 1.2 T.

••44 Figure 32-39 gives the magne-
tization curve for a paramagnetic
material. The vertical axis scale is set
by a � 0.15, and the horizontal axis
scale is set by b � 0.2 T/K. Let msam

be the measured net magnetic mo-
ment of a sample of the material and
mmax be the maximum possible net
magnetic moment of that sample.
According to Curie’s law, what would
be the ratio msam/mmax were the sample placed in a uniform mag-
netic field of magnitude 0.800 T, at a temperature of 2.00 K?

•••45 Consider a solid containing N atoms per unit volume,
each atom having a magnetic dipole moment . Suppose the direc-
tion of can be only parallel or antiparallel to an externallym:
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m:is connected to a source of emf � � �m sin vt, where �m � 220 V
and v � 130 rad/s. The maximum value of the displacement cur-
rent is id � 7.60 mA. Neglect fringing of the electric field at the
edges of the plates. (a) What is the maximum value of the current i
in the circuit? (b) What is the maximum value of d�E/dt, where �E

is the electric flux through the region between the plates? (c) What
is the separation d between the plates? (d) Find the maximum
value of the magnitude of between the plates at a distance 
r � 11.0 cm from the center.

Module 32-4 Magnets
•30 Assume the average value of the vertical component
of Earth’s magnetic field is 43 mT (downward) for all of Arizona,
which has an area of 2.95 � 105 km2. What then are the (a) magni-
tude and (b) direction (inward or outward) of the net magnetic
flux through the rest of Earth’s surface (the entire surface exclud-
ing Arizona)?

•31 In New Hampshire the average horizontal component of
Earth’s magnetic field in 1912 was 16 mT, and the average inclina-
tion or “dip” was 73°. What was the corresponding magnitude of
Earth’s magnetic field?

Module 32-5 Magnetism and Electrons
•32 Figure 32-37a is a one-axis
graph along which two of the allowed
energy values (levels) of an atom are
plotted.When the atom is placed in a
magnetic field of 0.500 T, the graph
changes to that of Fig. 32-37b be-
cause of the energy associated with

. (We neglect .) Level E1 is
unchanged, but level E2 splits into a
(closely spaced) triplet of levels.
What are the allowed values of 
associated with (a) energy level E1 and (b) energy level E2? (c) In
joules, what amount of energy is represented by the spacing
between the triplet levels?

•33 If an electron in an atom has an orbital angular
momentum with , what are the components (a) Lorb,z and
(b) morb,z? If the atom is in an external magnetic field that has
magnitude 35 mT and is directed along the z axis, what are (c) the
energy Uorb associated with and (d) the energy Uspin associated
with ? If, instead, the electron has , what are (e) Lorb,z,
(f) morb,z, (g) Uorb, and (h) Uspin?

•34 What is the energy difference between parallel and
antiparallel alignment of the z component of an electron’s spin
magnetic dipole moment with an external magnetic field of magni-
tude 0.25 T, directed parallel to the z axis?

•35 What is the measured component of the orbital magnetic di-
pole moment of an electron with (a) and (b) ?

•36 An electron is placed in a magnetic field that is directed
along a z axis. The energy difference between parallel and antipar-
allel alignments of the z component of the electron’s spin magnetic
moment with is 6.00 � 10�25 J.What is the magnitude of ?

Module 32-6 Diamagnetism
•37 Figure 32-38 shows a loop
model (loop L) for a diamagnetic
material. (a) Sketch the magnetic
field lines within and about the ma-
terial due to the bar magnet. What is
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••52 Measurements in mines and boreholes indicate that Earth’s
interior temperature increases with depth at the average rate of
30 C°/km. Assuming a surface temperature of 10°C, at what depth
does iron cease to be ferromagnetic? (The Curie temperature of
iron varies very little with pressure.)

••53 A Rowland ring is formed of ferromagnetic material. It is
circular in cross section, with an inner radius of 5.0 cm and an outer
radius of 6.0 cm, and is wound with 400 turns of wire. (a) What cur-
rent must be set up in the windings to attain a toroidal field of mag-
nitude B0 � 0.20 mT? (b) A secondary coil wound around the
toroid has 50 turns and resistance 8.0 �. If, for this value of B0, we
have BM � 800B0, how much charge moves through the secondary
coil when the current in the toroid windings is turned on?

Additional Problems
54 Using the approximations given in Problem 61, find (a) the al-
titude above Earth’s surface where the magnitude of its magnetic
field is 50.0% of the surface value at the same latitude; (b) the
maximum magnitude of the magnetic field at the core–mantle
boundary, 2900 km below Earth’s surface; and the (c) magnitude
and (d) inclination of Earth’s magnetic field at the north geo-
graphic pole. (e) Suggest why the values you calculated for (c) and
(d) differ from measured values.

55 Earth has a magnetic dipole moment of 8.0 � 1022 J/T.
(a) What current would have to be produced in a single turn of
wire extending around Earth at its geomagnetic equator if we
wished to set up such a dipole? Could such an arrangement
be used to cancel out Earth’s magnetism (b) at points in space well
above Earth’s surface or (c) on Earth’s surface?

56 A charge q is distributed uniformly around a thin ring of ra-
dius r. The ring is rotating about an axis through its center and per-
pendicular to its plane, at an angular speed v. (a) Show that the
magnetic moment due to the rotating charge has magnitude

. (b) What is the direction of this magnetic moment if
the charge is positive?

57 A magnetic compass has its needle, of mass 0.050 kg and
length 4.0 cm, aligned with the horizontal component of Earth’s
magnetic field at a place where that component has the value Bh �
16 mT. After the compass is given a momentary gentle shake, the
needle oscillates with angular frequency v � 45 rad/s. Assuming
that the needle is a uniform thin rod mounted at its center, find the
magnitude of its magnetic dipole moment.

58 The capacitor in Fig. 32-7 is being charged with a 2.50 A cur-
rent. The wire radius is 1.50 mm, and the plate radius is 2.00 cm.
Assume that the current i in the wire and the displacement current
id in the capacitor gap are both uniformly distributed. What is the
magnitude of the magnetic field due to i at the following radial
distances from the wire’s center: (a) 1.00 mm (inside the wire),
(b) 3.00 mm (outside the wire), and (c) 2.20 cm (outside the wire)?
What is the magnitude of the magnetic field due to id at the follow-
ing radial distances from the central axis between the plates:
(d) 1.00 mm (inside the gap), (e) 3.00 mm (inside the gap), and
(f) 2.20 cm (outside the gap)? (g) Explain why the fields at the two
smaller radii are so different for the wire and the gap but the fields
at the largest radius are not.

59 A parallel-plate capacitor with circular plates of radius 
R � 16 mm and gap width d � 5.0 mm has a uniform electric field
between the plates. Starting at time t � 0, the potential difference
between the two plates is V � (100 V)e�t/t, where the time con-
stant t � 12 ms. At radial distance r � 0.80R from the central axis,

m � 1
2qvr 2

applied magnetic field (this will be the case if is due to the spin
of a single electron). According to statistical mechanics, the proba-
bility of an atom being in a state with energy U is proportional to
e�U/kT, where T is the temperature and k is Boltzmann’s constant.
Thus, because energy U is , the fraction of atoms whose dipole
moment is parallel to is proportional to emB/kT and the fraction of
atoms whose dipole moment is antiparallel to is proportional to
e�mB/kT. (a) Show that the magnitude of the magnetization of this
solid is M � Nm tanh(mB/kT). Here tanh is the hyperbolic tangent
function: tanh(x) (ex � e�x)/(ex � e�x). (b) Show that the result
given in (a) reduces to M Nm2B/kT for . (c) Show
that the result of (a) reduces to M Nm for . (d) Show
that both (b) and (c) agree qualitatively with Fig. 32-14.

Module 32-8 Ferromagnetism
••46 You place a magnetic compass on a horizontal surface, al-
low the needle to settle, and then give the compass a gentle wiggle
to cause the needle to oscillate about its equilibrium position. The
oscillation frequency is 0.312 Hz. Earth’s magnetic field at the
location of the compass has a horizontal component of 18.0 mT.
The needle has a magnetic moment of 0.680 mJ/T. What is the
needle’s rotational inertia about its (vertical) axis of rotation?

••47 The magnitude of the magnetic dipole
moment of Earth is 8.0 1022 J/T. (a) If the origin of this magne-
tism were a magnetized iron sphere at the center of Earth, what
would be its radius? (b) What fraction of the volume of Earth
would such a sphere occupy? Assume complete alignment of the
dipoles. The density of Earth’s inner core is 14 g/cm3. The magnetic
dipole moment of an iron atom is 2.1 � 10�23 J/T. (Note: Earth’s
inner core is in fact thought to be in both liquid and solid forms
and partly iron, but a permanent magnet as the source of Earth’s
magnetism has been ruled out by several considerations. For one,
the temperature is certainly above the Curie point.)

••48 The magnitude of the dipole moment associated with an
atom of iron in an iron bar is 2.1 � 10�23 J/T. Assume that all the
atoms in the bar, which is 5.0 cm long and has a cross-sectional
area of 1.0 cm2, have their dipole moments aligned. (a) What is the
dipole moment of the bar? (b) What torque must be exerted to
hold this magnet perpendicular to an external field of magnitude
1.5 T? (The density of iron is 7.9 g/cm3.)

••49 The exchange coupling mentioned in Module 32-8 as
being responsible for ferromagnetism is not the mutual magnetic
interaction between two elementary magnetic dipoles. To show
this, calculate (a) the magnitude of the magnetic field a distance of
10 nm away, along the dipole axis, from an atom with magnetic
dipole moment 1.5 � 10�23 J/T (cobalt), and (b) the minimum
energy required to turn a second identical dipole end for end in
this field. (c) By comparing the latter with the mean translational
kinetic energy of 0.040 eV, what can you conclude?

••50 A magnetic rod with length 6.00 cm, radius 3.00 mm, and
(uniform) magnetization 2.70 � 103 A/m can turn about its center
like a compass needle. It is placed in a uniform magnetic field of
magnitude 35.0 mT, such that the directions of its dipole moment
and make an angle of 68.0�. (a) What is the magnitude of the
torque on the rod due to ? (b) What is the change in the orienta-
tion energy of the rod if the angle changes to 34.0°?

••51 The saturation magnetization Mmax of the ferromagnetic
metal nickel is 4.70 � 105 A/m. Calculate the magnetic dipole mo-
ment of a single nickel atom. (The density of nickel is 8.90 g/cm3,
and its molar mass is 58.71 g/mol.)
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68 What is the measured component of the orbital magnetic
dipole moment of an electron with the values (a) and
(b) ?

69 In Fig. 32-43, a bar magnet lies near a paper cylinder.
(a) Sketch the magnetic field lines that pass through the surface of
the cylinder. (b) What is the sign of for every area on the
surface? (c) Does this contradict Gauss’ law for magnetism?
Explain.

dA
:

B
:

� dA
:

m� � �4
m� � 3

what is the magnetic field magnitude (a) as a
function of time for t � 0 and (b) at time t � 3t?

60 A magnetic flux of 7.0 mWb is directed out-
ward through the flat bottom face of the closed
surface shown in Fig. 32-40. Along the flat top
face (which has a radius of 4.2 cm) there is a
0.40 T magnetic field directed perpendicular
to the face. What are the (a) magnitude and 
(b) direction (inward or outward) of the magnetic
flux through the curved part of the surface?

61 The magnetic field of Earth can be approximated as the
magnetic field of a dipole. The horizontal and vertical components
of this field at any distance r from Earth’s center are given by

where lm is the magnetic latitude (this type of latitude is measured
from the geomagnetic equator toward the north or south geomag-
netic pole). Assume that Earth’s magnetic dipole moment has
magnitude m � 8.00 � 1022 A 	m2. (a) Show that the magnitude of
Earth’s field at latitude lm is given by

(b) Show that the inclination fi of the magnetic field is related to
the magnetic latitude lm by tan fi � 2 tan lm.

62 Use the results displayed in Problem 61 to predict the
(a) magnitude and (b) inclination of Earth’s magnetic field at the
geomagnetic equator, the (c) magnitude and (d) inclination at geo-
magnetic latitude 60.0°, and the (e) magnitude and (f) inclination
at the north geomagnetic pole.

63 A parallel-plate capacitor with circular plates of radius
55.0 mm is being charged.At what radius (a) inside and (b) outside
the capacitor gap is the magnitude of the induced magnetic field
equal to 50.0% of its maximum value?

64 A sample of the paramagnetic salt to which the magnetization
curve of Fig. 32-14 applies is immersed in a uniform magnetic field
of 2.0 T. At what temperature will the degree of magnetic satura-
tion of the sample be (a) 50% and (b) 90%?

65 A parallel-plate capacitor with circular plates of radius R is
being discharged. The displacement current through a central cir-
cular area, parallel to the plates and
with radius R/2, is 2.0 A. What is the
discharging current?

66 Figure 32-41 gives the variation
of an electric field that is perpendi-
cular to a circular area of 2.0 m2.
During the time period shown, what
is the greatest displacement current
through the area?

67 In Fig. 32-42, a parallel-plate
capacitor is being discharged by a
current i � 5.0 A. The plates are
square with edge length L � 8.0 mm.
(a) What is the rate at which the elec-
tric field between the plates is chang-
ing? (b) What is the value of �
around the dashed path, where 
H � 2.0 mm and W � 3.0 mm?

B
:

� ds:

B �
m0m

4pr 3 21 � 3 sin2lm.

Bh �
m0m

4pr 3  cos lm,  Bv �
m0m

2pr 3  sin lm,
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70 In the lowest energy state of the hydrogen atom, the most
probable distance of the single electron from the central proton
(the nucleus) is 5.2 � 10�11 m. (a) Compute the magnitude of the
proton’s electric field at that distance. The component ms,z of the
proton’s spin magnetic dipole moment measured on a z axis is
1.4 � 10�26 J/T. (b) Compute the magnitude of the proton’s mag-
netic field at the distance 5.2 � 10�11 m on the z axis. (Hint: Use
Eq. 29-27.) (c) What is the ratio of the spin magnetic dipole
moment of the electron to that of the proton?

71 Figure 32-38 shows a loop model (loop L) for a paramagnetic
material. (a) Sketch the field lines through and about the material
due to the magnet. What is the direction of (b) the loop’s net mag-
netic dipole moment , (c) the conventional current i in the loop
(clockwise or counterclockwise in the figure), and (d) the magnetic
force acting on the loop?

72 Two plates (as in Fig. 32-7) are being discharged by a
constant current. Each plate has a radius of 4.00 cm. During the
discharging, at a point between the plates at radial distance
2.00 cm from the central axis, the magnetic field has a magnitude
of 12.5 nT. (a) What is the magnitude of the magnetic field at
radial distance 6.00 cm? (b) What is the current in the wires
attached to the plates?

73 If an electron in an atom has orbital angular momentum
with values limited by 3, how many values of (a) Lorb,z and
(b) morb,z can the electron have? In terms of h, m, and e, what is the
greatest allowed magnitude for (c) Lorb,z and (d) morb,z? (e) What is
the greatest allowed magnitude for the z component of the elec-
tron’s net angular momentum (orbital plus spin)? (f) How many
values (signs included) are allowed for the z component of its net
angular momentum?

74 A parallel-plate capacitor with circular plates is being
charged. Consider a circular loop centered on the central axis and
located between the plates. If the loop radius of 3.00 cm is greater
than the plate radius, what is the displacement current between the
plates when the magnetic field along the loop has magnitude
2.00 mT?

75 Suppose that 4 are the limits to the values of for an elec-
tron in an atom. (a) How many different values of the electron’s
morb,z are possible? (b) What is the greatest magnitude of those pos-
sible values? Next, if the atom is in a magnetic field of magnitude
0.250 T, in the positive direction of the z axis, what are (c) the max-
imum energy and (d) the minimum energy associated with those
possible values of morb,z?

76 What are the measured components of the orbital magnetic
dipole moment of an electron with (a) and (b) ?m� � �4m� � 3

m��

�m/

SSM
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Electromagnetic Waves

33-1 ELECTROMAGNETIC WAVES

After reading this module, you should be able to . . .

33.01 In the electromagnetic spectrum, identify the relative
wavelengths (longer or shorter) of AM radio, FM radio,
television, infrared light, visible light, ultraviolet light, x rays,
and gamma rays.

33.02 Describe the transmission of an electromagnetic wave
by an LC oscillator and an antenna.

33.03 For a transmitter with an LC oscillator, apply the
relationships between the oscillator’s inductance L,
capacitance C, and angular frequency v, and the
emitted wave’s frequency f and wavelength l.

33.04 Identify the speed of an electromagnetic wave in
vacuum (and approximately in air).

33.05 Identify that electromagnetic waves do not require a
medium and can travel through vacuum.

33.06 Apply the relationship between the speed of an
electromagnetic wave, the straight-line distance traveled
by the wave, and the time required for the travel.

33.07 Apply the relationships between an electromagnetic

wave’s frequency f, wavelength l, period T, angular
frequency v, and speed c.

33.08 Identify that an electromagnetic wave consists of an
electric component and a magnetic component that are
(a) perpendicular to the direction of travel, (b) perpendicu-
lar to each other, and (c) sinusoidal waves with the same
frequency and phase.

33.09 Apply the sinusoidal equations for the electric and
magnetic components of an EM wave, written as functions
of position and time.

33.10 Apply the relationship between the speed of light c, the
permittivity constant , and the permeability constant m0.

33.11 For any instant and position, apply the relationship
between the electric field magnitude E, the magnetic field
magnitude B, and the speed of light c.

33.12 Describe the derivation of the relationship between the
speed of light c and the ratio of the electric field amplitude
E to the magnetic field amplitude B.

´0

Learning Objectives

● An electromagnetic wave consists of oscillating electric
and magnetic fields. 

● The various possible frequencies of electromagnetic waves
form a spectrum, a small part of which is visible light. 

● An electromagnetic wave traveling along an x axis has an
electric field and a magnetic field with magnitudes that
depend on x and t:

E � Em sin(kx � vt)

B
:

E
:

and B � Bm sin(kx � vt),

where Em and Bm are the amplitudes of and . The electric
field induces the magnetic field and vice versa. 

● The speed of any electromagnetic wave in vacuum is c,
which can be written as

where E and B are the simultaneous magnitudes of the fields.

c �
E
B

�
1

1m0´0
,

B
:

E
:

Key Ideas

What Is Physics?
The information age in which we live is based almost entirely on the physics of
electromagnetic waves. Like it or not, we are now globally connected by televi-
sion, telephones, and the web. And like it or not, we are constantly immersed in
those signals because of television, radio, and telephone transmitters.

Much of this global interconnection of information processors was not 
imagined by even the most visionary engineers of 40 years ago. The challenge for
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today’s engineers is trying to envision what the global interconnection will be like
40 years from now. The starting point in meeting that challenge is understanding
the basic physics of electromagnetic waves, which come in so many different
types that they are poetically said to form Maxwell’s rainbow.

Maxwell’s Rainbow
The crowning achievement of James Clerk Maxwell (see Chapter 32) was to
show that a beam of light is a traveling wave of electric and magnetic fields—an
electromagnetic wave—and thus that optics, the study of visible light, is a branch
of electromagnetism. In this chapter we move from one to the other: we conclude
our discussion of strictly electrical and magnetic phenomena, and we build a
foundation for optics.

In Maxwell’s time (the mid 1800s), the visible, infrared, and ultraviolet forms
of light were the only electromagnetic waves known. Spurred on by Maxwell’s
work, however, Heinrich Hertz discovered what we now call radio waves and
verified that they move through the laboratory at the same speed as visible light,
indicating that they have the same basic nature as visible light.

As Fig. 33-1 shows, we now know a wide spectrum (or range) of electromag-
netic waves: Maxwell’s rainbow. Consider the extent to which we are immersed in
electromagnetic waves throughout this spectrum. The Sun, whose radiations
define the environment in which we as a species have evolved and adapted, is
the dominant source. We are also crisscrossed by radio and television signals.
Microwaves from radar systems and from telephone relay systems may reach us.
There are electromagnetic waves from lightbulbs, from the heated engine blocks
of automobiles, from x-ray machines, from lightning flashes, and from buried
radioactive materials. Beyond this, radiation reaches us from stars and other
objects in our galaxy and from other galaxies. Electromagnetic waves also travel
in the other direction. Television signals, transmitted from Earth since about
1950, have now taken news about us (along with episodes of I Love Lucy, albeit
very faintly) to whatever technically sophisticated inhabitants there may be on
whatever planets may encircle the nearest 400 or so stars.

Figure 33-1 The electromagnetic spectrum.
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In the wavelength scale in Fig. 33-1 (and similarly the corresponding
frequency scale), each scale marker represents a change in wavelength (and
correspondingly in frequency) by a factor of 10. The scale is open-ended; the
wavelengths of electromagnetic waves have no inherent upper or lower bound.

Certain regions of the electromagnetic spectrum in Fig. 33-1 are identified by
familiar labels, such as x rays and radio waves. These labels denote roughly defined
wavelength ranges within which certain kinds of sources and detectors of electro-
magnetic waves are in common use. Other regions of Fig. 33-1, such as those
labeled TV channels and AM radio, represent specific wavelength bands assigned
by law for certain commercial or other purposes. There are no gaps in the electro-
magnetic spectrum—and all electromagnetic waves, no matter where they lie in
the spectrum, travel through free space (vacuum) with the same speed c.

The visible region of the spectrum is of course of particular interest to us.
Figure 33-2 shows the relative sensitivity of the human eye to light of various
wavelengths.The center of the visible region is about 555 nm, which produces the
sensation that we call yellow-green.

The limits of this visible spectrum are not well defined because the eye
sensitivity curve approaches the zero-sensitivity line asymptotically at both long
and short wavelengths. If we take the limits, arbitrarily, as the wavelengths at
which eye sensitivity has dropped to 1% of its maximum value, these limits are
about 430 and 690 nm; however, the eye can detect electromagnetic waves some-
what beyond these limits if they are intense enough.

The Traveling Electromagnetic Wave, Qualitatively
Some electromagnetic waves, including x rays, gamma rays, and visible light,
are radiated (emitted) from sources that are of atomic or nuclear size, where
quantum physics rules. Here we discuss how other electromagnetic waves are
generated. To simplify matters, we restrict ourselves to that region of the spec-
trum (wavelength l � 1 m) in which the source of the radiation (the emitted
waves) is both macroscopic and of manageable dimensions.

Figure 33-3 shows, in broad outline, the generation of such waves.At its heart
is an LC oscillator, which establishes an angular frequency 
Charges and currents in this circuit vary sinusoidally at this frequency, as de-
picted in Fig. 31-1. An external source—possibly an ac generator—must be
included to supply energy to compensate both for thermal losses in the circuit
and for energy carried away by the radiated electromagnetic wave.

The LC oscillator of Fig. 33-3 is coupled by a transformer and a transmission
line to an antenna, which consists essentially of two thin, solid, conducting rods.
Through this coupling, the sinusoidally varying current in the oscillator causes
charge to oscillate sinusoidally along the rods of the antenna at the 
angular frequency v of the LC oscillator. The current in the rods associated with
this movement of charge also varies sinusoidally, in magnitude and direction, at an-
gular frequency v. The antenna has the effect of an electric dipole whose electric
dipole moment varies sinusoidally in magnitude and direction along the antenna.

v (� 1/1LC).
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Figure 33-2 The relative sensitivity of the av-
erage human eye to electromagnetic waves
at different wavelengths.This portion of the
electromagnetic spectrum to which the eye
is sensitive is called visible light.
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Figure 33-3 An arrangement for generating a
traveling electromagnetic wave in the
shortwave radio region of the spectrum: an
LC oscillator produces a sinusoidal current
in the antenna, which generates the wave.
P is a distant point at which a detector can
monitor the wave traveling past it.
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Because the dipole moment varies in magnitude and direction, the electric
field produced by the dipole varies in magnitude and direction. Also, because the
current varies, the magnetic field produced by the current varies in magnitude
and direction. However, the changes in the electric and magnetic fields do not
happen everywhere instantaneously; rather, the changes travel outward from the
antenna at the speed of light c. Together the changing fields form an electromag-
netic wave that travels away from the antenna at speed c. The angular frequency
of this wave is v, the same as that of the LC oscillator.

Electromagnetic Wave. Figure 33-4 shows how the electric field and the
magnetic field change with time as one wavelength of the wave sweeps past the
distant point P of Fig. 33-3; in each part of Fig. 33-4, the wave is traveling directly
out of the page. (We choose a distant point so that the curvature of the waves
suggested in Fig. 33-3 is small enough to neglect. At such points, the wave is said
to be a plane wave, and discussion of the wave is much simplified.) Note several
key features in Fig. 33-4; they are present regardless of how the wave is created:

1. The electric and magnetic fields and are always perpendicular to the
direction in which the wave is traveling. Thus, the wave is a transverse wave, as
discussed in Chapter 16.

2. The electric field is always perpendicular to the magnetic field.

3. The cross product always gives the direction in which the wave travels.

4. The fields always vary sinusoidally, just like the transverse waves discussed
in Chapter 16. Moreover, the fields vary with the same frequency and in phase
(in step) with each other.

In keeping with these features, we can assume that the electromagnetic wave
is traveling toward P in the positive direction of an x axis, that the electric field in
Fig. 33-4 is oscillating parallel to the y axis, and that the magnetic field is then
oscillating parallel to the z axis (using a right-handed coordinate system, of
course).Then we can write the electric and magnetic fields as sinusoidal functions
of position x (along the path of the wave) and time t :

E � Em sin(kx � vt), (33-1)

B � Bm sin(kx � vt), (33-2)

in which Em and Bm are the amplitudes of the fields and, as in Chapter 16,v and k
are the angular frequency and angular wave number of the wave, respectively.
From these equations, we note that not only do the two fields form the electro-
magnetic wave but each also forms its own wave. Equation 33-1 gives the electric
wave component of the electromagnetic wave, and Eq. 33-2 gives the magnetic
wave component. As we shall discuss below, these two wave components cannot
exist independently.

Wave Speed. From Eq. 16-13, we know that the speed of the wave is v/k.
However, because this is an electromagnetic wave, its speed (in vacuum) is given
the symbol c rather than v. In the next section you will see that c has the value

(wave speed), (33-3)

which is about 3.0 � 108 m/s. In other words,

c �
1

1m0´0

E
:

� B
:

B
:

E
:

B
:

E
:
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Figure 33-4 (a)–(h) The variation in the
electric field and the magnetic field at
the distant point P of Fig. 33-3 as one wave-
length of the electromagnetic wave travels
past it. In this perspective, the wave is
traveling directly out of the page.The two
fields vary sinusoidally in magnitude and
direction. Note that they are always per-
pendicular to each other and to the wave’s
direction of travel.
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All electromagnetic waves, including visible light, have the same speed c in vacuum.

You will also see that the wave speed c and the amplitudes of the electric and



magnetic fields are related by

(amplitude ratio). (33-4)

If we divide Eq. 33-1 by Eq. 33-2 and then substitute with Eq. 33-4, we find that
the magnitudes of the fields at every instant and at any point are related by

(magnitude ratio). (33-5)

Rays and Wavefronts. We can represent the electromagnetic wave as in Fig. 33-
5a, with a ray (a directed line showing the wave’s direction of travel) or with wave-
fronts (imaginary surfaces over which the wave has the same magnitude of electric
field), or both. The two wavefronts shown in Fig. 33-5a are separated by one wave-
length l (� 2p/k) of the wave. (Waves traveling in approximately the same direction
form a beam, such as a laser beam, which can also be represented with a ray.)

Drawing the Wave. We can also represent the wave as in Fig. 33-5b, which
shows the electric and magnetic field vectors in a “snapshot” of the wave at a
certain instant. The curves through the tips of the vectors represent the sinu-
soidal oscillations given by Eqs. 33-1 and 33-2; the wave components and 
are in phase, perpendicular to each other, and perpendicular to the wave’s
direction of travel.

Interpretation of Fig. 33-5b requires some care. The similar drawings for a
transverse wave on a taut string that we discussed in Chapter 16 represented the
up and down displacement of sections of the string as the wave passed (some-
thing actually moved). Figure 33-5b is more abstract. At the instant shown, the
electric and magnetic fields each have a certain magnitude and direction (but
always perpendicular to the x axis) at each point along the x axis. We choose to
represent these vector quantities with a pair of arrows for each point, and so we
must draw arrows of different lengths for different points, all directed away from
the x axis, like thorns on a rose stem. However, the arrows represent field values
only at points that are on the x axis. Neither the arrows nor the sinusoidal curves
represent a sideways motion of anything, nor do the arrows connect points on the
x axis with points off the axis.

Feedback. Drawings like Fig. 33-5 help us visualize what is actually a very
complicated situation. First consider the magnetic field. Because it varies sinu-
soidally, it induces (via Faraday’s law of induction) a perpendicular electric
field that also varies sinusoidally. However, because that electric field is vary-
ing sinusoidally, it induces (via Maxwell’s law of induction) a perpendicular
magnetic field that also varies sinusoidally. And so on. The two fields continu-
ously create each other via induction, and the resulting sinusoidal variations
in the fields travel as a wave — the electromagnetic wave. Without this amaz-
ing result, we could not see; indeed, because we need electromagnetic waves

B
:

E
:

E
B

� c

Em

Bm
� c
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Figure 33-5 (a) An electromagnetic wave
represented with a ray and two wavefronts;
the wavefronts are separated by one wave-
length l. (b) The same wave represented in
a “snapshot” of its electric field and mag-
netic field at points on the x axis, along
which the wave travels at speed c. As it
travels past point P, the fields vary as
shown in Fig. 33-4.The electric component
of the wave consists of only the electric
fields; the magnetic component consists of
only the magnetic fields.The dashed rec-
tangle at P is used in Fig. 33-6.
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from the Sun to maintain Earth’s temperature, without this result we could not
even exist.

A Most Curious Wave
The waves we discussed in Chapters 16 and 17 require a medium (some material)
through which or along which to travel. We had waves traveling along a string,
through Earth, and through the air. However, an electromagnetic wave (let’s use
the term light wave or light) is curiously different in that it requires no medium
for its travel. It can, indeed, travel through a medium such as air or glass, but it
can also travel through the vacuum of space between a star and us.

Once the special theory of relativity became accepted, long after Einstein
published it in 1905, the speed of light waves was realized to be special. One rea-
son is that light has the same speed regardless of the frame of reference from
which it is measured. If you send a beam of light along an axis and ask several
observers to measure its speed while they move at different speeds along that
axis, either in the direction of the light or opposite it, they will all measure the
same speed for the light. This result is an amazing one and quite different from
what would have been found if those observers had measured the speed of any
other type of wave; for other waves, the speed of the observers relative to the
wave would have affected their measurements.

The meter has now been defined so that the speed of light (any electromag-
netic wave) in vacuum has the exact value

c � 299 792 458 m/s,

which can be used as a standard. In fact, if you now measure the travel time of a
pulse of light from one point to another, you are not really measuring the speed
of the light but rather the distance between those two points.

The Traveling Electromagnetic Wave, Quantitatively
We shall now derive Eqs. 33-3 and 33-4 and, even more important, explore the
dual induction of electric and magnetic fields that gives us light.

Equation 33-4 and the Induced Electric Field
The dashed rectangle of dimensions dx and h in Fig. 33-6 is fixed at point P on the
x axis and in the xy plane (it is shown on the right in Fig. 33-5b). As the electro-
magnetic wave moves rightward past the rectangle, the magnetic flux �B through
the rectangle changes and—according to Faraday’s law of induction—induced
electric fields appear throughout the region of the rectangle. We take and

to be the induced fields along the two long sides of the rectangle. These
induced electric fields are, in fact, the electrical component of the electro-
magnetic wave.

Note the small red portion of the magnetic field component curve far from
the y axis in Fig. 33-5b. Let’s consider the induced electric fields at the instant
when this red portion of the magnetic component is passing through the rectan-
gle. Just then, the magnetic field through the rectangle points in the positive z
direction and is decreasing in magnitude (the magnitude was greater just before
the red section arrived). Because the magnetic field is decreasing, the magnetic
flux �B through the rectangle is also decreasing. According to Faraday’s law, this
change in flux is opposed by induced electric fields, which produce a magnetic
field in the positive z direction.

According to Lenz’s law, this in turn means that if we imagine the boundary
of the rectangle to be a conducting loop, a counterclockwise induced current
would have to appear in it. There is, of course, no conducting loop; but this
analysis shows that the induced electric field vectors and are indeedE

:
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:
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:
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Figure 33-6 As the electromagnetic wave
travels rightward past point P in Fig. 33-5b,
the sinusoidal variation of the magnetic
field through a rectangle centered at P
induces electric fields along the rectangle.
At the instant shown, is decreasing in
magnitude and the induced electric field is
therefore greater in magnitude on the right
side of the rectangle than on the left.
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oriented as shown in Fig. 33-6, with the magnitude of greater than that of
. Otherwise, the net induced electric field would not act counterclockwise

around the rectangle.
Faraday’s Law. Let us now apply Faraday’s law of induction,

(33-6)

counterclockwise around the rectangle of Fig. 33-6. There is no contribution to
the integral from the top or bottom of the rectangle because and are per-
pendicular to each other there.The integral then has the value

(33-7)

The flux �B through this rectangle is

�B � (B)(h dx), (33-8)

where B is the average magnitude of within the rectangle and h dx is the area
of the rectangle. Differentiating Eq. 33-8 with respect to t gives

(33-9)

If we substitute Eqs. 33-7 and 33-9 into Eq. 33-6, we find

or (33-10)

Actually, both B and E are functions of two variables, coordinate x and time t, as
Eqs. 33-1 and 33-2 show. However, in evaluating dE/dx, we must assume that t is
constant because Fig. 33-6 is an “instantaneous snapshot.” Also, in evaluating
dB/dt we must assume that x is constant (a particular value) because we are deal-
ing with the time rate of change of B at a particular place, the point P shown in
Fig. 33-5b. The derivatives under these circumstances are partial derivatives, and
Eq. 33-10 must be written

(33-11)

The minus sign in this equation is appropriate and necessary because, although
magnitude E is increasing with x at the site of the rectangle in Fig. 33-6, magni-
tude B is decreasing with t.

From Eq. 33-1 we have

and from Eq. 33-2

Then Eq. 33-11 reduces to

kEm cos(kx � vt) � vBm cos(kx � vt). (33-12)

The ratio v/k for a traveling wave is its speed, which we are calling c. Equation
33-12 then becomes

(amplitude ratio), (33-13)

which is just Eq. 33-4.

Em

Bm
� c
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�t

� �vBm cos(kx � vt).
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Equation 33-3 and the Induced Magnetic Field
Figure 33-7 shows another dashed rectangle at point P of Fig. 33-5b; this one is
in the xz plane. As the electromagnetic wave moves rightward past this new
rectangle, the electric flux �E through the rectangle changes and—according to
Maxwell’s law of induction—induced magnetic fields appear throughout the
region of the rectangle. These induced magnetic fields are, in fact, the magnetic
component of the electromagnetic wave.

We see from Fig. 33-5b that at the instant chosen for the magnetic field repre-
sented in Fig. 33-6, marked in red on the magnetic component curve, the electric field
through the rectangle of Fig. 33-7 is directed as shown. Recall that at the chosen in-
stant, the magnetic field in Fig.33-6 is decreasing.Because the two fields are in phase,
the electric field in Fig. 33-7 must also be decreasing, and so must the electric flux �E

through the rectangle. By applying the same reasoning we applied to Fig. 33-6, we
see that the changing flux �E will induce a magnetic field with vectors and

oriented as shown in Fig. 33-7, where field is greater than field .
Maxwell’s Law. Let us apply Maxwell’s law of induction,

(33-14)

by proceeding counterclockwise around the dashed rectangle of Fig. 33-7. Only
the long sides of the rectangle contribute to the integral because the dot product
along the short sides is zero.Thus, we can write

(33-15)

The flux �E through the rectangle is

�E � (E)(h dx), (33-16)

where E is the average magnitude of within the rectangle. Differentiating
Eq. 33-16 with respect to t gives

If we substitute this and Eq. 33-15 into Eq. 33-14, we find

or, changing to partial-derivative notation as we did for Eq. 33-11,

(33-17)

Again, the minus sign in this equation is necessary because, although B is increas-
ing with x at point P in the rectangle in Fig. 33-7, E is decreasing with t.

Evaluating Eq. 33-17 by using Eqs. 33-1 and 33-2 leads to

�kBm cos(kx � vt) � �m0´0vEm cos(kx � vt),

which we can write as

Combining this with Eq. 33-13 leads at once to

(wave speed), (33-18)

which is exactly Eq. 33-3.
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Figure 33-7 The sinusoidal variation of the
electric field through this rectangle, located
(but not shown) at point P in Fig. 33-5b,
induces magnetic fields along the rectangle.
The instant shown is that of Fig. 33-6: is
decreasing in magnitude, and the magni-
tude of the induced magnetic field is
greater on the right side of the rectangle
than on the left.

E
:

z

x

y

h
B+dB 

dx

E

B

The oscillating electric field
induces an oscillating and
perpendicular magnetic field.
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Checkpoint 1
The magnetic field through the rectangle of Fig. 33-6 is shown at a different instant
in part 1 of the figure here; is directed in the xz plane, parallel to the z axis, and its
magnitude is increasing. (a) Complete part 1 by drawing the induced electric fields,
indicating both directions and relative magnitudes (as in Fig. 33-6). (b) For the same
instant, complete part 2 of the figure by drawing the electric field of the electromag-
netic wave.Also draw the induced magnetic fields, indicating both directions and
relative magnitudes (as in Fig. 33-7).
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B
:
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z

x
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33-2 ENERGY TRANSPORT AND THE POYNTING VECTOR

After reading this module, you should be able to . . .

33.13 Identify that an electromagnetic wave transports
energy.

33.14 For a target, identify that an EM wave’s rate of energy
transport per unit area is given by the Poynting vector ,
which is related to the cross product of the electric field

and magnetic field .
33.15 Determine the direction of travel (and thus energy

transport) of an electromagnetic wave by applying
the cross product for the corresponding Poynting
vector.

33.16 Calculate the instantaneous rate S of energy flow of
an EM wave in terms of the instantaneous electric field
magnitude E.

33.17 For the electric field component of an electromag-
netic wave, relate the rms value Erms to the amplitude Em.

B
:

E
:

S
:

33.18 Identify an EM wave’s intensity I in terms of energy
transport.

33.19 Apply the relationships between an EM wave’s 
intensity I and the electric field’s rms value Erms and ampli-
tude Em.

33.20 Apply the relationship between average power Pavg,
energy transfer 
E, and the time 
t taken by that transfer,
and apply the relationship between the instantaneous
power P and the rate of energy transfer dE/dt.

33.21 Identify an isotropic point source of light.
33.22 For an isotropic point source of light, apply the relation-

ship between the emission power P, the distance r to a
point of measurement, and the intensity I at that point.

33.23 In terms of energy conservation, explain why the intensity
from an isotropic point source of light decreases as 1/r2.

Learning Objectives

● The rate per unit area at which energy is transported 
via an electromagnetic wave is given by the Poynting
vector :

The direction of (and thus of the wave’s travel and the
energy transport) is perpendicular to the directions of both

and

● The time-averaged rate per unit area at which energy
is transported is Savg, which is called the intensity I of

B
:

.E
:

S
:

S
:

�
1
m0

E
:

� B
:

.

S
:

the wave:

in which . 

● A point source of electromagnetic waves emits the waves
isotropically—that is, with equal intensity in all directions. The
intensity of the waves at distance r from a point source of
power Ps is

I �
Ps

4pr2  .

Erms � Em/1 2

I �
1

cm0
E rms

2 ,

Key Ideas



Energy Transport and the Poynting Vector
All sunbathers know that an electromagnetic wave can transport energy and
deliver it to a body on which the wave falls. The rate of energy transport per unit
area in such a wave is described by a vector , called the Poynting vector after
physicist John Henry Poynting (1852–1914), who first discussed its properties.
This vector is defined as

(Poynting vector). (33-19)

Its magnitude S is related to the rate at which energy is transported by a wave
across a unit area at any instant (inst):

(33-20)

From this we can see that the SI unit for is the watt per square meter (W/m2).S
:

S � � energy/time
area �

inst
� � power

area �
inst

.

S
:

�
1
m0

E
:

� B
:

S
:
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The direction of the Poynting vector of an electromagnetic wave at any
point gives the wave’s direction of travel and the direction of energy transport
at that point.

S
:

Because and are perpendicular to each other in an electromagnetic
wave, the magnitude of is EB.Then the magnitude of is

(33-21)

in which S, E, and B are instantaneous values. The magnitudes E and B are so
closely coupled to each other that we need to deal with only one of them; we
choose E, largely because most instruments for detecting electromagnetic waves
deal with the electric component of the wave rather than the magnetic compo-
nent. Using B � E/c from Eq. 33-5, we can rewrite Eq. 33-21 in terms of just the
electric component as

(instantaneous energy flow rate). (33-22)

Intensity. By substituting E � Em sin(kx � vt) into Eq. 33-22, we could ob-
tain an equation for the energy transport rate as a function of time. More useful
in practice, however, is the average energy transported over time; for that,
we need to find the time-averaged value of S, written Savg and also called the
intensity I of the wave.Thus from Eq. 33-20, the intensity I is

(33-23)

From Eq. 33-22, we find

(33-24)

Over a full cycle, the average value of sin2 u, for any angular variable u, is (see
Fig. 31-17). In addition, we define a new quantity Erms, the root-mean-square
value of the electric field, as

(33-25)Erms �
Em

12
 .
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cm0
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 [E 2
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1
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We can then rewrite Eq. 33-24 as

. (33-26)

Because E � cB and c is such a very large number, you might conclude that
the energy associated with the electric field is much greater than that associated
with the magnetic field. That conclusion is incorrect; the two energies are exactly
equal. To show this, we start with Eq. 25-25, which gives the energy density

within an electric field, and substitute cB for E; then we can write

If we now substitute for c with Eq. 33-3, we get

However, Eq. 30-55 tells us that B2/2m0 is the energy density uB of a magnetic
field ; so we see that uE � uB everywhere along an electromagnetic wave.

Variation of Intensity with Distance
How intensity varies with distance from a real source of electromagnetic radia-
tion is often complex—especially when the source (like a searchlight at a
movie premier) beams the radiation in a particular direction. However, in some
situations we can assume that the source is a point source that emits the light
isotropically—that is, with equal intensity in all directions. The spherical wave-
fronts spreading from such an isotropic point source S at a particular instant are
shown in cross section in Fig. 33-8.

Let us assume that the energy of the waves is conserved as they spread from this
source. Let us also center an imaginary sphere of radius r on the source, as shown in
Fig.33-8.All the energy emitted by the source must pass through the sphere.Thus, the
rate at which energy passes through the sphere via the radiation must equal the rate
at which energy is emitted by the source—that is, the source power Ps.The intensity I
(power per unit area) measured at the sphere must then be, from Eq.33-23,

(33-27)

where 4pr2 is the area of the sphere. Equation 33-27 tells us that the intensity of
the electromagnetic radiation from an isotropic point source decreases with the
square of the distance r from the source.

I �
power
area

�
Ps

4pr 2 ,

B
:

uE � 1
2´0

1
m0´0

B2 �
B2

2m0
.

uE � 1
2´0E 2 � 1

2´0(cB)2.

u (� 1
2´0E 2)

I �
1

cm0
E2

rms

982 CHAPTER 33 ELECTROMAGNETIC WAVES

Figure 33-8 A point source S emits electro-
magnetic waves uniformly in all directions.
The spherical wavefronts pass through an
imaginary sphere of radius r that is
centered on S.

S

r

The energy emitted by light
source S must pass through
the sphere of radius r.

Checkpoint 2
The figure here gives the electric field of an electromagnetic wave at
a certain point and a certain instant.The wave is transporting energy
in the negative z direction.What is the direction of the magnetic field
of the wave at that point and instant?

z

x

y

E

. Neglecting any atmospheric absorption, find the
rms values of the electric and magnetic fields when the
starlight reaches you.

1026 W)

Sample Problem 33.01 Light wave: rms values of the electric and magnetic fields

When you look at the North Star (Polaris), you intercept
light from a star at a distance of 431 ly and emitting energy
at a rate of 2.2 � 103 times that of our Sun (Psun � 3.90 �
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Additional examples, video, and practice available at WileyPLUS

33-3 RADIATION PRESSURE

After reading this module, you should be able to . . .

33.24 Distinguish between force and pressure.
33.25 Identify that an electromagnetic wave transports

momentum and can exert a force and a pressure on 
a target.

33.26 For a uniform electromagnetic beam that is perpendi-
cular to a target area, apply the relationships between that

area, the wave’s intensity, and the force on the target, for
both total absorption and total backward reflection.

33.27 For a uniform electromagnetic beam that is perpendi-
cular to a target area, apply the relationships between the
wave’s intensity and the pressure on the target, for both
total absorption and total backward reflection.

Learning Objectives

● When a surface intercepts electromagnetic radiation, a
force and a pressure are exerted on the surface. 

● If the radiation is totally absorbed by the surface, the force is

(total absorption),

in which I is the intensity of the radiation and A is the area of
the surface perpendicular to the path of the radiation. 

● If the radiation is totally reflected back along its original

F �
IA
c

path, the force is

(total reflection back along path).

● The radiation pressure pr is the force per unit area:

(total absorption)

and (total reflection back along path).pr �
2I
c

pr �
I
c

F �
2IA

c

Key Ideas

KEY IDEAS

1. The rms value Erms of the electric field in light is re-
lated to the intensity I of the light via Eq. 33-26

2. Because the source is so far away and emits light with
equal intensity in all directions, the intensity I at any
distance r from the source is related to the source’s
power Ps via Eq. 33-27 (I � Ps/4pr2).

3. The magnitudes of the electric field and magnetic field
of an electromagnetic wave at any instant and at any
point in the wave are related by the speed of light c
according to Eq. 33-5 (E/B � c). Thus, the rms values of
those fields are also related by Eq. 33-5.

Electric field: Putting the first two ideas together gives us

and Erms � A
Pscm 0

4p r2 .

I �
Ps

4pr2 �
E2

rms

cm0

(I � E2
rms/cm0).

By substituting Ps � (2.2 � 103)(3.90 � 1026 W), r � 431 ly �
4.08 � 1018 m, and values for the constants, we find

(Answer)

Magnetic field: From Eq. 33-5, we write

Cannot compare the fields: Note that Erms (� 1.2 mV/m) is
small as judged by ordinary laboratory standards, but Brms

(� 4.1 pT) is quite small.This difference helps to explain why
most instruments used for the detection and measurement of
electromagnetic waves are designed to respond to the electric
component. It is wrong, however, to say that the electric com-
ponent of an electromagnetic wave is “stronger” than the
magnetic component.You cannot compare quantities that are
measured in different units. However, these electric and mag-
netic components are on an equal basis because their average
energies, which can be compared, are equal.

� 4.1 � 10�12 T � 4.1 pT.

Brms �
Erms

c
�

1.24 � 10�3 V/m
3.00 � 108 m/s

Erms � 1.24 � 10�3 V/m � 1.2 mV/m.

Radiation Pressure
Electromagnetic waves have linear momentum and thus can exert a pressure on
an object when shining on it. However, the pressure must be very small because,
for example, you do not feel a punch during a camera flash.
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To find an expression for the pressure, let us shine a beam of electromagnetic
radiation—light, for example—on an object for a time interval 
t. Further, let us
assume that the object is free to move and that the radiation is entirely absorbed
(taken up) by the object. This means that during the interval 
t, the object gains
an energy 
U from the radiation. Maxwell showed that the object also gains
linear momentum. The magnitude 
p of the momentum change of the object is
related to the energy change 
U by

(total absorption), (33-28)

where c is the speed of light.The direction of the momentum change of the object
is the direction of the incident (incoming) beam that the object absorbs.

Instead of being absorbed, the radiation can be reflected by the object; that
is, the radiation can be sent off in a new direction as if it bounced off the object. If
the radiation is entirely reflected back along its original path, the magnitude of
the momentum change of the object is twice that given above, or

(total reflection back along path). (33-29)

In the same way, an object undergoes twice as much momentum change when a
perfectly elastic tennis ball is bounced from it as when it is struck by a perfectly
inelastic ball (a lump of wet putty, say) of the same mass and velocity. If the inci-
dent radiation is partly absorbed and partly reflected, the momentum change of
the object is between 
U/c and 2 
U/c.

Force. From Newton’s second law in its linear momentum form (Module 9-3),
we know that a change in momentum is related to a force by

(33-30)

To find expressions for the force exerted by radiation in terms of the intensity I of
the radiation, we first note that intensity is

Next, suppose that a flat surface of area A, perpendicular to the path of the radiation,
intercepts the radiation. In time interval 
t, the energy intercepted by area A is


U � IA 
t. (33-31)

If the energy is completely absorbed, then Eq. 33-28 tells us that 
p � IA 
t/c,
and, from Eq. 33-30, the magnitude of the force on the area A is

(total absorption). (33-32)

Similarly, if the radiation is totally reflected back along its original path, Eq. 33-29
tells us that 
p � 2IA 
t/c and, from Eq. 33-30,

(total reflection back along path). (33-33)

If the radiation is partly absorbed and partly reflected, the magnitude of the force
on area A is between the values of IA/c and 2IA/c.

Pressure. The force per unit area on an object due to radiation is the
radiation pressure pr. We can find it for the situations of Eqs. 33-32 and 33-33 by
dividing both sides of each equation by A.We obtain

(total absorption) (33-34)pr �
I
c

F �
2IA

c

F �
IA
c

I �
power
area

�
energy/time

area
 .

F �

p

t

.


p �
2 
U

c


p �

U

c



and (total reflection back along path). (33-35)

Be careful not to confuse the symbol pr for radiation pressure with the symbol p
for momentum. Just as with fluid pressure in Chapter 14, the SI unit of radiation
pressure is the newton per square meter (N/m2), which is called the pascal (Pa).

The development of laser technology has permitted researchers to achieve
radiation pressures much greater than, say, that due to a camera flashlamp. This
comes about because a beam of laser light—unlike a beam of light from a small
lamp filament—can be focused to a tiny spot. This permits the delivery of great
amounts of energy to small objects placed at that spot.

pr �
2I
c
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Checkpoint 3
Light of uniform intensity shines perpendicularly on a totally absorbing surface, fully
illuminating the surface. If the area of the surface is decreased, do (a) the radiation
pressure and (b) the radiation force on the surface increase, decrease, or stay the same?

33-4 POLARIZATION

After reading this module, you should be able to . . .

33.28 Distinguish between polarized light and unpolarized light.
33.29 For a light beam headed toward you, sketch represen-

tations of polarized light and unpolarized light.
33.30 When a beam is sent into a polarizing sheet, explain

the function of the sheet in terms of its polarizing direction
(or axis) and the electric field component that is absorbed
and the component that is transmitted.

33.31 For light that emerges from a polarizing sheet, identify
its polarization relative to the sheet’s polarizing direction.

33.32 For a light beam incident perpendicularly on a polariz-
ing sheet, apply the one-half rule and the cosine-squared
rule, distinguishing their uses.

33.33 Distinguish between a polarizer and an analyzer.
33.34 Explain what is meant if two sheets are crossed.
33.35 When a beam is sent into a system of polarizing

sheets, work through the sheets one by one, finding the
transmitted intensity and polarization.

Learning Objectives

● Electromagnetic waves are polarized if their electric field
vectors are all in a single plane, called the plane of oscillation.
Light waves from common sources are not polarized; that is,
they are unpolarized, or polarized randomly.

● When a polarizing sheet is placed in the path of light, only
electric field components of the light parallel to the sheet’s
polarizing direction are transmitted by the sheet; components
perpendicular to the polarizing direction are absorbed. The
light that emerges from a polarizing sheet is polarized parallel
to the polarizing direction of the sheet.

● If the original light is initially unpolarized, the transmitted
intensity I is half the original intensity I0:

● If the original light is initially polarized, the transmitted
intensity depends on the angle u between the polarization
direction of the original light and the polarizing direction of
the sheet:

I � I0 cos2 u.

I � 1
2 I0.

Key Ideas

Polarization
VHF (very high frequency) television antennas in England are oriented 
vertically, but those in North America are horizontal. The difference is due to the
direction of oscillation of the electromagnetic waves carrying the TV signal. In
England, the transmitting equipment is designed to produce waves that are
polarized vertically; that is, their electric field oscillates vertically. Thus, for the
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Figure 33-9 (a) The plane of oscillation of a polarized electromagnetic wave. (b) To
represent the polarization, we view the plane of oscillation head-on and indicate the direc-
tions of the oscillating electric field with a double arrow.

Figure 33-10 (a) Unpolarized light consists
of waves with randomly directed electric
fields. Here the waves are all traveling
along the same axis, directly out of the
page, and all have the same amplitude E.
(b) A second way of representing unpolar-
ized light—the light is the superposition
of two polarized waves whose planes of
oscillation are perpendicular to each other.

electric field of the incident television waves to drive a current along an antenna
(and provide a signal to a television set), the antenna must be vertical. In North
America, the waves are polarized horizontally.

Figure 33-9a shows an electromagnetic wave with its electric field oscillating
parallel to the vertical y axis. The plane containing the vectors is called the
plane of oscillation of the wave (hence, the wave is said to be plane-polarized in
the y direction). We can represent the wave’s polarization (state of being polar-
ized) by showing the directions of the electric field oscillations in a head-on view
of the plane of oscillation, as in Fig. 33-9b.The vertical double arrow in that figure
indicates that as the wave travels past us, its electric field oscillates vertically—it
continuously changes between being directed up and down the y axis.

Polarized Light
The electromagnetic waves emitted by a television station all have the same
polarization, but the electromagnetic waves emitted by any common source of light
(such as the Sun or a bulb) are polarized randomly, or unpolarized (the two terms
mean the same thing).That is, the electric field at any given point is always perpen-
dicular to the direction of travel of the waves but changes directions randomly.
Thus, if we try to represent a head-on view of the oscillations over some time pe-
riod, we do not have a simple drawing with a single double arrow like that of Fig.
33-9b; instead we have a mess of double arrows like that in Fig. 33-10a.

In principle, we can simplify the mess by resolving each electric field of
Fig. 33-10a into y and z components. Then as the wave travels past us, the net
y component oscillates parallel to the y axis and the net z component oscillates
parallel to the z axis. We can then represent the unpolarized light with a pair of
double arrows as shown in Fig. 33-10b. The double arrow along the y axis
represents the oscillations of the net y component of the electric field. The dou-
ble arrow along the z axis represents the oscillations of the net z component of
the electric field. In doing all this, we effectively change unpolarized light into
the superposition of two polarized waves whose planes of oscillation are
perpendicular to each other — one plane contains the y axis and the other con-
tains the z axis. One reason to make this change is that drawing Fig. 33-10b is a
lot easier than drawing Fig. 33-10a.

We can draw similar figures to represent light that is partially polarized (its
field oscillations are not completely random as in Fig. 33-10a, nor are they paral-
lel to a single axis as in Fig. 33-9b). For this situation, we draw one of the double
arrows in a perpendicular pair of double arrows longer than the other one.

Polarizing Direction. We can transform unpolarized visible light into polar-
ized light by sending it through a polarizing sheet, as is shown in Fig. 33-11. Such
sheets, commercially known as Polaroids or Polaroid filters, were invented in
1932 by Edwin Land while he was an undergraduate student. A polarizing sheet
consists of certain long molecules embedded in plastic. When the sheet is manu-

E
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c
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Vertically polarized 
light headed toward 
you—the electric fields 
are all vertical.

z

y

(b)

(a)

E

Unpolarized light
headed toward
you—the electric 
fields are in all
directions in the 
plane.

This is a quick
way to symbolize
unpolarized light.



factured, it is stretched to align the molecules in parallel rows, like rows in a
plowed field. When light is then sent through the sheet, electric field components
along one direction pass through the sheet, while components perpendicular to
that direction are absorbed by the molecules and disappear.

We shall not dwell on the molecules but, instead, shall assign to the sheet a
polarizing direction, along which electric field components are passed:
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Figure 33-11 Unpolarized light becomes po-
larized when it is sent through a polarizing
sheet. Its direction of polarization is then
parallel to the polarizing direction of the
sheet, which is represented here by the
vertical lines drawn in the sheet.

Figure 33-12 Polarized light approaching a
polarizing sheet.The electric field of the
light can be resolved into components Ey

(parallel to the polarizing direction of the
sheet) and Ez (perpendicular to that direc-
tion). Component Ey will be transmitted by
the sheet; component Ez will be absorbed.

E
:

Polarizing sheet 

Vertically polarized light 

Unpolarized light 

Incident light ray 

The sheet’s polarizing axis
is vertical, so only vertically
polarized light emerges.

y

z

E y

E z

θ  

E

The sheet’s polarizing 
axis is vertical, so 
only vertical
components of 
the electric fields 
pass.

Thus, the electric field of the light emerging from the sheet consists of only the
components that are parallel to the polarizing direction of the sheet; hence the
light is polarized in that direction. In Fig. 33-11, the vertical electric field compo-
nents are transmitted by the sheet; the horizontal components are absorbed. The
transmitted waves are then vertically polarized.

Intensity of Transmitted Polarized Light
We now consider the intensity of light transmitted by a polarizing sheet. We start
with unpolarized light, whose electric field oscillations we can resolve into y and
z components as represented in Fig. 33-10b. Further, we can arrange for the y axis
to be parallel to the polarizing direction of the sheet.Then only the y components
of the light’s electric field are passed by the sheet; the z components are
absorbed. As suggested by Fig. 33-10b, if the original waves are randomly ori-
ented, the sum of the y components and the sum of the z components are equal.
When the z components are absorbed, half the intensity I0 of the original light is
lost.The intensity I of the emerging polarized light is then

(one-half rule). (33-36)

Let us call this the one-half rule; we can use it only when the light reaching a
polarizing sheet is unpolarized.

Suppose now that the light reaching a polarizing sheet is already polar-
ized. Figure 33-12 shows a polarizing sheet in the plane of the page and the
electric field of such a polarized light wave traveling toward the sheet (and
thus prior to any absorption). We can resolve into two components relative
to the polarizing direction of the sheet: parallel component Ey is transmitted
by the sheet, and perpendicular component Ez is absorbed. Since u is the an-
gle between and the polarizing direction of the sheet, the transmitted paral-
lel component is

Ey � E cos u. (33-37)

Recall that the intensity of an electromagnetic wave (such as our light wave)
is proportional to the square of the electric field’s magnitude (Eq. 33-26,

). In our present case then, the intensity I of the emerging wave is
proportional to and the intensity I0 of the original wave is proportional to E 2.Ey

2
I � E2

rms/cm0

E
:

E
:

E
:

I � 1
2I0

An electric field component parallel to the polarizing direction is passed 
(transmitted) by a polarizing sheet; a component perpendicular to it is absorbed.

Hence, from Eq. 33-37 we can write I/I0 cos2 u, or

I � I0 cos2 u (cosine-squared rule). (33-38)

Let us call this the cosine-squared rule; we can use it only when the light reaching
a polarizing sheet is already polarized. Then the transmitted intensity I is a maxi-
mum and is equal to the original intensity I0 when the original wave is polarized
parallel to the polarizing direction of the sheet (when u in Eq. 33-38 is 0° or 180°).
The transmitted intensity is zero when the original wave is polarized perpendicu-
lar to the polarizing direction of the sheet (when u is 90°).

�



Two Polarizing Sheets. Figure 33-13 shows an arrangement in which ini-
tially unpolarized light is sent through two polarizing sheets P1 and P2. (Often,
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the first sheet is called the polarizer, and the second the analyzer.) Because the
polarizing direction of P1 is vertical, the light transmitted by P1 to P2 is polar-
ized vertically. If the polarizing direction of P2 is also vertical, then all the light
transmitted by P1 is transmitted by P2. If the polarizing direction of P2 is horizontal,
none of the light transmitted by P1 is transmitted by P2. We reach the same conclu-
sions by considering only the relative orientations of the two sheets: If their polariz-
ing directions are parallel, all the light passed by the first sheet is passed by the sec-
ond sheet (Fig. 33-14a). If those directions are perpendicular (the sheets are said to
be crossed), no light is passed by the second sheet (Fig. 33-14b). Finally, if the two
polarizing directions of Fig. 33-13 make an angle between 0° and 90°, some of the
light transmitted by P1 will be transmitted by P2, as set by Eq. 33-38.

Other Means. Light can be polarized by means other than polarizing sheets,
such as by reflection (discussed in Module 33-7) and by scattering from atoms or
molecules. In scattering, light that is intercepted by an object, such as a molecule, is
sent off in many, perhaps random, directions. An example is the scattering of sun-
light by molecules in the atmosphere, which gives the sky its general glow.

Although direct sunlight is unpolarized, light from much of the sky is at
least partially polarized by such scattering. Bees use the polarization of sky
light in navigating to and from their hives. Similarly, the Vikings used it to navi-
gate across the North Sea when the daytime Sun was below the horizon (be-
cause of the high latitude of the North Sea). These early seafarers had discov-
ered certain crystals (now called cordierite) that changed color when rotated in
polarized light. By looking at the sky through such a crystal while rotating it
about their line of sight, they could locate the hidden Sun and thus determine
which way was south.

Figure 33-13 The light transmitted by polariz-
ing sheet P1 is vertically polarized, as repre-
sented by the vertical double arrow.The
amount of that light that is then transmit-
ted by polarizing sheet P2 depends on the
angle between the polarization direction of
that light and the polarizing direction of P2

(indicated by the lines drawn in the sheet
and by the dashed line).

Polarizing
direction

P2

P1

The sheet’s polarizing axis
is tilted, so only a fraction
of the intensity passes.

This light is vertically
polarized.

Richard Megna/Fundamental Photographs
(a) (b)

Figure 33-14 (a) Overlapping polarizing
sheets transmit light fairly well when their
polarizing directions have the same orien-
tation, but (b) they block most of the light
when they are crossed.

Checkpoint 4
The figure shows four pairs of polarizing sheets, seen face-on. Each
pair is mounted in the path of initially unpolarized light.The polariz-
ing direction of each sheet (indicated by the dashed line) is refer-
enced to either a horizontal x axis or a vertical y axis. Rank the pairs
according to the fraction of the initial intensity that they pass, great-
est first.

30° 30° 

30° 
30° 

60° 

60° 60° 60° 

(a) (b) (c) (d)
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Sample Problem 33.02 Polarization and intensity with three polarizing sheets

Figure 33-15a, drawn in perspective, shows a system of three
polarizing sheets in the path of initially unpolarized light.
The polarizing direction of the first sheet is parallel to the y
axis, that of the second sheet is at an angle of 60° counter-
clockwise from the y axis, and that of the third sheet is paral-
lel to the x axis.What fraction of the initial intensity I0 of the
light emerges from the three-sheet system, and in which 
direction is that emerging light polarized?

KEY IDEAS

1. We work through the system sheet by sheet, from the
first one encountered by the light to the last one.

2. To find the intensity transmitted by any sheet, we apply
either the one-half rule or the cosine-squared rule,
depending on whether the light reaching the sheet is
unpolarized or already polarized.

3. The light that is transmitted by a polarizing sheet is always
polarized parallel to the polarizing direction of the sheet.

First sheet: The original light wave is represented in
Fig. 33-15b, using the head-on, double-arrow representation
of Fig. 33-10b. Because the light is initially unpolarized, the
intensity I1 of the light transmitted by the first sheet is given
by the one-half rule (Eq. 33-36):

I1 � 1
2 I0.

A
I0

x

y

I160°

I2

I3

(a)
I0

x

y

I1

60°

I2

I3

60°

I1

I2

(e)

(d)

60°

(d)

(c)

(c)

(b)

Light is sent through
this system of three
polarizing sheets.

Work through
the system,
sheet by sheet.

Intensity rules:

If the incident light is unpolarized,
use the one-half rule:

             Iemerge � 0.5Iincident .

If the incident light is already polarized,
use the cosine-squared rule:

          Iemerge � Iincident(cos u)2,

but be sure to insert the angle between
the polarization of the incident light and
the polarization axis of the sheet.

The sheet’s
polarization axis
is vertical.

The sheet’s
polarization axis
is horizontal.

The sheet’s polarization axis
is 60º counterclockwise
from the vertical.

The incident light
is unpolarized.

The incident light is
polarized vertically.

The emerging light
is polarized vertically.
The intensity is given
by the one-half rule.

The emerging light is polarized
60º counterclockwise from the
vertical. The intensity is given by
the cosine-squared rule.

The emerging light is polar-
ized horizontally. The 
intensity is given by the 
cosine-squared rule.

The incident light is 
polarized 60º 
counterclockwise
from the vertical.

Figure 33-15 (a) Initially unpolarized light of intensity I0 is sent into a system of three polarizing
sheets.The intensities I1, I2, and I3 of the light transmitted by the sheets are labeled. Shown
also are the polarizations, from head-on views, of (b) the initial light and the light transmitted
by (c) the first sheet, (d) the second sheet, and (e) the third sheet.
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33-5 REFLECTION AND REFRACTION

After reading this module, you should be able to . . .

33.36 With a sketch, show the reflection of a light ray from an
interface and identify the incident ray, the reflected ray, the
normal, the angle of incidence, and the angle of reflection.

33.37 For a reflection, relate the angle of incidence and the
angle of reflection.

33.38 With a sketch, show the refraction of a light ray at an
interface and identify the incident ray, the refracted ray,
the normal on each side of the interface, the angle of
incidence, and the angle of refraction.

33.39 For refraction of light, apply Snell’s law to relate the
index of refraction and the angle of the ray on one side of
the interface to those quantities on the other side.

33.40 In a sketch and using a line along the undeflected
direction, show the refraction of light from one material into

a second material that has a greater index, a smaller index,
and the same index, and, for each situation, describe the
refraction in terms of the ray being bent toward the normal,
away from the normal, or not at all.

33.41 Identify that refraction occurs only at an interface and
not in the interior of a material.

33.42 Identify chromatic dispersion.
33.43 For a beam of red and blue light (or other colors)

refracting at an interface, identify which color has the
greater bending and which has the greater angle of
refraction when they enter a material with a lower index
than the initial material and a greater index.

33.44 Describe how the primary and secondary rainbows are
formed and explain why they are circular arcs.

Learning Objectives

● Geometrical optics is an approximate treatment of light in
which light waves are represented as straight-line rays.

● When a light ray encounters a boundary between two
transparent media, a reflected ray and a refracted ray
generally appear. Both rays remain in the plane of incidence.
The angle of reflection is equal to the angle of incidence, and

the angle of refraction is related to the angle of incidence by
Snell’s law,

n2 sin u2 � n1 sin u1 (refraction),

where n1 and n2 are the indexes of refraction of the media in
which the incident and refracted rays travel.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

Because the polarizing direction of the first sheet is parallel
to the y axis, the polarization of the light transmitted by it is
also, as shown in the head-on view of Fig. 33-15c.

Second sheet: Because the light reaching the second sheet
is polarized, the intensity I2 of the light transmitted by that
sheet is given by the cosine-squared rule (Eq. 33-38). The
angle u in the rule is the angle between the polarization di-
rection of the entering light (parallel to the y axis) and the
polarizing direction of the second sheet (60° counterclock-
wise from the y axis), and so u is 60°. (The larger angle
between the two directions, namely 120°, can also be used.)
We have

I2 � I1 cos2 60°.

The polarization of this transmitted light is parallel to the
polarizing direction of the sheet transmitting it—that is, 60°
counterclockwise from the y axis, as shown in the head-on
view of Fig. 33-15d.

Third sheet: Because the light reaching the third sheet is

polarized, the intensity I3 of the light transmitted by that
sheet is given by the cosine-squared rule. The angle u is now
the angle between the polarization direction of the entering
light (Fig. 33-15d) and the polarizing direction of the third
sheet (parallel to the x axis), and so u � 30°.Thus,

I3 � I2 cos2 30°.

This final transmitted light is polarized parallel to the x axis
(Fig. 33-15e). We find its intensity by substituting first for I2

and then for I1 in the equation above:

Thus, (Answer)

That is to say, 9.4% of the initial intensity emerges from the
three-sheet system. (If we now remove the second sheet,
what fraction of the initial intensity emerges from the
system?)

I3

I0
� 0.094.

� (1
2 I0) cos2 60� cos2 30� � 0.094I0.

I3 � I2 cos2 30� � (I1 cos2 60�) cos2 30�



Reflection and Refraction
Although a light wave spreads as it moves away from its source, we can often
approximate its travel as being in a straight line; we did so for the light wave in
Fig. 33-5a. The study of the properties of light waves under that approximation is
called geometrical optics. For the rest of this chapter and all of Chapter 34, we
shall discuss the geometrical optics of visible light.

The photograph in Fig. 33-16a shows an example of light waves traveling in
approximately straight lines. A narrow beam of light (the incident beam), angled
downward from the left and traveling through air, encounters a plane (flat) water
surface. Part of the light is reflected by the surface, forming a beam directed 
upward toward the right, traveling as if the original beam had bounced from the
surface. The rest of the light travels through the surface and into the water, form-
ing a beam directed downward to the right. Because light can travel through it,
the water is said to be transparent; that is, we can see through it. (In this chapter
we shall consider only transparent materials and not opaque materials, through
which light cannot travel.)

The travel of light through a surface (or interface) that separates two media is
called refraction, and the light is said to be refracted. Unless an incident beam of
light is perpendicular to the surface, refraction changes the light’s direction
of travel. For this reason, the beam is said to be “bent” by the refraction. Note in
Fig. 33-16a that the bending occurs only at the surface; within the water, the light
travels in a straight line.

In Figure 33-16b, the beams of light in the photograph are represented with
an incident ray, a reflected ray, and a refracted ray (and wavefronts). Each ray is
oriented with respect to a line, called the normal, that is perpendicular to the sur-
face at the point of reflection and refraction. In Fig. 33-16b, the angle of incidence
is u1, the angle of reflection is , and the angle of refraction is u2, all measured
relative to the normal. The plane containing the incident ray and the normal is the
plane of incidence, which is in the plane of the page in Fig. 33-16b.

Experiment shows that reflection and refraction are governed by two laws:
Law of reflection: A reflected ray lies in the plane of incidence and has an

angle of reflection equal to the angle of incidence (both relative to the normal).
In Fig. 33-16b, this means that

(reflection). (33-39)

(We shall now usually drop the prime on the angle of reflection.)

u�1 � u1

u�1
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Figure 33-16 (a) A photograph showing an incident beam of light reflected and refracted by
a horizontal water surface. (b) A ray representation of (a). The angles of incidence (u1), re-
flection , and refraction (u2) are marked.(u�1)

Incident
ray

  1θ   '1θ 

  2θ 

Normal

Wavefront

Reflected
ray

Air
Water

Refracted
ray

Interface

(a) (b)

©1974 FP/Fundamental Photographs



Law of refraction: A refracted ray lies in the plane of incidence and has an
angle of refraction u2 that is related to the angle of incidence u1 by

n2 sin u2 � n1 sin u1 (refraction). (33-40)

Here each of the symbols n1 and n2 is a dimensionless constant, called the index
of refraction, that is associated with a medium involved in the refraction. We
derive this equation, called Snell’s law, in Chapter 35. As we shall discuss there,
the index of refraction of a medium is equal to c/v, where v is the speed of light in
that medium and c is its speed in vacuum.

Table 33-1 gives the indexes of refraction of vacuum and some common
substances. For vacuum, n is defined to be exactly 1; for air, n is very close to 1.0 (an
approximation we shall often make). Nothing has an index of refraction below 1.

We can rearrange Eq. 33-40 as

(33-41)

to compare the angle of refraction u2 with the angle of incidence u1. We can
then see that the relative value of u2 depends on the relative values of n2 and n1:

1. If n2 is equal to n1, then u2 is equal to u1 and refraction does not bend the light
beam, which continues in the undeflected direction, as in Fig. 33-17a.

sin u2 �
n1

n2
 sin u1
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Table 33-1 Some Indexes of Refractiona

Medium Index Medium Index

Vacuum Exactly 1 Typical crown glass 1.52
Air (STP)b 1.00029 Sodium chloride 1.54
Water (20°C) 1.33 Polystyrene 1.55
Acetone 1.36 Carbon disulfide 1.63
Ethyl alcohol 1.36 Heavy flint glass 1.65
Sugar solution (30%) 1.38 Sapphire 1.77
Fused quartz 1.46 Heaviest flint glass 1.89
Sugar solution (80%) 1.49 Diamond 2.42

aFor a wavelength of 589 nm (yellow sodium light).
bSTP means “standard temperature (0°C) and pressure (1 atm).”

Normal

θ1

θ2

n1
n2

n2 = n1

(a)

Normal

θ1

θ2

n1
n2

n2 > n1

(b)

Normal

θ1

θ2

n1
n2

n2 < n1

(c)If the indexes match,
there is no direction
change.

If the next index is greater,
the ray is bent toward the
normal.

If the next index is less,
the ray is bent away from
the normal.

Figure 33-17 Refraction of light traveling from a medium with an index of refraction n1 into
a medium with an index of refraction n2. (a) The beam does not bend when n2 � n1; the
refracted light then travels in the undeflected direction (the dotted line), which is the same
as the direction of the incident beam.The beam bends (b) toward the normal when n2 � n1

and (c) away from the normal when n2 � n1.



2. If n2 is greater than n1, then u2 is less than u1. In this case, refraction bends the
light beam away from the undeflected direction and toward the normal, as in
Fig. 33-17b.

3. If n2 is less than n1, then u2 is greater than u1. In this case, refraction bends the
light beam away from the undeflected direction and away from the normal, as
in Fig. 33-17c.

Refraction cannot bend a beam so much that the refracted ray is on the same side
of the normal as the incident ray.

Chromatic Dispersion
The index of refraction n encountered by light in any medium except vacuum
depends on the wavelength of the light. The dependence of n on wavelength
implies that when a light beam consists of rays of different wavelengths, the
rays will be refracted at different angles by a surface; that is, the light will be
spread out by the refraction. This spreading of light is called chromatic disper-
sion, in which “chromatic” refers to the colors associated with the individual
wavelengths and “dispersion” refers to the spreading of the light according to
its wavelengths or colors. The refractions of Figs. 33-16 and 33-17 do not show
chromatic dispersion because the beams are monochromatic (of a single wave-
length or color).

Generally, the index of refraction of a given medium is greater for a shorter
wavelength (corresponding to, say, blue light) than for a longer wavelength (say,
red light). As an example, Fig. 33-18 shows how the index of refraction of fused
quartz depends on the wavelength of light. Such dependence means that when a
beam made up of waves of both blue and red light is refracted through a surface,
such as from air into quartz or vice versa, the blue component (the ray corre-
sponding to the wave of blue light) bends more than the red component.

A beam of white light consists of components of all (or nearly all) the colors
in the visible spectrum with approximately uniform intensities. When you see
such a beam, you perceive white rather than the individual colors. In Fig. 33-19a,
a beam of white light in air is incident on a glass surface. (Because the pages of
this book are white, a beam of white light is represented with a gray ray here.
Also, a beam of monochromatic light is generally represented with a red ray.)
Of the refracted light in Fig. 33-19a, only the red and blue components are shown.
Because the blue component is bent more than the red component, the angle of
refraction u2b for the blue component is smaller than the angle of refraction u2r

for the red component. (Remember, angles are measured relative to the normal.)
In Fig. 33-19b, a ray of white light in glass is incident on a glass–air interface.
Again, the blue component is bent more than the red component, but now u2b is
greater than u2r.

99333-5 REFLECTION AND REFRACTION

Figure 33-18 The index of refraction as a
function of wavelength for fused quartz.
The graph indicates that a beam of short-
wavelength light, for which the index of
refraction is higher, is bent more upon
entering or leaving quartz than a beam of
long-wavelength light.
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Figure 33-19 Chromatic dispersion of white light.The blue
component is bent more than the red component. (a)
Passing from air to glass, the blue component ends up
with the smaller angle of refraction. (b) Passing from
glass to air, the blue component ends up with the greater
angle of refraction. Each dotted line represents the di-
rection in which the light would continue to travel if it
were not bent by the refraction.
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To increase the color separation, we can use a solid glass prism with a trian-
gular cross section, as in Fig. 33-20a.The dispersion at the first surface (on the left
in Figs. 33-20a, b) is then enhanced by the dispersion at the second surface.

Rainbows
The most charming example of chromatic dispersion is a rainbow. When sunlight
(which consists of all visible colors) is intercepted by a falling raindrop, some of
the light refracts into the drop, reflects once from the drop’s inner surface, and
then refracts out of the drop. Figure 33-21a shows the situation when the Sun is
on the horizon at the left (and thus when the rays of sunlight are horizontal). The
first refraction separates the sunlight into its component colors, and the second
refraction increases the separation. (Only the red and blue rays are shown in the
figure.) If many falling drops are brightly illuminated, you can see the separated
colors they produce when the drops are at an angle of 42° from the direction of
the antisolar point A, the point directly opposite the Sun in your view.

To locate the drops, face away from the Sun and point both arms directly
away from the Sun, toward the shadow of your head. Then move your right arm
directly up, directly rightward, or in any intermediate direction until the angle
between your arms is 42�. If illuminated drops happen to be in the direction of
your right arm, you see color in that direction.

Because any drop at an angle of 42� in any direction from A can contribute
to the rainbow, the rainbow is always a 42� circular arc around A (Fig. 33-21b) and
the top of a rainbow is never more than 42� above the horizon. When the Sun is
above the horizon, the direction of A is below the horizon, and only a shorter,
lower rainbow arc is possible (Fig. 33-21c).

Because rainbows formed in this way involve one reflection of light inside
each drop, they are often called primary rainbows. A secondary rainbow involves
two reflections inside a drop, as shown in Fig. 33-21d. Colors appear in the sec-
ondary rainbow at an angle of 52� from the direction of A. A secondary rainbow
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(b)

White
light

(a)

Courtesy Bausch & Lomb

Figure 33-20 (a) A triangular prism separat-
ing white light into its component colors.
(b) Chromatic dispersion occurs at the
first surface and is increased at the second
surface.

Figure 33-21 (a) The separation of colors
when sunlight refracts into and out of
falling raindrops leads to a primary
rainbow.The antisolar point A is on the
horizon at the right.The rainbow colors ap-
pear at an angle of 42° from the direction of
A. (b) Drops at 42° from A in any direction
can contribute to the rainbow. (c) The rain-
bow arc when the Sun is higher (and thus A
is lower). (d) The separation of colors lead-
ing to a secondary rainbow.

Sunlight Water drops

(a) (b)
42° 42° 42°
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Water drops
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is wider and dimmer than a primary rainbow and thus is more difficult to see.
Also, the order of colors in a secondary rainbow is reversed from the order in
a primary rainbow, as you can see by comparing parts a and d of Fig. 33-21.

Rainbows involving three or four reflections occur in the direction of the
Sun and cannot be seen against the glare of sunshine in that part of the sky but
have been photographed with special techniques.

99533-5 REFLECTION AND REFRACTION

Checkpoint 5
Which of the three drawings here (if any) show
physically possible refraction?

n = 1.4 

n = 1.6

(a)

n = 1.8 

n = 1.6 

(b)

n = 1.6 
n = 1.5 

(c)

Sample Problem 33.03 Reflection and refraction of a monochromatic beam

(a) In Fig. 33-22a, a beam of monochromatic light reflects
and refracts at point A on the interface between material 1
with index of refraction n1 � 1.33 and material 2 with index
of refraction n2 � 1.77. The incident beam makes an angle
of 50° with the interface. What is the angle of reflection at
point A? What is the angle of refraction there?

KEY IDEAS

(1) The angle of reflection is equal to the angle of incidence,
and both angles are measured relative to the normal to the
surface at the point of reflection. (2) When light reaches the
interface between two materials with different indexes of
refraction (call them and ), part of the light can be re-
fracted by the interface according to Snell’s law, Eq. 33-40:

(33-42)

where both angles are measured relative to the normal at
the point of refraction.

Calculations: In Fig. 33-22a, the normal at point A is drawn
as a dashed line through the point. Note that the angle of in-
cidence u1 is not the given 50� but is 90� � 50� � 40�. Thus,
the angle of reflection is

(Answer)

The light that passes from material 1 into material 2
undergoes refraction at point A on the interface between
the two materials. Again we measure angles between light
rays and a normal, here at the point of refraction. Thus, in
Fig. 33-22a, the angle of refraction is the angle marked u2.
Solving Eq. 33-42 for u2 gives us

(Answer)� 28.88� � 29�.

u2 � sin�1 � n1

n2
 sin u1� � sin�1 � 1.33

1.77
 sin 40��

u�1 � u1 � 40�.

n2 sin u2 � n1 sin u1,

n2n1
Figure 33-22 (a) Light reflects and refracts at point A on the inter-
face between materials 1 and 2. (b) The light that passes through
material 2 reflects and refracts at point B on the interface between
materials 2 and 3 (air). Each dashed line is a normal. Each dotted
line gives the incident direction of travel.

θ 1 θ '1

θ 2

A

n1

n2

50°

(a)

θ2
θ2

θ3

θ'2

A

Bn3

Air

n2

(b)

This result means that the beam swings toward the normal
(it was at 40° to the normal and is now at 29°). The reason is
that when the light travels across the interface, it moves into
a material with a greater index of refraction. Caution: Note
that the beam does not swing through the normal so that it
appears on the left side of Fig. 33-22a.

(b) The light that enters material 2 at point A then reaches
point B on the interface between material 2 and material 3,
which is air, as shown in Fig. 33-22b.The interface through B
is parallel to that through A. At B, some of the light reflects
and the rest enters the air. What is the angle of reflection?
What is the angle of refraction into the air?

Calculations: We first need to relate one of the angles at



Total Internal Reflection
Figure 33-23a shows rays of monochromatic light from a point source S in glass
incident on the interface between the glass and air. For ray a, which is perpendi-
cular to the interface, part of the light reflects at the interface and the rest travels
through it with no change in direction.

For rays b through e, which have progressively larger angles of incidence at
the interface, there are also both reflection and refraction at the interface. As the
angle of incidence increases, the angle of refraction increases; for ray e it is 90°,
which means that the refracted ray points directly along the interface. The angle
of incidence giving this situation is called the critical angle uc. For angles of inci-
dence larger than uc, such as for rays f and g, there is no refracted ray and all the
light is reflected; this effect is called total internal reflection because all the light
remains inside the glass.

To find uc, we use Eq. 33-40; we arbitrarily associate subscript 1 with the glass
and subscript 2 with the air, and then we substitute uc for u1 and 90° for u2, which
leads to

n1 sin uc � n2 sin 90°, (33-44)
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Additional examples, video, and practice available at WileyPLUS

point B with a known angle at point A. Because the inter-
face through point B is parallel to that through point A,
the incident angle at B must be equal to the angle of re-
fraction u2, as shown in Fig. 33-22b. Then for reflection,
we again use the law of reflection. Thus, the angle of re-
flection at B is

(Answer)

Next, the light that passes from material 2 into the air
undergoes refraction at point B, with refraction angle u3.
Thus, we again apply Snell’s law of refraction, but this time

u�2 � u2 � 28.88� � 29�.

33-6 TOTAL INTERNAL REFLECTION

After reading this module, you should be able to . . .

33.45 With sketches, explain total internal reflection and
include the angle of incidence, the critical angle, and the
relative values of the indexes of refraction on the two sides
of the interface.

33.46 Identify the angle of refraction for incidence at a
critical angle.

33.47 For a given pair of indexes of refraction, calculate the
critical angle.

Learning Objectives

● A wave encountering a boundary across which the index of refraction decreases will experience total internal reflection if the
angle of incidence exceeds a critical angle uc, where

(critical angle).uc � sin�1 n2

n1

Key Idea

we write Eq. 33-40 as

n3 sin u3 � n2 sin u2. (33-43)

Solving for u3 then leads to

(Answer)

Thus, the beam swings away from the normal (it was at 29°
to the normal and is now at 59°) because it moves into a ma-
terial (air) with a lower index of refraction.

� 58.75� � 59�.

u3 � sin�1 � n2

n3
 sin u2� � sin�1 � 1.77

1.00
 sin 28.88��
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Figure 33-23 (a) Total internal reflection of light from a point source S in glass occurs
for all angles of incidence greater than the critical angle uc.At the critical angle, the
refracted ray points along the air–glass interface. (b) A source in a tank of water.

Air
Glass

S

a b c d e gf

θ c

Critical case 

If the next index is lower
and the incident angle is
large enough, the light
can be trapped inside.(a) (b)

which gives us

(critical angle). (33-45)

Because the sine of an angle cannot exceed unity, n2 cannot exceed n1 in this
equation. This restriction tells us that total internal reflection cannot occur when
the incident light is in the medium of lower index of refraction. If source S were
in the air in Fig. 33-23a, all its rays that are incident on the air–glass interface
(including f and g) would be both reflected and refracted at the interface.

Total internal reflection has found many applications in medical technology.
For example, a physician can view the interior of an artery of a patient by running
two thin bundles of optical fibers through the chest wall and into an artery 
(Fig. 33-24). Light introduced at the outer end of one bundle undergoes repeated
total internal reflection within the fibers so that, even though the bundle provides
a curved path, most of the light ends up exiting the other end and illuminating the
interior of the artery. Some of the light reflected from the interior then comes
back up the second bundle in a similar way, to be detected and converted to an
image on a monitor’s screen for the physician to view. The physician can then
perform a surgical procedure, such as the placement of a stent.

uc � sin�1 n2

n1

33-7 POLARIZATION BY REFLECTION

After reading this module, you should be able to . . .

33.48 With sketches, explain how unpolarized light can be
converted to polarized light by reflection from an interface.

33.49 Identify Brewster’s angle.

33.50 Apply the relationship between Brewster’s angle and
the indexes of refraction on the two sides of an interface.

33.51 Explain the function of polarizing sunglasses.

Learning Objectives

● A reflected wave will be fully polarized, with its vectors perpendicular to the plane of incidence, if it strikes a boundary at the
Brewster angle uB, where

(Brewster angle).uB � tan�1 n2

n1

E
:

Key Idea

Figure 33-24 An endoscope used to inspect an
artery.
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Polarization by Reflection
You can vary the glare you see in sunlight that has been reflected from, say, water
by looking through a polarizing sheet (such as a polarizing sunglass lens) and
then rotating the sheet’s polarizing axis around your line of sight. You can do
so because any light that is reflected from a surface is either fully or partially
polarized by the reflection.

Figure 33-25 shows a ray of unpolarized light incident on a glass surface. Let
us resolve the electric field vectors of the light into two components. The per-
pendicular components are perpendicular to the plane of incidence and thus also
to the page in Fig. 33-25; these components are represented with dots (as if we
see the tips of the vectors). The parallel components are parallel to the plane
of incidence and the page; they are represented with double-headed arrows.
Because the light is unpolarized, these two components are of equal magnitude.

In general, the reflected light also has both components but with unequal mag-
nitudes. This means that the reflected light is partially polarized—the electric
fields oscillating along one direction have greater amplitudes than those oscillating
along other directions. However, when the light is incident at a particular incident
angle, called the Brewster angle uB, the reflected light has only perpendicular com-
ponents, as shown in Fig. 33-25.The reflected light is then fully polarized perpendi-
cular to the plane of incidence.The parallel components of the incident light do not
disappear but (along with perpendicular components) refract into the glass.

Polarizing Sunglasses. Glass, water, and the other dielectric materials
discussed in Module 25-5 can partially and fully polarize light by reflection.When
you intercept sunlight reflected from such a surface, you see a bright spot (the
glare) on the surface where the reflection takes place. If the surface is horizontal
as in Fig. 33-25, the reflected light is partially or fully polarized horizontally. To
eliminate such glare from horizontal surfaces, the lenses in polarizing sunglasses
are mounted with their polarizing direction vertical.

Brewster’s Law
For light incident at the Brewster angle uB, we find experimentally that the
reflected and refracted rays are perpendicular to each other. Because the
reflected ray is reflected at the angle uB in Fig. 33-25 and the refracted ray is at an
angle ur, we have

uB � ur � 90°. (33-46)

These two angles can also be related with Eq. 33-40. Arbitrarily assigning sub-
script 1 in Eq. 33-40 to the material through which the incident and reflected rays
travel, we have, from that equation,

n1 sin uB � n2 sin ur. (33-47)

Combining these equations leads to

n1 sin uB � n2 sin(90° � uB) � n2 cos uB, (33-48)

which gives us

(Brewster angle). (33-49)

(Note carefully that the subscripts in Eq. 33-49 are not arbitrary because of our
decision as to their meanings.) If the incident and reflected rays travel in air, we
can approximate n1 as unity and let n represent n2 in order to write Eq. 33-49 as

uB � tan�1 n (Brewster’s law). (33-50)

This simplified version of Eq. 33-49 is known as Brewster’s law. Like uB, it is
named after Sir David Brewster, who found both experimentally in 1812.

uB � tan�1 n2

n1
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Incident
unpolarized
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Reflected
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Air
Glass

Refracted
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n = 1.5 

Component perpendicular to page 
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Figure 33-25 A ray of unpolarized light in
air is incident on a glass surface at the
Brewster angle uB.The electric fields along
that ray have been resolved into compo-
nents perpendicular to the page (the plane
of incidence, reflection, and refraction) and
components parallel to the page.The
reflected light consists only of components
perpendicular to the page and is thus polar-
ized in that direction.The refracted light
consists of the original components parallel
to the page and weaker components per-
pendicular to the page; this light is partially
polarized.
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Electromagnetic Waves An electromagnetic wave consists
of oscillating electric and magnetic fields. The various possible fre-
quencies of electromagnetic waves form a spectrum, a small part of
which is visible light.An electromagnetic wave traveling along an x
axis has an electric field and a magnetic field with magnitudes
that depend on x and t:

E � Em sin(kx � vt)

and B � Bm sin(kx � vt), (33-1, 33-2)

where Em and Bm are the amplitudes of and . The oscillating
electric field induces the magnetic field, and the oscillating mag-
netic field induces the electric field. The speed of any electromag-
netic wave in vacuum is c, which can be written as

(33-5, 33-3)

where E and B are the simultaneous (but nonzero) magnitudes of
the two fields.

Energy Flow The rate per unit area at which energy is trans-
ported via an electromagnetic wave is given by the Poynting 
vector :

(33-19)

The direction of (and thus of the wave’s travel and the energy
transport) is perpendicular to the directions of both and The
time-averaged rate per unit area at which energy is transported is
Savg, which is called the intensity I of the wave:

(33-26)

in which . A point source of electromagnetic waves
emits the waves isotropically—that is, with equal intensity in all di-
rections. The intensity of the waves at distance r from a point
source of power Ps is

(33-27)

Radiation Pressure When a surface intercepts electro-
magnetic radiation, a force and a pressure are exerted on the
surface. If the radiation is totally absorbed by the surface,
the force is

(total absorption), (33-32)

in which I is the intensity of the radiation and A is the area of the
surface perpendicular to the path of the radiation. If the radiation
is totally reflected back along its original path, the force is

(total reflection back along path). (33-33)

The radiation pressure pr is the force per unit area:

(total absorption) (33-34)pr �
I
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Review & Summary

and (total reflection back along path). (33-35)

Polarization Electromagnetic waves are polarized if their
electric field vectors are all in a single plane, called the plane of os-
cillation. From a head-on view, the field vectors oscillate parallel to
a single axis perpendicular to the path taken by the waves. Light
waves from common sources are not polarized; that is, they are un-
polarized, or polarized randomly. From a head-on view, the vectors
oscillate parallel to every possible axis that is perpendicular to the
path taken by the waves.

Polarizing Sheets When a polarizing sheet is placed in the
path of light, only electric field components of the light parallel to
the sheet’s polarizing direction are transmitted by the sheet; com-
ponents perpendicular to the polarizing direction are absorbed.
The light that emerges from a polarizing sheet is polarized parallel
to the polarizing direction of the sheet.

If the original light is initially unpolarized, the transmitted
intensity I is half the original intensity I0:

(33-36)

If the original light is initially polarized, the transmitted intensity
depends on the angle u between the polarization direction of the
original light (the axis along which the fields oscillate) and the po-
larizing direction of the sheet:

I � I0 cos2 u. (33-38)

Geometrical Optics Geometrical optics is an approximate
treatment of light in which light waves are represented as straight-
line rays.

Reflection and Refraction When a light ray encounters a
boundary between two transparent media, a reflected ray and a 
refracted ray generally appear. Both rays remain in the plane of 
incidence.The angle of reflection is equal to the angle of incidence,
and the angle of refraction is related to the angle of incidence by
Snell’s law,

n2 sin u2 � n1 sin u1 (refraction), (33-40)

where n1 and n2 are the indexes of refraction of the media in which
the incident and refracted rays travel.

Total Internal Reflection A wave encountering a boundary
across which the index of refraction decreases will experience total
internal reflection if the angle of incidence exceeds a critical angle
uc, where

(critical angle). (33-45)

Polarization by Reflection A reflected wave will be fully
polarized, with its vectors perpendicular to the plane of
incidence, if the incident, unpolarized wave strikes a boundary at
the Brewster angle uB, where

(Brewster angle). (33-49)uB � tan�1 n2

n1

E
:

uc � sin�1 n2

n1

I � 1
2 I0.

pr �
2I
c



12 In Fig. 33-35, light travels from
material a, through three layers of
other materials with surfaces parallel
to one another, and then back into an-
other layer of material a. The refrac-
tions (but not the associated reflec-
tions) at the surfaces are shown. Rank
the materials according to index of re-
fraction, greatest first. (Hint: The par-
allel arrangement of the surfaces al-
lows comparison.)
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1 If the magnetic field of a light wave oscillates parallel to a y axis
and is given by By � Bm sin(kz � vt), (a) in what direction does
the wave travel and (b) parallel to which axis does the associated
electric field oscillate?

2 Suppose we rotate the second
sheet in Fig. 33-15a, starting with the
polarization direction aligned with
the y axis (u � 0) and ending with it
aligned with the x axis (u 90°).
Which of the four curves in Fig. 33-26
best shows the intensity of the light through the three-sheet system
during this 90° rotation?

3 (a) Figure 33-27 shows light reaching
a polarizing sheet whose polarizing di-
rection is parallel to a y axis. We shall
rotate the sheet 40° clockwise about the
light’s indicated line of travel. During
this rotation, does the fraction of the
initial light intensity passed by the sheet
increase, decrease, or remain the same if
the light is (a) initially unpolarized,
(b) initially polarized parallel to the x
axis, and (c) initially polarized parallel to
the y axis?

4 Figure 33-28 shows the electric and magnetic
fields of an electromagnetic wave at a certain in-
stant. Is the wave traveling into the page or out of
the page?

5 In the arrangement of Fig. 33-15a, start with
light that is initially polarized parallel to the x axis, and write
the ratio of its final intensity I3 to its initial intensity I0 as I3/I0 �
A cosn u. What are A, n, and u if we rotate the polarizing direction
of the first sheet (a) 60� counterclockwise and (b) 90° clockwise
from what is shown?

6 In Fig. 33-29, unpolarized light is
sent into a system of five polarizing
sheets. Their polarizing directions,
measured counterclockwise from the
positive direction of the y axis, are the
following: sheet 1, 35�; sheet 2, 0�;
sheet 3, 0�; sheet 4, 110�; sheet 5, 45�.
Sheet 3 is then rotated 180° counter-
clockwise about the light ray. During
that rotation, at what angles (mea-
sured counterclockwise from the y
axis) is the transmission of light
through the system eliminated?

7 Figure 33-30 shows rays of
monochromatic light propagating
through three materials a, b, and c.
Rank the materials according to the
index of refraction, greatest first.

8 Figure 33-31 shows the multiple
reflections of a light ray along a
glass corridor where the walls are either parallel or perpendicular
to one another. If the angle of incidence at point a is 30°, what are

�
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Figure 33-30 Question 7.

Figure 33-33 Question 10.

Figure 33-34 Question 11.

Figure 33-35 Question 12.

the angles of reflection of the light ray
at points b, c, d, e, and f ?

9 Figure 33-32 shows four long hori-
zontal layers A–D of different materi-
als, with air above and below them.
The index of refraction of each mate-
rial is given. Rays of light are sent into
the left end of each layer as shown. In
which layer is there the possibility of to-
tally trapping the light in that layer so
that, after many reflections, all the light
reaches the right end of the layer?

10 The leftmost block in Fig. 33-33
depicts total internal reflection for light
inside a material with an index of re-
fraction n1 when air is outside the mate-
rial. A light ray reaching point A from
anywhere within the shaded region at
the left (such as the ray shown) fully re-
flects at that point and ends up in the shaded region at the right. The
other blocks show similar situations for two other materials. Rank the
indexes of refraction of the three materials,greatest first.

f
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Figure 33-31 Question 8.
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Figure 33-32 Question 9.

11 Each part of Fig. 33-34 shows light that refracts through an
interface between two materials. The incident ray (shown gray in
the figure) consists of red and blue light. The approximate index of
refraction for visible light is indicated for each material. Which of
the three parts show physically possible refraction? (Hint: First
consider the refraction in general, regardless of the color, and then
consider how red and blue light refract differently.)



1001PROBLEMS

••13 Sunlight just outside Earth’s atmosphere has an intensity of
1.40 kW/m2. Calculate (a) Em and (b) Bm for sunlight there, assum-
ing it to be a plane wave.

••14 An isotropic point source emits light at wavelength
500 nm, at the rate of 200 W. A light detector is positioned 400 m
from the source. What is the maximum rate 
B/
t at which the
magnetic component of the light changes with time at the detec-
tor’s location?

••15 An airplane flying at a distance of 10 km from a radio trans-
mitter receives a signal of intensity 10 mW/m2. What is the ampli-
tude of the (a) electric and (b) magnetic component of the signal at
the airplane? (c) If the transmitter radiates uniformly over a hemi-
sphere, what is the transmission power?

••16 Frank D. Drake, an investigator in the SETI (Search for
Extra-Terrestrial Intelligence) program, once said that the large
radio telescope in Arecibo, Puerto Rico (Fig. 33-36), “can detect a
signal which lays down on the entire surface of the earth a power
of only one picowatt.” (a) What is the power that would be
received by the Arecibo antenna for such a signal? The antenna di-
ameter is 300 m. (b) What would be the power of an isotropic
source at the center of our galaxy that could provide such a signal?
The galactic center is 2.2 	 104 ly away. A light-year is the distance
light travels in one year.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 33-1 Electromagnetic Waves
•1 A certain helium–neon laser emits red light in a narrow band
of wavelengths centered at 632.8 nm and with a “wavelength
width” (such as on the scale of Fig. 33-1) of 0.0100 nm. What is the
corresponding “frequency width” for the emission?

•2 Project Seafarer was an ambitious program to construct an
enormous antenna, buried underground on a site about 10 000 km2

in area. Its purpose was to transmit signals to submarines while they
were deeply submerged. If the effective wavelength were 1.0 	 104

Earth radii, what would be the (a) frequency and (b) period of the
radiations emitted? Ordinarily, electromagnetic radiations do not
penetrate very far into conductors such as seawater, and so normal
signals cannot reach the submarines.

•3 From Fig. 33-2, approximate the (a) smaller and (b) larger wave-
length at which the eye of a standard observer has half the eye’s
maximum sensitivity. What are the (c) wavelength, (d) frequency,
and (e) period of the light at which the eye is the most sensitive?

•4 About how far apart must you hold your hands for them to
be separated by 1.0 nano-light-second (the distance light travels
in 1.0 ns)?

•5 What inductance must be connected to a 17 pF capacitor
in an oscillator capable of generating 550 nm (i.e., visible) electro-
magnetic waves? Comment on your answer.

•6 What is the wavelength of the electromagnetic wave emitted
by the oscillator–antenna system of Fig. 33-3 if L � 0.253 mH and
C � 25.0 pF?

Module 33-2 Energy Transport and the Poynting Vector
•7 What is the intensity of a traveling plane electromagnetic
wave if Bm is 1.0 	 10�4 T?

•8 Assume (unrealistically) that a TV station acts as a point
source broadcasting isotropically at 1.0 MW. What is the intensity
of the transmitted signal reaching Proxima Centauri, the star near-
est our solar system, 4.3 ly away? (An alien civilization at that dis-
tance might be able to watch X Files.) A light-year (ly) is the dis-
tance light travels in one year.

•9 Some neodymium–glass lasers can provide 100 TW of
power in 1.0 ns pulses at a wavelength of 0.26 mm. How much en-
ergy is contained in a single pulse?

•10 A plane electromagnetic wave has a maximum electric field
magnitude of 3.20 	 10�4 V/m. Find the magnetic field amplitude.

•11 A plane electromagnetic wave traveling in the positive
direction of an x axis in vacuum has components Ex Ey 0 and
Ez � (2.0 V/m) cos[(p 	 1015 s�1)(t � x/c)]. (a) What is the ampli-
tude of the magnetic field component? (b) Parallel to which axis
does the magnetic field oscillate? (c) When the electric field com-
ponent is in the positive direction of the z axis at a certain point P,
what is the direction of the magnetic field component there?

•12 In a plane radio wave the maximum value of the electric field
component is 5.00 V/m. Calculate (a) the maximum value of the
magnetic field component and (b) the wave intensity.

��

ILW

ILW

SSM

Figure 33-36 Problem 16. Radio telescope at Arecibo.

Courtesy SRI International, USRA, UMET

••17 The maximum electric field 10 m from an isotropic point
source of light is 2.0 V/m. What are
(a) the maximum value of the mag-
netic field and (b) the average in-
tensity of the light there? (c) What
is the power of the source?

••18 The intensity I of light from
an isotropic point source is deter-
mined as a function of distance r
from the source. Figure 33-37 gives

I 
(W

/m
2 )

Is

0 r s
–2

r –2 (m–2)

Figure 33-37 Problem 18.



1002 CHAPTER 33 ELECTROMAGNETIC WAVES

intensity I versus the inverse square r�2 of that distance. The verti-
cal axis scale is set by Is � 200 W/m2, and the horizontal axis scale is
set  by What is the power of the source?

Module 33-3 Radiation Pressure
•19 High-power lasers are used to compress a plasma (a gas
of charged particles) by radiation pressure. A laser generating
radiation pulses with peak power 1.5 	 103 MW is focused onto
1.0 mm2 of high-electron-density plasma. Find the pressure
exerted on the plasma if the plasma reflects all the light beams
directly back along their paths.

•20 Radiation from the Sun reaching Earth (just outside the at-
mosphere) has an intensity of 1.4 kW/m2. (a) Assuming that Earth
(and its atmosphere) behaves like a flat disk perpendicular to the
Sun’s rays and that all the incident energy is absorbed, calculate
the force on Earth due to radiation pressure. (b) For comparison,
calculate the force due to the Sun’s gravitational attraction.

•21 What is the radiation pressure 1.5 m away from a 500 W
lightbulb? Assume that the surface on which the pressure is
exerted faces the bulb and is perfectly absorbing and that the bulb
radiates uniformly in all directions.

•22 A black, totally absorbing piece of cardboard of area 
A � 2.0 cm2 intercepts light with an intensity of 10 W/m2 from a
camera strobe light. What radiation pressure is produced on the
cardboard by the light?

••23 Someone plans to float a small, totally absorbing sphere
0.500 m above an isotropic point source of light, so that the upward
radiation force from the light matches the downward gravitational
force on the sphere. The sphere’s density is 19.0 g/cm3, and its
radius is 2.00 mm. (a) What power would be required of the light
source? (b) Even if such a source were made, why would the
support of the sphere be unstable?

••24 It has been proposed that a spaceship might be pro-
pelled in the solar system by radiation pressure, using a large sail
made of foil. How large must the surface area of the sail be if the
radiation force is to be equal in magnitude to the Sun’s gravita-
tional attraction? Assume that the mass of the ship � sail is
1500 kg, that the sail is perfectly reflecting, and that the sail is ori-
ented perpendicular to the Sun’s rays. See Appendix C for
needed data. (With a larger sail, the ship is continuously driven
away from the Sun.)

••25 Prove, for a plane electromagnetic wave that is nor-
mally incident on a flat surface, that the radiation pressure on the
surface is equal to the energy density in the incident beam. (This
relation between pressure and energy density holds no matter
what fraction of the incident energy is reflected.)

••26 In Fig. 33-38, a laser beam of power
4.60 W and diameter D � 2.60 mm is di-
rected upward at one circular face (of
diameter d � 2.60 mm) of a perfectly re-
flecting cylinder. The cylinder is levitated
because the upward radiation force
matches the downward gravitational force.
If the cylinder’s density is 1.20 g/cm3, what
is its height H?

••27 A plane electromag-
netic wave, with wavelength 3.0 m, travels
in vacuum in the positive direction of an
x axis.The electric field, of amplitude 300 V/m, oscillates parallel to

WWWSSM

SSM

ILW

SSM

r�2
s � 8.0 m�2.

the y axis. What are the (a) frequency, (b) angular frequency, and
(c) angular wave number of the wave? (d) What is the amplitude of
the magnetic field component? (e) Parallel to which axis does the
magnetic field oscillate? (f) What is the time-averaged rate of
energy flow in watts per square meter associated with this wave?
The wave uniformly illuminates a surface of area 2.0 m2. If the
surface totally absorbs the wave, what are (g) the rate at which mo-
mentum is transferred to the surface and (h) the radiation pressure
on the surface?

••28 The average intensity of the solar radiation that strikes nor-
mally on a surface just outside Earth’s atmosphere is 1.4 kW/m2.
(a) What radiation pressure pr is exerted on this surface, assuming
complete absorption? (b) For comparison, find the ratio of pr to
Earth’s sea-level atmospheric pressure, which is 1.0 	 105 Pa.

••29 A small spaceship with a mass of only 1.5 	 103 kg
(including an astronaut) is drifting in outer space with negligible
gravitational forces acting on it. If the astronaut turns on a 10 kW
laser beam, what speed will the ship attain in 1.0 day because of the 
momentum carried away by the beam?

••30 A small laser emits light at power 5.00 mW and
wavelength 633 nm. The laser beam is focused (narrowed) until
its diameter matches the 1266 nm diameter of a sphere placed in
its path. The sphere is perfectly absorbing and has density 5.00 	
103 kg/m3. What are (a) the beam intensity at the sphere’s location,
(b) the radiation pressure on the sphere, (c) the magnitude of the
corresponding force, and (d) the magnitude of the acceleration
that force alone would give the sphere?

•••31 As a comet swings around
the Sun, ice on the comet’s surface
vaporizes, releasing trapped dust
particles and ions. The ions, because
they are electrically charged, are
forced by the electrically charged
solar wind into a straight ion tail
that points radially away from the
Sun (Fig. 33-39). The (electrically
neutral) dust particles are pushed
radially outward from the Sun by the radiation force on them from
sunlight. Assume that the dust particles are spherical, have density
3.5 	 103 kg/m3, and are totally absorbing. (a) What radius must a
particle have in order to follow a straight path, like path 2 in the
figure? (b) If its radius is larger, does its path curve away from the
Sun (like path 1) or toward the Sun (like path 3)?

Module 33-4 Polarization
•32 In Fig. 33-40, initially unpolarized light is sent into a system
of three polarizing sheets whose polarizing directions make angles

SSM
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Figure 33-38
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Figure 33-39 Problem 31.
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Figure 33-40 Problems 32 and 33.
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••41 A beam of polarized light is sent into a system of two polar-
izing sheets. Relative to the polarization direction of that incident
light, the polarizing directions of the sheets are at angles u for the
first sheet and 90° for the second sheet. If 0.10 of the incident in-
tensity is transmitted by the two sheets, what is u?

••42 In Fig. 33-41, unpolarized light is sent into a system of two
polarizing sheets. The angles u1 and u2 of the polarizing directions
of the sheets are measured counterclockwise from the positive di-
rection of the y axis (they are not drawn to scale in the figure).
Angle u1 is fixed but angle u2 can be varied. Figure 33-45 gives
the intensity of the light emerging from sheet 2 as a function of u2.
(The scale of the intensity axis is not indicated.) What percentage
of the light’s initial intensity is transmitted by the two-sheet system
when u2 � 90°?

of u1 u2 u3 50 with the direction of the y axis. What per-
centage of the initial intensity is transmitted by the system? (Hint:
Be careful with the angles.)

•33 In Fig. 33-40, initially unpolarized light is sent into a
system of three polarizing sheets whose polarizing directions make
angles of u1 � 40°, u2 � 20°, and u3 � 40° with the direction of the y
axis. What percentage of the light’s initial intensity is transmitted
by the system? (Hint: Be careful with the angles.)

•34 In Fig. 33-41, a beam of unpolarized
light, with intensity 43 W/m2, is sent into a
system of two polarizing sheets with
polarizing directions at angles u1 � 70° and
u2 � 90° to the y axis. What is the intensity of
the light transmitted by the system?

•35 In Fig. 33-41, a beam of light, with
intensity 43 W/m2 and polarization parallel
to a y axis, is sent into a system of two
polarizing sheets with polarizing directions at
angles  of and u2 90� to the y axis. What is the intensity
of the light transmitted by the two-sheet system?

••36 At a beach the light is generally partially polarized
due to reflections off sand and water. At a particular beach on
a particular day near sundown, the horizontal component of the
electric field vector is 2.3 times the vertical component. A stand-
ing sunbather puts on polarizing sunglasses; the glasses eliminate
the horizontal field component. (a) What fraction of the light in-
tensity received before the glasses were put on now reaches the
sunbather’s eyes? (b) The sunbather, still wearing the glasses, lies
on his side. What fraction of the light intensity received before
the glasses were put on now reaches his eyes?

••37 We want to rotate the direction of polarization
of a beam of polarized light through 90° by sending the beam
through one or more polarizing sheets. (a) What is the minimum
number of sheets required? (b) What is the minimum number of
sheets required if the transmitted intensity is to be more than 60%
of the original intensity?

••38 In Fig. 33-42, unpolarized light is sent into a system of
three polarizing sheets. The angles u1, u2, and u3 of the polarizing
directions are measured counterclockwise from the positive di-
rection of the y axis (they are not drawn to scale). Angles u1 and
u3 are fixed, but angle u2 can be varied. Figure 33-43 gives the
intensity of the light emerging from sheet 3 as a function of u2.
(The scale of the intensity axis is not indicated.) What percentage
of the light’s initial intensity is transmitted by the system when 
u2 � 30°?
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���� ••39 Unpolarized light of intensity 10 mW/m2 is sent into a po-
larizing sheet as in Fig. 33-11. What are (a) the amplitude of the
electric field component of the transmitted light and (b) the radi-
ation pressure on the sheet due to its absorbing some of the light?

••40 In Fig. 33-42, unpolarized light is sent into a system
of three polarizing sheets. The angles u1, u2, and u3 of the polariz-
ing directions are measured counterclockwise from the positive
direction of the y axis (they are not drawn to scale). Angles u1 and
u3 are fixed, but angle u2 can be varied. Figure 33-44 gives the
intensity of the light emerging from sheet 3 as a function of u2.
(The scale of the intensity axis is not indicated.) What percentage
of the light’s initial intensity is transmitted by the three-sheet
system when u2 � 90°?
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Figure 33-41
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and 42.
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Figure 33-45 Problem 42.

••43 A beam of partially polarized light can be considered to be a
mixture of polarized and unpolarized light. Suppose we send such
a beam through a polarizing filter and then rotate the filter
through 360° while keeping it perpendicular to the beam. If the
transmitted intensity varies by a factor of 5.0 during the rotation,
what fraction of the intensity of the original beam is associated
with the beam’s polarized light?

••44 In Fig. 33-42, unpolarized light is sent into a system of three
polarizing sheets, which transmits 0.0500 of the initial light inten-
sity. The polarizing directions of the first and third sheets are at
angles u1 � 0° and u3 � 90°.What are the (a) smaller and (b) larger
possible values of angle u2 (� 90°) for the polarizing direction of
sheet 2?



••51 In Fig. 33-51, light is incident
at angle u1 40.1 on a boundary be-
tween two transparent materials.
Some of the light travels down
through the next three layers of
transparent materials, while some of
it reflects upward and then escapes
into the air. If n1 � 1.30, n2 � 1.40,
n3 � 1.32, and n4 � 1.45, what is the
value of (a) u5 in the air and (b) u4 in
the bottom material?

••52 In Fig. 33-52a, a beam of light
in material 1 is incident on a bound-
ary at an angle of u1 = 30°. The extent of refraction of the light into
material 2 depends, in part, on the index of refraction n2 of material
2. Figure 33-52b gives the angle of refraction u2 versus n2 for a
range of possible n2 values. The vertical axis scale is set by 
u2a � 20.0° and u2b � 40.0°. (a) What is the index of refraction of

��
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Module 33-5 Reflection and Refraction
•45 When the rectangular metal
tank in Fig. 33-46 is filled to the top
with an unknown liquid, observer
O, with eyes level with the top of
the tank, can just see corner E. A
ray that refracts toward O at the top
surface of the liquid is shown. If
D � 85.0 cm and L � 1.10 m, what
is the index of refraction of the
liquid?

•46 In Fig. 33-47a, a light ray in
an underlying material is incident
at angle u1 on a boundary with water, and some of the light
refracts into the water. There are two choices of underlying ma-
terial. For each, the angle of refraction u2 versus the incident
angle u1 is given in Fig. 33-47b. The horizontal axis scale is set by
u1s � 90°. Without calculation, determine whether the index of
refraction of (a) material 1 and (b) material 2 is greater or less
than the index of water (n � 1.33). What is the index of refrac-
tion of (c) material 1 and (d) material 2?

•49 Figure 33-49 shows light re-
flecting from two perpendicular
reflecting surfaces A and B. Find the
angle between the incoming ray i
and the outgoing ray r�.

••50 In Fig. 33-50a, a beam of light
in material 1 is incident on a bound-
ary at an angle u1 � 40°. Some of the
light travels through material 2, and then some of it emerges into
material 3. The two boundaries between the three materials are
parallel. The final direction of the beam depends, in part, on the
index of refraction n3 of the third material. Figure 33-50b gives
the angle of refraction u3 in that material versus n3 for a range of
possible n3 values. The vertical axis scale is set by u3a � 30.0° and
u3b � 50.0°. (a) What is the index of refraction of material 1, or is
the index impossible to calculate without more information?
(b) What is the index of refraction of material 2, or is the index im-
possible to calculate without more information? (c) If u1 is changed
to 70° and the index of refraction of material 3 is 2.4, what is u3?

Figure 33-46 Problem 45.
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•47 Light in vacuum is incident on the surface of a glass slab. In
the vacuum the beam makes an angle of 32.0° with the normal to
the surface, while in the glass it makes an angle of 21.0° with the
normal.What is the index of refraction of the glass?

•48 In Fig. 33-48a, a light ray in water is incident at angle u1 on a
boundary with an underlying material, into which some of the
light refracts. There are two choices of underlying material. For
each, the angle of refraction u2 versus the incident angle u1 is
given in Fig. 33-48b. The vertical axis scale is set by u2s � 90°.
Without calculation, determine whether the index of refraction of
(a) material 1 and (b) material 2 is greater or less than the index
of water (n � 1.33). What is the index of refraction of (c) material
1 and (d) material 2?
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••54 Dispersion in a window pane. In
Fig. 33-54, a beam of white light is incident at an-
gle u 50 on a common window pane (shown
in cross section). For the pane’s type of glass, the
index of refraction for visible light ranges from
1.524 at the blue end of the spectrum to 1.509 at
the red end. The two sides of the pane are paral-
lel.What is the angular spread of the colors in the
beam (a) when the light enters the pane and
(b) when it emerges from the opposite side?
(Hint: When you look at an object through a window pane, are
the colors in the light from the object dispersed as shown in, say,
Fig. 33-20?)

••55 In Fig. 33-55, a 2.00-
m-long vertical pole extends from
the bottom of a swimming pool to a
point 50.0 cm above the water.
Sunlight is incident at angle u �
55.0°. What is the length of the
shadow of the pole on the level bot-
tom of the pool?

••56 Rainbows from square
drops. Suppose that, on some sur-
real world, raindrops had a square cross sec-
tion and always fell with one face horizontal.
Figure 33-56 shows such a falling drop, with a
white beam of sunlight incident at u � 70.0° at
point P. The part of the light that enters the
drop then travels to point A, where some of it
refracts out into the air and the rest reflects.
That reflected light then travels to point B,
where again some of the light refracts out into
the air and the rest reflects. What is the differ-
ence in the angles of the red light (n � 1.331)
and the blue light (n � 1.343) that emerge at

SSM
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material 1? (b) If the incident angle is changed to 60° and material
2 has n2 � 2.4, then what is angle u2?

••53 In Fig. 33-53, a ray is incident on one face
of a triangular glass prism in air. The angle of incidence u is chosen
so that the emerging ray also makes the same angle u with the nor-
mal to the other face. Show that the index of refraction n of the
glass prism is given by

where f is the vertex angle of the prism and c is the deviation
angle, the total angle through which the beam is turned in passing
through the prism. (Under these conditions the deviation angle c
has the smallest possible value, which is called the angle of mini-
mum deviation.)

n �
sin 1

2(c � f)

sin 1
2f

,
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(a) point A and (b) point B? (This angular difference in the 
light emerging at, say, point A would be the rainbow’s angular
width.)

Module 33-6 Total Internal Reflection
•57 A point source of light is 80.0 cm below the surface of a body
of water. Find the diameter of the circle at the surface through
which light emerges from the water.

•58 The index of refraction of benzene is 1.8. What is the critical
angle for a light ray traveling in benzene toward a flat layer of air
above the benzene?

••59 In Fig. 33-57, a ray
of light is perpendicular to the face
ab of a glass prism (n � 1.52). Find
the largest value for the angle f so
that the ray is totally reflected at
face ac if the prism is immersed
(a) in air and (b) in water.

••60 In Fig. 33-58, light from ray A
refracts from material 1 (n1 � 1.60)
into a thin layer of material 2 (n2 �
1.80), crosses that layer, and is then
incident at the critical angle on the
interface between materials 2 and 3
(n3 � 1.30). (a) What is the value
of incident angle uA? (b) If uA is
decreased, does part of the light
refract into material 3?

Light from ray B refracts from material 1 into the thin layer,
crosses that layer, and is then incident at the critical angle on the
interface between materials 2 and 3. (c) What is the value of inci-
dent angle uB? (d) If uB is decreased, does part of the light refract
into material 3?

••61 In Fig. 33-59, light initially
in material 1 refracts into material 2,
crosses that material, and is then
incident at the critical angle on the
interface between materials 2 and 3.
The indexes of refraction are 
n1 � 1.60, n2 � 1.40, and n3 � 1.20.
(a) What is angle u? (b) If u is in-
creased, is there refraction of light
into material 3?

••62 A catfish is 2.00 m
below the surface of a smooth lake.
(a) What is the diameter of the circle
on the surface through which the
fish can see the world outside the water? (b) If the fish descends,
does the diameter of the circle increase, decrease, or remain
the same?

••63 In Fig. 33-60, light enters a 90°
triangular prism at point P with inci-
dent angle u, and then some of it
refracts at point Q with an angle of
refraction of 90°. (a) What is the in-
dex of refraction of the prism in
terms of u? (b) What, numerically,
is the maximum value that the index of refraction can have? Does
light emerge at Q if the incident angle at P is (c) increased slightly
and (d) decreased slightly?

ILWSSM
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••64 Suppose the prism of Fig. 33-53 has apex angle f 60.0°
and index of refraction n � 1.60. (a) What is the smallest angle of
incidence u for which a ray can enter the left face of the prism and
exit the right face? (b) What angle of incidence u is required for the
ray to exit the prism with an identical angle u for its refraction, as it
does in Fig. 33-53?

••65 Figure 33-61 depicts a sim-
plistic optical fiber: a plastic core
(n1 1.58) is surrounded by a plastic
sheath (n2 1.53).A light ray is inci-
dent on one end of the fiber at angle
u.The ray is to undergo total internal
reflection at point A, where it en-
counters the core–sheath bound-
ary. (Thus there is no loss of light
through that boundary.) What is the maximum value of u that allows
total internal reflection at A?

••66 In Fig. 33-62, a light ray in
air is incident at angle u1 on a block
of transparent plastic with an index
of refraction of 1.56. The dimen-
sions indicated are H � 2.00 cm
and W � 3.00 cm. The light passes
through the block to one of its sides
and there undergoes reflection (in-
side the block) and possibly
refraction (out into the air). This is
the point of first reflection. The re-
flected light then passes through
the block to another of its sides — a point of second reflection. If
u1 � 40°, on which side is the point of (a) first reflection and
(b) second reflection? If there is refraction at the point of (c) first
reflection and (d) second reflection, give the angle of refraction;
if not, answer “none.” If u1 � 70°, on which side is the point of
(e) first reflection and (f) second reflection? If there is refrac-
tion at the point of (g) first reflection and (h) second reflection,
give the angle of refraction; if not, answer “none.”

••67 In the ray diagram of Fig. 33-63, where the angles are not
drawn to scale, the ray is incident at the critical angle on the inter-
face between materials 2 and 3.Angle f � 60.0°, and two of the in-
dexes of refraction are n1 � 1.70 and n2 � 1.60. Find (a) index of
refraction n3 and (b) angle u. (c) If u is decreased, does light refract
into material 3?
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•69 Light that is traveling in water (with an index of refrac-
tion of 1.33) is incident on a plate of glass (with index of refraction
1.53). At what angle of incidence does the reflected light end up
fully polarized?

••70 In Fig. 33-64, a light ray in air is incident on a flat layer of
material 2 that has an index of refraction n2 1.5. Beneath mate-
rial 2 is material 3 with an index of refraction n3. The ray is inci-
dent on the air–material 2 interface at the Brewster angle for that
interface. The ray of light refracted into material 3 happens to be
incident on the material 2 – material 3 interface at the Brewster
angle for that interface.What is the value of n3?

�
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Module 33-7 Polarization by Reflection
•68 (a) At what angle of incidence will the light reflected from
water be completely polarized? (b) Does this angle depend on the
wavelength of the light?

Additional Problems
71 (a) How long does it take a radio signal to travel 150 km
from a transmitter to a receiving antenna? (b) We see a full Moon
by reflected sunlight. How much earlier did the light that enters
our eye leave the Sun? The Earth–Moon and Earth–Sun dis-
tances are 3.8 	 105 km and 1.5 	 108 km, respectively. (c) What is
the round-trip travel time for light between Earth and a spaceship
orbiting Saturn, 1.3 	 109 km distant? (d) The Crab nebula, which
is about 6500 light-years (ly) distant, is thought to be the result of a
supernova explosion recorded by Chinese astronomers in A.D.
1054. In approximately what year did the explosion actually occur?
(When we look into the night sky, we are effectively looking back
in time.)

72 An electromagnetic wave with frequency 4.00 	 1014 Hz trav-
els through vacuum in the positive direction of an x axis. The wave
has its electric field oscillating parallel to the y axis, with an ampli-
tude Em.At time t � 0, the electric field at point P on the x axis has a
value of �Em /4 and is decreasing with time. What is the distance
along the x axis from point P to the first point with E � 0 if we
search in (a) the negative direction and (b) the positive direction of
the x axis?

73 The electric component of a beam of polarized light is

Ey � (5.00 V/m) sin[(1.00 	 106 m�1)z � vt].

(a) Write an expression for the magnetic field component of the
wave, including a value for v. What are the (b) wavelength,
(c) period, and (d) intensity of this light? (e) Parallel to which
axis does the magnetic field oscillate? (f) In which region of the
electromagnetic spectrum is this wave?

74 A particle in the solar system is under the combined
influence of the Sun’s gravitational attraction and the radiation
force due to the Sun’s rays. Assume that the particle is a sphere of
density 1.0 	 103 kg/m3 and that all the incident light is absorbed.
(a) Show that, if its radius is less than some critical radius R, the
particle will be blown out of the solar system. (b) Calculate the
critical radius.

SSM

SSM
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77 Rainbow. Figure 33-67 shows a light ray entering and
then leaving a falling, spherical raindrop after one internal reflec-
tion (see Fig. 33-21a). The final direction of travel is deviated
(turned) from the initial direction of travel by angular deviation
udev. (a) Show that udev is

udev � 180° � 2ui � 4ur,

where ui is the angle of incidence of the ray on the drop and ur is
the angle of refraction of the ray within the drop. (b) Using Snell’s
law, substitute for ur in terms of ui and the index of refraction n of
the water. Then, on a graphing calculator or with a computer
graphing package, graph udev versus ui for the range of possible ui

values and for n � 1.331 for red light (at one end of the visible
spectrum) and n � 1.333 for blue light (at the other end).

The red-light curve and the blue-light curve have different
minima, which means that there is a different angle of minimum
deviation for each color. The light of
any given color that leaves the drop
at that color’s angle of minimum de-
viation is especially bright because
rays bunch up at that angle.Thus, the
bright red light leaves the drop at
one angle and the bright blue light
leaves it at another angle.

Determine the angle of mini-
mum deviation from the udev curve

75 In Fig. 33-65, a light ray en-
ters a glass slab at point A at incident
angle u1 45.0° and then undergoes
total internal reflection at point B.
(The reflection at A is not shown.)
What minimum value for the index
of refraction of the glass can be in-
ferred from this information? 

76 In Fig. 33-66, unpolarized
light with an intensity of 25 W/m2 is
sent into a system of four polarizing
sheets with polarizing directions at
angles u1 � 40°, u2 � 20°, u3 � 20°,
and u4 � 30°.What is the intensity of
the light that emerges from the system?

�

SSM for (c) red light and (d) blue light. (e) If these colors form the inner
and outer edges of a rainbow (Fig. 33-21a), what is the angular
width of the rainbow?

78 The primary rainbow described in Problem 77 is the
type commonly seen in regions where rainbows appear. It is pro-
duced by light reflecting once inside the drops. Rarer is the sec-
ondary rainbow described in Module 33-5, produced by light
reflecting twice inside the drops (Fig. 33-68a). (a) Show that the
angular deviation of light entering and then leaving a spherical
water drop is

udev � (180°)k � 2ui � 2(k � 1)ur,

where k is the number of internal reflections. Using the procedure
of Problem 77, find the angle of minimum deviation for (b) red
light and (c) blue light in a secondary rainbow. (d) What is the
angular width of that rainbow (Fig. 33-21d)?

The tertiary rainbow depends on three internal reflections
(Fig. 33-68b). It probably occurs but, as noted in Module 33-5,
cannot be seen with the eye because it is very faint and lies in the
bright sky surrounding the Sun. What is the angle of minimum de-
viation for (e) the red light and (f) the blue light in this rainbow?
(g) What is the rainbow’s angular width?

Figure 33-66 Problem 76.
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79 (a) Prove that a ray of light incident on the surface of a
sheet of plate glass of thickness t emerges from the opposite face
parallel to its initial direction but displaced sideways, as in Fig. 33-69.
(b) Show that, for small angles of incidence u, this displacement is
given by

where n is the index of refraction of the glass and u is measured in
radians.

x � tu
n � 1

n
,
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80 An electromagnetic wave is traveling in the negative
direction of a y axis. At a particular position and time, the electric
field is directed along the positive direction of the z axis and has a
magnitude of 100 V/m. What are the (a) magnitude and (b) direc-
tion of the corresponding magnetic field?



91 A helium–neon laser, radiat-
ing at 632.8 nm, has a power output
of 3.0 mW. The beam diverges
(spreads) at angle u � 0.17 mrad
(Fig. 33-72). (a) What is the intensity
of the beam 40 m from the laser? (b)
What is the power of a point source providing that intensity at that
distance?

92 In about A.D. 150, Claudius Ptolemy gave the following meas-
ured values for the angle of incidence u1 and the angle of refraction
u2 for a light beam passing from air to water:

u1 u2 u1 u2

10° 8° 50° 35°
20° 15°30� 60° 40°30�

30° 22°30� 70° 45°30�

40° 29° 80° 50°

Assuming these data are consistent with the law of refraction, use
them to find the index of refraction of water. These data are inter-
esting as perhaps the oldest recorded physical measurements.

93 A beam of initially unpolarized light is sent through two
polarizing sheets placed one on top of the other. What must be
the angle between the polarizing directions of the sheets if the
intensity of the transmitted light is to be one-third the incident
intensity?

94 In Fig. 33-73, a long, straight copper wire (diameter 2.50 mm
and resistance 1.00 � per 300 m) carries a uniform current of 25.0 A
in the positive x direction. For point P on the wire’s surface, calcu-
late the magnitudes of (a) the electric field , (b) the magnetic
field , and (c) the Poynting vector , and (d) determine the direc-
tion of .S

:
S
:

B
:

E
:
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81 The magnetic component of a polarized wave of light is

Bx � (4.0 	 10�6 T) sin[(1.57 	 107 m�1)y � vt].

(a) Parallel to which axis is the light polarized? What are the
(b) frequency and (c) intensity of the light?

82 In Fig. 33-70, unpolarized light
is sent into the system of three po-
larizing sheets, where the polarizing
directions of the first and third
sheets are at angles u1 � 30° (coun-
terclockwise) and u3 � 30° (clock-
wise). What fraction of the initial
light intensity emerges from the
system?

83 A ray of white light travel-
ing through fused quartz is incident
at a quartz–air interface at angle u1.
Assume that the index of refraction
of quartz is n � 1.456 at the red end of the visible range and n �
1.470 at the blue end. If u1 is (a) 42.00°, (b) 43.10°, and (c) 44.00°, is
the refracted light white, white dominated by the red end of the
visible range, or white dominated by the blue end of the visible
range, or is there no refracted light?

84 Three polarizing sheets are stacked. The first and third are
crossed; the one between has its polarizing direction at 45.0° to the
polarizing directions of the other two. What fraction of the inten-
sity of an originally unpolarized beam is transmitted by the stack?

85 In a region of space where gravitational forces can be
neglected, a sphere is accelerated by a uniform light beam of inten-
sity 6.0 mW/m2. The sphere is totally absorbing and has a radius of
2.0 mm and a uniform density of 5.0 	 103 kg/m3. What is the mag-
nitude of the sphere’s acceleration due to the light?

86 An unpolarized beam of light is sent into a stack of four po-
larizing sheets, oriented so that the angle between the polarizing
directions of adjacent sheets is 30°. What fraction of the incident
intensity is transmitted by the system?

87 During a test, a NATO surveillance radar system, operat-
ing at 12 GHz at 180 kW of power, attempts to detect an incoming
stealth aircraft at 90 km. Assume that the radar beam is emitted
uniformly over a hemisphere. (a) What is the intensity of the beam
when the beam reaches the aircraft’s location? The aircraft reflects
radar waves as though it has a cross-sectional area of only 0.22 m2.
(b) What is the power of the aircraft’s reflection? Assume that the
beam is reflected uniformly over a hemisphere. Back at the radar
site, what are (c) the intensity, (d) the maximum value of the elec-
tric field vector, and (e) the rms value of the magnetic field of the
reflected radar beam?

88 The magnetic component of an electromagnetic wave in vac-
uum has an amplitude of 85.8 nT and an angular wave number of
4.00 m�1.What are (a) the frequency of the wave, (b) the rms value
of the electric component, and (c) the intensity of the light?

89 Calculate the (a) upper and (b) lower limit of the Brewster
angle for white light incident on fused quartz. Assume that the
wavelength limits of the light are 400 and 700 nm.

90 In Fig. 33-71, two light rays pass from air through five layers of
transparent plastic and then back into air. The layers have parallel
interfaces and unknown thicknesses; their indexes of refraction are
n1 � 1.7, n2 � 1.6, n3 � 1.5, n4 � 1.4, and n5 � 1.6. Ray b is incident
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at angle ub 20°. Relative to a normal at the last interface, at what
angle do (a) ray a and (b) ray b emerge? (Hint: Solving the prob-
lem algebraically can save time.) If the air at the left and right sides
in the figure were, instead, glass with index of refraction 1.5, at
what angle would (c) ray a and (d) ray b emerge?

�
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95 Figure 33-74 shows a cylindrical
resistor of length l, radius a, and resis-
tivity r, carrying current i. (a) Show
that the Poynting vector at the sur-
face of the resistor is everywhere
directed normal to the surface, as
shown. (b) Show that the rate P at
which energy flows into the resistor
through its cylindrical surface, calcu-
lated by integrating the Poynting
vector over this surface, is equal to
the rate at which thermal energy is
produced:

� � i2R,

where is an element of area on
the cylindrical surface and R is the
resistance.

96 A thin, totally absorbing sheet
of mass m, face area A, and specific
heat cs is fully illuminated by a perpendicular beam of a plane elec-
tromagnetic wave. The magnitude of the maximum electric field of
the wave is Em.What is the rate dT/dt at which the sheet’s tempera-
ture increases due to the absorption of the wave?

97 Two polarizing sheets, one directly above the other, transmit
p% of the initially unpolarized light that is perpendicularly inci-
dent on the top sheet. What is the angle between the polarizing di-
rections of the two sheets?

98 A laser beam of intensity I reflects from a flat, totally reflect-
ing surface of area A, with a normal at angle u with the beam.Write
an expression for the beam’s radiation pressure pr(u) on the sur-
face in terms of the beam’s pressure when u � 0�.

99 A beam of intensity I reflects from a long, totally reflecting
cylinder of radius R; the beam is
perpendicular to the central axis of
the cylinder and has a diameter
larger than 2R. What is the beam’s
force per unit length on the cylin-
der?

100 In Fig. 33-75, unpolarized light
is sent into a system of three polariz-
ing sheets, where the polarizing di-
rections of the first and second
sheets are at angles u1 � 20� and u2 �
40�. What fraction of the initial light
intensity emerges from the system? 

101 In Fig. 33-76, unpolarized
light is sent into a system of three
polarizing sheets with polarizing
directions at angles u1 � 20�, u2 �
60�, and u3 � 40�. What fraction of
the initial light intensity emerges
from the system?

102 A square, perfectly reflecting
surface is oriented in space to be
perpendicular to the light rays
from the Sun. The surface has an

pr�

dA
:

dA
:�S

:

S
:

edge length of 2.0 m and is located 3.0 	 1011 m from the Sun’s cen-
ter. What is the radiation force on the surface from the light rays?

103 The rms value of the electric field in a certain light wave is
0.200 V/m. What is the amplitude of the associated magnetic field?

104 In Fig. 33-77, an albatross
glides at a constant 15 m/s horizon-
tally above level ground, moving in
a vertical plane that contains the
Sun. It glides toward a wall of height
h � 2.0 m, which it will just barely
clear. At that time of day, the angle
of the Sun relative to the ground is
u � 30�. At what speed does the
shadow of the albatross move (a) across the level ground and
then (b) up the wall? Suppose that later a hawk happens to glide
along the same path, also at 15 m/s. You see that when its shadow
reaches the wall, the speed of the shadow noticeably increases.
(c) Is the Sun now higher or lower in the sky than when the alba-
tross flew by earlier? (d) If the speed of the hawk’s shadow on
the wall is 45 m/s, what is the angle u of the Sun just then?

105 The magnetic component of a polarized wave of light is given by
Bx � (4.00 mT) sin [ky � (2.00 	 1015 s�1)t]. (a) In which direction does
the wave travel, (b) parallel to which axis is it polarized, and (c) what is
its intensity? (d) Write an expression for the electric field of the wave,
including a value for the angular wave number. (e) What is the wave-
length? (f) In which region of the electromagnetic spectrum is this elec-
tromagnetic wave?

106 In Fig. 33-78, where n1 � 1.70,
n2 � 1.50, and n3 � 1.30, light re-
fracts from material 1 into material
2. If it is incident at point A at the
critical angle for the interface be-
tween materials 2 and 3, what are
(a) the angle of refraction at point B
and (b) the initial angle u? If, in-
stead, light is incident at B at the
critical angle for the interface between materials 2 and 3, what are
(c) the angle of refraction at point A and (d) the initial angle u? If,
instead of all that, light is incident at point A at Brewster’s angle
for the interface between materials 2 and 3, what are (e) the angle
of refraction at point B and (f) the initial angle u?

107 When red light in vacuum is incident at the Brewster angle
on a certain glass slab, the angle of refraction is 32.0�.What are
(a) the index of refraction of the glass and (b) the Brewster angle?

108 Start from Eqs. 33-11 and 33-17 and show that E(x, t) and
B(x, t), the electric and magnetic field components of a plane trav-
eling electromagnetic wave, must satisfy the “wave equations”

109 (a) Show that Eqs. 33-1 land 33-2 satisfy the wave equa-
tions displayed in Problem 108. (b) Show that any expressions of
the form E � Em f(kx vt) and B � Bm f(kx vt), where f(kx
vt) denotes an arbitrary function, also satisfy these wave equations.

110 A point source of light emits isotropically with a power of
200 W. What is the force due to the light on a totally absorbing
sphere of radius 2.0 cm at a distance of 20 m from the source?
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What Is Physics?
One goal of physics is to discover the basic laws governing light, such as the law
of refraction. A broader goal is to put those laws to use, and perhaps the most
important use is the production of images.The first photographic images, made in
1824, were only novelties, but our world now thrives on images. Huge industries
are based on the production of images on television, computer, and theater
screens. Images from satellites guide military strategists during times of conflict
and environmental strategists during times of blight. Camera surveillance can
make a subway system more secure, but it can also invade the privacy of unsus-
pecting citizens. Physiologists and medical engineers are still puzzled by how im-
ages are produced by the human eye and the visual cortex of the brain, but they
have managed to create mental images in some sightless people by electrical
stimulation of the brain’s visual cortex.

Our first step in this chapter is to define and classify images. Then we exam-
ine several basic ways in which they can be produced.

Two Types of Image
For you to see, say, a penguin, your eye must intercept some of the light rays
spreading from the penguin and then redirect them onto the retina at the rear of
the eye. Your visual system, starting with the retina and ending with the visual
cortex at the rear of your brain, automatically and subconsciously processes the
information provided by the light. That system identifies edges, orientations,
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Images

34-1 IMAGES AND PLANE MIRRORS

After reading this module, you should be able to . . .

34.01 Distinguish virtual images from real images.
34.02 Explain the common roadway mirage.
34.03 Sketch a ray diagram for the reflection of a point

source of light by a plane mirror, indicating the object
distance and image distance.

34.04 Using the proper algebraic sign, relate the object
distance p to the image distance i.

34.05 Give an example of the apparent hallway that you can
see in a mirror maze based on equilateral triangles.

Key Ideas

Learning Objectives

1010

● An image is a reproduction of an object via light. If the
image can form on a surface, it is a real image and can exist
even if no observer is present. If the image requires the visual
system of an observer, it is a virtual image.
● A plane (flat) mirror can form a virtual image of a light
source (said to be the object) by redirecting light rays emerg-
ing from the source. The image can be seen where backward

extensions of reflected rays pass through one another. The
object’s distance p from the mirror is related to the (apparent)
image distance i from the mirror by

(plane mirror).

Object distance p is a positive quantity. Image distance i for a
virtual image is a negative quantity.

i � �p



101134-1 IMAGES AND PLANE MIRRORS

textures, shapes, and colors and then rapidly brings to your consciousness an
image (a reproduction derived from light) of the penguin; you perceive and rec-
ognize the penguin as being in the direction from which the light rays came and
at the proper distance.

Your visual system goes through this processing and recognition even if the
light rays do not come directly from the penguin, but instead reflect toward you
from a mirror or refract through the lenses in a pair of binoculars. However, you
now see the penguin in the direction from which the light rays came after they
reflected or refracted, and the distance you perceive may be quite different from
the penguin’s true distance.

For example, if the light rays have been reflected toward you from a standard
flat mirror, the penguin appears to be behind the mirror because the rays you
intercept come from that direction. Of course, the penguin is not back there. This
type of image, which is called a virtual image, truly exists only within the brain
but nevertheless is said to exist at the perceived location.

A real image differs in that it can be formed on a surface, such as a card or a
movie screen. You can see a real image (otherwise movie theaters would be
empty), but the existence of the image does not depend on your seeing it and it is
present even if you are not. Before we discuss real and virtual images in detail,
let’s examine a natural virtual image.

A Common Mirage
A common example of a virtual image is a pool of water that appears to lie on the
road some distance ahead of you on a sunny day, but that you can never
reach. The pool is a mirage (a type of illusion), formed by light rays coming from
the low section of the sky in front of you (Fig. 34-1a). As the rays approach the
road, they travel through progressively warmer air that has been heated by
the road, which is usually relatively warm. With an increase in air temperature,
the density of the air—and hence the index of refraction of the air—decreases
slightly. Thus, as the rays descend, encountering progressively smaller indexes of
refraction, they continuously bend toward the horizontal (Fig. 34-1b).

Once a ray is horizontal, somewhat above the road’s surface, it still bends because
the lower portion of each associated wavefront is in slightly warmer air and is moving
slightly faster than the upper portion of the wavefront (Fig. 34-1c). This nonuniform
motion of the wavefronts bends the ray upward. As the ray then ascends, it continues
to bend upward through progressively greater indexes of refraction (Fig.34-1d).

If you intercept some of this light, your visual system automatically infers
that it originated along a backward extension of the rays you have intercepted
and, to make sense of the light, assumes that it came from the road surface. If the
light happens to be bluish from blue sky, the mirage appears bluish, like water.
Because the air is probably turbulent due to the heating, the mirage shimmies, as
if water waves were present. The bluish coloring and the shimmy enhance the
illusion of a pool of water, but you are actually seeing a virtual image of a low
section of the sky. As you travel toward the illusionary pool, you no longer inter-
cept the shallow refracted rays and the illusion disappears.

Figure 34-1 (a) A ray from a low section of the sky refracts through air that is heated by a road (without reaching the road).An observer who
intercepts the light perceives it to be from a pool of water on the road. (b) Bending (exaggerated) of a light ray descending across an imagi-
nary boundary from warm air to warmer air. (c) Shifting of wavefronts and associated bending of a ray, which occur because the lower ends of
wavefronts move faster in warmer air. (d) Bending of a ray ascending across an imaginary boundary to warm air from warmer air.
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Warmer

Road
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Warmer

Road

Fast

Faster

(c)(b) (d)
Pool mirage Road

Light ray
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Plane Mirrors
A mirror is a surface that can reflect a beam of light in one direction instead of
either scattering it widely in many directions or absorbing it. A shiny metal
surface acts as a mirror; a concrete wall does not. In this module we examine the
images that a plane mirror (a flat reflecting surface) can produce.

Figure 34-2 shows a point source of light O, which we shall call the object, at a
perpendicular distance p in front of a plane mirror. The light that is incident
on the mirror is represented with rays spreading from O. The reflection of that
light is represented with reflected rays spreading from the mirror. If we extend
the reflected rays backward (behind the mirror), we find that the extensions
intersect at a point that is a perpendicular distance i behind the mirror.

If you look into the mirror of Fig. 34-2, your eyes intercept some of the
reflected light. To make sense of what you see, you perceive a point source of
light located at the point of intersection of the extensions.This point source is the
image I of object O. It is called a point image because it is a point, and it is a vir-
tual image because the rays do not actually pass through it. (As you will see, rays
do pass through a point of intersection for a real image.)

Ray Tracing. Figure 34-3 shows two rays selected from the many rays in
Fig. 34-2. One reaches the mirror at point b, perpendicularly. The other reaches it
at an arbitrary point a, with an angle of incidence u. The extensions of the two re-
flected rays are also shown. The right triangles aOba and aIba have a common
side and three equal angles and are thus congruent (equal in size); so their hori-
zontal sides have the same length.That is,

Ib � Ob, (34-1)

where Ib and Ob are the distances from the mirror to the image and the object,
respectively. Equation 34-1 tells us that the image is as far behind the mirror as
the object is in front of it. By convention (that is, to get our equations to work
out), object distances p are taken to be positive quantities and image distances i
for virtual images (as here) are taken to be negative quantities. Thus, Eq. 34-1 can
be written as |i| � p or as

i � �p (plane mirror). (34-2)

Only rays that are fairly close together can enter the eye after reflection at a
mirror. For the eye position shown in Fig. 34-4, only a small portion of the mirror
near point a (a portion smaller than the pupil of the eye) is useful in forming the
image. To find this portion, close one eye and look at the mirror image of a small
object such as the tip of a pencil. Then move your fingertip over the mirror sur-
face until you cannot see the image. Only that small portion of the mirror under
your fingertip produced the image.

Extended Objects
In Fig. 34-5, an extended object O, represented by an upright arrow, is at 
perpendicular distance p in front of a plane mirror. Each small portion of the

Figure 34-2 A point source of light O, called
the object, is a perpendicular distance p
in front of a plane mirror. Light rays
reaching the mirror from O reflect from
the mirror. If your eye intercepts some of
the reflected rays, you perceive a point
source of light I to be behind the mirror,
at a perpendicular distance i. The perceived
source I is a virtual image of object O.

O I

Mirror

p i

θ 
θ 

In a plane mirror the light
seems to come from an
object on the other side.

Figure 34-3 Two rays from Fig. 34-2. Ray
Oa makes an arbitrary angle u with the
normal to the mirror surface. Ray Ob is
perpendicular to the mirror.

O I 

θ 
θ a

θ θ b
ip

Mirror

O I 
Mirror

a

Figure 34-4 A “pencil” of rays from O enters
the eye after reflection at the mirror. Only
a small portion of the mirror near a is
involved in this reflection. The light appears
to originate at point I behind the mirror.

Figure 34-5 An extended object O and its virtual image I in a plane mirror.

O I 
ip

In a plane mirror the image
is just as far from the mirror
as the object.
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object that faces the mirror acts like the point source O of Figs. 34-2 and 34-3.
If you intercept the light reflected by the mirror, you perceive a virtual image I
that is a composite of the virtual point images of all those portions of the ob-
ject. This virtual image seems to be at (negative) distance i behind the mirror,
with i and p related by Eq. 34-2.

We can also locate the image of an extended object as we did for a point
object in Fig. 34-2: we draw some of the rays that reach the mirror from the top of
the object, draw the corresponding reflected rays, and then extend those reflected
rays behind the mirror until they intersect to form an image of the top of the
object. We then do the same for rays from the bottom of the object. As shown in
Fig. 34-5, we find that virtual image I has the same orientation and height (mea-
sured parallel to the mirror) as object O.

Mirror Maze
In a mirror maze (Fig. 34-6), each wall is covered, floor to ceiling, with a mirror.
Walk through such a maze and what you see in most directions is a confusing mon-
tage of reflections. In some directions, however, you see a hallway that seems to of-
fer a path through the maze.Take these hallways, though, and you soon learn, after
smacking into mirror after mirror, that the hallways are largely an illusion.

Figure 34-7a is an overhead view of a simple mirror maze in which differently
painted floor sections form equilateral triangles (60° angles) and walls are
covered with vertical mirrors.You look into the maze while standing at point O at
the middle of the maze entrance. In most directions, you see a confusing jumble
of images. However, you see something curious in the direction of the ray shown
in Fig. 34-7a. That ray leaves the middle of mirror B and reflects to you at the
middle of mirror A. (The reflection obeys the law of reflection, with the angle of
incidence and the angle of reflection both equal to 30°.)

To make sense of the origin of the ray reaching you, your brain automati-
cally extends the ray backward. It appears to originate at a point lying behind
mirror A. That is, you perceive a virtual image of B behind A, at a distance equal
to the actual distance between A and B (Fig. 34-7b). Thus, when you face into the
maze in this direction, you see B along an apparent straight hallway consisting of
four triangular floor sections.

This story is incomplete, however, because the ray reaching you does not
originate at mirror B—it only reflects there. To find the origin, we continue to
apply the law of reflection as we work backwards, reflection by reflection on the
mirrors (Fig. 34-7c). We finally come to the origin of the ray: you! What you see
when you look along the apparent hallway is a virtual image of yourself, at a dis-
tance of nine triangular floor sections from you (Fig. 34-7d).

Courtesy Adrian Fisher, www.mazemaker.com

Figure 34-6 A maze of
mirrors.

Figure 34-7 (a) Overhead view of a mirror
maze. A ray from mirror B reaches you at
O by reflecting from mirror A. (b) Mirror B
appears to be behind A. (c) The ray reach-
ing you comes from you. (d) You see a vir-
tual image of yourself at the end of an 
apparent hallway. (Can you find a second
apparent hallway extending away from
point O?)
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B

O
(a)

O
(c)

O
(b)

O

O

(d)

A hallway seems to
lie in front of you.
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Checkpoint 1
In the figure you are in a system of two vertical parallel
mirrors A and B separated by distance d.A grinning
gargoyle is perched at point O, a distance 0.2d from
mirror A. Each mirror produces a first (least deep)
image of the gargoyle.Then each mirror produces a
second image with the object being the first image in
the opposite mirror.Then each mirror produces a third
image with the object being the second image in the opposite mirror, and so on—you
might see hundreds of grinning gargoyle images. How deep behind mirror A are the
first, second, and third images in mirror A?

d

A

B

O 0.2d

34-2 SPHERICAL MIRRORS

After reading this module, you should be able to . . .

34.06 Distinguish a concave spherical mirror from a convex
spherical mirror.

34.07 For concave and convex mirrors, sketch a ray diagram
for the reflection of light rays that are initially parallel to
the central axis, indicating how they form the focal points,
and identifying which is real and which is virtual.

34.08 Distinguish a real focal point from a virtual focal point,
identify which corresponds to which type of mirror, and
identify the algebraic sign associated with each focal
length.

34.09 Relate a focal length of a spherical mirror to the radius.
34.10 Identify the terms “inside the focal point” and “outside

the focal point.”
34.11 For an object (a) inside and (b) outside the focal point

of a concave mirror, sketch the reflections of at least two
rays to find the image and identify the type and orientation
of the image.

34.12 For a concave mirror, distinguish the locations and ori-
entations of a real image and a virtual image.

34.13 For an object in front of a convex mirror, sketch the re-
flections of at least two rays to find the image and identify
the type and orientation of the image.

34.14 Identify which type of mirror can produce both real 
and virtual images and which type can produce only virtual
images.

34.15 Identify the algebraic signs of the image distance i for
real images and virtual images.

34.16 For convex, concave, and plane mirrors, apply the rela-
tionship between the focal length f, object distance p, and
image distance i.

34.17 Apply the relationships between lateral magnification
m, image height h�, object height h, image distance i, and
object distance p.

Learning Objectives

● A spherical mirror is in the shape of a small section of a
spherical surface and can be concave (the radius of curvature
r is a positive quantity), convex (r is a negative quantity), or
plane (flat, r is infinite).

● If parallel rays are sent into a (spherical) concave 
mirror parallel to the central axis, the reflected rays pass
through a common point (a real focus F ) at a distance f
(a positive quantity) from the mirror. If they are sent toward
a (spherical) convex mirror, backward extensions of the
reflected rays pass through a common point (a virtual 
focus F ) at a distance f (a negative quantity) from 
the mirror.

● A concave mirror can form a real image (if the object is
outside the focal point) or a virtual image (if the object is
inside the focal point).

● A convex mirror can form only a virtual image.

● The mirror equation relates an object distance p, the mir-
ror’s focal length f and radius of curvature r, and the
image distance i:

● The magnitude of the lateral magnification m of an object is
the ratio of the image height h� to object height h,

and is related to the object distance p and image distance i by

m � �
i
p

.

�m� �
h�

h
,

1
p

�
1
i

�
1
f

�
2
r

.

Key Ideas
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Spherical Mirrors
We turn now from images produced by plane mirrors to images produced by mir-
rors with curved surfaces. In particular, we consider spherical mirrors, which are
simply mirrors in the shape of a small section of the surface of a sphere. A plane
mirror is in fact a spherical mirror with an infinitely large radius of curvature and
thus an approximately flat surface.

Making a Spherical Mirror
We start with the plane mirror of Fig. 34-8a, which faces leftward toward an
object O that is shown and an observer that is not shown. We make a concave
mirror by curving the mirror’s surface so it is concave (“caved in”) as in
Fig. 34-8b. Curving the surface in this way changes several characteristics of the
mirror and the image it produces of the object:

1. The center of curvature C (the center of the sphere of which the mirror’s sur-
face is part) was infinitely far from the plane mirror; it is now closer but still in
front of the concave mirror.

2. The field of view—the extent of the scene that is reflected to the observer—
was wide; it is now smaller.

3. The image of the object was as far behind the plane mirror as the object was in
front; the image is farther behind the concave mirror; that is, |i| is greater.

4. The height of the image was equal to the height of the object; the height of the
image is now greater. This feature is why many makeup mirrors and shaving
mirrors are concave—they produce a larger image of a face.

We can make a convex mirror by curving a plane mirror so its surface is
convex (“flexed out”) as in Fig. 34-8c. Curving the surface in this way (1) moves
the center of curvature C to behind the mirror and (2) increases the field of view.
It also (3) moves the image of the object closer to the mirror and (4) shrinks it.
Store surveillance mirrors are usually convex to take advantage of the increase in
the field of view—more of the store can then be seen with a single mirror.

Focal Points of Spherical Mirrors
For a plane mirror, the magnitude of the image distance i is always equal to
the object distance p. Before we can determine how these two distances are
related for a spherical mirror, we must consider the reflection of light from an
object O located an effectively infinite distance in front of a spherical mirror,
on the mirror’s central axis. That axis extends through the center of curvature C
and the center c of the mirror. Because of the great distance between the object
and the mirror, the light waves spreading from the object are plane waves when
they reach the mirror along the central axis.This means that the rays representing
the light waves are all parallel to the central axis when they reach the mirror.

Forming a Focus. When these parallel rays reach a concave mirror like that
of Fig. 34-9a, those near the central axis are reflected through a common point F;
two of these reflected rays are shown in the figure. If we placed a (small) card at
F, a point image of the infinitely distant object O would appear on the card. (This
would occur for any infinitely distant object.) Point F is called the focal point (or
focus) of the mirror, and its distance from the center of the mirror c is the focal
length f of the mirror.

If we now substitute a convex mirror for the concave mirror, we find that the
parallel rays are no longer reflected through a common point. Instead, they
diverge as shown in Fig. 34-9b. However, if your eye intercepts some of the
reflected light, you perceive the light as originating from a point source behind
the mirror.This perceived source is located where extensions of the reflected rays
pass through a common point (F in Fig. 34-9b). That point is the focal point (or

Figure 34-8 (a) An object O forms a virtual
image I in a plane mirror. (b) If the mirror
is bent so that it becomes concave, the
image moves farther away and becomes
larger. (c) If the plane mirror is bent so
that it becomes convex, the image moves
closer and becomes smaller.
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Bending the mirror 
this way shifts 
the image away.

Bending it this 
way shifts the 
image closer.



focus) F of the convex mirror, and its distance from the mirror surface is the focal
length f of the mirror. If we placed a card at this focal point, an image of object O
would not appear on the card; so this focal point is not like that of a concave
mirror.

Two Types. To distinguish the actual focal point of a concave mirror from
the perceived focal point of a convex mirror, the former is said to be a real focal
point and the latter is said to be a virtual focal point. Moreover, the focal length f
of a concave mirror is taken to be a positive quantity, and that of a convex mirror
a negative quantity. For mirrors of both types, the focal length f is related to the
radius of curvature r of the mirror by

(spherical mirror), (34-3)

where r is positive for a concave mirror and negative for a convex mirror.

Images from Spherical Mirrors
Inside. With the focal point of a spherical mirror defined, we can find the rela-
tion between image distance i and object distance p for concave and convex
spherical mirrors. We begin by placing the object O inside the focal point of the
concave mirror—that is, between the mirror and its focal point F (Fig. 34-10a).

f � 1
2 r
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Figure 34-9 (a) In a concave mirror, incident parallel light rays are brought to a real
focus at F, on the same side of the mirror as the incident light rays. (b) In a convex mir-
ror, incident parallel light rays seem to diverge from a virtual focus at F, on the side of
the mirror opposite the light rays.

(a)

C
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c Central
axis

Real
focus

F

f

(b)

c
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To find the focus,
send in rays parallel
to the central axis.

If you intercept the
reflections, they seem
to come from this point.

O

(b)
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p = f

I
(i = +∞)

Parallel rays

I
(i = –∞)

(c)
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O

Real
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i
p

f

O

Virtual
image I

p

(a)

F

i
f

Changing the location
of the object relative to
F changes the image.

Figure 34-10 (a) An object O inside the focal point of a concave mirror, and its virtual image I. (b) The object at the
focal point F. (c) The object outside the focal point, and its real image I.
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An observer can then see a virtual image of O in the mirror: The image appears
to be behind the mirror, and it has the same orientation as the object.

If we now move the object away from the mirror until it is at the focal point,
the image moves farther and farther back from the mirror until, when the object
is at the focal point, the image is at infinity (Fig. 34-10b). The image is then am-
biguous and imperceptible because neither the rays reflected by the mirror nor
the ray extensions behind the mirror cross to form an image of O.

Outside. If we next move the object outside the focal point—that is, farther
away from the mirror than the focal point—the rays reflected by the mirror con-
verge to form an inverted image of object O (Fig. 34-10c) in front of the mirror.
That image moves in from infinity as we move the object farther outside F. If you
were to hold a card at the position of the image, the image would show up on the
card—the image is said to be focused on the card by the mirror. (The verb “focus,”
which in this context means to produce an image, differs from the noun “focus,”
which is another name for the focal point.) Because this image can actually appear
on a surface, it is a real image—the rays actually intersect to create the image, re-
gardless of whether an observer is present. The image distance i of a real image is a
positive quantity, in contrast to that for a virtual image.We can now generalize about
the location of images from spherical mirrors:

Real images form on the side of a mirror where the object is, and virtual images
form on the opposite side.

Main Equation. As we shall prove in Module 34-6, when light rays from an ob-
ject make only small angles with the central axis of a spherical mirror, a simple equa-
tion relates the object distance p, the image distance i, and the focal length f :

(spherical mirror). (34-4)

We assume such small angles in figures such as Fig. 34-10, but for clarity the
rays are drawn with exaggerated angles. With that assumption, Eq. 34-4 applies
to any concave, convex, or plane mirror. For a convex or plane mirror, only a
virtual image can be formed, regardless of the object’s location on the central
axis. As shown in the example of a convex mirror in Fig. 34-8c, the image is al-
ways on the opposite side of the mirror from the object and has the same orien-
tation as the object.

Magnification. The size of an object or image, as measured perpendicular to
the mirror’s central axis, is called the object or image height. Let h represent the
height of the object, and h� the height of the image. Then the ratio h�/h is called
the lateral magnification m produced by the mirror. However, by convention, the
lateral magnification always includes a plus sign when the image orientation is
that of the object and a minus sign when the image orientation is opposite that of
the object. For this reason, we write the formula for m as

(lateral magnification). (34-5)

We shall soon prove that the lateral magnification can also be written as

(lateral magnification). (34-6)

For a plane mirror, for which i � �p, we have m � �1. The magnification
of 1 means that the image is the same size as the object. The plus sign means that

m � �
i
p

|m| �
h�

h

1
p

�
1
i

�
1
f



the image and the object have the same orientation. For the concave mirror of
Fig. 34-10c, m � �1.5.

Organizing Table. Equations 34-3 through 34-6 hold for all plane mirrors,
concave spherical mirrors, and convex spherical mirrors. In addition to those
equations, you have been asked to absorb a lot of information about these
mirrors, and you should organize it for yourself by filling in Table 34-1. Under
Image Location, note whether the image is on the same side of the mirror as
the object or on the opposite side. Under Image Type, note whether the image
is real or virtual. Under Image Orientation, note whether the image has the
same orientation as the object or is inverted. Under Sign, give the sign of the
quantity or fill in 
 if the sign is ambiguous. You will need this organization to
tackle homework or a test.

Locating Images by Drawing Rays
Figures 34-11a and b show an object O in front of a concave mirror. We can
graphically locate the image of any off-axis point of the object by drawing a ray
diagram with any two of four special rays through the point:
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Table 34-1 Your Organizing Table for Mirrors

Image Sign

Mirror Object
Type Location Location Type Orientation of f of r of i of m

Plane Anywhere

Concave
Inside F

Outside F

Convex Anywhere

Figure 34-11 (a, b) Four rays that may be
drawn to find the image formed by a con-
cave mirror. For the object position
shown, the image is real, inverted, and
smaller than the object. (c, d) Four similar
rays for the case of a convex mirror. For a
convex mirror, the image is always virtual,
oriented like the object, and smaller than
the object. [In (c), ray 2 is initially directed
toward focal point F. In (d), ray 3 is initial-
ly directed toward center of curvature C.]

(a)

F c

2

1

I
O

(b)

F c

4

I

O C d

e

a

b

C

3

(c)

2

1

CO FI

(d)

c

4

3

CO

F

I
c

Any two of these four rays
will locate the image.

Here too, any two rays
will locate the image.
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1. A ray that is initially parallel to the central axis reflects through the focal point
F (ray 1 in Fig. 34-11a).

2. A ray that reflects from the mirror after passing through the focal point
emerges parallel to the central axis (ray 2 in Fig. 34-11a).

3. A ray that reflects from the mirror after passing through the center of curva-
ture C returns along itself (ray 3 in Fig. 34-11b).

4. A ray that reflects from the mirror at point c is reflected symmetrically about
that axis (ray 4 in Fig. 34-11b).

The image of the point is at the intersection of the two special rays you choose.
The image of the object can then be found by locating the images of two or more
of its off-axis points (say, the point most off axis) and then sketching in the rest of
the image. You need to modify the descriptions of the rays slightly to apply them
to convex mirrors, as in Figs. 34-11c and d.

Proof of Equation 34-6
We are now in a position to derive Eq. 34-6 (m � �i/p), the equation for the lat-
eral magnification of an object reflected in a mirror. Consider ray 4 in Fig. 34-11b.
It is reflected at point c so that the incident and reflected rays make equal angles
with the axis of the mirror at that point.

The two right triangles abc and dec in the figure are similar (have the same
set of angles); so we can write

The quantity on the left (apart from the question of sign) is the lateral magnification
m produced by the mirror. Because we indicate an inverted image as a negative mag-
nification, we symbolize this as �m. However, cd � i and ca � p; so we have

(magnification), (34-7)

which is the relation we set out to prove.

m � �
i
p

de
ab

�
cd
ca

.

Checkpoint 2
A Central American vampire bat, dozing on the central axis of a spherical mirror,
is magnified by m � �4. Is its image (a) real or virtual, (b) inverted or of the same
orientation as the bat, and (c) on the same side of the mirror as the bat or on the
opposite side?

(b) Is the mirror concave or convex, and what is its focal
length f, sign included?

KEY IDEA

We cannot tell the type of mirror from the type of image be-
cause both types of mirror can produce virtual images.
Similarly, we cannot tell the type of mirror from the sign of
the focal length f, as obtained from Eq. 34-3 or Eq. 34-4, be-
cause we lack enough information to use either equation.
However, we can make use of the magnification information.

Sample Problem 34.01 Image produced by a spherical mirror

A tarantula of height h sits cautiously before a spherical
mirror whose focal length has absolute value � 40 cm.
The image of the tarantula produced by the mirror has the
same orientation as the tarantula and has height h� � 0.20h.

(a) Is the image real or virtual, and is it on the same side of
the mirror as the tarantula or the opposite side?

Reasoning: Because the image has the same orientation as
the tarantula (the object), it must be virtual and on the op-
posite side of the mirror. (You can easily see this result if
you have filled out Table 34-1.)

� f �
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34-3 SPHERICAL REFRACTING SURFACES

After reading this module, you should be able to . . .

34.18 Identify that the refraction of rays by a spherical
surface can produce real images and virtual images of an
object, depending on the indexes of refraction on the two
sides, the surface’s radius of curvature r, and whether the
object faces a concave or convex surface.

34.19 For a point object on the central axis of a spherical
refracting surface, sketch the refraction of a ray in the six
general arrangements and identify whether the image is
real or virtual.

34.20 For a spherical refracting surface, identify what type of
image appears on the same side as the object and what
type appears on the opposite side.

34.21 For a spherical refracting surface, apply the relation-
ship between the two indexes of refraction, the object dis-
tance p, the image distance i, and the radius of curvature r.

34.22 Identify the algebraic signs of the radius r for an object
facing a concave refracting surface and a convex refract-
ing surface.

Learning Objectives

● A single spherical surface that refracts light can form 
an image.

● The object distance p, the image distance i,
and the radius of curvature r of the surface are 
related by

n1

p
�

n2

i
�

n2 � n1

r
,

where n1 is the index of refraction of the material where the
object is located and n2 is the index of refraction on the other
side of the surface.

● If the surface faced by the object is convex, r is positive,
and if it is concave, r is negative.

● Images on the object’s side of the surface are virtual, and
images on the opposite side are real.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

Calculations: From the given information, we know that
the ratio of image height to object height h is 0.20. Thus,
from Eq. 34-5 we have 

Because the object and image have the same orientation, we
know that m must be positive: m � �0.20. Substituting this
into Eq. 34-6 and solving for, say, i gives us

i � �0.20p,

�m� �
h�

h
� 0.20.

h�
which does not appear to be of help in finding f. However, it is
helpful if we substitute it into Eq. 34-4. That equation gives us

from which we find

f � �p/4.

Now we have it: Because p is positive, f must be negative,
which means that the mirror is convex with

f � �40 cm. (Answer)

1
f

�
1
i

�
1
p

�
1

�0.20p
�

1
p

�
1
p

 (�5 � 1),

Spherical Refracting Surfaces
We now turn from images formed by reflection to images formed by refrac-
tion through surfaces of transparent materials, such as glass. We shall consider
only spherical surfaces, with radius of curvature r and center of curvature C.
The light will be emitted by a point object O in a medium with index of re-
fraction n1; it will refract through a spherical surface into a medium of index
of refraction n2.

Our concern is whether the light rays, after refracting through the surface,
form a real image (no observer necessary) or a virtual image (assuming that an
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observer intercepts the rays).The answer depends on the relative values of n1 and
n2 and on the geometry of the situation.

Six possible results are shown in Fig. 34-12. In each part of the figure, the
medium with the greater index of refraction is shaded, and object O is always in
the medium with index of refraction n1, to the left of the refracting surface. In
each part, a representative ray is shown refracting through the surface. (That ray
and a ray along the central axis suffice to determine the position of the image in
each case.)

At the point of refraction of each ray, the normal to the refracting surface is a
radial line through the center of curvature C. Because of the refraction, the ray
bends toward the normal if it is entering a medium of greater index of refraction
and away from the normal if it is entering a medium of lesser index of refraction.
If the bending sends the ray toward the central axis, that ray and others
(undrawn) form a real image on that axis. If the bending sends the ray away from
the central axis, the ray cannot form a real image; however, backward extensions
of it and other refracted rays can form a virtual image, provided (as with mirrors)
some of those rays are intercepted by an observer.

Real images I are formed (at image distance i) in parts a and b of Fig. 34-12,
where the refraction directs the ray toward the central axis. Virtual images are
formed in parts c and d, where the refraction directs the ray away from the cen-
tral axis. Note, in these four parts, that real images are formed when the object is
relatively far from the refracting surface and virtual images are formed when the
object is nearer the refracting surface. In the final situations (Figs. 34-12e and f ),
refraction always directs the ray away from the central axis and virtual images
are always formed, regardless of the object distance.

Note the following major difference from reflected images:

This insect has been entombed in amber
for about 25 million years. Because we
view the insect through a curved refracting
surface, the location of the image we see
does not coincide with the location of the
insect (see Fig. 34-12d).

Dr. Paul A. Zahl/Photo Researchers, Inc.

CI
n2n1

O C
n2n1

O

Virtual
Virtual

IC I 
n2n1

O

r

ip

Real

C I 
n2n1

O

r

ip

Real

(a) (b)

(c) (d)

CI
n2

O C
n2

O

Virtual

I

Virtual

(e) (f )

n1 n1

Figure 34-12 Six possible ways in which an image can be formed by refraction through a
spherical surface of radius r and center of curvature C. The surface separates a medium
with index of refraction n1 from a medium with index of refraction n2. The point object O
is always in the medium with n1, to the left of the surface. The material with the lesser
index of refraction is unshaded (think of it as being air, and the other material as being
glass). Real images are formed in (a) and (b); virtual images are formed in the other
four situations.

Real images form on the side of a refracting surface that is opposite the object,
and virtual images form on the same side as the object.
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When the object faces a convex refracting surface, the radius of curvature r is
positive. When it faces a concave surface, r is negative.

In Module 34-6, we shall show that (for light rays making only small angles
with the central axis)

(34-8)

Just as with mirrors, the object distance p is positive, and the image distance i is
positive for a real image and negative for a virtual image. However, to keep all
the signs correct in Eq. 34-8, we must use the following rule for the sign of the
radius of curvature r :

n1

p
�

n2

i
�

n2 � n1

r
.

Calculations: Making these substitutions in Eq. 34-8,

yields

and p � 4.0 mm. (Answer)

1.6
p

�
1.0

�5.0 mm
�

1.0 � 1.6
�3.0 mm

n1

p
�

n2

i
�

n2 � n1

r
,

Sample Problem 34.02 Image produced by a refracting surface

A Jurassic mosquito is discovered embedded in a chunk of
amber, which has index of refraction 1.6. One surface of
the amber is spherically convex with radius of curvature
3.0 mm (Fig. 34-13). The mosquito’s head happens to be on
the central axis of that surface and, when viewed along the
axis, appears to be buried 5.0 mm into the amber. How
deep is it really?

KEY IDEAS

The head appears to be 5.0 mm into the amber only because
the light rays that the observer intercepts are bent by refrac-
tion at the convex amber surface. The image distance i dif-
fers from the object distance p according to Eq. 34-8. To use
that equation to find the object distance, we first note:

1. Because the object (the head) and its image are on the
same side of the refracting surface, the image must be
virtual and so i � �5.0 mm.

2. Because the object is always taken to be in the medium
of index of refraction n1, we must have n1 � 1.6 and 
n2 � 1.0.

3. Because the object faces a concave refracting surface, the
radius of curvature r is negative, and so r � �3.0 mm.

Additional examples, video, and practice available at WileyPLUS

Checkpoint 3
A bee is hovering in front of the concave spherical refracting surface of a glass sculp-
ture. (a) Which part of Fig. 34-12 is like this situation? (b) Is the image produced by
the surface real or virtual, and (c) is it on the same side as the bee or the opposite side?

Figure 34-13 A piece of amber with a mosquito from the Jurassic
period, with the head buried at point O. The spherical refracting
surface at the right end, with center of curvature C, provides an
image I to an observer intercepting rays from the object at O.

I O C 

r
p

i

Be careful: This is just the reverse of the sign convention we have for mirrors,
which can be a slippery point in the heat of an exam.
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Thin Lenses
A lens is a transparent object with two refracting surfaces whose central axes
coincide. The common central axis is the central axis of the lens. When a lens is
surrounded by air, light refracts from the air into the lens, crosses through the
lens, and then refracts back into the air. Each refraction can change the direction
of travel of the light.

A lens that causes light rays initially parallel to the central axis to converge is
(reasonably) called a converging lens. If, instead, it causes such rays to diverge,
the lens is a diverging lens. When an object is placed in front of a lens of either
type, light rays from the object that refract into and out of the lens can produce
an image of the object.

34-4 THIN LENSES

After reading this module, you should be able to . . .

34.23 Distinguish converging lenses from diverging lenses.
34.24 For converging and diverging lenses, sketch a ray

diagram for rays initially parallel to the central axis, 
indicating how they form focal points, and identifying
which is real and which is virtual.

34.25 Distinguish a real focal point from a virtual focal point,
identify which corresponds to which type of lens and
under which circumstances, and identify the algebraic
sign associated with each focal length.

34.26 For an object (a) inside and (b) outside the focal point
of a converging lens, sketch at least two rays to find the
image and identify the type and orientation of the image.

34.27 For a converging lens, distinguish the locations and
orientations of a real image and a virtual image.

34.28 For an object in front of a diverging lens, sketch at
least two rays to find the image and identify the type and
orientation of the image.

34.29 Identify which type of lens can produce both real 

and virtual images and which type can produce only 
virtual images.

34.30 Identify the algebraic sign of the image distance i for a
real image and for a virtual image.

34.31 For converging and diverging lenses, apply the rela-
tionship between the focal length f, object distance p, and
image distance i.

34.32 Apply the relationships between lateral magnification
m, image height , object height h, image distance i, and
object distance p.

34.33 Apply the lens maker’s equation to relate a focal length
to the index of refraction of a lens (assumed to be in air)
and the radii of curvature of the two sides of the lens.

34.34 For a multiple-lens system with the object in front of
lens 1, find the image produced by lens 1 and then use it
as the object for lens 2, and so on.

34.35 For a multiple-lens system, determine the overall
magnification (of the final image) from the magnifications
produced by each lens.

h�

Learning Objectives

● This module primarily considers thin lenses with symmetric,
spherical surfaces.

● If parallel rays are sent through a converging lens
parallel to the central axis, the refracted rays pass through
a common point (a real focus F ) at a focal distance f (a
positive quantity) from the lens. If they are sent through a
diverging lens, backward extensions of the refracted rays
pass through a common point (a virtual focus F ) at a focal
distance f (a negative quantity) from the lens.

● A converging lens can form a real image (if the object is
outside the focal point) or a virtual image (if the object is
inside the focal point).

● A diverging lens can form only a virtual image.

● For an object in front of a lens, object distance p and
image distance i are related to the lens’s focal length f, index

of refraction n, and radii of curvature r1 and r2 by

● The magnitude of the lateral magnification m of an object is
the ratio of the image height to object height h,

and is related to the object distance p and image distance i by

● For a system of lenses with a common central axis, the
image produced by the first lens acts as the object for
the second lens, and so on, and the overall magnification
is the product of the individual magnifications.

m � �
i
p

.

�m� �
h�

h
,

h�

1
p

�
1
i

�
1
f

� (n � 1)� 1
r1

�
1
r2
�.

Key Ideas
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Lens Equations. We shall consider only the special case of a thin lens—that
is, a lens in which the thickest part is thin relative to the object distance p, the im-
age distance i, and the radii of curvature r1 and r2 of the two surfaces of the lens.
We shall also consider only light rays that make small angles with the central axis
(they are exaggerated in the figures here). In Module 34-6 we shall prove that for
such rays, a thin lens has a focal length f. Moreover, i and p are related to each
other by

(thin lens), (34-9)

which is the same as we had for mirrors. We shall also prove that when a thin lens
with index of refraction n is surrounded by air, this focal length f is given by

(thin lens in air), (34-10)

which is often called the lens maker’s equation. Here r1 is the radius of curvature
of the lens surface nearer the object and r2 is that of the other surface. The signs
of these radii are found with the rules in Module 34-3 for the radii of spherical
refracting surfaces. If the lens is surrounded by some medium other than air (say,
corn oil) with index of refraction nmedium, we replace n in Eq. 34-10 with n/nmedium.
Keep in mind the basis of Eqs. 34-9 and 34-10:

1
f

� (n � 1) � 1
r1

�
1
r2

�

1
f

�
1
p

�
1
i

Courtesy Matthew G. Wheeler

A fire is being started by focusing sunlight
onto newspaper by means of a converging
lens made of clear ice. The lens was made
by melting both sides of a flat piece of ice
into a convex shape in the shallow vessel
(which has a curved bottom).

r2 r1
f

F1C2 F2 C1

(a) (b)

r1

f

F2C1 F1 C2

(c)

r2

(d)

Extension

To find the focus,
send in rays parallel
to the central axis.

The bending occurs
only at the surfaces.

If you intercept these
rays, they seem to
come from F2.

Figure 34-14 (a) Rays initially parallel to
the central axis of a converging lens are
made to converge to a real focal point F2

by the lens. The lens is thinner than
drawn, with a width like that of the verti-
cal line through it. We shall consider all
the bending of rays as occurring at this
central line. (b) An enlargement of the
top part of the lens of (a); normals to the
surfaces are shown dashed. Note
that both refractions bend the ray down-
ward, toward the central axis. (c) The
same initially parallel rays are made to
diverge by a diverging lens. Extensions of
the diverging rays pass through a virtual
focal point F2. (d) An enlargement of the
top part of the lens of (c). Note that both
refractions bend the ray upward, away
from the central axis.

A lens can produce an image of an object only because the lens can bend light
rays, but it can bend light rays only if its index of refraction differs from that of
the surrounding medium.

Forming a Focus. Figure 34-14a shows a thin lens with convex refracting
surfaces, or sides. When rays that are parallel to the central axis of the lens are
sent through the lens, they refract twice, as is shown enlarged in Fig. 34-14b. This
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double refraction causes the rays to converge and pass through a common point
F2 at a distance f from the center of the lens. Hence, this lens is a converging lens;
further, a real focal point (or focus) exists at F2 (because the rays really do pass
through it), and the associated focal length is f. When rays parallel to the central
axis are sent in the opposite direction through the lens, we find another real focal
point at F1 on the other side of the lens. For a thin lens, these two focal points are
equidistant from the lens.

Signs, Signs, Signs. Because the focal points of a converging lens are real,
we take the associated focal lengths f to be positive, just as we do with a real fo-
cus of a concave mirror. However, signs in optics can be tricky; so we had better
check this in Eq. 34-10. The left side of that equation is positive if f is positive;
how about the right side? We examine it term by term. Because the index of re-
fraction n of glass or any other material is greater than 1, the term (n � 1) must
be positive. Because the source of the light (which is the object) is at the left and
faces the convex left side of the lens, the radius of curvature r1 of that side
must be positive according to the sign rule for refracting surfaces. Similarly, be-
cause the object faces a concave right side of the lens, the radius of curvature r2

of that side must be negative according to that rule. Thus, the term (1/r1 � 1/r2)
is positive, the whole right side of Eq. 34-10 is positive, and all the signs are
consistent.

Figure 34-14c shows a thin lens with concave sides. When rays that are paral-
lel to the central axis of the lens are sent through this lens, they refract twice, as
is shown enlarged in Fig. 34-14d; these rays diverge, never passing through any
common point, and so this lens is a diverging lens. However, extensions of the
rays do pass through a common point F2 at a distance f from the center of the
lens. Hence, the lens has a virtual focal point at F2. (If your eye intercepts some of
the diverging rays, you perceive a bright spot to be at F2, as if it is the source of
the light.) Another virtual focus exists on the opposite side of the lens at F1, sym-
metrically placed if the lens is thin. Because the focal points of a diverging lens
are virtual, we take the focal length f to be negative.

Images from Thin Lenses
We now consider the types of image formed by converging and diverging lenses.
Figure 34-15a shows an object O outside the focal point F1 of a converging lens.
The two rays drawn in the figure show that the lens forms a real, inverted image I
of the object on the side of the lens opposite the object.

When the object is placed inside the focal point F1, as in Fig. 34-15b, the lens
forms a virtual image I on the same side of the lens as the object and with the same
orientation. Hence, a converging lens can form either a real image or a virtual image,
depending on whether the object is outside or inside the focal point, respectively.

Figure 34-15c shows an object O in front of a diverging lens. Regardless of
the object distance (regardless of whether O is inside or outside the virtual focal
point), this lens produces a virtual image that is on the same side of the lens as the
object and has the same orientation.

As with mirrors, we take the image distance i to be positive when the image is
real and negative when the image is virtual. However, the locations of real and
virtual images from lenses are the reverse of those from mirrors:

i

F1

(b)

O
I

p

f

r1
i

f

F1C2

C1

(a)

O

I

p
r2

Converging lenses can
give either type of image.

(c)
r2

i

C1 C2

O

I

p
r1

Diverging lenses can
give only virtual images.

Figure 34-15 (a) A real, inverted image I is
formed by a converging lens when the
object O is outside the focal point F1. (b)
The image I is virtual and has the same ori-
entation as O when O is inside the focal
point. (c) A diverging lens forms a virtual
image I, with the same orientation as the
object O, whether O is inside or outside the
focal point of the lens.

Real images form on the side of a lens that is opposite the object, and virtual
images form on the side where the object is.

The lateral magnification m produced by converging and diverging lenses is
given by Eqs. 34-5 and 34-6, the same as for mirrors.

You have been asked to absorb a lot of information in this module, and you
should organize it for yourself by filling in Table 34-2 for thin symmetric lenses (both
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Table 34-2 Your Organizing Table for Thin Lenses

Image Sign

Lens Object
Type Location Location Type Orientation of f of i of m

Converging
Inside F

Outside F

Diverging Anywhere

O

IF1

F2

1

2

3
O

I

F1

F2
1

2

3

(b)(a)

O

IF2

1

2

3
(c)

F1

In each figure, any two of the
rays will locate the image.

Figure 34-16 Three special rays allow us to locate an image
formed by a thin lens whether the object O is (a) outside or
(b) inside the focal point of a converging lens, or (c) anywhere
in front of a diverging lens.

sides are convex or both sides are concave). Under Image Location note whether
the image is on the same side of the lens as the object or on the opposite side. Under
Image Type note whether the image is real or virtual. Under Image Orientation note
whether the image has the same orientation as the object or is inverted.

Locating Images of Extended Objects by Drawing Rays
Figure 34-16a shows an object O outside focal point F1 of a converging lens. We
can graphically locate the image of any off-axis point on such an object (such as
the tip of the arrow in Fig. 34-16a) by drawing a ray diagram with any two of
three special rays through the point. These special rays, chosen from all those that
pass through the lens to form the image, are the following:

1. A ray that is initially parallel to the central axis of the lens will pass through
focal point F2 (ray 1 in Fig. 34-16a).

2. A ray that initially passes through focal point F1 will emerge from the lens
parallel to the central axis (ray 2 in Fig. 34-16a).

3. A ray that is initially directed toward the center of the lens will emerge from
the lens with no change in its direction (ray 3 in Fig. 34-16a) because the ray
encounters the two sides of the lens where they are almost parallel.

The image of the point is located where the rays intersect on the far side of the lens.
The image of the object is found by locating the images of two or more of its points.

Figure 34-16b shows how the extensions of the three special rays can be used
to locate the image of an object placed inside focal point F1 of a converging lens.
Note that the description of ray 2 requires modification (it is now a ray whose
backward extension passes through F1).

You need to modify the descriptions of rays 1 and 2 to use them to locate an
image placed (anywhere) in front of a diverging lens. In Fig. 34-16c, for example,
we find the point where ray 3 intersects the backward extensions of rays 1 and 2.
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Two-Lens Systems
Here we consider an object sitting in front of a system of two lenses whose
central axes coincide. Some of the possible two-lens systems are sketched in
Fig. 34-17, but the figures are not drawn to scale. In each, the object sits to the left
of lens 1 but can be inside or outside the focal point of the lens. Although tracing
the light rays through any such two-lens system can be challenging, we can use
the following simple two-step solution:

Step 1 Neglecting lens 2, use Eq. 34-9 to locate the image I1 produced by lens 1.
Determine whether the image is on the left or right side of the lens, whether
it is real or virtual, and whether it has the same orientation as the object.
Roughly sketch I1.The top part of Fig. 34-17a gives an example.

p2
( f )

Outside focal
point

p2

I2 is somewhere to
the right of lens 2.

I2 is somewhere to
the left of lens 2.

(e)

p1

I1Outside focal
point

p1

I1

p1

I1

Inside focal
point

p1

I1Outside focal
point

p2

Outside focal point

I2 is somewhere to
the right of lens 2.

(d)

I2 is somewhere to
the left of lens 2.

(c)
p2

p1

I1

p1

I1Outside focal
point

Outside focal
point

p2

Outside focal
point

I2 is somewhere to
the right of lens 2.

I2 is somewhere to
the right of lens 2.

(a) (b)
p2 is
negative.

A

Figure 34-17 Several sketches
(not to scale) of a two-lens
system in which an object
sits to the left of lens 1. In
step 1 of the solution, we
consider lens 1 and ignore
lens 2 (shown in dashes). In
step 2, we consider lens 2
and ignore lens 1 (no longer
shown). We want to find
the final image, that is, the
image produced by lens 2.
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The object must be outside the focal point (the only way a
real image can be produced).Also, the image is inverted and
on the side of the lens opposite the object. (That is how a
converging lens makes a real image.)

(b) What are the two radii of curvature of the lens?

KEY IDEAS

1. Because the lens is symmetric, r1 (for the surface nearer
the object) and r2 have the same magnitude r.

2. Because the lens is a converging lens, the object faces a con-
vex surface on the nearer side and so r1 r. Similarly, it
faces a concave surface on the farther side; so r2 � �r.

3. We can relate these radii of curvature to the focal length f
via the lens maker’s equation, Eq. 34-10 (our only equa-
tion involving the radii of curvature of a lens).

4. We can relate f to the object distance p and image 
distance i via Eq. 34-9.

� �

Sample Problem 34.03 Image produced by a thin symmetric lens

A praying mantis preys along the central axis of a thin sym-
metric lens, 20 cm from the lens.The lateral magnification of
the mantis provided by the lens is m � �0.25, and the index
of refraction of the lens material is 1.65.

(a) Determine the type of image produced by the lens, the
type of lens, whether the object (mantis) is inside or outside
the focal point, on which side of the lens the image appears,
and whether the image is inverted.

Reasoning: We can tell a lot about the lens and the image
from the given value of m. From it and Eq. 34-6 (m � �i/p),
we see that

i � �mp � 0.25p.

Even without finishing the calculation, we can answer the
questions. Because p is positive, i here must be positive.That
means we have a real image, which means we have a con-
verging lens (the only lens that can produce a real image).

Checkpoint 4
A thin symmetric lens provides an image of a fingerprint with a magnification of 
�0.2 when the fingerprint is 1.0 cm farther from the lens than the focal point of the
lens.What are the (a) type and (b) orientation of the image, and (c) what is the type
of lens?

Step 2 Neglecting lens 1, treat I1 as though it is the object for lens 2. Use Eq. 34-9 to
locate the image I2 produced by lens 2.This is the final image of the system.
Determine whether the image is on the left or right side of the lens, whether
it is real or virtual, and whether it has the same orientation as the object for
lens 2. Roughly sketch I2. The bottom part of Fig. 34-17a gives an example.

Thus we treat the two-lens system with two single-lens calculations, using
the normal decisions and rules for a single lens. The only exception to the pro-
cedure occurs if I1 lies to the right of lens 2 (past lens 2). We still treat it as the
object for lens 2, but we take the object distance p2 as a negative number when
we use Eq. 34-9 to find I2. Then, as in our other examples, if the image distance
i2 is positive, the image is real and on the right side of the lens. An example is
sketched in Fig. 34-17b.

This same step-by-step analysis can be applied for any number of lenses. It
can also be applied if a mirror is substituted for lens 2. The overall (or net) lateral
magnification M of a system of lenses (or lenses and a mirror) is the product of
the individual lateral magnifications as given by Eq. 34-7 (m � �i/p). Thus, for a
two-lens system, we have 

M � m1m2. (34-11)

If M is positive, the final image has the same orientation as the object (the one in
front of lens 1). If M is negative, the final image is inverted from the object. In the
situation where p2 is negative, such as in Fig. 34-17b, determining the orientation
of the final image is probably easiest by examining the sign of M.
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Sample Problem 34.04 Image produced by a system of two thin lenses

Figure 34-18a shows a jalapeño seed O1 that is placed in
front of two thin symmetrical coaxial lenses 1 and 2, with fo-
cal lengths f1 � �24 cm and f2 � �9.0 cm, respectively, and
with lens separation L � 10 cm.The seed is 6.0 cm from lens
1. Where does the system of two lenses produce an image of
the seed?

KEY IDEA

We could locate the image produced by the system of
lenses by tracing light rays from the seed through the two
lenses. However, we can, instead, calculate the location of
that image by working through the system in steps, lens by
lens.We begin with the lens closer to the seed.The image we
seek is the final one—that is, image I2 produced by lens 2.

Lens 1: Ignoring lens 2, we locate the image I1 produced by
lens 1 by applying Eq. 34-9 to lens 1 alone:

The object O1 for lens 1 is the seed, which is 6.0 cm from the
lens; thus, we substitute p1 � �6.0 cm. Also substituting the
given value of f1, we then have

which yields i1 � �8.0 cm.
This tells us that image I1 is 8.0 cm from lens 1 and vir-

tual. (We could have guessed that it is virtual by noting that
the seed is inside the focal point of lens 1, that is, between
the lens and its focal point.) Because I1 is virtual, it is on the
same side of the lens as object O1 and has the same orienta-
tion as the seed, as shown in Fig. 34-18b.

Lens 2: In the second step of our solution, we treat image I1

as an object O2 for the second lens and now ignore lens 1.
We first note that this object O2 is outside the focal point

1
�6.0 cm

�
1
i1

�
1

�24 cm
,

1
p1

�
1
i1

�
1
f1

.

Calculations: We know p, but we do not know i. Thus, our
starting point is to finish the calculation for i in part (a); we
obtain

i � (0.25)(20 cm) � 5.0 cm.

Now Eq. 34-9 gives us

from which we find f � 4.0 cm.

1
f

�
1
p

�
1
i

�
1

20 cm
�

1
5.0 cm

,

Equation 34-10 then gives us

or, with known values inserted,

which yields

r � (0.65)(2)(4.0 cm) � 5.2 cm. (Answer)

1
4.0 cm

� (1.65 � 1)
2
r

,

1
f

� (n � 1) � 1
r1

�
1
r2
� � (n � 1) � 1

�r
�

1
�r �

O1

(a)

(b)

(c)

Lens 1 Lens 2 

Lp1

Lens 1 

L

p1

O1
I 1

i1

f1

Lens 2 

O2

I 2

i2
p2

f2

First, use the nearest
lens to locate its image.

Then use that image
as the object for the
other lens.

Figure 34-18 (a) Seed O1 is distance p1 from a two-lens system with
lens separation L. We use the arrow to orient the seed. (b) The 
image I1 produced by lens 1 alone. (c) Image I1 acts as object O2 for
lens 2 alone, which produces the final image I2.
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Optical Instruments
The human eye is a remarkably effective organ, but its range can be extended in
many ways by optical instruments such as eyeglasses, microscopes, and tele-
scopes. Many such devices extend the scope of our vision beyond the visible
range; satellite-borne infrared cameras and x-ray microscopes are just two
examples.

The mirror and thin-lens formulas can be applied only as approximations to
most sophisticated optical instruments. The lenses in typical laboratory micro-
scopes are by no means “thin.” In most optical instruments the lenses are com-
pound lenses; that is, they are made of several components, the interfaces rarely
being exactly spherical. Now we discuss three optical instruments, assuming, for
simplicity, that the thin-lens formulas apply.

● The angular magnification of a simple magnifying lens is

where f is the focal length of the lens and 25 cm is a
reference value for the near point value.

● The overall magnification of a compound microscope is

M � mmu � �
s

fob
 
25 cm

fey
,

mu �
25 cm

f
,

where m is the lateral magnification of the objective, mu

is the angular magnification of the eyepiece, s is the tube
length, fob is the focal length of the objective, and fey is the
focal length of the eyepiece.

● The angular magnification of a refracting telescope is

mu � �
fob

fey
.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

34-5 OPTICAL INSTRUMENTS

After reading this module, you should be able to . . .

34.36 Identify the near point in vision.
34.37 With sketches, explain the function of a simple

magnifying lens.
34.38 Identify angular magnification.
34.39 Determine the angular magnification for an object at

the focal point of a simple magnifying lens.
34.40 With a sketch, explain a compound microscope.
34.41 Identify that the overall magnification of a compound

microscope is due to the lateral magnification by the
objective and the angular magnification by the 
eyepiece.

34.42 Calculate the overall magnification of a compound
microscope.

34.43 With a sketch, explain a refracting telescope.
34.44 Calculate the angular magnification of a refracting

telescope.

Learning Objectives

of lens 2. So the image I2 produced by lens 2 must be real, in-
verted, and on the side of the lens opposite O2. Let us see.

The distance p2 between this object O2 and lens 2 is,
from Fig. 34-18c,

p2 � L � | i1| � 10 cm � 8.0 cm � 18 cm.

Then Eq. 34-9, now written for lens 2, yields

Hence, i2 � �18 cm. (Answer)

The plus sign confirms our guess: Image I2 produced by lens
2 is real, inverted, and on the side of lens 2 opposite O2, as
shown in Fig. 34-18c. Thus, the image would appear on a
card placed at its location.

1
�18 cm

�
1
i2

�
1

�9.0 cm
.
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(a)

O

h

Pn

25 cm 

θ 

(b)

O

hPn

(c)

O

hPn
F1

f

I

θ'

To distant virtual image

Figure 34-19 (a) An object O of height h placed at the near point of a human eye occupies
angle u in the eye’s view. (b) The object is moved closer to increase the angle, but now
the observer cannot bring the object into focus. (c) A converging lens is placed between
the object and the eye, with the object just inside the focal point F1 of the lens. The
image produced by the lens is then far enough away to be focused by the eye, and 
the image occupies a larger angle u9 than object O does in (a).

Simple Magnifying Lens
The normal human eye can focus a sharp image of an object on the retina (at the
rear of the eye) if the object is located anywhere from infinity to a certain point
called the near point Pn. If you move the object closer to the eye than the near
point, the perceived retinal image becomes fuzzy. The location of the near point
normally varies with age, generally moving away from the person. To find your
own near point, remove your glasses or contacts if you wear any, close one eye,
and then bring this page closer to your open eye until it becomes indistinct. In
what follows, we take the near point to be 25 cm from the eye, a bit more than the
typical value for 20-year-olds.

Figure 34-19a shows an object O placed at the near point Pn of an eye. The
size of the image of the object produced on the retina depends on the angle u
that the object occupies in the field of view from that eye. By moving the object
closer to the eye, as in Fig. 34-19b, you can increase the angle and, hence, the
possibility of distinguishing details of the object. However, because the object is
then closer than the near point, it is no longer in focus; that is, the image is no
longer clear.

You can restore the clarity by looking at O through a converging lens, placed
so that O is just inside the focal point F1 of the lens, which is at focal length f
(Fig. 34-19c). What you then see is the virtual image of O produced by the lens.
That image is farther away than the near point; thus, the eye can see it clearly.

Moreover, the angle u� occupied by the virtual image is larger than the largest
angle u that the object alone can occupy and still be seen clearly.The angular magni-
fication mu (not to be confused with lateral magnification m) of what is seen is

mu � u�/u.

In words, the angular magnification of a simple magnifying lens is a comparison
of the angle occupied by the image the lens produces with the angle occupied by
the object when the object is moved to the near point of the viewer.
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From Fig. 34-19, assuming that O is at the focal point of the lens, and approxi-
mating tan u as u and tan u� as u� for small angles, we have

u � h/25 cm and u� � h/f.
We then find that

(simple magnifier). (34-12)

Compound Microscope
Figure 34-20 shows a thin-lens version of a compound microscope. The instru-
ment consists of an objective (the front lens) of focal length fob and an eyepiece
(the lens near the eye) of focal length fey. It is used for viewing small objects that
are very close to the objective.

The object O to be viewed is placed just outside the first focal point F1 of the
objective, close enough to F1 that we can approximate its distance p from the lens
as being fob. The separation between the lenses is then adjusted so that the
enlarged, inverted, real image I produced by the objective is located just inside
the first focal point F�1 of the eyepiece. The tube length s shown in Fig. 34-20 is
actually large relative to fob, and therefore we can approximate the distance i
between the objective and the image I as being length s.

From Eq. 34-6, and using our approximations for p and i, we can write the
lateral magnification produced by the objective as

(34-13)

Because the image I is located just inside the focal point F�1 of the eyepiece, the
eyepiece acts as a simple magnifying lens, and an observer sees a final (virtual,
inverted) image I� through it. The overall magnification of the instrument is
the product of the lateral magnification m produced by the objective, given by
Eq. 34-13, and the angular magnification mu produced by the eyepiece, given
by Eq. 34-12; that is,

(microscope). (34-14)

Refracting Telescope
Telescopes come in a variety of forms. The form we describe here is the simple
refracting telescope that consists of an objective and an eyepiece; both are repre-
sented in Fig. 34-21 with simple lenses, although in practice, as is also true for
most microscopes, each lens is actually a compound lens system.

M � mmu � �
s

fob

 25 cm
fey

m � �
i
p

� �
s

fob
.

mu �
25 cm

f

fob

F1

fob feys

Objective

To distant virtual image 

Eyepiece

Parallel
rays

F2
O

I

F1'

I'

Figure 34-20 A thin-lens representation of a compound microscope (not to scale). The
objective produces a real image I of object O just inside the focal point F�1 of the eye-
piece. Image I then acts as an object for the eyepiece, which produces a virtual final
image I� that is seen by the observer. The objective has focal length fob; the eyepiece has
focal length fey; and s is the tube length.



The lens arrangements for telescopes and for microscopes are simi-
lar, but telescopes are designed to view large objects, such as galaxies,
stars, and planets, at large distances, whereas microscopes are designed
for just the opposite purpose. This difference requires that in the tele-
scope of Fig. 34-21 the second focal point of the objective F2 coincide
with the first focal point of the eyepiece F�1, whereas in the microscope
of Fig. 34-20 these points are separated by the tube length s.

In Fig. 34-21a, parallel rays from a distant object strike the objec-
tive, making an angle uob with the telescope axis and forming a real, in-
verted image I at the common focal point F2, F�1.This image I acts as an
object for the eyepiece, through which an observer sees a distant (still
inverted) virtual image I�. The rays defining the image make an angle
uey with the telescope axis.

The angular magnification mu of the telescope is uey/uob. From Fig.
34-21b, for rays close to the central axis, we can write uob � h�/fob and
uey � h�/fey,which gives us

(telescope),

where the minus sign indicates that I� is inverted. In words, the angular
magnification of a telescope is a comparison of the angle occupied by the
image the telescope produces with the angle occupied by the distant ob-
ject as seen without the telescope.

Magnification is only one of the design factors for an astronomical
telescope and is indeed easily achieved. A good telescope needs light-
gathering power, which determines how bright the image is.This is impor-
tant for viewing faint objects such as distant galaxies and is accomplished
by making the objective diameter as large as possible. A telescope also
needs resolving power, which is the ability to distinguish between two dis-
tant objects (stars, say) whose angular separation is small. Field of view is
another important design parameter. A telescope designed to look at
galaxies (which occupy a tiny field of view) is much different from one
designed to track meteors (which move over a wide field of view).

The telescope designer must also take into account the difference
between real lenses and the ideal thin lenses we have discussed. A real lens with
spherical surfaces does not form sharp images, a flaw called spherical aberration.
Also, because refraction by the two surfaces of a real lens depends on wave-
length, a real lens does not focus light of different wavelengths to the same point,
a flaw called chromatic aberration.

This brief discussion by no means exhausts the design parameters of astro-
nomical telescopes—many others are involved. We could make a similar listing
for any other high-performance optical instrument.

mu � �
fob

fey
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Figure 34-21 (a) A thin-lens representation of a refract-
ing telescope. From rays that are approximately paral-
lel when they reach the objective, the objective pro-
duces a real image I of a distant source of light (the
object). (One end of the object is assumed to lie on
the central axis.) Image I, formed at the common
focal points F2 and F�1, acts as an object for the eye-
piece, which produces a virtual final image I� at a
great distance from the observer. The objective has
focal length fob; the eyepiece has focal length fey. (b)
Image I has height h� and takes up angle uob mea-
sured from the objective and angle uey measured from
the eyepiece.

fob fey

Objective

To image I'

Eyepiece

Parallel
rays

F2 , F1'

I

θ 

Parallel
rays
from

distant
object

ob

(a)

I

θ θ
ob

(b)

h'

ey
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The Spherical Mirror Formula (Eq. 34-4)
Figure 34-22 shows a point object O placed on the central axis of a concave
spherical mirror, outside its center of curvature C. A ray from O that makes an
angle a with the axis intersects the axis at I after reflection from the mirror at a.
A ray that leaves O along the axis is reflected back along itself at c and also
passes through I. Thus, because both rays pass through that common point, I is
the image of O; it is a real image because light actually passes through it. Let us
find the image distance i.

Figure 34-22 A concave spherical mirror
forms a real point image I by reflecting
light rays from a point object O.

cIO C

a

Axis

i
r

p

Mirror

α β γ 
θ 
θ 

(34-15)
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Figure 34-23 A real point image I of a point
object O is formed by refraction at a
spherical convex surface between two
media.

ip
r

O C I 

α 

n2 > n1

Axisc

θ 1
a

θ 2
β 

γ 

n1

A trigonometry theorem that is useful here tells us that an exterior angle of a
triangle is equal to the sum of the two opposite interior angles. Applying this to
triangles OaC and OaI in Fig. 34-22 yields

b � a � u and g � a � 2u.

If we eliminate u between these two equations, we find

a � g � 2b. (34-16)

We can write angles a, b, and g, in radian measure, as

and (34-17)

where the overhead symbol means “arc.” Only the equation for b is exact, because
the center of curvature of is at C. However, the equations for a and g are
approximately correct if these angles are small enough (that is, for rays close to the
central axis). Substituting Eqs. 34-17 into Eq. 34-16, using Eq. 34-3 to replace r with
2f, and canceling lead exactly to Eq. 34-4, the relation that we set out to prove.

The Refracting Surface Formula (Eq. 34-8)
The incident ray from point object O in Fig. 34-23 that falls on point a of a spheri-
cal refracting surface is refracted there according to Eq. 33-40,

n1 sin u1 � n2 sin u2.

If a is small, u1 and u2 will also be small and we can replace the sines of these
angles with the angles themselves. Thus, the equation above becomes

n1u1 � n2u2. (34-18)

We again use the fact that an exterior angle of a triangle is equal to the sum of the
two opposite interior angles.Applying this to triangles COa and ICa yields

u1 � a � b and b � u2 � g. (34-19)

If we use Eqs. 34-19 to eliminate u1 and u2 from Eq. 34-18, we find

n1a � n2g � (n2 � n1)b. (34-20)

In radian measure the angles a, b, and g are

(34-21)

Only the second of these equations is exact. The other two are approximate
because I and O are not the centers of circles of which is a part. However, for
a small enough (for rays close to the axis), the inaccuracies in Eqs. 34-21 are small.
Substituting Eqs. 34-21 into Eq. 34-20 leads directly to Eq. 34-8, as we wanted.

The Thin-Lens Formulas (Eqs. 34-9 and 34-10)
Our plan is to consider each lens surface as a separate refracting surface, and to
use the image formed by the first surface as the object for the second.

We start with the thick glass “lens” of length L in Fig. 34-24a whose left and
right refracting surfaces are ground to radii r� and r �. A point object O� is placed
near the left surface as shown. A ray leaving O� along the central axis is not
deflected on entering or leaving the lens.

A second ray leaving O� at an angle a with the central axis intersects the left
surface at point a�, is refracted, and intersects the second (right) surface at point a�.

ac�

� �
ac�

p
;   � �

ac�

r
;   � �

ac�

i
.

ac�

ac�

� �
ac�

cI
�

ac�

i
,

� �
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�

ac�

p
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L
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α 

Air Glass

a'
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(b)
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C"
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c" I"

(c)

c'
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n2 = 1.0 

p"
Li'

C'

Figure 34-24 (a) Two rays from point object O�
form a real image I � after refracting through
two spherical surfaces of a lens. The object
faces a convex surface at the left side of the
lens and a concave surface at the right side.
The ray traveling through points a� and a� is
actually close to the central axis through the
lens. (b) The left side and (c) the right side of
the lens in (a), shown separately.

The ray is again refracted and crosses the axis at I�, which, being the intersection of
two rays from O�, is the image of point O�, formed after refraction at two surfaces.

Figure 34-24b shows that the first (left) surface also forms a virtual image of
O� at I�. To locate I�, we use Eq. 34-8,

Putting n1 1 for air and n2 n for lens glass and bearing in mind that the (vir-
tual) image distance is negative (that is, i �i� in Fig. 34-24b), we obtain

(34-22)

(Because the minus sign is explicit, will be a positive number.) 
Figure 34-24c shows the second surface again. Unless an observer at point

a� were aware of the existence of the first surface, the observer would think that
the light striking that point originated at point I� in Fig. 34-24b and that the
region to the left of the surface was filled with glass as indicated. Thus, the (vir-
tual) image I� formed by the first surface serves as a real object O� for the second
surface.The distance of this object from the second surface is

p� � i� � L. (34-23)

To apply Eq. 34-8 to the second surface, we must insert n1 � n and n2 � 1
because the object now is effectively imbedded in glass. If we substitute with
Eq. 34-23, then Eq. 34-8 becomes

(34-24)

Let us now assume that the thickness L of the “lens” in Fig. 34-24a is so small
that we can neglect it in comparison with our other linear quantities (such as p�,
i�, p�, i�, r�, and r �). In all that follows we make this thin-lens approximation.
Putting L � 0 in Eq. 34-24 and rearranging the right side lead to

(34-25)
n
i�

�
1
i�

� �
n � 1

r �
.

n
i� � L

�
1
i�

�
1 � n

r �
.

i�

1
p�

�
n
i�

�
n � 1

r�
.

�
��

n1

p
�

n2

i
�

n2 � n1

r
.
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Real and Virtual Images An image is a reproduction of an
object via light. If the image can form on a surface, it is a real image
and can exist even if no observer is present. If the image requires
the visual system of an observer, it is a virtual image.

Image Formation Spherical mirrors, spherical refracting sur-
faces, and thin lenses can form images of a source of light—the
object—by redirecting rays emerging from the source. The image
occurs where the redirected rays cross (forming a real image) or
where backward extensions of those rays cross (forming a virtual
image). If the rays are sufficiently close to the central axis through
the spherical mirror, refracting surface, or thin lens, we have the
following relations between the object distance p (which is posi-
tive) and the image distance i (which is positive for real images and
negative for virtual images):

1. Spherical Mirror:

(34-4, 34-3)

where f is the mirror’s focal length and r is its radius of curvature.
A plane mirror is a special case for which r : �, so that p � �i.
Real images form on the side of a mirror where the object is
located, and virtual images form on the opposite side.

2. Spherical Refracting Surface:

(single surface), (34-8)

where n1 is the index of refraction of the material where the object
is located, n2 is the index of refraction of the material on the other
side of the refracting surface, and r is the radius of curvature of the
surface. When the object faces a convex refracting surface, the ra-
dius r is positive.When it faces a concave surface, r is negative. Real
images form on the side of a refracting surface that is opposite the
object, and virtual images form on the same side as the object.

3. Thin Lens:

(34-9, 34-10)

where f is the lens’s focal length, n is the index of refraction of the
lens material, and r1 and r2 are the radii of curvature of the two sides
of the lens, which are spherical surfaces. A convex lens surface that

1
p

�
1
i

�
1
f

� (n � 1) � 1
r1

�
1
r2
�,

n1

p
�

n2

i
�

n2 � n1

r

1
p

�
1
i

�
1
f

�
2
r

,

Review & Summary

faces the object has a positive radius of curvature; a concave lens
surface that faces the object has a negative radius of curvature. Real
images form on the side of a lens that is opposite the object, and vir-
tual images form on the same side as the object.

Lateral Magnification The lateral magnification m produced
by a spherical mirror or a thin lens is

(34-6)

The magnitude of m is given by

(34-5)

where h and h� are the heights (measured perpendicular to the
central axis) of the object and image, respectively.

Optical Instruments Three optical instruments that extend
human vision are:

1. The simple magnifying lens, which produces an angular magni-
fication mu given by

(34-12)

where f is the focal length of the magnifying lens. The distance
of 25 cm is a traditionally chosen value that is a bit more than
the typical near point for someone 20 years old.

2. The compound microscope, which produces an overall magnifi-
cation M given by

(34-14)

where m is the lateral magnification produced by the objective,
mu is the angular magnification produced by the eyepiece, s is
the tube length, and fob and fey are the focal lengths of the objec-
tive and eyepiece, respectively.

3. The refracting telescope, which produces an angular magnifica-
tion mu given by

(34-15)mu � �
fob

fey
.

M � mmu � �
s

fob
 
25 cm

fey
,

mu �
25 cm

f
,

�m� �
h�

h
,

m � �
i
p

.

Adding Eqs. 34-22 and 34-25 leads to

Finally, calling the original object distance simply p and the final image distance
simply i leads to

(34-26)

which, with a small change in notation, is Eqs. 34-9 and 34-10.

1
p

�
1
i

� (n � 1) � 1
r�

�
1
r � �,

1
p�

�
1
i�

� (n � 1) � 1
r�

�
1
r � �.
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7 The table details six variations of
the basic arrangement of two thin
lenses represented in Fig. 34-29. (The
points labeled F1 and F2 are the focal
points of lenses 1 and 2.) An object
is distance p1 to the left of lens 1, as
in Fig. 34-18. (a) For which varia-
tions can we tell, without calculation, whether the final image (that
due to lens 2) is to the left or right of lens 2 and whether it has the
same orientation as the object? (b) For those “easy” variations,
give the image location as “left” or “right” and the orientation as

1 Figure 34-25 shows a fish and a
fish stalker in water. (a) Does the
stalker see the fish in the general re-
gion of point a or point b? (b) Does
the fish see the (wild) eyes of the
stalker in the general region of point
c or point d?

2 In Fig. 34-26, stick figure O
stands in front of a spherical mirror
that is mounted within the boxed re-
gion; the central axis through the
mirror is shown. The four stick fig-
ures I1 to I4 suggest general loca-
tions and orientations for the im-
ages that might be produced by the
mirror. (The figures are only
sketched in; neither their heights
nor their distances from the mirror are drawn to scale.) (a) Which
of the stick figures could not possibly represent images? Of the
possible images, (b) which would be due to a concave mirror, (c)
which would be due to a convex mirror, (d) which would be virtual,
and (e) which would involve negative magnification?

3 Figure 34-27 is an over-
head view of a mirror maze
based on floor sections that
are equilateral triangles.
Every wall within the maze
is mirrored. If you stand at
entrance x, (a) which of the
maze monsters a, b, and c
hiding in the maze can you
see along the virtual hall-
ways extending from
entrance x; (b) how many
times does each visible monster appear in a hallway; and (c) what is
at the far end of a hallway?

4 A penguin waddles along the central axis of a concave mirror,
from the focal point to an effectively infinite distance. (a) How
does its image move? (b) Does the height of its image increase
continuously, decrease continuously, or change in some more
complicated manner?

5 When a T. rex pursues a jeep in the movie Jurassic Park, we see
a reflected image of the T. rex via a side-view mirror, on which is
printed the (then darkly humorous) warning: “Objects in mirror
are closer than they appear.” Is the mirror flat, convex, or concave?

6 An object is placed against the center of a concave mirror and
then moved along the central axis
until it is 5.0 m from the mirror.
During the motion, the distance |i|
between the mirror and the image it
produces is measured. The proce-
dure is then repeated with a convex
mirror and a plane mirror. Figure
34-28 gives the results versus object
distance p. Which curve corresponds
to which mirror? (Curve 1 has two
segments.)

Questions

a b 

d

c

Figure 34-25 Question 1.

O
I1

I2

I3

I4

Figure 34-26
Questions 2 and 10.

“same” or “inverted.”

Variation Lens 1 Lens 2

1 Converging Converging p1 �

2 Converging Converging p1 �

3 Diverging Converging p1 �

4 Diverging Converging p1 �

5 Diverging Diverging p1 �

6 Diverging Diverging p1 �

8 An object is placed against the center of a converging lens and
then moved along the central axis until it is 5.0 m from the lens.
During the motion, the distance between the lens and the image
it produces is measured. The procedure is then repeated with a di-
verging lens. Which of the curves in Fig. 34-28 best gives versus
the object distance p for these lenses? (Curve 1 consists of two
segments. Curve 3 is straight.)

9 Figure 34-30 shows four thin
lenses, all of the same material, with
sides that either are flat or have a ra-
dius of curvature of magnitude 10 cm.
Without written calculation, rank the
lenses according to the magnitude of
the focal length, greatest first.

10 In Fig. 34-26, stick figure O stands in front of a thin,
symmetric lens that is mounted within the boxed region; the
central axis through the lens is shown. The four stick figures I1 to
I4 suggest general locations and orientations for the images that
might be produced by the lens. (The figures are only sketched in;
neither their height nor their distance from the lens is drawn
to scale.) (a) Which of the stick figures could not possibly repre-
sent images? Of the possible images,
(b) which would be due to a converging lens,
(c) which would be due to a diverging lens,
(d) which would be virtual, and (e) which
would involve negative magnification?

11 Figure 34-31 shows a coordinate system
in front of a flat mirror, with the x axis per-
pendicular to the mirror. Draw the image of
the system in the mirror. (a) Which axis is re-
versed by the reflection? (b) If you face a
mirror, is your image inverted (top for bot-
tom)? (c) Is it reversed left and right (as com-
monly believed)? (d) What then is reversed?

�i�

�i�

�f1�
�f1�
�f1�
�f1�
�f1�
�f1�

Figure 34-27 Question 3.

c

b

a

x

Figure 34-28 Questions
6 and 8.

|i|

p

11 2

3

Figure 34-29 Question 7.

F1 F1 F2 F2

Lens 1 Lens 2 

Figure 34-30 Question 9.

(a) (b) (c) (d)

Figure 34-31
Question 11.

y

x

z
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Module 34-1 Images and Plane Mirrors
•1 You look through a camera toward an image of a hummingbird in
a plane mirror.The camera is 4.30 m in front of the mirror. The bird is
at camera level, 5.00 m to your right and 3.30 m from
the mirror. What is the distance between the camera
and the apparent position of the bird’s image in the
mirror?

•2 A moth at about eye level is 10 cm in front
of a plane mirror; you are behind the moth, 30 cm
from the mirror.What is the distance between your
eyes and the apparent position of the moth’s im-
age in the mirror? 

••3 In Fig. 34-32, an isotropic point source of light
S is positioned at distance d from a
viewing screen A and the light inten-
sity IP at point P (level with S) is
measured. Then a plane mirror M is
placed behind S at distance d. By
how much is IP multiplied by the
presence of the mirror?

••4 Figure 34-33 shows an overhead
view of a corridor with a plane mir-
ror M mounted at one end. A bur-
glar B sneaks along the corridor di-
rectly toward the center of the
mirror. If d � 3.0 m, how far from
the mirror will she be when the se-
curity guard S can first see her in
the mirror?

•••5 Figure 34-34
shows a small lightbulb suspended
at distance d1 250 cm above the
surface of the water in a swimming
pool where the water depth is d2 �
200 cm. The bottom of the pool is a
large mirror. How far below the mir-

�

WWWSSM

ILW

ror surface is the image of the bulb? (Hint: Assume that the rays are
close to a vertical axis through the bulb, and use the small-angle ap-
proximation in which sin u � tan
u � u.)

Module 34-2 Spherical Mirrors
•6 An object is moved along the
central axis of a spherical mirror
while the lateral magnification m of it
is measured. Figure 34-35 gives m
versus object distance p for the range
pa � 2.0 cm to pb � 8.0 cm.What is m
for p = 14.0 cm?

•7 A concave shaving mirror has a radius of curvature of 35.0 cm.
It is positioned so that the (upright) image of a man’s face is 2.50
times the size of the face. How far is the mirror from the face?

•8 An object is placed against the
center of a spherical mirror and
then moved 70 cm from it along the
central axis as the image distance i is
measured. Figure 34-36 gives i
versus object distance p out to ps �
40 cm.What is i for p � 70 cm?

••9 through 16 12 9, 11,
13 Spherical mirrors. Object O
stands on the central axis of a spher-
ical mirror. For this situation, each problem in Table 34-3 gives ob-
ject distance ps (centimeters), the type of mirror, and then the dis-
tance (centimeters, without proper sign) between the focal point
and the mirror. Find (a) the radius of curvature r (including sign),
(b) the image distance i, and (c) the lateral magnification m. Also,
determine whether the image is (d) real (R) or virtual (V), (e) in-
verted (I) from object O or noninverted (NI), and (f) on the same
side of the mirror as O or on the opposite side.

••17 through 29 22 23, 29 More mirrors. Object O
stands on the central axis of a spherical or plane mirror. For this sit-

SSM

SSM
Figure 34-33 Problem 4.

d

B

S

dd

M

Figure 34-32
Problem 3.

S P 

M A

dd

Figure 34-34 Problem 5.

Mirror

d2

d1

Figure 34-35 Problem 6.

m

4

2

0
pa

p (cm) 
pb

i (
cm

) 

–400

400

0

p (cm) 

0
ps

Figure 34-36 Problem 8.

Table 34-3 Problems 9 through 16: Spherical Mirrors. See the setup for these problems.

(a) (b) (c) (d) (e) (f)

p Mirror r i m R/V I/NI Side

9 �18 Concave, 12
10 �15 Concave, 10
11 �8.0 Convex, 10
12 �24 Concave, 36
13 �12 Concave, 18
14 �22 Convex, 35
15 �10 Convex, 8.0
16 �17 Convex, 14

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems
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uation, each problem in Table 34-4 refers to (a) the type of mirror,
(b) the focal distance f, (c) the radius of curvature r, (d) the object
distance p, (e) the image distance i, and (f) the lateral magnifica-
tion m. (All distances are in cen-
timeters.) It also refers to whether
(g) the image is real (R) or virtual
(V), (h) inverted (I) or noninverted
(NI) from O, and (i) on the same
side of the mirror as object O or on
the opposite side. Fill in the missing
information. Where only a sign is
missing, answer with the sign.

••30 Figure 34-37 gives the lat-
eral magnification m of an object
versus the object distance p from a spherical mirror as the object is
moved along the mirror’s central axis through a range of values for
p.The horizontal scale is set by ps � 10.0 cm.What is the magnifica-
tion of the object when the object is 21 cm from the mirror?

••31 (a) A luminous point is moving at speed vO toward a spheri-
cal mirror with radius of curvature r, along the central axis of the
mirror. Show that the image of this point is moving at speed

where p is the distance of the luminous point from the mirror at
any given time. Now assume the mirror is concave, with r � 15 cm,

vI � �� r
2p � r �

2

vO,

and let vO � 5.0 cm/s. Find vI when (b) p � 30 cm (far outside the
focal point), (c) p � 8.0 cm ( just outside the focal point), and 
(d) p � 10 mm (very near the mirror).

Module 34-3 Spherical Refracting Surfaces
••32 through 38 37, 38 33, 35 Spherical refracting sur-
faces. An object O stands on the central axis of a spherical refract-
ing surface. For this situation, each problem in Table 34-5 refers to
the index of refraction n1 where the object is located, (a) the index
of refraction n2 on the other side of the refracting surface, (b) the
object distance p, (c) the radius of curvature r of the surface, and
(d) the image distance i. (All distances are in centimeters.) Fill in
the missing information, including whether the image is (e) real
(R) or virtual (V) and (f) on the same side of the surface as object
O or on the opposite side.

••39 In Fig. 34-38, a beam of parallel light rays from a laser is in-
cident on a solid transparent sphere of index of refraction n. (a) If
a point image is produced at the
back of the sphere, what is the index
of refraction of the sphere? (b)
What index of refraction, if any, will
produce a point image at the center
of the sphere?

••40 A glass sphere has radius
R 5.0 cm and index of refraction 1.6. A paperweight is con-
structed by slicing through the sphere along a plane that is 2.0 cm

�

SSM

Table 34-4 Problems 17 through 29: More Mirrors. See the setup for these problems.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Type f r p i m R/V I/NI Side

17 Concave 20 �10
18 �24 0.50 I
19 �40 �10
20 �40 �0.70
21 �20 �30
22 20 �0.10
23 30 �0.20
24 �60 �0.50
25 �30 0.40 I
26 20 �60 Same
27 �30 �15
28 �10 �1.0
29 Convex 40 4.0

Figure 34-37 Problem 30.

m 0.5

1

0
p (cm) 

ps

Figure 34-38 Problem 39.

Table 34-5 Problems 32 through 38: Spherical Refracting Surfaces. See the setup for
these problems.

(a) (b) (c) (d) (e) (f)

n1 n2 p r i R/V Side

32 1.0 1.5 �10 �30
33 1.0 1.5 �10 �13
34 1.5 �100 �30 �600
35 1.5 1.0 �70 �30
36 1.5 1.0 �30 �7.5
37 1.5 1.0 �10 �6.0
38 1.0 1.5 �30 �600
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from the center of the sphere, leav-
ing height h � 3.0 cm. The paper-
weight is placed on a table and
viewed from directly above by an
observer who is distance d � 8.0 cm
from the tabletop (Fig. 34-39). When
viewed through the paperweight,
how far away does the tabletop ap-
pear to be to the observer?

Module 34-4 Thin Lenses
•41 A lens is made of glass having an index of refraction of
1.5. One side of the lens is flat, and the other is convex with a
radius of curvature of 20 cm. (a) Find the focal length of the
lens. (b) If an object is placed 40 cm in front of the lens, where
is the image?
•42 Figure 34-40 gives the lateral
magnification m of an object versus
the object distance p from a lens as
the object is moved along the cen-
tral axis of the lens through a range
of values for p out to ps � 20.0 cm.
What is the magnification of the ob-
ject when the object is 35 cm from
the lens?

•43 A movie camera with a (sin-
gle) lens of focal length 75 mm takes a picture of a person standing
27 m away. If the person is 180 cm tall, what is the height of the im-
age on the film?

•44 An object is placed against the
center of a thin lens and then moved
away from it along the central axis as
the image distance i is measured.
Figure 34-41 gives i versus object
distance p out to ps � 60 cm. What is
the image distance when p � 100
cm?

•45 You produce an image of the
Sun on a screen, using a thin lens whose focal length is 20.0 cm.
What is the diameter of the image? (See Appendix C for needed
data on the Sun.)
•46 An object is placed against the center of a thin lens and then
moved 70 cm from it along the central axis as the image distance i

is measured. Figure 34-42 gives i ver-
sus object distance p out to 
ps � 40 cm. What is the image dis-
tance when p � 70 cm?
•47 A double-convex
lens is to be made of glass with an
index of refraction of 1.5. One sur-
face is to have twice the radius of
curvature of the other and the focal length is to be 60 mm. What is
the (a) smaller and (b) larger radius?
•48 An object is moved along the central axis of a thin lens while
the lateral magnification m is measured. Figure 34-43 gives m ver-
sus object distance p out to ps � 8.0 cm. What is the magnification
of the object when the object is 14.0 cm from the lens?

WWWSSM

Figure 34-40 Problem 42.

m 0.5

1

0
p (cm) 

ps

Figure 34-41 Problem 44.

i (
cm

) 

–400

400

0
0

p (cm) 

ps

Figure 34-39 Problem 40.

h

d

Observer 

R

Table 34-6 Problems 50 through 57: Thin Lenses. See the setup for these problems.

(a) (b) (c) (d) (e)

p Lens i m R/V I/NI Side

50 �16 C, 4.0
51 �12 C, 16
52 �25 C, 35
53 �8.0 D, 12
54 �10 D, 6.0
55 �22 D, 14
56 �12 D, 31
57 �45 C, 20

Figure 34-42 Problem 46.

i (
cm

) 

–20

–10

0 p (cm) 

ps

Figure 34-43 Problem 48.

m

6

4

2

0

p (cm) 

ps

•49 An illuminated slide is held 44 cm from a screen. How
far from the slide must a lens of focal length 11 cm be placed (be-
tween the slide and the screen) to form an image of the slide’s pic-
ture on the screen?

••50 through 57 55, 57 53 Thin lenses. Object O stands
on the central axis of a thin symmetric lens. For this situation, each
problem in Table 34-6 gives object distance p (centimeters), the
type of lens (C stands for converging and D for diverging), and
then the distance (centimeters, without proper sign) between a
focal point and the lens. Find (a) the image distance i and (b) the
lateral magnification m of the object, including signs. Also, deter-
mine whether the image is (c) real (R) or virtual (V), (d) inverted
(I) from object O or noninverted (NI), and (e) on the same side of
the lens as object O or on the opposite side.

••58 through 67 61 59 Lenses with given radii. Object
O stands in front of a thin lens, on the central axis. For this

SSM

SSM

SSM
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situation, each problem in Table 34-7 gives object distance p, index
of refraction n of the lens, radius r1 of the nearer lens surface, and
radius r2 of the farther lens surface. (All distances are in
centimeters.) Find (a) the image distance i and (b) the lateral mag-
nification m of the object, including signs. Also, determine
whether the image is (c) real (R) or virtual (V), (d) inverted (I)
from object O or noninverted (NI), and (e) on the same side of the
lens as object O or on the opposite side.

••68 In Fig. 34-44, a real inverted
image I of an object O is formed by
a particular lens (not shown); the
object– image separation is d � 40.0
cm, measured along the central axis
of the lens. The image is just half the
size of the object. (a) What kind of
lens must be used to produce this
image? (b) How far from the object must the lens be placed? (c)
What is the focal length of the lens?

••69 through 79 76, 78 75, 77 More lenses. Object O
stands on the central axis of a thin symmetric lens. For this situa-
tion, each problem in Table 34-8 refers to (a) the lens type, con-

SSM

verging (C) or diverging (D), (b) the focal distance f, (c) the object
distance p, (d) the image distance i, and (e) the lateral magnifica-
tion m. (All distances are in centimeters.) It also refers to whether
(f) the image is real (R) or virtual (V), (g) inverted (I) or nonin-
verted (NI) from O, and (h) on the same side of the lens as O or on
the opposite side. Fill in the missing information, including the
value of m when only an inequality is given. Where only a sign is
missing, answer with the sign.

Table 34-7 Problems 58 through 67: Lenses with Given Radii. See the setup for these
problems.

(a) (b) (c) (d) (e)

p n r1 r2 i m R/V I/NI Side

58 �29 1.65 �35 �

59 �75 1.55 �30 �42
60 �6.0 1.70 �10 �12
61 �24 1.50 �15 �25
62 �10 1.50 �30 �30
63 �35 1.70 �42 �33
64 �10 1.50 �30 �60
65 �10 1.50 �30 �30
66 �18 1.60 �27 �24
67 �60 1.50 �35 �35

Figure 34-44 Problem 68.

O

I

d

Lens
here Axis 

Figure 34-45 Problems 80 through 87.

O 1 2

d

Table 34-8 Problems 69 through 79: More Lenses. See the setup for these problems.

(a) (b) (c) (d) (e) (f) (g) (h)

Type f p i m R/V I/NI Side

69 �10 �5.0
70 20 �8.0 �1.0 NI
71 �16 �0.25
72 �16 �0.25
73 �10 �0.50
74 C 10 �20
75 10 �5.0 �1.0 Same
76 10 �5.0 �1.0
77 �16 �1.25
78 �10 0.50 NI
79 20 �8.0 �1.0

••80 through 87 80, 87 83 Two-lens systems. InWWWSSM

Fig. 34-45, stick figure O (the object) stands on the common central
axis of two thin, symmetric lenses, which are mounted in the boxed
regions. Lens 1 is mounted within the boxed region closer to O,
which is at object distance p1. Lens 2 is mounted within the farther
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boxed region, at distance d. Each problem in Table 34-9 refers to a
different combination of lenses and different values for distances,
which are given in centimeters. The type of lens is indicated by C
for converging and D for diverging; the number after C or D is the
distance between a lens and either of its focal points (the proper
sign of the focal distance is not indicated).

Find (a) the image distance i2 for the image produced by lens
2 (the final image produced by the system) and (b) the overall
lateral magnification M for the system, including signs. Also,
determine whether the final image is (c) real (R) or virtual (V),
(d) inverted (I) from object O or noninverted (NI), and (e) on
the same side of lens 2 as object O or on the opposite side.

Module 34-5 Optical Instruments
•88 If the angular magnification of an astronomical telescope is 36
and the diameter of the objective is 75 mm, what is the minimum di-
ameter of the eyepiece required to collect all the light entering the
objective from a distant point source on the telescope axis?

•89 In a microscope of the type shown in Fig. 34-20, the
focal length of the objective is 4.00 cm, and that of the eyepiece is
8.00 cm. The distance between the lenses is 25.0 cm. (a) What is
the tube length s? (b) If image I in Fig. 34-20 is to be just inside
focal point F�1, how far from the objective should the object be?
What then are (c) the lateral magnification m of the objective,
(d) the angular magnification mu of the eyepiece, and (e) the
overall magnification M of the microscope?

••90 Figure 34-46a shows the basic structure of an old film cam-
era. A lens can be moved forward or back to produce an image on
film at the back of the camera. For a certain camera, with the dis-
tance i between the lens and the film set at f 5.0 cm, parallel light
rays from a very distant object O converge to a point image on
the film, as shown. The object is now brought closer, to a distance
of p � 100 cm, and the lens – film distance is adjusted so that an

�

SSM

inverted real image forms on the film (Fig. 34-46b). (a) What is the
lens–film distance i now? (b) By how much was distance i
changed?

••91 Figure 34-47a shows the basic structure of a human eye.
Light refracts into the eye through the cornea and is then further
redirected by a lens whose shape (and thus ability to focus the
light) is controlled by muscles. We can treat the cornea and eye
lens as a single effective thin lens (Fig. 34-47b).A “normal” eye can
focus parallel light rays from a distant object O to a point on the
retina at the back of the eye, where processing of the visual infor-
mation begins. As an object is brought close to the eye, however,
the muscles must change the shape of the lens so that rays form an
inverted real image on the retina (Fig. 34-47c). (a) Suppose that for
the parallel rays of Figs. 34-47a and b, the focal length f of the effec-
tive thin lens of the eye is 2.50 cm. For an object at distance p �
40.0 cm, what focal length f � of the effective lens is required for the
object to be seen clearly? (b) Must the eye muscles increase or de-
crease the radii of curvature of the eye lens to give focal length f �?

SSM

Table 34-9 Problems 80 through 87: Two-Lens Systems. See the setup for 
these problems.

(a) (b) (c) (d) (e)

p1 Lens 1 d Lens 2 i2 M R/V I/NI Side

80 �10 C, 15 10 C, 8.0
81 �12 C, 8.0 32 C, 6.0
82 �8.0 D, 6.0 12 C, 6.0
83 �20 C, 9.0 8.0 C, 5.0
84 �15 C, 12 67 C, 10
85 �4.0 C, 6.0 8.0 D, 6.0
86 �12 C, 8.0 30 D, 8.0
87 �20 D, 12 10 D, 8.0

I

Retina

f

(b)

Effective lensCornea

Retina

Muscle

Light from 
distant
object O

(a)

I

Lens

I

(c)

p

O

i

I

(b)

ip

O

I

(a)

Film

f

Figure 34-46 Problem 90.

Figure 34-47 Problem 91.

••92 An object is 10.0 mm from the objective of a certain
compound microscope. The lenses are 300 mm apart, and the in-
termediate image is 50.0 mm from the eyepiece. What overall
magnification is produced by the instrument?

••93 Someone with a near point Pn of 25 cm views a thimble
through a simple magnifying lens of focal length 10 cm by placing
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the lens near his eye. What is the angular magnification of the
thimble if it is positioned so that its image appears at (a) Pn and
(b) infinity?

Additional Problems
94 An object is placed against the
center of a spherical mirror and then
moved 70 cm from it along the cen-
tral axis as the image distance i is
measured. Figure 34-48 gives i ver-
sus object distance p out to ps � 40
cm.What is the image distance when
the object is 70 cm from the mirror?

95 through 100 95, 96, 99
Three-lens systems. In Fig. 34-49,
stick figure O (the object) stands on the common central axis of
three thin, symmetric lenses, which are mounted in the boxed
regions. Lens 1 is mounted within the boxed region closest to O,
which is at object distance p1. Lens 2 is mounted within the mid-
dle boxed region, at distance d12 from lens 1. Lens 3 is mounted in
the farthest boxed region, at distance d23 from lens 2. Each prob-
lem in Table 34-10 refers to a different combination of lenses and
different values for distances, which are given in centimeters. The
type of lens is indicated by C for converging and D for diverging;
the number after C or D is the distance between a lens and either
of the focal points (the proper sign of the focal distance is not
indicated).

Find (a) the image distance i3

for the (final) image produced by
lens 3 (the final image produced by
the system) and (b) the overall lat-
eral magnification M for the system,
including signs. Also, determine
whether the final image is (c) real
(R) or virtual (V), (d) inverted (I)
from object O or noninverted (NI), and (e) on the same side of
lens 3 as object O or on the opposite side.

101 The formula 1/p � 1/i � 1/f is called the Gaussian form
of the thin-lens formula. Another form of this formula, the
Newtonian form, is obtained by considering the distance x from the
object to the first focal point and the distance x� from the second
focal point to the image. Show that xx� � f 2 is the Newtonian form
of the thin-lens formula.

102 Figure 34-50a is an overhead view of two vertical plane mir-
rors with an object O placed between them. If you look into the

SSM

mirrors, you see multiple images of O. You can find them by draw-
ing the reflection in each mirror of the angular region between the
mirrors, as is done in Fig. 34-50b for the left-hand mirror. Then
draw the reflection of the reflection. Continue this on the left and
on the right until the reflections meet or overlap at the rear of the
mirrors. Then you can count the number of images of O. How
many images of O would you see if u is (a) 90°, (b) 45°, and (c) 60°?
If u � 120°, determine the (d) smallest and (e) largest number of
images that can be seen, depending on your perspective and the
location of O. (f) In each situation, draw the image locations and
orientations as in Fig. 34-50b.

Figure 34-48 Problem 94.
i (

cm
) 

–10

0

–20

p (cm) 

ps

Figure 34-49 Problems 95
through 100.

O

1 2 

d12

3

d23

Table 34-10 Problems 95 through 100: Three-Lens Systems. See the setup 
for these problems.

(a) (b) (c) (d) (e)

p1 Lens 1 d12 Lens 2 d23 Lens 3 i3 M R/V I/NI Side

95 �12 C, 8.0 28 C, 6.0 8.0 C, 6.0
96 �4.0 D, 6.0 9.6 C, 6.0 14 C, 4.0
97 �18 C, 6.0 15 C, 3.0 11 C, 3.0
98 �2.0 C, 6.0 15 C, 6.0 19 C, 5.0
99 �8.0 D, 8.0 8.0 D, 16 5.1 C, 8.0
100 �4.0 C, 6.0 8.0 D, 4.0 5.7 D, 12

Figure 34-50 Problem 102.

O

θ 

O

θ 

θ 

(a) (b)

103 Two thin lenses of focal lengths f1 and f2 are in contact
and share the same central axis. Show that, in image formation,
they are equivalent to a single thin lens for which the focal length is
f � f1f2/( f1 � f2).

104 Two plane mirrors are placed parallel to each other and
40 cm apart.An object is placed 10 cm from one mirror. Determine
the (a) smallest, (b) second smallest, (c) third smallest (occurs
twice), and (d) fourth smallest distance between the object and
image of the object.

105 In Fig. 34-51, a box is some-
where at the left, on the central axis
of the thin converging lens. The im-
age Im of the box produced by the
plane mirror is 4.00 cm “inside” the
mirror. The lens–mirror separation
is 10.0 cm, and the focal length of
the lens is 2.00 cm. (a) What is the
distance between the box and the lens? Light reflected by the mir-
ror travels back through the lens, which produces a final image of
the box. (b) What is the distance between the lens and that final
image?

SSM

Figure 34-51 Problem 105.

Im
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111 Figure 34-56 shows a beam ex-
pander made with two coaxial con-
verging lenses of focal lengths f1 and
f2 and separation d � f1 � f2. The de-
vice can expand a laser beam while
keeping the light rays in the beam
parallel to the central axis through
the lenses. Suppose a uniform laser
beam of width Wi � 2.5 mm and in-
tensity Ii � 9.0 kW/m2 enters a beam expander for which f1 � 12.5
cm and f2 � 30.0 cm.What are (a) Wf and (b) If of the beam leaving
the expander? (c) What value of d is needed for the beam
expander if lens 1 is replaced with a diverging lens of focal length 
f1 � �26.0 cm?

112 You look down at a coin that
lies at the bottom of a pool of liquid
of depth d and index of refraction n
(Fig. 34-57). Because you view with
two eyes, which intercept different
rays of light from the coin, you per-
ceive the coin to be where
extensions of the intercepted rays
cross, at depth da instead of d.
Assuming that the intercepted rays
in Fig. 34-57 are close to a vertical
axis through the coin, show that da

� d/n. (Hint: Use the small-angle
approximation sin u � tan u � u.)

113 A pinhole camera has the
hole a distance 12 cm from the film plane, which is a rectangle of
height 8.0 cm and width 6.0 cm. How far from a painting of dimen-
sions 50 cm by 50 cm should the camera be placed so as to get the
largest complete image possible on the film plane?

114 Light travels from point A to point B via reflection at point
O on the surface of a mirror. Without using calculus, show that
length AOB is a minimum when the angle of incidence u is equal
to the angle of reflection f. (Hint: Consider the image of A in the
mirror.)

107 A fruit fly of height H sits in front of lens 1 on the cen-
tral axis through the lens. The lens forms an image of the fly at a
distance d � 20 cm from the fly; the image has the fly’s orientation
and height HI � 2.0H. What are (a) the focal length f1 of the lens
and (b) the object distance p1 of the fly? The fly then leaves lens
1 and sits in front of lens 2, which also forms an image at d � 20 cm
that has the same orientation as the fly, but now HI � 0.50H. What
are (c) f2 and (d) p2?

108 You grind the lenses shown in
Fig. 34-53 from flat glass disks (n �
1.5) using a machine that can grind a
radius of curvature of either 40 cm or
60 cm. In a lens where either radius is
appropriate, you select the 40 cm ra-
dius. Then you hold each lens in sun-
shine to form an image of the Sun.
What are the (a) focal length f and
(b) image type (real or virtual) for
(bi-convex) lens 1, (c) f and (d) image
type for (plane-convex) lens 2, (e) f
and (f) image type for (meniscus con-
vex) lens 3, (g) f and (h) image type
for (bi-concave) lens 4, (i) f and (j) image type for (plane-concave)
lens 5, and (k) f and (l) image type for (meniscus concave) lens 6?

109 In Fig. 34-54, a fish watcher at
point P watches a fish through a
glass wall of a fish tank. The watcher
is level with the fish; the index of re-
fraction of the glass is 8/5, and that
of the water is 4/3. The distances are
d1 � 8.0 cm, d2 � 3.0 cm, and d3 �
6.8 cm. (a) To the fish, how far away
does the watcher appear to be?
(Hint: The watcher is the object.
Light from that object passes
through the wall’s outside surface, which acts as a refracting sur-
face. Find the image produced by that surface. Then treat that im-
age as an object whose light passes through the wall’s inside sur-
face, which acts as another refracting surface.) (b) To the watcher,
how far away does the fish appear to be?

SSM

106 In Fig. 34-52, an object is placed in front of a converging lens
at a distance equal to twice the focal length f1 of the lens. On the
other side of the lens is a concave mirror of focal length f2 sepa-
rated from the lens by a distance 2( f1 � f2). Light from the object
passes rightward through the lens, reflects from the mirror, passes
leftward through the lens, and forms a final image of the object.
What are (a) the distance between the lens and that final image
and (b) the overall lateral magnification M of the object? Is the im-
age (c) real or virtual (if it is virtual, it requires someone looking
through the lens toward the mirror), (d) to the left or right of the
lens, and (e) inverted or noninverted relative to the object?

110 A goldfish in a spherical fish bowl of radius R is at the
level of the center C of the bowl and at distance R/2 from the glass
(Fig. 34-55). What magnification of the fish is produced by the wa-
ter in the bowl for a viewer looking along a line that includes the
fish and the center, with the fish on the near side of the center?
The index of refraction of the water is 1.33. Neglect the glass wall
of the bowl. Assume the viewer looks with one eye. (Hint:
Equation 34-5 holds, but Eq. 34-6 does not. You need to work with
a ray diagram of the situation and assume that the rays are close
to the observer’s line of sight—that is, they deviate from that line
by only small angles.)

Figure 34-52 Problem 106.
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Figure 34-56 Problem 111.
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Figure 34-55 Problem 110.
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115 A point object is 10 cm away from a plane mirror, and the
eye of an observer (with pupil diameter 5.0 mm) is 20 cm away.
Assuming the eye and the object to be on the same line perpendi-
cular to the mirror surface, find the area of the mirror used in
observing the reflection of the point. (Hint: Adapt Fig. 34-4.)

116 Show that the distance between an object and its real image
formed by a thin converging lens is always greater than or equal to
four times the focal length of the lens.

117 A luminous object and a screen are a fixed distance D apart.
(a) Show that a converging lens of focal length f, placed between
object and screen, will form a real image on the screen for two
lens positions that are separated by a distance 
(b) Show that

gives the ratio of the two image sizes for these two positions of
the lens.

118 An eraser of height 1.0 cm is placed 10.0 cm in front of a
two-lens system. Lens 1 (nearer the eraser) has focal length f1 �
�15 cm, lens 2 has f2 � 12 cm, and the lens separation is d � 12 cm.
For the image produced by lens 2, what are (a) the image distance
i2 (including sign), (b) the image height, (c) the image type (real or
virtual), and (d) the image orientation (inverted relative to the
eraser or not inverted)?

119 A peanut is placed 40 cm in front of a two-lens system:
lens 1 (nearer the peanut) has focal length f1 � �20 cm, lens 2 has
f2 � �15 cm, and the lens separation is d � 10 cm. For the image
produced by lens 2, what are (a) the image distance i2 (including
sign), (b) the image orientation (inverted relative to the peanut
or not inverted), and (c) the image type (real or virtual)?
(d) What is the net lateral magnification?

120 A coin is placed 20 cm in front of a two-lens system. Lens 1
(nearer the coin) has focal length f1 � �10 cm, lens 2 has f2 �
�12.5 cm, and the lens separation is d � 30 cm. For the image pro-
duced by lens 2, what are (a) the image distance i2 (including sign),
(b) the overall lateral magnification, (c) the image type (real or
virtual), and (d) the image orientation (inverted relative to the
coin or not inverted)?

121 An object is 20 cm to the left of a thin diverging lens that has
a 30 cm focal length. (a) What is the image distance i? (b) Draw a
ray diagram showing the image position.

122 In Fig 34-58 a pinecone is at
distance p1 � 1.0 m in front of a lens
of focal length f1 � 0.50 m; a flat mir-
ror is at distance d � 2.0 m behind
the lens. Light from the pinecone
passes rightward through the lens,
reflects from the mirror, passes left-
ward through the lens, and forms a
final image of the pinecone. What
are (a) the distance between the lens and that image and (b) the
overall lateral magnification of the pinecone? Is the image (c) real
or virtual (if it is virtual, it requires someone looking through the
lens toward the mirror), (d) to the left or right of the lens, and
(e) inverted relative to the pinecone or not inverted?

123 One end of a long glass rod (n � 1.5) is a convex surface of
radius 6.0 cm.An object is located in air along the axis of the rod, at
a distance of 10 cm from the convex end. (a) How far apart are the

� D � d
D � d �

2

d � 2D(D � 4f ).

object and the image formed by the glass rod? (b) Within what
range of distances from the end of the rod must the object be
located in order to produce a virtual image?

124 A short straight object of length L lies along the central axis
of a spherical mirror, a distance p from the mirror. (a) Show that its
image in the mirror has a length , where

(Hint: Locate the two ends of the object.) (b) Show that the longi-
tudinal magnification is equal to m2, where m is the
lateral magnification.

125 Prove that if a plane mirror is rotated through an angle a,
the reflected beam is rotated through an angle 2a. Show that this
result is reasonable for a � 45�.

126 An object is 30.0 cm from a spherical mirror, along the
mirror’s central axis. The mirror produces an inverted image with a
lateral magnification of absolute value 0.500. What is the focal
length of the mirror?

127 A concave mirror has a radius of curvature of 24 cm. How
far is an object from the mirror if the image formed is (a) virtual
and 3.0 times the size of the object, (b) real and 3.0 times the size of
the object, and (c) real and 1/3 the size of the object?

128 A pepper seed is placed in front of a lens. The lateral magni-
fication of the seed is �0.300. The absolute value of the lens’s focal
length is 40.0 cm. How far from the lens is the image?

129 The equation 1/p � 1/i � 2/r for spherical mirrors is an
approximation that is valid if the image is formed by rays that
make only small angles with the central axis. In reality, many of the
angles are large, which smears the image a little. You can deter-
mine how much. Refer to Fig. 34-22 and consider a ray that leaves
a point source (the object) on the central axis and that makes an
angle a with that axis.

First, find the point of intersection of the ray with the mirror.
If the coordinates of this intersection point are x and y and the ori-
gin is placed at the center of curvature, then y � (x � p � r) tan a
and x2 � y2 � r2, where p is the object distance and r is the mirror’s
radius of curvature. Next, use tan b � y/x to find the angle b at the
point of intersection, and then use a � g � 2b to find the value
of g. Finally, use the relation tan g � y/(x � i � r) to find the dis-
tance i of the image.

(a) Suppose r � 12 cm and p � 20 cm. For each of the
following values of a, find the position of the image — that is, the
position of the point where the reflected ray crosses the central
axis: 0.500, 0.100, 0.0100 rad. Compare the results with those
obtained with the equation 1/p � 1/i � 2/r. (b) Repeat the calcula-
tions for p � 4.00 cm.

130 A small cup of green tea is positioned on the central axis of a
spherical mirror. The lateral magnification of the cup is �0.250,
and the distance between the mirror and its focal point is 2.00 cm.
(a) What is the distance between the mirror and the image it pro-
duces? (b) Is the focal length positive or negative? (c) Is the image
real or virtual?

131 A 20-mm-thick layer of water (n � 1.33) floats on a 
40-mm-thick layer of carbon tetrachloride (n � 1.46) in a tank. A
coin lies at the bottom of the tank. At what depth below the top
water surface do you perceive the coin? (Hint: Use the result and
assumptions of Problem 112 and work with a ray diagram.)

m�(� L�/L)

L� � L� f
p � f �

2

.

L�

Figure 34-58 Problem 122.

dp1
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132 A millipede sits 1.0 m in front of the nearest part of the surface
of a shiny sphere of diameter 0.70 m. (a) How far from the surface
does the millipede’s image appear? (b) If the millipede’s height is 2.0
mm, what is the image height? (c) Is the image inverted?

133 (a) Show that if the object O in Fig. 34-19c is moved from
focal point F1 toward the observer’s eye, the image moves in from
infinity and the angle (and thus the angular magnification mu)
increases. (b) If you continue this process, where is the image
when mu has its maximum usable value? (You can then still in-
crease mu, but the image will no longer be clear.) (c) Show that
the maximum usable value of mu is 1 � (25 cm)/f. (d) Show that in
this situation the angular magnification is equal to the lateral
magnification.

134 Isaac Newton, having convinced himself (erroneously as it
turned out) that chromatic aberration
is an inherent property of refracting
telescopes, invented the reflecting tele-
scope, shown schematically in Fig. 34-59.
He presented his second model of this
telescope, with a magnifying power of
38, to the Royal Society (of London),
which still has it. In Fig. 34-59 incident
light falls, closely parallel to the tele-
scope axis, on the objective mirror M.
After reflection from small mirror 
(the figure is not to scale), the rays
form a real, inverted image in the focal
plane (the plane perpendicular to
the line of sight, at focal point F).
This image is then viewed through an
eyepiece. (a) Show that the angular
magnification mu for the device is given by Eq. 34-15:

mu � �fob /fey,

where fob is the focal length of the objective mirror and fey is that of
the eyepiece. (b) The 200 in. mirror in the reflecting telescope at
Mt. Palomar in California has a focal length of 16.8 m. Estimate the
size of the image formed by this mirror when the object is a meter
stick 2.0 km away. Assume parallel incident rays. (c) The mirror of
a different reflecting astronomical telescope has an effective radius
of curvature of 10 m (“effective” because such mirrors are ground
to a parabolic rather than a spherical shape, to eliminate spherical
aberration defects). To give an angular magnification of 200, what
must be the focal length of the eyepiece?

135 A narrow beam of parallel light rays is incident on a glass
sphere from the left, directed toward the center of the sphere. (The

M�

u�

sphere is a lens but certainly not a thin lens.) Approximate the an-
gle of incidence of the rays as 0�, and assume that the index of
refraction of the glass is n � 2.0. (a) In terms of n and the sphere
radius r, what is the distance between the image produced by the
sphere and the right side of the sphere? (b) Is the image to the left
or right of that side? (Hint: Apply Eq. 34-8 to locate the image that
is produced by refraction at the left side of the sphere; then use
that image as the object for refraction at the right side of the
sphere to locate the final image. In the second refraction, is the
object distance p positive or negative?)

136 A corner reflector, much used in optical, microwave,
and other applications, consists of three plane mirrors fastened
together to form the corner of a cube. Show that after three reflec-
tions, an incident ray is returned with its direction exactly reversed.

137 A cheese enchilada is 4.00 cm in front of a converging lens.
The magnification of the enchilada is �2.00. What is the focal
length of the lens? 

138 A grasshopper hops to a point on the central axis of a spheri-
cal mirror. The absolute magnitude of the mirror’s focal length is
40.0 cm, and the lateral magnification of the image produced by
the mirror is �0.200. (a) Is the mirror convex or concave? (b) How
far from the mirror is the grasshopper?

139 In Fig. 34-60, a sand grain is
3.00 cm from thin lens 1, on the central
axis through the two symmetric lenses.
The distance between focal point and
lens is 4.00 cm for both lenses; the
lenses are separated by 8.00 cm. (a) What is the distance between
lens 2 and the image it produces of the sand grain? Is that image
(b) to the left or right of lens 2, (c) real or virtual, and (d) inverted
relative to the sand grain or not inverted?

140 Suppose the farthest distance a person can see without vi-
sual aid is 50 cm. (a) What is the focal length of the corrective lens
that will allow the person to see very far away? (b) Is the lens con-
verging or diverging? (c) The power P of a lens (in diopters) is
equal to 1/f, where f is in meters.What is P for the lens?

141 A simple magnifier of focal length f is placed near the eye of
someone whose near point Pn is 25 cm. An object is positioned so
that its image in the magnifier appears at Pn. (a) What is the angu-
lar magnification of the magnifier? (b) What is the angular magni-
fication if the object is moved so that its image appears at infinity?
For f � 10 cm, evaluate the angular magnifications of (c) the situa-
tion in (a) and (d) the situation in (b). (Viewing an image at Pn

requires effort by muscles in the eye, whereas viewing an image at
infinity requires no such effort for many people.)

Figure 34-59
Problem 134.

Figure 34-60 Problem 139.
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C H A P T E R  3 5

Interference

What Is Physics?
One of the major goals of physics is to understand the nature of light. This
goal has been difficult to achieve (and has not yet fully been achieved) because
light is complicated. However, this complication means that light offers many
opportunities for applications, and some of the richest opportunities involve the
interference of light waves—optical interference.

Nature has long used optical interference for coloring. For example, the
wings of a Morpho butterfly are a dull, uninspiring brown, as can be seen on the

35-1 LIGHT AS A WAVE 

After reading this module, you should be able to . . .

35.01 Using a sketch, explain Huygens’ principle.
35.02 With a few simple sketches, explain refraction in terms

of the gradual change in the speed of a wavefront as it
passes through an interface at an angle to the normal.

35.03 Apply the relationship between the speed of light in
vacuum c, the speed of light in a material v, and the index
of refraction of the material n.

35.04 Apply the relationship between a distance L in a
material, the speed of light in that material, and the time
required for a pulse of the light to travel through L.

35.05 Apply Snell’s law of refraction.
35.06 When light refracts through an interface, identify that

the frequency does not change but the wavelength and
effective speed do.

35.07 Apply the relationship between the wavelength in
vacuum l, the wavelength ln in a material (the internal
wavelength), and the index of refraction n of the material.

35.08 For light in a certain length of a material, calculate the
number of internal wavelengths that fit into the length.

35.09 If two light waves travel through different materials with
different indexes of refraction and then reach a common
point, determine their phase difference and interpret the
resulting interference in terms of maximum brightness,
intermediate brightness, and darkness.

35.10 Apply the learning objectives of Module 17-3 (sound
waves there, light waves here) to find the phase difference
and interference of two waves that reach a common point
after traveling paths of different lengths.

35.11 Given the initial phase difference between two
waves with the same wavelength, determine their phase
difference after they travel through different path lengths
and through different indexes of refraction.

35.12 Identify that rainbows are examples of optical
interference.

● The three-dimensional transmission of waves, including
light, may often be predicted by Huygens’ principle, which
states that all points on a wavefront serve as point sources of
spherical secondary wavelets. After a time t, the new position
of the wavefront will be that of a surface tangent to these
secondary wavelets.

● The law of refraction can be derived from Huygens’
principle by assuming that the index of refraction of any
medium is n � c/v, in which v is the speed of light in the
medium and c is the speed of light in vacuum.

● The wavelength ln of light in a medium depends on the
index of refraction n of the medium:

in which l is the wavelength in vacuum. 

● Because of this dependency, the phase difference between
two waves can change if they pass through different materials
with different indexes of refraction.

ln �
l

n
,

Learning Objectives

Key Ideas
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bottom wing surface, but the brown is hidden on the top surface by an arrest-
ing blue due to the interference of light reflecting from that surface (Fig. 35-
1). Moreover, the top surface is color-shifting; if you change your perspective
or if the wing moves, the tint of the color changes. Similar color shifting is used
in the inks on many currencies to thwart counterfeiters, whose copy machines
can duplicate color from only one perspective and therefore cannot duplicate
any shift in color caused by a change in perspective.

To understand the basic physics of optical interference, we must largely
abandon the simplicity of geometrical optics (in which we describe light as
rays) and return to the wave nature of light.

Light as a Wave
The first convincing wave theory for light was in 1678 by Dutch physicist
Christian Huygens. Mathematically simpler than the electromagnetic the-
ory of Maxwell, it nicely explained reflection and refraction in terms of
waves and gave physical meaning to the index of refraction.

Huygens’ wave theory is based on a geometrical construction that al-
lows us to tell where a given wavefront will be at any time in the future if we
know its present position. Huygens’ principle is:
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All points on a wavefront serve as point sources of spherical secondary wavelets.
After a time t, the new position of the wavefront will be that of a surface tangent
to these secondary wavelets.

Here is a simple example.At the left in Fig. 35-2, the present location of a wavefront
of a plane wave traveling to the right in vacuum is represented by plane ab, perpen-
dicular to the page. Where will the wavefront be at time �t later? We let several
points on plane ab (the dots) serve as sources of spherical secondary wavelets that
are emitted at t � 0. At time �t, the radius of all these spherical wavelets will have
grown to c �t, where c is the speed of light in vacuum. We draw plane de tangent to
these wavelets at time �t. This plane represents the wavefront of the plane wave at
time �t; it is parallel to plane ab and a perpendicular distance c �t from it.

The Law of Refraction
We now use Huygens’ principle to derive the law of refraction, Eq. 33-40 (Snell’s
law). Figure 35-3 shows three stages in the refraction of several wavefronts at
a flat interface between air (medium 1) and glass (medium 2). We arbitrarily
choose the wavefronts in the incident light beam to be separated by l1, the
wavelength in medium 1. Let the speed of light in air be v1 and that in glass be v2.
We assume that v2 � v1, which happens to be true.

Figure 35-2 The propagation of a plane wave
in vacuum, as portrayed by Huygens’
principle.

New position 
of wavefront 
at time t = Δt

a e 

b d 

 Wavefront at
t = 0 

c Δt

Figure 35-3 The refraction of a plane wave at an air–glass interface, as portrayed by Huygens’ principle. The wavelength in glass is smaller
than that in air. For simplicity, the reflected wave is not shown. Parts (a) through (c) represent three successive stages of the refraction.

Figure 35-1 The blue of the top surface of a Morpho
butterfly wing is due to optical interference and
shifts in color as your viewing perspective changes.



Angle u1 in Fig. 35-3a is the angle between the wavefront and the interface; it
has the same value as the angle between the normal to the wavefront (that is, the
incident ray) and the normal to the interface.Thus, u1 is the angle of incidence.

As the wave moves into the glass, a Huygens wavelet at point e in Fig. 35-3b
will expand to pass through point c, at a distance of l1 from point e. The time
interval required for this expansion is that distance divided by the speed of the
wavelet, or l1/v1. Now note that in this same time interval, a Huygens wavelet at
point h will expand to pass through point g, at the reduced speed v2 and with
wavelength l2. Thus, this time interval must also be equal to l2/v2. By equating
these times of travel, we obtain the relation

(35-1)

which shows that the wavelengths of light in two media are proportional to the
speeds of light in those media.

By Huygens’ principle, the refracted wavefront must be tangent to an arc of
radius l2 centered on h, say at point g. The refracted wavefront must also be tan-
gent to an arc of radius l1 centered on e, say at c. Then the refracted wavefront
must be oriented as shown. Note that u2, the angle between the refracted wave-
front and the interface, is actually the angle of refraction.

For the right triangles hce and hcg in Fig. 35-3b we may write

(for triangle hce)

and (for triangle hcg).

Dividing the first of these two equations by the second and using Eq. 35-1, we find

(35-2)

We can define the index of refraction n for each medium as the ratio of the
speed of light in vacuum to the speed of light v in the medium.Thus,

(index of refraction). (35-3)

In particular, for our two media, we have

We can now rewrite Eq. 35-2 as

or n1 sin u1 � n2 sin u2 (law of refraction), (35-4)

as introduced in Chapter 33.

sin u1

sin u2
�

c/n1

c/n2
�

n2

n1

n1 �
c
v1

  and  n2 �
c
v2

.

n �
c
v

sin u1

sin u2
�

l1

l2
�

v1

v2
.

sin u2 �
l2

hc

sin u1 �
l1

hc

l1

l2
�

v1

v2
,
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Checkpoint 1
The figure shows a monochromatic ray of light travel-
ing across parallel interfaces, from an original material
a, through layers of materials b and c, and then back
into material a. Rank the materials according to the
speed of light in them, greatest first.

a c a 
b
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Wavelength and Index of Refraction
We have now seen that the wavelength of light changes when the speed of the
light changes, as happens when light crosses an interface from one medium into
another. Further, the speed of light in any medium depends on the index of
refraction of the medium, according to Eq. 35-3. Thus, the wavelength of light in
any medium depends on the index of refraction of the medium. Let a certain
monochromatic light have wavelength l and speed c in vacuum and wavelength
ln and speed v in a medium with an index of refraction n. Now we can rewrite
Eq. 35-1 as

(35-5)

Using Eq. 35-3 to substitute 1/n for v/c then yields

(35-6)

This equation relates the wavelength of light in any medium to its wavelength in
vacuum:A greater index of refraction means a smaller wavelength.

Next, let fn represent the frequency of the light in a medium with index of re-
fraction n.Then from the general relation of Eq. 16-13 (v � lf ), we can write

Substituting Eqs. 35-3 and 35-6 then gives us

where f is the frequency of the light in vacuum. Thus, although the speed and
wavelength of light in the medium are different from what they are in vacuum,
the frequency of the light in the medium is the same as it is in vacuum.

Phase Difference. The fact that the wavelength of light depends on the
index of refraction via Eq. 35-6 is important in certain situations involving the in-
terference of light waves. For example, in Fig. 35-4, the waves of the rays (that is,
the waves represented by the rays) have identical wavelengths l and are initially
in phase in air (n � 1). One of the waves travels through medium 1 of index of
refraction n1 and length L.The other travels through medium 2 of index of refrac-
tion n2 and the same length L.When the waves leave the two media, they will have
the same wavelength—their wavelength l in air. However, because their wave-
lengths differed in the two media, the two waves may no longer be in phase.

fn �
c/n
l/n

�
c
l

� f,

fn �
v
ln

.

ln �
l

n
.

ln � l
v
c

.

The phase difference between two light waves can change if the waves travel
through different materials having different indexes of refraction.

Figure 35-4 Two light rays travel through
two media having different indexes of 
refraction.

n2

n1

L

The difference in indexes
causes a phase shift
between the rays.

As we shall discuss soon, this change in the phase difference can determine how
the light waves will interfere if they reach some common point.

To find their new phase difference in terms of wavelengths, we first count the
number N1 of wavelengths there are in the length L of medium 1. From Eq. 35-6,
the wavelength in medium 1 is ln1 � l/n1; so

(35-7)

Similarly, we count the number N2 of wavelengths there are in the length L of
medium 2, where the wavelength is ln2 � l/n2:

(35-8)N2 �
L

ln2
�

Ln2

l
.

N1 �
L

ln1
�

Ln1

l
.



To find the new phase difference between the waves, we subtract the smaller of
N1 and N2 from the larger.Assuming n2 � n1, we obtain

(35-9)

Suppose Eq. 35-9 tells us that the waves now have a phase difference of
45.6 wavelengths. That is equivalent to taking the initially in-phase waves and
shifting one of them by 45.6 wavelengths. However, a shift of an integer number
of wavelengths (such as 45) would put the waves back in phase; so it is only the
decimal fraction (here, 0.6) that is important. A phase difference of 45.6 wave-
lengths is equivalent to an effective phase difference of 0.6 wavelength.

A phase difference of 0.5 wavelength puts two waves exactly out of phase. If
the waves had equal amplitudes and were to reach some common point, they
would then undergo fully destructive interference, producing darkness at that
point. With a phase difference of 0.0 or 1.0 wavelength, they would, instead,
undergo fully constructive interference, resulting in brightness at the common
point. Our phase difference of 0.6 wavelength is an intermediate situation but
closer to fully destructive interference, and the waves would produce a dimly
illuminated common point.

We can also express phase difference in terms of radians and degrees, as we
have done already. A phase difference of one wavelength is equivalent to phase
differences of 2p rad and 360°.

Path Length Difference. As we discussed with sound waves in Module 17-
3, two waves that begin with some initial phase difference can end up with a dif-
ferent phase difference if they travel through paths with different lengths before
coming back together. The key for the waves (whatever their type might be) is
the path length difference �L, or more to the point, how �L compares to the
wavelength l of the waves. From Eqs. 17-23 and 17-24, we know that, for light
waves, fully constructive interference (maximum brightness) occurs when

(fully constructive interference), (35-10)

and that fully destructive interference (darkness) occurs when

(fully destructive interference). (35-11)

Intermediate values correspond to intermediate interference and thus also 
illumination.

Rainbows and Optical Interference
In Module 33-5, we discussed how the colors of sunlight are separated into a
rainbow when sunlight travels through falling raindrops. We dealt with a simpli-
fied situation in which a single ray of white light entered a drop. Actually, light
waves pass into a drop along the entire side that faces the Sun. Here we cannot
discuss the details of how these waves travel through the drop and then emerge,
but we can see that different parts of an incoming wave will travel different
paths within the drop. That means waves will emerge from the drop with differ-
ent phases. Thus, we can see that at some angles the emerging light will be in
phase and give constructive interference. The rainbow is the result of such con-
structive interference. For example, the red of the rainbow appears because
waves of red light emerge in phase from each raindrop in the direction in which
you see that part of the rainbow. The light waves that emerge in other direc-
tions from each raindrop have a range of different phases because they take a

�L
l

� 0.5, 1.5, 2.5, . . .

�L
l

� 0, 1, 2, . . .

N2 � N1 �
Ln2

l
�

Ln1

l
�

L
l

 (n2 � n1).

105135-1 LIGHT AS A WAVE 



range of different paths through each drop. This light is neither bright nor col-
orful, and so you do not notice it.

If you are lucky and look carefully below a primary rainbow, you can see dim-
mer colored arcs called supernumeraries (Fig. 35-5). Like the main arcs of the rain-
bow, the supernumeraries are due to waves that emerge from each drop
approximately in phase with one another to give constructive interference. If you
are very lucky and look very carefully above a secondary rainbow, you might see
even more (but even dimmer) supernumeraries. Keep in mind that both types of
rainbows and both sets of supernumeraries are naturally occurring examples of op-
tical interference and naturally occurring evidence that light consists of waves.
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Thus, the phase difference of the emerging waves is 2.84 wave-
lengths. Because 1.0 wavelength is equivalent to 2p rad and
360°,you can show that this phase difference is equivalent to

phase difference � 17.8 rad � 1020°. (Answer)

The effective phase difference is the decimal part of 
the actual phase difference expressed in wavelengths. Thus,
we have

effective phase difference � 0.84  wavelength. (Answer)

You can show that this is equivalent to 5.3 rad and about
300°. Caution: We do not find the effective phase difference
by taking the decimal part of the actual phase difference as
expressed in radians or degrees. For example, we do not take
0.8 rad from the actual phase difference of 17.8 rad.

(b) If the waves reached the same point on a distant screen,
what type of interference would they produce?

Reasoning: We need to compare the effective phase differ-
ence of the waves with the phase differences that give the
extreme types of interference. Here the effective phase dif-
ference of 0.84 wavelength is between 0.5 wavelength (for
fully destructive interference, or the darkest possible result)
and 1.0 wavelength (for fully constructive interference, or
the brightest possible result), but closer to 1.0 wavelength.
Thus, the waves would produce intermediate interference
that is closer to fully constructive interference—they would
produce a relatively bright spot.

Sample Problem 35.01 Phase difference of two waves due to difference in refractive indexes

In Fig. 35-4, the two light waves that are represented by the
rays have wavelength 550.0 nm before entering media 1 and
2.They also have equal amplitudes and are in phase. Medium
1 is now just air, and medium 2 is a transparent plastic layer of
index of refraction 1.600 and thickness 2.600 mm.

(a) What is the phase difference of the emerging waves in
wavelengths, radians, and degrees? What is their effective
phase difference (in wavelengths)?

KEY IDEA

The phase difference of two light waves can change if they
travel through different media, with different indexes of
refraction.The reason is that their wavelengths are different
in the different media. We can calculate the change in phase
difference by counting the number of wavelengths that fits
into each medium and then subtracting those numbers.

Calculations: When the path lengths of the waves in the two
media are identical, Eq. 35-9 gives the result of the subtrac-
tion. Here we have n1 � 1.000 (for the air), n2 � 1.600,
L � 2.600 mm, and l � 550.0 nm.Thus, Eq. 35-9 yields

(Answer)� 2.84.

�
2.600 	 10�6 m
5.500 	 10�7 m

 (1.600 � 1.000)

N2 � N1 �
L
�

 (n2 � n1)

Additional examples, video, and practice available at WileyPLUS

Primary 
rainbow

Supernumeraries

Figure 35-5 A primary rainbow and the faint
supernumeraries below it are due to
optical interference.

Checkpoint 2
The light waves of the rays in Fig. 35-4 have the same wavelength and amplitude and are
initially in phase. (a) If 7.60 wavelengths fit within the length of the top material and 5.50
wavelengths fit within that of the bottom material, which material has the greater index
of refraction? (b) If the rays are angled slightly so that they meet at the same point on a
distant screen, will the interference there result in the brightest possible illumination,
bright intermediate illumination, dark intermediate illumination, or darkness?
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35-2 YOUNG’S INTERFERENCE EXPERIMENT

After reading this module, you should be able to . . .

35.13 Describe the diffraction of light by a narrow slit and the
effect of narrowing the slit. 

35.14 With sketches, describe the production of the interfer-
ence pattern in a double-slit interference experiment using
monochromatic light.

35.15 Identify that the phase difference between two waves
can change if the waves travel along paths of different
lengths, as in the case of Young’s experiment.

35.16 In a double-slit experiment, apply the relationship 
between the path length difference �L and the wave-
length l, and then interpret the result in terms of interfer-
ence (maximum brightness, intermediate brightness, and
darkness).

35.17 For a given point in a double-slit interference pattern,
express the path length difference �L of the rays reaching
that point in terms of the slit separation d and the angle u
to that point.

35.18 In a Young's experiment, apply the relationships be-
tween the slit separation d, the light wavelength l, and the

angles u to the minima (dark fringes) and to the maxima
(bright fringes) in the interference pattern.

35.19 Sketch the double-slit interference pattern, identifying
what lies at the center and what the various bright and
dark fringes are called (such as “first side maximum”
and “third order”).

35.20 Apply the relationship between the distance D
between a double-slit screen and a viewing screen, 
the angle u to a point in the interference pattern, 
and the distance y to that point from the pattern’s 
center.

35.21 For a double-slit interference pattern, identify the
effects of changing d or l and also identify what
determines the angular limit to the pattern.

35.22 For a transparent material placed over one slit in a
Young’s experiment, determine the thickness or index of
refraction required to shift a given fringe to the center of
the interference pattern.

Learning Objectives

● In Young’s interference experiment, light passing through a single slit falls on two slits in a screen. The light leaving these slits
flares out (by diffraction), and interference occurs in the region beyond the screen. A fringe pattern, due to the interference,
forms on a viewing screen.

● The conditions for maximum and minimum intensity are

d sin u � ml, for m � 0, 1, 2, . . . (maxima—bright fringes),

(minima—dark fringes),

where u is the angle the light path makes with a central axis and d is the slit separation.

d sin u � (m � 1
2 )l,  for m � 0, 1, 2, . . .

Key Ideas

Diffraction
In this module we shall discuss the experiment that first proved that light is
a wave. To prepare for that discussion, we must introduce the idea of diffraction
of waves, a phenomenon that we explore much more fully in Chapter 36. Its
essence is this: If a wave encounters a barrier that has an opening of dimensions
similar to the wavelength, the part of the wave that passes through the opening
will flare (spread) out—will diffract—into the region beyond the barrier. The
flaring is consistent with the spreading of wavelets in the Huygens construction
of Fig. 35-2. Diffraction occurs for waves of all types, not just light waves; Fig. 35-6
shows the diffraction of water waves traveling across the surface of water in
a shallow tank. Similar diffraction of ocean waves through openings in a barrier
can actually increase the erosion of a beach the barrier is intended to protect.

George Resch/Fundamental Photographs

Figure 35-6 Waves produced by an oscillating paddle at the left flare out through an opening
in a barrier along the water surface.



1054 CHAPTER 35 INTERFERENCE

Figure 35-7 Diffraction represented
schematically. For a given wavelength l, the
diffraction is more pronounced the smaller
the slit width a.The figures show the cases
for (a) slit width a � 6.0l, (b) slit width a �
3.0l, and (c) slit width a � 1.5l. In all three
cases, the screen and the length of the slit
extend well into and out of the page, per-
pendicular to it.

λ

a

(3.0  )λ

(b)

λ

a

(1.5  )λ

(c)

Incident
wave

λ 

a

(6.0  ) λ 

Diffracted
wave

(a) Screen

A wave passing through
a slit flares (diffracts).

Figure 35-8 In Young’s interference experiment, incident monochromatic light is diffracted
by slit S0, which then acts as a point source of light that emits semicircular wavefronts.As
that light reaches screen B, it is diffracted by slits S1 and S2, which then act as two point
sources of light.The light waves traveling from slits S1 and S2 overlap and undergo inter-
ference, forming an interference pattern of maxima and minima on viewing screen C.This
figure is a cross section; the screens, slits, and interference pattern extend into and out of
the page. Between screens B and C, the semicircular wavefronts centered on S2 depict the
waves that would be there if only S2 were open. Similarly, those centered on S1 depict
waves that would be there if only S1 were open.
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Max

Max

Max

Max

Max

Max

Max
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The waves emerging 
from the two slits 
overlap and form an
interference pattern.

Figure 35-7a shows the situation schematically for an incident plane wave of
wavelength l encountering a slit that has width a � 6.0l and extends into and out
of the page. The part of the wave that passes through the slit flares out on the far
side. Figures 35-7b (with a � 3.0l) and 35-7c (a � 1.5l) illustrate the main fea-
ture of diffraction: the narrower the slit, the greater the diffraction.

Diffraction limits geometrical optics, in which we represent an electromag-
netic wave with a ray. If we actually try to form a ray by sending light through
a narrow slit, or through a series of narrow slits, diffraction will always defeat our
effort because it always causes the light to spread. Indeed, the narrower we make
the slits (in the hope of producing a narrower beam), the greater the spreading is.
Thus, geometrical optics holds only when slits or other apertures that might be
located in the path of light do not have dimensions comparable to or smaller than
the wavelength of the light.

Young’s Interference Experiment
In 1801, Thomas Young experimentally proved that light is a wave, contrary to
what most other scientists then thought. He did so by demonstrating that light
undergoes interference, as do water waves, sound waves, and waves of all other
types. In addition, he was able to measure the average wavelength of sunlight;
his value, 570 nm, is impressively close to the modern accepted value of 555 nm.
We shall here examine Young’s experiment as an example of the interference of
light waves.

Figure 35-8 gives the basic arrangement of Young’s experiment. Light from a
distant monochromatic source illuminates slit S0 in screen A. The emerging light
then spreads via diffraction to illuminate two slits S1 and S2 in screen B.
Diffraction of the light by these two slits sends overlapping circular waves into



the region beyond screen B, where the waves from one slit interfere with the
waves from the other slit.

The “snapshot” of Fig. 35-8 depicts the interference of the overlapping waves.
However, we cannot see evidence for the interference except where a viewing
screen C intercepts the light. Where it does so, points of interference max-
ima form visible bright rows—called bright bands, bright fringes, or (loosely
speaking) maxima—that extend across the screen (into and out of the page in
Fig. 35-8). Dark regions—called dark bands, dark fringes, or (loosely speaking)
minima—result from fully destructive interference and are visible between
adjacent pairs of bright fringes. (Maxima and minima more properly refer to the
center of a band.) The pattern of bright and dark fringes on the screen is called
an interference pattern. Figure 35-9 is a photograph of part of the interference
pattern that would be seen by an observer standing to the left of screen C in the
arrangement of Fig. 35-8.

Locating the Fringes
Light waves produce fringes in a Young’s double-slit interference experiment, as it is
called, but what exactly determines the locations of the fringes? To answer, we shall
use the arrangement in Fig. 35-10a.There, a plane wave of monochromatic light is in-
cident on two slits S1 and S2 in screen B; the light diffracts through the slits and pro-
duces an interference pattern on screen C. We draw a central axis from the point
halfway between the slits to screen C as a reference.We then pick, for discussion, an
arbitrary point P on the screen, at angle u to the central axis. This point intercepts
the wave of ray r1 from the bottom slit and the wave of ray r2 from the top slit.

Path Length Difference. These waves are in phase when they pass through
the two slits because there they are just portions of the same incident wave.
However, once they have passed the slits, the two waves must travel different
distances to reach P. We saw a similar situation in Module 17-3 with sound waves
and concluded that
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Courtesy Jearl Walker

Figure 35-9 A photograph of the interfer-
ence pattern produced by the arrangement
shown in Fig. 35-8, but with short slits. (The
photograph is a front view of part of screen
C.) The alternating maxima and minima
are called interference fringes (because they
resemble the decorative fringe sometimes
used on clothing and rugs).

The phase difference between two waves can change if the waves travel paths of 
different lengths.

The change in phase difference is due to the path length difference �L in the
paths taken by the waves. Consider two waves initially exactly in phase, traveling
along paths with a path length difference �L, and then passing through some
common point. When �L is zero or an integer number of wavelengths, the waves
arrive at the common point exactly in phase and they interfere fully con-
structively there. If that is true for the waves of rays r1 and r2 in Fig. 35-10, then

Figure 35-10 (a) Waves from slits S1 and S2

(which extend into and out of the page)
combine at P, an arbitrary point on screen
C at distance y from the central axis. The
angle u serves as a convenient locator for P.
(b) For , we can approximate rays r1

and r2 as being parallel, at angle u to the
central axis.

D � d

θ

Incident
wave

S1

S2

D

CB

d

P

y

b θ 

r1

r2

(a)

(b)

S1

S2

d
θ

θ

r1

r2

b

Path length difference ΔL

The ΔL shifts 
one wave from
the other, which 
determines the 
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Angle. We can specify where each bright fringe and each dark fringe is
located on the screen by giving the angle u from the central axis to that fringe. To
find u, we must relate it to �L.We start with Fig. 35-10a by finding a point b along
ray r1 such that the path length from b to P equals the path length from S2 to P.
Then the path length difference �L between the two rays is the distance from
S1 to b.

The relation between this S1-to-b distance and u is complicated, but we can
simplify it considerably if we arrange for the distance D from the slits to the
screen to be much greater than the slit separation d. Then we can approximate
rays r1 and r2 as being parallel to each other and at angle u to the central axis
(Fig. 35-10b). We can also approximate the triangle formed by S1, S2, and b as
being a right triangle, and approximate the angle inside that triangle at S2 as
being u.Then, for that triangle, sin u � �L /d and thus

�L � d sin u (path length difference). (35-12)

For a bright fringe, we saw that �L must be either zero or an integer number of
wavelengths. Using Eq. 35-12, we can write this requirement as

�L � d sin u � (integer)(l), (35-13)

or as

d sin u � ml, for m � 0, 1, 2, . . . (maxima—bright fringes). (35-14)

For a dark fringe, �L must be an odd multiple of half a wavelength. Again using
Eq. 35-12, we can write this requirement as

(35-15)
or as

(minima—dark fringes). (35-16)

With Eqs. 35-14 and 35-16, we can find the angle u to any fringe and thus
locate that fringe; further, we can use the values of m to label the fringes. For
the value and label m � 0, Eq. 35-14 tells us that a bright fringe is at u � 0
and thus on the central axis. This central maximum is the point at which waves
arriving from the two slits have a path length difference �L � 0, hence zero
phase difference.

For, say, m � 2, Eq. 35-14 tells us that bright fringes are at the angle

above and below the central axis. Waves from the two slits arrive at these two
fringes with �L � 2l and with a phase difference of two wavelengths. These
fringes are said to be the second-order bright fringes (meaning m � 2) or the
second side maxima (the second maxima to the side of the central maximum), or

u � sin�1� 2l

d �

d sin u � (m � 1
2)l,  for m � 0, 1, 2, � � �

�L � d sin u � (odd number)(1
2 l),
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What appears at each point on the viewing screen in a Young’s double-slit
interference experiment is determined by the path length difference �L of the
rays reaching that point.

point P is part of a bright fringe. When, instead, �L is an odd multiple of half a
wavelength, the waves arrive at the common point exactly out of phase and they
interfere fully destructively there. If that is true for the waves of rays r1 and r2,
then point P is part of a dark fringe. (And, of course, we can have intermediate
situations of interference and thus intermediate illumination at P.) Thus,



they are described as being the second bright fringes from the central
maximum.

For m � 1, Eq. 35-16 tells us that dark fringes are at the angle

above and below the central axis. Waves from the two slits arrive at these two
fringes with �L � 1.5l and with a phase difference, in wavelengths, of 1.5. These
fringes are called the second-order dark fringes or second minima because they are
the second dark fringes to the side of the central axis. (The first dark fringes, or first
minima, are at locations for which m � 0 in Eq. 35-16.)

Nearby Screen. We derived Eqs. 35-14 and 35-16 for the situation .
However, they also apply if we place a converging lens between the slits and the
viewing screen and then move the viewing screen closer to the slits, to the focal
point of the lens. (The screen is then said to be in the focal plane of the lens; that
is, it is in the plane perpendicular to the central axis at the focal point.) One prop-
erty of a converging lens is that it focuses all rays that are parallel to one another
to the same point on its focal plane.Thus, the rays that now arrive at any point on
the screen (in the focal plane) were exactly parallel (rather than approximately)
when they left the slits. They are like the initially parallel rays in Fig. 34-14a that
are directed to a point (the focal point) by a lens.

D � d

u � sin�1� 1.5l

d �

105735-2 YOUNG'S INTERFERENCE EXPERIMENT

Checkpoint 3
In Fig. 35-10a, what are �L (as a multiple of the wavelength) and the phase difference
(in wavelengths) for the two rays if point P is (a) a third side maximum and (b) a third 
minimum?

Calculations: If we equate our two expressions for angle u
and then solve for ym, we find

(35-17)

For the next maximum as we move away from the pattern’s
center, we have

(35-18)

We find the distance between these adjacent maxima by
subtracting Eq. 35-17 from Eq. 35-18:

(Answer)

As long as d and u in Fig. 35-10a are small, the separation of
the interference fringes is independent of m; that is, the
fringes are evenly spaced.

� 2.50 	 10�3 m � 2.5 mm.

�
(546 	 10�9 m)(55 	 10�2 m)

0.12 	 10�3 m

�y � ym�1 � ym �
lD
d

ym�1 �
(m � 1)lD

d
.

ym �
mlD

d
.

Sample Problem 35.02 Double-slit interference pattern

What is the distance on screen C in Fig. 35-10a between
adjacent maxima near the center of the interference pattern?
The wavelength l of the light is 546 nm, the slit separation d
is 0.12 mm, and the slit–screen separation D is 55 cm.
Assume that u in Fig. 35-10 is small enough to permit use of
the approximations sin u � tan u � u, in which u is expressed
in radian measure.

KEY IDEAS

(1) First, let us pick a maximum with a low value of m to
ensure that it is near the center of the pattern. Then, from
the geometry of Fig. 35-10a, the maximum’s vertical distance
ym from the center of the pattern is related to its angle u
from the central axis by

(2) From Eq. 35-14, this angle u for the mth maximum is
given by

sin u � u �
ml

d
.

tan u � u �
ym

D
.

Additional examples, video, and practice available at WileyPLUS
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Internal wavelength: The wavelength ln of light in a mate-
rial with index of refraction n is smaller than the wavelength
in vacuum, as given by Eq. 35-6 (ln � l/n). Here, this means
that the wavelength of the light is smaller in the plastic than
in the air. Thus, the ray that passes through the plastic will
have more wavelengths along it than the ray that passes
through only air—so we do get the one extra wavelength
we need along ray r2 by placing the plastic over the top slit,
as drawn in Fig. 35-11b.

Thickness: To determine the required thickness L of the
plastic, we first note that the waves are initially in phase and
travel equal distances L through different materials (plastic
and air). Because we know the phase difference and require
L, we use Eq. 35-9,

(35-19)

We know that N2 � N1 is 1 for a phase difference of one
wavelength, n2 is 1.50 for the plastic in front of the top slit,
n1 is 1.00 for the air in front of the bottom slit, and l is
600 	 10�9 m. Then Eq. 35-19 tells us that, to shift the lower
m = 1 bright fringe up to the center of the interference pat-
tern, the plastic must have the thickness

(Answer)� 1.2 	 10�6 m.

L �
l(N2 � N1)

n2 � n1
�

(600 	 10�9 m)(1)
1.50 � 1.00

N2 � N1 �
L
�

 (n2 � n1).

Sample Problem 35.03 Double-slit interference pattern with plastic over one slit

A double-slit interference pattern is produced on a screen,
as in Fig. 35-10; the light is monochromatic at a wavelength
of 600 nm.A strip of transparent plastic with index of refrac-
tion n � 1.50 is to be placed over one of the slits. Its pres-
ence changes the interference between light waves from the
two slits, causing the interference pattern to be shifted
across the screen from the original pattern. Figure 35-11a
shows the original locations of the central bright fringe
(m � 0) and the first bright fringes (m � 1) above and be-
low the central fringe. The purpose of the plastic is to shift
the pattern upward so that the lower m � 1 bright fringe
is shifted to the center of the pattern. Should the plastic be
placed over the top slit (as arbitrarily drawn in Fig. 35-
11b) or the bottom slit, and what thickness L should it
have?

KEY IDEA

The interference at a point on the screen depends on the
phase difference of the light rays arriving from the two slits.
The light rays are in phase at the slits because they derive
from the same wave, but their relative phase can shift on the
way to the screen due to (1) a difference in the length of the
paths they follow and (2) a difference in the number of their
internal wavelengths ln in the materials through which they
pass. The first condition applies to any off-center point, and
the second condition applies when the plastic covers one of
the slits.

Path length difference: Figure 35-11a shows rays r1 and r2

along which waves from the two slits travel to reach the
lower m � 1 bright fringe. Those waves start in phase at the
slits but arrive at the fringe with a phase difference of
exactly 1 wavelength.To remind ourselves of this main char-
acteristic of the fringe, let us call it the 1l fringe. The one-
wavelength phase difference is due to the one-wavelength
path length difference between the rays reaching the fringe;
that is, there is exactly one more wavelength along ray r2

than along r1.
Figure 35-11b shows the 1l fringe shifted up to the

center of the pattern with the plastic strip over the top slit
(we still do not know whether the plastic should be there
or over the bottom slit). The figure also shows the new ori-
entations of rays r1 and r2 to reach that fringe. There still
must be one more wavelength along r2 than along r1 (be-
cause they still produce the 1l fringe), but now the path
length difference between those rays is zero, as we can tell
from the geometry of Fig. 35-11b. However, r2 now passes
through the plastic.

Figure 35-11 (a) Arrangement for two-slit interference (not to scale).
The locations of three bright fringes (or maxima) are indicated.
(b) A strip of plastic covers the top slit.We want the 1l fringe to be
at the center of the pattern.

r1

r2

m = 1

m = 0

m = 1
1l fringe

(a)

r1

r2
1l fringe

(b)

The difference in indexes
causes a phase shift
between the rays, moving
the 1l fringe upward.

Additional examples, video, and practice available at WileyPLUS
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35-3 INTERFERENCE AND DOUBLE-SLIT INTENSITY 

After reading this module, you should be able to . . .

35.23 Distinguish between coherent and incoherent 
light.

35.24 For two light waves arriving at a common point, write
expressions for their electric field components as
functions of time and a phase constant.

35.25 Identify that the phase difference between two waves
determines their interference.

35.26 For a point in a double-slit interference pattern,
calculate the intensity in terms of the phase difference of

the arriving waves and relate that phase difference to the
angle u locating that point in the pattern.

35.27 Use a phasor diagram to find the resultant wave 
(amplitude and phase constant) of two or more light
waves arriving at a common point and use that result to
determine the intensity.

35.28 Apply the relationship between a light wave’s angular
frequency v and the angular speed v of the phasor repre-
senting the wave.

Learning Objectives

● If two light waves that meet at a point are to interfere
perceptibly, the phase difference between them must remain
constant with time; that is, the waves must be coherent.
When two coherent waves meet, the resulting intensity may
be found by using phasors.

Key Ideas
● In Young’s interference experiment, two waves, each with
intensity I0, yield a resultant wave of intensity I at the viewing
screen, with

I � 4I0 cos2 1
2 f,  where f �

2pd
l

 sin u.

Coherence
For the interference pattern to appear on viewing screen C in Fig. 35-8, the light
waves reaching any point P on the screen must have a phase difference that does
not vary in time. That is the case in Fig. 35-8 because the waves passing through
slits S1 and S2 are portions of the single light wave that illuminates the slits.
Because the phase difference remains constant, the light from slits S1 and S2 is
said to be completely coherent.

Sunlight and Fingernails. Direct sunlight is partially coherent; that is, sun-
light waves intercepted at two points have a constant phase difference only if the
points are very close. If you look closely at your fingernail in bright sunlight, you
can see a faint interference pattern called speckle that causes the nail to appear to
be covered with specks. You see this effect because light waves scattering from
very close points on the nail are sufficiently coherent to interfere with one
another at your eye. The slits in a double-slit experiment, however, are not close
enough, and in direct sunlight, the light at the slits would be incoherent. To get
coherent light, we would have to send the sunlight through a single slit as in
Fig. 35-8; because that single slit is small, light that passes through it is coherent.
In addition, the smallness of the slit causes the coherent light to spread via
diffraction to illuminate both slits in the double-slit experiment.

Incoherent Sources. If we replace the double slits with two similar but inde-
pendent monochromatic light sources, such as two fine incandescent wires, the
phase difference between the waves emitted by the sources varies rapidly and
randomly. (This occurs because the light is emitted by vast numbers of atoms in
the wires, acting randomly and independently for extremely short times—of the
order of nanoseconds.) As a result, at any given point on the viewing screen, the
interference between the waves from the two sources varies rapidly and ran-
domly between fully constructive and fully destructive. The eye (and most com-
mon optical detectors) cannot follow such changes, and no interference pattern
can be seen. The fringes disappear, and the screen is seen as being uniformly
illuminated.



Coherent Source. A laser differs from common light sources in that its
atoms emit light in a cooperative manner, thereby making the light coherent.
Moreover, the light is almost monochromatic, is emitted in a thin beam with
little spreading, and can be focused to a width that almost matches the wave-
length of the light.

Intensity in Double-Slit Interference
Equations 35-14 and 35-16 tell us how to locate the maxima and minima of
the double-slit interference pattern on screen C of Fig. 35-10 as a function of the
angle u in that figure. Here we wish to derive an expression for the intensity I of
the fringes as a function of u.

The light leaving the slits is in phase. However, let us assume that the light
waves from the two slits are not in phase when they arrive at point P. Instead,
the electric field components of those waves at point P are not in phase and
vary with time as

E1 � E0 sin vt (35-20)

and E2 � E0 sin(vt � f), (35-21)

where v is the angular frequency of the waves and f is the phase constant of
wave E2. Note that the two waves have the same amplitude E0 and a phase differ-
ence of f. Because that phase difference does not vary, the waves are coherent.
We shall show that these two waves will combine at P to produce an intensity I
given by

(35-22)

and that

(35-23)

In Eq. 35-22, I0 is the intensity of the light that arrives on the screen from one
slit when the other slit is temporarily covered.We assume that the slits are so nar-
row in comparison to the wavelength that this single-slit intensity is essentially
uniform over the region of the screen in which we wish to examine the fringes.

Equations 35-22 and 35-23, which together tell us how the intensity I of the
fringe pattern varies with the angle u in Fig. 35-10, necessarily contain informa-
tion about the location of the maxima and minima. Let us see if we can extract
that information to find equations about those locations.

Maxima. Study of Eq. 35-22 shows that intensity maxima will occur when

(35-24)

If we put this result into Eq. 35-23, we find

or d sin u � ml, for m � 0, 1, 2, . . . (maxima), (35-25)

which is exactly Eq. 35-14, the expression that we derived earlier for the locations
of the maxima.

Minima. The minima in the fringe pattern occur when

(35-26)

If we combine this relation with Eq. 35-23, we are led at once to

(minima), (35-27)d sin u � (m � 1
2 )l,  for m � 0, 1, 2, . . .

1
2 f � (m � 1

2 )p,  for m � 0, 1, 2, . . . .

2mp �
2pd

l
 sin u,  for m � 0, 1, 2, . . .

1
2f � mp,  for m � 0, 1, 2, . . . .

f �
2pd

l
 sin u.

I � 4I0 cos2 1
2 f,
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Figure 35-12 A plot of Eq. 35-22, showing the intensity of a double-slit interference pattern as a
function of the phase difference between the waves when they arrive from the two slits. I0 is
the (uniform) intensity that would appear on the screen if one slit were covered.The average
intensity of the fringe pattern is 2I0, and the maximum intensity (for coherent light) is 4I0.

Intensity
at screen 

2I0

(two coherent sources)

(two incoherent 
sources)

4I0

I0 (one source) 

2 1 0 0 1 2 

5π 3π π π 3π 5π 4π 2π 2π 4π 0

0

φ 

m, for maxima
m, for minima

2 1 1 2 

2.5 1.5 0.5 0.5 1.5 2.5 02 1 1 2 ΔL/λ 

which is just Eq. 35-16, the expression we derived earlier for the locations of the
fringe minima.

Figure 35-12, which is a plot of Eq. 35-22, shows the intensity of double-slit
interference patterns as a function of the phase difference f between the waves
at the screen. The horizontal solid line is I0, the (uniform) intensity on the screen
when one of the slits is covered up. Note in Eq. 35-22 and the graph that the
intensity I varies from zero at the fringe minima to 4I0 at the fringe maxima.

If the waves from the two sources (slits) were incoherent, so that no enduring
phase relation existed between them, there would be no fringe pattern and the
intensity would have the uniform value 2I0 for all points on the screen; the 
horizontal dashed line in Fig. 35-12 shows this uniform value.

Interference cannot create or destroy energy but merely redistributes it over
the screen. Thus, the average intensity on the screen must be the same 2I0 regard-
less of whether the sources are coherent. This follows at once from Eq. 35-22;
if we substitute , the average value of the cosine-squared function, this equation
reduces to Iavg 2I0.

Proof of Eqs. 35-22 and 35-23
We shall combine the electric field components E1 and E2, given by Eqs. 35-20
and 35-21, respectively, by the method of phasors as is discussed in Module 16-6.
In Fig. 35-13a, the waves with components E1 and E2 are represented by phasors
of magnitude E0 that rotate around the origin at angular speed v. The values
of E1 and E2 at any time are the projections of the corresponding phasors on the
vertical axis. Figure 35-13a shows the phasors and their projections at an arbitrary
time t. Consistent with Eqs. 35-20 and 35-21, the phasor for E1 has a rotation
angle vt and the phasor for E2 has a rotation angle vt � f (it is phase-shifted
ahead of E1).As each phasor rotates, its projection on the vertical axis varies with
time in the same way that the sinusoidal functions of Eqs. 35-20 and 35-21 vary
with time.

To combine the field components E1 and E2 at any point P in Fig. 35-10, we
add their phasors vectorially, as shown in Fig. 35-13b.The magnitude of the vector
sum is the amplitude E of the resultant wave at point P, and that wave has a cer-
tain phase constant b.To find the amplitude E in Fig. 35-13b, we first note that the
two angles marked b are equal because they are opposite equal-length sides of
a triangle. From the theorem (for triangles) that an exterior angle (here f, as
shown in Fig. 35-13b) is equal to the sum of the two opposite interior angles (here
that sum is b � b), we see that .Thus, we have

(35-28)� 2E0 cos 12 f.

E � 2(E0 cos b)

b � 1
2 f

�

1
2

Figure 35-13 (a) Phasors representing, at time
t, the electric field components given by
Eqs. 35-20 and 35-21. Both phasors have
magnitude E0 and rotate with angular
speed v.Their phase difference is f.
(b) Vector addition of the two phasors
gives the phasor representing the
resultant wave, with amplitude E and
phase constant b.

(a)

E1
E0

ω t

ω E0

E2

φ 

(b)

E1
E0

ωt

E

E2

φ

β

β

E0

ω

Phasors that represent
waves can be added to
find the net wave.



If we square each side of this relation, we obtain

(35-29)

Intensity. Now, from Eq. 33-24, we know that the intensity of an electromag-
netic wave is proportional to the square of its amplitude.Therefore, the waves we
are combining in Fig. 35-13b, whose amplitudes are E0, each has an intensity I0

that is proportional to , and the resultant wave, with amplitude E, has an inten-
sity I that is proportional to E 2.Thus,

Substituting Eq. 35-29 into this equation and rearranging then yield

which is Eq. 35-22, which we set out to prove.
We still must prove Eq. 35-23, which relates the phase difference f between

the waves arriving at any point P on the screen of Fig. 35-10 to the angle u that
serves as a locator of that point.

The phase difference f in Eq. 35-21 is associated with the path length differ-
ence S1b in Fig. 35-10b. If S1b is , then f is p; if S1b is l, then f is 2p, and so on.
This suggests

(35-30)

The path length difference S1b in Fig. 35-10b is d sin u (a leg of the right triangle);
so Eq. 35-30 for the phase difference between the two waves arriving at point P
on the screen becomes

which is Eq. 35-23, the other equation that we set out to prove to relate f to the
angle u that locates P.

Combining More Than Two Waves
In a more general case, we might want to find the resultant of more than two 
sinusoidally varying waves at a point. Whatever the number of waves is, our 
general procedure is this:

1. Construct a series of phasors representing the waves to be combined. Draw
them end to end, maintaining the proper phase relations between adjacent
phasors.

2. Construct the vector sum of this array. The length of this vector sum gives
the amplitude of the resultant phasor. The angle between the vector sum
and the first phasor is the phase of the resultant with respect to this first pha-
sor.The projection of this vector-sum phasor on the vertical axis gives the time
variation of the resultant wave.

f �
2pd

l
 sin u,

� phase
difference� �

2p

l �path length
difference �.

1
2 l

I � 4I0 cos2 1
2 f,

I
I0

�
E 2

E 0
2 .

E 0
2

E 2 � 4E 0
2 cos2 1

2 f.
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Checkpoint 4
Each of four pairs of light waves arrives at a certain point on a screen.The waves have
the same wavelength.At the arrival point, their amplitudes and phase differences are
(a) 2E0, 6E0, and p rad; (b) 3E0, 5E0, and p rad; (c) 9E0, 7E0, and 3p rad; (d) 2E0, 2E0,
and 0 rad. Rank the four pairs according to the intensity of the light at the arrival
point, greatest first. (Hint: Draw phasors.)
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and a phase angle b relative to the phasor representing E1 of

We can now write, for the resultant wave E(t),

(Answer)

Be careful to interpret the angle b correctly in Fig. 35-14: It is
the constant angle between ER and the phasor representing
E1 as the four phasors rotate as a single unit around the 
origin. The angle between ER and the horizontal axis in
Fig. 35-14 does not remain equal to b.

� 2.4E0 sin(vt � 8.8�).

E � ER sin(vt � b)

b � tan�1 � 0.366E0

2.37E0
� � 8.8�.

ER � 2(2.37E0)2 � (0.366E0)2 � 2.4E0,

Sample Problem 35.04 Combining three light waves by using phasors

Three light waves combine at a certain point where their
electric field components are

Find their resultant component E(t) at that point.

KEY IDEA

The resultant wave is

E(t) � E1(t) � E2(t) � E3(t).

We can use the method of phasors to find this sum, and we
are free to evaluate the phasors at any time t.

Calculations: To simplify the solution, we choose t 0, for
which the phasors representing the three waves are shown
in Fig. 35-14. We can add these three phasors either directly
on a vector-capable calculator or by components. For the
component approach, we first write the sum of their hori-
zontal components as

Eh � E0 cos 0 � E0 cos 60° � E0 cos(�30°) � 2.37E0.

The sum of their vertical components, which is the value of
E at t � 0, is

Ev � E0 sin 0 � E0 sin 60° � E0 sin(�30°) � 0.366E0.

The resultant wave E(t) thus has an amplitude ER of

�

�

�

E3 � E0 sin(vt � 30�).

E2 � E0 sin(vt � 60�),

E1 � E0 sin vt,

Additional examples, video, and practice available at WileyPLUS

Figure 35-14 Three phasors, representing waves with equal ampli-
tudes E0 and with phase constants 0°, 60°, and �30°, shown at time
t � 0.The phasors combine to give a resultant phasor with magni-
tude ER, at angle b.

E0

E

E0

β 

ER

E0
30° 

60° 

Phasors that represent
waves can be added to
find the net wave.

35-4 INTERFERENCE FROM THIN FILMS 

After reading this module, you should be able to . . .

35.29 Sketch the setup for thin-film interference, showing
the incident ray and reflected rays (perpendicular to the
film but drawn slightly slanted for clarity) and identifying
the thickness and the three indexes of refraction.

35.30 Identify the condition in which a reflection can result in
a phase shift, and give the value of that phase shift.

35.31 Identify the three factors that determine the interfer-
ence of the reflected waves: reflection shifts, path length
difference, and internal wavelength (set by the film's index
of refraction).

35.32 For a thin film, use the reflection shifts and the desired
result (the reflected waves are in phase or out of phase, or

the transmitted waves are in phase or out of phase) to
determine and then apply the necessary equation relating
the thickness L, the wavelength l (measured in air), and
the index of refraction n of the film.

35.33 For a very thin film in air (with thickness much less
than the wavelength of visible light), explain why the film
is always dark.

35.34 At each end of a thin film in the form of a wedge, deter-
mine and then apply the necessary equation relating the
thickness L, the wavelength l (measured in air), and the
index of refraction n of the film, and then count the number
of bright bands and dark bands across the film.

Learning Objectives



Interference from Thin Films
The colors on a sunlit soap bubble or an oil slick are caused by the interference of
light waves reflected from the front and back surfaces of a thin transparent film.
The thickness of the soap or oil film is typically of the order of magnitude of the
wavelength of the (visible) light involved. (Greater thicknesses spoil the coher-
ence of the light needed to produce the colors due to interference.)

Figure 35-15 shows a thin transparent film of uniform thickness L and index
of refraction n2, illuminated by bright light of wavelength l from a distant point
source. For now, we assume that air lies on both sides of the film and thus that 
n1 � n3 in Fig. 35-15. For simplicity, we also assume that the light rays are almost
perpendicular to the film (u � 0). We are interested in whether the film is bright
or dark to an observer viewing it almost perpendicularly. (Since the film is
brightly illuminated, how could it possibly be dark? You will see.)

The incident light, represented by ray i, intercepts the front (left) surface
of the film at point a and undergoes both reflection and refraction there. The
reflected ray r1 is intercepted by the observer’s eye. The refracted light crosses
the film to point b on the back surface, where it undergoes both reflection and
refraction. The light reflected at b crosses back through the film to point c, where
it undergoes both reflection and refraction. The light refracted at c, represented
by ray r2, is intercepted by the observer’s eye.

If the light waves of rays r1 and r2 are exactly in phase at the eye, they produce
an interference maximum and region ac on the film is bright to the observer. If they
are exactly out of phase, they produce an interference minimum and region ac is
dark to the observer, even though it is illuminated. If there is some intermediate
phase difference, there are intermediate interference and brightness.

The Key. Thus, the key to what the observer sees is the phase difference be-
tween the waves of rays r1 and r2. Both rays are derived from the same ray i, but
the path involved in producing r2 involves light traveling twice across the film (a
to b, and then b to c), whereas the path involved in producing r1 involves no travel
through the film. Because u is about zero, we approximate the path length differ-
ence between the waves of r1 and r2 as 2L. However, to find the phase difference
between the waves, we cannot just find the number of wavelengths l that is
equivalent to a path length difference of 2L. This simple approach is impossible
for two reasons: (1) the path length difference occurs in a medium other than air,
and (2) reflections are involved, which can change the phase.
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● When light is incident on a thin transparent film, the light waves
reflected from the front and back surfaces interfere. For near-nor-
mal incidence, the wavelength conditions for maximum and mini-
mum intensity of the light reflected from a film in air are

(maxima—bright film in air),

(minima—dark film in air),

2L � m
l

n2
,  for m � 0, 1, 2, . . .

2L � (m � 1
2 )

l

n2
,  for m � 0, 1, 2, . . .

where n2 is the index of refraction of the film, L is its
thickness, and l is the wavelength of the light in air.

● If a film is sandwiched between media other than air, these
equations for bright and dark films may be interchanged, de-
pending on the relative indexes of refraction.

● If the light incident at an interface between media with
different indexes of refraction is in the medium with the
smaller index of refraction, the reflection causes a phase
change of p rad, or half a wavelength, in the reflected
wave. Otherwise, there is no phase change due to the 
reflection. Refraction causes no phase shift.

Key Ideas

Figure 35-15 Light waves, represented with
ray i, are incident on a thin film of thick-
ness L and index of refraction n2. Rays r1

and r2 represent light waves that have
been reflected by the front and back sur-
faces of the film, respectively. (All three
rays are actually nearly perpendicular to
the film.) The interference of the waves of
r1 and r2 with each other depends on their
phase difference. The index of refraction
n1 of the medium at the left can differ
from the index of refraction n3 of the
medium at the right, but for now we
assume that both media are air, with n1 �
n3 � 1.0, which is less than n2.

θ 
θ 

n1 n3n2

L

r1

r2

c

a b

i

The interference depends
on the reflections and the
path lengths.

The phase difference between two waves can change if one or both are reflected.

Let’s next discuss changes in phase that are caused by reflections.
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Reflection Reflection phase shift

Off lower index 0
Off higher index 0.5 wavelength

Reflection Phase Shifts
Refraction at an interface never causes a phase change — but reflection can,
depending on the indexes of refraction on the two sides of the interface.
Figure 35-16 shows what happens when reflection causes a phase change, using
as an example pulses on a denser string (along which pulse travel is relatively
slow) and a lighter string (along which pulse travel is relatively fast).

When a pulse traveling relatively slowly along the denser string in Fig. 35-16a
reaches the interface with the lighter string, the pulse is partially transmitted
and partially reflected, with no change in orientation. For light, this situation
corresponds to the incident wave traveling in the medium of greater index of
refraction n (recall that greater n means slower speed). In that case, the wave
that is reflected at the interface does not undergo a change in phase; that is, its
reflection phase shift is zero.

When a pulse traveling more quickly along the lighter string in Fig. 35-16b
reaches the interface with the denser string, the pulse is again partially transmit-
ted and partially reflected. The transmitted pulse again has the same orientation
as the incident pulse, but now the reflected pulse is inverted. For a sinusoidal
wave, such an inversion involves a phase change of p rad, or half a wavelength.
For light, this situation corresponds to the incident wave traveling in the medium
of lesser index of refraction (with greater speed). In that case, the wave that is
reflected at the interface undergoes a phase shift of p rad, or half a wavelength.

We can summarize these results for light in terms of the index of refraction of
the medium off which (or from which) the light reflects:

This might be remembered as “higher means half.”

Equations for Thin-Film Interference
In this chapter we have now seen three ways in which the phase difference
between two waves can change:

1. by reflection

2. by the waves traveling along paths of different lengths

3. by the waves traveling through media of different indexes of refraction

When light reflects from a thin film, producing the waves of rays r1 and r2 shown
in Fig. 35-15, all three ways are involved. Let us consider them one by one.

Reflection Shift. We first reexamine the two reflections in Fig. 35-15. At
point a on the front interface, the incident wave (in air) reflects from the medium
having the higher of the two indexes of refraction; so the wave of reflected ray r1

has its phase shifted by 0.5 wavelength. At point b on the back interface, the inci-
dent wave reflects from the medium (air) having the lower of the two indexes of
refraction; so the wave reflected there is not shifted in phase by the reflection,
and thus neither is the portion of it that exits the film as ray r2. We can organize
this information with the first line in Table 35-1, which refers to the simplified
drawing in Fig. 35-17 for a thin film in air. So far, as a result of the reflection phase
shifts, the waves of r1 and r2 have a phase difference of 0.5 wavelength and thus
are exactly out of phase.

Path Length Difference. Now we must consider the path length difference
2L that occurs because the wave of ray r2 crosses the film twice. (This difference

Figure 35-16 Phase changes when a pulse is
reflected at the interface between two
stretched strings of different linear densi-
ties.The wave speed is greater in the lighter
string. (a) The incident pulse is in the
denser string. (b) The incident pulse is in
the lighter string. Only here is there a phase
change, and only in the reflected wave.

Before

After

(b)

Before

After

(a)

Interface

Figure 35-17 Reflections from a thin film 
in air.

n2Air Air 

L

r1

i

r2



2L is shown on the second line in Table 35-1.) If the waves of r1 and r2 are to be
exactly in phase so that they produce fully constructive interference, the path
length 2L must cause an additional phase difference of 0.5, 1.5, 2.5, . . . wave-
lengths. Only then will the net phase difference be an integer number of wave-
lengths.Thus, for a bright film, we must have

(in-phase waves). (35-31)

The wavelength we need here is the wavelength ln2 of the light in the medium
containing path length 2L—that is, in the medium with index of refraction n2.
Thus, we can rewrite Eq. 35-31 as

(in-phase waves). (35-32)

If, instead, the waves are to be exactly out of phase so that there is fully
destructive interference, the path length 2L must cause either no additional
phase difference or a phase difference of 1, 2, 3, . . . wavelengths. Only then will
the net phase difference be an odd number of half-wavelengths. For a dark film,
we must have

2L � integer 	 wavelength (out-of-phase waves). (35-33)

where, again, the wavelength is the wavelength ln2 in the medium containing 2L.
Thus, this time we have

2L � integer 	 ln2 (out-of-phase waves). (35-34)

Now we can use Eq. 35-6 (ln � l/n) to write the wavelength of the wave of ray r2

inside the film as

(35-35)

where l is the wavelength of the incident light in vacuum (and approximately
also in air). Substituting Eq. 35-35 into Eq. 35-32 and replacing “odd number/2”
with give us

(maxima—bright film in air). (35-36)

Similarly, with m replacing “integer,” Eq. 35-34 yields

(minima—dark film in air). (35-37)

For a given film thickness L, Eqs. 35-36 and 35-37 tell us the wavelengths of
light for which the film appears bright and dark, respectively, one wavelength for
each value of m. Intermediate wavelengths give intermediate brightnesses. For a
given wavelength l, Eqs. 35-36 and 35-37 tell us the thicknesses of the films that
appear bright and dark in that light, respectively, one thickness for each value of
m. Intermediate thicknesses give intermediate brightnesses.

Heads Up. (1) For a thin film surrounded by air, Eq. 35-36 corresponds to
bright reflections and Eq. 35-37 corresponds to no reflections. For transmissions,
the roles of the equations are reversed (after all, if the light is brightly reflected,
then it is not transmitted, and vice versa). (2) If we have a different set of values
of the indexes of refraction, the roles of the equations may be reversed. For any
given set of indexes, you must go through the thought process behind Table 35-1
and, in particular, determine the reflection shifts to see which equation applies to
bright reflections and which applies to no reflections. (3) The index of refraction
in the equations is that of the thin film, where the path length difference occurs.

2L � m
l

n2
,  for m � 0, 1, 2, . . .

2L � (m � 1
2)

l

n2
,  for m � 0, 1, 2, . . .

(m � 1
2)

ln2 �
l

n2
,

2L �
odd number

2
	 ln2

2L �
odd number

2
	 wavelength
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Table 35-1 An Organizing Table for 
Thin-Film Interference in Air (Fig. 35-17)a

Reflection
r1 r2

phase 0.5 0
shifts wavelength

Path length 
difference 2L

Index in 
which
path
length n2

difference
occurs

In phasea:

Out of
phasea:

aValid for n2 � n1 and n2 � n3.

2L � integer 	
l

n2

2L �
odd number

2
	

l

n2
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Film Thickness Much Less Than l
A special situation arises when a film is so thin that L is much less than l, say,
L � 0.1l. Then the path length difference 2L can be neglected, and the phase
difference between r1 and r2 is due only to reflection phase shifts. If the film of
Fig. 35-17, where the reflections cause a phase difference of 0.5 wavelength,
has thickness L � 0.1l, then r1 and r2 are exactly out of phase, and thus the film
is dark, regardless of the wavelength and intensity of the light. This special situa-
tion corresponds to m � 0 in Eq. 35-37. We shall count any thickness L � 0.1l as
being the least thickness specified by Eq. 35-37 to make the film of Fig. 35-17
dark. (Every such thickness will correspond to m � 0.) The next greater thickness
that will make the film dark is that corresponding to m � 1.

In Fig. 35-18, bright white light illuminates a vertical soap film whose thick-
ness increases from top to bottom. However, the top portion is so thin that it is
dark. In the (somewhat thicker) middle we see fringes, or bands, whose color de-
pends primarily on the wavelength at which reflected light undergoes fully con-
structive interference for a particular thickness.Toward the (thickest) bottom the
fringes become progressively narrower and the colors begin to overlap and fade. Richard Megna/Fundamental Photographs

Figure 35-18 The reflection of light from a
soapy water film spanning a vertical loop.
The top portion is so thin (due to gravita-
tional slumping) that the light reflected
there undergoes destructive interference,
making that portion dark. Colored inter-
ference fringes, or bands, decorate the rest
of the film but are marred by circulation
of liquid within the film as the liquid is
gradually pulled downward by gravitation.

Checkpoint 5
The figure shows four
situations in which
light reflects perpen-
dicularly from a thin
film of thickness L,
with indexes of refraction as given. (a) For which situations does reflection at the film
interfaces cause a zero phase difference for the two reflected rays? (b) For which situ-
ations will the film be dark if the path length difference 2L causes a phase difference
of 0.5 wavelength?

1.4

1.5

1.3

L 1.3

1.5

1.4

1.3

1.4

1.5

1.4

1.3

1.5

L

(1) (2) (3) (4) 

see that the reflected rays are in phase (and thus the film is
brightest) when

which leads to Eq. 35-36:

Solving for l and substituting for L and n2, we find

For m � 0, this gives us l � 1700 nm, which is in the infrared
region. For m � 1, we find l � 567 nm, which is yellow-green
light, near the middle of the visible spectrum. For m � 2, l �
340 nm, which is in the ultraviolet region. Thus, the wave-
length at which the light seen by the observer is brightest is

l � 567 nm. (Answer)

l �
2n2L

m � 1
2

�
(2)(1.33)(320 nm)

m � 1
2

�
851 nm
m � 1

2

.

2L � (m � 1
2 )

l

n2
.

2L �
odd number

2
	

l

n2
,

Sample Problem 35.05 Thin-film interference of a water film in air

White light, with a uniform intensity across the visible wave-
length range of 400 to 690 nm, is perpendicularly incident on
a water film, of index of refraction n2 � 1.33 and thickness 
L � 320 nm, that is suspended in air.At what wavelength l is
the light reflected by the film brightest to an observer?

KEY IDEA

The reflected light from the film is brightest at the wave-
lengths l for which the reflected rays are in phase with one
another. The equation relating these wavelengths l to the
given film thickness L and film index of refraction n2 is
either Eq. 35-36 or Eq. 35-37, depending on the reflection
phase shifts for this particular film.

Calculations: To determine which equation is needed, we
should fill out an organizing table like Table 35-1. However,
because there is air on both sides of the water film, the situa-
tion here is exactly like that in Fig. 35-17, and thus the table
would be exactly like Table 35-1. Then from Table 35-1, we

Additional examples, video, and practice available at WileyPLUS
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This leads to Eq. 35-36 (for a bright film sandwiched in air
but for a dark film in the arrangement here). Solving that
equation for L then gives us the film thicknesses that will
eliminate reflection from the lens and coating:

(35-38)

We want the least thickness for the coating—that is, the
smallest value of L.Thus, we choose m � 0, the smallest pos-
sible value of m. Substituting it and the given data in Eq.
35-38, we obtain

(Answer)L �
l

4n2
�

550 nm
(4)(1.38)

� 99.6 nm.

L � (m � 1
2 )

l

2n2
,  for m � 0, 1, 2, . . . .

Sample Problem 35.06 Thin-film interference of a coating on a glass lens

In Fig. 35-19, a glass lens is coated on one side with a thin
film of magnesium fluoride (MgF2) to reduce reflection
from the lens surface. The index of refraction of MgF2 is
1.38; that of the glass is 1.50. What is the least coating thick-
ness that eliminates (via interference) the reflections at the
middle of the visible spectrum (l � 550 nm)? Assume that
the light is approximately perpendicular to the lens surface.

KEY IDEA

Reflection is eliminated if the film thickness L is such that
light waves reflected from the two film interfaces are exactly
out of phase. The equation relating L to the given wave-
length l and the index of refraction n2 of the thin film is ei-
ther Eq. 35-36 or Eq. 35-37, depending on the reflection
phase shifts at the interfaces.

Calculations: To determine which equation is needed, we
fill out an organizing table like Table 35-1. At the first inter-
face, the incident light is in air, which has a lesser index of
refraction than the MgF2 (the thin film). Thus, we fill in 0.5
wavelength under r1 in our organizing table (meaning that
the waves of ray r1 are shifted by 0.5l at the first interface).
At the second interface, the incident light is in the MgF2,
which has a lesser index of refraction than the glass on the
other side of the interface. Thus, we fill in 0.5 wavelength
under r2 in our table.

Because both reflections cause the same phase shift,
they tend to put the waves of r1 and r2 in phase. Since we
want those waves to be out of phase, their path length differ-
ence 2L must be an odd number of half-wavelengths:

2L �
odd number

2
	

l

n2
.

Figure 35-19 Unwanted reflections from glass can be suppressed
(at a chosen wavelength) by coating the glass with a thin
transparent film of magnesium fluoride of the properly chosen
thickness.

Glass
n3 = 1.50 

MgF2
n2 = 1.38 

Air
n1 = 1.00 

r1

r2

θ 

L

a
b

c

i

θ 

Both reflection phase shifts
are 0.5 wavelength. So, only
the path length difference
determines the interference.

KEY IDEAS

(1) The brightness at any point along the left–right length of
the air wedge is due to the interference of the waves
reflected at the top and bottom interfaces of the wedge.
(2) The variation of brightness in the pattern of bright and
dark fringes is due to the variation in the thickness of the
wedge. In some regions, the thickness puts the reflected
waves in phase and thus produces a bright reflection 
(a bright red fringe). In other regions, the thickness puts the
reflected waves out of phase and thus produces no reflec-
tion (a dark fringe).

Organizing the reflections: Because the observer sees
more dark fringes than bright fringes, we can assume that a
dark fringe is produced at both the left and right ends of

Sample Problem 35.07 Thin-film interference of a transparent wedge

Figure 35-20a shows a transparent plastic block with a thin
wedge of air at the right. (The wedge thickness is exagger-
ated in the figure.) A broad beam of red light, with wave-
length l � 632.8 nm, is directed downward through the top
of the block (at an incidence angle of 0°). Some of the light
that passes into the plastic is reflected back up from the
top and bottom surfaces of the wedge, which acts as a thin
film (of air) with a thickness that varies uniformly and
gradually from LL at the left-hand end to LR at the right-
hand end. (The plastic layers above and below the wedge
of air are too thick to act as thin films.) An observer look-
ing down on the block sees an interference pattern consist-
ing of six dark fringes and five bright red fringes along the
wedge. What is the change in thickness �L (� LR � LL)
along the wedge?
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A

LL LR L

n1

n2

mL mL +1 mL + 3

mL + 2

mL + 5

mL + 4

n3

r1
r2

i

Overhead incident light

Side view

Overhead view

(a)

(b)

(c)

n1 plastic
(higher index)Reflection

shifts:

n2 air (low index)

n3 plastic

r1
r2

LL

i

(d) (f )

(e)

0.5λ

We want the reflected waves
to be out of phase. They
already are out of phase
because of the reflection
shifts. So, we don’t want
the path length difference
2L to change that. Thus,
2L = (integer)l/n2.

Here again, the waves are
already out of phase by the
reflection shifts. So, the
path length difference must
be 2L = (integer)l/n2, but 
with the larger L.

Total reflection
shift = 0.5
wavelength.
So, the reflections
put the waves
out of phase.

0

r1
r2

LR

i

This dark fringe is due to fully
destructive interference. So,
the reflected rays must be
out of phase.

Here too, the dark fringe
means that the reflected
waves are out of phase.

The path length
difference (down
and back up) is 2L.

The path length
difference is 2L
here too but the
L is larger.

Organizing Table

Reflection
phase
shifts

r1 r2

0.5
wavelength

0

Path length 
difference 2L

Figure 35-20 (a) Red light is incident on a thin, air-filled wedge in the side of a transparent plastic block.The thickness of the
wedge is LL at the left end and LR at the right end. (b) The view from above the block: an interference pattern of six dark fringes
and five bright red fringes lies over the region of the wedge. (c) A representation of the incident ray i, reflected rays r1 and r2, and
thickness L of the wedge anywhere along the length of the wedge.The reflection rays at the (d) left and (f ) right ends of the
wedge and (e) their organizing table.
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Additional examples, video, and practice available at WileyPLUS

the wedge. Thus, the interference pattern is that shown in
Fig. 35-20b.

We can represent the reflection of light at the top and
bottom interfaces of the wedge, at any point along its length,
with Fig. 35-20c, in which L is the wedge thickness at that
point. Let us apply this figure to the left end of the wedge,
where the reflections give a dark fringe.

We know that, for a dark fringe, the waves of rays r1

and r2 in Fig. 35-20d must be out of phase. We also know
that the equation relating the film thickness L to the light’s
wavelength l and the film’s index of refraction n2 is either
Eq. 35-36 or Eq. 35-37, depending on the reflection phase
shifts. To determine which equation gives a dark fringe at
the left end of the wedge, we should fill out an organizing
table like Table 35-1, as shown in Fig. 35-20e.

At the top interface of the wedge, the incident light is in
the plastic, which has a greater n than the air beneath that in-
terface. So, we fill in 0 under r1 in our organizing table.At the
bottom interface of the wedge, the incident light is in air,
which has a lesser n than the plastic beneath that interface.
So we fill in 0.5 wavelength under r2. So, the phase difference
due to the reflection shifts is 0.5 wavelength. Thus the reflec-
tions alone tend to put the waves of r1 and r2 out of phase.

Reflections at left end (Fig. 35-20d): Because we see a
dark fringe at the left end of the wedge, which the reflection
phase shifts alone would produce, we don’t want the path
length difference to alter that condition. So, the path length
difference 2L at the left end must be given by

2L � integer 	
l

n2
,

which leads to Eq. 35-37:

(35-39)

Reflections at right end (Fig. 35-20f): Equation 35-39
holds not only for the left end of the wedge but also for any
point along the wedge where a dark fringe is observed, in-
cluding the right end, with a different integer value of m for
each fringe. The least value of m is associated with the least
thickness of the wedge where a dark fringe is observed.
Progressively greater values of m are associated with pro-
gressively greater thicknesses of the wedge where a dark
fringe is observed. Let mL be the value at the left end. Then
the value at the right end must be mL � 5 because, from
Fig. 35-20b, the right end is located at the fifth dark fringe
from the left end.

Thickness difference: To find �L, we first solve Eq. 35-39
twice—once for the thickness LL at the left end and once
for the thickness LR at the right end:

(35-40)

We can now subtract LL from LR and substitute n2 � 1.00
for the air within the wedge and l = 632.8 	 10�9 m:

(Answer)� 1.58 	 10�6 m.

�L � LR � LL �
(mL � 5)l

2n2
�

mLl

2n2
�

5
2

l

n2

LL � (mL)
l

2n2
,  LR � (mL � 5)

l

2n2
.

2L � m
l

n2
,  for m � 0, 1, 2, . . . .

35-5 MICHELSON’S INTERFEROMETER

After reading this module, you should be able to . . .

35.35 With a sketch, explain how an interferometer 
works.

35.36 When a transparent material is inserted into one of
the beams in an interferometer, apply the relationship
between the phase change of the light (in terms of

wavelength) and the material’s thickness and index of
refraction.

35.37 For an interferometer, apply the relationship between
the distance a mirror is moved and the resulting fringe shift
in the interference pattern.

Learning Objectives

● In Michelson’s interferometer, a light wave is split into two
beams that then recombine after traveling along different
paths.

● The interference pattern they produce depends on the
difference in the lengths of those paths and the indexes of
refraction along the paths.

● If a transparent material of index n and thickness L is in
one path, the phase difference (in terms of wavelength) in
the recombining beams is equal to

phase difference

where l is the wavelength of the light.

�
2L
l

 (n � 1),

Key Ideas
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Michelson’s Interferometer
An interferometer is a device that can be used to measure lengths or changes in
length with great accuracy by means of interference fringes.We describe the form
originally devised and built by A.A. Michelson in 1881.

Consider light that leaves point P on extended source S in Fig. 35-21 and
encounters beam splitter M. A beam splitter is a mirror that transmits half the
incident light and reflects the other half. In the figure we have assumed, for
convenience, that this mirror possesses negligible thickness. At M the light thus
divides into two waves. One proceeds by transmission toward mirror M1 at the
end of one arm of the instrument; the other proceeds by reflection toward mirror
M2 at the end of the other arm. The waves are entirely reflected at these mirrors
and are sent back along their directions of incidence, each wave eventually
entering telescope T. What the observer sees is a pattern of curved or approxi-
mately straight interference fringes; in the latter case the fringes resemble the
stripes on a zebra.

Mirror Shift. The path length difference for the two waves when they re-
combine at the telescope is 2d2 � 2d1, and anything that changes this path length
difference will cause a change in the phase difference between these two waves at
the eye. As an example, if mirror M2 is moved by a distance , the path length
difference is changed by l and the fringe pattern is shifted by one fringe (as if
each dark stripe on a zebra had moved to where the adjacent dark stripe had
been). Similarly, moving mirror M2 by causes a shift by half a fringe (each dark
zebra stripe shifts to where the adjacent white stripe had been).

Insertion. A shift in the fringe pattern can also be caused by the insertion of
a thin transparent material into the optical path of one of the mirrors—say, M1. If
the material has thickness L and index of refraction n, then the number of wave-
lengths along the light’s to-and-fro path through the material is, from Eq. 35-7,

(35-41)

The number of wavelengths in the same thickness 2L of air before the insertion
of the material is

(35-42)

When the material is inserted, the light returned from mirror M1 undergoes a
phase change (in terms of wavelengths) of

(35-43)

For each phase change of one wavelength, the fringe pattern is shifted by one
fringe.Thus, by counting the number of fringes through which the material causes
the pattern to shift, and substituting that number for Nm � Na in Eq. 35-43, you
can determine the thickness L of the material in terms of l.

Standard of Length. By such techniques the lengths of objects can be ex-
pressed in terms of the wavelengths of light. In Michelson’s day, the standard of
length — the meter — was the distance between two fine scratches on a certain
metal bar preserved at Sèvres, near Paris. Michelson showed, using his interfer-
ometer, that the standard meter was equivalent to 1 553 163.5 wavelengths of a
certain monochromatic red light emitted from a light source containing cad-
mium. For this careful measurement, Michelson received the 1907 Nobel Prize
in physics. His work laid the foundation for the eventual abandonment (in
1961) of the meter bar as a standard of length and for the redefinition of the
meter in terms of the wavelength of light. By 1983, even this wavelength stan-
dard was not precise enough to meet the growing technical needs, and it was re-
placed with a new standard based on a defined value for the speed of light.

Nm � Na �
2Ln

l
�

2L
l

�
2L
l

 (n � 1).

Na �
2L
l

.

Nm �
2L
ln

�
2Ln

l
.

1
4l

1
2l

Movable
mirror

M2

d2

P

S

M d1

M1

T

Arm 1 

Arm 2 

The interference 
at the eye
depends on the 
path length
difference and 
the index of any 
inserted material.

Figure 35-21 Michelson’s interferometer,
showing the path of light originating at
point P of an extended source S. Mirror M
splits the light into two beams, which re-
flect from mirrors M1 and M2 back to M
and then to telescope T. In the telescope
an observer sees a pattern of interference
fringes.
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Huygens’ Principle The three-dimensional transmission of
waves, including light, may often be predicted by Huygens’ princi-
ple, which states that all points on a wavefront serve as point
sources of spherical secondary wavelets.After a time t, the new po-
sition of the wavefront will be that of a surface tangent to these
secondary wavelets.

The law of refraction can be derived from Huygens’ principle
by assuming that the index of refraction of any medium is n � c/v,
in which v is the speed of light in the medium and c is the speed of
light in vacuum.

Wavelength and Index of Refraction The wavelength ln

of light in a medium depends on the index of refraction n of the
medium:

(35-6)

in which l is the wavelength in vacuum. Because of this dependency,
the phase difference between two waves can change if they pass
through different materials with different indexes of refraction.

Young’s Experiment In Young’s interference experiment,
light passing through a single slit falls on two slits in a screen. The
light leaving these slits flares out (by diffraction), and interference
occurs in the region beyond the screen.A fringe pattern, due to the
interference, forms on a viewing screen.

The light intensity at any point on the viewing screen depends
in part on the difference in the path lengths from the slits to that
point. If this difference is an integer number of wavelengths, the
waves interfere constructively and an intensity maximum results.
If it is an odd number of half-wavelengths, there is destructive in-
terference and an intensity minimum occurs. The conditions for
maximum and minimum intensity are

d sin u � ml, for m � 0, 1, 2, . . .
(maxima—bright fringes), (35-14)

(minima—dark fringes), (35-16)

where u is the angle the light path makes with a central axis and d
is the slit separation.

d sin u � (m � 1
2 )l,  for m � 0, 1, 2, . . .

ln �
l

n
,

Review & Summary

Coherence If two light waves that meet at a point are to interfere
perceptibly, the phase difference between them must remain constant
with time; that is, the waves must be coherent. When two coherent
waves meet, the resulting intensity may be found by using phasors.

Intensity in Two-Slit Interference In Young’s interference
experiment, two waves, each with intensity I 0, yield a resultant
wave of intensity I at the viewing screen, with

(35-22, 35-23)

Equations 35-14 and 35-16, which identify the positions of the
fringe maxima and minima, are contained within this relation.

Thin-Film Interference When light is incident on a thin
transparent film, the light waves reflected from the front and back
surfaces interfere. For near-normal incidence, the wavelength con-
ditions for maximum and minimum intensity of the light reflected
from a film in air are

(maxima—bright film in air), (35-36)

(minima—dark film in air), (35-37)

where n2 is the index of refraction of the film, L is its thickness, and
l is the wavelength of the light in air.

If the light incident at an interface between media with dif-
ferent indexes of refraction is in the medium with the smaller
index of refraction, the reflection causes a phase change of p
rad, or half a wavelength, in the reflected wave. Otherwise, there
is no phase change due to the reflection. Refraction causes no
phase shift.

The Michelson Interferometer In Michelson’s interferom-
eter a light wave is split into two beams that, after traversing paths
of different lengths, are recombined so they interfere and form a
fringe pattern. Varying the path length of one of the beams allows
distances to be accurately expressed in terms of wavelengths of
light, by counting the number of fringes through which the pattern
shifts because of the change.

2L � m
l

n2
,  for m � 0, 1, 2, . . .

2L � (m � 1
2 )

l

n2
,  for m � 0, 1, 2, . . .

I � 4I0 cos2 1
2 f,  where f �

2pd
l

 sin u.

1 Does the spacing between fringes in a two-slit interference pat-
tern increase, decrease, or stay the same if (a) the slit separation is
increased, (b) the color of the light is switched from red to blue,
and (c) the whole apparatus is submerged in cooking sherry? (d) If
the slits are illuminated with white light, then at any side maxi-
mum, does the blue component or the red component peak closer
to the central maximum?

2 (a) If you move from one bright fringe in a two-slit interference
pattern to the next one farther out, (b) does the path length differ-
ence �L increase or decrease and (c) by how much does it change,
in wavelengths l?

3 Figure 35-22 shows two light rays that are initially exactly in
phase and that reflect from several glass surfaces. Neglect the

Questions

slight slant in the path of the light in
the second arrangement. (a) What is
the path length difference of the
rays? In wavelengths l, (b) what
should that path length difference
equal if the rays are to be exactly
out of phase when they emerge,
and (c) what is the smallest value of
d that will allow that final phase
difference?

4 In Fig. 35-23, three pulses of
light—a, b, and c—of the same
wavelength are sent through layers

Figure 35-22 Question 3.

d

d d

Figure 35-23 Question 4.

a

b

c

1.60

1.50

1.55
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of plastic having the given indexes of refraction and along the
paths indicated. Rank the pulses according to their travel time
through the plastic layers, greatest first.

5 Is there an interference maximum, a minimum, an intermedi-
ate state closer to a maximum, or an intermediate state closer to a
minimum at point P in Fig. 35-10 if the path length difference of
the two rays is (a) 2.2l, (b) 3.5l, (c) 1.8l, and (d) 1.0l? For each
situation, give the value of m associated with the maximum or
minimum involved.

6 Figure 35-24a gives intensity I versus position x on the viewing
screen for the central portion of a two-slit interference pattern.
The other parts of the figure give phasor diagrams for the electric
field components of the waves arriving at the screen from the two
slits (as in Fig. 35-13a). Which numbered points on the screen best
correspond to which phasor diagram?

8 Figure 35-26 shows two rays of
light, of wavelength 600 nm, that re-
flect from glass surfaces separated
by 150 nm. The rays are initially in
phase. (a) What is the path length
difference of the rays? (b) When
they have cleared the reflection re-
gion, are the rays exactly in phase,
exactly out of phase, or in some intermediate state?

9 Light travels along the length of a 1500-nm-long nanostructure.
When a peak of the wave is at one end of the nanostructure, is
there a peak or a valley at the other end if the wavelength is (a) 500
nm and (b) 1000 nm?

Figure 35-24 Question 6.

Central
fringe

I

1 2 3 

(a) (b)

4 5 
x

(c) (d)

Figure 35-25 Question 7.

1 3 

2
StartStart

S1 S2

10 Figure 35-27a shows the cross
section of a vertical thin film whose
width increases downward because
gravitation causes slumping. Figure
35-27b is a face-on view of the film,
showing four bright (red) interfer-
ence fringes that result when the
film is illuminated with a perpendi-
cular beam of red light. Points in
the cross section corresponding to the bright fringes are labeled.
In terms of the wavelength of the light inside the film, what is the
difference in film thickness between (a) points a and b and (b)
points b and d?

11 Figure 35-28 shows four situations in which light reflects per-
pendicularly from a thin film of thickness L sandwiched between
much thicker materials. The indexes of refraction are given. In
which situations does Eq. 35-36 correspond to the reflections yield-
ing maxima (that is, a bright film)?

13 Figure 35-30 shows three situations in which two rays of sun-
light penetrate slightly into and then scatter out of lunar soil.
Assume that the rays are initially in phase. In which situation are
the associated waves most likely to end up in phase? (Just as the
Moon becomes full, its brightness suddenly peaks, becoming 25%
greater than its brightness on the nights before and after, because
at full Moon we intercept light waves that are scattered by lunar
soil back toward the Sun and undergo constructive interference at
our eyes. Before astronauts first landed on the Moon, NASA was
concerned that backscatter of sunlight from the soil might blind
the lunar astronauts if they did not have proper viewing shields on
their helmets.)

7 Figure 35-25 shows two sources S1 and S2 that emit radio waves
of wavelength l in all directions. The sources are exactly in phase
and are separated by a distance equal to 1.5l. The vertical broken
line is the perpendicular bisector of the distance between the
sources. (a) If we start at the indicated start point and travel along
path 1, does the interference produce a maximum all along the
path, a minimum all along the path, or alternating maxima and
minima? Repeat for (b) path 2 (along an axis through the sources)
and (c) path 3 (along a perpendicular to that axis).

Figure 35-26 Question 8.

150 nm 

a

b

c

d

(a) (b)

Figure 35-27 Question 10.

Figure 35-28 Question 11.

1.6

1.4

1.8

L 1.6

1.8

1.4

1.3

1.5

1.4

1.6

1.4

1.5

L

(a) (b) (c) (d)

Figure 35-30 Question 13.

(a) (b) (c)

12 Figure 35-29 shows the transmission of light through a thin film
in air by a perpendicular beam (tilted in the figure for clarity). (a) Did
ray r3 undergo a phase shift due to reflection? (b) In wavelengths,
what is the reflection phase shift for ray r4? (c) If the film thickness is
L, what is the path length difference between rays r3 and r4?

Figure 35-29 Question 12.

Incident
light

r4

r3



•7 The speed of yellow light (from a sodium lamp) in a certain
liquid is measured to be 1.92 	 108 m/s.What is the index of refrac-
tion of this liquid for the light?

•8 In Fig. 35-33, two light pulses
are sent through layers of plastic
with thicknesses of either L or 2L
as shown and indexes of refraction
n1 � 1.55, n2 � 1.70, n3 � 1.60, n4 �
1.45, n5 � 1.59, n6 � 1.65, and n7 �
1.50. (a) Which pulse travels
through the plastic in less time?
(b) What multiple of L/c gives the difference in the traversal
times of the pulses?

••9 In Fig. 35-4, assume that the two light waves, of wavelength
620 nm in air, are initially out of phase by p rad. The indexes of
refraction of the media are n1 � 1.45 and n2 � 1.65. What are the
(a) smallest and (b) second smallest value of L that will put the
waves exactly in phase
once they pass through
the two media?

••10 In Fig. 35-34, a
light ray is incident at an-
gle u1 � 50° on a series of
five transparent layers
with parallel boundaries.
For layers 1 and 3, L1 �
20 mm, L3 � 25 mm, n1 �
1.6, and n3 � 1.45. (a) At
what angle does the light emerge back into air at the right? (b) How
much time does the light take to travel through layer 3?

••11 Suppose that the two waves in Fig. 35-4 have wavelength 
l � 500 nm in air. What multiple of l gives their phase difference
when they emerge if (a) n1 � 1.50, n2 � 1.60, and L � 8.50 mm;
(b) n1 � 1.62, n2 � 1.72, and L � 8.50 mm; and (c) n1 � 1.59, n2 �
1.79, and L � 3.25 mm? (d) Suppose that in each of these three
situations the waves arrive at a common point (with the same ampli-
tude) after emerging. Rank the situa-
tions according to the brightness the
waves produce at the common point.

••12 In Fig. 35-35, two light rays go
through different paths by reflecting
from the various flat surfaces
shown.The light waves have a wave-
length of 420.0 nm and are initially
in phase. What are the (a) smallest
and (b) second smallest value of dis-
tance L that will put the waves ex-
actly out of phase as they emerge
from the region?

••13 Two waves of light in
air, of wavelength l 600.0 nm,
are initially in phase. They then

�
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Figure 35-32 Problem 4.

30° 

30° 

20° 

40° 

2n2

n2

n1

θ 

2θ 

(a) (b)

na nb

Figure 35-35 Problems 12 
and 98.

Ray 2 

Ray 1 

L

L

L

L

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 35-1 Light as a Wave
•1 In Fig. 35-31, a light wave along
ray r1 reflects once from a mirror and
a light wave along ray r2 reflects twice
from that same mirror and once from
a tiny mirror at distance L from the
bigger mirror. (Neglect the slight tilt
of the rays.) The waves have wave-
length 620 nm and are initially in phase. (a) What is the smallest value
of L that puts the final light waves exactly out of phase? (b) With the
tiny mirror initially at that value of L, how far must it be moved away
from the bigger mirror to again put the final waves out of phase?

•2 In Fig. 35-31, a light wave along ray r1 reflects once from a
mirror and a light wave along ray r2 reflects twice from that same
mirror and once from a tiny mirror at distance L from the bigger
mirror. (Neglect the slight tilt of the rays.) The waves have wave-
length l and are initially exactly out of phase. What are the
(a) smallest, (b) second smallest, and (c) third smallest values of
L/l that result in the final waves being exactly in phase?

•3 In Fig. 35-4, assume that two waves of light in air, of
wavelength 400 nm, are initially in phase. One travels through a glass
layer of index of refraction n1 � 1.60 and thickness L. The other
travels through an equally thick plastic layer of index of refraction
n2 � 1.50. (a) What is the smallest value L should have if the waves
are to end up with a phase difference of 5.65 rad? (b) If the waves
arrive at some common point with the same amplitude, is their inter-
ference fully constructive, fully destructive, intermediate but closer
to fully constructive, or intermediate but closer to fully destructive?

•4 In Fig. 35-32a, a beam of light in material 1 is incident on a
boundary at an angle of 30°. The extent to which the light is bent
due to refraction depends, in part, on the index of refraction n2 of
material 2. Figure 35-32b gives the angle of refraction u2 versus n2

for a range of possible n2 values, from na � 1.30 to nb � 1.90. What
is the speed of light in material 1?

SSM

Figure 35-31 Problems 1 and 2.

r2

r1

L

•5 How much faster, in meters per second, does light travel in
sapphire than in diamond? See Table 33-1.

•6 The wavelength of yellow sodium light in air is 589 nm. (a)
What is its frequency? (b) What is its wavelength in glass whose in-
dex of refraction is 1.52? (c) From the results of (a) and (b), find its
speed in this glass.

Figure 35-33 Problem 8.

L

Pulse
2

Pulse
1

n1 n2 n3 n4

n5 n6 n7

L L L

n1 n3Air Air 

L1

1

L3

θ 

Figure 35-34 Problem 10.
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both travel through a layer of plastic as
shown in Fig. 35-36, with L1 � 4.00 mm,
L2 � 3.50 mm, n1 � 1.40, and n2 � 1.60.
(a) What multiple of l gives their
phase difference after they both have
emerged from the layers? (b) If the
waves later arrive at some common
point with the same amplitude, is their
interference fully constructive, fully de-
structive, intermediate but closer to
fully constructive,or intermediate but closer to fully destructive?

Module 35-2 Young’s Interference Experiment
•14 In a double-slit arrangement the slits are separated by a distance
equal to 100 times the wavelength of the light passing through the slits.
(a) What is the angular separation in radians between the central max-
imum and an adjacent maximum? (b) What is the distance between
these maxima on a screen 50.0 cm from the slits?

•15 A double-slit arrangement produces interference fringes
for sodium light (l 589 nm) that have an angular separation of
3.50 	 10�3 rad. For what wavelength would the angular separation
be 10.0% greater?

•16 A double-slit arrangement produces interference fringes for
sodium light (l � 589 nm) that are 0.20° apart. What is the angular
separation if the arrangement is immersed in water (n � 1.33)?

•17 In Fig. 35-37, two radio-
frequency point sources S1 and S2, sep-
arated by distance d 2.0 m, are radi-
ating in phase with l � 0.50 m. A
detector moves in a large circular path
around the two sources in a plane con-
taining them. How many maxima does it detect?

•18 In the two-slit experiment of Fig.35-10, let angle u be 20.0°, the slit
separation be 4.24 mm, and the wavelength be l � 500 nm. (a) What
multiple of l gives the phase difference between the waves of rays r1

and r2 when they arrive at point P on the distant screen? (b) What is the
phase difference in radians? (c) Determine where in the interference
pattern point P lies by giving the maximum or minimum on which it
lies,or the maximum and minimum between which it lies.

•19 Suppose that Young’s experiment is performed
with blue-green light of wavelength 500 nm. The slits are 1.20 mm
apart, and the viewing screen is 5.40 m from the slits. How far apart
are the bright fringes near the center of the interference pattern?

•20 Monochromatic green light, of wavelength 550 nm, illumi-
nates two parallel narrow slits 7.70 mm apart. Calculate the angular
deviation (u in Fig. 35-10) of the third-order (m � 3) bright fringe
(a) in radians and (b) in degrees.

••21 In a double-slit experiment, the distance between slits is
5.0 mm and the slits are 1.0 m from the screen. Two interference
patterns can be seen on the screen: one due to light of wavelength
480 nm, and the other due to light of wavelength 600 nm. What is
the separation on the screen between the third-order (m � 3)
bright fringes of the two interference patterns?

••22 In Fig. 35-37, two isotropic point sources S1 and S2 emit identical
light waves in phase at wavelength l.The sources lie at separation d on
an x axis, and a light detector is moved in a circle of large radius around
the midpoint between them. It detects 30 points of zero intensity, in-
cluding two on the x axis, one of them to the left of the sources and the
other to the right of the sources.What is the value of d/l?

ILWSSM
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••23 In Fig. 35-38, sources A and B
emit long-range radio waves of wave-
length 400 m, with the phase of the
emission from A ahead of that from
source B by 90°. The distance rA from A
to detector D is greater than the corre-
sponding distance rB by 100 m. What is
the phase difference of the waves at D?

••24 In Fig. 35-39, two isotropic point
sources S1 and S2 emit light in phase at
wavelength l and at the same ampli-
tude. The sources are separated by dis-
tance 2d � 6.00l. They lie on an axis
that is parallel to an x axis, which runs
along a viewing screen at distance D �
20.0l. The origin lies on the perpendicu-
lar bisector between the sources. The
figure shows two rays reaching point P
on the screen, at position xP. (a) At what value of xP do the rays
have the minimum possible phase difference? (b) What multiple of
l gives that minimum phase difference? (c) At what value of xP do
the rays have the maximum possible phase difference? What mul-
tiple of l gives (d) that maximum phase difference and (e) the
phase difference when xP � 6.00l? (f) When xP � 6.00l, is the re-
sulting intensity at point P maximum, minimum, intermediate but
closer to maximum, or intermediate but closer to minimum?

••25 In Fig. 35-40, two isotropic
point sources of light (S1 and S2) are
separated by distance 2.70 mm along a
y axis and emit in phase at wavelength
900 nm and at the same amplitude. A
light detector is located at point P at
coordinate xP on the x axis. What is
the greatest value of xP at which the
detected light is minimum due to destructive interference?

••26 In a double-slit experiment, the fourth-order maximum for a
wavelength of 450 nm occurs at an angle of u � 90°. (a) What range
of wavelengths in the visible range (400 nm to 700 nm) are not
present in the third-order maxima? To eliminate all visible light in
the fourth-order maximum, (b) should the slit separation be in-
creased or decreased and (c) what least change is needed?

•••27 A thin flake of mica (n � 1.58) is used to cover one slit of a
double-slit interference arrangement. The central point on the view-
ing screen is now occupied by what had been the seventh bright side
fringe (m � 7). If l � 550 nm,what is the thickness of the mica?

•••28 Figure 35-40
shows two isotropic
point sources of light
(S1 and S2) that emit in
phase at wavelength
400 nm and at the same
amplitude. A detection
point P is shown on an
x axis that extends
through source S1. The
phase difference f be-
tween the light arriving at point P from the two sources is to be mea-
sured as P is moved along the x axis from x � 0 out to x � ��.The re-
sults out to xs � 10 	 10�7 m are given in Fig. 35-41. On the way out to

Figure 35-36 Problem 13.
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Figure 35-37 Problems 17
and 22.
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Figure 35-38 Problem 23.

Figure 35-39 Problem 24.
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Figure 35-40 Problems 25
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Figure 35-41 Problem 28.
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��,what is the greatest value of x at which the light arriving at P from
S1 is exactly out of phase with the light arriving at P from S2?

Module 35-3 Interference and Double-Slit Intensity
•29 Two waves of the same frequency have amplitudes 1.00
and 2.00. They interfere at a point where their phase difference is
60.0°.What is the resultant amplitude?

•30 Find the sum y of the following quantities:

y1 � 10 sin vt and y2 � 8.0 sin(vt � 30°).

••31 Add the quantities y1 � 10 sin vt, y2 � 15 sin(vt � 30 ),
and y3 5.0 sin(vt 45 ) using the phasor method.

••32 In the double-slit experiment of Fig. 35-10, the electric
fields of the waves arriving at point P are given by

E1 � (2.00 mV/m) sin[(1.26 	 1015)t]

E2 � (2.00 mV/m) sin[(1.26 	 1015)t � 39.6 rad],

where time t is in seconds. (a) What is the amplitude of the
resultant electric field at point P? (b) What is the ratio of the
intensity IP at point P to the intensity Icen at the center of the inter-
ference pattern? (c) Describe where point P is in the interference
pattern by giving the maximum or minimum on which it lies, or the
maximum and minimum between which it lies. In a phasor diagram
of the electric fields, (d) at what rate would the phasors rotate
around the origin and (e) what is the angle between the phasors?

••33 Three electromagnetic waves travel through a certain point
P along an x axis. They are polarized parallel to a y axis, with the fol-
lowing variations in their amplitudes. Find their resultant at P.

E1 � (10.0 mV/m) sin[(2.0 	 1014 rad/s)t]

E2 � (5.00 mV/m) sin[(2.0 	 1014 rad/s)t � 45.0°]

E3 � (5.00 mV/m) sin[(2.0 	 1014 rad/s)t � 45.0°]

••34 In the double-slit experiment of Fig. 35-10, the viewing
screen is at distance D � 4.00 m, point P lies at distance y � 20.5
cm from the center of the pattern, the slit separation d is 4.50 mm,
and the wavelength l is 580 nm. (a) Determine where point P is in
the interference pattern by giving the maximum or minimum on
which it lies, or the maximum and minimum between which it lies.
(b) What is the ratio of the intensity IP at point P to the intensity
Icen at the center of the pattern?

Module 35-4 Interference from Thin
Films
•35 We wish to coat flat glass (n �
1.50) with a transparent material (n 1.25)
so that reflection of light at wavelength 600
nm is eliminated by interference. What mini-
mum thickness can the coating have to do
this?

•36 A 600-nm-thick soap film (n � 1.40) in
air is illuminated with white light in a direc-
tion perpendicular to the film. For how many
different wavelengths in the 300 to 700 nm
range is there (a) fully constructive interfer-
ence and (b) fully destructive interference in
the reflected light?

•37 The rhinestones in costume jewelry are
glass with index of refraction 1.50. To make
them more reflective, they are often coated

�
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with a layer of silicon monoxide of index of refraction 2.00.What is
the minimum coating thickness needed to ensure that light of
wavelength 560 nm and of perpendicular incidence will be re-
flected from the two surfaces of the coating with fully constructive
interference?

•38 White light is sent downward onto a horizontal thin film that
is sandwiched between two materials. The indexes of refraction
are 1.80 for the top material, 1.70 for the thin film, and 1.50 for the
bottom material. The film thickness is 5.00 	 10�7 m. Of the visi-
ble wavelengths (400 to 700 nm) that result in fully constructive
interference at an observer above the film, which is the (a) longer
and (b) shorter wavelength? The materials and film are then
heated so that the film thickness increases. (c) Does the light re-
sulting in fully constructive interference shift toward longer or
shorter wavelengths?

•39 Light of wavelength 624 nm is incident perpendicularly
on a soap film (n 1.33) suspended in air. What are the (a) least
and (b) second least thicknesses of the film for which the reflec-
tions from the film undergo fully constructive interference?

••40 A thin film of acetone (n 1.25) coats a thick glass plate 
(n � 1.50). White light is incident normal to the film. In the reflec-
tions, fully destructive interference occurs at 600 nm and fully
constructive interference at 700 nm. Calculate the thickness of the
acetone film.

••41 through 52 43, 51 47, 51
Reflection by thin layers. In Fig. 35-42,
light is incident perpendicularly on a thin
layer of material 2 that lies between
(thicker) materials 1 and 3. (The rays are
tilted only for clarity.) The waves of rays
r1 and r2 interfere, and here we consider
the type of interference to be either
maximum (max) or minimum (min). For
this situation, each problem in Table 35-
2 refers to the indexes of refraction n1, n2, and n3, the type of in-
terference, the thin-layer thickness L in nanometers, and
the wavelength l in nanometers of the light as measured in air.
Where l is missing, give the wavelength that is in the visible
range. Where L is missing, give the second least thickness or the
third least thickness as indicated.

SSM
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n2n1 n3

L

r1

i

r2

Figure 35-42 Problems 41
through 52.

Table 35-2 Problems 41 through 52: Reflection by Thin Layers. See the setup for
these problems.

n1 n2 n3 Type L l

41 1.68 1.59 1.50 min 2nd 342
42 1.55 1.60 1.33 max 285
43 1.60 1.40 1.80 min 200
44 1.50 1.34 1.42 max 2nd 587
45 1.55 1.60 1.33 max 3rd 612
46 1.68 1.59 1.50 min 415
47 1.50 1.34 1.42 min 380
48 1.60 1.40 1.80 max 2nd 632
49 1.32 1.75 1.39 max 3rd 382
50 1.40 1.46 1.75 min 2nd 482
51 1.40 1.46 1.75 min 210
52 1.32 1.75 1.39 max 325
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of interference, the thin-layer thickness L in nanometers, and
the wavelength l in nanometers of the light as measured in air.
Where l is missing, give the wavelength that is in the visible range.
Where L is missing, give the second least thickness or the third
least thickness as indicated.

••69 In Fig. 35-44, a broad beam
of light of wavelength 630 nm is inci-
dent at 90° on a thin, wedge-shaped
film with index of refraction 1.50.
Transmission  gives 10 bright and 9
dark fringes along the film’s length.
What is the left-to-right change in film
thickness?

••70 In Fig. 35-45, a broad beam of
light of wavelength 620 nm is sent di-
rectly downward through the top plate
of a pair of glass plates touching at the
left end. The air between the plates
acts as a thin film, and an interference
pattern can be seen from above the
plates. Initially, a dark fringe lies at the
left end, a bright fringe lies at the right
end, and nine dark fringes lie between
those two end fringes. The plates are
then very gradually squeezed together at a constant rate to
decrease the angle between them. As a result, the fringe at the
right side changes between being bright to being dark every 15.0
s. (a) At what rate is the spacing between the plates at the right
end being changed? (b) By how much has the spacing there
changed when both left and right ends have a dark fringe and
there are five dark fringes between them?

••71 In Fig. 35-45, two microscope slides touch at one end and are
separated at the other end. When light of wavelength 500 nm
shines vertically down on the slides, an overhead observer sees an
interference pattern on the slides with the dark fringes separated
by 1.2 mm.What is the angle between the slides?

••72 In Fig. 35-45, a broad beam of monochromatic light is
directed perpendicularly through two glass plates that are held
together at one end to create a wedge of air between them. An
observer intercepting light reflected from the wedge of air, which

acts as a thin film, sees 4001 dark fringes
along the length of the wedge. When the air
between the plates is evacuated, only 4000
dark fringes are seen. Calculate to six signifi-
cant figures the index of refraction of air
from these data.

••73 In Fig. 35-45, a broad beam of
light of wavelength 683 nm is sent directly
downward through the top plate of a pair of
glass plates. The plates are 120 mm long,
touch at the left end, and are separated by
48.0 mm at the right end. The air between the
plates acts as a thin film. How many bright
fringes will be seen by an observer looking
down through the top plate?

••74 Two rectangular glass plates (n �
1.60) are in contact along one edge and are
separated along the opposite edge
(Fig. 35-45). Light with a wavelength of 600

SSM

••53 The reflection of perpendicularly incident white light by a
soap film in air has an interference maximum at 600 nm and a min-
imum at 450 nm, with no minimum in between. If n 1.33 for the
film, what is the film thickness, assumed uniform?

••54 A plane wave of monochromatic light is incident normally
on a uniform thin film of oil that covers a glass plate. The wave-
length of the source can be varied continuously. Fully destructive
interference of the reflected light is observed for wavelengths of
500 and 700 nm and for no wavelengths in between. If the index of
refraction of the oil is 1.30 and that of the glass is 1.50, find the
thickness of the oil film.

••55 A disabled tanker leaks kerosene (n � 1.20)
into the Persian Gulf, creating a large slick on top of the water 
(n � 1.30). (a) If you are looking straight down from an airplane,
while the Sun is overhead, at a region of the slick where its thick-
ness is 460 nm, for which wavelength(s) of visible light is the reflec-
tion brightest because of constructive interference? (b) If you are
scuba diving directly under this same region of the slick, for which
wavelength(s) of visible light is the transmitted intensity strongest?

••56 A thin film, with a thickness of 272.7 nm and with air on
both sides, is illuminated with a beam of white light. The beam is
perpendicular to the film and consists of the full range of wave-
lengths for the visible spectrum. In the light reflected by the film,
light with a wavelength of 600.0 nm undergoes fully constructive
interference. At what wavelength does the reflected light undergo
fully destructive interference? (Hint: You must make a reasonable
assumption about the index of refraction.)

••57 through 68 64, 65 59
Transmission through thin layers. In
Fig. 35-43, light is incident perpendicularly
on a thin layer of material 2 that lies be-
tween (thicker) materials 1 and 3. (The rays
are tilted only for clarity.) Part of the light
ends up in material 3 as ray r3 (the light
does not reflect inside material 2) and r4

(the light reflects twice inside material 2).
The waves of r3 and r4 interfere, and here
we consider the type of interference to be either maximum
(max) or minimum (min). For this situation, each problem in
Table 35-3 refers to the indexes of refraction n1, n2, and n3, the type

SSM
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Figure 35-43
Problems 57
through 68.

n2 n1 n3 

L 

r3 i 

r4 

Table 35-3 Problems 57 through 68: Transmission Through Thin Layers. 
See the setup for these problems.

n1 n2 n3 Type L l

57 1.55 1.60 1.33 min 285
58 1.32 1.75 1.39 min 3rd 382
59 1.68 1.59 1.50 max 415
60 1.50 1.34 1.42 max 380
61 1.32 1.75 1.39 min 325
62 1.68 1.59 1.50 max 2nd 342
63 1.40 1.46 1.75 max 2nd 482
64 1.40 1.46 1.75 max 210
65 1.60 1.40 1.80 min 2nd 632
66 1.60 1.40 1.80 max 200
67 1.50 1.34 1.42 min 2nd 587
68 1.55 1.60 1.33 min 3rd 612

Figure 35-44 Problem 69.

Incident light 

Incident light 

Figure 35-45 Problems 70–74.
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Figure 35-47 Problem 78.

I

0
t (s) 

ts

Module 35-5 Michelson’s Interferometer
•79 If mirror M2 in a Michelson interferometer (Fig. 35-21) is
moved through 0.233 mm, a shift of 792 bright fringes occurs.What
is the wavelength of the light producing the fringe pattern?

•80 A thin film with index of refraction n � 1.40 is placed in one
arm of a Michelson interferometer, perpendicular to the optical
path. If this causes a shift of 7.0 bright fringes of the pattern pro-
duced by light of wavelength 589 nm, what is the film thickness?

••81 In Fig. 35-48,
an airtight chamber of length d
5.0 cm is placed in one of the arms
of a Michelson interferometer. (The
glass window on each end of the cham-
ber has negligible thickness.) Light of
wavelength l � 500 nm is used.
Evacuating the air from the chamber
causes a shift of 60 bright fringes. From
these data and to six significant figures,
find the index of refraction of air at
atmospheric pressure.

••82 The element sodium can
emit light at two wavelengths, l1 �
588.9950 nm and l2 � 589.5924 nm.
Light from sodium is being used in a
Michelson interferometer (Fig. 35-21). Through what distance
must mirror M2 be moved if the shift in the fringe pattern for one
wavelength is to be 1.00 fringe more than the shift in the fringe pat-
tern for the other wavelength?

Additional Problems
83 Two light rays, initially in
phase and with a wavelength of
500 nm, go through different paths by
reflecting from the various mirrors
shown in Fig. 35-49. (Such a reflection
does not itself produce a phase shift.)
(a) What least value of distance d will
put the rays exactly out of phase
when they emerge from the region?
(Ignore the slight tilt of the path
for ray 2.) (b) Repeat the question as-
suming that the entire apparatus is
immersed in a protein solution with
an index of refraction of 1.38.

84 In Figure 35-50, two isotropic
point sources S1 and S2 emit light in
phase at wavelength l and at the
same amplitude. The sources are
separated by distance d � 6.00l
on an x axis. A viewing screen is at
distance D � 20.0l from S2 and par-
allel to the y axis. The figure shows
two rays reaching point P on
the screen, at height yP. (a) At what
value of yP do the rays have the minimum possible phase differ-
ence? (b) What multiple of l gives that minimum phase differ-
ence? (c) At what value of yP do the rays have the maximum possi-
ble phase difference? What multiple of l gives (d) that maximum
phase difference and (e) the phase difference when yP � d? (f)
When yP � d, is the resulting intensity at point P maximum, mini-

�
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nm is incident perpendicularly onto the top plate.The air between the
plates acts as a thin film. Nine dark fringes and eight bright fringes are
observed from above the top plate. If the distance between the two
plates along the separated edges is increased by 600 nm, how many
dark fringes will there then be across the top plate?

••75 Figure 35-46a shows a lens with radius of curvature R
lying on a flat glass plate and illu-
minated from above by light with
wavelength l. Figure 35-46b (a
photograph taken from above
the lens) shows that circular in-
terference fringes (known as
Newton’s rings) appear, associ-
ated with the variable thickness d
of the air film between the lens
and the plate. Find the radii r of
the interference maxima assum-
ing .r/R � 1

ILWSSM

(b)

Air
r

R

Glass

Glass

Incident
light

d

(a)

Courtesy Bausch & Lomb

Figure 35-46
Problems
75–77.

••76 The lens in a Newton’s rings experiment (see Problem 75)  has
diameter 20 mm and radius of curvature R � 5.0 m. For l � 589 nm
in air, how many bright rings are produced with the setup (a) in air
and (b) immersed in water (n � 1.33)?

••77 A Newton’s rings apparatus is to be used to determine the
radius of curvature of a lens (see Fig. 35-46 and Problem 75). The
radii of the nth and (n � 20)th bright rings are found to be 0.162
and 0.368 cm, respectively, in light of wavelength 546 nm. Calculate
the radius of curvature of the lower surface of the lens.

•••78 A thin film of liquid is held in a horizontal circular ring,
with air on both sides of the film. A beam of light at wavelength
550 nm is directed perpendicularly onto the film, and the intensity
I of its reflection is monitored. Figure 35-47 gives intensity I as a
function of time t; the horizontal scale is set by ts � 20.0 s. The in-
tensity changes because of evaporation from the two sides of the
film. Assume that the film is flat and has parallel sides, a radius of
1.80 cm, and an index of refraction of 1.40. Also assume that the
film’s volume decreases at a constant rate. Find that rate.

Figure 35-48 Problem 81.

Source

Mirror

Mirror

To vacuum 
pump

d

Figure 35-49 Problem 83.
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Figure 35-50 Problem 84.
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mum, intermediate but closer to maximum, or intermediate but
closer to minimum?

85 A double-slit arrangement produces bright interference
fringes for sodium light (a distinct yellow light at a wavelength of
l � 589 nm). The fringes are angularly separated by 0.30° near the
center of the pattern. What is the angular fringe separation if the
entire arrangement is immersed in water, which has an index of
refraction of 1.33?

86 In Fig. 35-51a, the waves along rays 1 and 2 are initially in
phase, with the same wavelength l in air. Ray 2 goes through a ma-
terial with length L and index of refraction n. The rays are then
reflected by mirrors to a common point P on a screen. Suppose
that we can vary n from n � 1.0 to n � 2.5. Suppose also that, from
n � 1.0 to n � ns � 1.5, the intensity I of the light at point P varies
with n as given in Fig. 35-51b.At what values of n greater than 1.4 is
intensity I (a) maximum and (b) zero? (c) What multiple of l gives
the phase difference between the rays at point P when n � 2.0?

SSM

Figure 35-51 Problems 86 and 87.

L
Ray 2 

Ray 1 
P

Screen

(a) (b)

n

I

n
1 ns

87 In Fig. 35-51a, the waves
along rays 1 and 2 are initially in phase,
with the same wavelength l in air. Ray
2 goes through a material with length L
and index of refraction n. The rays are
then reflected by mirrors to a common
point P on a screen. Suppose that we
can vary L from 0 to 2400 nm. Suppose
also that, from L � 0 to Ls � 900 nm,
the intensity I of the light at point P
varies with L as given in Fig. 35-52. At
what values of L greater than Ls is intensity I (a) maximum and
(b) zero? (c) What multiple of l gives the phase difference between
ray 1 and ray 2 at common point P when L � 1200 nm?

88 Light of wavelength 700.0 nm is sent along a route of length
2000 nm. The route is then filled with a medium having an index of
refraction of 1.400. In degrees, by how much does the medium
phase-shift the light? Give (a) the full shift and (b) the equivalent
shift that has a value less than 360°.

89 In Fig. 35-53, a microwave transmitter at height a above
the water level of a wide lake transmits microwaves of wavelength
l toward a receiver on the opposite shore, a distance x above the
water level. The microwaves reflecting from the water interfere
with the microwaves arriving directly from the transmitter.

SSM

SSM

Figure 35-52 Problem 87.

I

0
L (nm) 

Ls

Assuming that the lake width D is much greater than a and x, and
that l � a, find an expression that gives the values of x for which
the signal at the receiver is maximum. (Hint: Does the reflection
cause a phase change?)

90 In Fig. 35-54, two isotropic point
sources S1 and S2 emit light at wavelength 
l � 400 nm. Source S1 is located at y � 640
nm; source S2 is located at y � �640 nm.
At point P1 (at x � 720 nm), the wave
from S2 arrives ahead of the wave from S1

by a phase difference of 0.600p rad. (a)
What multiple of l gives the phase differ-
ence between the waves from the two
sources as the waves arrive at point P2,
which is located at y � 720 nm? (The figure is not drawn to
scale.) (b) If the waves arrive at P2 with equal amplitudes, is the
interference there fully constructive, fully destructive, intermedi-
ate but closer to fully constructive,
or intermediate but closer to fully
destructive?

91 Ocean waves moving at a
speed of 4.0 m/s are approaching a
beach at angle u1 � 30° to the
normal, as shown from above in
Fig. 35-55. Suppose the water depth
changes abruptly at a certain dis-
tance from the beach and the wave
speed there drops to 3.0 m/s.
(a) Close to the beach, what is the angle u2 between the direction of
wave motion and the normal? (Assume the same law of refraction
as for light.) (b) Explain why most waves come in normal to a shore
even though at large distances they approach at a variety of angles.

92 Figure 35-56a shows two light rays that are initially in phase
as they travel upward through a block of plastic, with wavelength
400 nm as measured in air. Light ray r1 exits directly into air.
However, before light ray r2 exits into air, it travels through a liquid
in a hollow cylinder within the plastic. Initially the height Lliq of the
liquid is 40.0 mm, but then the liquid begins to evaporate. Let f be
the phase difference between rays r1 and r2 once they both exit into
the air. Figure 35-56b shows f versus the liquid’s height Lliq

until the liquid disappears, with f given in terms of wavelength and
the horizontal scale set by Ls � 40.00 mm.What are (a) the index of
refraction of the plastic and (b) the index of refraction of the
liquid?

Figure 35-54
Problem 90.
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Figure 35-55 Problem 91.
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Figure 35-56 Problem 92.
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Figure 35-53 Problem 89.
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93 If the distance between the first and tenth minima of
a double-slit pattern is 18.0 mm and the slits are separated by 0.150
mm with the screen 50.0 cm from the slits, what is the wavelength of
the light used?

SSM



104 Lloyd’s Mirror. In Fig. 35-60, mono-
chromatic light of wavelength l diffracts
through a narrow slit S in an otherwise
opaque screen.On the other side,a plane mir-
ror is perpendicular to the screen and a dis-
tance h from the slit. A viewing screen A is a
distance much greater than h. (Because it sits
in a plane through the focal point of the lens,
screen A is effectively very distant. The lens
plays no other role in the experiment and can otherwise be neglected.)
Light that travels from the slit directly to A interferes with light from
the slit that reflects from the mirror to A. The reflection causes a half-
wavelength phase shift. (a) Is the fringe that corresponds to a zero path
length difference bright or dark? Find expres-
sions (like Eqs. 35-14 and 35-16) that locate
(b) the bright fringes and (c) the dark fringes
in the interference pattern. (Hint: Consider
the image of S produced by the mirror as seen
from a point on the viewing screen, and then
consider Young’s two-slit interference.)

105 The two point sources in Fig. 35-61
emit coherent waves. Show that all curves
(such as the one shown), over which the
phase difference for rays r1 and r2 is a con-
stant, are hyperbolas. (Hint: A constant phase
difference implies a constant difference in
length between r1 and r2.)
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Figure 35-58
Problem 99.
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layers where a clay armadillo is the target. The indexes of refrac-
tion of the layers are n1 � 1.55, n2 � 1.70, n3 � 1.45, n4 � 1.60,
n5 � 1.45, n6 � 1.61, n7 � 1.59, n8 � 1.70, and n9 � 1.60. The layer
thicknesses are either 2.00 mm or 4.00 mm, as drawn. What is the
travel time through the layers for the laser burst from (a) pistol 1,
(b) pistol 2, (c) pistol 3, and (d) pistol 4? (e) If the pistols are fired
simultaneously, which laser burst hits the target first?

100 A thin film suspended in air is 0.410 mm thick and is
illuminated with white light incident perpendicularly on its surface.
The index of refraction of the film is 1.50. At what wavelength will
visible light that is reflected from the two surfaces of the film
undergo fully constructive interference?

101 Find the slit separation of a double-slit arrangement that will
produce interference fringes 0.018 rad apart on a distant screen
when the light has wavelength l � 589 nm.

102 In a phasor diagram for any point on the viewing screen for
the two-slit experiment in Fig. 35-10, the resultant-wave phasor
rotates 60.0° in 2.50 	 10�16 s.What is the wavelength?

103 In Fig. 35-59, an oil drop (n 5 1.20) floats on the surface of wa-
ter (n 5 1.33) and is viewed from overhead when illuminated by sun-
light shining vertically downward and reflected vertically upward. (a)
Are the outer (thinnest) regions of the drop bright or dark? The oil
film displays several spectra of colors. (b) Move from the rim inward
to the third blue band and, using a wavelength of 475 nm for blue
light, determine the film thickness there. (c) If the oil thickness in-
creases,why do the colors gradually fade and then disappear?

94 Figure 35-57 shows an opti-
cal fiber in which a central plastic
core of index of refraction n1 �
1.58 is surrounded by a plastic
sheath of index of refraction n2 �
1.53. Light can travel along dif-
ferent paths within the central
core, leading to different travel times through the fiber.This causes an
initially short pulse of light to spread as it travels along the fiber,
resulting in information loss. Consider light that travels directly along
the central axis of the fiber and light that is repeatedly reflected at the
critical angle along the core–sheath interface, reflecting from side to
side as it travels down the central core. If the fiber length is 300 m,
what is the difference in the travel times along these two routes?

95 Two parallel slits are illuminated with monochromatic
light of wavelength 500 nm.An interference pattern is formed on a
screen some distance from the slits, and the fourth dark band is lo-
cated 1.68 cm from the central bright band on the screen. (a) What
is the path length difference corresponding to the fourth dark
band? (b) What is the distance on the screen between the central
bright band and the first bright band on either side of the central
band? (Hint: The angle to the fourth dark band and the angle to
the first bright band are small enough that tan u � sin u.)

96 A camera lens with index of refraction greater than 1.30 is
coated with a thin transparent film of index of refraction 1.25 to
eliminate by interference the reflection of light at wavelength l
that is incident perpendicularly on the lens. What multiple of l
gives the minimum film thickness needed?

97 Light of wavelength l is used in a Michelson interferometer.
Let x be the position of the movable mirror, with x 0 when the arms
have equal lengths d2 � d1.Write an expression for the intensity of the
observed light as a function of x, letting Im be the maximum intensity.

98 In two experiments, light is to be sent along the two paths
shown in Fig. 35-35 by reflecting it from the various flat surfaces
shown. In the first experiment, rays 1 and 2 are initially in phase
and have a wavelength of 620.0 nm. In the second experiment,
rays 1 and 2 are initially in phase and have a wavelength of
496.0 nm. What least value of distance L is required such that the
620.0 nm waves emerge from the region exactly in phase but the
496.0 nm waves emerge exactly out of phase?

99 Figure 35-58 shows the design of a Texas arcade game. Four
laser pistols are pointed toward the center of an array of plastic
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Diffraction

What Is Physics?
One focus of physics in the study of light is to understand and put to use the
diffraction of light as it passes through a narrow slit or (as we shall discuss) past
either a narrow obstacle or an edge.We touched on this phenomenon in Chapter 35
when we looked at how light flared—diffracted—through the slits in Young’s
experiment. Diffraction through a given slit is more complicated than simple
flaring, however, because the light also interferes with itself and produces an
interference pattern. It is because of such complications that light is rich with
application opportunities. Even though the diffraction of light as it passes
through a slit or past an obstacle seems awfully academic, countless engineers
and scientists make their living using this physics, and the total worth of diffrac-
tion applications worldwide is probably incalculable.

Before we can discuss some of these applications, we first must discuss why
diffraction is due to the wave nature of light.

Diffraction and the Wave Theory of Light
In Chapter 35 we defined diffraction rather loosely as the flaring of light as it
emerges from a narrow slit. More than just flaring occurs, however, because the

36-1 SINGLE-SLIT DIFFRACTION

After reading this module, you should be able to . . .

36.01 Describe the diffraction of light waves by a narrow opening
and an edge, and also describe the resulting interference pattern.

36.02 Describe an experiment that demonstrates the
Fresnel bright spot.

36.03 With a sketch, describe the arrangement for a 
single-slit diffraction experiment.

36.04 With a sketch, explain how splitting a slit width into 
equal zones leads to the equations giving the angles to the
minima in the diffraction pattern.

36.05 Apply the relationships between width a of a thin,

rectangular slit or object, the wavelength l, the angle u to
any of the minima in the diffraction pattern, the distance to
a viewing screen, and the distance between a minimum
and the center of the pattern.

36.06 Sketch the diffraction pattern for monochromatic light, iden-
tifying what lies at the center and what the various bright and
dark fringes are called (such as “first minimum”).

36.07 Identify what happens to a diffraction pattern when
the wavelength of the light or the width of the diffracting
aperture or object is varied.

● When waves encounter an edge, an obstacle, or an aperture
the size of which is comparable to the wavelength of the waves,
those waves spread out as they travel and, as a result, undergo
interference. This type of interference is called diffraction.

● Waves passing through a long narrow slit of width a
produce, on a viewing screen, a single-slit diffraction 

pattern that includes a central maximum (bright fringe) and other
maxima. They are separated by minima that are located relative
to the central axis by angles u:

a sin u � ml, for m � 1, 2, 3, . . . (minima).

● The maxima are located approximately halfway between minima.

Learning Objectives

Key Ideas



light produces an interference pattern called a diffraction pattern. For example, when
monochromatic light from a distant source (or a laser) passes through a narrow slit
and is then intercepted by a viewing screen, the light produces on the screen a diffrac-
tion pattern like that in Fig. 36-1. This pattern consists of a broad and intense (very
bright) central maximum plus a number of narrower and less intense maxima (called
secondary or side maxima) to both sides. In between the maxima are minima. Light
flares into those dark regions,but the light waves cancel out one another.

Such a pattern would be totally unexpected in geometrical optics: If light
traveled in straight lines as rays, then the slit would allow some of those rays
through to form a sharp rendition of the slit on the viewing screen instead of a
pattern of bright and dark bands as we see in Fig. 36-1.As in Chapter 35, we must
conclude that geometrical optics is only an approximation.

Edges. Diffraction is not limited to situations in which light passes through a
narrow opening (such as a slit or pinhole). It also occurs when light passes an
edge, such as the edges of the razor blade whose diffraction pattern is shown in
Fig. 36-2. Note the lines of maxima and minima that run approximately parallel to
the edges, at both the inside edges of the blade and the outside edges.As the light
passes, say, the vertical edge at the left, it flares left and right and undergoes inter-
ference, producing the pattern along the left edge. The rightmost portion of that
pattern actually lies behind the blade, within what would be the blade’s shadow if
geometrical optics prevailed.

Floaters. You encounter a common example of diffraction when you look at a
clear blue sky and see tiny specks and hairlike structures floating in your view.These
floaters, as they are called, are produced when light passes the edges of tiny deposits
in the vitreous humor, the transparent material filling most of the eyeball.What you
are seeing when a floater is in your field of vision is the diffraction pattern produced
on the retina by one of these deposits. If you sight through a pinhole in a piece of
cardboard so as to make the light entering your eye approximately a plane wave, you
can distinguish individual maxima and minima in the patterns.

Cheerleaders. Diffraction is a wave effect. That is, it occurs because light is a
wave and it occurs with other types of waves as well. For example, you have prob-
ably seen diffraction in action at football games. When a cheerleader near the
playing field yells up at several thousand noisy fans, the yell can hardly be heard
because the sound waves diffract when they pass through the narrow opening of
the cheerleader’s mouth. This flaring leaves little of the waves traveling toward
the fans in front of the cheerleader. To offset the diffraction, the cheerleader can
yell through a megaphone. The sound waves then emerge from the much wider
opening at the end of the megaphone.The flaring is thus reduced, and much more
of the sound reaches the fans in front of the cheerleader.

The Fresnel Bright Spot
Diffraction finds a ready explanation in the wave theory of light. However, this the-
ory, originally advanced in the late 1600s by Huygens and used 123 years later by
Young to explain double-slit interference, was very slow in being adopted, largely
because it ran counter to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early 19th
century, when Augustin Fresnel was a young military engineer. Fresnel, who believed
in the wave theory of light, submitted a paper to the French Academy of Sciences de-
scribing his experiments with light and his wave-theory explanations of them.

In 1819, the Academy, dominated by supporters of Newton and thinking to
challenge the wave point of view, organized a prize competition for an essay on the
subject of diffraction. Fresnel won. The Newtonians, however, were not swayed.
One of them, S. D. Poisson, pointed out the “strange result” that if Fresnel’s theories
were correct, then light waves should flare into the shadow region of a sphere
as they pass the edge of the sphere, producing a bright spot at the center of
the shadow. The prize committee arranged a test of Poisson’s prediction and dis-
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Figure 36-2 The diffraction pattern produced
by a razor blade in monochromatic light.
Note the lines of alternating maximum and
minimum intensity.

Figure 36-1 This diffraction pattern appeared
on a viewing screen when light that had
passed through a narrow vertical slit
reached the screen. Diffraction caused the
light to flare out perpendicular to the long
sides of the slit.That flaring produced an
interference pattern consisting of a broad
central maximum plus less intense and nar-
rower secondary (or side) maxima, with
minima between them.



covered that the predicted Fresnel bright spot, as we call it today, was indeed there
(Fig. 36-3). Nothing builds confidence in a theory so much as having one of its unex-
pected and counterintuitive predictions verified by experiment.

Diffraction by a Single Slit: Locating the Minima
Let us now examine the diffraction pattern of plane waves of light of wavelength
l that are diffracted by a single long, narrow slit of width a in an otherwise
opaque screen B, as shown in cross section in Fig. 36-4. (In that figure, the slit’s
length extends into and out of the page, and the incoming wavefronts are parallel
to screen B.) When the diffracted light reaches viewing screen C, waves from
different points within the slit undergo interference and produce a diffraction
pattern of bright and dark fringes (interference maxima and minima) on the
screen. To locate the fringes, we shall use a procedure somewhat similar to the
one we used to locate the fringes in a two-slit interference pattern. However,
diffraction is more mathematically challenging, and here we shall be able to find
equations for only the dark fringes.

Before we do that, however, we can justify the central bright fringe seen in
Fig. 36-1 by noting that the Huygens wavelets from all points in the slit travel
about the same distance to reach the center of the pattern and thus are in phase
there.As for the other bright fringes, we can say only that they are approximately
halfway between adjacent dark fringes.

Pairings. To find the dark fringes, we shall use a clever (and simplifying)
strategy that involves pairing up all the rays coming through the slit and then
finding what conditions cause the wavelets of the rays in each pair to cancel each
other.We apply this strategy in Fig. 36-4 to locate the first dark fringe, at point P1.
First, we mentally divide the slit into two zones of equal widths a/2. Then we ex-
tend to P1 a light ray r1 from the top point of the top zone and a light ray r2 from
the top point of the bottom zone. We want the wavelets along these two rays to
cancel each other when they arrive at P1. Then any similar pairing of rays from
the two zones will give cancellation.A central axis is drawn from the center of the
slit to screen C, and P1 is located at an angle u to that axis.

Path Length Difference. The wavelets of the pair of rays r1 and r2 are in
phase within the slit because they originate from the same wavefront passing
through the slit, along the width of the slit. However, to produce the first dark
fringe they must be out of phase by l/2 when they reach P1; this phase difference
is due to their path length difference, with the path traveled by the wavelet of r2

to reach P1 being longer than the path traveled by the wavelet of r1. To display
this path length difference, we find a point b on ray r2 such that the path length
from b to P1 matches the path length of ray r1.Then the path length difference be-
tween the two rays is the distance from the center of the slit to b.

When viewing screen C is near screen B, as in Fig. 36-4, the diffraction
pattern on C is difficult to describe mathematically. However, we can simplify the
mathematics considerably if we arrange for the screen separation D to be much
larger than the slit width a.Then, as in Fig. 36-5, we can approximate rays r1 and r2
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Courtesy Jearl Walker

Figure 36-3 A photograph of the diffraction
pattern of a disk. Note the concentric
diffraction rings and the Fresnel bright
spot at the center of the pattern.This
experiment is essentially identical to
that arranged by the committee testing
Fresnel’s theories, because both the sphere
they used and the disk used here have a
cross section with a circular edge.
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each other at P1. So 
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Figure 36-4 Waves from the top points of two
zones of width a/2 undergo fully destructive
interference at point P1 on viewing screen C.

Figure 36-5 For D a, we can
approximate rays r1 and r2 as
being parallel, at angle u to the
central axis.
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as being parallel, at angle u to the central axis.We can also approximate the trian-
gle formed by point b, the top point of the slit, and the center point of the slit as
being a right triangle, and one of the angles inside that triangle as being u. The
path length difference between rays r1 and r2 (which is still the distance from the
center of the slit to point b) is then equal to (a/2) sin u.

First Minimum. We can repeat this analysis for any other pair of rays origi-
nating at corresponding points in the two zones (say, at the midpoints of the
zones) and extending to point P1. Each such pair of rays has the same path length
difference (a/2) sin u. Setting this common path length difference equal to l/2
(our condition for the first dark fringe), we have

which gives us

a sin u � l (first minimum). (36-1)

Given slit width a and wavelength l, Eq. 36-1 tells us the angle u of the first dark
fringe above and (by symmetry) below the central axis.

Narrowing the Slit. Note that if we begin with a � l and then narrow the slit
while holding the wavelength constant, we increase the angle at which the first
dark fringes appear; that is, the extent of the diffraction (the extent of the flaring
and the width of the pattern) is greater for a narrower slit.When we have reduced
the slit width to the wavelength (that is, a � l), the angle of the first dark fringes
is 90°. Since the first dark fringes mark the two edges of the central bright fringe,
that bright fringe must then cover the entire viewing screen.

Second Minimum. We find the second dark fringes above and below the
central axis as we found the first dark fringes, except that we now divide the slit
into four zones of equal widths a/4, as shown in Fig. 36-6a.We then extend rays r1,
r2, r3, and r4 from the top points of the zones to point P2, the location of the sec-
ond dark fringe above the central axis.To produce that fringe, the path length dif-
ference between r1 and r2, that between r2 and r3, and that between r3 and r4 must
all be equal to l/2.

For D � a, we can approximate these four rays as being parallel, at angle u to
the central axis. To display their path length differences, we extend a perpendi-
cular line through each adjacent pair of rays, as shown in Fig. 36-6b, to form a se-
ries of right triangles, each of which has a path length difference as one side.
We see from the top triangle that the path length difference between r1 and r2 is
(a/4) sin u. Similarly, from the bottom triangle, the path length difference between
r3 and r4 is also (a/4) sin u. In fact, the path length difference for any two rays that
originate at corresponding points in two adjacent zones is (a/4) sin u. Since in
each such case the path length difference is equal to l/2, we have

which gives us

a sin u � 2l (second minimum). (36-2)

All Minima. We could now continue to locate dark fringes in the diffraction
pattern by splitting up the slit into more zones of equal width. We would always
choose an even number of zones so that the zones (and their waves) could be
paired as we have been doing. We would find that the dark fringes above and be-
low the central axis can be located with the general equation

a sin u � ml, for m � 1, 2, 3, . . . (minima—dark fringes). (36-3)

You can remember this result in the following way. Draw a triangle like the
one in Fig. 36-5, but for the full slit width a, and note that the path length differ-
ence between the top and bottom rays equals a sin u.Thus, Eq. 36-3 says:

a
4

 sin u �
l

2
,

a
2

 sin u �
l

2
,
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Figure 36-6 (a) Waves from the top points
of four zones of width a/4 undergo fully 
destructive interference at point P2. (b) For
D � a, we can approximate rays r1, r2, r3,
and r4 as being parallel, at angle u to the
central axis.
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This may seem to be wrong because the waves of those two particular rays will be
exactly in phase with each other when their path length difference is an integer
number of wavelengths. However, they each will still be part of a pair of waves
that are exactly out of phase with each other; thus, each wave will be canceled by
some other wave, resulting in darkness. (Two light waves that are exactly out of
phase will always cancel each other, giving a net wave of zero, even if they happen
to be exactly in phase with other light waves.)

Using a Lens. Equations 36-1, 36-2, and 36-3 are derived for the case of D � a.
However, they also apply if we place a converging lens between the slit and the view-
ing screen and then move the screen in so that it coincides with the focal plane of the
lens. The lens ensures that rays which now reach any point on the screen are exactly
parallel (rather than approximately) back at the slit.They are like the initially parallel
rays of Fig.34-14a that are directed to the focal point by a converging lens.
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In a single-slit diffraction experiment, dark fringes are produced where the
path length differences (a sin u) between the top and bottom rays are equal
to l, 2l, 3l, . . . .

Checkpoint 1
We produce a diffraction pattern on a viewing screen by means of a long narrow
slit illuminated by blue light. Does the pattern expand away from the bright center
(the maxima and minima shift away from the center) or contract toward it if we
(a) switch to yellow light or (b) decrease the slit width?

KEY IDEA

The first side maximum for any wavelength is about halfway
between the first and second minima for that wavelength.

Calculations: Those first and second minima can be located
with Eq. 36-3 by setting m � 1 and m � 2, respectively. Thus,
the first side maximum can be located approximately by
setting m � 1.5.Then Eq. 36-3 becomes

a sin u � 1.5l�.

Solving for l� and substituting known data yield

(Answer)

Light of this wavelength is violet (far blue, near the short-
wavelength limit of the human range of visible light). From
the two equations we used, can you see that the first side
maximum for light of wavelength 430 nm will always coin-
cide with the first minimum for light of wavelength 650 nm,
no matter what the slit width is? However, the angle u at
which this overlap occurs does depend on slit width. If the
slit is relatively narrow, the angle will be relatively large, and
conversely.

� 430 nm.

l� �
a sin u

1.5
�

(2511 nm)(sin 15�)
1.5

Sample Problem 36.01 Single-slit diffraction pattern with white light

A slit of width a is illuminated by white light.

(a) For what value of a will the first minimum for red light of
wavelength l � 650 nm appear at u � 15°?

KEY IDEA

Diffraction occurs separately for each wavelength in the
range of wavelengths passing through the slit, with the loca-
tions of the minima for each wavelength given by Eq. 36-3
(a sin u � ml).

Calculation: When we set m � 1 (for the first minimum)
and substitute the given values of u and l, Eq. 36-3 yields

(Answer)

For the incident light to flare out that much (
15° to the first
minima) the slit has to be very fine indeed—in this case, a
mere four times the wavelength. For comparison, note that
a fine human hair may be about 100 mm in diameter.

(b) What is the wavelength l� of the light whose first side
diffraction maximum is at 15°, thus coinciding with the first
minimum for the red light?

� 2511 nm � 2.5 mm.

a �
ml

sin u
�

(1)(650 nm)
sin 15�

Additional examples, video, and practice available at WileyPLUS
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36-2 INTENSITY IN SINGLE-SLIT DIFFRACTION

After reading this module, you should be able to . . .

36.08 Divide a thin slit into multiple zones of equal width
and write an expression for the phase difference of the
wavelets from adjacent zones in terms of the angle u to a
point on the viewing screen.

36.09 For single-slit diffraction, draw phasor diagrams for
the central maximum and several of the minima and maxima off
to one side, indicating the phase difference between adjacent
phasors, explaining how the net electric field is calculated, and

identifying the corresponding part of the diffraction pattern.
36.10 Describe a diffraction pattern in terms of the net electric

field at points in the pattern.
36.11 Evaluate a, the convenient connection between angle u to

a point in a diffraction pattern and the intensity I at that point.
36.12 For a given point in a diffraction pattern, at a given 

angle, calculate the intensity I in terms of the intensity 
Im at the center of the pattern.

Learning Objectives

● The intensity of the diffraction pattern at any given angle is

I(u) � Im� sin a

a �
2

,

u

Key Idea
where Im is the intensity at the center of the pattern and

a �
pa
l

 sin u.

Intensity in Single-Slit Diffraction, Qualitatively
In Module 36-1 we saw how to find the positions of the minima and the maxima
in a single-slit diffraction pattern. Now we turn to a more general problem: find
an expression for the intensity I of the pattern as a function of u, the angular posi-
tion of a point on a viewing screen.

To do this, we divide the slit of Fig. 36-4 into N zones of equal widths �x small
enough that we can assume each zone acts as a source of Huygens wavelets. We
wish to superimpose the wavelets arriving at an arbitrary point P on the viewing
screen, at angle u to the central axis, so that we can determine the amplitude Eu of
the electric component of the resultant wave at P.The intensity of the light at P is
then proportional to the square of that amplitude.

To find Eu, we need the phase relationships among the arriving wavelets. The
point here is that in general they have different phases because they travel different
distances to reach P. The phase difference between wavelets from adjacent zones
is given by

For point P at angle u, the path length difference between wavelets from adjacent
zones is �x sin u.Thus, we can write the phase difference �f between wavelets from
adjacent zones as

(36-4)

We assume that the wavelets arriving at P all have the same amplitude �E.
To find the amplitude Eu of the resultant wave at P, we add the amplitudes �E via
phasors. To do this, we construct a diagram of N phasors, one corresponding to
the wavelet from each zone in the slit.

Central Maximum. For point P0 at u � 0 on the central axis of Fig. 36-4,
Eq. 36-4 tells us that the phase difference �f between the wavelets is zero; that is,
the wavelets all arrive in phase. Figure 36-7a is the corresponding phasor dia-
gram; adjacent phasors represent wavelets from adjacent zones and are arranged
head to tail. Because there is zero phase difference between the wavelets, there is
zero angle between each pair of adjacent phasors. The amplitude Eu of the net

�f � � 2p

l � (�x sin u).

� phase
difference� � � 2p

l � �path length
difference �.



wave at P0 is the vector sum of these phasors. This arrangement of the phasors
turns out to be the one that gives the greatest value for the amplitude Eu. We call
this value Em; that is, Em is the value of Eu for u � 0.

We next consider a point P that is at a small angle u to the central axis.
Equation 36-4 now tells us that the phase difference �f between wavelets from
adjacent zones is no longer zero. Figure 36-7b shows the corresponding phasor
diagram; as before, the phasors are arranged head to tail, but now there is an
angle �f between adjacent phasors.The amplitude Eu at this new point is still the
vector sum of the phasors, but it is smaller than that in Fig. 36-7a, which means
that the intensity of the light is less at this new point P than at P0.

First Minimun. If we continue to increase u, the angle �f between adjacent pha-
sors increases, and eventually the chain of phasors curls completely around so that the
head of the last phasor just reaches the tail of the first phasor (Fig. 36-7c).The ampli-
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A

Figure 36-7 Phasor diagrams for N � 18 phasors, cor-
responding to the division of a single slit into
18 zones. Resultant amplitudes Eu are shown for (a)
the central maximum at u � 0, (b) a point on the
screen lying at a small angle u to the central axis, (c)
the first minimum, and (d) the first side maximum.
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and thus the central maximum
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tude Eu is now zero, which means that the intensity of the light is also zero. We have
reached the first minimum, or dark fringe, in the diffraction pattern.The first and last
phasors now have a phase difference of 2p rad, which means that the path length dif-
ference between the top and bottom rays through the slit equals one wavelength.
Recall that this is the condition we determined for the first diffraction minimum.

First Side Maximum. As we continue to increase u, the angle �f between
adjacent phasors continues to increase, the chain of phasors begins to wrap back
on itself, and the resulting coil begins to shrink.Amplitude Eu now increases until
it reaches a maximum value in the arrangement shown in Fig. 36-7d.This arrange-
ment corresponds to the first side maximum in the diffraction pattern.

Second Minimum. If we increase u a bit more, the resulting shrinkage of
the coil decreases Eu, which means that the intensity also decreases. When u is
increased enough, the head of the last phasor again meets the tail of the first pha-
sor.We have then reached the second minimum.

We could continue this qualitative method of determining the maxima and
minima of the diffraction pattern but, instead, we shall now turn to a quantitative
method.
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Checkpoint 2
The figures represent, in smoother form (with more phasors)
than Fig.36-7, the phasor diagrams for two points of a diffraction
pattern that are on opposite sides of a certain diffraction maxi-
mum.(a) Which maximum is it? (b) What is the approximate
value of m (in Eq.36-3) that corresponds to this maximum? (a) (b)

Intensity in Single-Slit Diffraction, Quantitatively
Equation 36-3 tells us how to locate the minima of the single-slit diffraction pat-
tern on screen C of Fig. 36-4 as a function of the angle u in that figure. Here we
wish to derive an expression for the intensity I(u) of the pattern as a function of u.
We state, and shall prove below, that the intensity is given by

(36-5)

where (36-6)

The symbol a is just a convenient connection between the angle u that locates a
point on the viewing screen and the light intensity I(u) at that point.The intensity
Im is the greatest value of the intensities I(u) in the pattern and occurs at the cen-
tral maximum (where u � 0), and f is the phase difference (in radians) between
the top and bottom rays from the slit of width a.

Study of Eq. 36-5 shows that intensity minima will occur where

a � mp, for m � 1, 2, 3, . . . . (36-7)

If we put this result into Eq. 36-6, we find

or a sin u � ml, for m � 1, 2, 3, . . . (minima—dark fringes), (36-8)

which is exactly Eq. 36-3, the expression that we derived earlier for the location
of the minima.

mp �
pa
l

 sin u,    for m � 1, 2, 3, . . . ,

a � 1
2f �

pa
l

 sin u.

I(u) � Im � sin a

a �
2

,



Plots. Figure 36-8 shows plots of the intensity of a single-slit diffraction pattern,
calculated with Eqs. 36-5 and 36-6 for three slit widths: a � l, a � 5l, and a � 10l.
Note that as the slit width increases (relative to the wavelength), the width of the
central diffraction maximum (the central hill-like region of the graphs) decreases;
that is, the light undergoes less flaring by the slit. The secondary maxima also de-
crease in width (and become weaker). In the limit of slit width a being much greater
than wavelength l, the secondary maxima due to the slit disappear; we then no
longer have single-slit diffraction (but we still have diffraction due to the edges of
the wide slit, like that produced by the edges of the razor blade in Fig. 36-2).

Proof of Eqs. 36-5 and 36-6
To find an expression for the intensity at a point in the diffraction pattern, we
need to divide the slit into many zones and then add the phasors corresponding to
those zones, as we did in Fig. 36-7. The arc of phasors in Fig. 36-9 represents
the wavelets that reach an arbitrary point P on the viewing screen of Fig. 36-4, corre-
sponding to a particular small angle u.The amplitude Eu of the resultant wave at P is
the vector sum of these phasors. If we divide the slit of Fig. 36-4 into infinitesimal
zones of width x, the arc of phasors in Fig. 36-9 approaches the arc of a circle; we
call its radius R as indicated in that figure.The length of the arc must be Em, the am-
plitude at the center of the diffraction pattern, because if we straightened out the arc
we would have the phasor arrangement of Fig. 36-7a (shown lightly in Fig. 36-9).

The angle f in the lower part of Fig. 36-9 is the difference in phase between
the infinitesimal vectors at the left and right ends of arc Em. From the geometry, f
is also the angle between the two radii marked R in Fig. 36-9. The dashed line in
that figure, which bisects f, then forms two congruent right triangles. From either
triangle we can write

(36-9)

In radian measure, f is (with Em considered to be a circular arc)

Solving this equation for R and substituting in Eq. 36-9 lead to

(36-10)

Intensity. In Module 33-2 we saw that the intensity of an electromagnetic
wave is proportional to the square of the amplitude of its electric field. Here, this
means that the maximum intensity Im (at the center of the pattern) is propor-
tional to and the intensity I(u) at angle u is proportional to Thus,

(36-11)

Substituting for Eu with Eq. 36-10 and then substituting we are led to Eq.
36-5 for the intensity as a function of u:

The second equation we wish to prove relates a to u. The phase difference f
between the rays from the top and bottom of the entire slit may be related to a
path length difference with Eq. 36-4; it tells us that

where a is the sum of the widths �x of the infinitesimal zones. However, f � 2a,
so this equation reduces to Eq. 36-6.

f � � 2p

l � (a sin u),

I(u) � Im � sin a

a �
2

.

a � 1
2f,

I(u)
Im

�
E 2

u

E 2
m

.

E2
u.E2

m

Eu �
Em
1
2f

 sin 12�.

f �
Em

R
.

sin 1
2f �

Eu

2R
.

�
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Figure 36-8 The relative intensity in single-slit
diffraction for three values of the ratio a/l.
The wider the slit is, the narrower is the
central diffraction maximum.
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Checkpoint 3
Two wavelengths, 650 and 430 nm,
are used separately in a single-slit dif-
fraction experiment.The figure
shows the results as graphs of inten-
sity I versus angle u for the two dif-
fraction patterns. If both wavelengths
are then used simultaneously, what
color will be seen in the combined
diffraction pattern at (a) angle A
and (b) angle B? 0 A B

I

θ 

intensities at those maxima, we get

The first of the secondary maxima occurs for m � 1, and its
relative intensity is

(Answer)

For m � 2 and m � 3 we find that

(Answer)

As you can see from these results, successive secondary
maxima decrease rapidly in intensity. Figure 36-1 was delib-
erately overexposed to reveal them.

I2

Im
� 1.6%  and  

I3

Im
� 0.83%.

� 4.50 	 10�2 � 4.5%.

I1

Im
� � sin(1 �

1
2)p

(1 � 1
2)p �

2

� � sin 1.5p

1.5p �
2

I
Im

�� sin a

a �
2

� � sin(m �
1
2)p

(m � 1
2)p �

2

,  for m � 1, 2, 3, . . . .

Sample Problem 36.02 Intensities of the maxima in a single-slit interference pattern

Find the intensities of the first three secondary maxima
(side maxima) in the single-slit diffraction pattern of Fig. 36-1,
measured as a percentage of the intensity of the central
maximum.

KEY IDEAS

The secondary maxima lie approximately halfway between
the minima, whose angular locations are given by Eq. 36-7
(a � mp). The locations of the secondary maxima are then
given (approximately) by

with a in radian measure. We can relate the intensity I at
any point in the diffraction pattern to the intensity Im of the
central maximum via Eq. 36-5.

Calculations: Substituting the approximate values of a for
the secondary maxima into Eq. 36-5 to obtain the relative

a � (m � 1
2 )p,    for m � 1, 2, 3, . . . ,

Additional examples, video, and practice available at WileyPLUS

36-3 DIFFRACTION BY A CIRCULAR APERTURE

After reading this module, you should be able to . . .

36.13 Describe and sketch the diffraction pattern from a
small circular aperture or obstacle.

36.14 For diffraction by a small circular aperture or obstacle,
apply the relationships between the angle u to the first
minimum, the wavelength l of the light, the diameter d of
the aperture, the distance D to a viewing screen, and the
distance y between the minimum and the center of the
diffraction pattern.

36.15 By discussing the diffraction patterns of point objects,

explain how diffraction limits visual resolution of objects.
36.16 Identify that Rayleigh’s criterion for resolvability gives

the (approximate) angle at which two point objects are just
barely resolvable.

36.17 Apply the relationships between the angle uR in
Rayleigh’s criterion, the wavelength l of the light, the
diameter d of the aperture (for example, the diameter of
the pupil of an eye), the angle u subtended by two distant
point objects, and the distance L to those objects.

Learning Objectives
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● Diffraction by a circular aperture or a lens with 
diameter d produces a central maximum and concentric
maxima and minima, with the first minimum at an angle u
given by

(first minimum—circular aperture).

● Rayleigh’s criterion suggests that two objects are on the

sin u � 1.22
l

d

Key Ideas
verge of resolvability if the central diffraction maximum of one
is at the first minimum of the other. Their angular separation
can then be no less than

(Rayleigh’s criterion),

in which d is the diameter of the aperture through which the
light passes.

uR � 1.22
l

d

Diffraction by a Circular Aperture
Here we consider diffraction by a circular aperture—that is, a circular opening,
such as a circular lens, through which light can pass. Figure 36-10 shows the image
formed by light from a laser that was directed onto a circular aperture with a very
small diameter.This image is not a point, as geometrical optics would suggest, but
a circular disk surrounded by several progressively fainter secondary rings.
Comparison with Fig. 36-1 leaves little doubt that we are dealing with a diffrac-
tion phenomenon. Here, however, the aperture is a circle of diameter d rather
than a rectangular slit.

The (complex) analysis of such patterns shows that the first minimum for the
diffraction pattern of a circular aperture of diameter d is located by

(first minimum—circular aperture). (36-12)

The angle u here is the angle from the central axis to any point on that (circular)
minimum. Compare this with Eq. 36-1,

(first minimum—single slit), (36-13)

which locates the first minimum for a long narrow slit of width a.The main differ-
ence is the factor 1.22, which enters because of the circular shape of the aperture.

Resolvability
The fact that lens images are diffraction patterns is important when we wish to
resolve (distinguish) two distant point objects whose angular separation is small.
Figure 36-11 shows, in three different cases, the visual appearance and corre-
sponding intensity pattern for two distant point objects (stars, say) with small

sin u �
l

a

sin u � 1.22
l

d

Courtesy Jearl Walker

Figure 36-10 The diffraction pattern of a cir-
cular aperture. Note the central maximum
and the circular secondary maxima.The
figure has been overexposed to bring out
these secondary maxima, which are much
less intense than the central maximum.

Figure 36-11 At the top, the images of
two point sources (stars) formed by a
converging lens.At the bottom, repre-
sentations of the image intensities. In
(a) the angular separation of the
sources is too small for them to be 
distinguished, in (b) they can be mar-
ginally distinguished, and in (c) they are
clearly distinguished. Rayleigh’s crite-
rion is satisfied in (b), with the central
maximum of one diffraction pattern
coinciding with the first minimum of
the other.

(a) (c)(b)
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Maximilien Luce, The Seine at Herblay, 1890. Musée d’Orsay, Paris, France. Photo by Erich Lessing/Art Resource

Figure 36-12 The pointillistic painting The
Seine at Herblay by Maximilien Luce con-
sists of thousands of colored dots.With the
viewer very close to the canvas, the dots
and their true colors are visible.At normal
viewing distances, the dots are irresolvable
and thus blend.

angular separation. In Figure 36-11a, the objects are not resolved because of
diffraction; that is, their diffraction patterns (mainly their central maxima) overlap
so much that the two objects cannot be distinguished from a single point object. In
Fig. 36-11b the objects are barely resolved, and in Fig. 36-11c they are fully resolved.

In Fig. 36-11b the angular separation of the two point sources is such that the
central maximum of the diffraction pattern of one source is centered on the first
minimum of the diffraction pattern of the other, a condition called Rayleigh’s
criterion for resolvability. From Eq. 36-12, two objects that are barely resolvable
by this criterion must have an angular separation uR of

Since the angles are small, we can replace sin uR with uR expressed in radians:

(Rayleigh’s criterion). (36-14)

Human Vision. Applying Rayleigh’s criterion for resolvability to human
vision is only an approximation because visual resolvability depends on many fac-
tors, such as the relative brightness of the sources and their surroundings, turbu-
lence in the air between the sources and the observer, and the functioning of the
observer’s visual system. Experimental results show that the least angular separa-
tion that can actually be resolved by a person is generally somewhat greater than
the value given by Eq. 36-14. However, for calculations here, we shall take Eq. 36-
14 as being a precise criterion: If the angular separation u between the sources is
greater than uR, we can visually resolve the sources; if it is less, we cannot.

Pointillism. Rayleigh’s criterion can explain the arresting illusions of
color in the style of painting known as pointillism (Fig. 36-12). In this style, a
painting is made not with brush strokes in the usual sense but rather with a
myriad of small colored dots. One fascinating aspect of a pointillistic painting is
that when you change your distance from it, the colors shift in subtle, almost
subconscious ways. This color shifting has to do with whether you can resolve
the colored dots. When you stand close enough to the painting, the angular
separations u of adjacent dots are greater than uR and thus the dots can be seen
individually. Their colors are the true colors of the paints used. However, when

uR � 1.22
l

d

uR � sin�1 1.22l

d
.



you stand far enough from the painting, the angular separations u are less than
uR and the dots cannot be seen individually. The resulting blend of colors
coming into your eye from any group of dots can then cause your brain to
“make up” a color for that group — a color that may not actually exist in the
group. In this way, a pointillistic painter uses your visual system to create the
colors of the art.

When we wish to use a lens instead of our visual system to resolve objects of
small angular separation, it is desirable to make the diffraction pattern as small as
possible. According to Eq. 36-14, this can be done either by increasing the lens
diameter or by using light of a shorter wavelength. For this reason ultraviolet
light is often used with microscopes because its wavelength is shorter than a visi-
ble light wavelength.

109336-3 DIFFRACTION BY A CIRCULAR APERTURE

Checkpoint 4
Suppose that you can barely resolve two red dots because of diffraction by the
pupil of your eye. If we increase the general illumination around you so that the
pupil decreases in diameter, does the resolvability of the dots improve or diminish?
Consider only diffraction. (You might experiment to check your answer.)

Rayleigh’s criterion:

(36-15)

Calculations: Figure 36-13b shows, from the side, the
angular separation u of the dots, their center-to-center
separation D, and your distance L from them. Because
D/L is small, angle u is also small and we can make the
approximation

(36-16)

Setting u of Eq. 36-16 equal to uR of Eq. 36-15 and solv-
ing for L, we then have

(36-17)

Equation 36-17 tells us that L is larger for smaller l.Thus, as
you move away from the painting, adjacent red dots (long
wavelengths) become indistinguishable before adjacent
blue dots do.To find the least distance L at which no colored
dots are distinguishable, we substitute l � 400 nm (blue or
violet light) into Eq. 36-17:

(Answer)

At this or a greater distance, the color you perceive at
any given spot on the painting is a blended color that may
not actually exist there.

L �
(2.0 	 10�3 m)(1.5 	 10�3 m)

(1.22)(400 	 10�9 m)
� 6.1 m.

L �
Dd

1.22l
.

u �
D
L

.

uR � 1.22
l

d
.

Sample Problem 36.03 Pointillistic paintings use the diffraction of your eye

Figure 36-13a is a representation of the colored dots on a
pointillistic painting. Assume that the average center-
to-center separation of the dots is D � 2.0 mm.Also assume
that the diameter of the pupil of your eye is d � 1.5 mm and
that the least angular separation between dots you can 
resolve is set only by Rayleigh’s criterion. What is the least
viewing distance from which you cannot distinguish any
dots on the painting?

KEY IDEA

Consider any two adjacent dots that you can distinguish
when you are close to the painting. As you move away, you
continue to distinguish the dots until their angular separa-
tion u (in your view) has decreased to the angle given by

D
D

θ 

Dot
Observer

L

(a)

(b)

Figure 36-13 (a) Representation of some dots on a pointillistic paint-
ing, showing an average center-to-center separation D. (b) The
arrangement of separation D between two dots, their angular
separation u, and the viewing distance L.

Additional examples, video, and practice available at WileyPLUS
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Additional examples, video, and practice available at WileyPLUS

36-4 DIFFRACTION BY A DOUBLE SLIT

After reading this module, you should be able to . . .

36.18 In a sketch of a double-slit experiment, explain
how the diffraction through each slit modifies the two-slit
interference pattern, and identify the diffraction envelope,
the central peak, and the side peaks of that envelope.

36.19 For a given point in a double-slit diffraction pattern,
calculate the intensity I in terms of the intensity Im at the
center of the pattern.

36.20 In the intensity equation for a double-slit diffraction

pattern, identify what part corresponds to the interference
between the two slits and what part corresponds to the
diffraction by each slit.

36.21 For double-slit diffraction, apply the relationship between
the ratio d/a and the locations of the diffraction minima in the
single-slit diffraction pattern, and then count the number of
two-slit maxima that are contained in the central peak and in
the side peaks of the diffraction envelope.

Learning Objectives

● Waves passing through two slits produce a combination of
double-slit interference and diffraction by each slit.

● For identical slits with width a and center-to-center separation d,
the intensity in the pattern varies with the angle u from the central
axis as

(double slit),I(u) � Im(cos2 b) � sin a

a �
2

Key Ideas
where Im is the intensity at the center of the pattern,

and a � � pa
l � sinu.

b � � pd
l � sinu,

Sample Problem 36.04 Rayleigh’s criterion for resolving two distant objects

A circular converging lens, with diameter d 32 mm and focal
length f � 24 cm,forms images of distant point objects in the fo-
cal plane of the lens.The wavelength is l � 550 nm.

(a) Considering diffraction by the lens, what angular separa-
tion must two distant point objects have to satisfy
Rayleigh’s criterion?

KEY IDEA

Figure 36-14 shows two distant point objects P1 and P2, the
lens, and a viewing screen in the focal plane of the lens. It
also shows, on the right, plots of light intensity I versus
position on the screen for the central maxima of the images
formed by the lens. Note that the angular separation uo of
the objects equals the angular separation ui of the images.
Thus, if the images are to satisfy Rayleigh’s criterion, these
separations must be given by Eq. 36-14 (for small angles).

Calculations: From Eq. 36-14, we obtain 

(Answer)

Each central maximum in the two intensity curves of Fig.
36-14 is centered on the first minimum of the other curve.

�
(1.22)(550 	 10�9 m)

32 	 10�3 m
� 2.1 	 10�5 rad.

 uo � ui � uR � 1.22
l

d

�

Figure 36-14 Light from two distant point objects P1 and P2 passes
through a converging lens and forms images on a viewing screen in
the focal plane of the lens. Only one representative ray from each
object is shown.The images are not points but diffraction patterns,
with intensities approximately as plotted at the right.

__
2

Focal-plane
screen

I

P1

P2
θ o__
2

θ o__
2 θ i

__
2

θ i

f

Δ x

(b) What is the separation x of the centers of the images in
the focal plane? (That is, what is the separation of the cen-
tral peaks in the two intensity-versus-position curves?)

Calculations: From either triangle between the lens and
the screen in Fig. 36-14, we see that tan ui/2 � �x/2f.
Rearranging this equation and making the approximation
tan u � u, we find

�x � fui, (36-18)

where ui is in radian measure.We then find

�x � (0.24 m)(2.1 	 10�5 rad) � 5.0 mm. (Answer)

�



Diffraction by a Double Slit
In the double-slit experiments of Chapter 35, we implicitly assumed that the slits
were much narrower than the wavelength of the light illuminating them; that is,
a � l. For such narrow slits, the central maximum of the diffraction pattern of
either slit covers the entire viewing screen. Moreover, the interference of light
from the two slits produces bright fringes with approximately the same intensity
(Fig. 35-12).

In practice with visible light, however, the condition a � l is often not met.
For relatively wide slits, the interference of light from two slits produces bright
fringes that do not all have the same intensity. That is, the intensities of the
fringes produced by double-slit interference (as discussed in Chapter 35) are
modified by diffraction of the light passing through each slit (as discussed in
this chapter).

Plots. As an example, the intensity plot of Fig. 36-15a suggests the double-
slit interference pattern that would occur if the slits were infinitely narrow (and
thus a � l); all the bright interference fringes would have the same intensity. The
intensity plot of Fig. 36-15b is that for diffraction by a single actual slit; the dif-
fraction pattern has a broad central maximum and weaker secondary maxima at

17�. The plot of Fig. 36-15c suggests the interference pattern for two actual slits.
That plot was constructed by using the curve of Fig. 36-15b as an envelope on the
intensity plot in Fig. 36-15a. The positions of the fringes are not changed; only the
intensities are affected.
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05101520 5 10 15 20
(degrees)θ

05101520 5 10 15 20
(degrees)θ

(a)

05101520 5 10 15 20
(degrees)θ

(b)

(c)

Relative intensity

Relative intensity

Relative intensity

This diffraction minimum
eliminates some of the
double-slit bright fringes.Figure 36-15 (a) The intensity plot to be expected in a dou-

ble-slit interference experiment with vanishingly narrow
slits. (b) The intensity plot for diffraction by a typical slit
of width a (not vanishingly narrow). (c) The intensity
plot to be expected for two slits of width a.The curve of
(b) acts as an envelope, limiting the intensity of the dou-
ble-slit fringes in (a). Note that the first minima of the
diffraction pattern of (b) eliminate the double-slit
fringes that would occur near 12° in (c).



Photos. Figure 36-16a shows an actual pattern in which both double-slit
interference and diffraction are evident. If one slit is covered, the single-slit
diffraction pattern of Fig. 36-16b results. Note the correspondence between
Figs. 36-16a and 36-15c, and between Figs. 36-16b and 36-15b. In comparing
these figures, bear in mind that Fig. 36-16 has been deliberately overexposed to
bring out the faint secondary maxima and that several secondary maxima
(rather than one) are shown.

Intensity. With diffraction effects taken into account, the intensity of a double-
slit interference pattern is given by

(double slit), (36-19)

in which (36-20)

and (36-21)

Here d is the distance between the centers of the slits and a is the slit width. Note
carefully that the right side of Eq. 36-19 is the product of Im and two factors. (1) The
interference factor cos2 b is due to the interference between two slits with slit separa-
tion d (as given by Eqs. 35-22 and 35-23). (2) The diffraction factor [(sin a)/a]2 is due
to diffraction by a single slit of width a (as given by Eqs. 36-5 and 36-6).

Let us check these factors. If we let a : 0 in Eq. 36-21, for example, then
a : 0 and (sin a)/a : 1. Equation 36-19 then reduces, as it must, to an equation
describing the interference pattern for a pair of vanishingly narrow slits with slit
separation d. Similarly, putting d � 0 in Eq. 36-20 is equivalent physically to caus-
ing the two slits to merge into a single slit of width a. Then Eq. 36-20 yields b � 0
and cos2 b � 1. In this case Eq. 36-19 reduces, as it must, to an equation describing
the diffraction pattern for a single slit of width a.

Language. The double-slit pattern described by Eq. 36-19 and displayed in Fig.
36-16a combines interference and diffraction in an intimate way. Both are superpo-
sition effects, in that they result from the combining of waves with different phases
at a given point. If the combining waves originate from a small number of elemen-
tary coherent sources—as in a double-slit experiment with a � l—we call the

a �
pa
l

 sin u.

b �
pd
l

 sin u

I(u) � Im(cos2 b) � sin a

a �
2
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(a)

(b)

Courtesy Jearl Walker

Figure 36-16 (a) Interference fringes for an
actual double-slit system; compare with
Fig. 36-15c. (b) The diffraction pattern of a
single slit; compare with Fig. 36-15b.



process interference. If the combining waves originate in a single wavefront—as in
a single-slit experiment—we call the process diffraction. This distinction between
interference and diffraction (which is somewhat arbitrary and not always adhered
to) is a convenient one, but we should not forget that both are superposition
effects and usually both are present simultaneously (as in Fig. 36-16a).

109736-4 DIFFRACTION BY A DOUBLE SLIT

envelope. The bright fringes to one side of the central bright
fringe are shown in Fig. 36-17.

(b) How many bright fringes are within either of the first
side peaks of the diffraction envelope?

KEY IDEA

The outer limits of the first side diffraction peaks are the
second diffraction minima, each of which is at the angle u
given by a sin u � m1l with m1 � 2:

a sin u � 2l. (36-24)

Calculation: Dividing Eq. 36-23 by Eq. 36-24, we find

This tells us that the second diffraction minimum occurs just
before the bright interference fringe for m2 � 10 in Eq. 36-23.
Within either first side diffraction peak we have the fringes
from m2 � 5 to m2 � 9, for a total of five bright fringes of
the double-slit interference pattern (shown in the inset of
Fig. 36-17). However, if the m2 � 5 bright fringe, which is al-
most eliminated by the first diffraction minimum, is consid-
ered too dim to count, then only four bright fringes are in
the first side diffraction peak.

m2 �
2d
a

�
(2)(19.44 mm)

4.050 mm
� 9.6.

Sample Problem 36.05 Double-slit experiment with diffraction of each slit included

In a double-slit experiment, the wavelength l of the light
source is 405 nm, the slit separation d is 19.44 mm, and the
slit width a is 4.050 mm. Consider the interference of the
light from the two slits and also the diffraction of the light
through each slit.

(a) How many bright interference fringes are within the
central peak of the diffraction envelope?

KEY IDEAS

We first analyze the two basic mechanisms responsible for
the optical pattern produced in the experiment:

1. Single-slit diffraction: The limits of the central peak are
the first minima in the diffraction pattern due to either slit
individually. (See Fig. 36-15.) The angular locations of
those minima are given by Eq. 36-3 (a sin u � ml). Here
let us rewrite this equation as a sin u � m1l, with the
subscript 1 referring to the one-slit diffraction. For the first
minima in the diffraction pattern, we substitute m1 � 1,
obtaining

a sin u � l. (36-22)

2. Double-slit interference: The angular locations of the
bright fringes of the double-slit interference pattern are
given by Eq. 35-14, which we can write as

d sin u � m2l, for m2 � 0, 1, 2, . . . . (36-23)

Here the subscript 2 refers to the double-slit interference.

Calculations: We can locate the first diffraction minimum
within the double-slit fringe pattern by dividing Eq. 36-23 by
Eq. 36-22 and solving for m2. By doing so and then substitut-
ing the given data, we obtain

This tells us that the bright interference fringe for m2 � 4
fits into the central peak of the one-slit diffraction pattern,
but the fringe for m2 � 5 does not fit. Within the central dif-
fraction peak we have the central bright fringe (m2 � 0),
and four bright fringes (up to m2 � 4) on each side of it.
Thus, a total of nine bright fringes of the double-slit interfer-
ence pattern are within the central peak of the diffraction

m2 �
d
a

�
19.44 mm
4.050 mm

� 4.8.

Additional examples, video, and practice available at WileyPLUS

Figure 36-17 One side of the intensity plot for a two-slit interference
experiment.The inset shows (vertically expanded) the plot within
the first and second side peaks of the diffraction envelope.
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Diffraction Gratings
One of the most useful tools in the study of light and of objects that emit and
absorb light is the diffraction grating. This device is somewhat like the double-slit
arrangement of Fig. 35-10 but has a much greater number N of slits, often called
rulings, perhaps as many as several thousand per millimeter.An idealized grating
consisting of only five slits is represented in Fig. 36-18. When monochromatic
light is sent through the slits, it forms narrow interference fringes that can be
analyzed to determine the wavelength of the light. (Diffraction gratings can also
be opaque surfaces with narrow parallel grooves arranged like the slits in
Fig. 36-18. Light then scatters back from the grooves to form interference fringes
rather than being transmitted through open slits.)

Pattern. With monochromatic light incident on a diffraction grating, if we
gradually increase the number of slits from two to a large number N, the intensity
plot changes from the typical double-slit plot of Fig. 36-15c to a much more compli-
cated one and then eventually to a simple graph like that shown in Fig. 36-19a.The
pattern you would see on a viewing screen using monochromatic red light from,
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36-5 DIFFRACTION GRATINGS 

After reading this module, you should be able to . . .

36.22 Describe a diffraction grating and sketch the interfer-
ence pattern it produces in monochromatic light.

36.23 Distinguish the interference patterns of a diffraction
grating and a double-slit arrangement.

36.24 Identify the terms line and order number.
36.25 For a diffraction grating, relate order number m

to the path length difference of rays that give a bright
fringe.

36.26 For a diffraction grating, relate the slit separation d, the
angle u to a bright fringe in the pattern, the order number

m of that fringe, and the wavelength l of the light.
36.27 Identify the reason why there is a maximum order

number for a given diffraction grating.
36.28 Explain the derivation of the equation for a line’s 

half-width in a diffraction-grating pattern.
36.29 Calculate the half-width of a line at a given angle in a

diffraction-grating pattern.
36.30 Explain the advantage of increasing the number of slits

in a diffraction grating.
36.31 Explain how a grating spectroscope works.

Learning Objectives

● A diffraction grating is a series of “slits” used to separate
an incident wave into its component wavelengths by separat-
ing and displaying their diffraction maxima. Diffraction by N
(multiple) slits results in maxima (lines) at angles u such that

d sin u � ml, for m � 0, 1, 2, . . . (maxima).

Key Idea

d

C

P

λ 

Figure 36-18 An idealized diffraction grating,
consisting of only five rulings, that produces
an interference pattern on a distant viewing
screen C.

θ 

m = 0

Intensity

1 2 3123

0

(a)

(b)

1m = 0 2 3123

Figure 36-19 (a) The intensity plot produced 
by a diffraction grating with a great many
rulings consists of narrow peaks, here labeled
with their order numbers m. (b) The
corresponding bright fringes seen on the
screen are called lines and are here also 
labeled with order numbers m.

● A line’s half-width is the angle from its center to the point
where it disappears into the darkness and is given by

(half-width).�uhw �
l

Nd cos u
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say, a helium–neon laser is shown in Fig. 36-19b.The maxima are now very narrow
(and so are called lines); they are separated by relatively wide dark regions.

Equation. We use a familiar procedure to find the locations of the bright lines
on the viewing screen. We first assume that the screen is far enough from the grat-
ing so that the rays reaching a particular point P on the screen are approximately
parallel when they leave the grating (Fig. 36-20). Then we apply to each pair of
adjacent rulings the same reasoning we used for double-slit interference.The sep-
aration d between rulings is called the grating spacing. (If N rulings occupy a total
width w, then d � w/N.) The path length difference between adjacent rays is
again d sin u (Fig. 36-20), where u is the angle from the central axis of the grating
(and of the diffraction pattern) to point P. A line will be located at P if the path
length difference between adjacent rays is an integer number of wavelengths :

d sin u � ml, for m � 0, 1, 2, . . . (maxima—lines), (36-25)

where l is the wavelength of the light. Each integer m represents a different line;
hence these integers can be used to label the lines, as in Fig. 36-19. The integers
are then called the order numbers, and the lines are called the zeroth-order line
(the central line, with m � 0), the first-order line (m � 1), the second-order line
(m � 2), and so on.

Determining Wavelength. If we rewrite Eq. 36-25 as u � sin�1(ml/d), we
see that, for a given diffraction grating, the angle from the central axis to any
line (say, the third-order line) depends on the wavelength of the light being
used. Thus, when light of an unknown wavelength is sent through a diffraction
grating, measurements of the angles to the higher-order lines can be used in
Eq. 36-25 to determine the wavelength. Even light of several unknown wave-
lengths can be distinguished and identified in this way. We cannot do that with
the double-slit arrangement of Module 35-2, even though the same equation
and wavelength dependence apply there. In double-slit interference, the bright
fringes due to different wavelengths overlap too much to be distinguished.

Width of the Lines
A grating’s ability to resolve (separate) lines of different wavelengths depends on
the width of the lines. We shall here derive an expression for the half-width of
the central line (the line for which m � 0) and then state an expression for the
half-widths of the higher-order lines. We define the half-width of the central line
as being the angle �uhw from the center of the line at u � 0 outward to where
the line effectively ends and darkness effectively begins with the first minimum
(Fig. 36-21). At such a minimum, the N rays from the N slits of the grating cancel
one another. (The actual width of the central line is, of course, 2(�uhw), but line
widths are usually compared via half-widths.)

In Module 36-1 we were also concerned with the cancellation of a great many
rays, there due to diffraction through a single slit. We obtained Eq. 36-3, which,
because of the similarity of the two situations, we can use to find the first
minimum here. It tells us that the first minimum occurs where the path length
difference between the top and bottom rays equals l. For single-slit diffraction,
this difference is a sin u. For a grating of N rulings, each separated from the next
by distance d, the distance between the top and bottom rulings is Nd (Fig. 36-22),
and so the path length difference between the top and bottom rays here is
Nd sin �uhw.Thus, the first minimum occurs where

Nd sin �uhw � l. (36-26)

Because �uhw is small, sin �uhw � �uhw (in radian measure). Substituting this in
Eq. 36-26 gives the half-width of the central line as

(half-width of central line). (36-27)�uhw �
l

Nd

Figure 36-20 The rays from the rulings in a
diffraction grating to a distant point P are
approximately parallel.The path length dif-
ference between each two adjacent rays is 
d sin u, where u is measured as shown. (The
rulings extend into and out of the page.)

θ
θ

θ

θ

θ

d

To point P
on viewing

screen

Path length
difference

between adjacent rays

This path length difference
between adjacent rays
determines the interference.

Figure 36-21 The half-width of the cen-
tral line is measured from the center of that
line to the adjacent minimum on a plot of 
I versus u like Fig. 36-19a.

�uhw

Δ θ 

Intensity

hw

0°
θ 

Δ θ hw

Δ θ hw

Path length
difference

Nd
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minimum

Top ray

Bottom ray

Figure 36-22 The top and bottom rulings of
a diffraction grating of N rulings are
separated by Nd.The top and bottom rays
passing through these rulings have a path
length difference of Nd sin �uhw, where
�uhw is the angle to the first minimum.
(The angle is here greatly exaggerated
for clarity.)



1100 CHAPTER 36 DIFFRACTION

0° 10° 20° 30° 40° 80°70°60°50°

m = 4m = 1 m = 2
m = 0

This is the center
of the pattern.

The higher orders are
spread out more in angle.

Figure 36-24 The zeroth, first, second, and fourth orders of the visible emission lines from
hydrogen. Note that the lines are farther apart at greater angles. (They are also dimmer
and wider, although that is not shown here.)

We state without proof that the half-width of any other line depends on its loca-
tion relative to the central axis and is

(half-width of line at u). (36-28)

Note that for light of a given wavelength l and a given ruling separation d, the
widths of the lines decrease with an increase in the number N of rulings. Thus, of
two diffraction gratings, the grating with the larger value of N is better able to 
distinguish between wavelengths because its diffraction lines are narrower and so
produce less overlap.

Grating Spectroscope
Diffraction gratings are widely used to determine the wavelengths that are emit-
ted by sources of light ranging from lamps to stars. Figure 36-23 shows a simple
grating spectroscope in which a grating is used for this purpose. Light from
source S is focused by lens L1 on a vertical slit S1 placed in the focal plane of lens
L2. The light emerging from tube C (called a collimator) is a plane wave and is
incident perpendicularly on grating G, where it is diffracted into a diffraction
pattern, with the m � 0 order diffracted at angle u � 0 along the central axis of
the grating.

We can view the diffraction pattern that would appear on a viewing screen at
any angle u simply by orienting telescope T in Fig. 36-23 to that angle. Lens L3 of
the telescope then focuses the light diffracted at angle u (and at slightly smaller
and larger angles) onto a focal plane FF � within the telescope. When we look
through eyepiece E, we see a magnified view of this focused image.

By changing the angle u of the telescope, we can examine the entire diffraction
pattern. For any order number other than m � 0, the original light is spread out ac-
cording to wavelength (or color) so that we can determine, with Eq. 36-25, just what
wavelengths are being emitted by the source. If the source emits discrete wave-
lengths, what we see as we rotate the telescope horizontally through the angles
corresponding to an order m is a vertical line of color for each wavelength, with the
shorter-wavelength line at a smaller angle u than the longer-wavelength line.

Hydrogen. For example, the light emitted by a hydrogen lamp, which con-
tains hydrogen gas, has four discrete wavelengths in the visible range. If our eyes
intercept this light directly, it appears to be white. If, instead, we view it through a
grating spectroscope, we can distinguish, in several orders, the lines of the four
colors corresponding to these visible wavelengths. (Such lines are called emission
lines.) Four orders are represented in Fig. 36-24. In the central order (m � 0), the
lines corresponding to all four wavelengths are superimposed, giving a single
white line at u � 0.The colors are separated in the higher orders.

The third order is not shown in Fig. 36-24 for the sake of clarity; it actually
overlaps the second and fourth orders. The fourth-order red line is missing
because it is not formed by the grating used here. That is, when we attempt to

�uhw �
l

Nd cos u

Figure 36-23 A simple type of grating spec-
troscope used to analyze the wavelengths
of light emitted by source S.
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solve Eq. 36-25 for the angle u for the red wavelength when m � 4, we find that
sin u is greater than unity, which is not possible.The fourth order is then said to be
incomplete for this grating; it might not be incomplete for a grating with greater
spacing d, which will spread the lines less than in Fig. 36-24. Figure 36-25 is a
photograph of the visible emission lines produced by cadmium.

Department of Physics, Imperial College/Science Photo Library/
Photo Researchers, Inc.

Figure 36-25 The visible
emission lines of cadmium,
as seen through a grating
spectroscope.

Checkpoint 5
The figure shows lines of different orders produced by
a diffraction grating in monochromatic red light. (a) Is
the center of the pattern to the left or right? (b) In
monochromatic green light, are the half-widths of the lines produced in the same or-
ders greater than, less than, or the same as the half-widths of the lines shown?

36-6 GRATINGS: DISPERSION AND RESOLVING POWER

After reading this module, you should be able to . . .

36.32 Identify dispersion as the spreading apart of 
the diffraction lines associated with different 
wavelengths.

36.33 Apply the relationships between dispersion D,
wavelength difference �l, angular separation �u, slit
separation d, order number m, and the angle u correspon-
ding to the order number.

36.34 Identify the effect on the dispersion of a diffraction

grating if the slit separation is varied.
36.35 Identify that for us to resolve lines, a diffraction grating

must make them distinguishable.
36.36 Apply the relationship between resolving power R,

wavelength difference �l, average wavelength lavg,
number of rulings N, and order number m.

36.37 Identify the effect on the resolving power R if the
number of slits N is increased.

Learning Objectives

● The dispersion D of a diffraction grating is a measure of
the angular separation �u of the lines it produces for two
wavelengths differing by �l. For order number m, at angle u,
the dispersion is given by

(dispersion).D �
�u

�l
�

m
d cosu

Key Ideas
● The resolving power R of a diffraction grating is a measure of
its ability to make the emission lines of two close wavelengths
distinguishable. For two wavelengths differing by �l and with
an average value of lavg, the resolving power is given by

(resolving power).R �
lavg

�l
� Nm

Gratings: Dispersion and Resolving Power
Dispersion
To be useful in distinguishing wavelengths that are close to each other (as in a
grating spectroscope), a grating must spread apart the diffraction lines associated
with the various wavelengths.This spreading, called dispersion, is defined as

(dispersion defined). (36-29)D �
�u

�l
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Here �u is the angular separation of two lines whose wavelengths differ by �l.
The greater D is, the greater is the distance between two emission lines whose
wavelengths differ by �l.We show below that the dispersion of a grating at angle
u is given by

(dispersion of a grating). (36-30)

Thus, to achieve higher dispersion we must use a grating of smaller grating spac-
ing d and work in a higher-order m. Note that the dispersion does not depend on
the number of rulings N in the grating. The SI unit for D is the degree per meter
or the radian per meter.

Resolving Power
To resolve lines whose wavelengths are close together (that is, to make the lines
distinguishable), the line should also be as narrow as possible. Expressed other-
wise, the grating should have a high resolving power R, defined as

(resolving power defined). (36-31)

Here lavg is the mean wavelength of two emission lines that can barely be recog-
nized as separate, and �l is the wavelength difference between them.The greater
R is, the closer two emission lines can be and still be resolved. We shall show
below that the resolving power of a grating is given by the simple expression

R � Nm (resolving power of a grating). (36-32)

To achieve high resolving power, we must use many rulings (large N).

Proof of Eq. 36-30
Let us start with Eq. 36-25, the expression for the locations of the lines in the dif-
fraction pattern of a grating:

d sin u � ml.

Let us regard u and l as variables and take differentials of this equation. We find

d(cos u) du � m dl.

For small enough angles, we can write these differentials as small differences,
obtaining

d(cos u) �u � m �l (36-33)

or

The ratio on the left is simply D (see Eq. 36-29), and so we have indeed derived
Eq. 36-30.

Proof of Eq. 36-32
We start with Eq. 36-33, which was derived from Eq. 36-25, the expression for the
locations of the lines in the diffraction pattern formed by a grating. Here �l is the
small wavelength difference between two waves that are diffracted by the grat-
ing, and �u is the angular separation between them in the diffraction pattern. If
�u is to be the smallest angle that will permit the two lines to be resolved, it must
(by Rayleigh’s criterion) be equal to the half-width of each line, which is given by
Eq. 36-28:

�uhw �
l

Nd cos u
.

�u

�l
�

m
d cos u

.

R �
lavg

�l

D �
m

d cos u

Kristen Brochmann/Fundamental Photographs

The fine rulings, each 0.5 mm wide, on a
compact disc function as a diffraction grat-
ing. When a small source of white light
illuminates a disc, the diffracted light forms
colored “lanes” that are the composite of the
diffraction patterns from the rulings.



110336-6 GRATINGS: DISPERSION AND RESOLVING POWER

If we substitute �uhw as given here for �u in Eq. 36-33, we find that

from which it readily follows that

This is Eq. 36-32, which we set out to derive.

Dispersion and Resolving Power Compared
The resolving power of a grating must not be confused with its dispersion.
Table 36-1 shows the characteristics of three gratings, all illuminated with light of
wavelength l � 589 nm, whose diffracted light is viewed in the first order (m � 1
in Eq. 36-25). You should verify that the values of D and R as given in the table
can be calculated with Eqs. 36-30 and 36-32, respectively. (In the calculations for
D, you will need to convert radians per meter to degrees per micrometer.)

For the conditions noted in Table 36-1, gratings A and B have the same
dispersion D and A and C have the same resolving power R.

Figure 36-26 shows the intensity patterns (also called line shapes) that would
be produced by these gratings for two lines of wavelengths l1 and l2, in the
vicinity of l � 589 nm. Grating B, with the higher resolving power, produces
narrower lines and thus is capable of distinguishing lines that are much closer
together in wavelength than those in the figure. Grating C, with the higher dis-
persion, produces the greater angular separation between the lines.

R �
l

�l
� Nm.

l

N
� m �l,

Table 36-1 Three Gratingsa

Grating N d (nm) u D (�/mm) R

A 10 000 2540 13.4° 23.2 10 000
B 20 000 2540 13.4° 23.2 20 000
C 10 000 1360 25.5° 46.3 10 000

aData are for l � 589 nm and m � 1.
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Figure 36-26 The intensity patterns for light
of two wavelengths sent through the grat-
ings of Table 36-1. Grating B has the high-
est resolving power, and grating C the
highest dispersion.

Calculations: The grating spacing d is

The first-order maximum corresponds to m 1. Substituting
these values for d and m into Eq. 36-25 leads to

(Answer)

(b) Using the dispersion of the grating, calculate the angular
separation between the two lines in the first order.

� 16.99� � 17.0�.

u � sin�1 ml

d
� sin�1 (1)(589.00 nm)

2016 nm

�

� 2.016 	 10�6 m � 2016 nm.

d �
w
N

�
25.4 	 10�3 m

1.26 	 104

Sample Problem 36.06 Dispersion and resolving power of a diffraction grating

A diffraction grating has 1.26 104 rulings uniformly spaced	

over width w � 25.4 mm. It is illuminated at normal inci-
dence by yellow light from a sodium vapor lamp. This light
contains two closely spaced emission lines (known as the
sodium doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on
either side of the center of the diffraction pattern) for the
wavelength of 589.00 nm?

KEY IDEA

The maxima produced by the diffraction grating can be deter-
mined with Eq. 36-25 (d sin u � ml).
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X-Ray Diffraction
X rays are electromagnetic radiation whose wavelengths are of the order of 1 Å
(� 10�10 m). Compare this with a wavelength of 550 nm (� 5.5 	 10�7 m) at the

● If x rays are directed toward a crystal structure, they
undergo Bragg scattering, which is easiest to visualize if
the crystal atoms are considered to be in parallel planes.

● For x rays of wavelength l scattering from crystal planes

Key Ideas
with separation d, the angles u at which the scattered
intensity is maximum are given by

2d sin u � ml, for m � 1, 2, 3, . . . (Bragg’s law).

KEY IDEAS

(1) The angular separation �u between the two lines in the
first order depends on their wavelength difference �l and
the dispersion D of the grating, according to Eq. 36-29 
(D � �u/�l). (2) The dispersion D depends on the angle u
at which it is to be evaluated.

Calculations: We can assume that, in the first order, the
two sodium lines occur close enough to each other for us to
evaluate D at the angle u 16.99° we found in part (a) for
one of those lines.Then Eq. 36-30 gives the dispersion as

From Eq. 36-29 and with �l in nanometers, we then have

(Answer)

You can show that this result depends on the grating spacing
d but not on the number of rulings there are in the grating.

� 3.06 	 10�4 rad � 0.0175�.

�u � D �l � (5.187 	 10�4 rad/nm)(589.59 � 589.00)

� 5.187 	 10�4 rad/nm.

D �
m

d cos u
�

1
(2016 nm)(cos 16.99�)

�

(c) What is the least number of rulings a grating can have
and still be able to resolve the sodium doublet in the first
order?

KEY IDEAS

(1) The resolving power of a grating in any order m is physi-
cally set by the number of rulings N in the grating 
according to Eq. 36-32 (R � Nm). (2) The smallest wave-
length difference �l that can be resolved depends on the
average wavelength involved and on the resolving power R
of the grating, according to Eq. 36-31 (R � lavg/�l).

Calculation: For the sodium doublet to be barely resolved,
�l must be their wavelength separation of 0.59 nm, and lavg

must be their average wavelength of 589.30 nm. Thus, we
find that the smallest number of rulings for a grating to 
resolve the sodium doublet is

(Answer)�
589.30 nm

(1)(0.59 nm)
� 999 rulings.

N �
R
m

�
lavg

m �l

Additional examples, video, and practice available at WileyPLUS

36-7 X-RAY DIFFRACTION

After reading this module, you should be able to . . .

36.38 Identify approximately where x rays are located in the
electromagnetic spectrum.

36.39 Define a unit cell.
36.40 Define reflecting planes (or crystal planes) and

interplanar spacing.
36.41 Sketch two rays that scatter from adjacent planes,

showing the angle that is used in calculations.

36.42 For the intensity maxima in x-ray scattering 
by a crystal, apply the relationship between the 
interplanar spacing d, the angle u of scattering, 
the order number m, and the wavelength l of the 
x rays.

36.43 Given a drawing of a unit cell, demonstrate how an
interplanar spacing can be determined.

Learning Objectives
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Figure 36-27 X rays are generated when
electrons leaving heated filament F are
accelerated through a potential difference
V and strike a metal target T. The “win-
dow” W in the evacuated chamber C is
transparent to x rays.

V

F

WX rays
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T
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a0

Cl–
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d θ θ

θ θ

θ θ

Incident
x rays

3 2 1
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Ray 2 Ray 1

θ θ

d sinθ d sinθ

The extra distance of ray 2
determines the interference.(c)

θ
θ

θ
θ

θ
θd

d

d

(d)

Figure 36-28 (a) The cubic structure of NaCl, showing the sodium and chlorine ions and
a unit cell (shaded). (b) Incident x rays undergo diffraction by the structure of (a).The
x rays are diffracted as if they were reflected by a family of parallel planes, with angles
measured relative to the planes (not relative to a normal as in optics). (c) The path length
difference between waves effectively reflected by two adjacent planes is 2d sin u. (d)
A different orientation of the incident x rays relative to the structure.A different family 
of parallel planes now effectively reflects the x rays.

center of the visible spectrum. Figure 36-27 shows that x rays are produced when
electrons escaping from a heated filament F are accelerated by a potential differ-
ence V and strike a metal target T.

A standard optical diffraction grating cannot be used to discriminate
between different wavelengths in the x-ray wavelength range. For l � 1 Å
(� 0.1 nm) and d � 3000 nm, for example, Eq. 36-25 shows that the first-order
maximum occurs at

This is too close to the central maximum to be practical. A grating with d � l is
desirable, but, because x-ray wavelengths are about equal to atomic diameters,
such gratings cannot be constructed mechanically.

In 1912, it occurred to German physicist Max von Laue that a crystalline
solid, which consists of a regular array of atoms, might form a natural three-
dimensional “diffraction grating” for x rays. The idea is that, in a crystal such as
sodium chloride (NaCl), a basic unit of atoms (called the unit cell) repeats itself
throughout the array. Figure 36-28a represents a section through a crystal of
NaCl and identifies this basic unit. The unit cell is a cube measuring a0 on
each side.

When an x-ray beam enters a crystal such as NaCl, x rays are scattered—that
is, redirected—in all directions by the crystal structure. In some directions the
scattered waves undergo destructive interference, resulting in intensity minima;
in other directions the interference is constructive, resulting in intensity maxima.
This process of scattering and interference is a form of diffraction.

Fictional Planes. Although the process of diffraction of x rays by a crystal is
complicated, the maxima turn out to be in directions as if the x rays were

u � sin�1 ml

d
� sin�1 (1)(0.1 nm)

3000 nm
� 0.0019�.
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reflected by a family of parallel reflecting planes (or crystal planes) that extend
through the atoms within the crystal and that contain regular arrays of the atoms.
(The x rays are not actually reflected; we use these fictional planes only to sim-
plify the analysis of the actual diffraction process.)

Figure 36-28b shows three reflecting planes (part of a family containing
many parallel planes) with interplanar spacing d, from which the incident rays
shown are said to reflect. Rays 1, 2, and 3 reflect from the first, second, and third
planes, respectively. At each reflection the angle of incidence and the angle of re-
flection are represented with u. Contrary to the custom in optics, these angles are
defined relative to the surface of the reflecting plane rather than a normal to that
surface. For the situation of Fig. 36-28b, the interplanar spacing happens to be
equal to the unit cell dimension a0.

Figure 36-28c shows an edge-on view of reflection from an adjacent pair of
planes. The waves of rays 1 and 2 arrive at the crystal in phase. After they are
reflected, they must again be in phase because the reflections and the reflecting
planes have been defined solely to explain the intensity maxima in the diffraction
of x rays by a crystal. Unlike light rays, the x rays do not refract upon entering the
crystal; moreover, we do not define an index of refraction for this situation. Thus,
the relative phase between the waves of rays 1 and 2 as they leave the crystal is
set solely by their path length difference. For these rays to be in phase, the path
length difference must be equal to an integer multiple of the wavelength l of
the x rays.

Diffraction Equation. By drawing the dashed perpendiculars in Fig. 36-28c,
we find that the path length difference is 2d sin u. In fact, this is true for any pair
of adjacent planes in the family of planes represented in Fig. 36-28b. Thus, we
have, as the criterion for intensity maxima for x-ray diffraction,

2d sin u � ml, for m � 1, 2, 3, . . . (Bragg’s law), (36-34)

where m is the order number of an intensity maximum. Equation 36-34 is called
Bragg’s law after British physicist W. L. Bragg, who first derived it. (He and his
father shared the 1915 Nobel Prize in physics for their use of x rays to study the
structures of crystals.) The angle of incidence and reflection in Eq. 36-34 is called
a Bragg angle.

Regardless of the angle at which x rays enter a crystal, there is always a fam-
ily of planes from which they can be said to reflect so that we can apply Bragg’s
law. In Fig. 36-28d, notice that the crystal structure has the same orientation as it
does in Fig. 36-28a, but the angle at which the beam enters the structure differs
from that shown in Fig. 36-28b.This new angle requires a new family of reflecting
planes, with a different interplanar spacing d and different Bragg angle u, in order
to explain the x-ray diffraction via Bragg’s law.

Determining a Unit Cell. Figure 36-29 shows how the interplanar spacing d
can be related to the unit cell dimension a0. For the particular family of planes
shown there, the Pythagorean theorem gives

or (36-35)

Figure 36-29 suggests how the dimensions of the unit cell can be found once the
interplanar spacing has been measured by means of x-ray diffraction.

X-ray diffraction is a powerful tool for studying both x-ray spectra and the
arrangement of atoms in crystals.To study spectra, a particular set of crystal planes,
having a known spacing d, is chosen. These planes effectively reflect different
wavelengths at different angles. A detector that can discriminate one angle from
another can then be used to determine the wavelength of radiation reaching it.The
crystal itself can be studied with a monochromatic x-ray beam, to determine not
only the spacing of various crystal planes but also the structure of the unit cell.

d �
a0

120
� 0.2236a0.

5d � 25
4a

2
0,

Figure 36-29 A family of planes through the
structure of Fig. 36-28a, and a way to relate
the edge length a0 of a unit cell to the inter-
planar spacing d.
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Diffraction When waves encounter an edge, an obstacle, or an
aperture the size of which is comparable to the wavelength of the
waves, those waves spread out as they travel and, as a result,
undergo interference.This is called diffraction.

Single-Slit Diffraction Waves passing through a long narrow
slit of width a produce, on a viewing screen, a single-slit diffraction
pattern that includes a central maximum and other maxima, sepa-
rated by minima located at angles u to the central axis that satisfy

a sin u � ml, for m � 1, 2, 3, . . . (minima). (36-3)

The intensity of the diffraction pattern at any given angle u is

(36-5, 36-6)

and Im is the intensity at the center of the pattern.

Circular-Aperture Diffraction Diffraction by a circular
aperture or a lens with diameter d produces a central maximum
and concentric maxima and minima, with the first minimum at an
angle u given by

(first minimum—circular aperture). (36-12)

Rayleigh’s Criterion Rayleigh’s criterion suggests that two
objects are on the verge of resolvability if the central diffraction
maximum of one is at the first minimum of the other.Their angular
separation can then be no less than

(Rayleigh’s criterion), (36-14)

in which d is the diameter of the aperture through which the light
passes.

uR � 1.22
l

d

sin u � 1.22
l

d

I(u) � Im � sin a

a �
2

,  where a �
pa
l

 sin u

Review & Summary

Double-Slit Diffraction Waves passing through two slits,
each of width a, whose centers are a distance d apart, display dif-
fraction patterns whose intensity I at angle u is

(double slit), (36-19)

with b � (pd /l) sin u and a as for single-slit diffraction.

Diffraction Gratings A diffraction grating is a series of “slits”
used to separate an incident wave into its component wavelengths
by separating and displaying their diffraction maxima. Diffraction
by N (multiple) slits results in maxima (lines) at angles u such that

d sin u � ml, for m � 0, 1, 2, . . . (maxima), (36-25)

with the half-widths of the lines given by

(half-widths). (36-28)

The dispersion D and resolving power R are given by

(36-29, 36-30)

and
(36-31, 36-32)

X-Ray Diffraction The regular array of atoms in a crystal is a
three-dimensional diffraction grating for short-wavelength waves
such as x rays. For analysis purposes, the atoms can be visualized as
being arranged in planes with characteristic interplanar spacing d.
Diffraction maxima (due to constructive interference) occur if the
incident direction of the wave, measured from the surfaces of these
planes, and the wavelength l of the radiation satisfy Bragg’s law:

2d sin u � ml, for m � 1, 2, 3, . . . (Bragg’s law). (36-34)

R �
lavg

�l
� Nm.

D �
�u

�l
�

m
d cosu

�uhw �
l

Nd cos u

I(u) � Im(cos2 b) � sin a

a �
2

4 For three experiments, Fig. 36-31 gives
a versus angle u in one-slit diffraction using
light of wavelength 500 nm. Rank the ex-
periments according to (a) the slit widths
and (b) the total number of diffraction
minima in the pattern,greatest first.

5 Figure 36-32 shows four choices for the
rectangular opening of a source of either
sound waves or light waves.The sides have
lengths of either L or 2L, with L being 3.0
times the wavelength of the waves. Rank
the openings according to the extent of (a) left–right spreading and
(b) up–down spreading of the waves due to diffraction, greatest first.

1 You are conducting a single-slit diffraction experiment
with light of wavelength l. What appears, on a distant viewing
screen, at a point at which the top and bottom rays through
the slit have a path length difference equal to (a) 5l and
(b) 4.5l?

2 In a single-slit diffraction experiment, the top and bottom rays
through the slit arrive at a certain point on the viewing screen with
a path length difference of 4.0 wavelengths. In a phasor representa-
tion like those in Fig 36-7, how many overlapping circles does the
chain of phasors make?

3 For three experiments, Fig. 36-30 gives
the parameter b of Eq. 36-20 versus angle
u for two-slit interference using light of
wavelength 500 nm. The slit separations
in the three experiments differ. Rank the
experiments according to (a) the slit sep-
arations and (b) the total number of two-
slit interference maxima in the pattern,
greatest first.

Questions

Figure 36-30 Question 3.
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Figure 36-31 Question 4.
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Figure 36-32 Question 5.

(1) (2) (3) (4)
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Module 36-1 Single-Slit Diffraction
•1 The distance between the first and fifth minima of a single-
slit diffraction pattern is 0.35 mm with the screen 40 cm away from
the slit, when light of wavelength 550 nm is used. (a) Find the slit
width. (b) Calculate the angle u of the first diffraction minimum.

•2 What must be the ratio of the slit width to the wavelength for a
single slit to have the first diffraction minimum at u � 45.0°?

•3 A plane wave of wavelength 590 nm is incident on a slit with a
width of a � 0.40 mm.A thin converging lens of focal length �70 cm
is placed between the slit and a viewing screen and focuses the
light on the screen. (a) How far is the screen from the lens?
(b) What is the distance on the screen from the center of the dif-
fraction pattern to the first minimum?

•4 In conventional television, signals are broadcast from towers
to home receivers. Even when a receiver is not in direct view of a

tower because of a hill or building, it can still intercept a signal if
the signal diffracts enough around the obstacle, into the obstacle’s
“shadow region.” Previously, television signals had a wavelength of
about 50 cm, but digital television signals that are transmitted
from towers have a wavelength of about 10 mm. (a) Did this
change in wavelength increase or decrease the diffraction of the
signals into the shadow regions of obstacles? Assume that a
signal passes through an opening of 5.0 m width between two
adjacent buildings. What is the angular spread of the central dif-
fraction maximum (out to the first minima) for wavelengths of
(b) 50 cm and (c) 10 mm?

•5 A single slit is illuminated by light of wavelengths la and lb,
chosen so that the first diffraction minimum of the la component
coincides with the second minimum of the lb component. (a) If 
lb � 350 nm, what is la? For what order number mb (if any) does a

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

has the greater number of rulings? (b) Figure 36-34b shows lines of
two orders produced by a single diffraction grating using light of
two wavelengths, both in the red region of the spectrum. Which
lines, the left pair or right pair, are in the order with greater m? Is
the center of the diffraction pattern located to the left or to the
right in (c) Fig. 36-34a and (d) Fig. 36-34b?

6 Light of frequency f illuminating a long narrow slit produces a
diffraction pattern. (a) If we switch to light of frequency 1.3f, does
the pattern expand away from the center or contract toward the
center? (b) Does the pattern expand or contract if, instead, we sub-
merge the equipment in clear corn syrup?

7 At night many people see rings (called entoptic halos) surround-
ing bright outdoor lamps in otherwise dark surroundings. The rings
are the first of the side maxima in diffraction patterns produced by
structures that are thought to be within the cornea (or possibly the
lens) of the observer’s eye. (The central maxima of such patterns
overlap the lamp.) (a) Would a particular ring become smaller or
larger if the lamp were switched from blue to red light? (b) If a lamp
emits white light, is blue or red on the outside edge of the ring?

8 (a) For a given diffraction grating, does the smallest difference
�l in two wavelengths that can be resolved increase, decrease, or
remain the same as the wavelength increases? (b) For a given
wavelength region (say, around 500 nm), is �l greater in the first
order or in the third order?

9 Figure 36-33 shows a red line and
a green line of the same order in the
pattern produced by a diffraction
grating. If we increased the number
of rulings in the grating—say, by
removing tape that had covered the outer half of the rulings—
would (a) the half-widths of the lines and (b) the separation of the
lines increase, decrease, or remain the same? (c) Would the lines
shift to the right, shift to the left, or remain in place?

10 For the situation of Question 9 and Fig. 36-33, if instead we in-
creased the grating spacing, would (a) the half-widths of the lines and
(b) the separation of the lines increase, decrease, or remain the same?
(c) Would the lines shift to the right, shift to the left,or remain in place?

11 (a) Figure 36-34a shows the lines produced by diffraction
gratings A and B using light of the same wavelength; the lines are
of the same order and appear at the same angles u. Which grating

Figure 36-33 Questions 9
and 10.

Figure 36-34 Question 11.
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B

(a) (b)

12 Figure 36-35 shows the
bright fringes that lie within
the central diffraction enve-
lope in two double-slit dif-
fraction experiments using
the same wavelength of light.
Are (a) the slit width a, (b)
the slit separation d, and (c) the ratio d/a in experiment B greater
than, less than, or the same as those quantities in experiment A?

13 In three arrangements you view two closely spaced small
objects that are the same large distance from you. The angles that
the objects occupy in your field of view and their distances from
you are the following: (1) 2f and R; (2) 2f and 2R; (3) f/2 and R/2.
(a) Rank the arrangements according to the separation between
the objects, greatest first. If you can just barely resolve the two ob-
jects in arrangement 2, can you resolve them in (b) arrangement 1
and (c) arrangement 3?

14 For a certain diffraction grating, the ratio l/a of wavelength to
ruling spacing is 1/3.5. Without written calculation or use of a cal-
culator, determine which of the orders beyond the zeroth order ap-
pear in the diffraction pattern.

Figure 36-35 Question 12.
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B
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scale is set by as � 12 rad. What are
(a) the slit width, (b) the total num-
ber of diffraction minima in the pat-
tern (count them on both sides of
the center of the diffraction pat-
tern), (c) the least angle for a mini-
mum, and (d) the greatest angle for
a minimum?

•13 Monochromatic light with wavelength 538 nm is incident on a
slit with width 0.025 mm. The distance from the slit to a screen is 3.5
m. Consider a point on the screen 1.1 cm from the central maximum.
Calculate (a) u for that point, (b) a, and (c) the ratio of the intensity at
that point to the intensity at the central maximum.

•14 In the single-slit diffraction experiment of Fig.36-4, let the wave-
length of the light be 500 nm, the slit width be 6.00 mm, and the view-
ing screen be at distance D � 3.00 m. Let a y axis extend upward
along the viewing screen, with its origin at the center of the diffraction
pattern. Also let IP represent the intensity of the diffracted light at
point P at y � 15.0 cm. (a) What is the ratio of IP to the intensity Im at
the center of the pattern? (b) Determine where point P is in the dif-
fraction pattern by giving the maximum and minimum between
which it lies,or the two minima between which it lies.

••15 The full width at half-maximum (FWHM) of a
central diffraction maximum is defined as the angle between the two
points in the pattern where the intensity is one-half that at the center
of the pattern. (See Fig. 36-8b.) (a) Show that the intensity drops to
one-half the maximum value when sin2 a � a2/2. (b) Verify that a �
1.39 rad (about 80°) is a solution to the transcendental equation of
(a). (c) Show that the FWHM is �u � 2 sin�1(0.443l/a), where a is the
slit width. Calculate the FWHM of the central maximum for slit width
(d) 1.00l, (e) 5.00l, and (f) 10.0l.

••16 Babinet’s principle. A
monochromatic beam of paral-
lel light is incident on a “colli-
mating” hole of diameter .
Point P lies in the geometrical
shadow region on a distant
screen (Fig. 36-39a). Two dif-
fracting objects, shown in Fig.
36-39b, are placed in turn over
the collimating hole. Object A is
an opaque circle with a hole in
it, and B is the “photographic
negative” of A. Using superpo-
sition concepts, show that the
intensity at P is identical for the
two diffracting objects A and B.

••17 (a) Show that the values
of a at which intensity maxima
for single-slit diffraction occur can be found exactly by differenti-
ating Eq. 36-5 with respect to a and equating the result to zero, ob-
taining the condition tan a � a. To find values of a satisfying this
relation, plot the curve y � tan a and the straight line y � a and
then find their intersections, or use a calculator to find an appro-
priate value of a by trial and error. Next, from , de-
termine the values of m associated with the maxima in the single-
slit pattern. (These m values are not integers because secondary
maxima do not lie exactly halfway between minima.) What are the
(b) smallest a and (c) associated m, the (d) second smallest a and
(e) associated m, and the (f) third smallest a and (g) associated m?

a � (m � 1
2)p

x � �
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Figure 36-37 Problem 10.
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Figure 36-38 Problem 12.
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minimum of the lb component coincide with the minimum of the
la component in the order number (b) ma � 2 and (c) ma � 3?

•6 Monochromatic light of wavelength 441 nm is incident on a
narrow slit. On a screen 2.00 m away, the distance between the
second diffraction minimum and the central maximum is 1.50 cm.
(a) Calculate the angle of diffraction u of the second minimum.
(b) Find the width of the slit.

•7 Light of wavelength 633 nm is incident on a narrow slit. The
angle between the first diffraction minimum on one side of the
central maximum and the first minimum on the other side is 1.20°.
What is the width of the slit?

••8 Sound waves with frequency
3000 Hz and speed 343 m/s diffract
through the rectangular opening of
a speaker cabinet and into a large
auditorium of length d � 100 m.The
opening, which has a horizontal
width of 30.0 cm, faces a wall 100 m
away (Fig. 36-36). Along that wall,
how far from the central axis will a
listener be at the first diffraction minimum and thus have difficulty
hearing the sound? (Neglect reflections.)

••9 A slit 1.00 mm wide is illuminated by light of wave-
length 589 nm. We see a diffraction pattern on a screen 3.00 m
away.What is the distance between the first two diffraction minima
on the same side of the central diffraction maximum?

••10 Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium – neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L � 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?

ILWSSM

Figure 36-36 Problem 8.
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Module 36-2 Intensity in Single-Slit Diffraction 
•11 A 0.10-mm-wide slit is illuminated by light of wavelength
589 nm. Consider a point P on a viewing screen on which the dif-
fraction pattern of the slit is viewed; the point is at 30° from the
central axis of the slit. What is the phase difference between the
Huygens wavelets arriving at point P from the top and midpoint of
the slit? (Hint: See Eq. 36-4.)

•12 Figure 36-38 gives a versus the sine of the angle u in a single-slit dif-
fraction experiment using light of wavelength 610 nm. The vertical axis

Figure 36-39 Problem 16.
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Figure 36-41 Problem 28.Tiger beetles are colored by pointillistic
mixtures of thin-film interference colors.

Kjell B. Sandved/Bruce Coleman, Inc./Photoshot Holdings Ltd.

Module 36-3 Diffraction by a Circular Aperture
•18 The wall of a large room is covered with acoustic tile in
which small holes are drilled 5.0 mm from center to center. How
far can a person be from such a tile and still distinguish the indi-
vidual holes, assuming ideal conditions, the pupil diameter of the
observer’s eye to be 4.0 mm, and the wavelength of the room
light to be 550 nm?

•19 (a) How far from grains of red sand must you be to position
yourself just at the limit of resolving the grains if your pupil diame-
ter is 1.5 mm, the grains are spherical with radius 50 mm, and the
light from the grains has wavelength 650 nm? (b) If the grains were
blue and the light from them had wavelength 400 nm, would the
answer to (a) be larger or smaller?

•20 The radar system of a navy cruiser transmits at a wavelength
of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a
range of 6.2 km, what is the smallest distance that two speedboats
can be from each other and still be resolved as two separate objects
by the radar system?

•21 Estimate the linear separation of two objects on
Mars that can just be resolved under ideal conditions by an
observer on Earth (a) using the naked eye and (b) using the 200 in.
(� 5.1 m) Mount Palomar telescope. Use the following data:
distance to Mars � 8.0 	 107 km, diameter of pupil � 5.0 mm,
wavelength of light � 550 nm.

•22 Assume that Rayleigh’s criterion gives the limit of reso-
lution of an astronaut’s eye looking down on Earth’s surface from a
typical space shuttle altitude of 400 km. (a) Under that idealized as-
sumption, estimate the smallest linear width on Earth’s surface that
the astronaut can resolve. Take the astronaut’s pupil diameter to be
5 mm and the wavelength of visible light to be 550 nm. (b) Can the
astronaut resolve the Great Wall of China (Fig. 36-40), which is
more than 3000 km long, 5 to 10 m thick at its base, 4 m thick at its
top, and 8 m in height? (c) Would the astronaut be able to resolve
any unmistakable sign of intelligent life on Earth’s surface?

WWWSSM

•24 Entoptic halos. If someone looks at a bright outdoor lamp
in otherwise dark surroundings, the lamp appears to be surrounded
by bright and dark rings (hence halos) that are actually a circular dif-
fraction pattern as in Fig. 36-10, with the central maximum overlap-
ping the direct light from the lamp. The diffraction is produced by
structures within the cornea or lens of the eye (hence entoptic). If the
lamp is monochromatic at wavelength 550 nm and the first dark ring
subtends angular diameter 2.5° in the observer’s view, what is the
(linear) diameter of the structure producing the diffraction?

•25 Find the separation of two points on the Moon’s surface
that can just be resolved by the 200 in. ( 5.1 m) telescope at
Mount Palomar, assuming that this separation is determined by
diffraction effects. The distance from Earth to the Moon is 3.8 	
105 km.Assume a wavelength of 550 nm for the light.

•26 The telescopes on some commercial surveillance satellites
can resolve objects on the ground as small as 85 cm across (see
Google Earth), and the telescopes on military surveillance satel-
lites reportedly can resolve objects as small as 10 cm across.
Assume first that object resolution is determined entirely by
Rayleigh’s criterion and is not degraded by turbulence in the at-
mosphere.Also assume that the satellites are at a typical altitude of
400 km and that the wavelength of visible light is 550 nm. What
would be the required diameter of the telescope aperture for
(a) 85 cm resolution and (b) 10 cm resolution? (c) Now, consider-
ing that turbulence is certain to degrade resolution and that the
aperture diameter of the Hubble Space Telescope is 2.4 m, what
can you say about the answer to (b) and about how the military
surveillance resolutions are accomplished?

•27 If Superman really had x-ray vision at 0.10 nm wavelength
and a 4.0 mm pupil diameter, at what maximum altitude could he
distinguish villains from heroes, assuming that he needs to resolve
points separated by 5.0 cm to do this?

••28 The wings of tiger beetles (Fig. 36-41) are colored
by interference due to thin cuticle-like layers. In addition, these lay-
ers are arranged in patches that are 60 mm across and produce dif-
ferent colors. The color you see is a pointillistic mixture of thin-film
interference colors that varies with perspective. Approximately

�
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Figure 36-40 Problem 22.The Great Wall of China.

©AP/Wide World Photos

•23 The two headlights of an approaching automobile are
1.4 m apart. At what (a) angular separation and (b) maximum dis-
tance will the eye resolve them? Assume that the pupil diameter is
5.0 mm, and use a wavelength of 550 nm for the light. Also assume
that diffraction effects alone limit the resolution so that Rayleigh’s
criterion can be applied.

SSM
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what viewing distance from a wing puts you at the limit of resolv-
ing the different colored patches according to Rayleigh’s criterion?
Use 550 nm as the wavelength of light and 3.00 mm as the diame-
ter of your pupil.

••29 (a) What is the angular separation of two stars if their im-
ages are barely resolved by the Thaw refracting telescope at the
Allegheny Observatory in Pittsburgh? The lens diameter is 76 cm
and its focal length is 14 m. Assume l � 550 nm. (b) Find the dis-
tance between these barely resolved stars if each of them is 10
light-years distant from Earth. (c) For the image of a single star in
this telescope, find the diameter of the first dark ring in the diffrac-
tion pattern, as measured on a photographic plate placed at the 
focal plane of the telescope lens. Assume that the structure of
the image is associated entirely with diffraction at the lens aper-
ture and not with lens “errors.”

••30 Floaters. The floaters you see when viewing a
bright, featureless background are diffraction patterns of defects
in the vitreous humor that fills most of your eye. Sighting through
a pinhole sharpens the diffraction pattern. If you also view a
small circular dot, you can approximate the defect’s size. Assume
that the defect diffracts light as a circular aperture does.Adjust the
dot’s distance L from your eye (or eye lens) until the dot and the
circle of the first minimum in the diffraction pattern appear to
have the same size in your view. That is, until they have the same
diameter D� on the retina at distance L� � 2.0 cm from the front of
the eye, as suggested in Fig. 36-42a, where the angles on the two
sides of the eye lens are equal. Assume that the wavelength of visi-
ble light is l � 550 nm. If the dot has diameter D � 2.0 mm and is
distance L 45.0 cm from the eye and the defect is x 6.0 mm in
front of the retina (Fig. 36-42b), what is the diameter of the defect?

��
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Figure 36-42 Problem 30.

One limitation on such a device is the spreading of the beam due to
diffraction, with resulting dilution of beam intensity. Consider such
a laser operating at a wavelength of 1.40 nm. The element that
emits light is the end of a wire with diameter 0.200 mm.
(a) Calculate the diameter of the central beam at a target 2000 km
away from the beam source. (b) What is the ratio of the beam in-
tensity at the target to that at the end of the wire? (The laser is
fired from space, so neglect any atmospheric absorption.)

•••34 A circular obstacle produces the same diffraction
pattern as a circular hole of the same diameter (except very near
u � 0).Airborne water drops are examples of such obstacles.When
you see the Moon through suspended water drops, such as in a fog,
you intercept the diffraction pattern from many drops. The com-
posite of the central diffraction maxima of those drops forms a
white region that surrounds the Moon and may obscure it. Figure
36-43 is a photograph in which the Moon is obscured. There are
two faint, colored rings around the Moon (the larger one may be
too faint to be seen in your copy of the photograph). The smaller
ring is on the outer edge of the central maxima from the drops; the
somewhat larger ring is on the outer edge of the smallest of the
secondary maxima from the drops (see Fig. 36-10).The color is visi-
ble because the rings are adjacent to the diffraction minima (dark
rings) in the patterns. (Colors in other parts of the pattern overlap
too much to be visible.)

(a) What is the color of these rings on the outer edges of 
the diffraction maxima? (b) The colored ring around the central max-
ima in Fig. 36-43 has an angular diameter that is 1.35 times the angu-
lar diameter of the Moon, which is 0.50°. Assume that the drops all
have about the same diameter.Approximately what is that diameter?

Module 36-4 Diffraction by a Double Slit
•35 Suppose that the central diffraction envelope of a double-slit
diffraction pattern contains 11 bright fringes and the first diffrac-
tion minima eliminate (are coincident with) bright fringes. How
many bright fringes lie between the first and second minima of the
diffraction envelope?

•36 A beam of light of a single wavelength is incident perpendic-
ularly on a double-slit arrangement, as in Fig. 35-10. The slit widths

••31 Millimeter-wave radar generates a narrower beam than
conventional microwave radar, making it less vulnerable to anti-
radar missiles than conventional radar. (a) Calculate the angular
width 2u of the central maximum, from first minimum to first mini-
mum, produced by a 220 GHz radar beam emitted by a 55.0-cm-
diameter circular antenna. (The frequency is chosen to coincide
with a low-absorption atmospheric “window.”) (b) What is 2u for a
more conventional circular antenna that has a diameter of 2.3 m
and emits at wavelength 1.6 cm?

••32 (a) A circular diaphragm 60 cm in diameter oscillates at a
frequency of 25 kHz as an underwater source of sound used for sub-
marine detection. Far from the source, the sound intensity is distrib-
uted as the diffraction pattern of a circular hole whose diameter
equals that of the diaphragm.Take the speed of sound in water to be
1450 m/s and find the angle between the normal to the diaphragm
and a line from the diaphragm to the first minimum. (b) Is there such
a minimum for a source having an (audible) frequency of 1.0 kHz?

••33 Nuclear-pumped x-ray lasers are seen as a possible
weapon to destroy ICBM booster rockets at ranges up to 2000 km.

SSM

Figure 36-43 Problem 34.The corona around the Moon is a composite
of the diffraction patterns of airborne water drops.

Pekka Parvianen/Photo Researchers, Inc.
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the first diffraction-envelope minima to either side of the central
maximum in a double-slit pattern if l � 550 nm, d � 0.150 mm,
and a � 30.0 mm? (b) What is the ratio of the intensity of the third
bright fringe to the intensity of the central fringe?

Module 36-5 Diffraction Gratings
•44 Perhaps to confuse a predator, some tropical gyrinid
beetles (whirligig beetles) are colored by optical interference that
is due to scales whose alignment forms a diffraction grating (which
scatters light instead of transmitting it). When the incident light
rays are perpendicular to the grating, the angle between the first-
order maxima (on opposite sides of the zeroth-order maximum) is
about 26° in light with a wavelength of 550 nm. What is the grating
spacing of the beetle?

•45 A diffraction grating 20.0 mm wide has 6000 rulings. Light of
wavelength 589 nm is incident perpendicularly on the grating.
What are the (a) largest, (b) second largest, and (c) third largest
values of u at which maxima appear on a distant viewing screen?

•46 Visible light is incident perpendicularly on a grating with 315
rulings/mm. What is the longest wavelength that can be seen in the
fifth-order diffraction?

•47 A grating has 400 lines/mm. How many orders of
the entire visible spectrum (400–700 nm) can it produce in a dif-
fraction experiment, in addition to the m � 0 order?

••48 A diffraction grating is made up of slits of width 300 nm with
separation 900 nm. The grating is illuminated by monochromatic
plane waves of wavelength l � 600 nm at normal incidence.
(a) How many maxima are there in the full diffraction pattern?
(b) What is the angular width of a spectral line observed in the first
order if the grating has 1000 slits?

••49 Light of wavelength 600 nm is incident normally
on a diffraction grating. Two adjacent maxima occur at angles given
by sin u � 0.2 and sin u � 0.3. The fourth-order maxima are missing.
(a) What is the separation between adjacent slits? (b) What is the
smallest slit width this grating can have? For that slit width, what are
the (c) largest, (d) second largest, and (e) third largest values of the
order number m of the maxima produced by the grating?

••50 With light from a gaseous discharge tube incident normally
on a grating with slit separation 1.73 mm, sharp maxima of green
light are experimentally found at angles u � 
17.6°, 37.3°, �37.1°,
65.2°, and �65.0°. Compute the wavelength of the green light that
best fits these data.

••51 A diffraction grating having 180 lines/mm is illuminated
with a light signal containing only two wavelengths, l1 400 nm
and l2 � 500 nm. The signal is incident perpendicularly on the
grating. (a) What is the angular separation between the second-
order maxima of these two wavelengths? (b) What is the smallest
angle at which two of the resulting maxima are superimposed?
(c) What is the highest order for which maxima for both wave-
lengths are present in the diffraction pattern?

••52 A beam of light consisting of wavelengths from
460.0 nm to 640.0 nm is directed perpendicularly onto a diffrac-
tion grating with 160 lines/mm. (a) What is the lowest order that is
overlapped by another order? (b) What is the highest order for
which the complete wavelength range of the beam is present? In
that highest order, at what angle does the light at wavelength (c)
460.0 nm and (d) 640.0 nm appear? (e) What is the greatest angle
at which the light at wavelength 460.0 nm appears?

••53 A grating has 350 rulings/mm and is illuminated at normal

�
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Figure 36-44 Problem 39.
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are each 46 mm and the slit separation is 0.30 mm. How many
complete bright fringes appear between the two first-order minima
of the diffraction pattern?

•37 In a double-slit experiment, the slit separation d is 2.00 times
the slit width w. How many bright interference fringes are in the
central diffraction envelope?

•38 In a certain two-slit interference pattern, 10 bright fringes lie
within the second side peak of the diffraction envelope and diffrac-
tion minima coincide with two-slit interference maxima. What is
the ratio of the slit separation to the slit width?

••39 Light of wavelength 440 nm passes through a double slit,
yielding a diffraction pattern whose graph of intensity I versus an-
gular position u is shown in Fig. 36-44. Calculate (a) the slit width
and (b) the slit separation. (c) Verify the displayed intensities of
the m � 1 and m � 2 interference fringes.

••40 Figure 36-45 gives the pa-
rameter b of Eq. 36-20 versus the
sine of the angle u in a two-slit inter-
ference experiment using light of
wavelength 435 nm.The vertical axis
scale is set by bs � 80.0 rad.What are
(a) the slit separation, (b) the total
number of interference maxima
(count them on both sides of the
pattern’s center), (c) the smallest angle for a maxima, and (d) the
greatest angle for a minimum? Assume that none of the interference
maxima are completely eliminated by a diffraction minimum.

••41 In the two-slit interference experiment of Fig. 35-10, the slit
widths are each 12.0 mm,their separation is 24.0 mm,the wavelength is
600 nm, and the viewing screen is at a distance of 4.00 m. Let IP repre-
sent the intensity at point P on the screen, at height y � 70.0 cm. (a)
What is the ratio of IP to the intensity Im at the center of the pattern?
(b) Determine where P is in the two-slit interference pattern by giving
the maximum or minimum on which it lies or the maximum and mini-
mum between which it lies. (c) In the same way, for the diffraction that
occurs,determine where point P is in the diffraction pattern.

••42 (a) In a double-slit experiment, what largest ratio of d to a
causes diffraction to eliminate the fourth bright side fringe?
(b) What other bright fringes are also eliminated? (c) How many
other ratios of d to a cause the diffraction to (exactly) eliminate
that bright fringe?

••43 (a) How many bright fringes appear betweenWWWSSM
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incidence by white light. A spectrum is formed on a screen 30.0 cm
from the grating. If a hole 10.0 mm square is cut in the screen, its
inner edge being 50.0 mm from the central maximum and parallel
to it, what are the (a) shortest and (b) longest wavelengths of the
light that passes through the hole?

••54 Derive this expression for the intensity pattern for a three-slit
“grating”:

where and a � l.

Module 36-6 Gratings: Dispersion and Resolving Power
•55 A source containing a mixture of hydrogen and
deuterium atoms emits red light at two wavelengths whose mean is
656.3 nm and whose separation is 0.180 nm. Find the minimum
number of lines needed in a diffraction grating that can resolve
these lines in the first order.

•56 (a) How many rulings must a 4.00-cm-wide diffraction grating
have to resolve the wavelengths 415.496 and 415.487 nm in the second
order? (b) At what angle are the second-order maxima found?

•57 Light at wavelength 589 nm from a sodium lamp is incident per-
pendicularly on a grating with 40 000 rulings over width 76 nm. What
are the first-order (a) dispersion D and (b) resolving power R, the sec-
ond-order (c) D and (d) R, and the third-order (e) D and (f) R?

•58 A grating has 600 rulings/mm and is 5.0 mm wide. (a) What is
the smallest wavelength interval it can resolve in the third order at
l � 500 nm? (b) How many higher orders of maxima can be seen?

•59 A diffraction grating with a width of 2.0 cm contains
1000 lines/cm across that width. For an incident wavelength of
600 nm, what is the smallest wavelength difference this grating can
resolve in the second order?

•60 The D line in the spectrum of sodium is a doublet with wave-
lengths 589.0 and 589.6 nm. Calculate the minimum number 
of lines needed in a grating that will resolve this doublet in the
second-order spectrum.

•61 With a particular grating the sodium doublet (589.00 nm and
589.59 nm) is viewed in the third order at 10° to the normal and is
barely resolved. Find (a) the grating spacing and (b) the total width
of the rulings.

••62 A diffraction grating illuminated by monochromatic light
normal to the grating produces a certain line at angle u. (a) What is
the product of that line’s half-width and the grating’s resolving
power? (b) Evaluate that product for the first order of a grating of
slit separation 900 nm in light of wavelength 600 nm.

••63 Assume that the limits of the visible spectrum are arbitrarily
chosen as 430 and 680 nm. Calculate the number of rulings per mil-
limeter of a grating that will spread the first-order spectrum
through an angle of 20.0°.

Module 36-7 X-Ray Diffraction
•64 What is the smallest Bragg angle for x rays of wavelength
30 pm to reflect from reflecting planes spaced 0.30 nm apart in a
calcite crystal?

•65 An x-ray beam of wavelength A undergoes first-order reflection
(Bragg law diffraction) from a crystal when its angle of incidence to a
crystal face is 23°, and an x-ray beam of wavelength 97 pm undergoes
third-order reflection when its angle of incidence to that face is 60°.
Assuming that the two beams reflect from the same family of reflecting
planes, find (a) the interplanar spacing and (b) the wavelength A.

ILWSSM

f � (2pd sin u)/l

I � 1
9 Im(1 � 4 cos f � 4 cos2 f),

•66 An x-ray beam of a certain wavelength is incident on an NaCl
crystal, at 30.0° to a certain family of reflecting planes of spacing
39.8 pm. If the reflection from those planes is of the first order,
what is the wavelength of the x rays?

•67 Figure 36-46 is a graph of intensity versus angular position u
for the diffraction of an x-ray beam by a crystal. The horizontal
scale is set by us � 2.00°.The beam consists of two wavelengths, and
the spacing between the reflecting planes is 0.94 nm. What are the
(a) shorter and (b) longer wavelengths in the beam?
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Figure 36-46 Problem 67.

•68 If first-order reflection occurs in a crystal at Bragg angle 3.4°,
at what Bragg angle does second-order reflection occur from the
same family of reflecting planes?

•69 X rays of wavelength 0.12 nm are found to undergo second-
order reflection at a Bragg angle of 28° from a lithium fluoride
crystal. What is the interplanar spacing of the reflecting planes in
the crystal?

••70 In Fig. 36-47, first-order re-
flection from the reflection planes
shown occurs when an x-ray beam of
wavelength 0.260 nm makes an angle
u � 63.8° with the top face of the
crystal. What is the unit cell size a0?

••71 In Fig. 36-48, let a beam
of x rays of wavelength 0.125 nm be
incident on an NaCl crystal at angle
u 45.0° to the top face of the crys-
tal and a family of reflecting planes.
Let the reflecting planes have sepa-
ration d � 0.252 nm. The crystal is
turned through angle f around an
axis perpendicular to the plane of the
page until these reflecting planes
give diffraction maxima. What are
the (a) smaller and (b) larger value
of f if the crystal is turned clockwise
and the (c) smaller and (d) larger
value of f if it is turned counter-
clockwise?

••72 In Fig. 36-48, an x-ray beam of wavelengths from 95.0 to 140
pm is incident at u � 45.0° to a family of reflecting planes with spac-
ing d � 275 pm.What are the (a) longest wavelength l and (b) associ-
ated order number m and the (c) shortest l and (d) associated m of
the intensity maxima in the diffraction of the beam?

••73 Consider a two-dimensional square crystal structure, such as
one side of the structure shown in Fig. 36-28a.The largest interplanar
spacing of reflecting planes is the unit cell size a0. Calculate and
sketch the (a) second largest, (b) third largest, (c) fourth largest, (d)

�
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Figure 36-47 Problem 70.

Figure 36-48 Problems 71
and 72.
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fifth largest, and (e) sixth largest interplanar spacing. (f) Show that
your results in (a) through (e) are consistent with the general formula

where h and k are relatively prime integers (they have no common
factor other than unity).

Additional Problems
74 An astronaut in a space shuttle claims she can just barely re-
solve two point sources on Earth’s surface, 160 km below.
Calculate their (a) angular and (b) linear separation, assuming
ideal conditions.Take l � 540 nm and the pupil diameter of the as-
tronaut’s eye to be 5.0 mm.

75 Visible light is incident perpendicularly on a diffraction
grating of 200 rulings/mm. What are the (a) longest, (b) second
longest, and (c) third longest wavelengths that can be associated
with an intensity maximum at u � 30.0°?

76 A beam of light consists of two wavelengths, 590.159 nm and
590.220 nm, that are to be resolved with a diffraction grating. If the
grating has lines across a width of 3.80 cm, what is the minimum
number of lines required for the two wavelengths to be resolved in
the second order?

77 In a single-slit diffraction experiment, there is a mini-
mum of intensity for orange light (l 600 nm) and a minimum of
intensity for blue-green light (l � 500 nm) at the same angle of
1.00 mrad. For what minimum slit width is this possible?

78 A double-slit system with individual slit widths of 0.030 mm
and a slit separation of 0.18 mm is illuminated with 500 nm light di-
rected perpendicular to the plane of the slits. What is the total
number of complete bright fringes appearing between the two
first-order minima of the diffraction pattern? (Do not count the
fringes that coincide with the minima of the diffraction pattern.)

79 A diffraction grating has resolving power R � lavg/�l �
Nm. (a) Show that the corresponding frequency range f that can
just be resolved is given by �f � c/Nml. (b) From Fig. 36-22, show
that the times required for light to travel along the ray at the bot-
tom of the figure and the ray at the top differ by �t � (Nd/c) sinu.
(c) Show that (�f )(�t) � 1, this relation being independent of the
various grating parameters.Assume N � 1.

80 The pupil of a person’s eye has a diameter of 5.00 mm.
According to Rayleigh’s criterion, what distance apart must two
small objects be if their images are just barely resolved when they
are 250 mm from the eye? Assume they are illuminated with light
of wavelength 500 nm.

81 Light is incident on a grating at an angle c as shown in Fig. 36-49.

�

SSM

�

SSM

SSM

d �
a0

1h2 � k2
,

Show that bright fringes occur at angles u that satisfy the equation

d(sin c � sin u) � ml, for m � 0, 1, 2, . . . .
(Compare this equation with Eq. 36-25.) Only the special case 
c � 0 has been treated in this chapter.

82 A grating with d � 1.50 mm is illuminated at various angles of
incidence by light of wavelength 600 nm. Plot, as a function of the
angle of incidence (0 to 90°), the angular deviation of the first-
order maximum from the incident direction. (See Problem 81.)

83 In two-slit interference, if the slit separation is 14 mm and
the slit widths are each 2.0 mm, (a) how many two-slit maxima are
in the central peak of the diffraction envelope and (b) how many
are in either of the first side peak of the diffraction envelope?

84 In a two-slit interference pattern, what is the ratio of slit
separation to slit width if there are 17 bright fringes within the cen-
tral diffraction envelope and the diffraction minima coincide with
two-slit interference maxima?

85 A beam of light with a narrow wavelength range centered on
450 nm is incident perpendicularly on a diffraction grating with a
width of 1.80 cm and a line density of 1400 lines/cm across that
width. For this light, what is the smallest wavelength difference this
grating can resolve in the third order?

86 If you look at something 40 m from you, what is the smallest
length (perpendicular to your line of sight) that you can resolve,
according to Rayleigh’s criterion? Assume the pupil of your eye
has a diameter of 4.00 mm, and use 500 nm as the wavelength of
the light reaching you.

87 Two yellow flowers are separated by 60 cm along a line per-
pendicular to your line of sight to the flowers. How far are you
from the flowers when they are at the limit of resolution accord-
ing to the Rayleigh criterion? Assume the light from the flowers
has a single wavelength of 550 nm and that your pupil has a diam-
eter of 5.5 mm.

88 In a single-slit diffraction experiment, what must be the ratio
of the slit width to the wavelength if the second diffraction minima
are to occur at an angle of 37.0° from the center of the diffraction
pattern on a viewing screen?

89 A diffraction grating 3.00 cm wide produces the second order
at 33.0° with light of wavelength 600 nm. What is the total number
of lines on the grating?

90 A single-slit diffraction experiment is set up with light of
wavelength 420 nm, incident perpendicularly on a slit of width
5.10 mm. The viewing screen is 3.20 m distant. On the screen, what
is the distance between the center of the diffraction pattern and
the second diffraction minimum?

91 A diffraction grating has 8900 slits across 1.20 cm. If light with
a wavelength of 500 nm is sent through it, how many orders (max-
ima) lie to one side of the central maximum?

92 In an experiment to monitor the Moon’s surface with a light
beam, pulsed radiation from a ruby laser (l � 0.69 mm) was di-
rected to the Moon through a reflecting telescope with a mirror ra-
dius of 1.3 m. A reflector on the Moon behaved like a circular flat
mirror with radius 10 cm, reflecting the light directly back toward
the telescope on Earth. The reflected light was then detected after
being brought to a focus by this telescope. Approximately what
fraction of the original light energy was picked up by the detector?
Assume that for each direction of travel all the energy is in the cen-
tral diffraction peak.
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93 In June 1985, a laser beam was sent out from the Air Force
Optical Station on Maui, Hawaii, and reflected back from the shuttle
Discovery as it sped by 354 km overhead.The diameter of the central
maximum of the beam at the shuttle position was said to be 9.1 m,
and the beam wavelength was 500 nm.What is the effective diameter
of the laser aperture at the Maui ground station? (Hint: A laser beam
spreads only because of diffraction; assume a circular exit aperture.)

94 A diffraction grating 1.00 cm wide has 10 000 parallel slits.
Monochromatic light that is incident normally is diffracted
through 30° in the first order. What is the wavelength of the light?

95 If you double the width of a single slit, the intensity of
the central maximum of the diffraction pattern increases by a
factor of 4, even though the energy passing through the slit only
doubles. Explain this quantitatively.

96 When monochromatic light is incident on a slit 22.0 mm wide,
the first diffraction minimum lies at 1.80° from the direction of the
incident light.What is the wavelength?

97 A spy satellite orbiting at 160 km above Earth’s surface has a lens
with a focal length of 3.6 m and can resolve objects on the ground as
small as 30 cm. For example, it can easily measure the size of an air-
craft’s air intake port.What is the effective diameter of the lens as de-
termined by diffraction consideration alone? Assume l � 550 nm.

98 Suppose that two points are separated by 2.0 cm. If they are
viewed by an eye with a pupil opening of 5.0 mm, what distance
from the viewer puts them at the Rayleigh limit of resolution?
Assume a light wavelength of 500 nm.

99 A diffraction grating has 200 lines/mm. Light consisting of a
continuous range of wavelengths between 550 nm and 700 nm is
incident perpendicularly on the grating. (a) What is the lowest or-
der that is overlapped by another order? (b) What is the highest
order for which the complete spectrum is present?

100 A diffraction grating has 200 rulings/mm, and it produces an in-
tensity maximum at u � 30.0�. (a) What are the possible wavelengths
of the incident visible light? (b) To what colors do they correspond?

101 Show that the dispersion of a grating is D � (tan u)/l.

102 Monochromatic light (wavelength � 450 nm) is incident per-
pendicularly on a single slit (width � 0.40 mm). A screen is placed
parallel to the slit plane, and on it the distance between the two
minima on either side of the central maximum is 1.8 mm. (a) What
is the distance from the slit to the screen? (Hint: The angle to ei-
ther minimum is small enough that sin u tan u.) (b) What is the
distance on the screen between the first minimum and the third
minimum on the same side of the central maximum?

103 Light containing a mixture of two wavelengths, 500 and 
600 nm, is incident normally on a diffraction grating. It is desired
(1) that the first and second maxima for each wavelength appear at
u 30�, (2) that the dispersion be as high as possible, and (3) that
the third order for the 600 nm light be a missing order. (a) What
should be the slit separation? (b) What is the smallest individual
slit width that can be used? (c) For the values calculated in (a) and
(b) and the light of wavelength 600 nm, what is the largest order of
maxima produced by the grating?

104 A beam of x rays with wavelengths ranging from 0.120 nm to
0.0700 nm scatters from a family of reflecting planes in a crystal.
The plane separation is 0.250 nm. It is observed that scattered
beams are produced for 0.100 nm and 0.0750 nm.What is the angle
between the incident and scattered beams?

�

�
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105 Show that a grating made up of alternately transparent and
opaque strips of equal width eliminates all the even orders of max-
ima (except m � 0).

106 Light of wavelength 500 nm diffracts through a slit of width
2.00 mm and onto a screen that is 2.00 m away. On the screen, what
is the distance between the center of the diffraction pattern and
the third diffraction minimum?

107 If, in a two-slit interference pattern, there are 8 bright fringes
within the first side peak of the diffraction envelope and diffrac-
tion minima coincide with two-slit interference maxima, then what
is the ratio of slit separation to slit width?

108 White light (consisting of wavelengths from 400 nm to 700 nm)
is normally incident on a grating. Show that, no matter what the
value of the grating spacing d, the second order and third order
overlap.

109 If we make d � a in Fig. 36-50, the two slits
coalesce into a single slit of width 2a. Show that
Eq. 36-19 reduces to give the diffraction pattern
for such a slit.

110 Derive Eq. 36-28, the expression for the
half-width of the lines in a grating’s diffraction
pattern.

111 Prove that it is not possible to determine
both wavelength of incident radiation and spacing
of reflecting planes in a crystal by measuring the
Bragg angles for several orders.

112 How many orders of the entire visible spec-
trum (400–700 nm) can be produced by a grating of 500 lines/mm?

113 An acoustic double-slit system (of slit separation d and
slit width a) is driven by two loudspeakers as shown in Fig. 36-51. By
use of a variable delay line, the phase of one of the speakers may be
varied relative to the other speaker. Describe in detail what changes
occur in the double-slit diffraction pattern at large distances as the
phase difference between the speakers is varied from zero to 2p.
Take both interference and diffraction effects into account.
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Figure 36-50
Problem 109.
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Figure 36-51 Problem 113.

114 Two emission lines have wavelengths l and l � �l, respec-
tively, where �l l. Show that their angular separation �u in a
grating spectrometer is given approximately by

where d is the slit separation and m is the order at which the lines
are observed. Note that the angular separation is greater in the
higher orders than the lower orders.

�u �
�l

2(d/m)2 � l2
,

�
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Relativity

37-1 SIMULTANEITY AND TIME DILATION

After reading this module, you should be able to . . .

37.01 Identify the two postulates of (special) relativity and the
type of frames to which they apply.

37.02 Identify the speed of light as the ultimate speed and
give its approximate value.

37.03 Explain how the space and time coordinates of an
event can be measured with a three-dimensional array of
clocks and measuring rods and how that eliminates the
need of a signal’s travel time to an observer.

37.04 Identify that the relativity of space and time has 
to do with transferring measurements between two
inertial frames with relative motion but we still use 
classical kinematics and Newtonian mechanics 
within a frame.

37.05 Identify that for reference frames with relative motion,

simultaneous events in one of the frames will generally
not be simultaneous in the other frame.

37.06 Explain what is meant by the entanglement of the
spatial and temporal separations between two events.

37.07 Identify the conditions in which a temporal separation
of two events is a proper time.

37.08 Identify that if the temporal separation of two events is
a proper time as measured in one frame, that separation is
greater (dilated) as measured in another frame.

37.09 Apply the relationship between proper time �t0,
dilated time �t, and the relative speed v between two
frames.

37.10 Apply the relationships between the relative speed v,
the speed parameter b, and the Lorentz factor g.

Learning Objectives

● Einstein’s special theory of relativity is based on two
postulates: (1) The laws of physics are the same for
observers in all inertial reference frames. (2) The speed
of light in vacuum has the same value c in all directions 
and in all inertial reference frames.

● Three space coordinates and one time coordinate
specify an event. One task of special relativity is to relate
these coordinates as assigned by two observers who are
in uniform motion with respect to each other.

● If two observers are in relative motion, they 
generally will not agree as to whether two events 
are simultaneous.

● If two successive events occur at the same place in an
inertial reference frame, the time interval �t0 between them,
measured on a single clock where they occur, is the proper
time between them. Observers in frames moving relative to
that frame will always measure a larger value �t for the time
interval, an effect known as time dilation.

● If the relative speed between the two frames is v, then

where b � v/c is the speed parameter and is
the Lorentz factor.

g � 1/21 � b2

�t �
�t0

21 � (v/c)2
�

�t0

21 � b2
� g �t0,

Key Ideas

What Is Physics?
One principal subject of physics is relativity, the field of study that measures
events (things that happen): where and when they happen, and by how much any
two events are separated in space and in time. In addition, relativity has to do
with transforming such measurements (and also measurements of energy and
momentum) between reference frames that move relative to each other. (Hence
the name relativity.)

Transformations and moving reference frames, such as those we discussed in
Modules 4-6 and 4-7, were well understood and quite routine to physicists in 1905.



Figure 37-1 Einstein posing for a photograph
as fame began to accumulate.
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Then Albert Einstein (Fig. 37-1) published his special theory of relativity. The
adjective special means that the theory deals only with inertial reference frames,
which are frames in which Newton’s laws are valid. (Einstein’s general theory of
relativity treats the more challenging situation in which reference frames can
undergo gravitational acceleration; in this chapter the term relativity implies only
inertial reference frames.)

Starting with two deceivingly simple postulates, Einstein stunned the scien-
tific world by showing that the old ideas about relativity were wrong, even though
everyone was so accustomed to them that they seemed to be unquestionable
common sense. This supposed common sense, however, was derived only from
experience with things that move rather slowly. Einstein’s relativity, which turns
out to be correct for all physically possible speeds, predicted many effects that
were, at first study, bizarre because no one had ever experienced them.

Entangled. In particular, Einstein demonstrated that space and time are en-
tangled; that is, the time between two events depends on how far apart they oc-
cur, and vice versa. Also, the entanglement is different for observers who move
relative to each other. One result is that time does not pass at a fixed rate, as if it
were ticked off with mechanical regularity on some master grandfather clock that
controls the universe. Rather, that rate is adjustable: Relative motion can change
the rate at which time passes. Prior to 1905, no one but a few daydreamers would
have thought that. Now, engineers and scientists take it for granted because their
experience with special relativity has reshaped their common sense. For example,
any engineer involved with the Global Positioning System of the NAVSTAR
satellites must routinely use relativity (both special relativity and general relativ-
ity) to determine the rate at which time passes on the satellites because that rate
differs from the rate on Earth’s surface. If the engineers failed to take relativity
into account, GPS would become almost useless in less than one day.

Special relativity has the reputation of being difficult. It is not difficult math-
ematically, at least not here. However, it is difficult in that we must be very careful
about who measures what about an event and just how that measurement is
made—and it can be difficult because it can contradict routine experience.

The Postulates
We now examine the two postulates of relativity, on which Einstein’s theory is
based:

1. The Relativity Postulate: The laws of physics are the same for observers in all
inertial reference frames. No one frame is preferred over any other.

2. The Speed of Light Postulate: The speed of light in vacuum has the same value c
in all directions and in all inertial reference frames.

Galileo assumed that the laws of mechanics were the same in all inertial refer-
ence frames. Einstein extended that idea to include all the laws of physics, espe-
cially those of electromagnetism and optics. This postulate does not say that the
measured values of all physical quantities are the same for all inertial observers;
most are not the same. It is the laws of physics, which relate these measurements
to one another, that are the same.

We can also phrase this postulate to say that there is in nature an ultimate speed c,
the same in all directions and in all inertial reference frames. Light happens to
travel at this ultimate speed. However, no entity that carries energy or informa-
tion can exceed this limit. Moreover, no particle that has mass can actually reach
speed c, no matter how much or for how long that particle is accelerated. (Alas,
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Figure 37-2 The dots show measured values
of the kinetic energy of an electron plot-
ted against its measured speed. No matter
how much energy is given to an electron
(or to any other particle having mass), its
speed can never equal or exceed the ulti-
mate limiting speed c. (The plotted curve
through the dots shows the predictions of
Einstein’s special theory of relativity.)

U
lt

im
at

e 
sp

ee
d

0 1 2 3

2

4

6

Speed (108 m/s)

K
in

et
ic

 e
n

er
gy

 (
M

eV
)

Table 37-1 Record of Event A

Coordinate Value

x 3.58 m
y 1.29 m
z 0 m
t 34.5 s

the faster-than-light warp drive used in many science fiction stories appears to be
impossible.)

Both postulates have been exhaustively tested, and no exceptions have ever
been found.

The Ultimate Speed
The existence of a limit to the speed of accelerated electrons was shown in a 1964
experiment by W. Bertozzi, who accelerated electrons to various measured
speeds and—by an independent method—measured their kinetic energies. He
found that as the force on a very fast electron is increased, the electron’s meas-
ured kinetic energy increases toward very large values but its speed does not
increase appreciably (Fig. 37-2). Electrons have been accelerated in laboratories
to at least 0.999 999 999 95 times the speed of light but—close though it may
be—that speed is still less than the ultimate speed c.

This ultimate speed has been defined to be exactly

c � 299 792 458 m/s. (37-1)

Caution: So far in this book we have (appropriately) approximated c as
3.0 	 108 m/s, but in this chapter we shall often use the exact value. You might
want to store the exact value in your calculator’s memory (if it is not there 
already), to be called up when needed.

Testing the Speed of Light Postulate
If the speed of light is the same in all inertial reference frames, then the speed of
light emitted by a source moving relative to, say, a laboratory should be the same
as the speed of light that is emitted by a source at rest in the laboratory.This claim
has been tested directly, in an experiment of high precision. The “light source”
was the neutral pion (symbol p0), an unstable, short-lived particle that can be pro-
duced by collisions in a particle accelerator. It decays (transforms) into two
gamma rays by the process

(37-2)

Gamma rays are part of the electromagnetic spectrum (at very high frequencies)
and so obey the speed of light postulate, just as visible light does. (In this chapter
we shall use the term light for any type of electromagnetic wave, visible or not.)

In 1964, physicists at CERN, the European particle-physics laboratory near
Geneva, generated a beam of pions moving at a speed of 0.999 75c with respect to
the laboratory. The experimenters then measured the speed of the gamma rays
emitted from these very rapidly moving sources.They found that the speed of the
light emitted by the pions was the same as it would be if the pions were at rest in
the laboratory, namely c.

Measuring an Event
An event is something that happens, and every event can be assigned three
space coordinates and one time coordinate. Among many possible events are
(1) the turning on or off of a tiny lightbulb, (2) the collision of two particles,
(3) the passage of a pulse of light through a specified point, (4) an explosion, and
(5) the sweeping of the hand of a clock past a marker on the rim of the clock. A
certain observer, fixed in a certain inertial reference frame, might, for example,
assign to an event A the coordinates given in Table 37-1. Because space and time
are entangled with each other in relativity, we can describe these coordinates
collectively as spacetime coordinates. The coordinate system itself is part of the
reference frame of the observer.

A given event may be recorded by any number of observers, each in a dif-
ferent inertial reference frame. In general, different observers will assign differ-

p 0 : g � g.



ent spacetime coordinates to the same event. Note that an event does not
“belong” to any particular inertial reference frame. An event is just something
that happens, and anyone in any reference frame may detect it and assign space-
time coordinates to it.

Travel Times. Making such an assignment can be complicated by a practical
problem. For example, suppose a balloon bursts 1 km to your right while a fire-
cracker pops 2 km to your left, both at 9:00 A.M. However, you do not detect
either event precisely at 9:00 A.M. because at that instant light from the events has
not yet reached you. Because light from the firecracker pop has farther to go, it
arrives at your eyes later than does light from the balloon burst, and thus the pop
will seem to have occurred later than the burst.To sort out the actual times and to
assign 9:00 A.M. as the happening time for both events, you must calculate the
travel times of the light and then subtract these times from the arrival times.

This procedure can be very messy in more challenging situations, and we
need an easier procedure that automatically eliminates any concern about the
travel time from an event to an observer. To set up such a procedure, we shall
construct an imaginary array of measuring rods and clocks throughout the
observer’s inertial frame (the array moves rigidly with the observer). This
construction may seem contrived, but it spares us much confusion and calculation
and allows us to find the coordinates, as follows.

1. The Space Coordinates. We imagine the observer’s coordinate system fitted
with a close-packed, three-dimensional array of measuring rods, one set of
rods parallel to each of the three coordinate axes. These rods provide a way to
determine coordinates along the axes. Thus, if the event is, say, the turning on
of a small lightbulb, the observer, in order to locate the position of the event,
need only read the three space coordinates at the bulb’s location.

2. The Time Coordinate. For the time coordinate, we imagine that every point
of intersection in the array of measuring rods includes a tiny clock, which the
observer can read because the clock is illuminated by the light generated by
the event. Figure 37-3 suggests one plane in the “jungle gym” of clocks and
measuring rods we have described.

The array of clocks must be synchronized properly. It is not enough to
assemble a set of identical clocks, set them all to the same time, and then move
them to their assigned positions. We do not know, for example, whether mov-
ing the clocks will change their rates. (Actually, it will.) We must put the clocks
in place and then synchronize them.

If we had a method of transmitting signals at infinite speed, synchroniza-
tion would be a simple matter. However, no known signal has this property.
We therefore choose light (any part of the electromagnetic spectrum) to send
out our synchronizing signals because, in vacuum, light travels at the greatest
possible speed, the limiting speed c.

Here is one of many ways in which an observer might synchronize an
array of clocks using light signals:The observer enlists the help of a great num-
ber of temporary helpers, one for each clock. The observer then stands at a
point selected as the origin and sends out a pulse of light when the origin clock
reads t � 0. When the light pulse reaches the location of a helper, that helper
sets the clock there to read t � r/c, where r is the distance between the helper
and the origin.The clocks are then synchronized.

3. The Spacetime Coordinates. The observer can now assign spacetime 
coordinates to an event by simply recording the time on the clock nearest the
event and the position as measured on the nearest measuring rods. If there are
two events, the observer computes their separation in time as the difference in
the times on clocks near each and their separation in space from the differ-
ences in coordinates on rods near each.We thus avoid the practical problem of
calculating the travel times of the signals to the observer from the events.
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Figure 37-3 One section of a three-
dimensional array of clocks and measuring
rods by which an observer can assign
spacetime coordinates to an event, such as
a flash of light at point A. The event’s
space coordinates are approximately 
x � 3.6 rod lengths, y � 1.3 rod lengths,
and z � 0. The time coordinate is whatever
time appears on the clock closest to A at
the instant of the flash.
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A

We use this array to assign
spacetime coordinates.



The Relativity of Simultaneity
Suppose that one observer (Sam) notes that two independent events (event Red
and event Blue) occur at the same time. Suppose also that another observer
(Sally), who is moving at a constant velocity with respect to Sam, also records
these same two events.Will Sally also find that they occur at the same time?

The answer is that in general she will not:

v:
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If two observers are in relative motion, they will not, in general, agree as to
whether two events are simultaneous. If one observer finds them to be simultane-
ous, the other generally will not.

Simultaneity is not an absolute concept but rather a relative one, depending on
the motion of the observer.

We cannot say that one observer is right and the other wrong. Their observations
are equally valid, and there is no reason to favor one over the other.

The realization that two contradictory statements about the same natural
events can be correct is a seemingly strange outcome of Einstein’s theory. How-
ever, in Chapter 17 we saw another way in which motion can affect measurement
without balking at the contradictory results: In the Doppler effect, the frequency
an observer measures for a sound wave depends on the relative motion of
observer and source. Thus, two observers moving relative to each other can mea-
sure different frequencies for the same wave, and both measurements are correct.

We conclude the following:

If the relative speed of the observers is very much less than the speed of light,
then measured departures from simultaneity are so small that they are not
noticeable. Such is the case for all our experiences of daily living; that is why the
relativity of simultaneity is unfamiliar.

A Closer Look at Simultaneity
Let us clarify the relativity of simultaneity with an example based on the postulates
of relativity, no clocks or measuring rods being directly involved. Figure 37-4 shows
two long spaceships (the SS Sally and the SS Sam), which can serve as inertial refer-
ence frames for observers Sally and Sam. The two observers are stationed at the
midpoints of their ships. The ships are separating along a common x axis, the rela-
tive velocity of Sally with respect to Sam being . Figure 37-4a shows the ships with
the two observer stations momentarily aligned opposite each other.

Two large meteorites strike the ships, one setting off a red flare (event Red)
and the other a blue flare (event Blue), not necessarily simultaneously. Each
event leaves a permanent mark on each ship, at positions RR� and BB�.

Let us suppose that the expanding wavefronts from the two events happen to
reach Sam at the same time, as Fig. 37-4b shows. Let us further suppose that, after
the episode, Sam finds, by measuring the marks on his spaceship, that he was
indeed stationed exactly halfway between the markers B and R on his ship when
the two events occurred. He will say:

Sam Light from event Red and light from event Blue reached me at the same time.
From the marks on my spaceship, I find that I was standing halfway between the
two sources.Therefore,event Red and event Blue were simultaneous events.

As study of Fig. 37-4 shows, Sally and the expanding wavefront from event Red
are moving toward each other, while she and the expanding wavefront from
event Blue are moving in the same direction. Thus, the wavefront from event Red
will reach Sally before the wavefront from event Blue does. She will say:

v:

Figure 37-4 The spaceships of Sally and Sam
and the occurrences of events from Sam’s
view. Sally’s ship moves rightward with
velocity . (a) Event Red occurs at posi-
tions RR� and event Blue occurs at posi-
tions BB�; each event sends out a wave of
light. (b) Sam simultaneously detects the
waves from event Red and event Blue.
(c) Sally detects the wave from event Red.
(d) Sally detects the wave from event Blue.

v:

Sally

SamB

B'

Event Blue
R

R'

Event Red

(a)

v

B R

Sally detects event Blue

(d)

v

(b)

B R

Sam detects both events

v

Waves from the two events reach
Sam simultaneously but ...

B R

Sally detects event Red

(c)

v

... Sally receives the wave
from event Red first.



Sally Light from event Red reached me before light from event Blue did. From
the marks on my spaceship, I found that I too was standing halfway between
the two sources. Therefore, the events were not simultaneous; event Red
occurred first, followed by event Blue.

These reports do not agree. Nevertheless, both observers are correct.
Note carefully that there is only one wavefront expanding from the site of

each event and that this wavefront travels with the same speed c in both reference
frames, exactly as the speed of light postulate requires.

It might have happened that the meteorites struck the ships in such a way
that the two hits appeared to Sally to be simultaneous. If that had been the case,
then Sam would have declared them not to be simultaneous.

The Relativity of Time
If observers who move relative to each other measure the time interval (or tem-
poral separation) between two events, they generally will find different results.
Why? Because the spatial separation of the events can affect the time intervals
measured by the observers.
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The time interval between two events depends on how far apart they occur in
both space and time; that is, their spatial and temporal separations are entangled.

In this module we discuss this entanglement by means of an example; however, the
example is restricted in a crucial way: To one of two observers, the two events occur at
the same location. We shall not get to more general examples until Module 37-3.

Figure 37-5a shows the basics of an experiment Sally conducts while she and
her equipment—a light source, a mirror, and a clock—ride in a train moving
with constant velocity relative to a station. A pulse of light leaves the light
source B (event 1), travels vertically upward, is reflected vertically downward by
the mirror, and then is detected back at the source (event 2). Sally measures a
certain time interval �t0 between the two events, related to the distance D from

v:

D

Mirror
M

B

Event 1 Event 2

C

C

Δ   t0

Sally

(a)

Mirror

B

Event 2

C1 C2

Δ   t

Sam

(b)

Event 1

B

DL L

v    t

MOTION

Δ

Event 1 is the emission of light.
Event 2 is the return of the light.
We want the time between them.

The measure of that time interval
on Sally’s clock differs from that
on Sam’s clock due to the relative
motion.

Figure 37-5 (a) Sally, on the train,
measures the time interval �t0

between events 1 and 2 using a
single clock C on the train. That
clock is shown twice: first for
event 1 and then for event 2.
(b) Sam, watching from the
station as the events occur,
requires two synchronized
clocks, C1 at event 1 and C2 at
event 2, to measure the time
interval between the two events;
his measured time interval is �t.



source to mirror by

(Sally). (37-3)

The two events occur at the same location in Sally’s reference frame, and she
needs only one clock C at that location to measure the time interval. Clock C is
shown twice in Fig. 37-5a, at the beginning and end of the interval.

Consider now how these same two events are measured by Sam, who is
standing on the station platform as the train passes. Because the equipment
moves with the train during the travel time of the light, Sam sees the path of the
light as shown in Fig. 37-5b. For him, the two events occur at different places in
his reference frame, and so to measure the time interval between events, Sam
must use two synchronized clocks, C1 and C2, one at each event. According to
Einstein’s speed of light postulate, the light travels at the same speed c for Sam as
for Sally. Now, however, the light travels distance 2L between events 1 and 2. The
time interval measured by Sam between the two events is

(Sam), (37-4)

in which (37-5)

From Eq. 37-3, we can write this as

(37-6)

If we eliminate L between Eqs. 37-4 and 37-6 and solve for t, we find

(37-7)

Equation 37-7 tells us how Sam’s measured interval �t between the events com-
pares with Sally’s interval �t0. Because v must be less than c, the denominator in Eq.
37-7 must be less than unity. Thus, �t must be greater than �t0: Sam measures a
greater time interval between the two events than does Sally. Sam and Sally have
measured the time interval between the same two events, but the relative motion be-
tween Sam and Sally made their measurements different. We conclude that relative
motion can change the rate at which time passes between two events; the key to this
effect is the fact that the speed of light is the same for both observers.

We distinguish between the measurements of Sam and Sally in this way:

�t �
�t0

11 � (v/c)2
.

�

L � 2(1
2 v �t)2 � (1

2 c �t0)2.

L � 2(1
2v �t)2 � D2.

�t �
2L
c

�t0 �
2D
c
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When two events occur at the same location in an inertial reference frame, the
time interval between them, measured in that frame, is called the proper time
interval or the proper time. Measurements of the same time interval from any
other inertial reference frame are always greater.

Thus, Sally measures a proper time interval, and Sam measures a greater time
interval. (The term proper is unfortunate in that it implies that any other mea-
surement is improper or nonreal. That is just not so.) The amount by which a
measured time interval is greater than the corresponding proper time interval
is called time dilation. (To dilate is to expand or stretch; here the time interval is
expanded or stretched.)

Often the dimensionless ratio v/c in Eq. 37-7 is replaced with b, called the
speed parameter, and the dimensionless inverse square root in Eq. 37-7 is often
replaced with g, called the Lorentz factor:

(37-8)g �
1

11 � b 2
�

1

11 � (v/c)2
.



With these replacements, we can rewrite Eq. 37-7 as

�t � g �t0 (time dilation). (37-9)

The speed parameter b is always less than unity, and, provided v is not zero, g is al-
ways greater than unity. However, the difference between g and 1 is not significant
unless v � 0.1c. Thus, in general, “old relativity” works well enough for v � 0.1c, but
we must use special relativity for greater values of v.As shown in Fig.37-6,g increases
rapidly in magnitude as b approaches 1 (as v approaches c). Therefore, the greater
the relative speed between Sally and Sam is, the greater will be the time interval
measured by Sam,until at a great enough speed, the interval takes “forever.”

You might wonder what Sally says about Sam’s having measured a greater time
interval than she did. His measurement comes as no surprise to her, because to her,
he failed to synchronize his clocks C1 and C2 in spite of his insistence that he did.
Recall that observers in relative motion generally do not agree about simultaneity.
Here, Sam insists that his two clocks simultaneously read the same time when event 1
occurred.To Sally,however,Sam’s clock C2 was erroneously set ahead during the syn-
chronization process. Thus, when Sam read the time of event 2 on it, to Sally he was
reading off a time that was too large, and that is why the time interval he measured
between the two events was greater than the interval she measured.

Two Tests of Time Dilation
1. Microscopic Clocks. Subatomic particles called muons are unstable; that is,

when a muon is produced, it lasts for only a short time before it decays (trans-
forms into particles of other types). The lifetime of a muon is the time interval
between its production (event 1) and its decay (event 2). When muons are
stationary and their lifetimes are measured with stationary clocks (say, in a
laboratory), their average lifetime is 2.200 ms. This is a proper time interval
because, for each muon, events 1 and 2 occur at the same location in the
reference frame of the muon—namely, at the muon itself. We can represent
this proper time interval with �t0; moreover, we can call the reference frame in
which it is measured the rest frame of the muon.

If, instead, the muons are moving, say, through a laboratory, then mea-
surements of their lifetimes made with the laboratory clocks should yield a
greater average lifetime (a dilated average lifetime). To check this conclusion,
measurements were made of the average lifetime of muons moving with a
speed of 0.9994c relative to laboratory clocks. From Eq. 37-8, with b � 0.9994,
the Lorentz factor for this speed is

Equation 37-9 then yields, for the average dilated lifetime,

�t � g �t0 � (28.87)(2.200 ms) � 63.51 ms.

The actual measured value matched this result within experimental error.

2. Macroscopic Clocks. In October 1971, Joseph Hafele and Richard Keating
carried out what must have been a grueling experiment. They flew four
portable atomic clocks twice around the world on commercial airlines, once in
each direction. Their purpose was “to test Einstein’s theory of relativity with
macroscopic clocks.” As we have just seen, the time dilation predictions of
Einstein’s theory have been confirmed on a microscopic scale, but there is
great comfort in seeing a confirmation made with an actual clock. Such macro-
scopic measurements became possible only because of the very high precision
of modern atomic clocks. Hafele and Keating verified the predictions of the
theory to within 10%. (Einstein’s general theory of relativity, which predicts

g �
1

11 � b 2
�

1

11 � (0.9994)2
� 28.87.

112337-1 SIMULTANEITY AND TIME DILATION

Figure 37-6 A plot of the Lorentz factor g
as a function of the speed parameter 
b (� v/c).
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that the rate at which time passes on a clock is influenced by the gravitational
force on the clock, also plays a role in this experiment.)

A few years later, physicists at the University of Maryland flew an atomic
clock round and round over Chesapeake Bay for flights lasting 15 h and suc-
ceeded in checking the time dilation prediction to better than 1%. Today, when
atomic clocks are transported from one place to another for calibration or other
purposes, the time dilation caused by their motion is always taken into account.
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Checkpoint 1
Standing beside railroad tracks, we are suddenly startled by a relativistic
boxcar traveling past us as shown in the figure. Inside, a well-equipped
hobo fires a laser pulse from the front of the boxcar to its rear. (a) Is our
measurement of the speed of the pulse greater than, less than, or the
same as that measured by the hobo? (b) Is his measurement of the flight
time of the pulse a proper time? (c) Are his measurement and our
measurement of the flight time related by Eq. 37-9?

v

4. The Earth-frame measurement of the time interval t
for the outward trip must be greater than �t0, according
to Eq. 37-9 (�t � g �t0) for time dilation.

Calculations: Using Eq. 37-8 to substitute for g in Eq. 37-9,
we find

On the return trip, we have the same situation and the same
data.Thus, the round trip requires 20 y of your time but

�ttotal � (2)(224 y) � 448 y (Answer)

of Earth time. In other words, you have aged 20 y while the
Earth has aged 448 y. Although you cannot travel into the
past (as far as we know), you can travel into the future of,
say, Earth, by using high-speed relative motion to adjust the
rate at which time passes.

�
10.0 y

11 � (0.9990c/c)2
� (22.37)(10.0 y) � 224 y.

�t �
�t0

11 � (v/c)2

�

Sample Problem 37.01 Time dilation for a space traveler who returns to Earth

Your starship passes Earth with a relative speed of 0.9990c.
After traveling 10.0 y (your time), you stop at lookout post
LP13, turn, and then travel back to Earth with the same relative
speed.The trip back takes another 10.0 y (your time). How long
does the round trip take according to measurements made on
Earth? (Neglect any effects due to the accelerations involved
with stopping, turning,and getting back up to speed.)

KEY IDEAS

We begin by analyzing the outward trip:

1. This problem involves measurements made from two
(inertial) reference frames, one attached to Earth and
the other (your reference frame) attached to your ship.

2. The outward trip involves two events: the start of the
trip at Earth and the end of the trip at LP13.

3. Your measurement of 10.0 y for the outward trip is the
proper time �t0 between those two events, because the
events occur at the same location in your reference
frame—namely, on your ship.

and according to special relativity (which is correct for all
physically possible speeds)?

KEY IDEAS

1. We have two (inertial) reference frames, one attached to
the kaon and the other attached to the laboratory.

2. This problem also involves two events: the start of the
kaon’s travel (when the kaon is produced) and the end
of that travel (at the end of the kaon’s lifetime).

Sample Problem 37.02 Time dilation and travel distance for a relativistic particle

The elementary particle known as the positive kaon (K�)
is unstable in that it can decay (transform) into other par-
ticles. Although the decay occurs randomly, we find that,
on average, a positive kaon has a lifetime of 0.1237 ms
when stationary — that is, when the lifetime is measured in
the rest frame of the kaon. If a positive kaon has a speed
of 0.990c relative to a laboratory reference frame when
the kaon is produced, how far can it travel in that frame
during its lifetime according to classical physics (which is
a reasonable approximation for speeds much less than c)
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Additional examples, video, and practice available at WileyPLUS

3. The distance traveled by the kaon between those two
events is related to its speed v and the time interval for
the travel by

(37-10)

With these ideas in mind, let us solve for the distance first
with classical physics and then with special relativity.

Classical physics: In classical physics we would find the
same distance and time interval (in Eq. 37-10) whether we
measured them from the kaon frame or from the laboratory
frame. Thus, we need not be careful about the frame in
which the measurements are made. To find the kaon’s travel
distance dcp according to classical physics, we first rewrite
Eq. 37-10 as

dcp � v �t, (37-11)

where �t is the time interval between the two events in 
either frame. Then, substituting 0.990c for v and 0.1237 ms
for �t in Eq. 37-11, we find

(Answer)

This is how far the kaon would travel if classical physics
were correct at speeds close to c.

Special relativity: In special relativity we must be very care-
ful that both the distance and the time interval in Eq. 37-10 are
measured in the same reference frame—especially when the
speed is close to c, as here. Thus, to find the actual travel dis-

� 36.7 m.

� (0.990)(299 792 458 m/s)(0.1237 	 10�6 s)

dcp � (0.990c) �t

v �
distance

time interval
.

tance dsr of the kaon as measured from the laboratory frame
and according to special relativity,we rewrite Eq.37-10 as

dsr � v �t, (37-12)

where t is the time interval between the two events as
measured from the laboratory frame.

Before we can evaluate dsr in Eq. 37-12, we must find
�t. The 0.1237 ms time interval is a proper time because the
two events occur at the same location in the kaon frame—
namely, at the kaon itself. Therefore, let �t0 represent this
proper time interval. Then we can use Eq. 37-9 (�t � g �t0)
for time dilation to find the time interval �t as measured
from the laboratory frame. Using Eq. 37-8 to substitute for
g in Eq. 37-9 leads to

This is about seven times longer than the kaon’s proper
lifetime. That is, the kaon’s lifetime is about seven times
longer in the laboratory frame than in its own frame—the
kaon’s lifetime is dilated. We can now evaluate Eq. 37-12
for the travel distance dsr in the laboratory frame as

(Answer)

This is about seven times dcp.Experiments like the one outlined
here, which verify special relativity, became routine in physics
laboratories decades ago.The engineering design and the con-
struction of any scientific or medical facility that employs high-
speed particles must take relativity into account.

� 260 m.

� (0.990)(299 792 458 m/s)(8.769 	 10�7 s)

dsr � v �t � (0.990c) �t

�t �
�t0

11 � (v/c)2
�

0.1237 	 10�6 s

11 � (0.990c/c)2
� 8.769 	10�7 s.

�
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After reading this module, you should be able to . . .

37.11 Identify that because spatial and temporal separations
are entangled, measurements of the lengths of objects
may be different in two frames with relative motion.

37.12 Identify the condition in which a measured length is a
proper length.

37.13 Identify that if a length is a proper length as measured
in one frame, the length is less (contracted) as measured in
another frame that is in relative motion parallel to the length.

37.14 Apply the relationship between contracted length L, proper
length L0, and the relative speed v between two frames.

Learning Objectives

● The length L0 of an object measured by an observer in an
inertial reference frame in which the object is at rest is called
its proper length. Observers in frames moving relative to that
frame and parallel to that length will always measure a shorter
length, an effect known as length contraction.

● If the relative speed between frames is v, the contracted

length L and the proper length L0 are related by

where b � v/c is the speed parameter and is
the Lorentz factor.

g � 1/21 � b2

L � L021 � b2 �
L0

g
,

Key Ideas



The Relativity of Length
If you want to measure the length of a rod that is at rest with respect to you, you
can—at your leisure—note the positions of its end points on a long stationary
scale and subtract one reading from the other. If the rod is moving, however, you
must note the positions of the end points simultaneously (in your reference
frame) or your measurement cannot be called a length. Figure 37-7 suggests the
difficulty of trying to measure the length of a moving penguin by locating its front
and back at different times. Because simultaneity is relative and it enters into
length measurements, length should also be a relative quantity. It is.

Let L0 be the length of a rod that you measure when the rod is stationary (mean-
ing you and it are in the same reference frame, the rod’s rest frame). If, instead, there
is relative motion at speed v between you and the rod along the length of the rod, then
with simultaneous measurements you obtain a length L given by

(length contraction). (37-13)

Because the Lorentz factor g is always greater than unity if there is relative
motion, L is less than L0.The relative motion causes a length contraction, and L is
called a contracted length. A greater speed v results in a greater contraction.

L � L021 � b2 �
L0

g
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The length L0 of an object measured in the rest frame of the object is its
proper length or rest length. Measurements of the length from any reference frame
that is in relative motion parallel to that length are always less than the proper length.

Be careful: Length contraction occurs only along the direction of relative
motion. Also, the length that is measured does not have to be that of an object
like a rod or a circle. Instead, it can be the length (or distance) between two
objects in the same rest frame—for example, the Sun and a nearby star (which
are, at least approximately, at rest relative to each other).

Does a moving object really shrink? Reality is based on observations and mea-
surements; if the results are always consistent and if no error can be determined, then
what is observed and measured is real. In that sense, the object really does shrink.
However, a more precise statement is that the object is really measured to shrink—
motion affects that measurement and thus reality.

When you measure a contracted length for, say, a rod, what does an observer
moving with the rod say of your measurement? To that ob-
server, you did not locate the two ends of the rod simulta-
neously. (Recall that observers in motion relative to each
other do not agree about simultaneity.) To the observer,
you first located the rod’s front end and then, slightly later,
its rear end, and that is why you measured a length that is
less than the proper length.

Proof of Eq. 37-13
Length contraction is a direct consequence of time dilation.
Consider once more our two observers. This time, both
Sally, seated on a train moving through a station, and Sam,
again on the station platform, want to measure the length of
the platform. Sam, using a tape measure, finds the length to
be L0, a proper length because the platform is at rest with
respect to him. Sam also notes that Sally, on the train,
moves through this length in a time �t � L0/v, where v is
the speed of the train; that is,

L0 � v �t (Sam). (37-14)

xA(t0) xB(t1)(b)

Position
at t1

v

Position
at t0

xA(t0) xB(t0)(a)

v You measure a width at
an instant, not spread
out over time.

Figure 37-7 If you want to measure the front-to-back
length of a penguin while it is moving, you must mark
the positions of its front and back simultaneously (in
your reference frame), as in (a), rather than at differ-
ent times, as in (b).



This time interval �t is not a proper time interval because the two events that
define it (Sally passes the back of the platform and Sally passes the front of
the platform) occur at two different places, and therefore Sam must use two syn-
chronized clocks to measure the time interval �t.

For Sally, however, the platform is moving past her. She finds that the two
events measured by Sam occur at the same place in her reference frame. She can
time them with a single stationary clock, and so the interval t0 that she measures
is a proper time interval.To her, the length L of the platform is given by

L � v �t0 (Sally). (37-15)

If we divide Eq. 37-15 by Eq. 37-14 and apply Eq. 37-9, the time dilation equation,
we have

or (37-16)

which is Eq. 37-13, the length contraction equation.

L �
L0

g
,

L
L0

�
v �t0
v �t

�
1
g

,

�
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Sample Problem 37.03 Time dilation and length contraction as seen from each frame

In Fig. 37-8, Sally (at point A) and Sam’s spaceship (of
proper length L0 � 230 m) pass each other with constant
relative speed v. Sally measures a time interval of 3.57 ms for
the ship to pass her (from the passage of point B in
Fig. 37-8a to the passage of point C in Fig. 37-8b). In terms of
c, what is the relative speed v between Sally and the ship?

KEY IDEAS

Let’s assume that speed v is near c. Then:

1. This problem involves measurements made from two
(inertial) reference frames, one attached to Sally and the
other attached to Sam and his spaceship.

2. This problem also involves two events: the first is the
passage of point B past Sally (Fig. 37-8a) and the second
is the passage of point C past her (Fig. 37-8b).

v

Sally

Contracted length

A

BC
Sam

L0/γ

v

Sally
A

BC
Sam

(a)

(b)

Δt = 3.57   sμ

v

Sally

Proper length

A

BC
Sam

Sam

L0

v

Sally
A

BC

(c)

(d)

    Δt
Dilated time

γ

These are Sally’s measurements,
from her reference frame:

These are Sam’s measurements,
from his reference frame:

Figure 37-8 (a)–(b) Event 1
occurs when point B passes
Sally (at point A) and event
2 occurs when point C pass-
es her. (c)–(d) Event 1
occurs when Sally passes
point B and event 2 occurs
when she passes point C.

A

3. From either reference frame, the other reference frame
passes at speed v and moves a certain distance in the
time interval between the two events:

(37-17)

Because speed v is assumed to be near the speed of light,
we must be careful that the distance and the time interval
in Eq. 37-17 are measured in the same reference frame.

Calculations: We are free to use either frame for the mea-
surements. Because we know that the time interval �t be-
tween the two events measured from Sally’s frame is 3.57 ms,
let us also use the distance L between the two events mea-
sured from her frame. Equation 37-17 then becomes

(37-18)v �
L
�t

.

v �
distance

time interval
.
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matters here; whether either is stationary relative to, say, a
space station is irrelevant. In Figs. 37-8a and b we took
Sally to be stationary, but we could instead have taken
the ship to be stationary, with Sally moving to the left
past it. Event 1 is again when Sally and point B are aligned
(Fig. 37-8c), and event 2 is again when Sally and point C
are aligned (Fig. 37-8d). However, we are now using Sam’s
measurements. So the length between the two events in his
frame is the proper length L0 of the ship and the time in-
terval between them is not Sally’s measurement �t but a
dilated time interval g �t.

Substituting Sam’s measurements into Eq. 37-17, we have

,

which is exactly what we found using Sally’s measurements.
Thus, we get the same result of v � 0.210c with either set of
measurements, but we must be careful not to mix the mea-
surements from the two frames.

v �
L0

g�t

We do not know L, but we can relate it to the given L0:
The distance between the two events as measured from Sam’s
frame is the ship’s proper length L0. Thus, the distance L
measured from Sally’s frame must be less than L0, as given by
Eq. 37-13 (L � L0/g) for length contraction. Substituting L0/g
for L in Eq. 37-18 and then substituting Eq. 37-8 for g, we find

Solving this equation for v (notice that it is on the left and
also buried in the Lorentz factor) leads us to

. (Answer)

Note that only the relative motion of Sally and Sam

� 0.210c

�
(230 m)c

1(299 792 458 m/s)2(3.57 	 10�6 s)2 � (230 m)2

v �
L0c

1(c �t)2 � L0
2

v �
L0 /g

�t
�

L02(1 � (v/c)2

�t
.

Additional examples, video, and practice available at WileyPLUS

Sample Problem 37.04 Time dilation and length contraction in outrunning a supernova

Caught by surprise near a supernova, you race away from the
explosion in your spaceship, hoping to outrun the high-speed
material ejected toward you. Your Lorentz factor g relative
to the inertial reference frame of the local stars is 22.4.

(a) To reach a safe distance, you figure you need to cover
9.00 	 1016 m as measured in the reference frame of the local
stars. How long will the flight take, as measured in that frame?

KEY IDEAS

From Chapter 2, for constant speed, we know that

(37-19)

From Fig. 37-6, we see that because your Lorentz factor g
relative to the stars is 22.4 (large), your relative speed v is
almost c—so close that we can approximate it as c. Then for
speed v � c, we must be careful that the distance and the
time interval in Eq. 37-19 are measured in the same refer-
ence frame.

Calculations: The given distance (9.00 	 1016 m) for the
length of your travel path is measured in the reference
frame of the stars, and the requested time interval �t is to be
measured in that same frame.Thus, we can write

Then substituting the given distance, we find that

(Answer)� 3.00 	 108 s � 9.51 y.

� time interval
relative to stars��

9.00 	 1016 m
299 792 458 m/s

� time interval
relative to stars��

distance relative to stars
c

.

speed �
distance

time interval
.

(b) How long does that trip take according to you (in your
reference frame)?

KEY IDEAS

1. We now want the time interval measured in a different
reference frame—namely, yours.Thus, we need to trans-
form the data given in the reference frame of the stars to
your frame.

2. The given path length of 9.00 	 1016 m, measured in the
reference frame of the stars, is a proper length L0, be-
cause the two ends of the path are at rest in that frame.
As observed from your reference frame, the stars’ refer-
ence frame and those two ends of the path race past you
at a relative speed of v � c.

3. You measure a contracted length L0/g for the path, not
the proper length L0.

Calculations: We can now rewrite Eq. 37-19 as

Substituting known data, we find

(Answer)

In part (a) we found that the flight takes 9.51 y in the refer-
ence frame of the stars. However, here we find that it takes
only 0.425 y in your frame, due to the relative motion and
the resulting contracted length of the path.

� 1.340 	 107 s � 0.425 y.

� time interval
relative to you � �

(9.00 	 1016 m)/22.4
299 792 458 m/s

� time interval
relative to you� �

distance relative to you
c

�
L0/g

c
.
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The Lorentz Transformation
Figure 37-9 shows inertial reference frame S� moving with speed v relative to
frame S, in the common positive direction of their horizontal axes (marked
x and x�). An observer in S reports spacetime coordinates x, y, z, t for an event,
and an observer in S� reports x�, y�, z�, t� for the same event. How are these sets
of numbers related? We claim at once (although it requires proof) that the y and
z coordinates, which are perpendicular to the motion, are not affected by the mo-
tion; that is, y � y� and z � z�. Our interest then reduces to the relation between x
and x� and that between t and t�.

The Galilean Transformation Equations
Prior to Einstein’s publication of his special theory of relativity, the four coordinates
of interest were assumed to be related by the Galilean transformation equations:

(Galilean transformation equations;

approximately valid at low speeds).
(37-20)

(These equations are written with the assumption that t � t� � 0 when the origins
of S and S� coincide.) You can verify the first equation with Fig. 37-9. The second
equation effectively claims that time passes at the same rate for observers in both
reference frames. That would have been so obviously true to a scientist prior to
Einstein that it would not even have been mentioned. When speed v is small
compared to c, Eqs. 37-20 generally work well.

The Lorentz Transformation Equations
Equations 37-20 work well when speed v is small compared to c, but they are ac-
tually incorrect for any speed and are very wrong when v is greater than about
0.10c. The equations that are correct for any physically possible speed are called
the Lorentz transformation equations* (or simply the Lorentz transformations).

t� � t
x� � x � vt

37-3 THE LORENTZ TRANSFORMATION

After reading this module, you should be able to . . .

37.15 For frames with relative motion, apply the Galilean trans-
formation to transform an event’s position from one frame
to the other.

37.16 Identify that a Galilean transformation is approximately cor-
rect for slow relative speeds but the Lorentz transformations are
the correct transformations for any physically possible speed.

37.17 Apply the Lorentz transformations for the spatial and

temporal separations of two events as measured in two
frames with a relative speed v.

37.18 From the Lorentz transformations, derive the equations
for time dilation and length contraction.

37.19 From the Lorentz transformations show that if two events
are simultaneous but spatially separated in one frame, they
cannot be simultaneous in another frame with relative motion.

Learning Objectives

●The Lorentz transformation equations relate the spacetime
coordinates of a single event as seen by observers in two in-
ertial frames, S and S�, where S� is moving relative to S with
velocity v in the positive x and x� direction. The four coordi-
nates are related by

Key Idea

Figure 37-9 Two inertial reference frames:
frame S� has velocity relative to frame S.v:

v

y

x

S
y'

x'

S'

x
vt x'

Event

t� � g(t � vx/c2).
z� � z,
y� � y,
x� � g(x � vt),

*You may wonder why we do not call these the Einstein transformation equations (and why not the
Einstein factor for g). H. A. Lorentz actually derived these equations before Einstein did, but as the
great Dutch physicist graciously conceded, he did not take the further bold step of interpreting these
equations as describing the true nature of space and time. It is this interpretation, first made by
Einstein, that is at the heart of relativity.
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Table 37-2 The Lorentz Transformation Equations for Pairs of Events

1. �x � g(�x� � v �t�) 1�. �x� � g(�x � v �t)
2. �t � g(�t� � v �x�/c2) 2�. �t� � g(�t � v �x/c2)

Frame S� moves at velocity v relative to frame S.

� �
1

21 � (v/c)2
�

1

21 � �2

We can derive them from the postulates of relativity, but here we shall instead
first examine them and then justify them by showing them to be consistent with
our results for simultaneity, time dilation, and length contraction. Assuming that
t � t� � 0 when the origins of S and S� coincide in Fig. 37-9 (event 1), then the
spatial and temporal coordinates of any other event are given by

(37-21)

Note that the spatial values x and the temporal values t are bound together in the first
and last equations. This entanglement of space and time was a prime message of
Einstein’s theory,a message that was long rejected by many of his contemporaries.

It is a formal requirement of relativistic equations that they should reduce to fa-
miliar classical equations if we let c approach infinity. That is, if the speed of light
were infinitely great, all finite speeds would be “low” and classical equations would
never fail. If we let c : � in Eqs. 37-21, g : 1 and these equations reduce—as we
expect—to the Galilean equations (Eqs. 37-20).You should check this.

Equations 37-21 are written in a form that is useful if we are given x and t and
wish to find x� and t�. We may wish to go the other way, however. In that case we
simply solve Eqs. 37-21 for x and t, obtaining

x � g(x� � vt�) and t � g(t� � vx�/c2). (37-22)

Comparison shows that, starting from either Eqs. 37-21 or Eqs. 37-22, you can
find the other set by interchanging primed and unprimed quantities and revers-
ing the sign of the relative velocity v. (For example, if the S� frame has a positive
velocity relative to an observer in the S frame as in Fig. 37-9, then the S frame has
a negative velocity relative to an observer in the S� frame.)

Equations 37-21 relate the coordinates of a second event when the first event is
the passing of the origins of S and S� at t � t� � 0. However, in general we do not want
to restrict the first event to being such a passage. So, let’s rewrite the Lorentz transfor-
mations in terms of any pair of events 1 and 2,with spatial and temporal separations

�x � x2 � x1 and �t � t2 � t1,

as measured by an observer in S, and

as measured by an observer in S�. Table 37-2 displays the Lorentz equations in
difference form, suitable for analyzing pairs of events. The equations in the table
were derived by simply substituting differences (such as �x and �x�) for the four
variables in Eqs. 37-21 and 37-22.

Be careful: When substituting values for these differences, you must be con-
sistent and not mix the values for the first event with those for the second event.
Also, if, say, �x is a negative quantity, you must be certain to include the minus
sign in a substitution.

�x� � x�2 � x�1  and  �t� � t�2 � t�1,

t� � g(t � vx/c2)

z� � z,

y� � y,

x� � g(x � vt),

(Lorentz transformation equations;

valid at all physically possible speeds).
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Checkpoint 2
In Fig.37-9, frame S� has velocity 0.90c relative to frame S.An observer in frame S�
measures two events as occurring at the following spacetime coordinates:event Yellow
at (5.0 m,20 ns) and event Green at (�2.0 m,45 ns). An observer in frame S wants to
find the temporal separation �tGY � tG � tY between the events. (a)Which equation in
Table 37-2 should be used? (b) Should �0.90c or �0.90c be substituted for v in the
parentheses on the equation’s right side and in the Lorentz factor g? What value should
be substituted into the (c) first and (d) second term in the parentheses?

Some Consequences of the Lorentz Equations
Here we use the equations of Table 37-2 to affirm some of the conclusions that
we reached earlier by arguments based directly on the postulates.

Simultaneity
Consider Eq. 2 of Table 37-2,

(37-23)

If two events occur at different places in reference frame S� of Fig. 37-9, then
�x� in this equation is not zero. It follows that even if the events are simultane-
ous in S� (thus �t� � 0), they will not be simultaneous in frame S. (This is in
accord with our conclusion in Module 37-1.) The time interval between the
events in S will be

(simultaneous events in S�).

Thus, the spatial separation �x� guarantees a temporal separation �t.

Time Dilation
Suppose now that two events occur at the same place in S� (thus �x� � 0) but at
different times (thus �t� � 0). Equation 37-23 then reduces to

�t � g �t� (events in same place in S�). (37-24)

This confirms time dilation between frames S and S�. Moreover, because the two
events occur at the same place in S�, the time interval �t� between them can be
measured with a single clock, located at that place. Under these conditions,
the measured interval is a proper time interval, and we can label it �t0 as we have
previously labeled proper times.Thus, with that label Eq. 37-24 becomes

�t � g �t0 (time dilation),

which is exactly Eq. 37-9, the time dilation equation. Thus, time dilation is a spe-
cial case of the more general Lorentz equations.

Length Contraction
Consider Eq. 1� of Table 37-2,

�x� � g(�x � v �t). (37-25)

If a rod lies parallel to the x and x� axes of Fig. 37-9 and is at rest in reference
frame S�, an observer in S� can measure its length at leisure. One way to do so is
by subtracting the coordinates of the end points of the rod. The value of �x� that
is obtained will be the proper length L0 of the rod because the measurements are
made in a frame where the rod is at rest.

�t � g
v �x�

c2

�t � g ��t� �
v �x�

c2 �.
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for the burst; �t is also a positive quantity because the time te
of the explosion is greater (later) than the time tb of the burst.

Planet–moon frame: We seek �x� and �t�, which we shall get
by transforming the given S-frame data to the planet–moon
frame S�. Because we are considering a pair of events, we
choose transformation equations from Table 37-2—namely,
Eqs.1� and 2�:

�x� � g(�x � v �t) (37-27)

and (37-28)

Here, v � �0.980c and the Lorentz factor is

Equation 37-27 then becomes

(Answer)

and Eq. 37-28 becomes

(Answer)

(b) What is the meaning of the minus sign in the value for �t�?

� �1.04 s.

	(1.10 s) �
(�0.980c)(4.00 	 10 8m)

c 2 
�t� � (5.0252)

� 3.86 	 108 m,

[4.00 	 108 m � (�0.980 c)(1.10 s)]�x� � (5.0252)

� �
1

11 � (v/c)2
�

1

11 � (�0.980c/c)2
� 5.0252.

�t� � g ��t �
v �x

c2 �.

Sample Problem 37.05 Lorentz transformations and reversing the sequence of events

An Earth starship has been sent to check an Earth outpost
on the planet P1407, whose moon houses a battle group of
the often hostile Reptulians. As the ship follows a straight-
line course first past the planet and then past the moon, it
detects a high-energy microwave burst at the Reptulian
moon base and then, 1.10 s later, an explosion at the Earth
outpost, which is 4.00 	 108 m from the Reptulian base as
measured from the ship’s reference frame. The Reptulians
have obviously attacked the Earth outpost, and so the star-
ship begins to prepare for a confrontation with them.

(a) The speed of the ship relative to the planet and its moon
is 0.980c. What are the distance and time interval between
the burst and the explosion as measured in the planet–moon
frame (and thus according to the occupants of the stations)?

KEY IDEAS

1. This problem involves measurements made from two
reference frames, the planet–moon frame and the star-
ship frame.

2. We have two events: the burst and the explosion.
3. We need to transform the given data as measured in the

starship frame to the corresponding data as measured in
the planet–moon frame.

Starship frame: Before we get to the transformation, we need
to carefully choose our notation.We begin with a sketch of the
situation as shown in Fig. 37-10. There, we have chosen the
ship’s frame S to be stationary and the planet–moon frame S�
to be moving with positive velocity (rightward). (This is an arbi-
trary choice; we could, instead, have chosen the planet–moon
frame to be stationary.Then we would redraw in Fig. 37-10 as
being attached to the S frame and indicating leftward motion; v
would then be a negative quantity. The results would be the
same.) Let subscripts e and b represent the explosion and burst,
respectively.Then the given data, all in the unprimed (starship)
reference frame,are

�x � xe � xb � �4.00 	 108 m

and �t � te � tb � �1.10 s.

Here, �x is a positive quantity because in Fig. 37-10, the co-
ordinate xe for the explosion is greater than the coordinate xb

v:

S

y

x

y'

x'

S'

Moon
(burst) Planet

(explosion)

Ship

v

The relative motion alters the time intervals between 
events and maybe even their sequence.

Figure 37-10 A planet and its moon in reference frame S� move
rightward with speed v relative to a starship in reference frame S.

Suppose the rod is moving in frame S.This means that �x can be identified as
the length L of the rod in frame S only if the coordinates of the rod’s end points
are measured simultaneously—that is, if �t � 0. If we put �x� � L0, �x � L, and
�t � 0 in Eq. 37-25, we find

(length contraction), (37-26)

which is exactly Eq. 37-13, the length contraction equation. Thus, length contrac-
tion is a special case of the more general Lorentz equations.

L �
L0

g
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The Relativity of Velocities
Here we wish to use the Lorentz transformation equations to compare the veloci-
ties that two observers in different inertial reference frames S and S� would
measure for the same moving particle. Let S� move with velocity v relative to S.

Suppose that the particle, moving with constant velocity parallel to the x and
x� axes in Fig. 37-11, sends out two signals as it moves. Each observer measures
the space interval and the time interval between these two events. These four
measurements are related by Eqs. 1 and 2 of Table 37-2,

�x � g(�x� � v �t�)

and

If we divide the first of these equations by the second, we find

�x
�t

�
�x� � v �t�

�t� � v �x�/c2 .

�t � g ��t� �
v �x�

c2 �.

Additional examples, video, and practice available at WileyPLUS

Reasoning: We must be consistent with the notation we set
up in part (a). Recall how we originally defined the time in-
terval between burst and explosion: �t � te � tb � �1.10 s.
To be consistent with that choice of notation, our definition
of �t� must be ; thus, we have found that

The minus sign here tells us that ; that is, in the
planet–moon reference frame, the burst occurred 1.04 s 
after the explosion, not 1.10 s before the explosion as 
detected in the ship frame.

(c) Did the burst cause the explosion, or vice versa?

KEY IDEA

The sequence of events measured in the planet–moon 

t�b � t�e

�t� � t�e � t�b � �1.04 s.

t�e � t�b

reference frame is the reverse of that measured in the ship
frame. In either situation, if there is a causal relationship be-
tween the two events, information must travel from the
location of one event to the location of the other to cause it.

Checking the speed: Let us check the required speed of
the information. In the ship frame, this speed is

but that speed is impossible because it exceeds c. In the
planet–moon frame, the speed comes out to be 3.70 	 108

m/s, also impossible. Therefore, neither event could possibly
have caused the other event; that is, they are unrelated
events. Thus, the starship should stand down and not con-
front the Reptulians.

vinfo �
�x
�t

�
4.00 	 108 m

1.10 s
� 3.64 	 108 m/s,

37-4 THE RELATIVITY OF VELOCITIES

After reading this module, you should be able to . . .

37.20 With a sketch, explain the arrangement in which a
particle’s velocity is to be measured relative to two
frames that have relative motion.

37.21 Apply the relationship for a relativistic velocity 
transformation between two frames with relative 
motion.

Learning Objectives

● When a particle is moving with speed u� in the positive x� direction in an inertial reference frame S� that itself is moving with
speed v parallel to the x direction of a second inertial frame S, the speed u of the particle as measured in S is

(relativistic velocity).u �
u� � v

1 � u�v/c2

Key Idea

Figure 37-11 Reference frame S� moves with
velocity relative to frame S. A particle
has velocity relative to reference frame
S� and velocity relative to reference
frame S.

u:
u:�

v:

x

y y'

x'

S S'

Particle
u' as measured from S'

u as measured from S

v

The speed of the moving
particle depends on the
frame.
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● When a light source and a light detector move relative to
each other, the wavelength of the light as measured in the
rest frame of the source is the proper wavelength l0. The de-
tected wavelength l is either longer (a red shift) or shorter (a
blue shift) depending on whether the source–detector sepa-
ration is increasing or decreasing.

● When the separation is increasing, the wavelengths are
related by

(source and detector separating),

where b � v/c and v is the relative radial speed (along a
line through the source and detector). If the separation is

l � l0A
1 � b

1 � b

decreasing, the signs in front of the b symbols are reversed.

● For speeds much less than c, the magnitude of the
Doppler wavelength shift �l � l � l0 is approximately
related to v by

(v � c).

● If the relative motion of the light source is perpendicular to a
line through the source and detector, the detected frequency
f is related to the proper frequency f0 by

This transverse Doppler effect is due to time dilation.

f � f021 � b 2.

v �
��l�
l0

c

Key Ideas

Dividing the numerator and denominator of the right side by �t�, we find

However, in the differential limit, �x/�t is u, the velocity of the particle as meas-
ured in S, and �x�/�t� is u�, the velocity of the particle as measured in S�. Then
we have, finally,

(relativistic velocity transformation) (37-29)

as the relativistic velocity transformation equation. (Caution: Be careful to sub-
stitute the correct signs for the velocities.) Equation 37-29 reduces to the classi-
cal, or Galilean, velocity transformation equation,

u � u� � v (classical velocity transformation), (37-30)

when we apply the formal test of letting c : �. In other words, Eq. 37-29 is
correct for all physically possible speeds, but Eq. 37-30 is approximately correct
for speeds much less than c.

u �
u� � v

1 � u�v/c2

�x
�t

�
�x�/�t� � v

1 � v(�x�/�t�)/c2 .

37-5 DOPPLER EFFECT FOR LIGHT

After reading this module, you should be able to . . .

37.22 Identify that the frequency of light as measured in a
frame attached to the light source (the rest frame) is the
proper frequency.

37.23 For source–detector separations increasing and
decreasing, identify whether the detected frequency is
shifted up or down from the proper frequency, identify that
the shift increases with an increase in relative speed, and
apply the terms blue shift and red shift.

37.24 Identify radial speed.
37.25 For source–detector separations increasing and

decreasing, apply the relationships between proper
frequency f0, detected frequency f, and radial speed v.

37.26 Convert between equations for frequency shift and
wavelength shift.

37.27 When a radial speed is much less than light speed,
apply the approximation relating wavelength shift �l,
proper wavelength l0, and radial speed v.

37.28 Identify that for light (not sound) there is a shift in the
frequency even when the velocity of the source is perpen-
dicular to the line between the source and the detector, an
effect due to time dilation.

37.29 Apply the relationship for the transverse Doppler effect
by relating detected frequency f, proper frequency f0, and
relative speed v.

Learning Objectives
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Doppler Effect for Light
In Module 17-7 we discussed the Doppler effect (a shift in detected frequency)
for sound waves, finding that the effect depends on the source and detector veloc-
ities relative to the air.That is not the situation with light waves, which require no
medium (they can even travel through vacuum). The Doppler effect for light
waves depends on only the relative velocity between source and detector, as
measured from the reference frame of either. Let f0 represent the proper fre-
quency of the source—that is, the frequency that is measured by an observer in
the rest frame of the source. Let f represent the frequency detected by an ob-
server moving with velocity relative to that rest frame. Then, when the direc-
tion of is directly away from the source,

(source and detector separating), (37-31)

where b � v/c.
Because measurements involving light are usually done in wavelengths

rather than frequencies, let’s rewrite Eq. 37-31 by replacing f with c/l and f0 with
c/l0, where l is the measured wavelength and l0 is the proper wavelength (the
wavelength associated with f0).After canceling c from both sides, we then have

(source and detector separating). (37-32)

When the direction of is directly toward the source, we must change the signs in
front of the b symbols in Eqs. 37-31 and 37-32.

For an increasing separation, we can see from Eq. 37-32 (with an addition in the
numerator and a subtraction in the denominator) that the measured wavelength is
greater than the proper wavelength. Such a Doppler shift is described as being a red
shift, where red does not mean the measured wavelength is red or even visible. The
term merely serves as a memory device because red is at the long-wavelength end of
the visible spectrum.Thus l is longer than l0. Similarly, for a decreasing separation, l
is shorter than l0,and the Doppler shift is described as being a blue shift.

Low-Speed Doppler Effect
For low speeds (b � 1), Eq. 37-31 can be expanded in a power series in b and
approximated as

(source and detector separating, b � 1). (37-33)

The corresponding low-speed equation for the Doppler effect with sound waves
(or any waves except light waves) has the same first two terms but a different
coefficient in the third term. Thus, the relativistic effect for low-speed light
sources and detectors shows up only with the b2 term.

A police radar unit employs the Doppler effect with microwaves to measure
the speed v of a car.A source in the radar unit emits a microwave beam at a certain
(proper) frequency f0 along the road. A car that is moving toward the unit inter-
cepts that beam but at a frequency that is shifted upward by the Doppler effect due
to the car’s motion toward the radar unit. The car reflects the beam back toward
the radar unit. Because the car is moving toward the radar unit, the detector in the
unit intercepts a reflected beam that is further shifted up in frequency. The unit
compares that detected frequency with f0 and computes the speed v of the car.

Astronomical Doppler Effect
In astronomical observations of stars, galaxies, and other sources of light, we
can determine how fast the sources are moving, either directly away from us or

f � f0(1 � b � 1
2b2)

v:

l � l0A
1 � b

1 � b

f � f0A
1 � b

1 � b

v:
v:

v:
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Checkpoint 3
The figure shows a source that emits
light of proper frequency f0 while mov-
ing directly toward the right with speed
c/4 as measured from reference frame S.
The figure also shows a light detector,
which measures a frequency f � f0 for
the emitted light. (a) Is the detector
moving toward the left or the right? (b) Is the speed of the detector as measured from
reference frame S more than c/4, less than c/4, or equal to c/4?

Detector Source

S

c/4

v PS

D

Figure 37-12 A light source S travels with
velocity past a detector at D. The spe-
cial theory of relativity predicts a trans-
verse Doppler effect as the source passes
through point P, where the direction of
travel is perpendicular to the line extend-
ing through D. Classical theory predicts
no such effect.

v:

directly toward us, by measuring the Doppler shift of the light that reaches us. If a
certain star were at rest relative to us, we would detect light from it with a certain
proper frequency f0. However, if the star is moving either directly away from us
or directly toward us, the light we detect has a frequency f that is shifted from f0

by the Doppler effect. This Doppler shift is due only to the radial motion of the
star (its motion directly toward us or away from us), and the speed we can deter-
mine by measuring this Doppler shift is only the radial speed v of the star—that
is, only the radial component of the star’s velocity relative to us.

Suppose a star (or any other light source) moves away from us with a radial
speed v that is low enough (b is small enough) for us to neglect the b2 term in
Eq. 37-33.Then we have

f � f0(1 � b). (37-34)

Because astronomical measurements involving light are usually done in wave-
lengths rather than frequencies, let’s rewrite Eq. 37-34 as

or l � l0(1 � b)�1.

Because we assume b is small, we can expand (1 � b)�1 in a power series.
Doing so and retaining only the first power of b, we have

l � l0(1 � b),

or (37-35)

Replacing b with v/c and l � l0 with leads to

(radial speed of light source, v � c). (37-36)

The difference �l is the wavelength Doppler shift of the light source. We enclose
it with an absolute sign so that we always have a magnitude of the shift. Equation
37-36 is an approximation that can be applied whether the light source is moving
toward or away from us but only when v � c.

v �
��l�
l0

c

��l�

b �
l � l0

l0
.

c
l

�
c
l0

 (1 � b),

Transverse Doppler Effect
So far, we have discussed the Doppler effect, here and in Chapter 17, only for
situations in which the source and the detector move either directly toward or
directly away from each other. Figure 37-12 shows a different arrangement, in
which a source S moves past a detector D.When S reaches point P, the velocity of
S is perpendicular to the line joining P and D, and at that instant S is moving
neither toward nor away from D. If the source is emitting sound waves of fre-
quency f0, D detects that frequency (with no Doppler effect) when it intercepts the
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waves that were emitted at point P. However, if the source is emitting light waves,
there is still a Doppler effect, called the transverse Doppler effect. In this situa-
tion, the detected frequency of the light emitted when the source is at point P is

(transverse Doppler effect). (37-37)

For low speeds (b � 1), Eq. 37-37 can be expanded in a power series in b and
approximated as

(low speeds). (37-38)

Here the first term is what we would expect for sound waves, and again the
relativistic effect for low-speed light sources and detectors appears with the b2 term.

In principle, a police radar unit can determine the speed of a car even when
the path of the radar beam is perpendicular (transverse) to the path of the car.
However, Eq. 37-38 tells us that because b is small even for a fast car, the rela-
tivistic term b2/2 in the transverse Doppler effect is extremely small. Thus, f � f0

and the radar unit computes a speed of zero.
The transverse Doppler effect is really another test of time dilation. If we

rewrite Eq. 37-37 in terms of the period T of oscillation of the emitted light wave
instead of the frequency, we have, because T � 1/f,

(37-39)

in which T0 (� 1/f0) is the proper period of the source. As comparison with
Eq. 37-9 shows, Eq. 37-39 is simply the time dilation formula.

T �
T0

11 � b2
� gT0,

f � f0(1 � 1
2b2)

f � f0 21 � b2

37-6 MOMENTUM AND ENERGY

After reading this module, you should be able to . . .

37.30 Identify that the classical expressions for momentum
and kinetic energy are approximately correct for slow
speeds whereas the relativistic expressions are correct for
any physically possible speed.

37.31 Apply the relationship between momentum, mass, and
relative speed.

37.32 Identify that an object has a mass energy (or rest
energy) associated with its mass.

37.33 Apply the relationships between total energy, rest
energy, kinetic energy, momentum, mass, speed, the
speed parameter, and the Lorentz factor.

37.34 Sketch a graph of kinetic energy versus the ratio v/c
(of speed to light speed) for both classical and relativistic
expressions of kinetic energy.

37.35 Apply the work–kinetic energy theorem to relate work
by an applied force and the resulting change in kinetic
energy.

37.36 For a reaction, apply the relationship between the Q
value and the change in the mass energy.

37.37 For a reaction, identify the correlation between the
algebraic sign of Q and whether energy is released or
absorbed by the reaction.

Learning Objectives

● The following definitions of linear momentum , kinetic
energy K, and total energy E for a particle of mass m are
valid at any physically possible speed:

(momentum),

E � mc 2 � K � gmc 2 (total energy),

K � mc 2(g � 1) (kinetic energy).

Here g is the Lorentz factor for the particle’s motion, and mc2

is the mass energy, or rest energy, associated with the mass
of the particle. 

p: � �mv:

p:
Key Ideas

● These equations lead to the relationships

(pc)2 � K 2 � 2Kmc2

and E2 � (pc)2 � (mc2)2.

● When a system of particles undergoes a chemical or
nuclear reaction, the Q of the reaction is the negative of the
change in the system’s total mass energy:

Q � Mic2 � Mfc2 � ��M c2,

where Mi is the system’s total mass before the reaction and
Mf is its total mass after the reaction.
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A New Look at Momentum
Suppose that a number of observers, each in a different inertial reference frame,
watch an isolated collision between two particles. In classical mechanics, we have
seen that—even though the observers measure different velocities for the col-
liding particles—they all find that the law of conservation of momentum holds.
That is, they find that the total momentum of the system of particles after the
collision is the same as it was before the collision.

How is this situation affected by relativity? We find that if we continue to
define the momentum of a particle as , the product of its mass and its veloc-
ity, total momentum is not conserved for the observers in different inertial frames.
So, we need to redefine momentum in order to save that conservation law.

Consider a particle moving with constant speed v in the positive direction of
an x axis. Classically, its momentum has magnitude

(classical momentum), (37-40)

in which �x is the distance it travels in time �t.To find a relativistic expression for
momentum, we start with the new definition

Here, as before, �x is the distance traveled by a moving particle as viewed by an
observer watching that particle. However, �t0 is the time required to travel that
distance, measured not by the observer watching the moving particle but by
an observer moving with the particle. The particle is at rest with respect to this
second observer; thus that measured time is a proper time.

Using the time dilation formula, �t � g �t0 (Eq. 37-9), we can then write

However, since �x/�t is just the particle velocity v, we have

p � gmv (momentum). (37-41)

Note that this differs from the classical definition of Eq. 37-40 only by the
Lorentz factor g. However, that difference is important: Unlike classical momen-
tum, relativistic momentum approaches an infinite value as v approaches c.

We can generalize the definition of Eq. 37-41 to vector form as

(momentum). (37-42)

This equation gives the correct definition of momentum for all physically possi-
ble speeds. For a speed much less than c, it reduces to the classical definition of
momentum .

A New Look at Energy
Mass Energy
The science of chemistry was initially developed with the assumption that in
chemical reactions, energy and mass are conserved separately. In 1905, Einstein
showed that as a consequence of his theory of special relativity, mass can be con-
sidered to be another form of energy. Thus, the law of conservation of energy is
really the law of conservation of mass–energy.

In a chemical reaction (a process in which atoms or molecules interact), the
amount of mass that is transferred into other forms of energy (or vice versa) is such

(p: � mv:)

p: � gmv:

p � m
�x
�t0

� m
�x
�t

�t
�t0

� m
�x
�t

g.

p � m
�x
�t0

.

p � mv � m
�x
�t

mv:p:
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a tiny fraction of the total mass involved that there is no hope of measuring the
mass change with even the best laboratory balances. Mass and energy truly seem to
be separately conserved. However, in a nuclear reaction (in which nuclei or funda-
mental particles interact), the energy released is often about a million times greater
than in a chemical reaction, and the change in mass can easily be measured.

An object’s mass m and the equivalent energy E0 are related by

E0 � mc2, (37-43)

which, without the subscript 0, is the best-known science equation of all time.This
energy that is associated with the mass of an object is called mass energy or rest
energy. The second name suggests that E0 is an energy that the object has even
when it is at rest, simply because it has mass. (If you continue your study of
physics beyond this book, you will see more refined discussions of the relation
between mass and energy. You might even encounter disagreements about just
what that relation is and means.)

Table 37-3 shows the (approximate) mass energy, or rest energy, of a few
objects. The mass energy of, say, a U.S. penny is enormous; the equivalent amount
of electrical energy would cost well over a million dollars. On the other hand,
the entire annual U.S. electrical energy production corresponds to a mass of only
a few hundred kilograms of matter (stones, burritos, or anything else).

In practice, SI units are rarely used with Eq. 37-43 because they are too large
to be convenient. Masses are usually measured in atomic mass units, where

1 u � 1.660 538 86 	 10�27 kg, (37-44)

and energies are usually measured in electron-volts or multiples of it, where

1 eV � 1.602 176 462 	 10�19 J. (37-45)

In the units of Eqs. 37-44 and 37-45, the multiplying constant c2 has the values

(37-46)

Total Energy
Equation 37-43 gives, for any object, the mass energy E0 that is associated with
the object’s mass m, regardless of whether the object is at rest or moving. If the
object is moving, it has additional energy in the form of kinetic energy K. If we
assume that the object’s potential energy is zero, then its total energy E is the sum
of its mass energy and its kinetic energy:

E � E0 � K � mc 2 � K. (37-47)

Although we shall not prove it, the total energy E can also be written as

E � gmc2, (37-48)

where g is the Lorentz factor for the object’s motion.

� 931.494 013 MeV/u. 

c2 � 9.314 940 13 	 108 eV/u � 9.314 940 13 	 105 keV/u

Table 37-3 The Energy Equivalents of a Few Objects

Object Mass (kg) Energy Equivalent

Electron � 9.11 	 10�31 � 8.19 	 10�14 J (� 511 keV)
Proton � 1.67 	 10�27 � 1.50 	 10�10 J (� 938 MeV)
Uranium atom � 3.95 	 10�25 � 3.55 	 10�8 J (� 225 GeV)
Dust particle � 1 	 10�13 � 1 	 104 J (� 2 kcal)
U.S. penny � 3.1 	 10�3 � 2.8 	 1014 J (� 78 GW �h)
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Since Chapter 7, we have discussed many examples involving changes in
the total energy of a particle or a system of particles. However, we did not in-
clude mass energy in the discussions because the changes in mass energy were
either zero or small enough to be neglected. The law of conservation of total
energy still applies when changes in mass energy are significant. Thus, regard-
less of what happens  to the mass energy, the following statement from Module
8-5 is still true:

The total energy E of an isolated system cannot change.

For example, if the total mass energy of two interacting particles in an isolated
system decreases, some other type of energy in the system must increase because
the total energy cannot change.

Q Value. In a system undergoing a chemical or nuclear reaction, a change in
the total mass energy of the system due to the reaction is often given as a Q value.
The Q value for a reaction is obtained from the relation

or E0i � E0f � Q. (37-49)

Using Eq. 37-43 (E0 � mc2), we can rewrite this in terms of the initial total mass
Mi and the final total mass Mf as

Mi c2 � Mf c2 � Q

or Q � Mi c2 � Mf c2 � ��M c2, (37-50)

where the change in mass due to the reaction is �M � Mf � Mi.
If a reaction results in the transfer of energy from mass energy to, say, kinetic

energy of the reaction products, the system’s total mass energy E0 (and total
mass M) decreases and Q is positive. If, instead, a reaction requires that energy
be transferred to mass energy, the system’s total mass energy E0 (and its total
mass M) increases and Q is negative.

For example, suppose two hydrogen nuclei undergo a fusion reaction in
which they join together to form a single nucleus and release two particles:

where 2H is another type of hydrogen nucleus (with a neutron in addition to the
proton), e+ is a positron, and v is a neutrino. The total mass energy (and total
mass) of the resultant single nucleus and two released particles is less than the
total mass energy (and total mass) of the initial hydrogen nuclei. Thus, the Q of
the fusion reaction is positive, and energy is said to be released (transferred
from mass energy) by the reaction. This release is important to you because
the fusion of hydrogen nuclei in the Sun is one part of the process that results
in sunshine on Earth and makes life here possible.

Kinetic Energy
In Chapter 7 we defined the kinetic energy K of an object of mass m moving at
speed v well below c to be

(37-51)

However, this classical equation is only an approximation that is good enough
when the speed is well below the speed of light.

Let us now find an expression for kinetic energy that is correct for all physi-
cally possible speeds, including speeds close to c. Solving Eq. 37-47 for K and then
substituting for E from Eq. 37-48 lead to

K � 1
2 mv2.

1H � 1H : 2H � e� � v,

� system’s initial
total mass energy� � � system’s final

total mass energy� � Q
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(kinetic energy), (37-52)

where is the Lorentz factor for the object’s motion.
Figure 37-13 shows plots of the kinetic energy of an electron as calculated with

the correct definition (Eq. 37-52) and the classical approximation (Eq. 37-51), both
as functions of v/c. Note that on the left side of the graph the two plots coincide; this
is the part of the graph—at lower speeds—where we have calculated kinetic ener-
gies so far in this book. This part of the graph tells us that we have been justified in
calculating kinetic energy with the classical expression of Eq. 37-51. However, on the
right side of the graph—at speeds near c—the two plots differ significantly. As v/c
approaches 1.0, the plot for the classical definition of kinetic energy increases only
moderately while the plot for the correct definition of kinetic energy increases dra-
matically, approaching an infinite value as v/c approaches 1.0.Thus, when an object’s
speed v is near c, we must use Eq. 37-52 to calculate its kinetic energy.

Work. Figure 37-13 also tells us something about the work we must do on an
object to increase its speed by, say, 1%.The required work W is equal to the resulting
change �K in the object’s kinetic energy. If the change is to occur on the low-speed,
left side of Fig. 37-13, the required work might be modest. However, if the change is
to occur on the high-speed, right side of Fig. 37-13, the required work could be enor-
mous because the kinetic energy K increases so rapidly there with an increase in
speed v. To increase an object’s speed to c would require, in principle, an infinite
amount of energy; thus, doing so is impossible.

The kinetic energies of electrons, protons, and other particles are often stated
with the unit electron-volt or one of its multiples used as an adjective. For example,
an electron with a kinetic energy of 20 MeV may be described as a 20 MeV electron.

Momentum and Kinetic Energy
In classical mechanics, the momentum p of a particle is mv and its kinetic energy
K is . If we eliminate v between these two expressions, we find a direct rela-
tion between momentum and kinetic energy:

p2 � 2Km (classical). (37-53)

We can find a similar connection in relativity by eliminating v between the
relativistic definition of momentum (Eq. 37-41) and the relativistic definition of
kinetic energy (Eq. 37-52). Doing so leads, after some algebra, to

(pc)2 � K2 � 2Kmc2. (37-54)

With the aid of Eq. 37-47, we can transform Eq. 37-54 into a relation between the
momentum p and the total energy E of a particle:

E2 � (pc)2 � (mc2)2. (37-55)

The right triangle of Fig. 37-14 can help you keep these useful relations in mind.
You can also show that, in that triangle,

sin u � b and cos u � 1/g. (37-56)

With Eq. 37-55 we can see that the product pc must have the same unit as
energy E; thus, we can express the unit of momentum p as an energy unit divided
by c, usually as MeV/c or GeV/c in fundamental particle physics.

1
2 mv2

g (� 1/21 � (v/c)2)

� mc2(g � 1)

K � E � mc2 � gmc2 � mc2

Figure 37-13 The relativistic (Eq. 37-52) and
classical (Eq. 37-51) equations for the
kinetic energy of an electron, plotted as a
function of v/c, where v is the speed of the
electron and c is the speed of light. Note
that the two curves blend together at low
speeds and diverge widely at high speeds.
Experimental data (at the 	 marks) show
that at high speeds the relativistic curve
agrees with experiment but the classical
curve does not.

K
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K = mc2 –1

K = mv21–
2

⎧
⎩

⎧
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1
1 – (v/c)2

As v/c approaches 1.0,
the actual kinetic energy
approaches infinity.

Figure 37-14 A useful memory diagram for
the relativistic relations among the total
energy E, the rest energy or mass energy
mc2, the kinetic energy K, and the momen-
tum magnitude p.

pc

E

mc2

mc2
θ 

K

This might help you to
remember the relations.

Checkpoint 4
Are (a) the kinetic energy and (b) the total energy of a 1 GeV electron more than,
less than, or equal to those of a 1 GeV proton?
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E 0.511 MeV 2.53 MeV 3.04 MeV. (Answer)

(b) What is the magnitude p of the electron’s momentum, in
the unit MeV/c? (Note that c is the symbol for the speed of
light and not itself a unit.)

KEY IDEA

We can find p from the total energy E and the mass energy mc2

via Eq.37-55,
E 2 � (pc)2 � (mc2)2.

Calculations: Solving for pc gives us

Finally, dividing both sides by c we find

p � 3.00 MeV/c. (Answer)

� 2(3.04 MeV)2 � (0.511 MeV)2 � 3.00 MeV.

pc � 2E2 � (mc2)2

���

Sample Problem 37.06 Energy and momentum of a relativistic electron

(a) What is the total energy E of a 2.53 MeV electron?

KEY IDEA

From Eq. 37-47, the total energy E is the sum of the electron’s
mass energy (or rest energy) mc2 and its kinetic energy:

E � mc2 � K. (37-57)

Calculations: The adjective “2.53 MeV” in the problem
statement means that the electron’s kinetic energy is 2.53
MeV. To evaluate the electron’s mass energy mc2, we substi-
tute the electron’s mass m from Appendix B, obtaining

Then dividing this result by 1.602 	 10�13 J/MeV gives us
0.511 MeV as the electron’s mass energy (confirming the
value in Table 37-3). Equation 37-57 then yields

� 8.187 	 10�14 J.

mc2 � (9.109 	 10�31 kg)(299 792 458 m/s)2

Eq. 37-8 for 1 � b.To begin we write

where we have used the fact that b is so close to unity that 
1 � b is very close to 2. (We can round off the sum of two very
close numbers but not their difference.) The velocity we seek
is contained in the 1 � b term. Solving for 1 � b then yields

Thus, b � 1 � 5 	 10�24

and, since v � bc,

v � 0.999 999 999 999 999 999 999 995c. (Answer)

(b) Suppose that the proton travels along a diameter of the
Milky Way galaxy (9.8 	 104 ly). Approximately how long
does the proton take to travel that diameter as measured
from the common reference frame of Earth and the Galaxy?

Reasoning: We just saw that this ultrarelativistic proton is
traveling at a speed barely less than c. By the definition of
light-year, light takes 1 y to travel a distance of 1 ly, and so light
should take 9.8 	 104 y to travel 9.8 	 104 ly, and this proton
should take almost the same time. Thus, from our
Earth–Milky Way reference frame, the proton’s trip takes

�t � 9.8 	 104 y. (Answer)

� 4.9 	 10�24 � 5 	 10�24 .

  1 � b �
1

2g 2 �
1

(2)(3.198 	 1011)2

g �
1

21 � b2
�

1

2(1 � b)(1 � b)
�

1

22(1 � b)
,

Sample Problem 37.07 Energy and an astounding discrepancy in travel time

The most energetic proton ever detected in the cosmic rays
coming to Earth from space had an astounding kinetic 
energy of 3.0 	 1020 eV (enough energy to warm a teaspoon
of water by a few degrees).

(a) What were the proton’s Lorentz factor g and speed v
(both relative to the ground-based detector)?

KEY IDEAS

(1) The proton’s Lorentz factor g relates its total energy E
to its mass energy mc2 via Eq. 37-48 (E � gmc2). (2) The
proton’s total energy is the sum of its mass energy mc2 and
its (given) kinetic energy K.

Calculations: Putting these ideas together we have

(37-58)

From Table 37-3, the proton’s mass energy mc2 is 938 MeV.
Substituting this and the given kinetic energy into Eq. 37-58,
we obtain

(Answer)

This computed value for g is so large that we cannot use
the definition of g (Eq. 37-8) to find v. Try it; your calculator
will tell you that b is effectively equal to 1 and thus that v is
effectively equal to c. Actually, v is almost c, but we want
a more accurate answer, which we can obtain by first solving

� 3.198 	 1011 � 3.2 	 1011.

g � 1 �
3.0 	 1020 eV
938 	 106 eV

g �
E

mc2 �
mc2 � K

mc2 � 1 �
K

mc2 .
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(c) How long does the trip take as measured in the refer-
ence frame of the proton?

KEY IDEAS

1. This problem involves measurements made from two
(inertial) reference frames: one is the Earth–Milky Way
frame and the other is attached to the proton.

2. This problem also involves two events: the first is when the
proton passes one end of the diameter along the Galaxy,
and the second is when it passes the opposite end.

3. The time interval between those two events as measured
in the proton’s reference frame is the proper time inter-
val �t0 because the events occur at the same location in
that frame—namely, at the proton itself.

4. We can find the proper time interval �t0 from the time

interval �t measured in the Earth–Milky Way frame by
using Eq. 37-9 (�t � g �t0) for time dilation. (Note that
we can use that equation because one of the time mea-
sures is a proper time. However, we get the same relation
if we use a Lorentz transformation.)

Calculation: Solving Eq. 37-9 for �t0 and substituting g
from (a) and �t from (b), we find

(Answer)

In our frame, the trip takes 98 000 y. In the proton’s frame, it
takes 9.7 s! As promised at the start of this chapter, relative
motion can alter the rate at which time passes, and we have
here an extreme example.

� 3.06 	 10�7 y � 9.7 s.

�t0 �
�t
g

�
9.8 	 104 y

3.198 	 1011

Additional examples, video, and practice available at WileyPLUS

The Postulates Einstein’s special theory of relativity is based
on two postulates:

1. The laws of physics are the same for observers in all inertial
reference frames. No one frame is preferred over any other.

2. The speed of light in vacuum has the same value c in all
directions and in all inertial reference frames.

The speed of light c in vacuum is an ultimate speed that cannot be
exceeded by any entity carrying energy or information.

Coordinates of an Event Three space coordinates and one
time coordinate specify an event. One task of special relativity is to
relate these coordinates as assigned by two observers who are in
uniform motion with respect to each other.

Simultaneous Events If two observers are in relative
motion, they will not, in general, agree as to whether two events
are simultaneous.

Time Dilation If two successive events occur at the same place
in an inertial reference frame, the time interval �t0 between them,
measured on a single clock where they occur, is the proper time be-
tween the events. Observers in frames moving relative to that frame
will measure a larger value for this interval. For an observer moving
with relative speed v, the measured time interval is

(time dilation). (37-7 to 37-9)

Here b � v/c is the speed parameter and is theg � 1/21 � b2

� g �t0

�t �
�t0

21 � (v/c)2
�

�t0

21 � b2

Review & Summary

Lorentz factor. An important result of time dilation is that moving
clocks run slow as measured by an observer at rest.

Length Contraction The length L0 of an object measured by an
observer in an inertial reference frame in which the object is at rest is
called its proper length. Observers in frames moving relative to that
frame and parallel to that length will measure a shorter length. For an
observer moving with relative speed v, the measured length is

(length contraction). (37-13)

The Lorentz Transformation The Lorentz transformation
equations relate the spacetime coordinates of a single event as
seen by observers in two inertial frames, S and S�, where S� is mov-
ing relative to S with velocity v in the positive x and x� direction.
The four coordinates are related by

(37-21)

Relativity of Velocities When a particle is moving with speed
u� in the positive x� direction in an inertial reference frame S� that
itself is moving with speed v parallel to the x direction of a second
inertial frame S, the speed u of the particle as measured in S is

(relativistic velocity). (37-29)

Relativistic Doppler Effect When a light source and a light

u �
u� � v

1 � u�v/c2

t� � g(t � vx/c2).

z� � z,

y� � y,

x� � g(x � vt),

L � L021 � b2 �
L0

�
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1 A rod is to move at constant
speed v along the x axis of reference
frame S, with the rod’s length parallel
to that axis.An observer in frame S is
to measure the length L of the rod.
Which of the curves in Fig. 37-15 best
gives length L (vertical axis of the
graph) versus speed parameter b?

2 Figure 37-16 shows a ship (at-
tached to reference frame S�) pass-
ing us (standing in reference frame
S). A proton is fired at nearly the
speed of light along the length of the
ship, from the front to the rear. (a) Is
the spatial separation �x� between the point at which the proton is
fired and the point at which it hits the ship’s rear wall a positive or
negative quantity? (b) Is the temporal separation �t� between
those events a positive or negative quantity?

Questions

Figure 37-15
Questions 1 and 3.

0 0.2 0.4
β 

0.6 0.8

e d

c

b

a

v

x'x

S'
S

y'
y

Proton

Figure 37-16 Question 2 and Problem 68.

detector move directly relative to each other, the wavelength of
the light as measured in the rest frame of the source is the proper
wavelength l0. The detected wavelength l is either longer (a red
shift) or shorter (a blue shift) depending on whether the
source–detector separation is increasing or decreasing. When the
separation is increasing, the wavelengths are related by

(source and detector separating), (37-32)

where b � v/c and v is the relative radial speed (along a line con-
necting the source and detector). If the separation is decreasing, the
signs in front of the b symbols are reversed. For speeds much less
than c, the magnitude of the Doppler wavelength shift (�l � l � l0)
is approximately related to v by

(v � c). (37-36)

Transverse Doppler Effect If the relative motion of the light
source is perpendicular to a line joining the source and detector,
the detected frequency f is related to the proper frequency f0 by

(37-37)f � f021 � b2.

v �
��l�
l0

c

l � l0A
1 � b

1 � b

Momentum and Energy The following definitions of linear
momentum , kinetic energy K, and total energy E for a particle of
mass m are valid at any physically possible speed:

(momentum), (37-42)

E � mc 2 � K � gmc 2 (total energy), (37-47, 37-48)

K � mc 2(g � 1) (kinetic energy). (37-52)

Here g is the Lorentz factor for the particle’s motion, and mc2 is
the mass energy, or rest energy, associated with the mass of the par-
ticle.These equations lead to the relationships

(pc)2 � K 2 � 2Kmc2 (37-54)

and E2 � (pc)2 � (mc2)2. (37-55)

When a system of particles undergoes a chemical or nuclear
reaction, the Q of the reaction is the negative of the change in the
system’s total mass energy:

Q � Mic2 � Mfc2 � ��M c2, (37-50)

where Mi is the system’s total mass before the reaction and Mf is its
total mass after the reaction.

p: � gmv:

p:

3 Reference frame S� is to pass reference frame S at speed v
along the common direction of the x� and x axes, as in Fig. 37-9.An
observer who rides along with frame S� is to count off 25 s on his
wristwatch. The corresponding time interval �t is to be measured
by an observer in frame S. Which of the curves in Fig. 37-15 best

gives �t (vertical axis of the graph) versus
speed parameter b?

4 Figure 37-17 shows two clocks in sta-
tionary frame S� (they are synchronized in
that frame) and one clock in moving frame
S. Clocks C1 and read zero when they
pass each other. When clocks C1 and
pass each other, (a) which clock has the
smaller reading and (b) which clock mea-
sures a proper time?

5 Figure 37-18 shows two clocks in stationary
frame S (they are synchronized in that frame)
and one clock in moving frame S�. Clocks C1 and

read zero when they pass each other. When
clocks and C2 pass each other, (a) which
clock has the smaller reading and (b) which
clock measures a proper time?

6 Sam leaves Venus in a spaceship headed to
Mars and passes Sally, who is on Earth, with a
relative speed of 0.5c. (a) Each measures the Venus–Mars voyage
time. Who measures a proper time:
Sam, Sally, or neither? (b) On the
way, Sam sends a pulse of light to
Mars. Each measures the travel time
of the pulse. Who measures a proper
time: Sam, Sally, or neither?

7 The plane of clocks and measur-
ing rods in Fig. 37-19 is like that in
Fig. 37-3. The clocks along the x axis
are separated (center to center) by 1

C�1

C�1

C�2

C�1

S

S'

C'1 C'2

C1

v
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long would the particle have lasted before decay had it been at rest
with respect to the detector?

••6 Reference frame S� is to pass
reference frame S at speed v along the
common direction of the and x axes,
as in Fig. 37-9. An observer who rides
along with frame S� is to count off a
certain time interval on his wristwatch.
The corresponding time interval �t is
to be measured by an observer in
frame S. Figure 37-22 gives �t versus
speed parameter b for a range of val-
ues for b. The vertical axis scale is set
by ta 14.0 s.What is interval �t if v � 0.98c?

••7 The premise of the Planet of the Apes movies and book is that
hibernating astronauts travel far into Earth’s future, to a time
when human civilization has been replaced by an ape civilization.
Considering only special relativity, determine how far into Earth’s
future the astronauts would travel if they slept for 120 y while trav-
eling relative to Earth with a speed of 0.9990c, first outward from
Earth and then back again.

Module 37-2 The Relativity of Length
•8 An electron of b � 0.999 987 moves along the axis of an evac-
uated tube that has a length of 3.00 m as measured by a laboratory

��

x�
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light-second, as are the clocks along the y axis, and all the clocks
are synchronized via the procedure described in Module 37-1.
When the initial synchronizing signal of t � 0 from the origin
reaches (a) clock A, (b) clock B, and (c) clock C, what initial time is
then set on those clocks? An event occurs at clock A when it reads
10 s. (d) How long does the signal of that event take to travel to an
observer stationed at the origin? (e) What time does that observer
assign to the event?

8 The rest energy and total energy, respec-
tively, of three particles, expressed in terms
of a basic amount A are (1) A, 2A; (2) A, 3A;
(3) 3A, 4A. Without written calculation,
rank the particles according to their (a)
mass, (b) kinetic energy, (c) Lorentz factor,
and (d) speed, greatest first.

9 Figure 37-20 shows the triangle of
Fig 37-14 for six particles; the slanted lines 2
and 4 have the same length. Rank the parti-
cles according to (a) mass, (b) momentum
magnitude, and (c) Lorentz factor, greatest
first. (d) Identify which two particles have
the same total energy. (e) Rank the three
lowest-mass particles according to kinetic
energy, greatest first.

10 While on board a starship, you intercept signals from four
shuttle craft that are moving either directly toward or directly

away from you. The signals have the same proper frequency f0. The
speed and direction (both relative to you) of the shuttle craft are
(a) 0.3c toward, (b) 0.6c toward, (c) 0.3c away, and (d) 0.6c away.
Rank the shuttle craft according to the frequency you receive,
greatest first.

11 Figure 37-21 shows one of four star cruisers that are in a race.
As each cruiser passes the starting line, a shuttle craft leaves the
cruiser and races toward the finish line. You, judging the race, are
stationary relative to the starting and finish lines. The speeds vc of
the cruisers relative to you and the speeds vs of the shuttle craft rel-
ative to their respective starships are, in that order, (1) 0.70c, 0.40c;
(2) 0.40c, 0.70c; (3) 0.20c, 0.90c; (4) 0.50c, 0.60c. (a) Rank the shut-
tle craft according to their speeds relative to you, greatest first.
(b) Rank the shuttle craft according to the distances their pilots
measure from the starting line to the finish line, greatest first.
(c) Each starship sends a signal to its shuttle craft at a certain fre-
quency f0 as measured on board the starship. Rank the shuttle craft
according to the frequencies they detect, greatest first.

6

4

3
2

1

5

Figure 37-20
Question 9.

Figure 37-21 Question 11.

Starting line Finish line

vc vs

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 37-1 Simultaneity and Time Dilation
•1 The mean lifetime of stationary muons is measured to be
2.2000 ms. The mean lifetime of high-speed muons in a burst of
cosmic rays observed from Earth is measured to be 16.000 ms. To
five significant figures, what is the speed parameter b of these cos-
mic-ray muons relative to Earth?

•2 To eight significant figures, what is speed parameter b if the
Lorentz factor g is (a) 1.010 000 0, (b) 10.000 000, (c) 100.000 00,
and (d) 1000.000 0?

••3 You wish to make a round trip from Earth in a spaceship,
traveling at constant speed in a straight line for exactly 6 months
(as you measure the time interval) and then returning at the same
constant speed. You wish further, on your return, to find Earth as
it will be exactly 1000 years in the future. (a) To eight significant
figures, at what speed parameter b must you travel? (b) Does it
matter whether you travel in a straight line on your journey?

••4 (Come) back to the future. Suppose that a father is 20.00 y older
than his daughter. He wants to travel outward from Earth for 2.000 y
and then back for another 2.000 y (both intervals as he measures
them) such that he is then 20.00 y younger than his daughter. What
constant speed parameter b (relative to Earth) is required?

••5 An unstable high-energy particle enters a detector and
leaves a track of length 1.05 mm before it decays. Its speed relative
to the detector was 0.992c. What is its proper lifetime? That is, how

ILW
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Figure 37-22 Problem 6.



observer S at rest relative to the tube.An observer S� who is at rest rel-
ative to the electron, however, would see this tube moving with speed
v (� bc).What length would observer S� measure for the tube?

•9 A spaceship of rest length 130 m races past a timing
station at a speed of 0.740c. (a) What is the length of the spaceship
as measured by the timing station? (b) What time interval will the
station clock record between the passage of the front and back
ends of the ship?

•10 A meter stick in frame S� makes an angle of 30° with the x�
axis. If that frame moves parallel to the x axis of frame S with
speed 0.90c relative to frame S, what is the length of the stick as
measured from S?

•11 A rod lies parallel to the x axis of reference frame S, moving
along this axis at a speed of 0.630c. Its rest length is 1.70 m. What
will be its measured length in frame S?

••12 The length of a spaceship is measured to be exactly half its
rest length. (a) To three significant figures, what is the speed
parameter b of the spaceship relative to the observer’s frame?
(b) By what factor do the spaceship’s clocks run slow relative to
clocks in the observer’s frame?

••13 A space traveler takes off from Earth and moves at speed
0.9900c toward the star Vega, which is 26.00 ly distant. How much
time will have elapsed by Earth clocks (a) when the traveler
reaches Vega and (b) when Earth observers receive word from the
traveler that she has arrived? (c) How much older will Earth ob-
servers calculate the traveler to be (measured from her frame)
when she reaches Vega than she was when she started the trip?

••14 A rod is to move at con-
stant speed v along the x axis of
reference frame S, with the rod’s
length parallel to that axis. An ob-
server in frame S is to measure the
length L of the rod. Figure 37-23
gives length L versus speed param-
eter b for a range of values for b.
The vertical axis scale is set by 
La � 1.00 m. What is L if v � 0.95c?

••15 The center of our Milky
Way galaxy is about 23 000 ly away. (a) To eight significant figures,
at what constant speed parameter would you need to travel exactly
23 000 ly (measured in the Galaxy frame) in exactly 30 y (mea-
sured in your frame)? (b) Measured in your frame and in light-
years, what length of the Galaxy would pass by you during the trip?

Module 37-3 The Lorentz Transformation
•16 Observer S reports that an event occurred on the x axis of his
reference frame at x � 3.00 	 108 m at time t � 2.50 s. Observer S�
and her frame are moving in the positive direction of the x axis at a
speed of 0.400c. Further, x � x� � 0 at t � t� � 0. What are the
(a) spatial and (b) temporal coordinate of the event according to
S�? If S� were, instead, moving in the negative direction of the 
x axis, what would be the (c) spatial and (d) temporal coordinate of
the event according to S�?

•17 In Fig. 37-9, the origins of the two frames 
coincide at and the relative speed is 0.950c.Two microme-
teorites collide at coordinates x � 100 km and t � 200 ms according
to an observer in frame S. What are the (a) spatial and (b) temporal
coordinate of the collision according to an observer in frame S�?

t � t� � 0
WWWSSM

SSM
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Figure 37-25 Problems 21, 22, 60, and 61.
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x
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x'A

A

v

(a) Event A

xA xB
x
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x'A x'B

B

v

(b) Event B

•18 Inertial frame S� moves at a speed of 0.60c with respect to
frame S (Fig. 37-9). Further, x � x� � 0 at t � t� � 0. Two events are
recorded. In frame S, event 1 occurs at the origin at t � 0 and event
2 occurs on the x axis at x � 3.0 km at t � 4.0 ms. According to
observer S�, what is the time of (a) event 1 and (b) event 2? (c) Do
the two observers see the same sequence or the reverse?

•19 An experimenter arranges to trigger two flashbulbs
simultaneously, producing a big flash located at the origin of his
reference frame and a small flash at x � 30.0 km. An observer
moving at a speed of 0.250c in the positive direction of x also views
the flashes. (a) What is the time interval between them according
to her? (b) Which flash does she say occurs first?

••20 As in Fig. 37-9, reference
frame passes reference frame S
with a certain velocity. Events 1 and
2 are to have a certain temporal
separation �t� according to the S�
observer. However, their spatial
separation �x� according to that
observer has not been set yet. Figure
37-24 gives their temporal separa-
tion �t according to the S observer
as a function of �x� for a range of
�x� values. The vertical axis scale is
set by �ta � 6.00 ms.What is �t�?

••21 Relativistic reversal of events. Figures 37-25a and b show the
(usual) situation in which a primed reference frame passes an un-
primed reference frame, in the common positive direction of the x
and x� axes, at a constant relative velocity of magnitude v. We are
at rest in the unprimed frame; Bullwinkle, an astute student of rela-
tivity in spite of his cartoon upbringing, is at rest in the primed
frame. The figures also indicate events A and B that occur at the
following spacetime coordinates as measured in our unprimed
frame and in Bullwinkle’s primed frame:

Event Unprimed Primed
A (xA, tA)
B (xB, tB)

In our frame, event A occurs before event B, with temporal separa-
tion �t � tB � tA � 1.00 ms and spatial separation �x � xB � xA �
400 m. Let be the temporal separation of the events according
to Bullwinkle. (a) Find an expression for in terms of the speed
parameter b (� v/c) and the given data. Graph �t� versus b for the
following two ranges of b:

(b) 0 to 0.01 (v is low, from 0 to 0.01c)

(c) 0.1 to 1 (v is high, from 0.1c to the limit c)

(d) At what value of b is �t� � 0? For what range of b is the 

�t�
�t�

(x�B, t�B)
(x�A, t�A)
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(m
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Figure 37-23 Problem 14.

Figure 37-24 Problem 20.
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sequence of events A and B according to Bullwinkle (e) the same
as ours and (f) the reverse of ours? (g) Can event A cause event B,
or vice versa? Explain.

••22 For the passing reference frames in Fig. 37-25, events A and
B occur at the following spacetime coordinates: according to the
unprimed frame, (xA, tA) and (xB, tB); according to the primed
frame, and . In the unprimed frame, �t � tB � tA �
1.00 ms and . (a) Find an expression for 
in terms of the speed parameter b and the given data. Graph 
versus b for two ranges of b: (b) 0 to 0.01 and (c) 0.1 to 1. (d) At
what value of b is �x� minimum, and (e) what is that minimum?

••23 A clock moves along an x axis at a speed of 0.600c and
reads zero as it passes the origin of the axis. (a) Calculate the
clock’s Lorentz factor. (b) What time does the clock read as it
passes x � 180 m?

••24 Bullwinkle in reference frame S� passes you in reference
frame S along the common direction of the x� and x axes, as in
Fig. 37-9. He carries three meter sticks: meter stick 1 is parallel to
the x� axis, meter stick 2 is parallel to the y� axis, and meter stick 3 is
parallel to the z� axis. On his wristwatch he counts off 15.0 s, which
takes 30.0 s according to you. Two events occur during his passage.
According to you, event 1 occurs at x1 � 33.0 m and t1 � 22.0 ns,
and event 2 occurs at x2 � 53.0 m and t2 � 62.0 ns. According
to your measurements, what is the length of (a) meter stick 1,
(b) meter stick 2, and (c) meter stick 3? According to Bullwinkle,
what are (d) the spatial separation and (e) the temporal separation
between events 1 and 2, and (f) which event occurs first?

••25 In Fig. 37-9, observer S detects two flashes of light. A big
flash occurs at x1 � 1200 m and, 5.00 ms later, a small flash occurs
at x2 � 480 m. As detected by observer S�, the two flashes occur at
a single coordinate x�. (a) What is the speed parameter of S�, and
(b) is S� moving in the positive or negative direction of the x axis?
To S�, (c) which flash occurs first and (d) what is the time interval 
between the flashes?

••26 In Fig. 37-9, observer S detects two flashes of light. A big
flash occurs at x1 � 1200 m and, slightly later, a small flash occurs
at x2 � 480 m. The time interval between the flashes is �t � t2 � t1.
What is the smallest value of �t for which observer S� will deter-
mine that the two flashes occur at the same x� coordinate?

Module 37-4 The Relativity of Velocities
•27 A particle moves along the x� axis of frame S� with
velocity 0.40c. Frame moves with velocity 0.60c with respect
to frame S. What is the velocity of the particle with respect to
frame S?

•28 In Fig. 37-11, frame S� moves relative to frame S with velocity
while a particle moves parallel to the common x and x� axes.

An observer attached to frame S� measures the particle’s velocity
to be . In terms of c, what is the particle’s velocity as mea-
sured by an observer attached to frame S according to the (a) rela-
tivistic and (b) classical velocity transformation? Suppose, instead,
that the S� measure of the particle’s velocity is . What
velocity does the observer in S now measure according to the
(c) relativistic and (d) classical velocity transformation?

•29 Galaxy A is reported to be receding from us with a speed of
0.35c. Galaxy B, located in precisely the opposite direction, is also
found to be receding from us at this same speed.What multiple of c
gives the recessional speed an observer on Galaxy A would find
for (a) our galaxy and (b) Galaxy B?

�0.47cî

0.47cî

0.62cî

S�

SSM

ILW

�x�
�x��x � xB � xA � 400 m

(x�B, t�B)(x�A, t�A)

•30 Stellar system Q1 moves away from us at a speed of 0.800c.
Stellar system Q2, which lies in the same direction in space but is
closer to us, moves away from us at speed 0.400c. What multiple of
c gives the speed of Q2 as measured by an observer in the reference
frame of Q1?

••31 A spaceship whose rest length is 350 m
has a speed of 0.82c with respect to a certain reference frame. A
micrometeorite, also with a speed of 0.82c in this frame, passes the
spaceship on an antiparallel track. How long does it take this ob-
ject to pass the ship as measured on the ship?

••32 In Fig. 37-26a, particle P is to move parallel to the x and
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Figure 37-26 Problem 32.

••33 An armada of spaceships that is 1.00 ly long (as measured
in its rest frame) moves with speed 0.800c relative to a ground
station in frame S.A messenger travels from the rear of the armada
to the front with a speed of 0.950c relative to S. How long does the
trip take as measured (a) in the rest frame of the messenger, (b) in
the rest frame of the armada, and (c) by an observer in the ground
frame S?

Module 37-5 Doppler Effect for Light
•34 A sodium light source moves in a horizontal circle at a con-
stant speed of 0.100c while emitting light at the proper wavelength
of l0 � 589.00 nm. Wavelength l is measured for that light by a
detector fixed at the center of the circle. What is the wavelength
shift l � l0?

•35 A spaceship, moving away from Earth at a speed of
0.900c, reports back by transmitting at a frequency (measured in
the spaceship frame) of 100 MHz. To what frequency must Earth
receivers be tuned to receive the report?

•36 Certain wavelengths in the light from a galaxy in the constel-
lation Virgo are observed to be 0.4% longer than the correspon-
ding light from Earth sources. (a) What is the radial speed of this
galaxy with respect to Earth? (b) Is the galaxy approaching or
receding from Earth?

•37 Assuming that Eq. 37-36 holds, find how fast you would have
to go through a red light to have it appear green. Take 620 nm 
as the wavelength of red light and 540 nm as the wavelength of
green light.

SSM

x� axes of reference frames S and , at a certain velocity relative
to frame S. Frame S� is to move parallel to the x axis of frame S
at velocity v. Figure 37-26b gives the velocity u� of the particle
relative to frame S� for a range of values for v. The vertical axis
scale is set by u�a � 0.800c. What value will u� have if (a) v �
0.90c and (b) v : c?

S�
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•38 Figure 37-27 is a graph of intensity versus wavelength for
light reaching Earth from galaxy NGC 7319, which is about 3 	 108

light-years away. The most intense light is emitted by the oxygen in
NGC 7319. In a laboratory that emission is at wavelength l � 513
nm, but in the light from NGC 7319 it has been shifted to 525 nm
due to the Doppler effect (all the emissions from NGC 7319 have
been shifted). (a) What is the radial speed of NGC 7319 relative to
Earth? (b) Is the relative motion toward or away from our planet?

121 MeV/c, what is the ratio m/me of its mass to the electron
mass?

••47 A 5.00-grain aspirin tablet has a mass of 320 mg. For
how many kilometers would the energy equivalent of this mass
power an automobile? Assume 12.75 km/L and a heat of combus-
tion of 3.65 	 107 J/L for the gasoline used in the automobile.

••48 The mass of a muon is 207 times the electron mass; the av-
erage lifetime of muons at rest is 2.20 ms. In a certain experiment,
muons moving through a laboratory are measured to have an aver-
age lifetime of 6.90 ms. For the moving muons, what are (a) b,
(b) K, and (c) p (in MeV/c)?

••49 As you read this page (on paper or monitor screen), a cos-
mic ray proton passes along the left–right width of the page with
relative speed v and a total energy of 14.24 nJ. According to your
measurements, that left–right width is 21.0 cm. (a) What is the
width according to the proton’s reference frame? How much time
did the passage take according to (b) your frame and (c) the pro-
ton’s frame?

••50 To four significant figures, find the following when the
kinetic energy is 10.00 MeV: (a) g and (b) b for an electron (E0 �
0.510 998 MeV), (c) g and (d) b for a proton (E0 � 938.272 MeV),
and (e) g and (f) b for an a particle (E0 � 3727.40 MeV).

••51 What must be the momentum of a particle with mass m
so that the total energy of the particle is 3.00 times its rest energy?

••52 Apply the binomial theorem (Appendix E) to the last part
of Eq. 37-52 for the kinetic energy of a particle. (a) Retain the first
two terms of the expansion to show the kinetic energy in the form

K � (first term) � (second term).

The first term is the classical expression for kinetic energy. The
second term is the first-order correction to the classical expression.
Assume the particle is an electron. If its speed v is c/20, what is the
value of (b) the classical expression and (c) the first-order correc-
tion? If the electron’s speed is 0.80c, what is the value of (d) the
classical expression and (e) the first-order correction? (f) At what
speed parameter b does the first-order correction become 10% or
greater of the classical expression?

••53 In Module 28-4, we showed that a particle of charge q and
mass m will move in a circle of radius r � mv/|q|B when its velocity

is perpendicular to a uniform magnetic field . We also found
that the period T of the motion is independent of speed v. These
two results are approximately correct if . For relativistic
speeds, we must use the correct equation for the radius:

(a) Using this equation and the definition of period (T � 2pr/v),
find the correct expression for the period. (b) Is T independent of
v? If a 10.0 MeV electron moves in a circular path in a uniform
magnetic field of magnitude 2.20 T, what are (c) the radius accord-
ing to Chapter 28, (d) the correct radius, (e) the period according
to Chapter 28, and (f) the correct period?

••54 What is b for a particle with (a) K � 2.00E0 and
(b) E 2.00E0?

••55 A certain particle of mass m has momentum of magnitude
mc.What are (a) b, (b) g, and (c) the ratio K/E0?

••56 (a) The energy released in the explosion of 1.00 mol of TNT
is 3.40 MJ. The molar mass of TNT is 0.227 kg/mol. What weight of
TNT is needed for an explosive release of 1.80 1014 J? (b) Can	
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••39 A spaceship is moving away from Earth at speed 0.20c.
A source on the rear of the ship emits light at wavelength 450 nm
according to someone on the ship. What (a) wavelength and
(b) color (blue, green, yellow, or red) are detected by someone on
Earth watching the ship?

Module 37-6 Momentum and Energy
•40 How much work must be done to increase the speed of an
electron from rest to (a) 0.500c, (b) 0.990c, and (c) 0.9990c?

•41 The mass of an electron is 9.109 381 88 	 10�31

kg. To six significant figures, find (a) g and (b) b for an electron
with kinetic energy K � 100.000 MeV.

•42 What is the minimum energy that is required to break a nu-
cleus of 12C (of mass 11.996 71 u) into three nuclei of 4He (of mass
4.001 51 u each)?

•43 How much work must be done to increase the speed of an
electron (a) from 0.18c to 0.19c and (b) from 0.98c to 0.99c? Note
that the speed increase is 0.01c in both cases.

•44 In the reaction p � 19F : a � 16O, the masses are

m(p) � 1.007825 u, m(a) � 4.002603 u,

m(F) � 18.998405 u, m(O) � 15.994915 u.

Calculate the Q of the reaction from these data.

••45 In a high-energy collision between a cosmic-ray particle and
a particle near the top of Earth’s atmosphere, 120 km above sea
level, a pion is created. The pion has a total energy E of 1.35 	 105

MeV and is traveling vertically downward. In the pion’s rest frame,
the pion decays 35.0 ns after its creation. At what altitude above
sea level, as measured from Earth’s reference frame, does the de-
cay occur? The rest energy of a pion is 139.6 MeV.

••46 (a) If m is a particle’s mass, p is its momentum magnitude,
and K is its kinetic energy, show that

(b) For low particle speeds, show that the right side of the equa-
tion reduces to m. (c) If a particle has K � 55.0 MeV when p �

m �
(pc)2 � K2

2Kc2 .
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64 Reference frame S� passes
reference frame S with a certain ve-
locity as in Fig. 37-9. Events 1 and 2 are
to have a certain spatial separation �x�
according to the S� observer. However,
their temporal separation �t� accord-
ing to that observer has not been set
yet. Figure 37-30 gives their spatial sep-
aration �x according to the S observer
as a function of �t� for a range of �t�
values. The vertical axis scale is set by
�xa � 10.0 m.What is �x�?
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you carry that weight in a backpack, or is a truck or train required?
(c) Suppose that in an explosion of a fission bomb, 0.080% of the
fissionable mass is converted to released energy. What weight of
fissionable material is needed for an explosive release of 1.80 	
1014 J? (d) Can you carry that weight in a backpack, or is a truck or
train required?

••57 Quasars are thought to be the nuclei of active galaxies in the
early stages of their formation. A typical quasar radiates energy at
the rate of 1041 W. At what rate is the mass of this quasar being re-
duced to supply this energy? Express your answer in solar mass
units per year, where one solar mass unit (1 smu � 2.0 	 1030 kg) is
the mass of our Sun.

••58 The mass of an electron is 9.109 381 88 	 10�31 kg.To eight sig-
nificant figures, find the following for the given electron kinetic en-
ergy: (a) g and (b) b for K � 1.000 000 0 keV, (c) g and (d) b for K �
1.000 000 0 MeV, and then (e) g and (f) b for K � 1.000 000 0 GeV.

•••59 An alpha particle with kinetic energy 7.70 MeV collides
with an 14N nucleus at rest, and the two transform into an 17O nu-
cleus and a proton. The proton is emitted at 90° to the direction of
the incident alpha particle and has a kinetic energy of 4.44 MeV.The
masses of the various particles are alpha particle, 4.00260 u; 14N,
14.00307 u; proton, 1.007825 u; and 17O, 16.99914 u. In MeV, what are
(a) the kinetic energy of the oxygen nucleus and (b) the Q of the
reaction? (Hint: The speeds of the particles are much less than c.)

Additional Problems
60 Temporal separation between two events. Events A and B
occur with the following spacetime coordinates in the reference
frames of Fig. 37-25: according to the unprimed frame, (xA, tA) and
(xB, tB); according to the primed frame, and . In the(x�B, t�B)(x�A, t�A)

velocity v. Figure 37-28b gives the velocity u� of the particle rela-
tive to frame S� for a range of values for v. The vertical axis scale is
set by u�a � �0.800c. What value will u� have if (a) v � 0.80c and
(b) v : c?

63 Superluminal jets. Figure 37-29a shows the path taken by a
knot in a jet of ionized gas that has been expelled from a galaxy.
The knot travels at constant velocity at angle u from the direc-
tion of Earth. The knot occasionally emits a burst of light, which
is eventually detected on Earth. Two bursts are indicated in
Fig. 37-29a, separated by time t as measured in a stationary frame
near the bursts. The bursts are shown in Fig. 37-29b as if they were
photographed on the same piece of film, first when light from burst
1 arrived on Earth and then later when light from burst 2 arrived.
The apparent distance Dapp traveled by the knot between the two
bursts is the distance across an Earth-observer’s view of the knot’s
path.The apparent time Tapp between the bursts is the difference in
the arrival times of the light from them. The apparent speed of the
knot is then Vapp � Dapp/Tapp. In terms of v, t, and u, what are
(a) Dapp and (b) Tapp? (c) Evaluate Vapp for v � 0.980c and u �
30.0°. When superluminal (faster than light) jets were first ob-
served, they seemed to defy special relativity—at least until the
correct geometry (Fig. 37-29a) was understood.

v:

Figure 37-28 Problem 62.
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Figure 37-29 Problem 63.
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Figure 37-30 Problem 64.

. In the unprimed frame, �t � tB � tA � 1.00 ms and x
xB xA 240 m. (a) Find an expression for in terms of the
speed parameter b and the given data. Graph �x� versus b for two
ranges of b: (b) 0 to 0.01 and (c) 0.1 to 1. (d) At what value of b is
�x� � 0?

62 In Fig. 37-28a, particle P is to move parallel to the x and x�
axes of reference frames S and , at a certain velocity relative to
frame S. Frame is to move parallel to the x axis of frame S atS�

S�

�x���
��(x�B, t�B)

unprimed frame, t � tB tA 1.00 ms and x xB xA 240 m.
(a) Find an expression for t� in terms of the speed parameter b
and the given data. Graph t� versus b for the following two ranges
of b: (b) 0 to 0.01 and (c) 0.1 to 1. (d) At what value of b is �t� mini-
mum and (e) what is that minimum? (f) Can one of these events
cause the other? Explain.

61 Spatial separation between two events. For the passing
reference frames of Fig. 37-25, events A and B occur with the fol-
lowing spacetime coordinates: according to the unprimed frame,
(xA, tA) and (xB, tB); according to the primed frame, and(x�A, t�A)

�
�

�������



of about 2.7 	 104 km/h. Suppose that two such satellites orbit
Earth in opposite directions. (a) What is their relative speed as they
pass, according to the classical Galilean velocity transformation
equation? (b) What fractional error do you make in (a) by not us-
ing the (correct) relativistic transformation equation?

72 Find the speed parameter of a particle that takes 2.0 y longer
than light to travel a distance of 6.0 ly.

73 How much work is needed to accelerate a proton from
a speed of 0.9850c to a speed of 0.9860c?

74 A pion is created in the higher reaches of Earth’s atmosphere
when an incoming high-energy cosmic-ray particle collides with an
atomic nucleus. A pion so formed descends toward Earth with a
speed of 0.99c. In a reference frame in which they are at rest, pions

SSM
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Figure 37-32 Problem 69.

xc0

Lc

0
xg

Lg

(a)

0
xg 0

xg

(c)(b)

65 Another approach to velocity transformations. In Fig. 37-31,
reference frames B and C move past reference frame A in the com-
mon direction of their x axes. Represent the x components of the
velocities of one frame relative to another with a two-letter sub-
script. For example, vAB is the x component of the velocity of A
relative to B. Similarly, represent the corresponding speed parame-
ters with two-letter subscripts. For example, bAB (� vAB/c) is the
speed parameter corresponding to vAB. (a) Show that

Let MAB represent the ratio (1 � bAB)/(1 � bAB), and let MBC and
MAC represent similar ratios. (b) Show that the relation

MAC � MABMBC

is true by deriving the equation of part (a) from it.

bAC �
bAB � bBC

1 � bABbBC
.

To analyze Garageman’s scheme, an xc axis is attached to the
limo, with xc � 0 at the rear bumper, and an xg axis is attached to
the garage, with xg � 0 at the (now open) front door. Then Carman
is to drive the limo directly toward the front door at a velocity of
0.9980c (which is, of course, both technically and financially impos-
sible). Carman is stationary in the xc reference frame; Garageman
is stationary in the xg reference frame.

There are two events to consider. Event 1: When the rear
bumper clears the front door, the front door is closed. Let the time
of this event be zero to both Carman and Garageman: tg1 � tc1 � 0.
The event occurs at xc � xg � 0. Figure 37-32b shows event 1 ac-
cording to the xg reference frame. Event 2: When the front bumper
reaches the back door, that door opens. Figure 37-32c shows event
2 according to the xg reference frame.

According to Garageman, (a) what is the length of the limo,
and what are the spacetime coordinates (b) xg2 and (c) tg2 of event
2? (d) For how long is the limo temporarily “trapped” inside the
garage with both doors shut? Now consider the situation from the
xc reference frame, in which the garage comes racing past the limo
at a velocity of �0.9980c. According to Carman, (e) what is the
length of the passing garage, what are the spacetime coordinates
(f ) xc2 and (g) tc2 of event 2, (h) is the limo ever in the garage with
both doors shut, and (i) which event occurs first? ( j) Sketch events
1 and 2 as seen by Carman. (k) Are the events causally related; that
is, does one of them cause the other? (l) Finally, who wins the bet?

Figure 37-31 Problems 65, 66, and 67.

x

A

x

B

x

C

66 Continuation of Problem 65. Use the result of part (b) in
Problem 65 for the motion along a single axis in the following situ-
ation. Frame A in Fig. 37-31 is attached to a particle that moves
with velocity �0.500c past frame B, which moves past frame C
with a velocity of �0.500c. What are (a) MAC, (b) bAC, and (c) the
velocity of the particle relative to frame C?

67 Continuation of Problem 65. Let reference frame C in Fig.
37-31 move past reference frame D (not shown). (a) Show that

MAD � MABMBCMCD.

(b) Now put this general result to work: Three particles move par-
allel to a single axis on which an observer is stationed. Let plus and
minus signs indicate the directions of motion along that axis.
Particle A moves past particle B at bAB � �0.20. Particle B moves
past particle C at bBC � �0.40. Particle C moves past observer D
at bCD � �0.60.What is the velocity of particle A relative to observer
D? (The solution technique here is much faster than using Eq. 37-29.)

68 Figure 37-16 shows a ship (attached to reference frame S�)
passing us (standing in reference frame S) with velocity

. A proton is fired at speed 0.980c relative to the ship
from the front of the ship to the rear. The proper length of the ship
is 760 m. What is the temporal separation between the time the
proton is fired and the time it hits the rear wall of the ship accord-
ing to (a) a passenger in the ship and (b) us? Suppose that, instead,
the proton is fired from the rear to the front. What then is the tem-
poral separation between the time it is fired and the time it hits the
front wall according to (c) the passenger and (d) us?

69 The car-in-the-garage problem. Carman has just purchased
the world’s longest stretch limo, which has a proper length of 
Lc � 30.5 m. In Fig. 37-32a, it is shown parked in front of a garage
with a proper length of Lg � 6.00 m. The garage has a front door
(shown open) and a back door (shown closed).The limo is obviously
longer than the garage. Still, Garageman, who owns the garage and
knows something about relativistic length contraction, makes a bet
with Carman that the limo can fit in the garage with both doors
closed. Carman, who dropped his physics course before reaching
special relativity, says such a thing, even in principle, is impossible.

v: � 0.950cî 70 An airplane has rest length 40.0 m and speed 630 m/s. To a
ground observer, (a) by what fraction is its length contracted and
(b) how long is needed for its clocks to be 1.00 ms slow.

71 To circle Earth in low orbit, a satellite must have a speedSSM
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reference frame, measure a different period for the transmitter.
(Hint: A clock and a radar pulse are not the same thing.)

85 One cosmic-ray particle approaches Earth along Earth’s
north–south axis with a speed of 0.80c to-
ward the geographic north pole, and an-
other approaches with a speed of 0.60c
toward the geographic south pole (Fig. 37-
34). What is the relative speed of approach
of one particle with respect to the other?

86 (a) How much energy is released in
the explosion of a fission bomb containing
3.0 kg of fissionable material? Assume that
0.10% of the mass is converted to released
energy. (b) What mass of TNT would have
to explode to provide the same energy re-
lease? Assume that each mole of TNT lib-
erates 3.4 MJ of energy on exploding. The
molecular mass of TNT is 0.227 kg/mol. (c)
For the same mass of explosive, what is the
ratio of the energy released in a nuclear ex-
plosion to that released in a TNT explosion?

87 (a) What potential difference would accelerate an electron to
speed c according to classical physics? (b) With this potential dif-
ference, what speed would the electron actually attain?

88 A Foron cruiser moving directly toward a Reptulian scout
ship fires a decoy toward the scout ship. Relative to the scout ship,
the speed of the decoy is 0.980c and the speed of the Foron cruiser
is 0.900c.What is the speed of the decoy relative to the cruiser?

89 In Fig. 37-35, three spaceships are in a chase. Relative to an
x axis in an inertial frame (say, Earth frame), their velocities are
vA � 0.900c, vB, and vC � 0.800c. (a) What value of vB is required
such that ships A and C approach ship B with the same speed rela-
tive to ship B, and (b) what is that relative speed?

decay with an average life of 26 ns. As measured in a frame fixed
with respect to Earth, how far (on the average) will such a pion
move through the atmosphere before it decays?

75 If we intercept an electron having total energy 1533
MeV that came from Vega, which is 26 ly from us, how far in light-
years was the trip in the rest frame of the electron?

76 The total energy of a proton passing through a laboratory ap-
paratus is 10.611 nJ.What is its speed parameter b? Use the proton
mass given in Appendix B under “Best Value,” not the commonly
remembered rounded number.

77 A spaceship at rest in a certain reference frame S is given a
speed increment of 0.50c. Relative to its new rest frame, it is then
given a further 0.50c increment. This process is continued until its
speed with respect to its original frame S exceeds 0.999c. How
many increments does this process require?

78 In the red shift of radiation from a distant galaxy, a certain ra-
diation, known to have a wavelength of 434 nm when observed in
the laboratory, has a wavelength of 462 nm. (a) What is the radial
speed of the galaxy relative to Earth? (b) Is the galaxy approach-
ing or receding from Earth?

79 What is the momentum in MeV/c of an electron with a
kinetic energy of 2.00 MeV?

80 The radius of Earth is 6370 km, and its orbital speed about the
Sun is 30 km/s. Suppose Earth moves past an observer at this
speed. To the observer, by how much does Earth’s diameter con-
tract along the direction of motion?

81 A particle with mass m has speed c/2 relative to inertial frame
S. The particle collides with an identical particle at rest relative to
frame S. Relative to S, what is the speed of a frame S� in which the
total momentum of these particles is zero? This frame is called the
center of momentum frame.

82 An elementary particle produced in a laboratory experiment
travels 0.230 mm through the lab at a relative speed of 0.960c be-
fore it decays (becomes another particle). (a) What is the proper
lifetime of the particle? (b) What is the distance the particle travels
as measured from its rest frame?

83 What are (a) K, (b) E, and (c) p (in GeV/c) for a proton mov-
ing at speed 0.990c? What are (d) K, (e) E, and (f) p (in MeV/c) for
an electron moving at speed 0.990c?

84 A radar transmitter T is fixed to a reference frame S� that is
moving to the right with speed v relative to reference frame S
(Fig. 37-33). A mechani-
cal timer (essentially a
clock) in frame S�, having
a period t0 (measured in
S�), causes transmitter T
to emit timed radar
pulses, which travel at the
speed of light and are
received by R, a receiver
fixed in frame S. (a)
What is the period t of the timer as detected by observer A, who is
fixed in frame S? (b) Show that at receiver R the time interval be-
tween pulses arriving from T is not t or t0, but

(c) Explain why receiver R and observer A, who are in the same

tR � t0A
c � v
c � v

.

SSM
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0.80c

0.60c

Figure 37-34
Problem 85.

Figure 37-35 Problem 89.

x

vA vB vC

90 Space cruisers A and B are moving parallel to the positive
direction of an x axis. Cruiser A is faster, with a relative speed of
v � 0.900c, and has a proper length of L � 200 m.According to the
pilot of A, at the instant (t � 0) the tails of the cruisers are aligned,
the noses are also. According to the pilot of B, how much later are
the noses aligned?

91 In Fig. 37-36, two cruisers fly toward a space station. Relative
to the station, cruiser A has speed 0.800c. Relative to the station,
what speed is required of cruiser B such that its pilot sees A and
the station approach B at the same speed?

Figure 37-36 Problem 91.
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Figure 37-33 Problem 84.
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92 A relativistic train of proper length 200 m approaches a tun-
nel of the same proper length, at a relative speed of 0.900c. A
paint bomb in the engine room is set to explode (and cover
everyone with blue paint) when the front of the train passes the
far end of the tunnel (event FF). However, when the rear car
passes the near end of the tunnel (event RN), a device in that car
is set to send a signal to the engine room to deactivate the bomb.
Train view: (a) What is the tunnel length? (b) Which event occurs
first, FF or RN? (c) What is the time between those events?
(d) Does the paint bomb explode? Tunnel view: (e) What is the
train length? (f) Which event occurs first? (g) What is the time
between those events? (h) Does the paint bomb explode? If your
answers to (d) and (h) differ, you need to explain the paradox,
because either the engine room is covered with blue paint or not;
you cannot have it both ways. If your answers are the same, you
need to explain why.

93 Particle A (with rest energy 200 MeV) is at rest in a lab frame
when it decays to particle B (rest energy 100 MeV) and particle C
(rest energy 50 MeV). What are the (a) total energy and (b) mo-
mentum of B and the (c) total energy and (d) momentum of C?

94 Figure 37-37 shows three situations in which a starship passes
Earth (the dot) and then makes a round trip that brings it back
past Earth, each at the given Lorentz factor. As measured in the
rest frame of Earth, the round-trip distances are as follows: trip 1,
2D; trip 2, 4D; trip 3, 6D. Neglecting any time needed for accelera-
tions and in terms of D and c, find the travel times of (a) trip 1, (b)
trip 2, and (c) trip 3 as measured from the rest frame of Earth.
Next, find the travel times of (d) trip 1, (e) trip 2, and (f) trip 3 as
measured from the rest frame of the starship. (Hint: For a large
Lorentz factor, the relative speed is almost c.)

95 Ionization measurements show that a particular lightweight
nuclear particle carries a double charge (� 2e) and is moving with
a speed of 0.710c. Its measured radius of curvature in a magnetic
field of 1.00 T is 6.28 m. Find the mass of the particle and identify it.
(Hints: Lightweight nuclear particles are made up of neutrons
(which have no charge) and protons (charge � �e), in roughly
equal numbers. Take the mass of each such particle to be 1.00 u.
(See Problem 53.)

96 A 2.50 MeV electron moves perpendicularly to a magnetic
field in a path with a 3.0 cm radius of curvature. What is the mag-
netic field B? (See Problem 53.)

Figure 37-37 Problem 94.

g � 30g � 10 g � 24

(1) (2) (3)

97 A proton synchrotron accelerates protons to a kinetic energy
of 500 GeV. At this energy, calculate (a) the Lorentz factor, (b) the
speed parameter, and (c) the magnetic field for which the proton
orbit has a radius of curvature of 750 m.

98 An astronaut exercising on a treadmill maintains a pulse rate
of 150 per minute. If he exercises for 1.00 h as measured by a clock
on his spaceship, with a stride length of 1.00 m/s, while the ship
travels with a speed of 0.900c relative to a ground station, what are
(a) the pulse rate and (b) the distance walked as measured by
someone at the ground station?

99 A spaceship approaches Earth at a speed of 0.42c. A light on
the front of the ship appears red (wavelength 650 nm) to passen-
gers on the ship. What (a) wavelength and (b) color (blue, green,
or yellow) would it appear to an observer on Earth?

100 Some of the familiar hydrogen lines appear in the spectrum
of quasar 3C9, but they are shifted so far toward the red that their
wavelengths are observed to be 3.0 times as long as those observed
for hydrogen atoms at rest in the laboratory. (a) Show that the clas-
sical Doppler equation gives a relative velocity of recession greater
than c for this situation. (b) Assuming that the relative motion of
3C9 and Earth is due entirely to the cosmological expansion of the
universe, find the recession speed that is predicted by the relativis-
tic Doppler equation.

101 In one year the United States consumption of electrical en-
ergy was about 2.2 	 1012 kW � h. (a) How much mass is equivalent
to the consumed energy in that year? (b) Does it make any
difference to your answer if this energy is generated in oil-burning,
nuclear, or hydroelectric plants?

102 Quite apart from effects due to Earth’s rotational and or-
bital motions, a laboratory reference frame is not strictly an inertial
frame because a particle at rest there will not, in general, remain at
rest; it will fall. Often, however, events happen so quickly that we
can ignore the gravitational acceleration and treat the frame as
inertial. Consider, for example, an electron of speed v � 0.992c,
projected horizontally into a laboratory test chamber and moving
through a distance of 20 cm. (a) How long would that take, and
(b) how far would the electron fall during this interval? (c) What
can you conclude about the suitability of the laboratory as an iner-
tial frame in this case?

103 What is the speed parameter for the following speeds: (a) a
typical rate of continental drift (1 in./y); (b) a typical drift speed for
electrons in a current-carrying conductor (0.5 mm/s); (c) a highway
speed limit of 55 mi/h; (d) the root-mean-square speed of a hydro-
gen molecule at room temperature; (e) a supersonic plane flying at
Mach 2.5 (1200 km/h); (f) the escape speed of a projectile from the
Earth’s surface; (g) the speed of Earth in its orbit around the Sun;
(h) a typical recession speed of a distant quasar due to the cosmo-
logical expansion (3.0 	 104 km/s)?
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Photons and Matter Waves

What Is Physics?
One primary focus of physics is Einstein’s theory of relativity, which took us into
a world far beyond that of ordinary experience—the world of objects moving at
speeds close to the speed of light. Among other surprises, Einstein’s theory pre-
dicts that the rate at which a clock runs depends on how fast the clock is moving
relative to the observer: the faster the motion, the slower the clock rate. This and
other predictions of the theory have passed every experimental test devised thus
far, and relativity theory has led us to a deeper and more satisfying view of the
nature of space and time.

Now you are about to explore a second world that is outside ordinary
experience—the subatomic world. You will encounter a new set of surprises that,
though they may sometimes seem bizarre, have led physicists step by step to a
deeper view of reality.

Quantum physics, as our new subject is called, answers such questions as:
Why do the stars shine? Why do the elements exhibit the order that is so appar-
ent in the periodic table? How do transistors and other microelectronic devices
work? Why does copper conduct electricity but glass does not? In fact, scientists
and engineers have applied quantum physics in almost every aspect of everyday
life, from medical instrumentation to transportation systems to entertainment in-
dustries. Indeed, because quantum physics accounts for all of chemistry, including
biochemistry, we need to understand it if we are to understand life itself.

Some of the predictions of quantum physics seem strange even to the phys-
icists and philosophers who study its foundations. Still, experiment after
experiment has proved the theory correct, and many have exposed even stranger
aspects of the theory.The quantum world is an amusement park full of wonderful
rides that are guaranteed to shake up the commonsense world view you have
developed since childhood. We begin our exploration of that quantum park with
the photon.

38-1 THE PHOTON, THE QUANTUM OF LIGHT

After reading this module, you should be able to . . .

38.01 Explain the absorption and emission of light in terms
of quantized energy and photons. 

38.02 For photon absorption and emission, apply the 

relationships between energy, power, intensity, rate of
photons, the Planck constant, the associated frequency,
and the associated wavelength.

● An electromagnetic wave (light) is quantized (allowed
only in certain quantities), and the quanta are called 
photons.

● For light of frequency f and wavelength l, the photon energy is
E � hf,

where h is the Planck constant.

Learning Objectives

Key Ideas



The Photon, the Quantum of Light
Quantum physics (which is also known as quantum mechanics and quantum
theory) is largely the study of the microscopic world. In that world, many quanti-
ties are found only in certain minimum (elementary) amounts, or integer multi-
ples of those elementary amounts; these quantities are then said to be quantized.
The elementary amount that is associated with such a quantity is called the
quantum of that quantity (quanta is the plural).

In a loose sense, U.S. currency is quantized because the coin of least value is the
penny, or $0.01 coin, and the values of all other coins and bills are restricted to inte-
ger multiples of that least amount. In other words, the currency quantum is $0.01,
and all greater amounts of currency are of the form n($0.01), where n is always a
positive integer. For example, you cannot hand someone $0.755 � 75.5($0.01).

In 1905, Einstein proposed that electromagnetic radiation (or simply light) is
quantized and exists in elementary amounts (quanta) that we now call photons.
This proposal should seem strange to you because we have just spent several
chapters discussing the classical idea that light is a sinusoidal wave, with a
wavelength l, a frequency f, and a speed c such that

(38-1)

Furthermore, in Chapter 33 we discussed the classical light wave as being an
interdependent combination of electric and magnetic fields, each oscillating at
frequency f. How can this wave of oscillating fields consist of an elementary
amount of something—the light quantum? What is a photon?

The concept of a light quantum, or a photon, turns out to be far more subtle
and mysterious than Einstein imagined. Indeed, it is still very poorly understood.
In this book, we shall discuss only some of the basic aspects of the photon
concept, somewhat along the lines of Einstein’s proposal. According to that pro-
posal, the quantum of a light wave of frequency f has the energy

E � hf (photon energy). (38-2)

Here h is the Planck constant, the constant we first met in Eq. 32-23, and which
has the value

h � 6.63 10 34 J s � 4.14 10 15 eV s. (38-3)

The smallest amount of energy a light wave of frequency f can have is hf, the
energy of a single photon. If the wave has more energy, its total energy must be
an integer multiple of hf. The light cannot have an energy of, say, 0.6hf or 75.5hf.

Einstein further proposed that when light is absorbed or emitted by an object
(matter), the absorption or emission event occurs in the atoms of the object.When
light of frequency f is absorbed by an atom, the energy hf of one photon is trans-
ferred from the light to the atom. In this absorption event, the photon vanishes and
the atom is said to absorb it. When light of frequency f is emitted by an atom, an
amount of energy hf is transferred from the atom to the light. In this emission
event, a photon suddenly appears and the atom is said to emit it. Thus, we can have
photon absorption and photon emission by atoms in an object.

For an object consisting of many atoms, there can be many photon absorp-
tions (such as with sunglasses) or photon emissions (such as with lamps).
However, each absorption or emission event still involves the transfer of an
amount of energy equal to that of a single photon of the light.

When we discussed the absorption or emission of light in previous chapters,
our examples involved so much light that we had no need of quantum physics,
and we got by with classical physics. However, in the late 20th century, technology
became advanced enough that single-photon experiments could be conducted
and put to practical use. Since then quantum physics has become part of standard
engineering practice, especially in optical engineering.
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115538-2 THE PHOTOELECTRIC EFFECT 

Checkpoint 1
Rank the following radiations according to their associated photon energies, greatest
first: (a) yellow light from a sodium vapor lamp, (b) a gamma ray emitted by a
radioactive nucleus, (c) a radio wave emitted by the antenna of a commercial radio
station, (d) a microwave beam emitted by airport traffic control radar.

Next, into this we can substitute from Eq. 38-2 (E hf),
Einstein’s proposal about the energy E of each quantum of
light (which we here call a photon in modern language). We
can then write the absorption rate as 

Using Eq. 38-1 ( f c/l) to substitute for f and then enter-
ing known data, we obtain

(Answer)� 2.97 � 10 20 photons/s.

�
(100 W)(590 � 10 �9 m)

(6.63 � 10�34 J �s)(2.998 � 10 8 m/s)

R �
Pemitl

hc

�

R � Remit �
Pemit

hf
.

�

Sample Problem 38.01 Emission and absorption of light as photons

A sodium vapor lamp is placed at the center of a large
sphere that absorbs all the light reaching it. The rate at
which the lamp emits energy is 100 W; assume that the
emission is entirely at a wavelength of 590 nm. At what rate
are photons absorbed by the sphere?

KEY IDEAS

The light is emitted and absorbed as photons. We assume
that all the light emitted by the lamp reaches (and thus is
absorbed by) the sphere. So, the rate R at which photons are
absorbed by the sphere is equal to the rate Remit at which
photons are emitted by the lamp.

Calculations: That rate is

Remit �
rate of energy emission

energy per emitted photon
�

Pemit

E
.

Additional examples, video, and practice available at WileyPLUS

38-2 THE PHOTOELECTRIC EFFECT

After reading this module, you should be able to . . .

38.03 Make a simple and basic sketch of a photoelectric
experiment, showing the incident light, the metal plate, the
emitted electrons (photoelectrons), and the collector cup.

38.04 Explain the problems physicists had with the photo-
electric effect prior to Einstein and the historical impor-
tance of Einstein’s explanation of the effect.

38.05 Identify a stopping potential Vstop and relate it to the
maximum kinetic energy Kmax of escaping photoelectrons.

38.06 For a photoelectric setup, apply the relationships be-
tween the frequency and wavelength of the incident light,
the maximum kinetic energy Kmax of the photoelectrons,
the work function , and the stopping potential Vstop.

38.07 For a photoelectric setup, sketch a graph of the stop-
ping potential Vstop versus the frequency of the light, identi-
fying the cutoff frequency f0 and relating the slope to the
Planck constant h and the elementary charge e.

�

Learning Objectives

● When light of high enough frequency illuminates a metal
surface, electrons can gain enough energy to escape the
metal by absorbing photons in the illumination, in what is
called the photoelectric effect.

● The conservation of energy in such an absorption and
escape is written as

hf Kmax ,���

where hf is the energy of the absorbed photon, Kmax is the
kinetic energy of the most energetic of the escaping elec-
trons, and (called the work function) is the least energy
required by an electron to escape the electric forces holding
electrons in the metal.
● If hf , electrons barely escape but have no kinetic
energy and the frequency is called the cutoff frequency f0.
● If hf , electrons cannot escape.� �

��

�

Key Ideas



The Photoelectric Effect
If you direct a beam of light of short enough wavelength onto a clean metal
surface, the light will cause electrons to leave that surface (the light will eject the
electrons from the surface). This photoelectric effect is used in many devices,
including camcorders. Einstein’s photon concept can explain it.

Let us analyze two basic photoelectric experiments, each using the apparatus
of Fig. 38-1, in which light of frequency f is directed onto target T and ejects
electrons from it. A potential difference V is maintained between target T and
collector cup C to sweep up these electrons, said to be photoelectrons. This col-
lection produces a photoelectric current i that is measured with meter A.

First Photoelectric Experiment
We adjust the potential difference V by moving the sliding contact in Fig. 38-1 so
that collector C is slightly negative with respect to target T. This potential dif-
ference acts to slow down the ejected electrons. We then vary V until it reaches
a certain value, called the stopping potential Vstop, at which point the reading of
meter A has just dropped to zero. When V � Vstop, the most energetic ejected
electrons are turned back just before reaching the collector. Then Kmax, the
kinetic energy of these most energetic electrons, is

Kmax � eVstop, (38-4)

where e is the elementary charge.
Measurements show that for light of a given frequency, Kmax does not depend

on the intensity of the light source. Whether the source is dazzling bright or so
feeble that you can scarcely detect it (or has some intermediate brightness), the
maximum kinetic energy of the ejected electrons always has the same value.

This experimental result is a puzzle for classical physics. Classically, the in-
cident light is a sinusoidally oscillating electromagnetic wave. An electron in
the target should oscillate sinusoidally due to the oscillating electric force on it
from the wave’s electric field. If the amplitude of the electron’s oscillation is
great enough, the electron should break free of the target’s surface — that is, be
ejected from the target. Thus, if we increase the amplitude of the wave and its
oscillating electric field, the electron should get a more energetic “kick” as it is
being ejected. However, that is not what happens. For a given frequency, intense
light beams and feeble light beams give exactly the same maximum kick to
ejected electrons.

The actual result follows naturally if we think in terms of photons. Now the
energy that can be transferred from the incident light to an electron in the target
is that of a single photon. Increasing the light intensity increases the number of
photons in the light, but the photon energy, given by Eq. 38-2 (E � hf ), is
unchanged because the frequency is unchanged. Thus, the energy transferred to
the kinetic energy of an electron is also unchanged.

Second Photoelectric Experiment
Now we vary the frequency f of the incident light and measure the associated
stopping potential Vstop. Figure 38-2 is a plot of Vstop versus f . Note that the photo-
electric effect does not occur if the frequency is below a certain cutoff frequency
f0 or, equivalently, if the wavelength is greater than the corresponding cutoff
wavelength l0 � c/f0.This is so no matter how intense the incident light is.

This is another puzzle for classical physics. If you view light as an electro-
magnetic wave, you must expect that no matter how low the frequency, electrons
can always be ejected by light if you supply them with enough energy—that is,
if you use a light source that is bright enough. That is not what happens. For light
below the cutoff frequency f0, the photoelectric effect does not occur, no matter
how bright the light source.
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Figure 38-1 An apparatus used to study the
photoelectric effect.The incident light
shines on target T, ejecting electrons, which
are collected by collector cup C.The elec-
trons move in the circuit in a direction op-
posite the conventional current arrows.The
batteries and the variable resistor are used
to produce and adjust the electric potential
difference between T and C.



The existence of a cutoff frequency is, however, just what we should expect
if the energy is transferred via photons. The electrons within the target are held
there by electric forces. (If they weren’t, they would drip out of the target due to
the gravitational force on them.) To just escape from the target, an electron must
pick up a certain minimum energy �, where � is a property of the target material
called its work function. If the energy hf transferred to an electron by a photon
exceeds the work function of the material (if hf 	 �), the electron can escape
the target. If the energy transferred does not exceed the work function (that is,
if hf � �), the electron cannot escape.This is what Fig. 38-2 shows.

The Photoelectric Equation
Einstein summed up the results of such photoelectric experiments in the equation

hf Kmax (photoelectric equation). (38-5)

This is a statement of the conservation of energy for a single photon absorption by a
target with work function �. Energy equal to the photon’s energy hf is transferred to
a single electron in the material of the target. If the electron is to escape from the
target, it must pick up energy at least equal to �. Any additional energy (hf �)
that the electron acquires from the photon appears as kinetic energy K of the elec-
tron. In the most favorable circumstance, the electron can escape through the sur-
face without losing any of this kinetic energy in the process; it then appears outside
the target with the maximum possible kinetic energy Kmax.

Let us rewrite Eq. 38-5 by substituting for Kmax from Eq. 38-4 (Kmax � eVstop).
After a little rearranging we get

(38-6)

The ratios h/e and �/e are constants, and so we would expect a plot of the mea-
sured stopping potential Vstop versus the frequency f of the light to be a straight
line, as it is in Fig. 38-2. Further, the slope of that straight line should be h/e. As a
check, we measure ab and bc in Fig. 38-2 and write

� 4.1 � 10�15 V � s.

h
e

�
ab
bc

�
2.35 V � 0.72 V

(11.2 � 10 14 � 7.2 � 10 14) Hz

Vstop � � h
e � f �

�

e
.

�

���
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Multiplying this result by the elementary charge e, we find

h � (4.1 � 10�15 V �s)(1.6 � 10�19 C) � 6.6 � 10�34 J �s,

which agrees with values measured by many other methods.
An aside: An explanation of the photoelectric effect certainly requires quan-

tum physics. For many years, Einstein’s explanation was also a compelling argu-
ment for the existence of photons. However, in 1969 an alternative explanation
for the effect was found that used quantum physics but did not need the concept
of photons. As shown in countless other experiments, light is in fact quantized as
photons, but Einstein’s explanation of the photoelectric effect is not the best ar-
gument for that fact.

1158 CHAPTER 38 PHOTONS AND MATTER WAVES

Checkpoint 2
The figure shows data like those of Fig. 38-2 for targets of cesium,
potassium, sodium, and lithium.The plots are parallel. (a) Rank the targets
according to their work functions, greatest first. (b) Rank the plots accord-
ing to the value of h they yield, greatest first.
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f (1014 Hz)

Calculations: From that last idea, Eq. 38-5 then gives us, with
f � f0,

hf0 � 0 � � � �.

In Fig. 38-2, the cutoff frequency f0 is the frequency at which
the plotted line intercepts the horizontal frequency axis,
about 5.5 � 1014 Hz. We then have

(Answer)� 3.6 � 10 �19 J � 2.3 eV.

� � hf0 � (6.63 � 10 �34 J �s)(5.5 � 10 14 Hz)

Sample Problem 38.02 Photoelectric effect and work function

Find the work function � of sodium from Fig. 38-2.

KEY IDEAS

We can find the work function � from the cutoff frequency
f0 (which we can measure on the plot). The reasoning is this:
At the cutoff frequency, the kinetic energy Kmax in Eq. 38-5
is zero. Thus, all the energy hf that is transferred from a
photon to an electron goes into the electron’s escape, which
requires an energy of �.

Additional examples, video, and practice available at WileyPLUS

38-3 PHOTONS, MOMENTUM, COMPTON SCATTERING, LIGHT INTERFERENCE

After reading this module, you should be able to . . .

38.08 For a photon, apply the relationships between momen-
tum, energy, frequency, and wavelength.

38.09 With sketches, describe the basics of a Compton scat-
tering experiment.

38.10 Identify the historic importance of Compton scattering.
38.11 For an increase in the Compton-scattering angle f,

identify whether these quantities of the scattered x ray
increase or decrease: kinetic energy, momentum,
wavelength.

38.12 For Compton scattering, describe how the conserva-

tions of momentum and kinetic energy lead to the equation
giving the wavelength shift 
l.

38.13 For Compton scattering, apply the relationships
between the wavelengths of the incident and scattered 
x rays, the wavelength shift 
l, the angle f of photon
scattering, and the electron’s final energy and momentum
(both magnitude and angle).

38.14 In terms of photons, explain the double-slit experiment
in the standard version, the single-photon version, and the
single-photon, wide-angle version.

Learning Objectives
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● Although it is massless, a photon has momentum, 
which is related to its energy E, frequency f, and
wavelength by

.

● In Compton scattering, x rays scatter as particles (as
photons) from loosely bound electrons in a target.
● In the scattering, an x-ray photon loses energy and
momentum to the target electron.
● The resulting increase (Compton shift) in the photon
wavelength is

p �
hf
c

�
h
l

,

where m is the mass of the target electron and f is the angle
at which the photon is scattered from its initial travel direction.
● Photons: When light interacts with matter, the interaction is
particle-like, occurring at a point and transferring energy and
momentum.
● Wave: When a single photon is emitted by a source, we
interpret its travel as being that of a probability wave.
● Wave: When many photons are emitted or absorbed by
matter, we interpret the combined light as a classical electro-
magnetic wave.


l �
h

mc
 (1 � cos f)

Key Ideas

Photons Have Momentum
In 1916, Einstein extended his concept of light quanta (photons) by proposing
that a quantum of light has linear momentum. For a photon with energy hf, the
magnitude of that momentum is

(photon momentum), (38-7)

where we have substituted for f from Eq. 38-1 ( f � c/l). Thus, when a photon
interacts with matter, energy and momentum are transferred, as if there were
a collision between the photon and matter in the classical sense (as in Chapter 9).

In 1923, Arthur Compton at Washington University in St. Louis showed that
both momentum and energy are transferred via photons. He directed a beam of x
rays of wavelength l onto a target made of carbon, as shown in Fig. 38-3.An x ray
is a form of electromagnetic radiation, at high frequency and thus small wave-
length. Compton measured the wavelengths and intensities of the x rays that
were scattered in various directions from his carbon target.

Figure 38-4 shows his results. Although there is only a single wavelength 
(l � 71.1 pm) in the incident x-ray beam, we see that the scattered x rays con-
tain a range of wavelengths with two prominent intensity peaks. One peak is
centered about the incident wavelength l, the other about a wavelength l� that
is longer than l by an amount 
l, which is called the Compton shift. The value
of the Compton shift varies with the angle at which the scattered x rays are de-
tected and is greater for a greater angle.

Figure 38-4 is still another puzzle for classical physics. Classically, the incident
x-ray beam is a sinusoidally oscillating electromagnetic wave. An electron in the

p �
hf
c

�
h
�

Incident
x rays

Collimating
slits

λ 

  T

Scattered
x raysφ 

λ '

Detector

Figure 38-3 Compton’s apparatus.A beam
of x rays of wavelength l � 71.1 pm is
directed onto a carbon target T. The x rays
scattered from the target are observed at
various angles f to the direction of the inci-
dent beam. The detector measures both the
intensity of the scattered x rays and their
wavelength.
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Figure 38-4 Compton’s results for four values of the scattering angle f. Note that the
Compton shift 
l increases as the scattering angle increases.



carbon target should oscillate sinusoidally due to the oscillating electric force on
it from the wave’s electric field. Further, the electron should oscillate at the same
frequency as the wave and should send out waves at this same frequency, as if it
were a tiny transmitting antenna. Thus, the x rays scattered by the electron should
have the same frequency, and the same wavelength, as the x rays in the incident
beam—but they don’t.

Compton interpreted the scattering of x rays from carbon in terms of energy
and momentum transfers, via photons, between the incident x-ray beam and
loosely bound electrons in the carbon target. Let’s see how this quantum physics
interpretation leads to an understanding of Compton’s results.

Suppose a single photon (of energy E � hf ) is associated with the interac-
tion between the incident x-ray beam and a stationary electron. In general, the
direction of travel of the x ray will change (the x ray is scattered), and the elec-
tron will recoil, which means that the electron has obtained some kinetic energy.
Energy is conserved in this isolated interaction. Thus, the energy of the scattered
photon (E� � hf �) must be less than that of the incident photon. The scattered x
rays must then have a lower frequency f � and thus a longer wavelength l� than
the incident x rays, just as Compton’s experimental results in Fig. 38-4 show.

For the quantitative part, we first apply the law of conservation of energy.
Figure 38-5 suggests a “collision” between an x ray and an initially stationary free
electron in the target.As a result of the collision, an x ray of wavelength l� moves
off at an angle f and the electron moves off at an angle u, as shown. Conservation
of energy then gives us

hf � hf � � K,

in which hf is the energy of the incident x-ray photon, hf � is the energy of the
scattered x-ray photon, and K is the kinetic energy of the recoiling electron.
Because the electron may recoil with a speed comparable to that of light, we must
use the relativistic expression of Eq. 37-52,

K � mc2(g � 1),
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Figure 38-5 (a) An x ray approaches a stationary electron.The x ray can (b) bypass the electron (forward scatter) with
no energy or momentum transfer, (c) scatter at some intermediate angle with an intermediate energy and momentum
transfer, or (d) backscatter with the maximum energy and momentum transfer.
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for the electron’s kinetic energy. Here m is the electron’s mass and g is the
Lorentz factor

Substituting for K in the conservation of energy equation yields

hf � hf � � mc2(g � 1).

Substituting c/l for f and c/l� for f � then leads to the new energy conservation
equation

(38-8)

Next we apply the law of conservation of momentum to the x-ray–electron
collision of Fig. 38-5. From Eq. 38-7 (p � h/l), the magnitude of the momentum
of the incident photon is h/l, and that of the scattered photon is h/l�. From
Eq. 37-41, the magnitude for the recoiling electron’s momentum is p � gmv.
Because we have a two-dimensional situation, we write separate equations for
the conservation of momentum along the x and y axes, obtaining

(x axis) (38-9)

and (y axis). (38-10)

We want to find 
l (� l� � l), the Compton shift of the scattered x rays. Of
the five collision variables (l, l�, v, f, and u) that appear in Eqs. 38-8, 38-9, and
38-10, we choose to eliminate v and u, which deal only with the recoiling electron.
Carrying out the algebra (it is somewhat complicated) leads to

(Compton shift). (38-11)

Equation 38-11 agrees exactly with Compton’s experimental results.
The quantity h/mc in Eq. 38-11 is a constant called the Compton wavelength.

Its value depends on the mass m of the particle from which the x rays scatter.
Here that particle is a loosely bound electron, and thus we would substitute the
mass of an electron for m to evaluate the Compton wavelength for Compton scat-
tering from an electron.

A Loose End
The peak at the incident wavelength l (� 71.1 pm) in Fig. 38-4 still needs to be ex-
plained. This peak arises not from interactions between x rays and the very loosely
bound electrons in the target but from interactions between x rays and the electrons
that are tightly bound to the carbon atoms making up the target. Effectively, each of
these latter collisions occurs between an incident x ray and an entire carbon atom. If
we substitute for m in Eq. 38-11 the mass of a carbon atom (which is about 22 000
times that of an electron), we see that 
l becomes about 22 000 times smaller than
the Compton shift for an electron—too small to detect.Thus, the x rays scattered in
these collisions have the same wavelength as the incident x rays and give us the un-
shifted peaks in Fig. 38-4.


� �
h

mc
 (1 � cos 
)

0 �
h
l�

 sin f � gmv sin u 

h
l

�
h
l�

 cos f � gmv cos u 

h
l

�
h
l�

� mc(g � 1).

g �
1

11 � (v/c)2
.

116138-3 PHOTONS, MOMENTUM, COMPTON SCATTERING, LIGHT INTERFERENCE

Checkpoint 3
Compare Compton scattering for x rays (l � 20 pm) and visible light (l � 500 nm) at a
particular angle of scattering. Which has the greater (a) Compton shift, (b) fractional
wavelength shift, (c) fractional energy loss, and (d) energy imparted to the electron?
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KEY IDEA

We need to find the fractional energy loss (let us call it frac) for
photons that scatter from the electrons:

Calculations: From Eq. 38-2 (E � hf ), we can substitute
for the initial energy E and the detected energy E� of the x
rays in terms of frequencies. Then, from Eq. 38-1 ( f � c/l),
we can substitute for those frequencies in terms of the wave-
lengths.We find

Substitution of data yields

(Answer)

Although the Compton shift 
l is independent of the wave-
length l of the incident x rays (see Eq. 38-11), our result here
tells us that the fractional photon energy loss of the x rays
does depend on l, increasing as the wavelength of the inci-
dent radiation decreases.

frac �
2.21 pm

22 pm � 2.21 pm
� 0.091, or 9.1%.

�

l

l � 
l
.

frac �
hf � hf �

hf
�

c/l � c/l�

c/l
�

l� � l

l�

frac �
energy loss

initial energy
�

E � E�

E
.

Sample Problem 38.03 Compton scattering of light by electrons

X rays of wavelength l 22 pm (photon energy 56 keV)
are scattered from a carbon target, and the scattered rays
are detected at 85° to the incident beam.

(a) What is the Compton shift of the scattered rays?

KEY IDEA

The Compton shift is the wavelength change of the x rays
due to scattering from loosely bound electrons in a target.
Further, that shift depends on the angle at which the scat-
tered x rays are detected, according to Eq. 38-11. The shift is
zero for forward scattering at angle f � 0°, and it is maximum
for backscattering at angle f � 180°. Here we have an inter-
mediate situation at angle f � 85°.

Calculation: Substituting 85° for that angle and 9.11 �
10�31 kg for the electron mass (because the scattering is
from electrons) in Eq. 38-11 gives us

(Answer)

(b) What percentage of the initial x-ray photon energy is
transferred to an electron in such scattering?

� 2.21 � 10 �12 m � 2.2 pm.

�
(6.63 � 10 �34 J �s)(1 � cos 85�)

(9.11 � 10 �31 kg)(3.00 � 10 8 m/s)


l �
h

mc
 (1 � cos f)

��

Additional examples, video, and practice available at WileyPLUS

Light as a Probability Wave
A fundamental mystery in physics is how light can be a wave (which spreads out
over a region) in classical physics but be emitted and absorbed as photons (which
originate and vanish at points) in quantum physics. The double-slit experiment of
Module 35-2 lies at the heart of this mystery. Let us discuss three versions of it.

The Standard Version
Figure 38-6 is a sketch of the original experiment carried out by Thomas Young in
1801 (see also Fig. 35-8). Light shines on screen B, which contains two narrow
parallel slits.The light waves emerging from the two slits spread out by diffraction
and overlap on screen C where, by interference, they form a pattern of
alternating intensity maxima and minima. In Module 35-2 we took the existence
of these interference fringes as compelling evidence for the wave nature of light.

Let us place a tiny photon detector D at one point in the plane of screen C.
Let the detector be a photoelectric device that clicks when it absorbs a photon.
We would find that the detector produces a series of clicks, randomly spaced
in time, each click signaling the transfer of energy from the light wave to the
screen via a photon absorption. If we moved the detector very slowly up or down
as indicated by the black arrow in Fig. 38-6, we would find that the click rate
increases and decreases, passing through alternate maxima and minima that cor-
respond exactly to the maxima and minima of the interference fringes.

Interference
fringes

Incident
light D

B C

Figure 38-6 Light is directed onto screen B,
which contains two parallel slits. Light
emerging from these slits spreads out by
diffraction. The two diffracted waves over-
lap at screen C and form a pattern of inter-
ference fringes.A small photon detector D
in the plane of screen C generates a sharp
click for each photon that it absorbs.



The point of this thought experiment is as follows. We cannot predict when a
photon will be detected at any particular point on screen C; photons are detected
at individual points at random times. We can, however, predict that the relative
probability that a single photon will be detected at a particular point in a speci-
fied time interval is proportional to the light intensity at that point.

We know from Eq. 33-26 in Module 33-2 that the intensity I of
a light wave at any point is proportional to the square of Em, the amplitude of the
oscillating electric field vector of the wave at that point. Thus,

(I � Erms
2 /cm0)
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The probability (per unit time interval) that a photon will be detected in any
small volume centered on a given point in a light wave is proportional to the
square of the amplitude of the wave’s electric field vector at that point.

We now have a probabilistic description of a light wave, hence another way to
view light. It is not only an electromagnetic wave but also a probability wave. That is,
to every point in a light wave we can attach a numerical probability (per unit time
interval) that a photon can be detected in any small volume centered on that point.

The Single-Photon Version
A single-photon version of the double-slit experiment was first carried out by
G. I. Taylor in 1909 and has been repeated many times since. It differs from the
standard version in that the light source in the Taylor experiment is so extremely
feeble that it emits only one photon at a time, at random intervals. Astonishingly,
interference fringes still build up on screen C if the experiment runs long enough
(several months for Taylor’s early experiment).

What explanation can we offer for the result of this single-photon double-slit
experiment? Before we can even consider the result, we are compelled to ask ques-
tions like these: If the photons move through the apparatus one at a time, through
which of the two slits in screen B does a given photon pass? How does a given pho-
ton even “know” that there is another slit present so that interference is a possibil-
ity? Can a single photon somehow pass through both slits and interfere with itself?

Bear in mind that the only thing we can know about photons is when light
interacts with matter—we have no way of detecting them without an interaction
with matter, such as with a detector or a screen.Thus, in the experiment of Fig. 38-6,
all we can know is that photons originate at the light source and vanish at the screen.
Between source and screen, we cannot know what the photon is or does. However,
because an interference pattern eventually builds up on the screen, we can speculate
that each photon travels from source to screen as a wave that fills up the space be-
tween source and screen and then vanishes in a photon absorption at some point on
the screen, with a transfer of energy and momentum to the screen at that point.

We cannot predict where this transfer will occur (where a photon will be
detected) for any given photon originating at the source. However, we can pre-
dict the probability that a transfer will occur at any given point on the screen.
Transfers will tend to occur (and thus photons will tend to be absorbed) in the
regions of the bright fringes in the interference pattern that builds up on
the screen. Transfers will tend not to occur (and thus photons will tend not to be
absorbed) in the regions of the dark fringes in the built-up pattern. Thus, we can
say that the wave traveling from the source to the screen is a probability wave,
which produces a pattern of “probability fringes” on the screen.

The Single-Photon, Wide-Angle Version
In the past, physicists tried to explain the single-photon double-slit experiment in
terms of small packets of classical light waves that are individually sent toward the
slits. They would define these small packets as photons. However, modern
experiments invalidate this explanation and definition. One of these experiments, re-
ported in 1992 by Ming Lai and Jean-Claude Diels of the University of New Mexico,



is depicted in Figure 38-7. Source S contains molecules that emit photons at well-
separated times. Mirrors M1 and M2 are positioned to reflect light that the source
emits along two distinct paths, 1 and 2, that are separated by an angle u, which is
close to 180°. This arrangement differs from the standard two-slit experiment, in
which the angle between the paths of the light reaching two slits is very small.

After reflection from mirrors M1 and M2, the light waves traveling along
paths 1 and 2 meet at beam splitter B, which transmits half the incident light and
reflects the other half. On the right side of B in Fig. 38-7, the light wave traveling
along path 2 and reflected by B combines with the light wave traveling along path
1 and transmitted by B. These two waves then interfere with each other at detec-
tor D (a photomultiplier tube that can detect individual photons).

The output of the detector is a randomly spaced series of electronic pulses,
one for each detected photon. In the experiment, the beam splitter is moved
slowly in a horizontal direction (in the reported experiment, a distance of only
about 50 mm maximum), and the detector output is recorded on a chart recorder.
Moving the beam splitter changes the lengths of paths 1 and 2, producing a phase
shift between the light waves arriving at detector D. Interference maxima and
minima appear in the detector’s output signal.

This experiment is difficult to understand in traditional terms. For example,
when a molecule in the source emits a single photon, does that photon travel
along path 1 or path 2 in Fig. 38-7 (or along any other path)? Or can it move in
both directions at once? To answer, we assume that when a molecule emits a pho-
ton, a probability wave radiates in all directions from it. The experiment samples
this wave in two of those directions, chosen to be nearly opposite each other.

We see that we can interpret all three versions of the double-slit experiment
if we assume that (1) light is generated in the source as photons, (2) light is
absorbed in the detector as photons, and (3) light travels between source and
detector as a probability wave.
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After reading this module, you should be able to . . .

38.15 Identify an ideal blackbody radiator and its spectral
radiancy S(l).

38.16 Identify the problem that physicists had with blackbody
radiation prior to Planck’s work, and explain how Planck
and Einstein solved the problem.

38.17 Apply Planck’s radiation law for a given wavelength
and temperature.

38.18 For a narrow wavelength range and for a given wave-
length and temperature, find the intensity in blackbody
radiation.

38.19 Apply the relationship between intensity, power, and area.
38.20 Apply Wien’s law to relate the surface temperature of

an ideal blackbody radiator to the wavelength at which the
spectral radiancy is maximum.

Learning Objectives

● As a measure of the emission of thermal radiation by an
ideal blackbody radiator, we define the spectral radiancy in
terms of the emitted intensity per unit wavelength at a given
wavelength l:

● The Planck radiation law, in which atomic oscillators
produce the thermal radiation, is

S(l) �
2pc2h

l5

1
ehc/lkT � 1

,

S(l) �
intensity

(unit wavelength)
.

where h is the Planck constant, k is the Boltzmann con-
stant, and T is the temperature of the radiating surface (in
kelvins).

● Planck’s law was the first suggestion that the energies 
of the atomic oscillators producing the radiation are
quantized.

● Wien’s law relates the temperature T of a blackbody radia-
tor and the wavelength lmax at which the spectral radiancy is
maximum:

lmaxT � 2898 mm ? K.

Key Ideas

Figure 38-7 The light from a single photon
emission in source S travels over two
widely separated paths and interferes with
itself at detector D after being recombined
by beam splitter B. (Based on Ming Lai and
Jean-Claude Diels, Journal of the Optical
Society of America B, 9, 2290–2294,
December 1992.)

A single molecule

θ 

B

D

M2M1

Path 1 Path 2S

A single photon can take
widely different paths and
still interfere with itself.



The Birth of Quantum Physics
Now that we have seen how the photoelectric effect and Compton
scattering propelled physicists into quantum physics, let’s back up
to the very beginning, when the idea of quantized energies gradu-
ally emerged out of experimental data.The story begins with what
might seem mundane these days but which was a fixation point for
physicists of 1900. The subject was the thermal radiation emitted
by an ideal blackbody radiator—that is, a radiator whose emitted
radiation depends only on its temperature and not on the material
from which it is made, the nature of its surface, or anything other
than temperature. In a nutshell here was the trouble: the
experimental results differed wildly from the theoretical predic-
tions and no one had a clue as to why.

Experimental Setup. We can make an ideal radiator by form-
ing a cavity within a body and keeping the cavity walls at a uniform
temperature.The atoms on the inner wall of the body oscillate (they
have thermal energy), which causes them to emit electromagnetic
waves, the thermal radiation. To sample that internal radiation, we
drill a small hole through the wall so that some of the radiation can
escape to be measured (but not enough to alter the radiation inside
the cavity). We are interested in how the intensity of the radiation
depends on wavelength.

That intensity distribution is handled by defining a spectral
radiancy S(l) of the radiation emitted at given wavelength l:

(38-12)

If we multiply S(l) by a narrow wavelength range dl, we have the intensity (that
is, the power per unit area of the hole in the wall) that is being emitted in the
wavelength range l to l 1 dl.

The solid curve in Fig. 38-8 shows the experimental results for a cavity with a
wall temperature of 2000 K, for a range of wavelengths. Although such a radiator
would glow brightly in a dark room, we can tell from the figure that only a small
part of its radiated energy actually lies in the visible range (which is colorfully
indicated). At that temperature, most of the radiated energy lies in the infrared
region, with longer wavelengths.

Theory. The prediction of classical physics for the spectral radiancy, for a
given temperature T in kelvins, is

(classical radiation law), (38-13)

where k is the Boltzmann constant (Eq. 19-7) with the value

k � 1.38 � l0�23 J/K � 8.62 � 10�5 eV/K.

This classical result is plotted in Fig. 38-8 for T � 2000 K. Although the theoreti-
cal and experimental results agree well at long wavelengths (off the graph to the
right), they are not even close in the short wavelength region. Indeed, the theo-
retical prediction does not even include a maximum as seen in the measured
results and instead “blows up” up to infinity (which was quite disturbing, even
embarrassing, to the physicists).

Planck’s Solution. In 1900, Planck devised a formula for S(l) that neatly
fitted the experimental results for all wavelengths and for all temperatures:

(Planck’s radiation law). (38-14)S(l) �
2pc2h

l5

1
ehc/lkT � 1

S(l) �
2pckT

l4

power

� unit area
of emitter�� unit

wavelength�
.�S(l) �

intensity

� unit
wavelength�
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Figure 38-8 The solid curve shows the experimental spectral ra-
diancy for a cavity at 2000 K. Note the failure of the classical
theory, which is shown as a dashed curve.The range of visible
wavelengths is indicated.



The key element in the equation lies in the argument of the exponential: hc/l,
which we can rewrite in a more suggestive form as hf. Equation 38-14 was the
first use of the symbol h, and the appearance of hf suggests that the energies of
the atomic oscillators in the cavity wall are quantized. However, Planck, with his
training in classical physics, simply could not believe such a result in spite of the
immediate success of his equation in fitting all experimental data.

Einstein’s Solution. No one understood Eq. 38-14 for 17 years, but then
Einstein explained it with a very simple model with two key ideas: (1) The ener-
gies of the cavity-wall atoms that are emitting the radiation are indeed quantized.
(2) The energies of the radiation in the cavity are also quantized in the form of
quanta (what we now call photons), each with energy E 5 hf. In his model he ex-
plained the processes by which atoms can emit and absorb photons and how the
atoms can be in equilibrium with the emitted and absorbed light.

Maximum Value. The wavelength lmax at which the S(l) is maximum (for a
given temperature T) can be found by taking the first derivative of Eq. 38-14 with
respect to l, setting the derivative to zero, and then solving for the wavelength.
The result is known as Wien’s law:

lmaxT � 2898 mm ? K (at maximum radiancy). (38-15)

For example, in Fig. 38-8 for which T � 2000 K, lmax � 1.5 mm, which is greater
than the long wavelength end of the visible spectrum and is in the infrared
region, as shown. If we increase the temperature, lmax decreases and the peak in
Fig. 38-8 changes shape and shifts more into the visible range.

Radiated Power. If we integrate Eq. 38-14 over all wavelengths (for a given
temperature), we find the power per unit area of a thermal radiator. If we then
multiply by the total surface area A, we find the total radiated power P. We have
already seen the result in Eq. 18-38 (with some changes in notation):

P � s AT 4, (38-16)

where s (� 5.6704 3 1028 W/m2 ? K4) is the Stefan–Boltzmann constant and is
the emissivity of the radiating surface ( � 1 for an ideal blackbody radiator).
Actually, integrating Eq. 38-14 over all wavelengths is difficult. However, for a
given temperature T, wavelength l, and wavelength range 
l that is small rela-
tive to l, we can approximate the power in that range by simply evaluating
S(l)A 
l.

�
�

�
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38-5 ELECTRONS AND MATTER WAVES 

After reading this module, you should be able to . . .

38.21 Identify that electrons (and protons and all other
elementary particles) are matter waves.

38.22 For both relativistic and nonrelativistic particles, apply
the relationships between the de Broglie wavelength,
momentum, speed, and kinetic energy.

38.23 Describe the double-slit interference pattern obtained
with particles such as electrons.

38.24 Apply the optical two-slit equations (Module 35-2) 
and diffraction equations (Module 36-1) to matter
waves.

Learning Objectives

● A moving particle such as an electron can be described as
a matter wave.

● The wavelength associated with the matter wave is the
particle’s de Broglie wavelength l � h/p, where p is the
particle’s momentum.

● Particle: When an electron interacts with matter, the inter-
action is particle-like, occurring at a point and transferring
energy and momentum.

● Wave: When an electron is in transit, we interpret it as
being a probability wave.

Key Ideas
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Electrons and Matter Waves
In 1924, French physicist Louis de Broglie made the following appeal to sym-
metry:A beam of light is a wave, but it transfers energy and momentum to matter
only at points, via photons. Why can’t a beam of particles have the same proper-
ties? That is, why can’t we think of a moving electron—or any other particle—as
a matter wave that transfers energy and momentum to other matter at points?

In particular, de Broglie suggested that Eq. 38-7 ( p � h/l) might apply not
only to photons but also to electrons. We used that equation in Module 38-3 to
assign a momentum p to a photon of light with wavelength l. We now use it, in
the form

(de Broglie wavelength), (38-17)

to assign a wavelength l to a particle with momentum of magnitude p. The
wavelength calculated from Eq. 38-17 is called the de Broglie wavelength of the
moving particle. De Broglie’s prediction of the existence of matter waves was
first verified experimentally in 1927, by C. J. Davisson and L. H. Germer of the
Bell Telephone Laboratories and by George P. Thomson of the University of
Aberdeen in Scotland.

Figure 38-9 shows photographic proof of matter waves in a more recent
experiment. In the experiment, an interference pattern was built up when

l �
h
p

(a) (b)

(c)

(e)

(d)

Central Research Laboratory, Hitachi, Ltd., Kokubinju, Tokyo; 
H. Ezawa, Department of Physics, Gakushuin University, 
Mejiro, Tokyo

Figure 38-9 Photographs showing the buildup of an inter-
ference pattern by a beam of electrons in a two-slit in-
terference experiment like that of Fig. 38-6. Matter
waves, like light waves, are probability waves. The ap-
proximate numbers of electrons involved are (a) 7, (b)
100, (c) 3000, (d) 20 000, and (e) 70 000.
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Figure 38-10 (a) An experimental arrangement used to
demonstrate, by diffraction techniques, the wave-like
character of the incident beam. Photographs of the diffrac-
tion patterns when the incident beam is (b) an x-ray beam
(light wave) and (c) an electron beam (matter wave).
Note that the two patterns are geometrically identical to
each other.

electrons were sent, one by one, through a double-slit apparatus.
The apparatus was like the ones we have previously used to demon-
strate optical interference, except that the viewing screen was similar
to an old-fashioned television screen. When an electron hit the
screen, it caused a flash of light whose position was recorded.

The first several electrons (top two photos) revealed nothing
interesting and seemingly hit the screen at random points.
However, after many thousands of electrons were sent through the
apparatus, a pattern appeared on the screen, revealing fringes
where many electrons had hit the screen and fringes where few
had hit the screen.The pattern is exactly what we would expect for
wave interference. Thus, each electron passed through the appara-
tus as a matter wave—the portion of the matter wave that trav-
eled through one slit interfered with the portion that traveled
through the other slit.That interference then determined the prob-
ability that the electron would materialize at a given point on the
screen, hitting the screen there. Many electrons materialized in re-
gions corresponding to bright fringes in optical interference, and
few electrons materialized in regions corresponding to dark
fringes.

Similar interference has been demonstrated with protons,
neutrons, and various atoms. In 1994, it was demonstrated with
iodine molecules I2, which are not only 500 000 times more mas-
sive than electrons but far more complex. In 1999, it was demon-
strated with the even more complex fullerenes (or buckyballs) C60

and C70. (Fullerenes are molecules of carbon atoms that are
arranged in a structure resembling a soccer ball, 60 carbon atoms
in C60 and 70 carbon atoms in C70.) Apparently, such small objects
as electrons, protons, atoms, and molecules travel as matter waves.
However, as we consider larger and more complex objects, there
must come a point at which we are no longer justified in consider-
ing the wave nature of an object. At that point, we are back in our
familiar nonquantum world, with the physics of earlier chapters of
this book. In short, an electron is a matter wave and can undergo
interference with itself, but a cat is not a matter wave and cannot
undergo interference with itself (which must be a relief to cats).

The wave nature of particles and atoms is now taken for
granted in many scientific and engineering fields. For example,
electron diffraction and neutron diffraction are used to study the
atomic structures of solids and liquids, and electron diffraction is
used to study the atomic features of surfaces on solids.

Figure 38-10a shows an arrangement that can be used to
demonstrate the scattering of either x rays or electrons by crystals.
A beam of one or the other is directed onto a target consisting of a
layer of tiny aluminum crystals. The x rays have a certain wave-
length l. The electrons are given enough energy so that their de
Broglie wavelength is the same wavelength l. The scatter of x rays
or electrons by the crystals produces a circular interference pat-
tern on a photographic film. Figure 38-10b shows the pattern for
the scatter of x rays, and Fig. 38-10c shows the pattern for the scat-
ter of electrons. The patterns are the same—both x rays and elec-
trons are waves.

Waves and Particles
Figures 38-9 and 38-10 are convincing evidence of the wave nature
of matter, but we have countless experiments that suggest its parti-

Incident beam
(x rays or electrons)

Target
(aluminum

crystals)

Circular
diffraction
ring

Photographic
film

(a)

(b)

(c)

Parts (b) and (c) from PSSC film “Matter Waves,” courtesy Education 
Development Center, Newton, Massachusetts



cle nature. Figure 38-11, for example, shows the tracks of particles (rather than
waves) revealed in a bubble chamber. When a charged particle passes through
the liquid hydrogen that fills such a chamber, the particle causes the liquid to va-
porize along the particle’s path. A series of bubbles thus marks the path, which is
usually curved due to a magnetic field set up perpendicular to the plane of the
chamber.

In Fig. 38-11, a gamma ray left no track when it entered at the top because
the ray is electrically neutral and thus caused no vapor bubbles as it passed
through the liquid hydrogen. However, it collided with one of the hydrogen
atoms, kicking an electron out of that atom; the curved path taken by the electron
to the bottom of the photograph has been color coded green. Simultaneous with
the collision, the gamma ray transformed into an electron and a positron in a pair
production event (see Eq. 21-15). Those two particles then moved in tight spirals
(color coded green for the electron and red for the positron) as they gradually
lost energy in repeated collisions with hydrogen atoms. Surely these tracks are
evidence of the particle nature of the electron and positron, but is there any evi-
dence of waves in Fig. 38-11?

To simplify the situation, let us turn off the magnetic field so that the strings of
bubbles will be straight.We can view each bubble as a detection point for the electron.
Matter waves traveling between detection points such as I and F in Fig. 38-12 will
explore all possible paths,a few of which are shown.

In general, for every path connecting I and F (except the straight-line path),
there will be a neighboring path such that matter waves following the two paths
cancel each other by interference. For the straight-line path joining I and F, mat-
ter waves traversing all neighboring paths reinforce the wave following the direct
path. You can think of the bubbles that form the track as a series of detection
points at which the matter wave undergoes constructive interference.

116938-5 ELECTRONS AND MATTER WAVES

Lawrence Berkeley Laboratory/Science Photo Library/
Photo Researchers, Inc.

Figure 38-11 A bubble-chamber image show-
ing where two electrons (paths color coded
green) and one positron (red) moved after a
gamma ray entered the chamber.

Checkpoint 4
For an electron and a proton that have the same (a) kinetic energy, (b) momentum, or
(c) speed, which particle has the shorter de Broglie wavelength?

momentum equation, finding 

From Eq. 38-17 then

(Answer)

This wavelength associated with the electron is about the
size of a typical atom. If we increase the electron’s kinetic
energy, the wavelength becomes even smaller.

� 1.12 � 10 �10 m � 112 pm.

�
6.63 � 10 �34 J �s

5.91 � 10 �24 kg �m/s

� �
h
p

� 5.91 � 10 �24 kg �m/s.

� 2(2)(9.11 � 10 �31 kg)(120 eV)(1.60 � 10 �19 J/eV)

p � 22mK

Sample Problem 38.04 de Broglie wavelength of an electron

What is the de Broglie wavelength of an electron with a
kinetic energy of 120 eV?

KEY IDEAS

(1) We can find the electron’s de Broglie wavelength l
from Eq. 38-17 (l � h/p) if we first find the magnitude of
its momentum p. (2) We find p from the given kinetic en-
ergy K of the electron. That kinetic energy is much less
than the rest energy of an electron (0.511 MeV, from
Table 37-3). Thus, we can get by with the classical approxi-
mations for momentum p (� mv) and kinetic energy

.

Calculations: We are given the value of the kinetic energy.
So, in order to use the de Broglie relation, we first solve the
kinetic energy equation for v and then substitute into the

K (� 1
2 mv2)

Additional examples, video, and practice available at WileyPLUS

I F

Figure 38-12 A few of the many paths that
connect two particle detection points I and
F. Only matter waves that follow paths
close to the straight line between these
points interfere constructively. For all other
paths, the waves following any pair of
neighboring paths interfere destructively.



Schrödinger’s Equation
A simple traveling wave of any kind, be it a wave on a string, a sound wave, or a
light wave, is described in terms of some quantity that varies in a wave-like
fashion. For light waves, for example, this quantity is (x, y, z, t), the electric field
component of the wave. Its observed value at any point depends on the location
of that point and on the time at which the observation is made.

What varying quantity should we use to describe a matter wave? We should
expect this quantity, which we call the wave function �(x, y, z, t), to be more
complicated than the corresponding quantity for a light wave because a matter
wave, in addition to energy and momentum, transports mass and (often) electric
charge. It turns out that �, the uppercase Greek letter psi, usually represents a
function that is complex in the mathematical sense; that is, we can always write its
values in the form a � ib, in which a and b are real numbers and i 2 � �1.

In all the situations you will meet here, the space and time variables can be
grouped separately and � can be written in the form

�(x, y, z, t) � c(x, y, z) e�ivt, (38-18)

where v (� 2pf ) is the angular frequency of the matter wave. Note that c, the
lowercase Greek letter psi, represents only the space-dependent part of the
complete, time-dependent wave function �. We shall focus on c. Two questions
arise: What is meant by the wave function? How do we find it?

What does the wave function mean? It has to do with the fact that a matter
wave, like a light wave, is a probability wave. Suppose that a matter wave
reaches a particle detector that is small; then the probability that a particle will
be detected in a specified time interval is proportional to |c |2, where |c | is the
absolute value of the wave function at the location of the detector. Although c

E
:
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38-6 SCHRÖDINGER’S EQUATION

After reading this module, you should be able to . . .

38.25 Identify that matter waves are described by
Schrödinger’s equation.

38.26 For a nonrelativistic particle moving along an x axis,
write the Schrödinger equation and its general solution for
the spatial part of the wave function.

38.27 For a nonrelativistic particle, apply the relationships
between angular wave number, energy, potential energy,

kinetic energy, momentum, and de Broglie wavelength.
38.28 Given the spatial solution to the Schrödinger equa-

tion, write the full solution by including the time
dependence.

38.29 Given a complex number, find the complex conjugate.
38.30 Given a wave function, calculate the probability

density.

Learning Objectives

● A matter wave (such as for an electron) is described by a wave
function � (x, y, z, t), which can be separated into a space-
dependent part c (x, y, z) and a time-dependent part e�ivt, where
v is the angular frequency associated with the wave.
● For a nonrelativistic particle of mass m traveling along an x axis,
with energy E and potential energy U, the space-dependent part
can be found by solving Schrödinger’s equation,

where k is the angular wave number, which is related to the de

d2c

dx2 � k2c � 0,

Broglie wavelength l, the momentum p, and the kinetic en-
ergy E 2 U by

● A particle does not have a specific location until its location
is actually measured.

● The probability of detecting a particle in a small volume
centered on a given point is proportional to the probability
density of the matter wave at that point.�c �2

k �
2p

l
�

2pp
h

�
2p22m(E � U)

h
.

Key Ideas
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The probability of detecting a particle in a small volume centered on a given point
in a matter wave is proportional to the value of |c |2 at that point.

Because c is usually a complex quantity, we find the square of its absolute value
by multiplying c by c*, the complex conjugate of c. (To find c* we replace the
imaginary number i in c with �i, wherever it occurs.)

How do we find the wave function? Sound waves and waves on strings are
described by the equations of Newtonian mechanics. Light waves are described
by Maxwell’s equations. Matter waves for nonrelativistic particles are described
by Schrödinger’s equation, advanced in 1926 by Austrian physicist Erwin
Schrödinger.

Many of the situations that we shall discuss involve a particle traveling in the
x direction through a region in which forces acting on the particle cause it to have
a potential energy U(x). In this special case, Schrödinger’s equation reduces to

(38-19)

in which E is the total mechanical energy of the moving particle. (We do not
consider mass energy in this nonrelativistic equation.) We cannot derive
Schrödinger’s equation from more basic principles; it is the basic principle.

We can simplify the expression of Schrödinger’s equation by rewriting the
second term. First, note that E � U(x) is the kinetic energy of the particle. Let’s
assume that the potential energy is uniform and constant (it might even be zero).
Because the particle is nonrelativistic, we can write the kinetic energy classically
in terms of speed v and then momentum p, and then we can introduce quantum
theory by using the de Broglie wavelength:

E � U � � � . (38-20)

By putting 2p in both the numerator and denominator of the squared term, we
can rewrite the kinetic energy in terms of the angular wave number k � 2p/l:

. (38-21)

Substituting this into Eq. 38-19 leads to

(Schrödinger’s equation, uniform U), (38-22)

where, from Eq. 38-21, the angular wave number is 

(angular wave number). (38-23)

The general solution of Eq. 38-22 is

c (x) � Aeikx � Be�ikx, (38-24)

in which A and B are constants. You can show that this equation is indeed a solu-
tion of Eq. 38-22 by substituting it and its second derivative into that equation
and noting that an identity results.

k �
2p22m(E � U)

h

d2c

dx2 � k2c � 0

E � U �
1

2m � kh
2p �

2

� h
l �

21
2m

p2

2m
1
2

mv2

(Schrödinger’s equation,
one-dimensional motion),

d2c

dx2 �
8p 2m

h2  [E � U(x)]c � 0

is usually a complex quantity, |c |2 is always both real and positive. It is, then,
|c |2, which we call the probability density, and not c, that has physical meaning.
Speaking loosely, the meaning is this:



Equation 38-24 is the time-independent solution of Schrödinger’s equation.
We can assume it is the spatial part of the wave function at some initial time t � 0.
Given values for E and U, we could determine the coefficients A and B to see
how the wave function looks at t � 0. Then, if we wanted to see how the wave
function evolves with time, we follow the guide of Eq. 38-18 and multiply 
Eq. 38-24 by the time dependence e�ivt:

�(x, t) � c (x)e�ivt � (Aeikx � Be�ikx)e�ivt

� Aei(kx�vt) � Be�i(kx�vt). (38-25)

Here, however, we will not go that far.

Finding the Probability Density |c|2

In Module 16-1 we saw that any function F of the form F(kx 	 vt) represents a
traveling wave. In Chapter 16, the functions were sinusoidal (sines and cosines);
here they are exponentials. If we wanted, we could always switch between the
two forms by using the Euler formula: For a general argument u,

eiu � cos u � i sin u and e–iu � cosu � i sin u. (38-26)

The first term on the right in Eq. 38-25 represents a wave traveling in the posi-
tive direction of x, and the second term represents a wave traveling in the negative
direction of x. Let’s evaluate the probability density |c 2| for a particle with only posi-
tive motion. We eliminate the negative motion by setting B to zero, and then the 
solution at t � 0 becomes

c (x) � Aeikx. (38-27)

To calculate the probability density, we take the square of the absolute value:

|c |2 � |Aeikx|2 � A2|eikx|2.
Because

|eikx|2 � (eikx)(eikx)* � eikxe�ikx � eikx�ikx � e0 � 1,

we get
|c |2 � A2(1)2 � A2.

Now here is the point: For the condition we have set up (uniform potential en-
ergy U, including U � 0 for a free particle), the probability density is a constant
(the same value A2) for any point along the x axis, as shown in the plot of Fig.
38-13. That means that if we make a measurement to locate the particle, the loca-
tion could turn out to be at any x value. Thus, we cannot say that the particle is
moving along the axis in a classical way as a car moves along a street. In fact, the
particle does not have a location until we measure it.
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Probability
   (x)⎥2ψ

0
x

density ⎥

Figure 38-13 A plot of the probability
density |c|2 for a particle moving in the
positive x direction with a uniform poten-
tial energy. Since |c |2 has the same constant
value for all values of x, the particle has the
same probability of detection at all points
along its path.

38-7 HEISENBERG’S UNCERTAINTY PRINCIPLE

After reading this module, you should be able to . . .

38.31 Apply the Heisenberg uncertainty principle for, say, an electron moving along the x axis and explain its meaning.

Learning Objective

● The probabilistic nature of quantum physics places an
important limitation on detecting a particle’s position and
momentum. That is, it is not possible to measure the position

and the momentum of a particle simultaneously with
unlimited precision. The uncertainties in the components of

p:r:

these quantities are given by 


z �
pz � �.


y �
py � �


x �
px � �

Key Idea



Heisenberg’s Uncertainty Principle
Our inability to predict the position of a particle with a uniform electric potential
energy, as indicated by Fig. 38-13, is our first example of Heisenberg’s uncertainty
principle, proposed in 1927 by German physicist Werner Heisenberg. It states
that measured values cannot be assigned to the position and the momentum 
of a particle simultaneously with unlimited precision.

In terms of (called “h-bar”), the principle tells us

(Heisenberg’s uncertainty principle). (38-28)

Here 
x and 
px represent the intrinsic uncertainties in the measurements of the
x components of and , with parallel meanings for the y and z terms. Even with
the best measuring instruments, each product of a position uncertainty and a mo-
mentum uncertainty in Eq. 38-28 will be greater than , never less.

Here we shall not derive the uncertainty relationships but only apply them.
They are due to the fact that electrons and other particles are matter waves and
that repeated measurements of their positions and momenta involve probabili-
ties, not certainties. In the statistics of such measurements, we can view, say, 
x
and 
px as the spread (actually, the standard deviations) in the measurements.

We can also justify them with a physical (though highly simplified) argument:
In earlier chapters we took for granted our ability to detect and measure location
and motion, such as a car moving down a street or a pool ball rolling across a
table. We could locate a moving object by watching it—that is, by intercepting
light scattered by the object. That scattering did not alter the object’s motion. In
quantum physics, however, the act of detection in itself alters the location and
motion. The more precisely we wish to determine the location of, say, an electron
moving along an x axis (by using light or by any other means), the more we alter
the electron’s momentum and thus become less certain of the momentum. That
is, by decreasing 
x, we necessarily increase 
px. Vice versa, if we determine the
momentum very precisely (less 
px), we become less certain of where the elec-
tron will be located (we increase 
x).

That latter situation is what we found in Fig 38-13.We had an electron with a cer-
tain value of k, which, by the de Broglie relationship, means a certain momentum px.
Thus, 
px � 0. By Eq. 38-28, that means that 
x � . If we then set up an experiment
to detect the electron, it could show up anywhere between x � � and x � � .

You might push back on the argument: Couldn’t we very precisely measure
px and then next very precisely measure x wherever the electron happens to show
up? Doesn’t that mean that we have measured both px and x simultaneously and
very precisely? No, the flaw is that although the first measurement can give us a
precise value for px, the second measurement necessarily alters that value.
Indeed, if the second measurement really does give us a precise value for x, we
then have no idea what the value of px is.







�

p:r:


z �
pz � �


y �
py � �


x �
px � �

� � h/2�

p:r:
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KEY IDEA

The minimum uncertainty allowed by quantum theory is
given by Heisenberg’s uncertainty principle in Eq. 38-28.
We need only consider components along the x axis be-
cause we have motion only along that axis and want the

Sample Problem 38.05 Uncertainty principle: position and momentum

Assume that an electron is moving along an x axis and that
you measure its speed to be 2.05 � 106 m/s, which can be
known with a precision of 0.50%. What is the minimum
uncertainty (as allowed by the uncertainty principle in
quantum theory) with which you can simultaneously meas-
ure the position of the electron along the x axis?



Reflection from a Potential Step
Here is a quick taste of what you would see in more advanced quantum physics.
In Fig. 38-14, we send a beam of a great many nonrelativistic electrons, each of to-
tal energy E, along an x axis through a narrow tube. Initially they are in region 1
where their potential energy is U � 0, but at x � 0 they encounter a region with a
negative electric potential Vb. The transition is called a potential step or potential
energy step. The step is said to have a height Ub, which is the potential energy an
electron will have once it passes through the boundary at x � 0, as plotted in
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the uncertainty 
px in the momentum must be 0.50% of the
momentum:

Then the uncertainty principle gives us

(Answer)

which is about 100 atomic diameters.

� 1.13 � 10�8 m � 11 nm,


x �
�


px
�

(6.63 � 10 �34 J �s)/2p

9.35 � 10 �27 kg �m/s

� 9.35 � 10 �27 kg �m/s.

� (0.0050)(1.87 � 10 �24 kg �m/s)


px � (0.0050)px

uncertainty x in location along that axis. Since we want
the minimum allowed uncertainty, we use the equality
instead of the inequality in the x-axis part of Eq. 38-28,
writing

Calculations: To evaluate the uncertainty 
px in the momen-
tum, we must first evaluate the momentum component px.
Because the electron’s speed vx is much less than the speed of
light c, we can evaluate px with the classical expression for mo-
mentum instead of using a relativistic expression.We find

The uncertainty in the speed is given as 0.50% of the
measured speed. Because px depends directly on speed,

� 1.87 � 10 �24 kg �m/s.

px � mvx � (9.11 � 10 �31 kg)(2.05 � 10 6 m/s)


x �
px � �.




Additional examples, video, and practice available at WileyPLUS

38-8 REFLECTION FROM A POTENTIAL STEP

After reading this module, you should be able to . . .

38.32 Write the general wave function for Schrödinger’s
equation for an electron in a region of constant (including
zero) potential energy.

38.33 With a sketch, identify a potential step for an electron,
indicating the barrier height Ub.

38.34 For electron wave functions in two adjacent regions,
determine the coefficients (probability amplitudes) by
matching values and slopes at the boundary.

38.35 Determine the reflection and transmission coefficients
for electrons incident on a potential step (or potential

energy step), where the incident electrons each have zero
potential energy U � 0 and a mechanical energy E greater
than the step height Ub.

38.36 Identify that because electrons are matter waves, they
might reflect from a potential step even when they have
more than enough energy to pass through the step.

38.37 Interpret the reflection and transmission coefficients in
terms of the probability of an electron reflecting or passing
through the boundary and also in terms of the average num-
ber of electrons out of the total number shot at the barrier.

Learning Objectives

● A particle can reflect from a boundary at which its 
potential energy changes even when classically it would not
reflect.

● The reflection coefficient R gives the probability of reflec-
tion of an individual particle at the boundary.

● For a beam of a great many particles, R gives the average
fraction that will undergo reflection.
● The transmission coefficient T that gives the probability of
transmission through the boundary is

T � 1 2 R.

Key Ideas

x

x = 0

Vb < 0V = 0

Can the electron be
reflected by the region 
of negative potential?

Figure 38-14 The elements of a tube in which
an electron (the dot) approaches a region
with a negative electric potential Vb.



Fig. 38-15 for potential energy as a function of position x. (Recall that U � qV.
Here the potential Vb is negative, the electron’s charge q is negative, and so the
potential energy Ub is positive.)

Let’s consider the situation where E > Ub. Classically, the electrons should all
pass through the boundary—they certainly have enough energy. Indeed, we dis-
cussed such motion extensively in Chapters 22 through 24, where electrons
moved into electric potentials and had changes in potential energy and kinetic
energy. We simply conserved mechanical energy and noted that if the potential
energy increases, the kinetic energy decreases by the same amount, and the speed
thus also decreases.What we took for granted is that, because the electron energy
E is greater than the potential energy Ub, all the electrons pass through the
boundary. However, if we apply Schrödinger’s equation, we find a big surprise—
because electrons are matter waves, not tiny solid (classical) particles, some of
them actually reflect from the boundary. Let’s determine what fraction R of the
incoming electrons reflect.

In region 1, where U is zero, Eq. 38-23 tells us that the angular wave number is

(38-29)

and Eq. 38-24 tells us that the general space-dependent solution to Schrodinger’s
equation is

c1(x) � Aeikx � Be�ikx (region 1). (38-30)

In region 2, where the potential energy is Ub, the angular wave number is

(38-31)

and the general solution, with this angular wave number, is

c2(x) � � De�ik x (region 2). (38-32)

We use coefficients C and D because they are not the same as the coefficients in
region 1.

The terms with positive arguments in an exponential represent particles
moving in the �x direction; those with negative arguments represent particles
moving in the �x direction. However, because there is no electron source off to
the right in Figs. 38-14 and 38-15, there can be no electrons moving to the left in
region 2. So, we set D � 0, and the solution in region 2 is then simply

c2(x) � (region 2). (38-33)

Next, we must make sure that our solutions are “well behaved” at the
boundary. That is, they must be consistent with each other at x � 0, both in
value and in slope. These conditions are said to be boundary conditions. We first
substitute x � 0 into Eqs. 38-30 and 38-33 for the wave functions and then set the
results equal to each other.This gives us our first boundary condition:

A � B � C (matching of values). (38-34)

The functions have the same value at x � 0 provided the coefficients have this
relationship.

Next, we take a derivative of Eq. 38-30 with respect to x and then substitute
in x � 0. Then we take a derivative of Eq. 38-33 with respect to x and then substi-
tute in x � 0. And then we set the two results equal to each other (one slope
equal to the other slope at x � 0).We find

Ak � Bk � Ckb (matching of slopes). (38-35)

The slopes at x � 0 are equal provided that this relationship of coefficients and
angular wave numbers is satisfied.

Ceikbx

bCeikbx

kb �
2p22m(E � Ub)

h
,

k �
2p22mE

h
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x

Ub

0

E

Energy

Classically, the electron has 
too much energy to be 
reflected by the potential step.

Electron

Figure 38-15 An energy diagram containing
two plots for the situation of Fig. 38-14: (1)
The electron’s mechanical energy E is plot-
ted. (2) The electron’s electric potential en-
ergy U is plotted as a function of the elec-
tron’s position x.The nonzero part of the
plot (the potential step) has height Ub.



We want to find the probability that electrons reflect from the barrier. Recall
that probability density is proportional to |c|2. Here let’s relate the probability den-
sity in the reflection (which is proportional to |B|2) to the probability density in the
incident beam (which is proportional to |A|2) by defining a reflection coefficient R:

(38-36)

This R gives the probability of reflection and thus is also the fraction of the in-
coming electrons that reflect. The transmission coefficient (the probability of
transmission) is

T � 1 � R. (38-37)

For example, suppose R � 0.010.Then if we send 10,000 electrons toward the
barrier, we find that about 100 are reflected. However, we could never guess
which 100 would be reflected. We have only the probability. The best we can say
about any one electron is that it has a 1.0% chance of being reflected and a 99%
chance of being transmitted.The wave nature of the electron does not allow us to
be any more precise than that.

To evaluate R for any given values of E and Ub, we first solve Eqs. 38-34 and
38-35 for B in terms of A by eliminating C and then substitute the result into
Eq. 38-36. Finally, using Eqs. 38-29 and 38-31, we substitute values for k and kb.
The surprise is that R is not simply zero (and T is not simply 1) as we assumed
classically in earlier chapters.

R �
� B �2

� A �2
.
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38-9 TUNNELING THROUGH A POTENTIAL BARRIER

After reading this module, you should be able to . . .

38.38 With a sketch, identify a potential barrier for an elec-
tron, indicating the barrier height Ub and thickness L.

38.39 Identify the energy argument about what is classically
required of a particle’s energy if the particle is to pass
through a potential barrier.

38.40 Identify the transmission coefficient for tunneling.
38.41 For tunneling, calculate the transmission coefficient T

in terms of the particle’s energy E and mass m and the
barrier’s height Ub and thickness L.

38.42 Interpret a transmission coefficient in terms of the
probability of any one particle tunneling through a barrier
and also in terms of the average fraction of many particles
tunneling through the barrier.

38.43 In a tunneling setup, describe the probability density in
front of the barrier, within the barrier, and then beyond the
barrier.

38.44 Describe how a scanning tunneling microscope
works.

Learning Objectives

● A potential energy barrier is a region where a traveling parti-
cle will have an increased potential energy Ub.

● The particle can pass through the barrier if its total energy
E � Ub.

● Classically, it cannot pass through it if E � Ub, but in quan-
tum physics it can, an effect called tunneling.

● For a particle with mass m and a barrier of thickness L, the
transmission coefficient is

T e�2bL,

where .b � A
8p 2m(Ub � E)

h2

�

Key Ideas

Tunneling Through a Potential Barrier
Let’s replace the potential step of Fig. 38-14 with a potential barrier (or potential
energy barrier), which is a region of thickness L (the barrier thickness or length)
where the electric potential is Vb (� 0) and the barrier height is Ub (� qV), as
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shown in Fig. 38-16. To the right of the barrier is region 3 with V � 0. As before,
we’ll send a beam of nonrelativistic electrons toward the barrier, each with en-
ergy E. If we again consider E � Ub, we have a more complicated situation than
our previous potential step because now electrons can possibly reflect from two
boundaries, at x � 0 and x � L.

Instead of sorting that out, let’s consider the situation where E � Ub—that is,
where the mechanical energy is less than the potential energy that would be
demanded of an electron in region 2. Such a demand would require that the
electron’s kinetic energy (� E � Ub) be negative in region 2, which is, of course,
simply absurd because kinetic energies must always be positive (nothing in the
expression mv2 can be negative). Therefore, region 2 is classically forbidden to
an electron with E Ub.

Tunneling. However, because an electron is a matter wave, it actually has a
finite probability of leaking (or, better, tunneling) through the barrier and materi-
alizing on the other side. Once past the barrier, it again has its full mechanical
energy E as though nothing (strange or otherwise) has happened in the region
0 � x � L. Figure 38-17 shows the potential barrier and an approaching electron,
with an energy less than the barrier height.We are interested in the probability of
the electron appearing on the other side of the barrier. Thus, we want the trans-
mission coefficient T.

To find an expression for T we would in principle follow the procedure for
finding R for a potential step.We would solve Schrödinger’s equation for the gen-
eral solutions in each of three regions in Fig. 38-16.We would discard the region-3
solution for a wave traveling in the �x direction (there is no electron source off
to the right).Then we would determine the coefficients in terms of the coefficient
A of the incident electrons by applying the boundary conditions—that is, by
matching the values and slopes of the wave functions at the two boundaries.
Finally, we would determine the relative probability density in region 3 in terms
of the incident probability density. However, because all this requires a lot of
mathematical manipulation, here we shall just examine the general results.

Figure 38-18 shows a plot of the probability densities in the three regions. The
oscillating curve to the left of the barrier (for x � 0) is a combination of the inci-
dent matter wave and the reflected matter wave (which has a smaller amplitude
than the incident wave). The oscillations occur because these two waves, traveling
in opposite directions, interfere with each other, setting up a standing wave pattern.

Within the barrier (for 0 � x � L) the probability density decreases exponentially
with x.However, if L is small, the probability density is not quite zero at x � L.

To the right of the barrier (for x � L), the probability density plot describes a
transmitted (through the barrier) wave with low but constant amplitude. Thus,
the electron can be detected in this region but with a relatively small probability.
(Compare this part of the figure with Fig. 38-13.)

As we did with a step potential, we can assign a transmission coefficient T to
the incident matter wave and the barrier. This coefficient gives the probability
with which an approaching electron will be transmitted through the barrier—
that is, that tunneling will occur. As an example, if T � 0.020, then of every 1000
electrons fired at the barrier, 20 (on average) will tunnel through it and 980 will be
reflected.The transmission coefficient T is approximately

T � e�2bL, (38-38)

in which (38-39)

and e is the exponential function. Because of the exponential form of Eq. 38-38,
the value of T is very sensitive to the three variables on which it depends: particle
mass m, barrier thickness L, and energy difference Ub � E. (Because we do not
include relativistic effects here, E does not include mass energy.)

b � A
8� 2m(Ub � E)

h2 ,

�

1
2

x

Electron

Ub

L0

E

Energy

Classically, the electron
lacks the energy to pass
through the barrier region.

Figure 38-17 An energy diagram containing
two plots for the situation of Fig. 38-16:
(1) The electron’s mechanical energy E is
plotted when the electron is at any coordi-
nate x � 0. (2) The electron’s electric po-
tential energy U is plotted as a function of
the electron’s position x, assuming that the
electron can reach any value of x. The
nonzero part of the plot (the potential
barrier) has height Ub and thickness L.

x
0 L

Probability
   (x)⎥2ψdensity ⎥

Figure 38-18 A plot of the probability density
|c|2 of the electron matter wave for the
situation of Fig. 38-17. The value of |c|2 is
nonzero to the right of the potential barrier.

x

x = 0 x = L

Vb < 0V = 0 V = 0

L

Can the electron pass
through the region of 
negative potential?

Figure 38-16 The elements of a narrow tube
in which an electron (the dot) approaches a
negative electric potential Vb in the region
x � 0 to x � L.
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Barrier tunneling finds many applications in technology, including the tunnel
diode, in which a flow of electrons produced by tunneling can be rapidly turned
on or off by electronically controlling the barrier height. The 1973 Nobel Prize in
physics was shared by three “tunnelers,” Leo Esaki (for tunneling in semiconduc-
tors), Ivar Giaever (for tunneling in superconductors), and Brian Josephson (for
the Josephson junction, a rapid quantum switching device based on tunneling).
The 1986 Nobel Prize was awarded to Gerd Binnig and Heinrich Rohrer for
development of the scanning tunneling microscope.

Checkpoint 5
Is the wavelength of the transmitted wave in Fig. 38-18 larger than, smaller than, or
the same as that of the incident wave?

y

z

x

Quartz
rods

Tip

Surface

Figure 38-19 The essence of a scanning tun-
neling microscope (STM). Three quartz
rods are used to scan a sharply pointed
conducting tip across the surface of inter-
est and to maintain a constant separation
between tip and surface. The tip thus
moves up and down to match the contours
of the surface, and a record of its move-
ment provides information for a computer
to create an image of the surface.

The Scanning Tunneling Microscope (STM)
The size of details that can be seen in an optical microscope is limited by the wave-
length of the light the microscope uses (about 300 nm for ultraviolet light).The size
of details that are required for images on the atomic scale is far smaller and thus
requires much smaller wavelengths. The waves used are electron matter waves,
but they do not scatter from the surface being examined the way waves do in an 
optical microscope. Instead, the images we see are created by electrons tunneling
through potential barriers at the tip of a scanning tunneling microscope (STM).

Figure 38-19 shows the heart of the scanning tunneling microscope. A fine
metallic tip, mounted at the intersection of three mutually perpendicular quartz
rods, is placed close to the surface to be examined. A small potential difference,
perhaps only 10 mV, is applied between tip and surface.

Crystalline quartz has an interesting property called piezoelectricity: When an
electric potential difference is applied across a sample of crystalline quartz, the di-
mensions of the sample change slightly. This property is used to change the length
of each of the three rods in Fig. 38-19, smoothly and by tiny amounts, so that the
tip can be scanned back and forth over the surface (in the x and y directions) and
also lowered or raised with respect to the surface (in the z direction).

The space between the surface and the tip forms a potential energy barrier,
much like that plotted in Fig. 38-17. If the tip is close enough to the surface,
electrons from the sample can tunnel through this barrier from the surface to the
tip, forming a tunneling current.

In operation, an electronic feedback arrangement adjusts the vertical
position of the tip to keep the tunneling current constant as the tip is scanned
over the surface. This means that the tip–surface separation also remains con-
stant during the scan. The output of the device is a video display of the varying
vertical position of the tip, hence of the surface contour, as a function of the tip
position in the xy plane.

An STM not only can provide an image of a static surface, it can also be used
to manipulate atoms and molecules on a surface, such as was done in forming
the quantum corral shown in Fig. 39-12 in the next chapter. In a process known as
lateral manipulation, the STM probe is initially brought down near a molecule,
close enough that the molecule is attracted to the probe without actually touch-
ing it. The probe is then moved across the background surface (such as copper),
dragging the molecule with it until the molecule is in the desired location. Then
the probe is backed up away from the molecule, weakening and then eliminating
the attractive force on the molecule. Although the work requires very fine con-
trol, a design can eventually be formed. In Fig. 39-12, an STM probe has been
used to move 48 iron atoms across a copper surface and into a circular corral
14 nm in diameter, in which electrons can be trapped.
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Light Quanta—Photons An electromagnetic wave (light) is
quantized, and its quanta are called photons. For a light wave of
frequency f and wavelength l, the energy E and momentum mag-
nitude p of a photon are

E � hf (photon energy) (38-2)

and (photon momentum). (38-7)

Photoelectric Effect When light of high enough frequency
falls on a clean metal surface, electrons are emitted from the sur-
face by photon–electron interactions within the metal. The gov-
erning relation is

hf � Kmax � �, (38-5)

in which hf is the photon energy, Kmax is the kinetic energy of the
most energetic emitted electrons, and � is the work function of the
target material—that is, the minimum energy an electron must
have if it is to emerge from the surface of the target. If hf is less
than �, electrons are not emitted.

p �
hf
c

�
h
�

Review & Summary

Compton Shift When x rays are scattered by loosely bound
electrons in a target, some of the scattered x rays have a longer
wavelength than do the incident x rays. This Compton shift (in
wavelength) is given by

(38-11)

in which f is the angle at which the x rays are scattered.

Light Waves and Photons When light interacts with matter,
energy and momentum are transferred via photons. When light is
in transit, however, we interpret the light wave as a probability
wave, in which the probability (per unit time) that a photon can be
detected is proportional to , where Em is the amplitude of the
oscillating electric field of the light wave at the detector.

Ideal Blackbody Radiation As a measure of the emission
of thermal radiation by an ideal blackbody radiator, we define the
spectral radiancy S(l) in terms of the emitted intensity per unit
wavelength at a given wavelength l. For the Planck radiation law,

Em
2


� �
h

mc
 (1 � cos �),

and, from Eq. 38-38, the transmission coefficient is

T � e�2bL � e�10.0 � 45 � 10�6. (Answer)

Thus, of every million electrons that strike the barrier, about
45 will tunnel through it, each appearing on the other side
with its original total energy of 5.1 eV. (The transmission
through the barrier does not alter an electron’s energy or
any other property.)

(b) What is the approximate probability that a proton
with the same total energy of 5.1 eV will be transmitted
through the barrier, to appear (and be detectable) on the
other side of the barrier?

Reasoning: The transmission coefficient T (and thus the
probability of transmission) depends on the mass of the
particle. Indeed, because mass m is one of the factors in the
exponent of e in the equation for T, the probability of trans-
mission is very sensitive to the mass of the particle.This time,
the mass is that of a proton (1.67 � 10�27 kg), which is signif-
icantly greater than that of the electron in (a). By substitut-
ing the proton’s mass for the mass in (a) and then continuing
as we did there, we find that T � 10�186. Thus, although the
probability that the proton will be transmitted is not exactly
zero, it is barely more than zero. For even more massive par-
ticles with the same total energy of 5.1 eV, the probability of
transmission is exponentially lower.

Sample Problem 38.06 Barrier tunneling by matter wave

Suppose that the electron in Fig. 38-17, having a total energy
E of 5.1 eV, approaches a barrier of height Ub � 6.8 eV and
thickness L � 750 pm.

(a) What is the approximate probability that the electron
will be transmitted through the barrier, to appear (and be
detectable) on the other side of the barrier?

KEY IDEA

The probability we seek is the transmission coefficient T as
given by Eq. 38-38 (T � e�2bL), where

Calculations: The numerator of the fraction under the
square-root sign is

(8p2)(9.11 � 10�31 kg)(6.8 eV � 5.1 eV)

� (1.60 � 10�19 J/eV) � 1.956 � 10�47 J �kg.

Thus,

The (dimensionless) quantity 2bL is then

2bL � (2)(6.67 � 109 m�1)(750 � 10�12 m) � 10.0

b � A
1.956 � 10 �47 J �kg
(6.63 � 10 �34 J �s)2 � 6.67 � 10 9 m�1.

b � A
8p 2m(Ub � E)

h2 .

Additional examples, video, and practice available at WileyPLUS
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in which atomic oscillators produce the thermal radiation, we have

(38-14)

where h is the Planck constant, k is the Boltzmann constant, and T
is the temperature of the radiating surface. Wien’s law relates the
temperature T of a blackbody radiator and the wavelength lmax at
which the spectral radiancy is maximum:

lmaxT � 2898 mm � K. (38-15)

Matter Waves A moving particle such as an electron or a pro-
ton can be described as a matter wave; its wavelength (called the
de Broglie wavelength) is given by l � h/p, where p is the magni-
tude of the particle’s momentum.

The Wave Function A matter wave is described by its wave
function �(x, y, z, t), which can be separated into a space-
dependent part c(x, y, z) and a time-dependent part e�ivt. For a
particle of mass m moving in the x direction with constant total en-
ergy E through a region in which its potential energy is U(x), c(x)
can be found by solving the simplified Schrödinger equation:

(38-19)

A matter wave, like a light wave, is a probability wave in the sense
that if a particle detector is inserted into the wave, the probability
that the detector will register a particle during any specified time in-
terval is proportional to |c|2, a quantity called the probability density.

For a free particle—that is, a particle for which U(x) � 0—
moving in the x direction, |c|2 has a constant value for all positions
along the x axis.

d2c

dx2 �
8p 2m

h2  [E � U(x)]c � 0.

S(l) �
2pc2h

l5

1
ehc/lkT � 1

,

Heisenberg’s Uncertainty Principle The probabilistic
nature of quantum physics places an important limitation on de-
tecting a particle’s position and momentum. That is, it is not possi-
ble to measure the position and the momentum of a particle si-
multaneously with unlimited precision. The uncertainties in the
components of these quantities are given by

(38-28)

Potential Step This term defines a region where a particle’s
potential energy increases at the expense of its kinetic energy.
According to classical physics, if a particle’s initial kinetic energy
exceeds the potential energy, it should never be reflected by the re-
gion. However, according to quantum physics, there is a reflection
coefficient R that gives a finite probability of reflection.The proba-
bility of transmission is T � 1�R.

Barrier Tunneling According to classical physics, an incident
particle will be reflected from a potential energy barrier whose
height is greater than the particle’s kinetic energy. According to
quantum physics, however, the particle has a finite probability
of tunneling through such a barrier, appearing on the other side
unchanged. The probability that a given particle of mass m and en-
ergy E will tunnel through a barrier of height Ub and thickness L is
given by the transmission coefficient T:

T � e�2bL, (38-38)

where (38-39)b � A
8� 2m(Ub � E)

h2 .


z �
pz � �.


y �
py � �


x �
px � �

p:r:

6 Let K be the kinetic energy that a sta-
tionary free electron gains when a photon
scatters from it.We can plot K versus the an-
gle f at which the photon scatters; see curve
1 in Fig. 38-21. If we switch the target to be a
stationary free proton, does the end point of
the graph shift (a) upward as suggested by
curve 2, (b) downward as suggested by curve
3, or (c) remain the same?

7 In a Compton-shift experiment, light (in
the x-ray range) is scattered in the forward
direction, at f � 0 in Fig. 38-3. What
fraction of the light’s energy does the
electron acquire?

8 Compton scattering. Figure 38-22
gives the Compton shift 
l versus
scattering angle f for three different
stationary target particles. Rank the
particles according to their mass,
greatest first.

9 (a) If you double the kinetic energy of a nonrelativistic particle,
how does its de Broglie wavelength change? (b) What if you dou-
ble the speed of the particle?

1 Photon A has twice the energy of photon B. (a) Is the
momentum of A less than, equal to, or greater than that of B? (b) Is
the wavelength of A less than, equal to, or greater than that of B?

2 In the photoelectric effect (for a given target and a given fre-
quency of the incident light), which of these quantities, if any, de-
pend on the intensity of the incident light beam: (a) the maximum
kinetic energy of the electrons, (b) the maximum photoelectric cur-
rent, (c) the stopping potential, (d) the cutoff frequency?

3 According to the figure for Checkpoint 2, is the maximum
kinetic energy of the ejected electrons greater for a target made of
sodium or of potassium for a given frequency of incident light?

4 Photoelectric effect: Figure 38-20
gives the stopping voltage V versus
the wavelength l of light for three
different materials. Rank the mate-
rials according to their work func-
tion, greatest first.

5 A metal plate is illuminated
with light of a certain frequency.
Which of the following determine whether or not electrons are
ejected: (a) the intensity of the light, (b) how long the plate is ex-
posed to the light, (c) the thermal conductivity of the plate, (d) the
area of the plate, (e) the material of which the plate is made?

Questions

V

λ 
3

2

1

Figure 38-20 Question 4.

1

2

3

Δ λ 

φ 
Figure 38-22 Question 8.

K

180°

3
1

2

φ 

Figure 38-21
Question 6.
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10 Figure 38-23 shows an electron moving (a) opposite an elec-
tric field, (b) in the same direction as an electric field, (c) in the
same direction as a magnetic field, and (d) perpendicular to a
magnetic field. For each situation, is the de Broglie wavelength of
the electron increasing, decreasing, or remaining the same?

gions where uniform electric potentials V have been set up. Rank
the three regions according to the de Broglie wavelength of the
electron there, greatest first.

15 The table gives relative values for three situations for the bar-
rier tunneling experiment of Figs. 38-16 and 38-17. Rank the situa-
tions according to the probability of the electron tunneling
through the barrier, greatest first.

Electron Barrier Barrier
Energy Height Thickness

(a) E 5E L

(b) E 17E L/2

(c) E 2E 2L

16 For three experiments, Fig. 38-25
gives the transmission coefficient T
for electron tunneling through a po-
tential barrier, plotted versus barrier
thickness L. The de Broglie wave-
lengths of the electrons are identical
in the three experiments. The only
difference in the physical setups is
the barrier heights Ub. Rank the
three experiments according to Ub,
greatest first.

V1 = –100 V
V2 = –200 V V3 = +100 V

1 2 3

Figure 38-24 Question 14.

T

L

1
2

3

Figure 38-25 Question 16.

••7 A light detector (your eye) has an area of 2.00 � 10�6 m2 and
absorbs 80% of the incident light, which is at wavelength 500 nm.
The detector faces an isotropic source, 3.00 m from the source. If
the detector absorbs photons at the rate of exactly 4.000 s�1, at
what power does the emitter emit light?

••8 The beam emerging from a 1.5 W argon laser (l � 515 nm)
has a diameter d of 3.0 mm. The beam is focused by a lens system
with an effective focal length fL of 2.5 mm. The focused beam
strikes a totally absorbing screen, where it forms a circular
diffraction pattern whose central disk has a radius R given by
1.22fLl/d. It can be shown that 84% of the incident energy ends up
within this central disk. At what rate are photons absorbed by the
screen in the central disk of the diffraction pattern?

••9 A 100 W sodium lamp (l � 589 nm) radiates energy uni-
formly in all directions. (a) At what rate are photons emitted by the
lamp? (b) At what distance from the lamp will a totally absorbing
screen absorb photons at the rate of 1.00 photon/cm2�s? (c) What
is the photon flux (photons per unit area per unit time) on a small
screen 2.00 m from the lamp?

••10 A satellite in Earth orbit maintains a panel of solar cells
of area 2.60 m2 perpendicular to the direction of the Sun’s light
rays. The intensity of the light at the panel is 1.39 kW/m2. (a) At
what rate does solar energy arrive at the panel? (b) At what rate

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 38-1 The Photon, the Quantum of Light

•1 Monochromatic light (that is, light of a single wavelength) is to
be absorbed by a sheet of photographic film and thus recorded on
the film. Photon absorption will occur if the photon energy equals
or exceeds 0.6 eV, the smallest amount of energy needed to dissoci-
ate an AgBr molecule in the film. (a) What is the greatest
wavelength of light that can be recorded by the film? (b) In what
region of the electromagnetic spectrum is this wavelength located?

•2 How fast must an electron move to have a kinetic energy
equal to the photon energy of sodium light at wavelength 590 nm?

•3 At what rate does the Sun emit photons? For simplicity,
assume that the Sun’s entire emission at the rate of 3.9 � 1026 W is
at the single wavelength of 550 nm.

•4 A helium–neon laser emits red light at wavelength l � 633 nm in
a beam of diameter 3.5 mm and at an energy-emission rate of 5.0 mW.
A detector in the beam’s path totally absorbs the beam. At what rate
per unit area does the detector absorb photons?

•5 The meter was once defined as 1 650 763.73 wavelengths of
the orange light emitted by a source containing krypton-86 atoms.
What is the photon energy of that light?

•6 What is the photon energy for yellow light from a highway
sodium lamp at a wavelength of 589 nm?

Figure 38-23 Question 10.

– – – –

(a) (b) (c) (d)

v v v
v

B BEE

11 At the left in Fig. 38-18, why are the minima nonzero?

12 An electron and a proton have the same kinetic energy.
Which has the greater de Broglie wavelength?

13 The following nonrelativistic particles all have the same ki-
netic energy. Rank them in order of their de Broglie wavelengths,
greatest first: electron, alpha particle, neutron.

14 Figure 38-24 shows an electron moving through several re-
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are solar photons absorbed by the panel? Assume that the solar
radiation is monochromatic, with a wavelength of 550 nm, and
that all the solar radiation striking the panel is absorbed.
(c) How long would it take for a “mole of photons” to be
absorbed by the panel?

••11 An ultraviolet lamp emits light of wavelength
400 nm at the rate of 400 W. An infrared lamp emits light of wave-
length 700 nm, also at the rate of 400 W. (a) Which lamp emits pho-
tons at the greater rate and (b) what is that greater rate?

••12 Under ideal conditions, a visual sensation can occur in the
human visual system if light of wavelength 550 nm is absorbed by
the eye’s retina at a rate as low as 100 photons per second. What
is the corresponding rate at which energy is absorbed by the
retina?

••13 A special kind of lightbulb emits monochromatic light of
wavelength 630 nm. Electrical energy is supplied to it at the rate of
60 W, and the bulb is 93% efficient at converting that energy to
light energy. How many photons are emitted by the bulb during its
lifetime of 730 h?

••14 A light detector has an ab-
sorbing area of m2 and
absorbs 50% of the incident light,
which is at wavelength 600 nm. The
detector faces an isotropic source,
12.0 m from the source. The energy
E emitted by the source versus time
t is given in Fig. 38-26 (Es = 7.2 nJ,
ts = 2.0 s). At what rate are photons
absorbed by the detector?

Module 38-2 The Photoelectric Effect
•15 Light strikes a sodium surface, causing photoelectric
emission. The stopping potential for the ejected electrons is 5.0 V,
and the work function of sodium is 2.2 eV. What is the wavelength
of the incident light?

•16 Find the maximum kinetic energy of electrons ejected from a
certain material if the material’s work function is 2.3 eV and the
frequency of the incident radiation is 3.0 � 1015 Hz.

•17 The work function of tungsten is 4.50 eV. Calculate the speed
of the fastest electrons ejected from a tungsten surface when light
whose photon energy is 5.80 eV shines on the surface.

•18 You wish to pick an element for a photocell that will operate
via the photoelectric effect with visible light. Which of the follow-
ing are suitable (work functions are in parentheses): tantalum (4.2
eV), tungsten (4.5 eV), aluminum (4.2 eV), barium (2.5 eV),
lithium (2.3 eV)?

••19 (a) If the work function for a certain metal is 1.8 eV, what is
the stopping potential for electrons ejected from the metal when
light of wavelength 400 nm shines on the metal? (b) What is the
maximum speed of the ejected electrons?

••20 Suppose the fractional efficiency of a cesium surface (with
work function 1.80 eV) is 1.0 � 10�16; that is, on average one elec-
tron is ejected for every 1016 photons that reach the surface. What
would be the current of electrons ejected from such a surface if it
were illuminated with 600 nm light from a 2.00 mW laser and all
the ejected electrons took part in the charge flow?

••21 X rays with a wavelength of 71 pm are directed onto a
gold foil and eject tightly bound electrons from the gold atoms.The

SSM

2.00 � 10�6

WWWSSM

ejected electrons then move in circular paths of radius r in a region
of uniform magnetic field . For the fastest of the ejected elec-
trons, the product Br is equal to 1.88 � 10�4 T �m. Find (a) the
maximum kinetic energy of those electrons and (b) the work done
in removing them from the gold atoms.

••22 The wavelength associated with the cutoff frequency for
silver is 325 nm. Find the maximum kinetic energy of electrons
ejected from a silver surface by ultraviolet light of wavelength 
254 nm.

••23 Light of wavelength 200 nm shines on an aluminum
surface; 4.20 eV is required to eject an electron. What is the kinetic
energy of (a) the fastest and (b) the slowest ejected electrons? (c)
What is the stopping potential for this situation? (d) What is the
cutoff wavelength for aluminum?

••24 In a photoelectric experiment using a sodium surface, you
find a stopping potential of 1.85 V for a wavelength of 300 nm and
a stopping potential of 0.820 V for a wavelength of 400 nm. From
these data find (a) a value for the Planck constant, (b) the work
function � for sodium, and (c) the cutoff wavelength l0 for sodium.

••25 The stopping potential for electrons emitted from a sur-
face illuminated by light of wavelength 491 nm is 0.710 V. When
the incident wavelength is changed to a new value, the stopping po-
tential is 1.43 V. (a) What is this new wavelength? (b) What is the
work function for the surface?

••26 An orbiting satellite can become charged by the photoelec-
tric effect when sunlight ejects electrons from its outer surface.
Satellites must be designed to minimize such charging because it
can ruin the sensitive microelectronics. Suppose a satellite is
coated with platinum, a metal with a very large work function 
(� � 5.32 eV). Find the longest wavelength of incident sunlight
that can eject an electron from the platinum.

Module 38-3 Photons, Momentum, Compton Scattering,
Light Interference
•27 Light of wavelength 2.40 pm is directed onto a target
containing free electrons. (a) Find the wavelength of light scattered
at 30.0° from the incident direction. (b) Do the same for a scatter-
ing angle of 120°.

•28 (a) In MeV/c, what is the magnitude of the momentum asso-
ciated with a photon having an energy equal to the electron rest
energy? What are the (b) wavelength and (c) frequency of the cor-
responding radiation?

•29 What (a) frequency, (b) photon energy, and (c) photon mo-
mentum magnitude (in keV/c) are associated with x rays having
wavelength 35.0 pm?

••30 What is the maximum wavelength shift for a Compton colli-
sion between a photon and a free proton?

••31 What percentage increase in wavelength leads to a 75% loss
of photon energy in a photon–free electron collision?

••32 X rays of wavelength 0.0100 nm are directed in the positive
direction of an x axis onto a target containing loosely bound elec-
trons. For Compton scattering from one of those electrons, at an
angle of 180°, what are (a) the Compton shift, (b) the correspon-
ding change in photon energy, (c) the kinetic energy of the recoil-
ing electron, and (d) the angle between the positive direction of
the x axis and the electron’s direction of motion?

••33 Calculate the percentage change in photon energy during a
collision like that in Fig. 38-5 for f � 90° and for radiation in

SSM

SSM

B
:

E (nJ)

t (s)

Es

0 ts
Figure 38-26 Problem 14.
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(a) the microwave range, with l � 3.0 cm; (b) the visible range,
with l � 500 nm; (c) the x-ray range, with l � 25 pm; and (d) the
gamma-ray range, with a gamma photon energy of 1.0 MeV.
(e) What are your conclusions about the feasibility of detecting the
Compton shift in these various regions of the electromagnetic
spectrum, judging solely by the criterion of energy loss in a single
photon–electron encounter?

••34 A photon undergoes Compton scattering off a stationary
free electron. The photon scatters at 90.0° from its initial direction;
its initial wavelength is 3.00 � 10�12 m. What is the electron’s 
kinetic energy?

••35 Calculate the Compton wavelength for (a) an electron and
(b) a proton. What is the photon energy for an electromagnetic
wave with a wavelength equal to the Compton wavelength of
(c) the electron and (d) the proton?

••36 Gamma rays of photon energy 0.511 MeV are directed onto
an aluminum target and are scattered in various directions by
loosely bound electrons there. (a) What is the wavelength of the in-
cident gamma rays? (b) What is the wavelength of gamma rays
scattered at 90.0° to the incident beam? (c) What is the photon en-
ergy of the rays scattered in this direction?

••37 Consider a collision between an x-ray photon of initial en-
ergy 50.0 keV and an electron at rest, in which the photon is scat-
tered backward and the electron is knocked forward. (a) What is
the energy of the backscattered photon? (b) What is the kinetic
energy of the electron?

••38 Show that when a photon of energy E is scattered from a
free electron at rest, the maximum kinetic energy of the recoiling
electron is given by

••39 Through what angle must a 200 keV photon be scattered by
a free electron so that the photon loses 10% of its energy?

••40 What is the maximum kinetic energy of electrons knocked
out of a thin copper foil by Compton scattering of an incident beam
of 17.5 keV x rays? Assume the work function is negligible.

••41 What are (a) the Compton shift 
l, (b) the fractional
Compton shift 
l/l, and (c) the change 
E in photon energy for
light of wavelength l � 590 nm scattering from a free, initially sta-
tionary electron if the scattering is at 90° to the direction of the
incident beam? What are (d) 
l, (e) 
l/l, and (f) 
E for 90° scat-
tering for photon energy 50.0 keV (x-ray range)?

Module 38-4 The Birth of Quantum Physics
•42 The Sun is approximately an ideal blackbody radiator with a
surface temperature of 5800 K. (a) Find the wavelength at which its
spectral radiancy is maximum and (b) identify the type of electro-
magnetic wave corresponding to that wavelength. (See Fig. 33-1.)
(c) As we shall discuss in Chapter 44, the universe is approximately
an ideal blackbody radiator with radiation emitted when atoms
first formed. Today the spectral radiancy of that radiation peaks at
a wavelength of 1.06 mm (in the microwave region). What is the
corresponding temperature of the universe?

•43 Just after detonation, the fireball in a nuclear blast is approx-
imately an ideal blackbody radiator with a surface temperature of
about 1.0 � 107 K. (a) Find the wavelength at which the thermal ra-
diation is maximum and (b) identify the type of electromagnetic
wave corresponding to that wavelength. (See Fig. 33-1.) This radia-

Kmax �
E 2

E � mc2/2
.

tion is almost immediately absorbed by the surrounding air mole-
cules, which produces another ideal blackbody radiator with a sur-
face temperature of about 1.0 � 105 K. (c) Find the wavelength at
which the thermal radiation is maximum and (d) identify the type
of electromagnetic wave corresponding to that wavelength.

••44 For the thermal radiation from an ideal blackbody radi-
ator with a surface temperature of 2000 K, let Ic represent the in-
tensity per unit wavelength according to the classical expression
for the spectral radiancy and IP represent the corresponding inten-
sity per unit wavelength according to the Planck expression. What
is the ratio Ic/IP for a wavelength of (a) 400 nm (at the blue end of
the visible spectrum) and (b) 200 mm (in the far infrared)?
(c) Does the classical expression agree with the Planck expression
in the shorter wavelength range or the longer wavelength range?

••45 Assuming that your surface temperature is 98.6°F and that
you are an ideal blackbody radiator (you are close), find (a) the
wavelength at which your spectral radiancy is maximum, (b) the
power at which you emit thermal radiation in a wavelength range
of 1.00 nm at that wavelength, from a surface area of 4.00 cm2, and
(c) the corresponding rate at which you emit photons from that
area. Using a wavelength of 500 nm (in the visible range), (d) recal-
culate the power and (e) the rate of photon emission. (As you have
noticed, you do not visibly glow in the dark.) 

Module 38-5 Electrons and Matter Waves
•46 Calculate the de Broglie wavelength of (a) a 1.00 keV elec-
tron, (b) a 1.00 keV photon, and (c) a 1.00 keV neutron.

•47 In an old-fashioned television set, electrons are acceler-
ated through a potential difference of 25.0 kV. What is the
de Broglie wavelength of such electrons? (Relativity is not needed.)

••48 The smallest dimension (resolving power) that can be
resolved by an electron microscope is equal to the de Broglie
wavelength of its electrons.What accelerating voltage would be re-
quired for the electrons to have the same resolving power as could
be obtained using 100 keV gamma rays?

••49 Singly charged sodium ions are accelerated
through a potential difference of 300 V. (a) What is the momentum
acquired by such an ion? (b) What is its de Broglie wavelength?

••50 Electrons accelerated to an energy of 50 GeV have a de
Broglie wavelength l small enough for them to probe the structure
within a target nucleus by scattering from the structure. Assume
that the energy is so large that the extreme relativistic relation p �
E/c between momentum magnitude p and energy E applies. (In
this extreme situation, the kinetic energy of an electron is much
greater than its rest energy.) (a) What is l? (b) If the target nucleus
has radius R � 5.0 fm, what is the ratio R/l?

••51 The wavelength of the yellow spectral emission line of
sodium is 590 nm. At what kinetic energy would an electron have
that wavelength as its de Broglie wavelength?

••52 A stream of protons, each with a speed of 0.9900c, are di-
rected into a two-slit experiment where the slit separation is 4.00 �
10�9 m. A two-slit interference pattern is built up on the viewing
screen.What is the angle between the center of the pattern and the
second minimum (to either side of the center)?

••53 What is the wavelength of (a) a photon with energy 1.00 eV,
(b) an electron with energy 1.00 eV, (c) a photon of energy
1.00 GeV, and (d) an electron with energy 1.00 GeV?

••54 An electron and a photon each have a wavelength of 0.20 nm.

SSM

WWWSSM
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tivistic free particle of mass m can be written as

in which K is the particle’s kinetic energy.

•65 (a) Let n � a � ib be a complex number, where a and b are
real (positive or negative) numbers. Show that the product nn* is
always a positive real number. (b) Let m � c � id be another com-
plex number. Show that |nm| � |n| |m|.

••66 In Eq. 38-25 keep both terms, putting A � B � c0. The
equation then describes the superposition of two matter waves of
equal amplitude, traveling in opposite directions. (Recall that this
is the condition for a standing wave.) (a) Show that |�(x, t)|2 is
then given by

(b) Plot this function, and demonstrate that it describes the square
of the amplitude of a standing matter wave. (c) Show that the
nodes of this standing wave are located at

and l is the de Broglie wavelength of the particle. (d) Write a simi-
lar expression for the most probable locations of the particle.

Module 38-7 Heisenberg’s Uncertainty Principle
•67 The uncertainty in the position of an electron along an x axis
is given as 50 pm, which is about equal to the radius of a hydrogen
atom. What is the least uncertainty in any simultaneous measure-
ment of the momentum component px of this electron?

••68 You will find in Chapter 39 that electrons cannot move in
definite orbits within atoms, like the planets in our solar system. To
see why, let us try to “observe” such an orbiting electron by using a
light microscope to measure the electron’s presumed orbital position
with a precision of, say, 10 pm (a typical atom has a radius of about
100 pm). The wavelength of the light used in the microscope must
then be about 10 pm. (a) What would be the photon energy of this
light? (b) How much energy would such a photon impart to an elec-
tron in a head-on collision? (c) What do these results tell you about
the possibility of “viewing” an atomic electron at two or more points
along its presumed orbital path? (Hint: The outer electrons of atoms
are bound to the atom by energies of only a few electron-volts.)

••69 Figure 38-13 shows a case in which the momentum compo-
nent px of a particle is fixed so that 
px � 0; then, from Heisenberg’s
uncertainty principle (Eq. 38-28), the position x of the particle is
completely unknown. From the same principle it follows that the op-
posite is also true; that is, if the position of a particle is exactly known
(
x � 0), the uncertainty in its momentum is infinite.

Consider an intermediate case, in which the position of a
particle is measured, not to infinite precision, but to within a dis-
tance of l/2p, where l is the particle’s de Broglie wavelength.
Show that the uncertainty in the (simultaneously measured) mo-
mentum component is then equal to the component itself; that is,

px � p. Under these circumstances, would a measured momen-
tum of zero surprise you? What about a measured momentum of
0.5p? Of 2p? Of 12p?

Module 38-8 Reflection from a Potential Step
••70 An electron moves through a region of uniform electric po-
tential of �200 V with a (total) energy of 500 eV. What are its (a)

x � (2n � 1)� 1
4

��,  where n � 0, 1, 2, 3, . . .

|�(x, t)|2 � 2� 0
2[1 � cos 2kx].

k �
2p 22mK

h
,

What is the momentum (in kg �m/s) of the (a) electron and
(b) photon? What is the energy (in eV) of the (c) electron and
(d) photon?

••55 The highest achievable resolving power of a microscope is
limited only by the wavelength used; that is, the smallest item
that can be distinguished has dimensions about equal to the
wavelength. Suppose one wishes to “see” inside an atom.
Assuming the atom to have a diameter of 100 pm, this means
that one must be able to resolve a width of, say, 10 pm. (a) If an
electron microscope is used, what minimum electron energy is
required? (b) If a light microscope is used, what minimum pho-
ton energy is required? (c) Which microscope seems more prac-
tical? Why?

••56 The existence of the atomic nucleus was discovered in
1911 by Ernest Rutherford, who properly interpreted some ex-
periments in which a beam of alpha particles was scattered from
a metal foil of atoms such as gold. (a) If the alpha particles had a
kinetic energy of 7.5 MeV, what was their de Broglie wave-
length? (b) Explain whether the wave nature of the incident al-
pha particles should have been taken into account in interpret-
ing these experiments. The mass of an alpha particle is 4.00 u
(atomic mass units), and its distance of closest approach to the
nuclear center in these experiments was about 30 fm. (The wave
nature of matter was not postulated until more than a decade af-
ter these crucial experiments were first performed.)

••57 A nonrelativistic particle is moving three times as fast as an
electron. The ratio of the de Broglie wavelength of the particle to
that of the electron is 1.813 � 10�4. By calculating its mass, identify
the particle.

••58 What are (a) the energy of a photon corresponding to wave-
length 1.00 nm, (b) the kinetic energy of an electron with de
Broglie wavelength 1.00 nm, (c) the energy of a photon correspon-
ding to wavelength 1.00 fm, and (d) the kinetic energy of an elec-
tron with de Broglie wavelength 1.00 fm?

•••59 If the de Broglie wavelength of a proton is 100 fm, (a)
what is the speed of the proton and (b) through what electric poten-
tial would the proton have to be accelerated to acquire this speed?

Module 38-6 Schrödinger’s Equation
•60 Suppose we put A � 0 in Eq. 38-24 and relabeled B as c0.
(a) What would the resulting wave function then describe?
(b) How, if at all, would Fig. 38-13 be altered?

•61 The function c(x) displayed in Eq. 38-27 can describe a
free particle, for which the potential energy is U(x) 0 in
Schrödinger’s equation (Eq. 38-19).Assume now that U(x) � U0 �
a constant in that equation. Show that Eq. 38-27 is a solution of
Schrödinger’s equation, with

giving the angular wave number k of the particle.

•62 Show that Eq. 38-24 is indeed a solution of Eq. 38-22 by sub-
stituting c(x) and its second derivative into Eq. 38-22 and noting
that an identity results.

•63 (a) Write the wave function c(x) displayed in Eq. 38-27 in
the form c(x) � a � ib, where a and b are real quantities. (Assume
that c0 is real.) (b) Write the time-dependent wave function �(x, t)
that corresponds to c(x) written in this form.

•64 Show that the angular wave number k for a nonrela-SSM

k �
2p

h
22m(E � U0)

�

SSM
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kinetic energy (in electron-volts), (b) momentum, (c) speed, (d) de
Broglie wavelength, and (e) angular wave number?

••71 For the arrangement of Figs. 38-14 and 38-15, electrons in
the incident beam in region 1 have energy E 800 eV and the po-
tential step has a height of U1 � 600 eV. What is the angular wave
number in (a) region 1 and (b) region 2? (c) What is the reflection co-
efficient? (d) If the incident beam sends 5.00 � 105 electrons against
the potential step, approximately how many will be reflected?

••72 For the arrangement of Figs. 38-14 and 38-15, electrons
in the incident beam in region 1 have a speed of 1.60 107 m/s and
region 2 has an electric potential of V2 � �500 V.What is the angu-
lar wave number in (a) region 1 and (b) region 2? (c) What is the
reflection coefficient? (d) If the incident beam sends 3.00 � 109

electrons against the potential step, approximately how many will
be reflected?

•••73 The current of a beam of electrons, each with a speed of
900 m/s, is 5.00 mA. At one point along its path, the beam encoun-
ters a potential step of height �1.25 mV. What is the current on the
other side of the step boundary?

Module 38-9 Tunneling Through a Potential Barrier
••74 Consider a potential energy barrier like that of Fig. 38-17
but whose height Ub is 6.0 eV and whose thickness L is 0.70 nm.
What is the energy of an incident electron whose transmission
coefficient is 0.0010?

••75 A 3.0 MeV proton is incident on a potential energy barrier
of thickness 10 fm and height 10 MeV. What are (a) the transmis-
sion coefficient T, (b) the kinetic energy Kt the proton will have
on the other side of the barrier if it tunnels through the barrier,
and (c) the kinetic energy Kr it will have if it reflects from the
barrier? A 3.0 MeV deuteron (the same charge but twice the
mass as a proton) is incident on the same barrier. What are (d) T,
(e) Kt, and (f) Kr?

••76 (a) Suppose a beam of 5.0 eV protons strikes a potential
energy barrier of height 6.0 eV and thickness 0.70 nm, at a rate
equivalent to a current of 1000 A. How long would you have to
wait—on average—for one proton to be transmitted? (b) How
long would you have to wait if the beam consisted of electrons
rather than protons?

••77 An electron with total energy E 5.1 eV
approaches a barrier of height Ub 6.8 eV and thickness L
750 pm. What percentage change in the transmission coefficient
T occurs for a 1.0% change in (a) the barrier height, (b) the
barrier thickness, and (c) the kinetic energy of the incident
electron?

•••78 The current of a beam of electrons, each with a speed of
1.200 103 m/s, is 9.000 mA. At one point along its path, the beam
encounters a potential barrier of height �4.719 mV and thickness
200.0 nm.What is the transmitted current?

Additional Problems
79 Figure 38-13 shows that because of Heisenberg’s uncertainty
principle, it is not possible to assign an x coordinate to the position
of a free electron moving along an x axis. (a) Can you assign a y or
a z coordinate? (Hint: The momentum of the electron has no y or z
component.) (b) Describe the extent of the matter wave in three
dimensions.

80 A spectral emission line is electromagnetic radiation that is
emitted in a wavelength range narrow enough to be taken as a sin-

�

��
�WWWSSM

�

�

gle wavelength. One such emission line that is important in astron-
omy has a wavelength of 21 cm. What is the photon energy in the
electromagnetic wave at that wavelength?

81 Using the classical equations for momentum and kinetic
energy, show that an electron’s de Broglie wavelength in nanome-
ters can be written as , in which K is the electron’s
kinetic energy in electron-volts.

82 Derive Eq. 38-11, the equation for the Compton shift, from
Eqs. 38-8, 38-9, and 38-10 by eliminating v and u.

83 Neutrons in thermal equilibrium with matter have an average
kinetic energy of (3/2)kT, where k is the Boltzmann constant and
T, which may be taken to be 300 K, is the temperature of the envi-
ronment of the neutrons. (a) What is the average kinetic energy
of such a neutron? (b) What is the corresponding de Broglie
wavelength?

84 Consider a balloon filled with helium gas at room tempera-
ture and atmospheric pressure. Calculate (a) the average de
Broglie wavelength of the helium atoms and (b) the average dis-
tance between atoms under these conditions. The average kinetic
energy of an atom is equal to (3/2)kT, where k is the Boltzmann
constant. (c) Can the atoms be treated as particles under these con-
ditions? Explain.

85 In about 1916, R. A. Millikan found the following stopping-
potential data for lithium in his photoelectric experiments:

Wavelength (nm) 433.9 404.7 365.0 312.5 253.5
Stopping

potential (V) 0.55 0.73 1.09 1.67 2.57

Use these data to make a plot like Fig. 38-2 (which is for sodium)
and then use the plot to find (a) the Planck constant and (b) the
work function for lithium.

86 Show that |c|2 � |�|2, with c and � related as in Eq. 38-14.
That is, show that the probability density does not depend on the
time variable.

87 Show that 
E/E, the fractional loss of energy of a photon dur-
ing a collision with a particle of mass m, is given by

where E is the energy of the incident photon, f � is the frequency of
the scattered photon, and f is defined as in Fig. 38-5.

88 A bullet of mass 40 g travels at 1000 m/s. Although the bullet
is clearly too large to be treated as a matter wave, determine what
Eq. 38-17 predicts for the de Broglie wavelength of the bullet at
that speed.

89 (a) The smallest amount of energy needed to eject an electron
from metallic sodium is 2.28 eV. Does sodium show a photoelectric
effect for red light, with l � 680 nm? (That is, does the light cause
electron emission?) (b) What is the cutoff wavelength for
photoelectric emission from sodium? (c) To what color does that
wavelength correspond?

90 Imagine playing baseball in a universe (not ours!)
where the Planck constant is 0.60 J s and thus quantum physics af-
fects macroscopic objects. What would be the uncertainty in the
position of a 0.50 kg baseball that is moving at 20 m/s along an axis
if the uncertainty in the speed is 1.0 m/s?

�

SSM
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More About Matter Waves

39-1 ENERGIES OF A TRAPPED ELECTRON

After reading this module, you should be able to . . .

39.01 Identify the confinement principle: Confinement of a
wave (including a matter wave) leads to the quantization of
wavelengths and energy values.

39.02 Sketch a one-dimensional infinite potential well, indicating
the length (or width) and the potential energy of the walls.

39.03 For an electron, apply the relationship between the
de Broglie wavelength l and the kinetic energy.

39.04 For an electron in a one-dimensional infinite potential
well, apply the relationship between the de Broglie wave-
length l, the well’s length, and the quantum number n.

39.05 For an electron in a one-dimensional infinite potential
well, apply the relationship between the allowed energies
En, the well length L, and the quantum number n.

39.06 Sketch an energy-level diagram for an electron in a
one-dimensional infinite potential well, indicating the
ground state and several excited states.

39.07 Identify that a trapped electron tends to be in its
ground state, can be excited to a higher-energy state, and
cannot exist between the allowed states.

39.08 Calculate the energy change required for an electron
to move between states: a quantum jump up or down an
energy-level diagram.

39.09 If a quantum jump involves light, identify that an
upward jump requires the absorption of a photon (to
increase the electron’s energy) and a downward jump
requires the emission of a photon (to reduce the
electron’s energy).

39.10 If a quantum jump involves light, apply the relationships
between the energy change and the frequency and wave-
length associated with the photon.

39.11 Identify the emission and absorption spectra of an
electron in a one-dimensional infinite potential well.

Learning Objectives

● Confinement of waves (string waves, matter waves—any
type of wave) leads to quantization—that is, discrete states
with certain energies. States with intermediate energies are
not allowed.
● Because it is a matter wave, an electron confined to an
infinite potential well can exist in only certain discrete states.
If the well is one-dimensional with length L, the energies as-
sociated with these quantum states are

for n � 1, 2, 3, . . . ,

where m is the electron mass and n is a quantum number.
● The lowest energy is not zero but is given by n � 1.

En � � h2

8mL2 �n2,

● The electron can change (jump) from one quantum state to
another only if its energy change is


E � Ehigh � Elow ,

where Ehigh is the higher energy and Elow is the lower energy.
● If the change is done by photon absorption or emission, the
energy of the photon must be equal to the change in the elec-
tron’s energy:

,

where frequency f and wavelength l are associated with the
photon.

hf �
hc
l

� 
E � Ehigh � Elow

Key Ideas

What Is Physics?
One of the long-standing goals of physics has been to understand the nature of
atoms. Early in the 20th century nobody knew how the electrons in an atom are
arranged, what their motions are, how atoms emit or absorb light, or even why
atoms are stable. Without this knowledge it was not possible to understand how
atoms combine to form molecules or stack up to form solids.As a consequence, the
foundations of chemistry—including biochemistry, which underlies the nature of
life itself—were more or less a mystery.
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In 1926, all these questions and many others were answered with the devel-
opment of quantum physics. Its basic premise is that moving electrons, protons,
and particles of any kind are best viewed as matter waves, whose motions are
governed by Schrödinger’s equation. Although quantum theory also applies to
larger objects, such as baseballs and planets, it yields the same results as
Newtonian physics, which is easier to use and more intuitive.

Before we can apply quantum physics to the problem of atomic structure,
we need to develop some insights by applying quantum ideas in a few simpler situa-
tions. Some of these situations may seem simplistic and unreal, but they allow us to
discuss the basic principles of the quantum physics of atoms without having to deal
with the often overwhelming complexity of atoms. Besides, with advances in nano-
technology, situations that were previously found only in textbooks are now being
produced in laboratories and put to use in modern electronics and materials science
applications.We are on the threshold of being able to use nanometer-scale construc-
tions called quantum corrals and quantum dots to create “designer atoms” whose
properties can be manipulated in the laboratory. For both natural atoms and these
artificial ones, the starting point in our discussion is the wave nature of an electron.

String Waves and Matter Waves
In Chapter 16 we saw that waves of two kinds can be set up on a stretched string.
If the string is so long that we can take it to be infinitely long, we can set up a trav-
eling wave of essentially any frequency. However, if the stretched string has only
a finite length, perhaps because it is rigidly clamped at both ends, we can set up
only standing waves on it; further, these standing waves can have only discrete
frequencies. In other words, confining the wave to a finite region of space leads to
quantization of the motion—to the existence of discrete states for the wave, each
state with a sharply defined frequency.

This observation applies to waves of all kinds, including matter waves.
For matter waves, however, it is more convenient to deal with the energy E of the
associated particle than with the frequency f of the wave. In all that follows we
shall focus on the matter wave associated with an electron, but the results apply
to any confined matter wave.

Consider the matter wave associated with an electron moving in the positive x
direction and subject to no net force—a so-called free particle. The energy of such
an electron can have any reasonable value, just as a wave traveling along a
stretched string of infinite length can have any reasonable frequency.

Consider next the matter wave associated with an atomic electron, perhaps
the valence (least tightly bound) electron.The electron—held within the atom by
the attractive Coulomb force between it and the positively charged nucleus—is
not a free particle. It can exist only in a set of discrete states, each having a dis-
crete energy E. This sounds much like the discrete states and quantized frequen-
cies that are available to a stretched string of finite length. For matter waves,
then, as for all other kinds of waves, we may state a confinement principle:

Confinement of a wave leads to quantization—that is, to the existence of discrete
states with discrete energies.

Energies of a Trapped Electron
One-Dimensional Traps
Here we examine the matter wave associated with a nonrelativistic electron
confined to a limited region of space.We do so by analogy with standing waves on
a string of finite length, stretched along an x axis and confined between rigid
supports. Because the supports are rigid, the two ends of the string are nodes, or
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Figure 39-1 The elements of an idealized
“trap” designed to confine an electron to
the central cylinder.We take the semi-
infinitely long end cylinders to be at an
infinitely great negative potential and the
central cylinder to be at zero potential.

points at which the string is always at rest. There may be other nodes along the
string, but these two must always be present, as Fig. 16-21 shows.

The states, or discrete standing wave patterns in which the string can oscil-
late, are those for which the length L of the string is equal to an integer number
of half-wavelengths.That is, the string can occupy only states for which

for n � 1, 2, 3, . . . . (39-1)

Each value of n identifies a state of the oscillating string; using the language of
quantum physics, we can call the integer n a quantum number.

For each state of the string permitted by Eq. 39-1, the transverse displace-
ment of the string at any position x along the string is given by

for n � 1, 2, 3, . . . , (39-2)

in which the quantum number n identifies the oscillation pattern and A depends
on the time at which you inspect the string. (Equation 39-2 is a short version of
Eq. 16-60.) We see that for all values of n and for all times, there is a point of zero
displacement (a node) at x � 0 and at x � L, as there must be. Figure 16-20 shows
time exposures of such a stretched string for n � 2, 3, and 4.

Now let us turn our attention to matter waves. Our first problem is to physically
confine an electron that is moving along the x axis so that it remains within a finite
segment of that axis. Figure 39-1 shows a conceivable one-dimensional electron trap.
It consists of two semi-infinitely long cylinders, each of which has an electric poten-
tial approaching �
; between them is a hollow cylinder of length L, which has an
electric potential of zero.We put a single electron into this central cylinder to trap it.

The trap of Fig. 39-1 is easy to analyze but is not very practical. Single
electrons can, however, be trapped in the laboratory with traps that are more
complex in design but similar in concept. At the University of Washington, for
example, a single electron has been held in a trap for months on end, permitting
scientists to make extremely precise measurements of its properties.

Finding the Quantized Energies
Figure 39-2 shows the potential energy of the electron as a function of its posi-
tion along the x axis of the idealized trap of Fig. 39-1. When the electron is in
the central cylinder, its potential energy U (� �eV ) is zero because there the
potential V is zero. If the electron could get outside this region, its potential
energy would be positive and of infinite magnitude because there V : �
.
We call the potential energy pattern of Fig. 39-2 an infinitely deep potential
energy well or, for short, an infinite potential well. It is a “well” because an elec-
tron placed in the central cylinder of Fig. 39-1 cannot escape from it. As the
electron approaches either end of the cylinder, a force of essentially infinite
magnitude reverses the electron’s motion, thus trapping it. Because the elec-
tron can move along only a single axis, this trap can be called a one-dimensional
infinite potential well.

Just like the standing wave in a length of stretched string, the matter wave
describing the confined electron must have nodes at x � 0 and x � L. Moreover,
Eq. 39-1 applies to such a matter wave if we interpret l in that equation as the
de Broglie wavelength associated with the moving electron.

The de Broglie wavelength l is defined in Eq. 38-17 as l � h /p, where p is the
magnitude of the electron’s momentum. Because the electron is nonrelativistic,
this momentum magnitude p is related to the kinetic energy K by ,
where m is the mass of the electron. For an electron moving within the central
cylinder of Fig. 39-1, where U � 0, the total (mechanical) energy E is equal to the

p � 12mK

yn(x) � A sin� np

L
x�,

L �
nl

2
,

x

x = 0 x = L

V = 0 V → –∞ V → –∞

L

An electron can be trapped
in the V = 0 region.

Figure 39-2 The electric potential energy
U(x) of an electron confined to the central
cylinder of the idealized trap of Fig. 39-1.
We see that U � 0 for 0 � x � L, and
U : 
 for x � 0 and x � L.

x
0 L

U(x)

An electron can be trapped
in the U = 0 region.
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kinetic energy. Hence, we can write the de Broglie wavelength of this electron as

(39-3)

If we substitute Eq. 39-3 into Eq. 39-1 and solve for the energy E, we find that E
depends on n according to

for n � 1, 2, 3, . . . . (39-4)

The positive integer n here is the quantum number of the electron’s quantum
state in the trap.

Equation 39-4 tells us something important: Because the electron is confined to
the trap, it can have only the energies given by the equation. It cannot have an en-
ergy that is, say, halfway between the values for n � 1 and n � 2. Why this restric-
tion? Because an electron is a matter wave.Were it, instead, a particle as assumed in
classical physics, it could have any value of energy while it is confined to the trap.

Figure 39-3 is a graph showing the lowest five allowed energy values for an
electron in an infinite well with L � 100 pm (about the size of a typical atom).
The values are called energy levels, and they are drawn in Fig. 39-3 as levels, or
steps, on a ladder, in an energy-level diagram. Energy is plotted vertically; nothing
is plotted horizontally.

The quantum state with the lowest possible energy level E1 allowed by
Eq. 39-4, with quantum number n � 1, is called the ground state of the electron.
The electron tends to be in this lowest energy state. All the quantum states with
greater energies (corresponding to quantum numbers n � 2 or greater) are called
excited states of the electron. The state with energy level E2, for quantum number
n � 2, is called the first excited state because it is the first of the excited states as
we move up the energy-level diagram.The other states have similar names.

Energy Changes
A trapped electron tends to have the lowest allowed energy and thus to be in its
ground state. It can be changed to an excited state (in which it has greater energy)
only if an external source provides the additional energy that is required for the
change. Let Elow be the initial energy of the electron and Ehigh be the greater
energy in a state that is higher on its energy-level diagram. Then the amount of
energy that is required for the electron’s change of state is


E � Ehigh � Elow. (39-5)

An electron that receives such energy is said to make a quantum jump (or tran-
sition), or to be excited from the lower-energy state to the higher-energy state. Figure
39-4a represents a quantum jump from the ground state (with energy level E1) to
the third excited state (with energy level E4).As shown, the jump must be from one
energy level to another, but it can bypass one or more intermediate energy levels.

Photons. One way an electron can gain energy to make a quantum jump up
to a greater energy level is to absorb a photon. However, this absorption and
quantum jump can occur only if the following condition is met:

En � � h2

8mL2 �n2,

l �
h
p

�
h

12mE
.

If a confined electron is to absorb a photon, the energy hf of the photon must
equal the energy difference 
E between the initial energy level of the electron
and a higher level.

Figure 39-3 Several of the allowed energies for
an electron confined to the infinite well of
Fig. 39-2, with width L � 100 pm.

Thus, excitation by the absorption of light requires that

hf � � 
E � Ehigh � Elow. (39-6)
hc
l

Figure 39-4 (a) Excitation of a trapped electron
from the energy level of its ground state
to the level of its third excited state. (b)–(d)
Three of four possible ways the electron can
de-excite to return to the energy level of its
ground state. (Which way is not shown?)
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These are the lowest five energy
levels allowed the electron. (No 
intermediate levels are allowed.)
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The electron is excited 
to a higher energy level.

It can de-excite to a lower level in several 
ways (set by chance).
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When an electron reaches an excited state, it does not stay there but quickly
de-excites by decreasing its energy. Figures 39-4b to d represent some of the possi-
ble quantum jumps down from the energy level of the third excited state. The
electron can reach its ground-state level either with one direct quantum jump
(Fig. 39-4b) or with shorter jumps via intermediate levels (Figs. 39-4c and d).

An electron can decrease its energy by emitting a photon but only this way:

Checkpoint 1
Rank the following pairs of quantum states for an electron confined to an infinite well
according to the energy differences between the states, greatest first: (a) n � 3 and
n � 1, (b) n � 5 and n � 4, (c) n � 4 and n � 3.

If a confined electron emits a photon, the energy hf of that photon must equal the
energy difference 
E between the initial energy level of the electron and a lower level.

Thus, Eq. 39-6 applies to both the absorption and the emission of light by
a confined electron. That is, the absorbed or emitted light can have only certain
values of hf and thus only certain values of frequency f and wavelength l.

Aside: Although Eq. 39-6 and what we have discussed about photon absorption
and emission can be applied to physical (real) electron traps, they actually cannot be
applied to one-dimensional (unreal) electron traps. The reason involves the need to
conserve angular momentum in a photon absorption or emission process. In this
book,we shall neglect that need and use Eq.39-6 even for one-dimensional traps.

KEY IDEA

First a caution: Note that, from Fig.39-3, the second excited state
corresponds to the third energy level, with quantum number 
n � 3.Then if the electron is to jump from the n � 1 level to the
n � 3 level, the required change in its energy is, from Eq. 39-5,


E31 � E3 � E1. (39-8)

Upward jump: The energies E3 and E1 depend on the
quantum number n, according to Eq. 39-4. Therefore, sub-
stituting that equation into Eq. 39-8 for energies E3 and E1

and using Eq. 39-7 lead to

(Answer)

(c) If the electron gains the energy for the jump from energy
level E1 to energy level E3 by absorbing light, what light
wavelength is required?

KEY IDEAS

(1) If light is to transfer energy to the electron, the transfer
must be by photon absorption. (2) The photon’s energy must
equal the energy difference 
E between the initial energy

� 4.83 � 10 �17 J � 301 eV.
� (6.031 � 10 �18 J)(8)

�
h2

8mL2  (32 � 12)

 
E31 � � h2

8mL2 � (3)2 � � h2

8mL2 � (1)2

Sample Problem 39.01 Energy levels in a 1D infinite potential well

An electron is confined to a one-dimensional, infinitely
deep potential energy well of width L � 100 pm. (a) What is
the smallest amount of energy the electron can have? (A
trapped electron cannot have zero energy.)

KEY IDEA

Confinement of the electron (a matter wave) to the well leads
to quantization of its energy.Because the well is infinitely deep,
the allowed energies are given by Eq. 39-4 (En � (h2/8mL2)n2),
with the quantum number n a positive integer.

Lowest energy level: Here, the collection of constants in
front of n2 in Eq. 39-4 is evaluated as

(39-7)
The smallest amount of energy the electron can have corre-
sponds to the lowest quantum number, which is n � 1 for the
ground state of the electron. Thus, Eqs. 39-4 and 39-7 give us

(Answer)

(b) How much energy must be transferred to the electron if it
is to make a quantum jump from its ground state to its second
excited state?

� 6.03 � 10 �18 J � 37.7 eV.

E1 � � h2

8mL2 �n2 � (6.031 � 10 �18 J)(12)

� 6.031 � 10 �18 J.

h2

8mL2 �
(6.63 � 10 �34 J �s)2

(8)(9.11 � 10 �31 kg)(100 � 10 �12 m)2
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The direct jump involves the same energy difference

E31 we found in (c). Then the wavelength is the same as we
calculated in (c)—except now the wavelength is for light
that is emitted, not absorbed.Thus, the electron can jump di-
rectly to the ground state by emitting light of wavelength

l � 4.12 � 10�9 m. (Answer)

Following the procedure of part (b), you can show that
the energy differences for the jumps of Figs. 39-5b and c are


E32 � 3.016 � 10�17 J and 
E21 � 1.809 � 10�17 J.

From Eq. 39-9, we then find that the wavelength of the light
emitted in the first of these jumps (from n � 3 to n � 2) is

l � 6.60 � 10�9 m, (Answer)

and the wavelength of the light emitted in the second of
these jumps (from n � 2 to n � 1) is

l � 1.10 � 10�8 m. (Answer)

level of the electron and a higher level, according to Eq. 39-6
(hf � 
E). Otherwise, a photon cannot be absorbed.

Wavelength: Substituting c/l for f, we can rewrite Eq. 39-6 as

(39-9)l �
hc

E

.

Additional examples, video, and practice available at WileyPLUS

n = 1 

n = 2 

n = 3 

E

(a)

n = 1 

n = 2 

n = 3 

E

(b)

n = 1 

n = 2 

n = 3 

E

(c)

Figure 39-5 De-excitation from the second excited state to the ground
state either directly (a) or via the first excited state (b, c).

For the energy difference 
E31 we found in (b), this equation
gives us

(Answer)
(d) Once the electron has been excited to the second excited
state, what wavelengths of light can it emit by de-excitation?

KEY IDEAS

1. The electron tends to de-excite, rather than remain in an 
excited state,until it reaches the ground state (n � 1).

2. If the electron is to de-excite, it must lose just enough
energy to jump to a lower energy level.

3. If it is to lose energy by emitting light, then the loss of
energy must be by emission of a photon.

Downward jumps: Starting in the second excited state (at
the n � 3 level), the electron can reach the ground state (n � 1)
by either making a quantum jump directly to the ground-state
energy level (Fig. 39-5a) or by making two separate jumps by
way of the n � 2 level (Figs.39-5b and c).

� 4.12 � 10 �9 m.

�
(6.63 � 10 �34 J �s)(2.998 � 10 8 m/s)

4.83 � 10 �17 J

l �
hc
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39-2 WAVE FUNCTIONS OF A TRAPPED ELECTRON

After reading this module, you should be able to . . .

39.12 For an electron trapped in a one-dimensional, infinite 
potential well, write its wave function in terms of coordinates
inside the well and in terms of the quantum number n.

39.13 Identify probability density.
39.14 For an electron trapped in a one-dimensional, infinite poten-

tial well in a given state, write the probability density as a func-
tion of position inside the well, identify that the probability den-

sity is zero outside the well, and calculate the probability of
detection between two given coordinates inside the well.

39.15 Identify the correspondence principle.
39.16 Normalize a given wave function and identify what that

has to do with the probability of detection.
39.17 Identify that the lowest allowed energy (the zero-point

energy) of a trapped electron is not zero.

Learning Objectives

● The wave functions for an electron in an infinite, one-dimensional
potential well with length L along an x axis are given by

for n � 1, 2, 3, . . . ,

where n is the quantum number.  

● The product is the probability that the electroncn
2(x) dx

cn(x) � A
2
L

 sin � np

L
x�,

will be detected in the interval between coordinates and
.

● If the probability density of an electron is integrated over the
entire x axis, the total probability must be 1:

�


�


c 2
n (x) dx � 1.

x � dx
x

Key Ideas



Wave Functions of a Trapped Electron
If we solve Schrödinger’s equation for an electron trapped in a one-dimensional infi-
nite potential well of width L and impose the boundary condition that the solutions be
zero at the infinite walls, we find that the wave functions for the electron are given by

for n � 1, 2, 3, . . . , (39-10)

for 0 � x � L (the wave function is zero outside that range).We shall soon evaluate
the amplitude constant A in this equation.

Note that the wave functions cn(x) have the same form as the displacement
functions yn(x) for a standing wave on a string stretched between rigid supports
(see Eq. 39-2). We can picture an electron trapped in a one-dimensional well
between infinite-potential walls as being a standing matter wave.

Probability of Detection
The wave function cn(x) cannot be detected or directly measured in any way—
we cannot simply look inside the well to see the wave the way we can see, say,
a wave in a bathtub of water.All we can do is insert a probe of some kind to try to
detect the electron. At the instant of detection, the electron would materialize at
the point of detection, at some position along the x axis within the well.

If we repeated this detection procedure at many positions throughout the
well, we would find that the probability of detecting the electron is related to the
probe’s position x in the well. In fact, they are related by the probability density

. Recall from Module 38-6 that in general the probability that a particle can
be detected in a specified infinitesimal volume centered on a specified point is
proportional to . Here, with the electron trapped in a one-dimensional well,
we are concerned only with detection of the electron along the x axis. Thus, the
probability density here is a probability per unit length along the x axis.
(We can omit the absolute value sign here because cn(x) in Eq. 39-10 is a real
quantity, not a complex one.) The probability p(x) that an electron can be
detected at position x within the well is

or (39-11)

From Eq. 39-10, we see that the probability density is

for n � 1, 2, 3, . . . , (39-12)

for the range 0 � x � L (the probability density is zero outside that range).
Figure 39-6 shows for n � 1, 2, 3, and 15 for an electron in an infinite well
whose width L is 100 pm.

To find the probability that the electron can be detected in any finite section
of the well—say, between point x1 and point x2—we must integrate p(x) between
those points.Thus, from Eqs. 39-11 and 39-12,

(39-13)

If the range 
x in which we search for the electron is much smaller than the

� �x2

x1

A2 sin2 � np

L
x� dx.

�probability of detection
between x1 and x2

� � �x2

x1

p(x)

cn
2(x)

c 2
n(x) � A2 sin2� np

L
x�,

cn
2(x)

p(x) � cn
2(x) dx.

� probability p(x)
of detection in width dx
centered on position x � � �probability density cn

2(x) at position x � (width dx),

cn
2(x)

|cn
2|

cn
2(x)

cn(x) � A sin� np

L
x�,
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Figure 39-6 The probability density for
four states of an electron trapped in a
one-dimensional infinite well; their quan-
tum numbers are n � 1, 2, 3, and 15.The
electron is most likely to be found where

is greatest and least likely to be found
where is least.c n

2(x)
c n

2(x)

c n
2(x)

0
0 50 100

x (pm)

0
0 50 100

x (pm)

n = 15

n = 3

0
0 50 100

x (pm)

n = 2

0
0 50 100

x (pm)

ψ 21
n = 1

L

ψ 22

ψ 23

ψ 215

The probability density
must be zero at the
infinite walls.
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well length L, then we can usually approximate the integral in Eq. 39-13 as being
equal to the product p(x) 
x, with p(x) evaluated in the center of 
x.

If classical physics prevailed, we would expect the trapped electron to be
detectable with equal probabilities in all parts of the well.From Fig.39-6 we see that it
is not. For example, inspection of that figure or of Eq. 39-12 shows that for the state
with n � 2, the electron is most likely to be detected near x � 25 pm and x � 75 pm.
It can be detected with near-zero probability near x � 0, x � 50 pm, and x � 100 pm.

The case of n � 15 in Fig. 39-6 suggests that as n increases, the probability of
detection becomes more and more uniform across the well. This result is an
instance of a general principle called the correspondence principle:

At large enough quantum numbers, the predictions of quantum physics merge
smoothly with those of classical physics.

This principle, first advanced by Danish physicist Niels Bohr, holds for all quantum
predictions.

Checkpoint 2
The figure shows three
infinite potential wells of
widths L, 2L, and 3L;
each contains an elec-
tron in the state for which n � 10. Rank the wells according to (a) the number of maxima
for the probability density of the electron and (b) the energy of the electron, greatest first.

L 2L 3L

(a) (b) (c)

Normalization
The product gives the probability that an electron in an infinite well can
be detected in the interval of the axis that lies between and x dx. We know
that the electron must be somewhere in the infinite well; so it must be true that

(normalization equation), (39-14)

because the probability 1 corresponds to certainty. Although the integral is taken
over the entire x axis, only the region from x � 0 to x � L makes any contribu-
tion to the probability. Graphically, the integral in Eq. 39-14 represents the area
under each of the plots of Fig. 39-6. If we substitute from Eq. 39-12 into Eq.
39-14, we find that .This process of using Eq. 39-14 to evaluate the am-
plitude of a wave function is called normalizing the wave function. The process
applies to all one-dimensional wave functions.

Zero-Point Energy
Substituting n � 1 in Eq. 39-4 defines the state of lowest energy for an electron in
an infinite potential well, the ground state. That is the state the confined electron
will occupy unless energy is supplied to it to raise it to an excited state.

The question arises: Why can’t we include n � 0 among the possibilities listed
for n in Eq. 39-4? Putting n � 0 in this equation would indeed yield a ground-state
energy of zero. However, putting n � 0 in Eq. 39-12 would also yield 

for all x, which we can interpret only to mean that there is no electron in
the well.We know that there is; so n 0 is not a possible quantum number.

It is an important conclusion of quantum physics that confined systems
cannot exist in states with zero energy.They must always have a certain minimum
energy called the zero-point energy.

�
cn

2(x) � 0

A � 12/L
cn

2(x)

��


�


cn
2(x)dx � 1

�xx
cn

2(x) dx
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From the first of these equations, we find the new limits of
integration to be y1 � 0 for x1 � 0 and y2 � p/3 for x2 � L/3.
We then must evaluate

Using integral 11 in Appendix E, we then find

Thus, we have

(Answer)

That is, if we repeatedly probe the left one-third of the well, then
on average we can detect the electron with 20% of the probes.

(b) What is the probability that the electron can be detected
in the middle one-third of the well?

Reasoning: We now know that the probability of detection
in the left one-third of the well is 0.20. By symmetry, the
probability of detection in the right one-third of the well is
also 0.20. Because the electron is certainly in the well, the
probability of detection in the entire well is 1.Thus, the prob-
ability of detection in the middle one-third of the well is

(Answer)� 0.60.

�probability of detection
in middle one-third � � 1 � 0.20 � 0.20

�probability of detection
in left one-third � � 0.20.

probability �
2
p � y

2
�

sin 2y
4 �

0

p/3

� 0.20.

probability � � 2
L � � L

p ��p/3

0
 (sin2 y) dy.

Sample Problem 39.02 Detection probability in a 1D infinite potential well

A ground-state electron is trapped in the one-dimensional
infinite potential well of Fig. 39-2, with width L � 100 pm.

(a) What is the probability that the electron can be detected
in the left one-third of the well (x1 � 0 to x2 � L/3)?

KEY IDEAS

(1) If we probe the left one-third of the well, there is no guaran-
tee that we will detect the electron. However, we can calculate
the probability of detecting it with the integral of Eq. 39-13.
(2) The probability very much depends on which state the elec-
tron is in—that is, the value of quantum number n.

Calculations: Because here the electron is in the ground
state, we set n � 1 in Eq. 39-13.We also set the limits of inte-
gration as the positions x1 � 0 and x2 � L/3 and set the
amplitude constant A as (so that the wave function is
normalized).We then see that

We could find this probability by substituting 100 � 10�12 m
for L and then using a graphing calculator or a computer
math package to evaluate the integral. Here, however, we
shall evaluate the integral “by hand.” First we switch to a
new integration variable y:

y �
p

L
x  and  dx �

L
p

dy.

�probability of detection
in left one-third � � �L /3

0

2
L

 sin2� 1p

L
x� dx.

12/L

We can make the zero-point energy as small as we like by making the infinite
well wider—that is, by increasing L in Eq. 39-4 for n � 1. In the limit as L 
,
the zero-point energy E1 0. However, the electron is then a free particle, no
longer confined in the x direction. Also, because the energy of a free particle is
not quantized, that energy can have any value, including zero. Only a confined
particle must have a finite zero-point energy and can never be at rest.

:
:

Checkpoint 3
Each of the following particles is confined to an infinite well, and all four wells have the
same width: (a) an electron, (b) a proton, (c) a deuteron, and (d) an alpha particle. Rank
their zero-point energies, greatest first.The particles are listed in order of increasing mass.

Calculations: Substituting Eq. 39-10 into Eq. 39-14 and tak-
ing the constant A outside the integral yield

(39-15)

We have changed the limits of the integral from �
 and �

to 0 and L because the “outside” wave function is zero.

A2 �L

0
 sin2� np

L
x� dx � 1.

Sample Problem 39.03 Normalizing wave functions in a 1D infinite potential well

Evaluate the amplitude constant A in Eq. 39-10 for an infinite
potential well extending from x � 0 to x � L.

KEY IDEA

The wave functions of Eq. 39-10 must satisfy the normalization
requirement of Eq. 39-14, which states that the probability that
the electron can be detected somewhere along the x axis is 1.
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39-3 AN ELECTRON IN A FINITE WELL

After reading this module, you should be able to . . .

39.18 Sketch a one-dimensional finite potential well, indicating
the length and height. 

39.19 For an electron trapped in a finite well with given energy
levels, sketch the energy-level diagram, indicate the nonquan-
tized region, and compare the energies and de Broglie wave-
lengths with those of an infinite well of the same length. 

39.20 For an electron trapped in a finite well, explain (in principle)
how the wave functions for the allowed states are determined.

39.21 For an electron trapped in a finite well with a given quan-
tum number, sketch the probability density as a function of
position across the well and into the walls. 

39.22 Identify that a trapped electron can exist in only the
allowed states and relate that energy of the state to the
kinetic energy of the electron. 

39.23 Calculate the energy that an electron must absorb 
or emit to move between the allowed states or between an
allowed state and any value in the nonquantized region.

39.24 If a quantum jump involves light, apply the relationship
between the energy change and the frequency and wave-
length associated with the photon.

39.25 From a given allowed state in a finite well, calculate the
minimum energy required for the electron to escape and
the kinetic energy of the escaped electron if provided more
than that minimal energy.

39.26 Identify the emission and absorption spectra of an
electron in a one-dimensional infinite potential well, includ-
ing escaping the trap and falling into the trap.

Learning Objectives

● The wave function for an electron in a finite, one-dimensional
potential well extends into the walls, where the wave function
decreases exponentially with depth. 

● Compared to the states in an infinite well of the same size,
the states in a finite well have a limited number, longer de
Broglie wavelengths, and lower energies.

Key Ideas

We can simplify the indicated integration by changing the
variable from x to the dimensionless variable y, where

(39-16)

hence

When we change the variable, we must also change the 
integration limits (again). Equation 39-16 tells us that y � 0
when x � 0 and that y � np when x � L; thus 0 and np are
our new limits.With all these substitutions, Eq. 39-15 becomes

A2 L
np

�np

0
(sin2 y) dy � 1.

dx �
L

np
dy.

y �
np

L
x,

We can use integral 11 in Appendix E to evaluate the inte-
gral, obtaining the equation

Evaluating at the limits yields

thus (Answer) (39-17)

This result tells us that the dimension for A2, and thus for
, is an inverse length. This is appropriate because the

probability density of Eq. 39-12 is a probability per unit length.
c n

2(x)

A � A
2
L

.

A2L
np

np

2
� 1;

A2L
np 	 y

2
�

sin 2y
4 


0

np

� 1.

An Electron in a Finite Well
A potential energy well of infinite depth is an idealization. Figure 39-7 shows
a realizable potential energy well—one in which the potential energy of an elec-
tron outside the well is not infinitely great but has a finite positive value U0,

Figure 39-7 A finite potential energy well.The depth of the well is U0 and its width is L.As in
the infinite potential well of Fig. 39-2, the motion of the trapped electron is restricted to
the x direction. x

U0

U

U(x)

0
0 L



called the well depth. The analogy between waves on a stretched string and mat-
ter waves fails us for wells of finite depth because we can no longer be sure that
matter wave nodes exist at x � 0 and at x � L. (As we shall see, they don’t.)

To find the wave functions describing the quantum states of an electron in
the finite well of Fig. 39-7, we must resort to Schrödinger’s equation, the basic
equation of quantum physics. From Module 38-6 recall that, for motion in one
dimension, we use Schrödinger’s equation in the form of Eq. 38-19:

(39-18)

Rather than attempting to solve this equation for the finite well, we simply state the
results for particular numerical values of U0 and L. Figure 39-8 shows three results as
graphs of , the probability density, for a well with U0 � 450 eV and L 100 pm.

The probability density for each graph in Fig. 39-8 satisfies Eq. 39-14,
the normalization equation; so we know that the areas under all three probability
density plots are numerically equal to 1.

If you compare Fig. 39-8 for a finite well with Fig. 39-6 for an infinite well, you
will see one striking difference: For a finite well, the electron matter wave
penetrates the walls of the well—into a region in which Newtonian mechanics
says the electron cannot exist. This penetration should not be surprising because
we saw in Module 38-9 that an electron can tunnel through a potential energy
barrier. “Leaking” into the walls of a finite potential energy well is a similar
phenomenon. From the plots of c2 in Fig. 39-8, we see that the leakage is greater
for greater values of quantum number n.

Because a matter wave does leak into the walls of a finite well, the wavelength l
for any given quantum state is greater when the electron is trapped in a finite well
than when it is trapped in an infinite well of the same length L. Equation 39-3 

then tells us that the energy E for an electron in any given state is less
in the finite well than in the infinite well.

That fact allows us to approximate the energy-level diagram for an elec-
tron trapped in a finite well. As an example, we can approximate the diagram
for the finite well of Fig. 39-8, which has width L � 100 pm and depth U0 � 450
eV. The energy-level diagram for an infinite well of that width is shown in Fig. 39-
3. First we remove the portion of Fig. 39-3 above 450 eV. Then we shift the re-
maining four energy levels down, shifting the level for n � 4 the most because the
wave leakage into the walls is greatest for n � 4. The result is approximately the
energy-level diagram for the finite well.The actual diagram is Fig. 39-9.

In that figure, an electron with an energy greater than U0 (� 450 eV) has
too much energy to be trapped in the finite well. Thus, it is not confined, and its
energy is not quantized; that is, its energy is not restricted to certain values. To
reach this nonquantized portion of the energy-level diagram and thus to be free,
a trapped electron must somehow obtain enough energy to have a mechanical
energy of 450 eV or greater.

h/12mE)
(l �

cn
2(x)

�cn
2(x)

d2c

dx2 �
8p 2m

h2  [E � U(x)]c � 0.
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Figure 39-8 The first three probability densi-
ties for an electron confined to a fi-
nite potential well of depth U0 450 eV
and width L 100 pm. Only states n 1,
2, 3, and 4 are allowed.

��
�

c n
2(x)

x

n = 2

ψ2
2

x

n = 3

ψ2
3

x
100500
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L
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Figure 39-9 The energy-level diagram
corresponding to the probability densities of
Fig.39-8. If an electron is trapped in the finite
potential well, it can have only the energies
corresponding to n � 1,2,3,and 4. If it has an
energy of 450 eV or greater, it is not trapped
and its energy is not quantized.

Nonquantized

Top of well

E3 = 233 eV

E4 = 393 eV

E2 = 106 eV
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Barely escaping: The electron is initially in its ground
state, with an energy of E1 � 27 eV. So, to barely become
free, it must receive an energy of

U0 � E1 � 450 eV � 27 eV � 423 eV.

Thus the photon must have this much energy. From Eq.
39-6 (hf � Ehigh � Elow), with c/l substituted for f, we write

hc
l

� U0 � E1,

Sample Problem 39.04 Electron escaping from a finite potential well

Suppose a finite well with U0 450 eV and L 100 pm
confines a single electron in its ground state.

(a) What wavelength of light is needed to barely free it with
a single photon absorption?

KEY IDEA

For the electron to escape, it must receive enough energy to
jump to the nonquantized energy region of Fig. 39-9 and
end up with an energy of at least U0 (� 450 eV).

��
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39-4 TWO- AND THREE-DIMENSIONAL ELECTRON TRAPS

After reading this module, you should be able to . . .

39.27 Discuss nanocrystallites as being electron traps and ex-
plain how their threshold wavelength can determine their color.

39.28 Identify quantum dots and quantum corrals.

39.29 For a given state of an electron in an infinite potential
well with two or three dimensions, write equations for the
wave function and probability density and then calculate the
probability of detection for a given range in the well.

39.30 For a given state of an electron in an infinite potential
well with two or three dimensions, calculate the allowed 

energies and draw an energy-level diagram, complete
with labels for the quantum numbers, the ground state,
and several excited states.

39.31 Identify degenerate states. 

39.32 Calculate the energy that an electron must absorb or
emit to move between the allowed states in a 2D or 3D trap.

39.33 If a quantum jump involves light, apply the relationships
between the energy change and the frequency and wave-
length associated with the photon. 

Learning Objectives

● The quantized energies for an electron trapped in a two-dimen-
sional infinite potential well that forms a rectangular corral are

where nx is a quantum number for well width Lx and ny is a
quantum number for well width Ly.

Enx,ny �
h2

8m � nx
2

Lx
2 �

n2
y

L2
y
�,

● The wave functions for an electron in a two-dimensional
well are given by

cnx, ny � A
2

Lx
sin � nxp

Lx
x�A

2
Ly

 sin � nyp

Ly
y�.

Key Ideas

from which we find

(Answer)

Thus, if l � 2.94 nm, the electron just barely escapes.
(b) Can the ground-state electron absorb light with l �
2.00 nm? If so, what then is the electron’s energy?

KEY IDEAS

1. In (a) we found that light of 2.94 nm will just barely free
the electron from the potential well.

2. We are now considering light with a shorter wavelength of
2.00 nm and thus a greater energy per photon (hf � hc/l).

3. Hence, the electron can absorb a photon of this light. The

� 2.94 � 10 �9 m � 2.94 nm.

�
(6.63 � 10 �34 J �s)(3.00 � 10 8 m/s)

(423 eV)(1.60 � 10 �19 J/eV)

l �
hc

U0 � E1

energy transfer will not only free the electron but will also
provide it with more kinetic energy. Further, because the
electron is then no longer trapped, its energy is not
quantized.

More than escaping: The energy transferred to the elec-
tron is the photon energy:

From (a), the energy required to just barely free the electron
from the potential well is U0 � E1 (� 423 eV).The remainder
of the 622 eV goes to kinetic energy. Thus, the kinetic energy
of the freed electron is

(Answer)� 622 eV � 423 eV � 199 eV.

K � hf � (U0 � E1)

� 9.95 � 10 �17 J � 622 eV.

hf � h
c
l

�
(6.63 � 10 �34 J �s)(3.00 � 10 8 m/s)

2.00 � 10 �9 m

More Electron Traps
Here we discuss three types of artificial electron traps.

Nanocrystallites
Perhaps the most direct way to construct a potential energy well in the laboratory
is to prepare a sample of a semiconducting material in the form of a powder



whose granules are small—in the nanometer range—and of uniform size. Each
such granule—each nanocrystallite—acts as a potential well for the electrons
trapped within it.

Equation 39-4 (E � (h2/8mL2)n2) shows that we can increase the energy-
level values of an electron trapped in an infinite well by reducing the width L of
the well. This would also shift the photon energies that the well can absorb to
higher values and thus shift the corresponding wavelengths to shorter values.

These general results are also true for a well formed by a nanocrystallite.
A given nanocrystallite can absorb photons with an energy above a certain
threshold energy Et (� hft) and thus wavelengths below a corresponding
threshold wavelength

Light with any wavelength longer than lt is scattered by the nanocrystallite instead
of being absorbed.The color we attribute to the nanocrystallite is then determined
by the wavelength composition of the scattered light we intercept.

If we reduce the size of the nanocrystallite, the value of Et is increased, the
value of lt is decreased, and the light that is scattered to us changes in its
wavelength composition. Thus, the color we attribute to the nanocrystallite
changes. As an example, Fig. 39-10 shows two samples of the semiconductor cad-
mium selenide, each consisting of a powder of nanocrystallites of uniform size.
The lower sample scatters light at the red end of the spectrum.The upper sample
differs from the lower sample only in that the upper sample is composed of
smaller nanocrystallites. For this reason its threshold energy Et is greater and,
from above, its threshold wavelength lt is shorter, in the green range of visible
light. Thus, the sample now scatters both red and yellow. Because the yellow
component happens to be brighter, the sample’s color is now dominated by the
yellow. The striking contrast in color between the two samples is compelling
evidence of the quantization of the energies of trapped electrons and the depend-
ence of these energies on the size of the electron trap.

Quantum Dots
The highly developed techniques used to fabricate computer chips can be used to
construct, atom by atom, individual potential energy wells that behave, in many
respects, like artificial atoms.These quantum dots, as they are usually called, have
promising applications in electron optics and computer technology.

In one such arrangement, a “sandwich” is fabricated in which a thin layer of
a semiconducting material, shown in purple in Fig. 39-11a, is deposited between
two insulating layers, one of which is much thinner than the other. Metal end
caps with conducting leads are added at both ends. The materials are chosen to
ensure that the potential energy of an electron in the central layer is less than it is

lt �
c
ft

�
ch
Et

.
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Figure 39-10 Two samples of powdered cad-
mium selenide,a semiconductor,differing
only in the size of their granules.Each granule
serves as an electron trap.The lower sample
has the larger granules and consequently the
smaller spacing between energy levels and the
lower photon energy threshold for the ab-
sorption of light.Light not absorbed is scat-
tered,causing the sample to scatter light of
greater wavelength and appear red.The up-
per sample,because of its smaller granules,
and consequently its larger level spacing and
its larger energy threshold for absorption,
appears yellow.

From Scientific American, January 1993, page 119. 
Reproduced with permission of Michael Steigerwald.

Figure 39-11 A quantum dot, or “artificial
atom.” (a) A central semiconducting layer
forms a potential energy well in which elec-
trons are trapped.The lower insulating
layer is thin enough to allow electrons to be
added to or removed from the central layer
by barrier tunneling if an appropriate volt-
age is applied between the leads. (b) A pho-
tograph of an actual quantum dot.The cen-
tral purple band is the electron
confinement region.

From Scientific American,
September 1995, page 67. Image 
reproduced with permission of 
H. Temkin, Texas Tech University

(b)

Metal
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Insulator

Metal

Conducting
lead–

+
Conducting
lead

~500 nm 

(a)

~

Semi-
conductor



in the two insulating layers, causing the central layer to act as a potential energy
well. Figure 39-11b is a photograph of an actual quantum dot; the well in which
individual electrons can be trapped is the purple region.

The lower (but not the upper) insulating layer in Fig. 39-11a is thin enough to
permit electrons to tunnel through it if an appropriate potential difference is
applied between the leads. In this way the number of electrons confined to the
well can be controlled. The arrangement does indeed behave like an artificial
atom with the property that the number of electrons it contains can be con-
trolled. Quantum dots can be constructed in two-dimensional arrays that could
well form the basis for computing systems of great speed and storage capacity.

Quantum Corrals
When a scanning tunneling microscope (described in Module 38-9) is in
operation, its tip exerts a small force on isolated atoms that may be located on an
otherwise smooth surface. By careful manipulation of the position of the tip, such
isolated atoms can be “dragged” across the surface and deposited at another
location. Using this technique, scientists at IBM’s Almaden Research Center
moved iron atoms across a carefully prepared copper surface, forming the atoms
into a circle (Fig. 39-12), which they named a quantum corral. Each iron atom in
the circle is nestled in a hollow in the copper surface, equidistant from three
nearest-neighbor copper atoms. The corral was fabricated at a low temperature
(about 4 K) to minimize the tendency of the iron atoms to move randomly about
on the surface because of their thermal energy.

The ripples within the corral are due to matter waves associated with elec-
trons that can move over the copper surface but are largely trapped in the poten-
tial well of the corral. The dimensions of the ripples are in excellent agreement
with the predictions of quantum theory.

119939-4 TWO- AND THREE-DIMENSIONAL ELECTRON TRAPS

(a)

(c)

(b)

(d)
From M. F. Crommie, C. P. Lutz, D. M. Eigler, Science, 262: 218, 1993. Reprinted with permission 
from AAAS.  

Figure 39-12 A quantum corral during four stages of construction. Note the appearance
of ripples caused by electrons trapped in the corral when it is almost complete.



Two- and Three-Dimensional Electron Traps
In the next module, we shall discuss the hydrogen atom as being a three-
dimensional finite potential well. As a warm-up for the hydrogen atom, let us
extend our discussion of infinite potential wells to two and three dimensions.

Rectangular Corral
Figure 39-13 shows the rectangular area to which an electron can be confined by
the two-dimensional version of Fig. 39-2—a two-dimensional infinite potential
well of widths Lx and Ly that forms a rectangular corral. The corral might be on
the surface of a body that somehow prevents the electron from moving parallel
to the z axis and thus from leaving the surface. You have to imagine infinite
potential energy functions (like U(x) in Fig. 39-2) along each side of the corral,
keeping the electron within the corral.

Solution of Schrödinger’s equation for the rectangular corral of Fig. 39-13
shows that, for the electron to be trapped, its matter wave must fit into each of
the two widths separately, just as the matter wave of a trapped electron must fit
into a one-dimensional infinite well. This means the wave is separately quantized
in width Lx and in width Ly. Let nx be the quantum number for which the
matter wave fits into width Lx, and let ny be the quantum number for which the
matter wave fits into width Ly. As with a one-dimensional potential well,
these quantum numbers can be only positive integers. We can extend Eqs. 39-10
and 39-17 to write the normalized wave function as

(39-19)

The energy of the electron depends on both quantum numbers and is the
sum of the energy the electron would have if it were confined along the x axis
alone and the energy it would have if it were confined along the y axis alone.
From Eq. 39-4, we can write this sum as

(39-20)

Excitation of the electron by photon absorption and de-excitation of the
electron by photon emission have the same requirements as for one-dimensional
traps. Now, however, two quantum numbers (nx and ny) are involved. Because of
that, different states might have the same energy; such states and their energy
levels are said to be degenerate.

Rectangular Box
An electron can also be trapped in a three-dimensional infinite potential well—
a box. If the box is rectangular as in Fig. 39-14, then Schrödinger’s equation shows
us that we can write the energy of the electron as

(39-21)

Here nz is a third quantum number, for fitting the matter wave into width Lz.

Enx,ny,nz �
h2

8m � nx
2

Lx
2 �

ny
2

Ly
2 �

nz
2

Lz
2 �.

Enx,ny � � h2

8mLx
2 �nx

2 � � h2

8mLy
2 �ny

2 �
h2

8m � nx
2

Lx
2 �

ny
2

Ly
2 �.

cnx, ny � A
2

Lx
 sin� nxp

L
x�A

2
Ly

 sin� nyp

L
y�,
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Corral
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y

x

Lx

Ly

This is a two-dimensional 
trap with infinite 
potential walls.

Figure 39-13 A rectangular corral—a 
two-dimensional version of the infinite 
potential well of Fig. 39-2—with widths Lx

and Ly.

z

y

x

Lx

Lz

Ly

This is a three-dimensional 
trap with infinite 
potential walls.

Figure 39-14 A rectangular box—a 
three-dimensional version of the infinite
potential well of Fig. 39-2—with widths 
Lx, Ly, and Lz.

Checkpoint 4
In the notation of Eq. 39-20, is E0,0, E1,0, E0,1, or E1,1 the ground-state energy of an
electron in a (two-dimensional) rectangular corral?
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energy. For example, the (1, 2) and (2, 1) states both have an
energy of 5(h2/8mL2). Each such pair is associated with degen-
erate energy levels. Note also that, perhaps surprisingly, the
(4, 1) and (1, 4) states have less energy than the (3, 3) state.

From Table 39-1 (carefully keeping track of degenerate
levels), we can construct the energy-level diagram of Fig. 39-15.

(b) As a multiple of h2/8mL2, what is the energy difference
between the ground state and the third excited state?

Energy difference: From Fig. 39-15, we see that the ground
state is the (1, 1) state, with an energy of 2(h2/8mL2). We also
see that the third excited state (the third state up from the
ground state in the energy-level diagram) is the degenerate
(1, 3) and (3, 1) states, with an energy of 10(h2/8mL2). Thus,
the difference 
E between these two states is

(Answer)


E � 10� h2

8mL2 � � 2� h2

8mL2 � � 8� h2

8mL2 �.

Sample Problem 39.05 Energy levels in a 2D infinite potential well

An electron is trapped in a square corral that is a two-
dimensional infinite potential well (Fig. 39-13) with widths
Lx � Ly.

(a) Find the energies of the lowest five possible energy levels
for this trapped electron, and construct the corresponding
energy-level diagram.

KEY IDEA

Because the electron is trapped in a two-dimensional well
that is rectangular, the electron’s energy depends on two
quantum numbers, nx and ny, according to Eq. 39-20.

Energy levels: Because the well here is square, we can let the
widths be Lx � Ly � L.Then Eq.39-20 simplifies to

(39-22)

The lowest energy states correspond to low values of the
quantum numbers nx and ny, which are the positive integers
1, 2, . . . , 
. Substituting those integers for nx and ny in
Eq. 39-22, starting with the lowest value 1, we can obtain the
energy values as listed in Table 39-1. There we can see that
several of the pairs of quantum numbers (nx, ny) give the same

Enx,ny �
h2

8mL2  (nx
2 � ny

2).

Additional examples, video, and practice available at WileyPLUS

Table 39-1 Energy Levels

nx ny Energya nx ny Energya

1 3 10 2 4 20
3 1 10 4 2 20
2 2 8 3 3 18
1 2 5 1 4 17
2 1 5 4 1 17
1 1 2 2 3 13

3 2 13

aIn multiples of h2/8mL2.

13

10

8

5

2 E1,1

E2,1, E1,2

E3,1, E1,3

E3,2, E2,3

E2,2

E 
(h

2 /8
m

L
2 )

These are the lowest five energy levels 
allowed the electron. Different quantum
states may have the same energy.

Figure 39-15 Energy-level diagram for
an electron trapped in a square corral.
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After reading this module, you should be able to . . .

39.34 Identify Bohr’s model of the hydrogen atom and explain
how he derived the quantized radii and energies.

39.35 For a given quantum number n in the Bohr model,
calculate the electron’s orbital radius, kinetic energy,
potential energy, total energy, orbital period, orbital fre-
quency, momentum, and angular momentum.

39.36 Distinguish the Bohr and Schrödinger descriptions of

the hydrogen atom, including the discrepancy between
the allowed angular momentum values.

39.37 For a hydrogen atom, apply the relationship between
the quantized energies En and the quantum number n.

39.38 For a given jump in hydrogen, between quantized
states or between a quantized state and a nonquantized
state, calculate the change in energy and, if light is in-

Learning Objectives



The Hydrogen Atom Is an Electron Trap
We now move from artificial or fictitious electron traps to natural ones — atoms.
In this chapter we focus on the simplest example, a hydrogen atom, which con-
tains an electron that is trapped by the Coulomb force it experiences from the
proton, which is the nucleus of the atom. Because the proton’s mass is much
greater than the electron’s mass, we shall assume that the proton is fixed in place.
So, we think of the atom as a fixed potential trap with the electron moving
around inside it.

We have now discussed at length that confinement of an electron means that
the electron’s energy E is quantized and thus so is any change 
E in its energy.
In this module we want to calculate the quantized energies of the electron con-
fined to a hydrogen atom. We shall, in principle at least, apply Schrödinger’s
equation to the trap, to find those energies and the associated wave functions.
However, at the discretion of your instructor, let’s take an historical aside to
examine how the quantizing of atoms began, back when quantization was a revo-
lutionary concept.
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volved, the associated energy, frequency, wavelength, and
momentum of the photon.

39.39 Sketch an energy-level diagram for hydrogen,
identifying the ground state, several of the excited states,
the nonquantized region, the Paschen series, the Balmer
series, and the Lyman series (including the series limits).

39.40 For each transition series, identify the jumps giving the
longest wavelength, the shortest wavelength for down-
ward jumps, the series limit, and ionization.

39.41 List the quantum numbers for an atom and indicate the
allowed values.

39.42 Given a normalized wave function for a state, find the
radial probability density P(r) and the probability of detect-
ing the electron in a given range of radii.

39.43 For ground-state hydrogen, sketch a graph of the radial
probability density versus radial distance and locate one
Bohr radius a.

39.44 For a given normalized wave function for hydrogen,
verify that it satisfies the Schrödinger equation.

39.45 Distinguish shell from subshell.
39.46 Explain a dot plot of a probability density. 

● The Bohr model of the hydrogen atom successfully derived
the energy levels for the atom, to explain the emission/
absorption spectrum of the atom, but it is incorrect in 
almost every other aspect.

● The Bohr model is a planetary model in which the electron
orbits the central proton with an angular momentum L that is
limited to values given by

L � n , for n � 1, 2, 3, . . . ,

where n is a quantum number. The value L � 0 is incorrectly
disallowed.

● Application of the Schrödinger equation gives the correct
values of L and the quantized energies:

En � for n � 1, 2, 3, . . . .

● The atom (or the electron in the atom) can change energy
only by jumping between these allowed energies.

● If the jump is by photon absorption (the atom’s energy
increases) or photon emission (the atom’s energy

�
me4

8´ 0
2h2

1
n2 � �

13.60 eV
n2 ,

�

decreases), this restriction in energy changes leads to

for the wevelength of the light, where R is the Rydberg
constant,

R � � 1.097 373 � 107 m�1.

● The radial probability density P(r) for a state of the hydrogen
atom is defined so that P(r) is the probability that the electron
will be detected somewhere in the space between two spheri-
cal shells of radii r and r � dr that are centered on the nucleus.

● Normalization requires that

● The probability that the electron will be detected between
any two given radii r1 and r2 is

(probability of detection between r1 and r2) ��r2

r1

P(r) dr.

�


0
P(r) dr � 1.

me4

8´2
0h3c

1
l

� R� 1
n2

low
�

1
n2

high
�,

Key Ideas



The Bohr Model of Hydrogen, a Lucky Break
By the early 1900s, scientists understood that matter came in tiny pieces called
atoms and that an atom of hydrogen contained positive charge �e at its center
and negative charge �e (an electron) outside that center. However, no one un-
derstood why the electrical attraction between the electron and the positive
charge did not simply cause the two to collapse together.

Visible Wavelengths. One clue lay in the experimental fact that a hydrogen
atom can emit and absorb only four wavelengths in the visible spectrum (656 nm,
486 nm, 434 nm, and 410 nm). Why did it not emit all wavelengths as, say, a hot
blackbody radiator? In 1913, Niels Bohr had a remarkable idea that simultane-
ously explained not only the four visible wavelengths but also why the atom did
not simply collapse. However, as successful as his theory was on those two counts,
it turned out to be quite wrong in almost every other aspect of the atom and led
to very little success in explaining atoms more complicated than hydrogen.
Nevertheless, the Bohr model is historically important because it ushered in the
quantum physics of atoms.

Assumptions. To build his model, Bohr made two bold (completely unjusti-
fied) assumptions: (1) The electron in a hydrogen atom orbits the nucleus in a cir-
cle much like Earth orbits the Sun (Fig. 39-16a). (2) The magnitude of the angular
momentum of the electron in its orbit is restricted (quantized) to the values

L � n , for n � 1, 2, 3, . . . , (39-23)

where (h-bar) is h/2p and n is a positive integer (a quantum number). We are
going to follow Bohr’s relatively simple arguments to get an equation for the
quantized energies of the hydrogen atom, but let’s be explicit here: The electron
is not simply a particle in a planetary orbit and Eq. 39-23 does not correctly give
the angular momentum values. (For example, L � 0 is missing.)

Newton’s Second Law. In the orbit picture of Fig. 39-16a, the electron is in uni-
form circular motion and thus experiences a centripetal force (Fig. 39-16b), which
causes a centripetal acceleration. The force is the Coulomb force (Eq. 21-4) between
the electron (with charge �e) and the proton (with charge �e), separated by the or-
bital radius r.The centripetal acceleration has the magnitude a � v2/r (Eq.4-34),where
v is the electron’s speed.So,we can write Newton’s second law for a radial axis as

F � ma

(39-24)

where m is the electron mass.
We next introduce quantization by using Bohr’s assumption expressed in

Eq. 39-23. From Eq. 11-19, the magnitude of the angular momentum of a parti-
cle of mass m and speed v moving in a circle of radius r is , where
f (the angle between and ) is 90°. Replacing L in Eq. 39-23 with rmv sin 90°
gives us

or (39-25)

Substituting this equation into Eq. 39-24, replacing with h/2p, and rearranging,�

v �
n�

rm
.

rmv � n�,

v:r:
� rmv sin f�

�

�
1

4p�0

|�e||e|
r2 � m��

v2

r
�,

�

�

L
:
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Figure 39-16 (a) Circular orbit of
an electron in the Bohr model
of the hydrogen atom. (b) The
Coulomb force on the elec-
tron is directed radially inward
toward the nucleus.

F
:

Nucleus

Circular orbit 

Electron

(a) (b)

F
+e

–e

Bohr’s model for 
hydrogen resembles 
the orbital model
of a planet around 
a star.



we find

for n � 1, 2, 3, . . . . (39-26)

We can rewrite this as

r � an2, for n � 1, 2, 3, . . . , (39-27)

where (39-28)

These last three equations tell us that, in the Bohr model of the hydrogen atom, the
electron’s orbital radius r is quantized and the smallest possible orbital radius (for 
n � 1) is a, which is called the Bohr radius. According to the Bohr model, the
electron cannot get any closer to the nucleus than orbital radius a, and that is why
the attraction between electron and nucleus does not simply collapse them together.

Orbital Energy Is Quantized
Let’s next find the energy of the hydrogen atom according to the Bohr model. The
electron has kinetic energy , and the electron–nucleus system has elec-
tric potential energy U q1q2/4p´0r (Eq. 24-46). Again, let q1 be the electron’s
charge �e and q2 be the nuclear charge �e.Then the mechanical energy is

(39-29)

Solving Eq. 39-24 for mv2 and substituting the result in Eq. 39-29 lead to

(39-30)

Next, replacing r with its equivalent from Eq. 39-26, we have

for n � 1, 2, 3, . . . , (39-31)

where the subscript n on E signals that we have now quantized the energy.
From this equation, Bohr was able to calculate the visible wavelengths emitted

and absorbed by hydrogen, but before we discuss how to go from the energy equa-
tion to the wavelengths, let’s discuss the correct model of the hydrogen atom.

En � �
me4

8´2
0h2

1
n2 ,

E � �
1

8p´0

e2

r
.

� 1
2 mv2 � ��

1
4p´0

e2

r �.

E � K � U

�
K � 1

2 mv2

a �
h2́

0

p me2 � 5.291 772 � 10 �11 m � 52.92 pm.

r �
h2´0

p me2 n2,
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Hydrogen is a 
three-dimensional,
finite electron trap, 
with walls that vary 
in depth with 
distance.

Figure 39-17 The potential energy U of a hydrogen atom as a function of the separation r
between the electron and the central proton.The plot is shown twice (on the left and on
the right) to suggest the three-dimensional spherically symmetric trap in which the
electron is confined.



Schrödinger’s Equation and the Hydrogen Atom
In Schrödinger’s model of the hydrogen atom, the electron (charge �e) is in a po-
tential energy trap due to its electrical attraction to the proton (charge �e) at the
center of the atom. From Eq. 24-46, we write the potential energy function as

(39-32)

Because this well is three-dimensional, it is more complex than our previous one-
and two-dimensional wells. Because this well is finite, it is more complex than the
three-dimensional well of Fig. 39-14. Moreover, it does not have sharply defined
walls. Rather, its walls vary in depth with radial distance r. Figure 39-17 is proba-
bly the best we can do in drawing the hydrogen potential well, but even that
drawing takes much effort to interpret.

To find the allowed energies and wave functions for an electron trapped in
the potential well given by Eq. 39-32, we need to apply Schrödinger’s equation.
With some manipulation, we would find that we could separate the equation into
three separate differential equations, two depending on angles and one depending
on radial distance r. The solution of the latter equation requires a quantum num-
ber n and produces the energy values En of the electron:

for n � 1, 2, 3, . . . , (39-33)

(This equation is exactly what Bohr found by using a very wrong planetary model
of the atom.) Evaluating the constants in Eq. 39-33 gives us

for n � 1, 2, 3, . . . . (39-34)

This equation tells us that the energy En of the hydrogen atom is quantized; that is,
En is restricted by its dependence on the quantum number n. Because the nucleus is
assumed to be fixed in place and only the electron has motion, we can assign the en-
ergy values of Eq. 39-34 either to the atom as a whole or to the electron alone.

Energy Changes
The energy of a hydrogen atom (or, equivalently, of its electron) changes when
the atom emits or absorbs light. As we have seen several times since Eq. 39-6,
emission and absorption involve a quantum of light according to

hf � 
E � Ehigh � Elow. (39-35)

Let’s make three changes to Eq. 39-35. On the left side, we substitute c/l
for f. On the right side, we use Eq. 39-33 twice to replace the energy terms. Then,
with a simple rearrangement, we have

(39-36)

We can rewrite this as

(39-37)

in which R is the Rydberg constant:

. (39-38)R �
me4

8´0
2h3c

� 1.097 373 � 107 m�1

1
l

� R � 1
n low

2 �
1

nhigh
2 �,

1
l

� �
me4

8´ 0
2h3c � 1

nhigh
2 �

1
nlow

2 �.

En � �
2.180 � 10 �18 J

n2 � �
13.61 eV

n2 ,

En � �
me4

8´2
0h2

1
n2 ,

U(r) �
�e2

4p´0r
.
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For example, if we replace nlow with 2 in Eq. 39-36 and then restrict nhigh to be
3, 4, 5, and 6, we generate the four visible wavelengths at which hydrogen can
emit or absorb light: 656 nm, 486 nm, 434 nm, and 410 nm.

The Hydrogen Spectrum
Figure 39-18a shows the energy levels corresponding to various values of n in
Eq. 39-34. The lowest level, for n � 1, is the ground state of hydrogen. Higher
levels correspond to excited states, just as we saw for our simpler potential traps.
Note several differences, however. (1) The energy levels now have negative
values rather than the positive values we previously chose in, for instance, Figs.
39-3 and 39-9. (2) The levels now become progressively closer as we move to
higher levels. (3) The energy for the greatest value of n—namely, n � 
—is now
E
 � 0. For any energy greater than E
 � 0, the electron and proton are not
bound together (there is no hydrogen atom), and the E � 0 region in Fig. 39-18a
is like the nonquantized region for the finite well of Fig. 39-9.

A hydrogen atom can jump between quantized energy levels by emitting or
absorbing light at the wavelengths given by Eq. 39-36. Any such wavelength is
often called a line because of the way it is detected with a spectroscope; thus, a
hydrogen atom has absorption lines and emission lines. A collection of such
lines, such as in those in the visible range, is called a spectrum of the hydrogen
atom.

Series. The lines for hydrogen are said to be grouped into series, according to
the level at which upward jumps start and downward jumps end. For example, the
emission and absorption lines for all possible jumps up from the n � 1 level and
down to the n � 1 level are said to be in the Lyman series (Fig. 39-18b), named af-
ter the person who first studied those lines. Further, we can say that the Lyman
series has a home-base level of n � 1. Similarly, the Balmer series has a home-base
level of n � 2 (Fig. 39-18c), and the Paschen series has a home-base level of n � 3
(Fig. 39-18d).

Some of the downward quantum jumps for these three series are shown in
Fig. 39-18. Four lines in the Balmer series are in the visible range and are repre-
sented in Fig. 39-18c with arrows corresponding to their colors. The shortest of
those arrows represents the shortest jump in the series, from the n � 3 level to
the n � 2 level. Thus, that jump involves the smallest change in the electron’s
energy and the smallest amount of emitted photon energy for the series. The
emitted light is red. The next jump in the series, from n � 4 to n � 2, is longer,
the photon energy is greater, the wavelength of the emitted light is shorter, and
the light is green. The third, fourth, and fifth arrows represent longer jumps and
shorter wavelengths. For the fifth jump, the emitted light is in the ultraviolet
range and thus is not visible.

The series limit of a series is the line produced by the jump between the
home-base level and the highest energy level, which is the level with the limiting
quantum number n � 
. Thus, the series limit corresponds to the shortest wave-
length in the series.

If a jump is upward into the nonquantized portion of Fig. 39-18, the electron’s
energy is no longer given by Eq. 39-34 because the electron is no longer trapped
in the atom. That is, the hydrogen atom has been ionized, meaning that the
electron has been removed to a distance so great that the Coulomb force on it
from the nucleus is negligible. The atom can be ionized if it absorbs any wave-
length shorter than the series limit.The free electron then has only kinetic energy
K ( , assuming a nonrelativistic situation).

Quantum Numbers for the Hydrogen Atom
Although the energies of the hydrogen atom states can be described by the single
quantum number n, the wave functions describing these states require three
quantum numbers, corresponding to the three dimensions in which the electron

� 1
2mv2
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Figure 39-18 (a) An energy-level diagram for the hydrogen atom. Some of the transitions for (b) the Lyman series, (c) the Balmer
series, and (d) the Paschen series. For each, the longest four wavelengths and the series-limit wavelength are plotted on a
wavelength axis.Any wavelength shorter than the series-limit wavelength is allowed.



can move. The three quantum numbers, along with their names and the values
that they may have, are shown in Table 39-2.

Each set of quantum numbers identifies the wave function of a
particular quantum state. The quantum number n, called the principal
quantum number, appears in Eq. 39-34 for the energy of the state. The orbital
quantum number is a measure of the magnitude of the angular momentum
associated with the quantum state. The orbital magnetic quantum number
is related to the orientation in space of this angular momentum vector. The re-
strictions on the values of the quantum numbers for the hydrogen atom, as
listed in Table 39-2, are not arbitrary but come out of the solution to
Schrödinger’s equation. Note that for the ground state (n � 1), the restrictions
require that and . That is, the hydrogen atom in its ground state
has zero angular momentum, which is not predicted by Eq. 39-23 in the Bohr
model.

m� � 0� � 0

m�

�

(n, �, m�)
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Checkpoint 5
(a) A group of quantum states of the hydrogen atom has n � 5. How many values
of are possible for states in this group? (b) A subgroup of hydrogen atom states in the
n � 5 group has . How many values of are possible for states in this subgroup?m�� � 3

�

Table 39-2 Quantum Numbers for the Hydrogen Atom

Symbol Name Allowed Values

n Principal quantum number 1, 2, 3, . . .
Orbital quantum number 0, 1, 2, . . . , n � 1
Orbital magnetic quantum number ��, �(� � 1), . . . , �(� � 1), ��m�

�

The Wave Function of the Hydrogen Atom’s Ground State
The wave function for the ground state of the hydrogen atom, as obtained by solv-
ing the three-dimensional Schrödinger equation and normalizing the result, is

(ground state), (39-39)

where a is the Bohr radius. This radius is loosely taken
to be the effective radius of a hydrogen atom and turns out to be a convenient
unit of length for other situations involving atomic dimensions.

As with other wave functions, c(r) in Eq. 39-39 does not have physical mean-
ing but c2(r) does, being the probability density—the probability per unit 
volume—that the electron can be detected. Specifically, c2(r) dV is the probabil-
ity that the electron can be detected in any given (infinitesimal) volume element
dV located at radius r from the center of the atom:

(39-40)

Because c2(r) here depends only on r, it makes sense to choose, as a volume
element dV, the volume between two concentric spherical shells whose radii are r
and r � dr.That is, we take the volume element dV to be

dV � (4pr 2) dr, (39-41)

�probability of detection
in volume dV

at radius r
� � �volume probability

density c 2(r)
at radius r

� (volume dV).

(� 5.291 772 � 10�11 m)

c(r) �
1

1pa3/2
e�r/a



in which 4pr2 is the surface area of the inner shell and dr is the radial distance
between the two shells.Then, combining Eqs. 39-39, 39-40, and 39-41 gives us

(39-42)

Describing the probability of detecting an electron is easier if we work with a
radial probability density P(r) instead of a volume probability density c2(r). This
P(r) is a linear probability density such that

or P(r) dr � c2(r) dV. (39-43)

Substituting for c2(r) dV from Eq. 39-42, we obtain

(radial probability density, hydrogen atom ground state). (39-44)

To find the probability of detecting the ground-state electron between any
two radii r1 and r2 (that is, between a spherical shell of radius r1 and another of
radius r2), we integrate Eq. 39-44 between those two radii:

(39-45)

If the radial range 
r (� r2 2 r1) in which we search for the electron is small
enough such that P(r) does not vary by much over the range, then we can usually
approximate the integral in Eq. 39-45 as being equal to the product P(r) 
r, with
P(r) evaluated in the center of 
r.

Figure 39-19 is a plot of Eq. 39-44.The area under the plot is unity; that is,

(39-46)

This equation states that in a hydrogen atom, the electron must be somewhere in
the space surrounding the nucleus.

The triangular marker on the horizontal axis of Fig. 39-19 is located one Bohr
radius from the origin. The graph tells us that in the ground state of the hydrogen
atom, the electron is most likely to be found at about this distance from the
center of the atom.

Figure 39-19 conflicts sharply with the popular view that electrons in atoms
follow well-defined orbits like planets moving around the Sun. This popular view,
however familiar, is incorrect. Figure 39-19 shows us all that we can ever know
about the location of the electron in the ground state of the hydrogen atom. The
appropriate question is not “When will the electron arrive at such-and-such
a point?” but “What are the odds that the electron will be detected in a small
volume centered on such-and-such a point?” Figure 39-20, which we call a dot
plot, suggests the probabilistic nature of the wave function: The density of dots
represents the probability density of detection of the electron with the hydrogen
atom in its ground state. Think of the atom in this state as a fuzzy ball with no
sharply defined boundary and no hint of orbits.

It is not easy for a beginner to envision subatomic particles in this probabilistic
way. The difficulty is our natural impulse to regard an electron as something like a
tiny jelly bean, located at certain places at certain times and following a well-defined
path. Electrons and other subatomic particles simply do not behave in this way.

�


0
P(r) dr � 1.

�probability of detection
between r1 and r2

� � �r2

r1

P(r) dr.

P(r) �
4
a3 r2e�2r/a

�radial probability
density P(r)
at radius r

� � radial
width dr� � �volume probability

density c 2(r)
at radius r

� (volume dV)

�probability of detection
in volume dV

at radius r
� � c 2(r) dV �

4
a3 e�2r/ar2 dr.
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Figure 39-19 A plot of the radial probability
density P(r) for the ground state of the
hydrogen atom.The triangular marker is lo-
cated at one Bohr radius from the origin, and
the origin represents the center of the atom.

Figure 39-20 A “dot plot” showing the
volume probability density c2(r)—not
the radial probability density P(r)—for the
ground state of the hydrogen atom.The
density of dots drops exponentially with 
increasing distance from the nucleus, which
is represented here by a red spot.



The energy of the ground state, found by putting n � 1 in Eq. 39-34, is 
E1 � �13.60 eV.The wave function of Eq. 39-39 results if you solve Schrödinger’s
equation with this value of the energy. Actually, you can find a solution
of Schrödinger’s equation for any value of the energy—say, E � �11.6 eV or
�14.3 eV. This may suggest that the energies of the hydrogen atom states are not
quantized—but we know that they are.

The puzzle was solved when physicists realized that such solutions of
Schrödinger’s equation are not physically acceptable because they yield increas-
ingly large values as r : 
. These “wave functions” tell us that the electron is
more likely to be found very far from the nucleus rather than closer to it, which
makes no sense. We discard such solutions and accept only solutions that meet
the boundary condition c(r) : 0 as r : 
; that is, we agree to deal only with
confined electrons. With this restriction, the solutions of Schrödinger’s equation
form a discrete set, with quantized energies given by Eq. 39-34.

Hydrogen Atom States with n = 2
According to the requirements of Table 39-2, there are four states of the hydro-
gen atom with n � 2; their quantum numbers are listed in Table 39-3. Consider
first the state with n � 2 and ; its probability density is represented by
the dot plot of Fig. 39-21. Note that this plot, like the plot for the ground state
shown in Fig. 39-20, is spherically symmetric. That is, in a spherical coordinate
system like that defined in Fig. 39-22, the probability density is a function of the
radial coordinate r only and is independent of the angular coordinates u and f.

It turns out that all quantum states with have spherically symmetric
wave functions. This is reasonable because the quantum number is a measure 
of the angular momentum associated with a given state. If , the angular
momentum is also zero, which requires that the probability density representing
the state have no preferred axis of symmetry.

Dot plots of c2 for the three states with n � 2 and are shown in 
Fig. 39-23.The probability densities for the states with and arem� � �1m� � �1

� � 1

� � 0
�

� � 0

� � m� � 0
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Table 39-3 Quantum Numbers for Hydrogen Atom
States with n = 2

n

2 0 0
2 1 �1
2 1 0
2 1 �1

m��

z

y

x

rθ 

φ 

P

Figure 39-21 A dot plot showing the 
volume probability density c2(r) for the 
hydrogen atom in the quantum state with

, and .The plot has 
spherical symmetry about the central 
nucleus. The gap in the dot density pattern
marks a spherical surface over which 
c2(r) � 0.

m� � 0n � 2, � � 0

Figure 39-22 The relationship between the
coordinates x, y, and z of the rectangular
coordinate system and the coordinates r, u,
and f of the spherical coordinate system.
The latter are more appropriate for analyz-
ing situations involving spherical symmetry,
such as the hydrogen atom.

Figure 39-23 Dot plots of the volume proba-
bility density c2(r, u) for the hydrogen
atom in states with n � 2 and . (a)
Plot for . (b) Plot for and

. Both plots show that the proba-
bility density is symmetric about the z axis.
m� � �1

m� � �1m� � 0
� � 1

(a) (b)

z z

m� = 0
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identical.Although these plots are symmetric about the z axis, they are not spher-
ically symmetric. That is, the probability densities for these three states are func-
tions of both r and the angular coordinate u.

Here is a puzzle: What is there about the hydrogen atom that establishes the
axis of symmetry that is so obvious in Fig. 39-23? The answer: absolutely nothing.

The solution to this puzzle comes about when we realize that all three states
shown in Fig. 39-23 have the same energy. Recall that the energy of a state, given
by Eq. 39-33, depends only on the principal quantum number n and is independ-
ent of and . In fact, for an isolated hydrogen atom there is no way to differen-
tiate experimentally among the three states of Fig. 39-23.

If we add the volume probability densities for the three states for which 
n � 2 and , the combined probability density turns out to be spherically
symmetrical, with no unique axis. One can, then, think of the electron as spending
one-third of its time in each of the three states of Fig. 39-23, and one can think of
the weighted sum of the three independent wave functions as defining a spheri-
cally symmetric subshell specified by the quantum numbers n � 2, . The
individual states will display their separate existence only if we place the hydro-
gen atom in an external electric or magnetic field. The three states of the n � 2,

subshell will then have different energies, and the field direction will estab-
lish the necessary symmetry axis.

The n � 2, state, whose volume probability density is shown in
Fig. 39-21, also has the same energy as each of the three states of Fig. 39-23. We
can view all four states whose quantum numbers are listed in Table 39-3 as form-
ing a spherically symmetric shell specified by the single quantum number n.
The importance of shells and subshells will become evident in Chapter 40, where
we discuss atoms having more than one electron.

To round out our picture of the hydrogen atom, we display in Fig. 39-24 a dot
plot of the radial probability density for a hydrogen atom state with a relatively
high quantum number (n � 45) and the highest orbital quantum number that the
restrictions of Table 39-2 permit .The probability density forms a
ring that is symmetrical about the z axis and lies very close to the xy plane. The
mean radius of the ring is n2a, where a is the Bohr radius.This mean radius is more
than 2000 times the effective radius of the hydrogen atom in its ground state.

Figure 39-24 suggests the electron orbit of classical physics — it resembles
the circular orbit of a planet around a star. Thus, we have another illustration
of Bohr’s correspondence principle — namely, that at large quantum numbers
the predictions of quantum mechanics merge smoothly with those of classical
physics. Imagine what a dot plot like that of Figure 39-24 would look like for
really large values of n and — say, n � 1000 and � 999.��

(� � n � 1 � 44)

� � 0

� � 1

� � 1

� � 1

m��

r =
 n

2 a

y

x

Figure 39-24 A dot plot of the radial probabil-
ity density P(r) for the hydrogen atom in a
quantum state with a relatively large princi-
pal quantum number—namely, n � 45—
and angular momentum quantum number

.The dots lie close to the xy
plane, the ring of dots suggesting a classical
electron orbit.

� � n � 1 � 44

Calculation: If we differentiate P(r) with respect to r,
using derivative 7 of Appendix E and the chain rule for
differentiating products, we get

If we set the right side equal to zero, we obtain an equa-

�
8
a4 r(a � r)e�2r/a.

�
8r
a3 e�2r/a �

8r2

a4 e�2r/a

dP
dr

�
4
a3 r2� �2

a �e�2r/a �
4
a3  2re�2r/a

Sample Problem 39.06 Radial probability density for the electron in a hydrogen atom

Show that the radial probability density for the ground state
of the hydrogen atom has a maximum at r � a.

KEY IDEAS

(1) The radial probability density for a ground-state hydro-
gen atom is given by Eq. 39-44,

(2) To find the maximum (or minimum) of any function, we
must differentiate the function and set the result equal to zero.

P(r) �
4
a3 r2e�2r/a.
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Calculation: We seek the radius of a sphere for which 
p(r) � 0.90. Substituting that value in the expression for p(r),
we have

or

We must find the value of x that satisfies this equality. It is not
possible to solve explicitly for x, but an equation solver on
a calculator yields x � 2.66. This means that the radius of a
sphere within which the electron will be detected 90% of
the time is 2.66a. Mark this position on the horizontal axis of
Fig. 39-19. The area under the curve from r � 0 to r � 2.66a
gives the probability of detection in that range and is 90% of the
total area under the curve.

10e�2x(1 � 2x � 2x2) � 1.

0.90 � 1 � e�2x(1 � 2x � 2x2)

Sample Problem 39.07 Probability of detection of the electron in a hydrogen atom

It can be shown that the probability p(r) that the electron in
the ground state of the hydrogen atom will be detected 
inside a sphere of radius r is given by

in which x, a dimensionless quantity, is equal to r/a. Find r
for p(r) � 0.90.

KEY IDEA

There is no guarantee of detecting the electron at any par-
ticular radial distance r from the center of the hydrogen
atom. However, with the given function, we can calculate
the probability that the electron will be detected somewhere
within a sphere of radius r.

p(r) � 1 � e�2x(1 � 2x � 2x2),

Light with this wavelength is in the ultraviolet range.

(b) What is the wavelength of the series limit for the Lyman
series?

KEY IDEA

The series limit corresponds to a jump between the home-
base level (n � 1 for the Lyman series) and the level at the
limit n � 
.

Calculations: Now that we have identified the values of n
for the transition, we could proceed as in (a) to find the cor-
responding wavelength l. Instead, let’s use a more direct
procedure. From Eq. 39-37, we find

which yields

(Answer)

Light with this wavelength is also in the ultraviolet range.

l � 9.11 � 10 �8 m � 91.1 nm.

� 1.097 373 � 10 7 m�1 � 1
12 �

1

2 �,

1
l

� R� 1
nlow

2 �
1

nhigh
2 �

Sample Problem 39.08 Light emission from a hydrogen atom

(a) What is the wavelength of light for the least energetic
photon emitted in the Lyman series of the hydrogen atom
spectrum lines?

KEY IDEAS

(1) For any series, the transition that produces the least 
energetic photon is the transition between the home-base
level that defines the series and the level immediately above
it. (2) For the Lyman series, the home-base level is at n � 1
(Fig. 39-18b).Thus, the transition that produces the least ener-
getic photon is the transition from the n � 2 level to the n � 1
level.

Calculations: From Eq. 39-34 the energy difference is

Then from Eq. 39-6 (
E � hf ), with c/l replacing f, we have

(Answer)� 1.22 � 10 �7 m � 122 nm.

l �
hc

E

�
(6.63 � 10 �34 J �s)(3.00 � 10 8 m/s)

(10.20 eV)(1.60 � 10 �19 J/eV)


E � E2 � E1 � �(13.60 eV) � 1
22 �

1
12 � � 10.20 eV.

Additional examples, video, and practice available at WileyPLUS

tion that is true if r � a, so that the term (a � r) in the
middle of the equation is zero. In other words, dP/dr is
equal to zero when r � a. (Note that we also have 

dP/dr � 0 at r � 0 and at r � 
. However, these condi-
tions correspond to a minimum in P(r), as you can see in
Fig. 39-19.)
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Confinement Confinement of waves (string waves, matter
waves—any type of wave) leads to quantization—that is, discrete
states with certain energies. States with intermediate energies are
not allowed.

Electron in an Infinite Potential Well Because it is a matter
wave, an electron confined to an infinite potential well can exist in
only certain discrete states. If the well is one-dimensional with length
L, the energies associated with these quantum states are

for n � 1, 2, 3, . . . , (39-4)

where m is the electron mass and n is a quantum number. The low-
est energy, said to be the zero-point energy, is not zero but is given
by n � 1. The electron can change (jump) from one state to an-
other only if its energy change is


E � Ehigh � Elow , (39-5)

where Ehigh is the higher energy and Elow is the lower energy. If the
change is done by photon absorption or emission, the energy of the
photon must be equal to the change in the electron’s energy:

hf � � 
E � Ehigh � Elow , (39-6)

where frequency f and wavelength l are associated with the photon.
The wave functions for an electron in an infinite, one-dimen-

sional potential well with length L along an x axis are given by

cn(x) � for n � 1, 2, 3, . . . , (39-10)

where n is the quantum number and the factor comes
from normalizing the wave function. The wave function cn(x)
does not have physical meaning, but the probability density

does have physical meaning: The product (x) dx is the
probability that the electron will be detected in the interval between
x and x dx. If the probability density of an electron is integrated
over the entire x axis, the total probability must be 1, which means
that the electron will be detected somewhere along the x axis:

(x) dx � 1. (39-14)

Electron in a Finite Well The wave function for an electron
in a finite, one-dimensional potential well extends into the walls.
Compared to the states in an infinite well of the same size, the
states in a finite well have a limited number, longer de Broglie
wavelengths, and lower energies.

Two-Dimensional Electron Trap The quantized energies

c2
n�


�


�

c2
nc2

n(x)

22/L

A
2
L

sin � np

L
x�,

hc
l

En � � h2

8mL2 �n2,

Review & Summary

for an electron trapped in a two-dimensional infinite potential well
that forms a rectangular corral are

Enx,ny � (39-20)

where nx is a quantum number for which the electron’s matter
wave fits in well width Lx and ny is a quantum number for which it
fits in well width Ly. The wave functions for an electron in a 
two-dimensional well are given by

cnx,ny � (39-19)

The Hydrogen Atom The Bohr model of the hydrogen atom
successfully derived the energy levels for the atom, to explain the
emission/absorption spectrum of the atom, but it is incorrect in al-
most every other aspect. It is a planetary model in which the elec-
tron orbits the central proton with an angular momentum L that is
limited to values given by 

L � n , for n � 1, 2, 3, . . . , (39-23)

where n is a quantum number. The equation is, however, incorrect.
Application of the Schrödinger equation gives the correct values
of L and the quantized energies:

En � � for n � 1, 2, 3, . . . . (39-34)

The atom (or, the electron in the atom) can change energy only by
jumping between these allowed energies. If the jump is by photon
absorption (the atom’s energy increases) or photon emission (the
atom’s energy decreases), this restriction in energy changes leads to

� R (39-37)

for the wavelength of the light, where R is the Rydberg constant,

R � � 1.097 373 � 107 m�1. (39-38)

The radial probability density P(r) for a state of the hydrogen atom is
defined so that P(r) is the probability that the electron will be de-
tected somewhere in the space between two spherical shells of radii r
and r � dr that are centered on the nucleus. The probability that the
electron will be detected between any two given radii r1 and r2 is

(probability of detection) � (39-45)�r2

r1

P(r) dr.

me4

8´2
0h3c

� 1
n2

low
�

1
n2

high
�,

1
l

me4

8´2
0h2

1
n2 � �

13.60 eV
n2 ,

�

A
2

Lx
 sin � nxp

Lx
x�A

2
Ly

sin � nyp

Ly
y�.

h2

8m
� n2

x

L2
x

�
n2

y

L2
y
�,

2 Is the ground-state energy of a proton trapped in a one-
dimensional infinite potential well greater than, less than, or equal
to that of an electron trapped in the same potential well?

1 Three electrons are trapped in three different one-dimensional
infinite potential wells of widths (a) 50 pm, (b) 200 pm, and (c) 100
pm. Rank the electrons according to their ground-state energies,
greatest first.

Questions



bers of the three quantum states according to the de Broglie wave-
length of the electron, greatest first.

12 You want to modify the finite potential well of Fig. 39-7 to al-
low its trapped electron to exist in more than four quantum states.
Could you do so by making the well (a) wider or narrower, (b)
deeper or shallower?

13 A hydrogen atom is in the third excited state.To what state (give
the quantum number n) should it jump to (a) emit light with the
longest possible wavelength, (b) emit light with the shortest possible
wavelength, and (c) absorb light with the longest possible wavelength?

14 Figure 39-26 indicates the lowest energy levels (in electron-
volts) for five situations in which an electron is trapped in a one-
dimensional infinite potential well. In wells B, C, D, and E, the
electron is in the ground state. We shall excite the electron in well
A to the fourth excited state (at 25 eV). The electron can then de-
excite to the ground state by emitting one or more photons, corre-
sponding to one long jump or several short jumps. Which photon
emission energies of this de-excitation match a photon absorption
energy (from the ground state) of the other four electrons? Give
the n values.
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U

x x x 

0 2L 0 L/2 –L/2 +L/2
(a) (b) (c)

Figure 39-25 Question 4.

Figure 39-26 Question 14.

3 An electron is trapped in a one-dimensional infinite potential
well in a state with quantum number n � 17. How many points of
(a) zero probability and (b) maximum probability does its matter
wave have?

4 Figure 39-25 shows three infinite potential wells, each on an x
axis. Without written calculation, determine the wave function c
for a ground-state electron trapped in each well.

E
n

er
gy

 (
eV

) 

1
4

9

16

25

2

8

19

4

16

3

12

27

5

20

A B C D E 

Table 39-4

n

(a) 3 2 0
(b) 2 3 1
(c) 4 3 �4
(d) 5 5 0
(e) 5 3 �2

m��

proton if each is trapped in a one-dimensional infinite potential
well that is 200 pm wide?

•3 The ground-state energy of an electron trapped in a one-
dimensional infinite potential well is 2.6 eV.What will this quantity
be if the width of the potential well is doubled?

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 39-1 Energies of a Trapped Electron
•1 An electron in a one-dimensional infinite potential well of length
L has ground-state energy E1.The length is changed to L� so that the
new ground-state energy is .What is the ratio L�/L?

•2 What is the ground-state energy of (a) an electron and (b) a

E�1 � 0.500E1

5 A proton and an electron are trapped in identical one-
dimensional infinite potential wells; each particle is in its ground
state. At the center of the wells, is the probability density for the
proton greater than, less than, or equal to that of the electron?

6 If you double the width of a one-dimensional infinite potential
well, (a) is the energy of the ground state of the trapped electron
multiplied by 4, 2, , , or some other number? (b) Are the energies
of the higher energy states multiplied by this factor or by some
other factor, depending on their quantum number?

7 If you wanted to use the idealized trap of Fig. 39-1 to trap
a positron, would you need to change (a) the geometry of the trap, (b)
the electric potential of the central cylinder, or (c) the electric poten-
tials of the two semi-infinite end cylinders? (A positron has the same
mass as an electron but is positively charged.)

8 An electron is trapped in a finite potential well that is deep
enough to allow the electron to exist in a state with n � 4. How
many points of (a) zero probability and (b) maximum probability
does its matter wave have within the well?

9 An electron that is trapped in a one-dimensional infinite poten-
tial well of width L is excited from the ground state to the first ex-
cited state. Does the excitation increase, decrease, or have no effect
on the probability of detecting the electron in a small length of the x
axis (a) at the center of the well and (b) near one of the well walls?

10 An electron, trapped in a finite potential energy well such as
that of Fig. 39-7, is in its state of lowest energy. Are (a) its de
Broglie wavelength, (b) the magnitude of its momentum, and (c)
its energy greater than, the same as, or less than they would be if
the potential well were infinite, as in Fig. 39-2?

11 From a visual inspection of Fig. 39-8, rank the quantum num-

1
4

1
2

15 Table 39-4 lists the quantum numbers for five proposed
hydrogen atom states.Which of them are not possible?



•4 An electron, trapped in a one-dimensional infinite potential
well 250 pm wide, is in its ground state. How much energy must it
absorb if it is to jump up to the state with n � 4?

•5 What must be the width of a one-dimensional infinite
potential well if an electron trapped in it in the n � 3 state is to
have an energy of 4.7 eV?

•6 A proton is confined to a one-dimensional infinite potential
well 100 pm wide.What is its ground-state energy?

•7 Consider an atomic nucleus to be equivalent to a one-
dimensional infinite potential well with L � 1.4 � 10�14 m, a
typical nuclear diameter. What would be the ground-state energy
of an electron if it were trapped in such a potential well? (Note:
Nuclei do not contain electrons.)

••8 An electron is trapped in a one-dimensional infinite well
and is in its first excited state. Figure 39-27 indicates the five longest
wavelengths of light that the electron could absorb in transitions
from this initial state via a single photon absorption: la � 80.78 nm,
lb � 33.66 nm, lc � 19.23 nm, ld � 12.62 nm, and le � 8.98 nm.
What is the width of the potential well?

electron’s probability density is zero at x � 0.300L, and x � 0.400L;
it is not zero at intermediate values of x. The electron then jumps
to the next lower energy level by emitting light. What is the change
in the electron’s energy?

••15 An electron is trapped in a one-dimensional
infinite potential well that is 100 pm wide; the electron is in its
ground state. What is the probability that you can detect the
electron in an interval of width 
x � 5.0 pm centered at x � (a) 25
pm, (b) 50 pm, and (c) 90 pm? (Hint: The interval 
x is so narrow
that you can take the probability density to be constant within it.)

••16 A particle is confined to the one-dimensional infinite poten-
tial well of Fig. 39-2. If the particle is in its ground state, what is its
probability of detection between (a) x � 0 and x � 0.25L, (b) x �
0.75L and x � L, and (c) x � 0.25L and x � 0.75L?

Module 39-3 An Electron in a Finite Well
•17 An electron in the n � 2 state in the finite potential well of
Fig. 39-7 absorbs 400 eV of energy from an external source. Using
the energy-level diagram of Fig. 39-9, determine the electron’s ki-
netic energy after this absorption, assuming that the electron
moves to a position for which x � L.

•18 Figure 39-9 gives the energy levels for an electron trapped in
a finite potential energy well 450 eV deep. If the electron is in the 
n � 3 state, what is its kinetic energy?

••19 Figure 39-28a shows the energy-level diagram for a fi-
nite, one-dimensional energy well that contains an electron. The
nonquantized region begins at E4 � 450.0 eV. Figure 39-28b gives
the absorption spectrum of the electron when it is in the ground
state—it can absorb at the indicated wavelengths: la � 14.588 nm
and lb � 4.8437 nm and for any wavelength less than lc � 2.9108
nm.What is the energy of the first excited state?

WWWSSM

1215PROBLEMS

Figure 39-27 Problem 8.
0

λ dλ e λ c λ b λ a
λ (nm)

Figure 39-29 Problem 20.

Tube

V1V2V1

(a) (b)

E3

E4

E2

E1

0

E
n

er
gy

Nonquantized

••9 Suppose that an electron trapped in a one-dimensional infinite
well of width 250 pm is excited from its first excited state to its third
excited state. (a) What energy must be transferred to the electron for
this quantum jump? The electron then de-excites back to its ground
state by emitting light. In the various possible ways it can do this,
what are the (b) shortest, (c) second shortest, (d) longest, and (e)
second longest wavelengths that can be emitted? (f) Show the vari-
ous possible ways on an energy-level diagram. If light of wavelength
29.4 nm happens to be emitted, what are the (g) longest and (h)
shortest wavelength that can be emitted afterwards?

••10 An electron is trapped in a one-dimensional infinite potential
well. For what (a) higher quantum number and (b) lower quantum
number is the corresponding energy difference equal to the energy
difference 
E43 between the levels n � 4 and n � 3? (c) Show that
no pair of adjacent levels has an energy difference equal to 2
E43.

••11 An electron is trapped in a one-dimensional infinite po-
tential well. For what (a) higher quantum number and (b) lower
quantum number is the corresponding energy difference equal to
the energy of the n � 5 level? (c) Show that no pair of adjacent lev-
els has an energy difference equal to the energy of the n � 6 level.

••12 An electron is trapped in a one-dimensional infinite well of
width 250 pm and is in its ground state. What are the (a) longest, (b)
second longest, and (c) third longest wavelengths of light that can ex-
cite the electron from the ground state via a single photon absorption?

Module 39-2 Wave Functions of a Trapped Electron
••13 A one-dimensional infinite well of length 200 pm con-
tains an electron in its third excited state. We position an electron-
detector probe of width 2.00 pm so that it is centered on a point of
maximum probability density. (a) What is the probability of detec-
tion by the probe? (b) If we insert the probe as described 1000
times, how many times should we expect the electron to material-
ize on the end of the probe (and thus be detected)?

••14 An electron is in a certain energy state in a one-dimen-
sional, infinite potential well from x � 0 to x � L � 200 pm. The

Figure 39-28 Problem 19.
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••20 Figure 39-29a shows a thin tube in which a finite poten-
tial trap has been set up where V2 0 V.An electron is shown trav-
eling rightward toward the trap, in a region with a voltage of V1 �

�



�9.00 V, where it has a kinetic energy of 2.00 eV. When the elec-
tron enters the trap region, it can become trapped if it gets rid of
enough energy by emitting a photon. The energy levels of the elec-
tron within the trap are E1 � 1.0, E2 � 2.0, and E3 � 4.0 eV, and the
nonquantized region begins at E4 � 9.0 eV as shown in the energy-
level diagram of Fig. 39-29b. What is the smallest energy (eV) such
a photon can have?

••21 (a) Show that for the region x � L in the finite potential
well of Fig. 39-7, c(x) � De2kx is a solution of Schrödinger’s equa-
tion in its one-dimensional form, where D is a constant and k is
positive. (b) On what basis do we find this mathematically accept-
able solution to be physically unacceptable?

Module 39-4 Two- and Three-Dimensional Electron Traps
•22 An electron is contained in the rectangular corral of Fig.
39-13, with widths Lx 800 pm and Ly 1600 pm. What is the
electron’s ground-state energy?

•23 An electron is contained in the rectangular box of Fig. 39-14,
with widths Lx � 800 pm, Ly � 1600 pm, and Lz � 390 pm. What is
the electron’s ground-state energy?

••24 Figure 39-30 shows a two-dimen-
sional, infinite-potential well lying in an
xy plane that contains an electron. We
probe for the electron along a line that
bisects Lx and find three points at which
the detection probability is maximum.
Those points are separated by 2.00 nm.
Then we probe along a line that bisects Ly and find five points at
which the detection probability is maximum. Those points are sep-
arated by 3.00 nm.What is the energy of the electron?

••25 The two-dimensional, infi-
nite corral of Fig. 39-31 is square, with
edge length L 150 pm. A square
probe is centered at xy coordinates
(0.200L, 0.800L) and has an x width of
5.00 pm and a y width of 5.00 pm. What
is the probability of detection if the
electron is in the E1,3 energy state?

••26 A rectangular corral of widths 
Lx � L and Ly � 2L holds an electron. What multiple of h2/8mL2,
where m is the electron mass, gives (a) the energy of the electron’s
ground state, (b) the energy of its first excited state, (c) the energy
of its lowest degenerate states, and (d) the difference between the
energies of its second and third excited states?

••27 An electron (mass m) is contained in a rectan-
gular corral of widths Lx L and Ly 2L. (a) How many differ-
ent frequencies of light could the electron emit or absorb if it
makes a transition between a pair of the lowest five energy levels?
What multiple of h/8mL2 gives the (b) lowest, (c) second lowest,
(d) third lowest, (e) highest, (f) second highest, and (g) third high-
est frequency?

••28 A cubical box of widths Lx � Ly � Lz � L contains an
electron. What multiple of h2/8mL2, where m is the electron mass, is
(a) the energy of the electron’s ground state, (b) the energy of its sec-
ond excited state, and (c) the difference between the energies of its
second and third excited states? How many degenerate states have
the energy of (d) the first excited state and (e) the fifth excited state?

••29 An electron (mass m) is contained in a cubical box of widths
Lx � Ly � Lz. (a) How many different frequencies of light could

��
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the electron emit or absorb if it makes a transition between a pair
of the lowest five energy levels? What multiple of h/8mL2 gives the
(b) lowest, (c) second lowest, (d) third lowest, (e) highest, (f) sec-
ond highest, and (g) third highest frequency?

•••30 An electron is in the ground state in a two-dimensional,
square, infinite potential well with edge lengths L. We will probe
for it in a square of area 400 pm2 that is centered at x � L/8 and 
y � L/8. The probability of detection turns out to be 4.5 � 10�8.
What is edge length L?

Module 39-5 The Hydrogen Atom
•31 What is the ratio of the shortest wavelength of the
Balmer series to the shortest wavelength of the Lyman series?

•32 An atom (not a hydrogen atom) absorbs a photon whose as-
sociated wavelength is 375 nm and then immediately emits 
a photon whose associated wavelength is 580 nm. How much net
energy is absorbed by the atom in this process?

•33 What are the (a) energy, (b) magnitude of the momentum,
and (c) wavelength of the photon emitted when a hydrogen atom
undergoes a transition from a state with n � 3 to a state with
n � 1?

•34 Calculate the radial probability density P(r) for the
hydrogen atom in its ground state at (a) r � 0, (b) r � a, and 
(c) r � 2a, where a is the Bohr radius.

•35 For the hydrogen atom in its ground state, calculate (a) the
probability density c2(r) and (b) the radial probability density P(r)
for r � a, where a is the Bohr radius.

•36 (a) What is the energy E of the hydrogen-atom electron
whose probability density is represented by the dot plot of Fig. 39-
21? (b) What minimum energy is needed to remove this electron
from the atom?

•37 A neutron with a kinetic energy of 6.0 eV collides with
a stationary hydrogen atom in its ground state. Explain why the
collision must be elastic—that is, why kinetic energy must be con-
served. (Hint: Show that the hydrogen atom cannot be excited as a
result of the collision.)

•38 An atom (not a hydrogen atom) absorbs a photon whose as-
sociated frequency is 6.2 � 1014 Hz. By what amount does the en-
ergy of the atom increase?

••39 Verify that Eq. 39-44, the radial probability density for
the ground state of the hydrogen atom, is normalized. That is, ver-
ify that the following is true:

••40 What are the (a) wavelength range and (b) frequency range
of the Lyman series? What are the (c) wavelength range and (d)
frequency range of the Balmer series?

••41 What is the probability that an electron in the ground state
of the hydrogen atom will be found between two spherical shells
whose radii are r and r � 
r, (a) if r � 0.500a and 
r � 0.010a and
(b) if r � 1.00a and 
r � 0.01a, where a is the Bohr radius? (Hint:

r is small enough to permit the radial probability density to be
taken to be constant between r and r � 
r.)

••42 A hydrogen atom, initially at rest in the n � 4 quantum
state, undergoes a transition to the ground state, emitting a photon
in the process. What is the speed of the recoiling hydrogen atom?
(Hint: This is similar to the explosions of Chapter 9.)

�
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Figure 39-31 Problem 25.
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••43 In the ground state of the hydrogen atom, the electron has a
total energy of �13.6 eV. What are (a) its kinetic energy and (b) its
potential energy if the electron is one Bohr radius from the central
nucleus?

••44 A hydrogen atom in a state having a binding energy (the
energy required to remove an electron) of 0.85 eV makes a
transition to a state with an excitation energy (the difference 
between the energy of the state and that of the ground state) of
10.2 eV. (a) What is the energy of the photon emitted as a result
of the transition? What are the (b) higher quantum number and
(c) lower quantum number of the transition producing this
emission?

••45 The wave functions for the three states with the dot
plots shown in Fig. 39-23, which have n 2, 1, and 0,
and �1, are

in which the subscripts on c(r, u) give the values of the quantum
numbers n, , and the angles u and f are defined in Fig. 39-22.
Note that the first wave function is real but the others, which 
involve the imaginary number i, are complex. Find the radial prob-
ability density P(r) for (a) c210 and (b) c21�1 (same as for c21�1).
(c) Show that each P(r) is consistent with the corresponding dot
plot in Fig. 39-23. (d) Add the radial probability densities for c210,
c21�1, and c21�1 and then show that the sum is spherically symmet-
ric, depending only on r.

••46 Calculate the probability that the electron in the hydrogen
atom, in its ground state, will be found between spherical shells
whose radii are a and 2a, where a is the Bohr radius.

••47 For what value of the principal quantum number n would
the effective radius, as shown in a probability density dot plot for
the hydrogen atom, be 1.0 mm? Assume that has its maximum
value of n � 1. (Hint: See Fig. 39-24.)

••48 Light of wavelength 121.6 nm is emitted by a hydrogen
atom. What are the (a) higher quantum number and (b) lower
quantum number of the transition producing this emission? (c)
What is the name of the series that includes the transition?

••49 How much work must be done to pull apart the electron and
the proton that make up the hydrogen atom if the atom is initially
in (a) its ground state and (b) the state with n � 2?

••50 Light of wavelength 102.6 nm is emitted by a hydrogen
atom. What are the (a) higher quantum number and (b) lower
quantum number of the transition producing this emission? (c)
What is the name of the series that includes the transition?

••51 What is the probability that in the ground state of the hydro-
gen atom, the electron will be found at a radius greater than the
Bohr radius?

••52 A hydrogen atom is excited from its ground state to the state
with n � 4. (a) How much energy must be absorbed by the atom?
Consider the photon energies that can be emitted by the atom as it
de-excites to the ground state in the several possible ways. (b) How
many different energies are possible; what are the (c) highest,
(d) second highest, (e) third highest, (f) lowest, (g) second lowest,
and (h) third lowest energies?

••53 Schrödinger’s equation for states of the hy-WWWSSM
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c21�1(r, u) � (1/81p)(a�3/2)(r/a)e�r/2a(sin u)e�if,

c21�1(r, u) � (1/81p)(a�3/2)(r/a)e�r/2a(sin u)e�if,
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drogen atom for which the orbital quantum number is zero is

Verify that Eq. 39-39, which describes the ground state of the hy-
drogen atom, is a solution of this equation.

•••54 The wave function for the hydrogen-atom quantum state
represented by the dot plot shown in Fig. 39-21, which has n � 2
and , is

in which a is the Bohr radius and the subscript on c(r) gives the
values of the quantum numbers n, , . (a) Plot and show
that your plot is consistent with the dot plot of Fig. 39-21. (b) Show
analytically that has a maximum at r � 4a. (c) Find the ra-
dial probability density P200(r) for this state. (d) Show that

and thus that the expression above for the wave function c200(r)
has been properly normalized.

•••55 The radial probability density for the ground state of the
hydrogen atom is a maximum when r � a, where a is the Bohr ra-
dius. Show that the average value of r, defined as

has the value 1.5a. In this expression for ravg, each value of P(r) is
weighted with the value of r at which it occurs. Note that the average
value of r is greater than the value of r for which P(r) is a maximum.

Additional Problems
56 Let 
Eadj be the energy difference between two adjacent en-
ergy levels for an electron trapped in a one-dimensional infinite
potential well. Let E be the energy of either of the two levels. (a)
Show that the ratio 
Eadj/E approaches the value 2/n at large val-
ues of the quantum number n. As n : 
, does (b) 
Eadj, (c) E, or
(d) 
Eadj/E approach zero? (e) What do these results mean in
terms of the correspondence principle?

57 An electron is trapped in a one-dimensional infinite potential
well. Show that the energy difference 
E between its quantum lev-
els n and n � 2 is (h2/2mL2)(n � 1).

58 As Fig. 39-8 suggests, the probability density for an electron in
the region 0 � x � L for the finite potential well of Fig. 39-7 is
sinusoidal, being given by c2(x) � B sin2 kx, in which B is a con-
stant. (a) Show that the wave function c(x) that may be found from
this equation is a solution of Schrödinger’s equation in its one-
dimensional form. (b) Find an expression for k that makes this true.

59 As Fig. 39-8 suggests, the probability density for the
region x L in the finite potential well of Fig. 39-7 drops off 
exponentially according to c2(x) � Ce�2kx, where C is a constant.
(a) Show that the wave function c(x) that may be found from
this equation is a solution of Schrödinger’s equation in its one-
dimensional form. (b) Find an expression for k for this to be true.

60 An electron is confined to a narrow evacuated tube of length
3.0 m; the tube functions as a one-dimensional infinite potential well.
(a) What is the energy difference between the electron’s ground state
and its first excited state? (b) At what quantum number n would the
energy difference between adjacent energy levels be 1.0 eV—which

�
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is measurable, unlike the result of (a)? At that quantum number,
(c) what multiple of the electron’s rest energy would give the elec-
tron’s total energy and (d) would the electron be relativistic?

61 (a) Show that the terms in Schrödinger’s equation (Eq. 39-18)
have the same dimensions. (b) What is the common SI unit for
each of these terms?

62 (a) What is the wavelength of light for the least energetic pho-
ton emitted in the Balmer series of the hydrogen atom spectrum
lines? (b) What is the wavelength of the series limit?

63 (a) For a given value of the principal quantum number n for a
hydrogen atom, how many values of the orbital quantum number 
are possible? (b) For a given value of , how many values of the or-
bital magnetic quantum number are possible? (c) For a given
value of n, how many values of are possible?

64 Verify that the combined value of the constants appearing in
Eq. 39-33 is 13.6 eV.

65 A diatomic gas molecule consists
of two atoms of mass m separated by a
fixed distance d rotating about an axis
as indicated in Fig. 39-32. Assuming
that its angular momentum is quan-
tized as in the Bohr model for the
hydrogen atom, find (a) the possible
angular velocities and (b) the possible
quantized rotational energies.

66 In atoms there is a finite, though very small, probability that,
at some instant, an orbital electron will actually be found inside the
nucleus. In fact, some unstable nuclei use this occasional appear-
ance of the electron to decay by electron capture. Assuming that
the proton itself is a sphere of radius 1.1 � 10�15 m and that the
wave function of the hydrogen atom’s electron holds all the way to
the proton’s center, use the ground-state wave function to calcu-
late the probability that the hydrogen atom’s electron is inside its
nucleus.

67 (a) What is the separation in energy between the lowest two
energy levels for a container 20 cm on a side containing argon
atoms? Assume, for simplicity, that the argon atoms are trapped in
a one-dimensional well 20 cm wide. The molar mass of argon is
39.9 g/mol. (b) At 300 K, to the nearest power of ten, what is the
ratio of the thermal energy of the atoms to this energy separation?
(c) At what temperature does the thermal energy equal the en-
ergy separation?

m�

m�

�
�

68 A muon of charge �e and mass m � 207me (where me is the
mass of an electron) orbits the nucleus of a singly ionized helium
atom (He+). Assuming that the Bohr model of the hydrogen atom
can be applied to this muon–helium system, verify that the energy
levels of the system are given by

69 From the energy-level diagram for hydrogen, explain the ob-
servation that the frequency of the second Lyman-series line is the
sum of the frequencies of the first Lyman-series line and the first
Balmer-series line.This is an example of the empirically discovered
Ritz combination principle. Use the diagram to find some other
valid combinations.

70 A hydrogen atom can be considered as having a central point-
like proton of positive charge e and an electron of negative charge
�e that is distributed about the proton according to the volume
charge density r � A exp(�2r/a0). Here A is a constant, a0 � 0.53 �
10�10 m, and r is the distance from the center of the atom. (a) Using
the fact that the hydrogen is electrically neutral, find A. Then find
the (b) magnitude and (c) direction of the atom’s electric field at a0.

71 An old model of a hydrogen atom has the charge �e of the pro-
ton uniformly distributed over a sphere of radius a0, with the electron
of charge �e and mass m at its center. (a) What would then be the
force on the electron if it were displaced from the center by a distance
r # a0? (b) What would be the angular frequency of oscillation of the
electron about the center of the atom once the electron was released?

72 In a simple model of a hydrogen atom, the single electron or-
bits the single proton (the nucleus) in a circular path. Calculate (a)
the electric potential set up by the proton at the orbital radius of
52.9 pm, (b) the electric potential energy of the atom, and (c) the
kinetic energy of the electron. (d) How much energy is required to
ionize the atom (that is, to remove the electron to an infinite dis-
tance with no kinetic energy)? Give the energies in electron-volts.

73 Consider a conduction electron in a cubical crystal of a con-
ducting material. Such an electron is free to move throughout the
volume of the crystal but cannot escape to the outside. It is trapped
in a three-dimensional infinite well.The electron can move in three
dimensions, so that its total energy is given by

in which n1, n2, and n3 are positive integer values. Calculate the en-
ergies of the lowest five distinct states for a conduction electron
moving in a cubical crystal of edge length L � 0.25 mm.

E �
h2

8L2m
 (n2

1 � n2
2 � n2

3),

E � �
11.3 keV

n2 .
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C H A P T E R  4 0

All About Atoms

40-1 PROPERTIES OF ATOMS

After reading this module, you should be able to . . .

40.01 Discuss the pattern that is seen in a plot of ionization 
energies versus atomic number Z.

40.02 Identify that atoms have angular momentum and magnetism.
40.03 Explain the Einstein–de Haas experiment. 
40.04 Identify the five quantum numbers of an electron in an

atom and the allowed values of each.
40.05 Determine the number of electron states allowed in a

given shell and subshell.
40.06 Identify that an electron in an atom has an orbital angular

momentum and an orbital magnetic dipole moment .m
orb

:L
:

magnetic dipole moment using the orbital magnetic
quantum number and the Bohr magneton .

40.12 For a given orbital state or spin state, calculate the
semiclassical angle u.

40.13 Identify that a spin angular momentum (usually simply
called spin) and a spin magnetic dipole moment are intrin-
sic properties of electrons (and also protons and neutrons).

40.14 Calculate magnitudes for spin angular momentum 
and spin magnetic dipole moment in terms of the spin
quantum number s.

40.15 Apply the relationship between the spin angular mo-
mentum and the spin magnetic dipole moment .ms

:S
:

ms
:

S
:

ms
:

S
:

mBm/

m
orb

:

● Atoms have quantized energies and can make quantum
jumps between them. If a jump between a higher energy and a
lower energy involves the emission or absorption of a photon,
the frequency associated with the light is given by

hf � Ehigh � Elow.

● States with the same value of quantum number n form a shell.

● States with the same values of quantum numbers n and
form a subshell.

● The magnitude of the orbital angular momentum of an elec-
tron trapped in an atom has quantized values given by

for

where is , � is the orbital quantum number, and n is the
electron’s principal quantum number.
● The component Lz of the orbital angular momentum on a
z axis is quantized and given by

for

where is the orbital magnetic quantum number.m/

m/ � 0, 	1, 	2, � � � , 	/,Lz � m��,

h/2p�

/ � 0, 1, 2, � � � , (n � 1),L � 2/(/ � 1) �,

�

● The magnitude of the orbital magnetic moment of the
electron is quantized with the values given by

where m is the electron mass.

● The component on a z axis is also quantized according to

where is the Bohr magneton:

● Every electron, whether trapped or free, has an intrinsic spin
angular momentum with a magnitude that is quantized as

for ,

where s is the spin quantum number. An electron is said to be a
spin- particle.1

2

s � 1
2S � 1s(s � 1) �,

S
:

mB �
eh

4pm
�

e�

2m
� 9.274 � 10�24 J/T.

mB

morb,z � �
e

2m
m�� � �m�mB,

morb,z

morb �
e

2m
2�(� � 1) �,

morb
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40.07 Calculate magnitudes for orbital angular momentum 
and orbital magnetic dipole moment in terms of the

orbital quantum number .
40.08 Apply the relationship between orbital angular momentum

and orbital magnetic dipole moment .m
orb

:L
:

/
m

orb
:L

:

40.09 Identify that and cannot be observed (measured) but a
component on a measurement axis (usually called the z axis) can.

40.10 Calculate the z components Lz of an orbital angular mo-
mentum using the orbital magnetic quantum number .

40.11 Calculate the z components of an orbital morb,z

m/L
:

m
orb

:L
:

40.16 Identify that and cannot be observed (measured)
but a component on a measurement axis can.

40.17 Calculate the z components Sz of the spin angular mo-
mentum using the spin magnetic quantum number ms.

40.18 Calculate the z components of the spin magnetic
dipole moment using the spin magnetic quantum num-
ber ms and the Bohr magneton .

40.19 Identify the effective magnetic dipole moment of an atom.
mB

ms
:

ms,z

S
:

ms
:S

:
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What Is Physics?
In this chapter we continue with a primary goal of physics—discovering and
understanding the properties of atoms. About 100 years ago, researchers strug-
gled to find experiments that would prove the existence of atoms. Now we take
their existence for granted and even have photographs (scanning tunneling
microscope images) of atoms. We can drag them around on surfaces, such as to
make the quantum corral shown in the photograph of Fig. 39-12. We can even
hold an individual atom indefinitely in a trap (Fig. 40-1) so as to study its proper-
ties when it is completely isolated from other atoms.

Some Properties of Atoms
You may think the details of atomic physics are remote from your daily life.
However, consider how the following properties of atoms—so basic that we
rarely think about them—affect the way we live in our world.

Atoms are stable. Essentially all the atoms that form our tangible world have existed
without change for billions of years.What would the world be like if atoms con-
tinually changed into other forms, perhaps every few weeks or every few years?

Atoms combine with each other. They stick together to form stable molecules
and stack up to form rigid solids. An atom is mostly empty space, but you can
stand on a floor—made up of atoms—without falling through it.

These basic properties of atoms can be explained by quantum physics, as can the
three less apparent properties that follow.

Atoms Are Put Together Systematically
Figure 40-2 shows an example of a repetitive property of the elements as a
function of their position in the periodic table (Appendix G). The figure is a plot

● The component Sz on a z axis is also quantized according to

for

where ms is the spin magnetic quantum number.
● Every electron, whether trapped or free, has an intrinsic
spin magnetic dipole moment with a magnitude that isms

:

ms � 	s � 	1
2,Sz � ms�,

quantized as

for

● The component on a z axis is also quantized according to
for ms � 	1

2.ms,z � �2msmB,
ms,z

s � 1
2.ms �

e
m
2s(s � 1) �,

Figure 40-1 The blue dot is a photograph of 
the light emitted from a single barium ion
held for a long time in a trap at the
University of Washington. Special tech-
niques caused the ion to emit light over and
over again as it underwent transitions
between the same pair of energy levels. The
dot represents the cumulative emission of
many photons.

Courtesy Warren Nagourney

Figure 40-2 A plot of the ionization energies
of the elements as a function of atomic
number, showing the periodic repetition of
properties through the six complete hori-
zontal periods of the periodic table. The
number of elements in each of these periods
is indicated.
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of the ionization energy of the elements; the energy required to remove the most
loosely bound electron from a neutral atom is plotted as a function of the
position in the periodic table of the element to which the atom belongs. The
remarkable similarities in the chemical and physical properties of the elements in
each vertical column of the periodic table are evidence enough that the atoms are
constructed according to systematic rules.

The elements are arranged in the periodic table in six complete horizontal
periods (and a seventh incomplete period): except for the first, each period starts
at the left with a highly reactive alkali metal (lithium, sodium, potassium, and so
on) and ends at the right with a chemically inert noble gas (neon, argon, krypton,
and so on). Quantum physics accounts for the chemical properties of these 
elements.The numbers of elements in the six periods are

2, 8, 8, 18, 18, and 32.

Quantum physics predicts these numbers.

Atoms Emit and Absorb Light
We have already seen that atoms can exist only in discrete quantum states, each
state having a certain energy. An atom can make a transition from one state to
another by emitting light (to jump to a lower energy level Elow) or by absorbing
light (to jump to a higher energy level Ehigh).As we first discussed in Module 39-1,
the light is emitted or absorbed as a photon with energy

hf � Ehigh � Elow. (40-1)

Thus, the problem of finding the frequencies of light emitted or absorbed by an
atom reduces to the problem of finding the energies of the quantum states of that
atom. Quantum physics allows us—in principle at least—to calculate these energies.

Atoms Have Angular Momentum and Magnetism
Figure 40-3 shows a negatively charged particle moving in a circular orbit around
a fixed center. As we discussed in Module 32-5, the orbiting particle has both an
angular momentum and (because its path is equivalent to a tiny current loop) a
magnetic dipole moment . As Fig. 40-3 shows, vectors and are both perpen-
dicular to the plane of the orbit but, because the charge is negative, they point in
opposite directions.

The model of Fig. 40-3 is strictly classical and does not accurately represent an
electron in an atom. In quantum physics, the rigid orbit model has been replaced
by the probability density model, best visualized as a dot plot. In quantum physics,
however, it is still true that in general, each quantum state of an electron in an
atom involves an angular momentum and a magnetic dipole moment that
have opposite directions (those vector quantities are said to be coupled).
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Figure 40-3 A classical model showing a particle of mass m
and charge2e moving with speed v in a circle of radius r.
The moving particle has an angular momentum given
by where is its linear momentum .The parti-
cle’s motion is equivalent to a current loop that has an asso-
ciated magnetic moment that is directed opposite .L

:
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The Einstein–de Haas Experiment
In 1915, well before the discovery of quantum physics,Albert Einstein and Dutch
physicist W. J. de Haas carried out a clever experiment designed to show that the
angular momentum and magnetic moment of individual atoms are coupled.

Einstein and de Haas suspended an iron cylinder from a thin fiber, as shown
in Fig. 40-4. A solenoid was placed around the cylinder but not touching it.
Initially, the magnetic dipole moments of the atoms of the cylinder point in
random directions, and so their external magnetic effects cancel (Fig. 40-4a).
However, when a current is switched on in the solenoid (Fig. 40-4b) so that a
magnetic field is set up parallel to the long axis of the cylinder, the magnetic
dipole moments of the atoms of the cylinder reorient themselves, lining up with
that field. If the angular momentum of each atom is coupled to its magnetic
moment , then this alignment of the atomic magnetic moments must cause an
alignment of the atomic angular momenta opposite the magnetic field.

No external torques initially act on the cylinder; thus, its angular momentum
must remain at its initial zero value. However, when is turned on and the atomic
angular momenta line up antiparallel to , they tend to give a net angular momen-
tum to the cylinder as a whole (directed downward in Fig. 40-4b). To maintain
zero angular momentum, the cylinder begins to rotate around its central axis to pro-
duce an angular momentum in the opposite direction (upward in Fig. 40-4b).

The twisting of the fiber quickly produces a torque that momentarily stops the
cylinder’s rotation and then rotates the cylinder in the opposite direction as the twist-
ing is undone. Thereafter, the fiber will twist and untwist as the cylinder oscillates
about its initial orientation in angular simple harmonic motion.

Observation of the cylinder’s rotation verified that the angular momentum and
the magnetic dipole moment of an atom are coupled in opposite directions.
Moreover, it dramatically demonstrated that the angular momenta associated with
quantum states of atoms can result in visible rotation of an object of everyday size.

Angular Momentum, Magnetic Dipole Moments
Every quantum state of an electron in an atom has an associated orbital angular mo-
mentum and orbital magnetic dipole moment. Every electron, whether trapped in an
atom or free, has a spin angular momentum and a spin magnetic dipole moment that
are as intrinsic as its mass and charge.Let’s next discuss these various quantities.

Orbital Angular Momentum
Classically, a moving particle has an angular momentum with respect to any
given reference point. In Chapter 11 we wrote this as the cross product
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Figure 40-4 The Einstein–de Haas experi-
mental setup. (a) Initially, the magnetic
field in the iron cylinder is zero and the
magnetic dipole moment vectors of its
atoms are randomly oriented. (b) When a
magnetic field is set up along the cylin-
der’s axis, the magnetic dipole moment vec-
tors line up parallel to and the cylinder be-
gins to rotate.
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, where is a position vector extending to the particle from the refer-
ence point and is the particle’s linear momentum ( ). Although an electron
in an atom is not a classical moving particle, it too has angular momentum given
by , with the reference point being the nucleus. However, unlike the
classical particle, the electron’s orbital angular momentum is quantized. For the
electron in a hydrogen atom, we can find the quantized (allowed) values by solving
Schrödinger’s equation. For that situation and any other, we can also find the quan-
tized values by using the appropriate mathematics for a cross product in a quantum
situation. (The mathematics is linear algebra, which you may have on your schedule
of classes.) Either way we find that the allowed magnitudes of are given by

for (40-2)

where is , � is the orbital quantum number (introduced in Table 39-2, which is
reproduced in Table 40-1),and n is the electron’s principal quantum number.

The electron can have a definite value of L as given by one of the allowed
states in Eq. 40-2, but it cannot have a definite direction for the vector .
However, we can measure (detect) definite values of a component Lz along a
chosen measurement axis (usually taken to be a z axis) as given by

(40-3)

where is the orbital magnetic quantum number (Table 40-1). However, if the elec-
tron has a definite value of Lz, it does not have definite values for Lx and Ly.We can-
not get around this uncertainty by, say, first measuring Lz (getting a definite value)
and then measuring Lx (getting a definite value) because the second measurement
can change Lz and thus we no longer have a definite value for it.Also, we can never
find aligned with an axis because then it would have a definite direction and defi-
nite components along the other axes (namely,zero components).

A common way to depict the allowed values for Lz is shown in Fig. 40-5 for
the situation in which However, do not take the figure literally because it
implies (incorrectly) that has the definite direction of the drawn vector. Still, it
allows us to relate the five possible z components to the full vector (which has a
magnitude of ) and to define the semi-classical angle u given by 

. (40-4)

Orbital Magnetic Dipole Moment
Classically, an orbiting charged particle sets up the magnetic field of a magnetic
dipole, as we discussed in Module 32-5. From Eq. 32-28, the dipole moment is re-
lated to the angular momentum of the classical particle by
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Table 40-1 Electron States for an Atom

Quantum Number Symbol Allowed Values Related to

Principal n 1, 2, 3, . . . Distance from the nucleus
Orbital 0, 1, 2, . . . , (n � 1) Orbital angular momentum
Orbital magnetic Orbital angular momentum 

(z component)
Spin s Spin angular momentum
Spin magnetic ms Spin angular momentum 

(z component)
	1

2

1
2

0, 	1, 	2, . . . , 	�m�

�

Figure 40-5 The allowed values of Lz for an
electron in a quantum state with . For
every orbital angular momentum vector 
in the figure, there is a vector pointing in
the opposite direction, representing the
magnitude and direction of the orbital
magnetic dipole moment .�:orb

L
:

� � 2

z

0

� = 2 
L = √6 h

Lz = +2h

–2h
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The vector and
its component
are quantized.



where m is the mass of the particle, here an electron. The minus sign means that
the two vectors in Eq. 40-5 are in opposite directions, which is due to the fact that
an electron is negatively charged.

An electron in an atom also has an orbital magnetic dipole moment given by
Eq. 40-5, but is quantized.We find allowed values of the magnitude by substi-
tuting from Eq. 40-2:

(40-6)

As with the angular momentum, can have a definite magnitude but does not
have a definite direction. The best we can do is to measure its component on a
z axis, and that component can have a definite value as given by

(40-7)

where mB is the Bohr magneton:

(Bohr magneton). (40-8)

If the electron has a definite value of morb,z, it cannot have definite values of morb,x

and morb,y.

Spin Angular Momentum
Every electron, whether in an atom or free, has an intrinsic angular momentum
that has no classical counterpart (it is not of the form ). It is called spin an-
gular momentum (or simply spin), but the name is misleading because the elec-
tron is not spinning. Indeed there is nothing at all rotating in an electron, and yet
the electron has angular momentum. The magnitude of is quantized, with val-
ues restricted to

(40-9)

where s is the spin quantum number. For every electron, and the electron iss � 1
2

S � 2s(s � 1) �, for s � 1
2,
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said to be a spin- particle. (Protons and neutrons are also spin- particles.) The1
2

1
2

language here can be confusing, because both and s are often referred to as spin.
As with the angular momentum associated with motion, this intrinsic angular

momentum can have a definite magnitude but does not have a definite direction.
The best we can do is to measure its component on a z axis, and that component
can have only the definite values given by

(40-10)

Here ms is the spin magnetic quantum number, which can have only two values:
(the electron is said to be spin up) and (the elec-

tron is said to be spin down).Also, if Sz has a definite value, then Sx and Sy do not.
Figure 40-6 is another figure that you should not take literally but it serves to
show the possible values of Sz.

The existence of electron spin was postulated on experimental evidence by
two Dutch graduate students, George Uhlenbeck and Samuel Goudsmit, from
their studies of atomic spectra. The theoretical basis for spin was provided a few
years later by British physicist P. A. M. Dirac, who developed a relativistic quan-
tum theory of the electron.

We have now seen the full set of quantum numbers for an electron, as
listed in Table 40-1. If an electron is free, it has only its intrinsic quantum num-
bers s and ms. If it is trapped in an atom, it has also has the quantum numbers
n, �, and m�.

ms � �s � �1
2ms � �s � �1

2

Sz � ms�, for ms � 	s � 	1
2.

S
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Spin Magnetic Dipole Moment
As with the orbital angular momentum, a magnetic dipole moment is associated with
the spin angular momentum:

(40-11)

where the minus sign means that the two vectors are in opposite directions, which
is due to the fact that an electron is negatively charged. This is an intrinsic
property of every electron. The vector does not have a definite direction but it
can have a definite magnitude, given by

(40-12)

The vector can also have a definite component on a z axis, given by

ms,z � �2msmB, (40-13)

but that means that it cannot have a definite value of ms,x or ms,y. Figure 40-6
shows the possible values of ms,z. In the next module we shall discuss the early ex-
perimental evidence for the quantized nature in Eq. 40-13.

Shells and Subshells
As we discussed in Module 39-5, all states with the same n form a shell, and all
states with the same value of n and � form a subshell.As displayed in Table 40-1, for
a given �, there are 2� � 1 possible values of quantum number m� and, for each m�,
there are two possible values for the quantum number ms (spin up and spin down).
Thus, there are 2(2� � 1) states in a subshell. If we count all the states throughout a
given shell with quantum number n, we find that the total number in the shell is 2n2.

Orbital and Spin Angular Momenta Combined
For an atom containing more than one electron, we define a total angular
momentum , which is the vector sum of the angular momenta of the individual
electrons—both their orbital and their spin angular momenta. Each element in
the periodic table is defined by the number of protons in the nucleus of an atom
of the element.This number of protons is defined as being the atomic number (or
charge number) Z of the element. Because an electrically neutral atom contains
equal numbers of protons and electrons, Z is also the number of electrons in the
neutral atom, and we use this fact to indicate a value for a neutral atom:

(40-14)

Similarly, the total magnetic dipole moment of a multielectron atom is the
vector sum of the magnetic dipole moments (both orbital and spin) of its individ-
ual electrons. However, because of the factor 2 in Eq. 40-13, the resultant
magnetic dipole moment for the atom does not have the direction of vector ;
instead, it makes a certain angle with that vector. The effective magnetic dipole
moment for the atom is the component of the vector sum of the individual
magnetic dipole moments in the direction of (Fig. 40-7). In typical atoms the
orbital angular momenta and the spin angular momenta of most of the electrons
sum vectorially to zero. Then and of those atoms are due to a relatively
small number of electrons, often only a single valence electron.

m:effJ
:

�J
:

m:eff

�J
:

J
:

� (L
:

1 � L
:

2 � L
:

3 � � � � � L
:

Z) � (S
:

1 � S
:

2 � S
:

3 � � � � � S
:

Z).

J
:

J
:

ms �
e
m 2s(s � 1) �.

m:s

m:s

m:s � �
e
m S

:
,

122540-1 PROPERTIES OF ATOMS

Checkpoint 1
An electron is in a quantum state for which the magnitude of the electron’s orbital 
angular momentum is . How many projections of the electron’s orbital mag-
netic dipole moment on a z axis are allowed?

223�L
:

Figure 40-7 A classical model showing the
total angular momentum vector and the
effective magnetic moment vector .m:eff
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Figure 40-6 The allowed values of Sz and mz

for an electron.

s,z = – B

z

s = 1_2

S = h√3__
2

Sz = + h1_
2

μ μ 

s,z = + B

s

μ μ 

Sz = – h1_
2

S

μ 



1226 CHAPTER 40 ALL ABOUT ATOMS

40-2 THE STERN–GERLACH EXPERIMENT

After reading this module, you should be able to . . .

40.20 Sketch the Stern–Gerlach experiment and explain the
type of atom required, the anticipated result, the actual result,
and the importance of the experiment.

40.21 Apply the relationship between the magnetic field
gradient and the force on an atom in a Stern–Gerlach
experiment.

● The Stern–Gerlach experiment demonstrated that the mag-
netic moment of silver atoms is quantized, experimental proof
that magnetic moments at the atomic level are quantized.

● An atom with a magnetic dipole moment experiences a
force in a nonuniform magnetic field. If the field changes at

the rate of dB/dz along a z axis, then the force is along the z
axis and its magnitude is related to the component mz of the
dipole moment:

Fz � mz
dB
dz

.

Learning Objectives

Key Ideas

The Stern–Gerlach Experiment
In 1922, Otto Stern and Walther Gerlach at the University of Hamburg in
Germany showed experimentally that the magnetic moment of silver atoms is
quantized. In the Stern–Gerlach experiment, as it is now known, silver is vaporized
in an oven, and some of the atoms in that vapor escape through a narrow slit in the
oven wall and pass into an evacuated tube. Some of those escaping atoms then pass
through a second narrow slit, to form a narrow beam of atoms (Fig. 40-8). (The
atoms are said to be collimated—made into a beam—and the second slit is called a
collimator.) The beam passes between the poles of an electromagnet and then lands
on a glass detector plate where it forms a silver deposit.

When the electromagnet is off, the silver deposit is a narrow spot. However, when
the electromagnet is turned on, the silver deposit should be spread vertically.The rea-
son is that silver atoms are magnetic dipoles, and so vertical magnetic forces act on
them as they pass through the vertical magnetic field of the electromagnet; these
forces deflect them slightly up or down. Thus, by analyzing the silver deposit on the
plate, we can determine what deflections the atoms underwent in the magnetic field.
When Stern and Gerlach analyzed the pattern of silver on their detector plate, they
found a surprise. However, before we discuss that surprise and its quantum implica-
tions, let us discuss the magnetic deflecting force acting on the silver atoms.

The Magnetic Deflecting Force on a Silver Atom
We have not previously discussed the type of magnetic force that deflects the
silver atoms in a Stern–Gerlach experiment. It is not the magnetic deflecting
force that acts on a moving charged particle, as given by Eq. 28-2 
The reason is simple:A silver atom is electrically neutral (its net charge q is zero),
and thus this type of magnetic force is also zero.

The type of magnetic force we seek is due to an interaction between the
magnetic field of the electromagnet and the magnetic dipole of the individual sil-
ver atom.We can derive an expression for the force in this interaction by starting with
the energy U of the dipole in the magnetic field.Equation 28-38 tells us that

(40-15)

where is the magnetic dipole moment of a silver atom. In Fig. 40-8, the positive
direction of the z axis and the direction of are vertically upward. Thus, we can
write Eq. 40-15 in terms of the component mz of the atom’s magnetic dipole
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Figure 40-8 Apparatus used by Stern and
Gerlach.
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moment along the direction of :

U � �mzB. (40-16)

Then, using Eq. 8-22 (F � �dU/dx) for the z axis shown in Fig. 40-8, we obtain

(40-17)

This is what we sought—an equation for the magnetic force that deflects a silver
atom as the atom passes through a magnetic field.

The term dB/dz in Eq. 40-17 is the gradient of the magnetic field along the z
axis. If the magnetic field does not change along the z axis (as in a uniform
magnetic field or no magnetic field), then dB/dz � 0 and a silver atom is not
deflected as it moves between the magnet’s poles. In the Stern–Gerlach experi-
ment, the poles are designed to maximize the gradient dB/dz, so as to vertically
deflect the silver atoms passing between the poles as much as possible, so that
their deflections show up in the deposit on the glass plate.

According to classical physics, the components mz of silver atoms passing
through the magnetic field in Fig. 40-8 should range in value from �m (the dipole
moment is directed straight down the z axis) to �m ( is directed straight up
the z axis). Thus, from Eq. 40-17, there should be a range of forces on the atoms,
and therefore a range of deflections of the atoms, from a greatest downward
deflection to a greatest upward deflection. This means that we should expect the
atoms to land along a vertical line on the glass plate, but they don’t.

The Experimental Surprise
What Stern and Gerlach found was that the atoms formed two distinct spots on
the glass plate, one spot above the point where they would have landed with no
deflection and the other spot just as far below that point. The spots were initially
too faint to be seen, but they became visible when Stern happened to breathe on
the glass plate after smoking a cheap cigar. Sulfur in his breath (from the cigar)
combined with the silver to produce a noticeably black silver sulfide.

This two-spot result can be seen in the plots of Fig. 40-9, which shows the out-
come of a more recent version of the Stern–Gerlach experiment. In that version,
a beam of cesium atoms (magnetic dipoles like the silver atoms in the original
Stern–Gerlach experiment) was sent through a magnetic field with a large verti-
cal gradient dB/dz. The field could be turned on and off, and a detector could be
moved up and down through the beam.

When the field was turned off, the beam was, of course, undeflected and the
detector recorded the central-peak pattern shown in Fig. 40-9.When the field was
turned on, the original beam was split vertically by the magnetic field into two
smaller beams, one beam higher than the previously undeflected beam and the
other beam lower.As the detector moved vertically up through these two smaller
beams, it recorded the two-peak pattern shown in Fig. 40-9.

The Meaning of the Results
In the original Stern – Gerlach experiment, two spots of silver were formed on
the glass plate, not a vertical line of silver. This means that the component mz

along (and along z) could not have any value between 2m and 1m as classi-
cal physics predicts. Instead, mz is restricted to only two values, one for each
spot on the glass. Thus, the original Stern – Gerlach experiment showed that mz

is quantized, implying (correctly) that is also. Moreover, because the angular
momentum of an atom is associated with , that angular momentum and its
component Lz are also quantized.

With modern quantum theory, we can add to the explanation of the two-spot
result in the Stern–Gerlach experiment.We now know that a silver atom consists
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Figure 40-9 Results of a modern repetition of
the Stern–Gerlach experiment.With the
electromagnet turned off, there is only a
single beam; with the electromagnet turned
on, the original beam splits into two sub-
beams.The two subbeams correspond to
parallel and antiparallel alignment of the
magnetic moments of cesium atoms with
the external magnetic field.
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of many electrons, each with a spin magnetic moment and an orbital magnetic
moment. We also know that all those moments vectorially cancel out except for a
single electron, and the orbital dipole moment of that electron is zero. Thus, the
combined dipole moment of a silver atom is the spin magnetic dipole moment
of that single electron. According to Eq. 40-13, this means that mz can have only
two components along the z axis in Fig. 40-8. One component is for quantum
number (the single electron is spin up), and the other component is for
quantum number (the single electron is spin down). Substituting into
Eq. 40-13 gives us

. (40-18)

Then substituting these expressions for mz in Eq. 40-17, we find that the force compo-
nent Fz deflecting the silver atoms as they pass through the magnetic field can have
only the two values

(40-19)

which result in the two spots of silver on the glass. Although no one knew about
spin at the time, the Stern–Gerlach results were actually the first experimental
evidence of electron spin.

Fz � �mB� dB
dz �  and Fz � �mB� dB

dz �,

ms,z � �2(�1
2)mB � �mB and ms,z � �2(�1
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Because this acceleration is constant, we can use Eq. 2-15
(from Table 2-1) to write the deflection d parallel to the
z axis as

(40-20)

Because the deflecting force on the atom acts perpendi-
cular to the atom’s original direction of travel, the compo-
nent v of the atom’s velocity along the original direction of
travel is not changed by the force. Thus, the atom requires
time t � w/v to travel through length w in that direction.
Substituting w/v for t into Eq. 40-20, we find

(Answer)

The separation between the two subbeams is twice this, or
0.16 mm. This separation is not large but is easily measured.

� 7.85 � 10�5 m � 0.08 mm.

�
(3.5 � 10�2 m)2

(2)(1.8 � 10�25 kg)(750 m/s)2

� (9.27 � 10�24 J/T)(1.4 � 103 T/m)

d � 1
2 � mB(dB/dz)

M � � w
v �

2

�
mB(dB/dz)w2

2Mv2

d � v0zt � 1
2azt2 � 0t � 1

2 � mB(dB/dz)
M �t2.

az �
Fz

M
�

mB(dB/dz)
M

.

Sample Problem 40.01 Beam separation in a Stern–Gerlach experiment

In the Stern – Gerlach experiment of Fig. 40-8, a beam of
silver atoms passes through a magnetic field gradient
dB/dz of magnitude 1.4 T/mm that is set up along the z
axis. This region has a length w of 3.5 cm in the direction of
the original beam. The speed of the atoms is 750 m/s. By
what distance d have the atoms been deflected when they
leave the region of the field gradient? The mass M of a sil-
ver atom is 1.8 � 10 225 kg.

KEY IDEAS

(1) The deflection of a silver atom in the beam is due to an
interaction between the magnetic dipole of the atom and
the magnetic field, because of the gradient dB/dz. The
deflecting force is directed along the field gradient (along
the z axis) and is given by Eqs. 40-19. Let us consider only
deflection in the positive direction of z; thus, we shall use 
Fz � mB(dB/dz) from Eqs. 40-19.

(2) We assume the field gradient dB/dz has the same value
throughout the region through which the silver atoms travel.
Thus, force component Fz is constant in that region, and from
Newton’s second law, the acceleration az of an atom along the
z axis due to Fz is also constant.

Calculations: Putting these ideas together, we write the 
acceleration as

Additional examples, video, and practice available at WileyPLUS



Magnetic Resonance
As we discussed briefly in Module 32-5, a proton has a spin magnetic dipole
moment that is associated with the proton’s intrinsic spin angular momentum

.The two vectors are said to be coupled together and, because the proton is pos-
itively charged, they are in the same direction. Suppose a proton is located in a
magnetic field that is directed along the positive direction of a z axis. Then 
has two possible quantized components along that axis: the component can
be �mz if the vector is in the direction of (Fig. 40-10a) or �mz if it is opposite
the direction of (Fig. 40-10b).

From Eq. 28-38 recall that an energy is associated with the
orientation of any magnetic dipole moment located in an external magnetic
field . Thus, energy is associated with the two orientations of Figs. 40-10a and b.
The orientation in Fig. 40-10a is the lower-energy state (2mzB) and is called the
spin-up state because the proton’s spin component Sz (not shown) is also aligned
with . The orientation in Fig. 40-10b (the spin-down state) is the higher-energy
state (mzB).Thus, the energy difference between these two states is


E � mzB � (�mzB) � 2mzB. (40-21)

If we place a sample of water in a magnetic field , the protons in the hydro-
gen portions of each water molecule tend to be in the lower-energy state. (We
shall not consider the oxygen portions.) Any one of these protons can jump to the
higher-energy state by absorbing a photon with an energy hf equal to 
E. That is,
the proton can jump by absorbing a photon of energy

hf � 2mzB. (40-22)

Such absorption is called magnetic resonance or, as originally, nuclear magnetic
resonance (NMR), and the consequent reversal of Sz is called spin-flipping.

In practice, the photons required for magnetic resonance have an associated
frequency in the radio-frequency (RF) range and are provided by a small coil
wrapped around the sample undergoing resonance. An electromagnetic oscilla-
tor called an RF source drives a sinusoidal current in the coil at frequency f. The
electromagnetic (EM) field set up within the coil and sample also oscillates at

B
:

B
:

B
:

m:
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40-3 MAGNETIC RESONANCE
Learning Objectives

difference between the two spin states and find the pho-
ton frequency and wavelength required for a transition 
between the states.

40.24 Explain the procedure of producing a nuclear magnetic
resonance spectrum.

● A proton has an intrinsic spin angular momentum and an
intrinsic magnetic dipole moment that are in the same 
direction (because the proton is positively charged).

● The magnetic dipole moment of a proton in a magnetic field 
has two quantized components along the field axis: spin up (mz is
in the direction and spin down mz is in the opposite direction).

● Contrary to the situation with an electron, spin up is the
lower energy orientation; the difference between the two ori-
entations is 2mzB.

B
:

B
:

m:

m:
S
:

● The energy required of a photon to spin-flip the proton be-
tween the two orientations is

hf � 2mzB.

● The field is the vector sum of an external field set up by
equipment and an internal field set up by the atoms and nu-
clei surrounding the proton.

● Detection of spin-flips can lead to nuclear magnetic reso-
nance spectra by which specific substances can be identified.

After reading this module, you should be able to . . . 

40.22 For a proton in a magnetic field, sketch the field vec-
tor and the proton’s magnetic moment vector for the
lower energy state and the upper energy state and then
include the labels of spin up and spin down.

40.23 For a proton in a magnetic field, calculate the energy

Key Ideas

Figure 40-10 The z component of for a pro-
ton in the (a) lower-energy (spin-up) and
(b) higher-energy (spin-down) state. (c) An
energy-level diagram for the states, showing
the upward quantum jump the proton
makes when its spin flips from up to down.

�:

μ

(a)

2 zBμ

(b)

z B

μ

(c)

z

B

E

Spin down 

Spin up 

Low
energy

High
energy



The Pauli Exclusion Principle
In Chapter 39 we considered a variety of electron traps, from fictional one-
dimensional traps to the real three-dimensional trap of a hydrogen atom. In all
those examples, we trapped only one electron. However, when we discuss traps con-
taining two or more electrons (as we shall below), we must consider a principle that
governs any particle whose spin quantum number s is not zero or an integer. This
principle applies not only to electrons but also to protons and neutrons, all of which
have The principle is known as the Pauli exclusion principle after Wolfgang
Pauli, who formulated it in 1925. For electrons, it states that

s � 1
2.

frequency f. If f meets the requirement of Eq. 40-22, the oscillating EM field can
transfer a quantum of energy to a proton in the sample via a photon absorption,
spin-flipping the proton.

The magnetic field magnitude B that appears in Eq. 40-22 is actually the
magnitude of the net magnetic field at the site where a given proton undergoes
spin-flipping. That net field is the vector sum of the external field set up by the
magnetic resonance equipment (primarily a large magnet) and the internal field 
set up by the magnetic dipole moments of the atoms and nuclei near the given pro-
ton. For practical reasons we do not discuss here, magnetic resonance is usually de-
tected by sweeping the magnitude Bext through a range of values while the fre-
quency f of the RF source is kept at a predetermined value and the energy of the RF
source is monitored.A graph of the energy loss of the RF source versus Bext shows a
resonance peak when Bext sweeps through the value at which spin-flipping occurs.
Such a graph is called a nuclear magnetic resonance spectrum, or NMR spectrum.

Figure 40-11 shows the NMR spectrum of ethanol,which is a molecule consisting
of three groups of atoms: CH3, CH2, and OH. Protons in each group can undergo
magnetic resonance, but each group has its own unique magnetic-resonance value of
Bext because the groups lie in different internal fields due to their arrangement
within the CH3CH2OH molecule. Thus, the resonance peaks in the spectrum of Fig.
40-11 form a unique NMR signature by which ethanol can be indentified.

B
:
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B
:

int

B
:

ext

B
:
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Figure 40-11 A nuclear magnetic resonance
spectrum for ethanol, CH3CH2OH.The
spectral lines represent the absorption of
energy associated with spin-flips of pro-
tons.The three groups of lines correspond,
as indicated, to protons in the OH group,
the CH2 group, and the CH3 group of the
ethanol molecule. Note that the two pro-
tons in the CH2 group occupy four different
local environments.The entire horizontal
axis covers less than 1024 T.
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40-4 EXCLUSION PRINCIPLE AND MULTIPLE ELECTRONS IN A TRAP

After reading this module, you should be able to . . .

40.25 Identify the Pauli exclusion principle.
40.26 Explain the procedure for placing multiple electrons in

traps of one, two, and three dimensions, including the
need to obey the exclusion principle and to allow for

degenerate states, and explain the terms empty, partially
occupied, and fully occupied.

40.27 For a system of multiple electrons in traps of one, two,
and three dimensions, produce energy-level diagrams.

Learning Objectives

● Electrons in atoms and other traps obey the Pauli exclusion principle, which requires that no two electrons in a trap can have
the same set of quantum numbers.

Key Idea

No two electrons confined to the same trap can have the same set of values for
their quantum numbers.

As we shall discuss in Module 40-5, this principle means that no two electrons in
an atom can have the same four values for the quantum numbers n, , , and ms.All
electrons have the same quantum number Thus, any two electrons in an atom
must differ in at least one of these other quantum numbers. Were this not true,
atoms would collapse, and thus you and the world could not exist.

s � 1
2.

m��
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Multiple Electrons in Rectangular Traps
To prepare for our discussion of multiple electrons in atoms, let us discuss two
electrons confined to the rectangular traps of Chapter 39. However, here we shall
also include the spin angular momenta. To do this, we assume that the traps are
located in a uniform magnetic field. Then according to Eq. 40-10 , an(Sz � ms�)
electron can be either spin up with or spin down with (We as-
sume that the field is very weak so that the associated energy is negligible.)

As we confine the two electrons to one of the traps, we must keep the Pauli
exclusion principle in mind; that is, the electrons cannot have the same set of 
values for their quantum numbers.

1. One-dimensional trap. In the one-dimensional trap of Fig. 39-2, fitting an elec-
tron wave to the trap’s width L requires the single quantum number n. There-
fore, any electron confined to the trap must have a certain value of n, and its
quantum number ms can be either or . The two electrons could have
different values of n, or they could have the same value of n if one of them is
spin up and the other is spin down.

2. Rectangular corral. In the rectangular corral of Fig. 39-13, fitting an electron
wave to the corral’s widths Lx and Ly requires the two quantum numbers nx

and ny. Thus, any electron confined to the trap must have certain values for
those two quantum numbers, and its quantum number ms can be either or

; so now there are three quantum numbers.According to the Pauli exclusion
principle, two electrons confined to the trap must have different values for at
least one of those three quantum numbers.

3. Rectangular box. In the rectangular box of Fig. 39-14, fitting an electron wave
to the box’s widths Lx, Ly, and Lz requires the three quantum numbers nx, ny,
and nz. Thus, any electron confined to the trap must have certain values for
these three quantum numbers, and its quantum number ms can be either or

; so now there are four quantum numbers. According to the Pauli exclusion
principle, two electrons confined to the trap must have different values for at
least one of those four quantum numbers.

Suppose we add more than two electrons, one by one, to a rectangular trap
in the preceding list. The first electrons naturally go into the lowest possible
energy level — they are said to occupy that level. However, eventually the
Pauli exclusion principle disallows any more electrons from occupying that
lowest energy level, and the next electron must occupy the next higher level.
When an energy level cannot be occupied by more electrons because of the
Pauli exclusion principle, we say that level is full or fully occupied. In contrast,
a level that is not occupied by any electrons is empty or unoccupied. For inter-
mediate situations, the level is partially occupied. The electron configuration of
a system of trapped electrons is a listing or drawing either of the energy levels
the electrons occupy or of the set of the quantum numbers of the electrons.

Finding the Total Energy
To find the energy of a system of two or more electrons confined to a trap, we as-
sume that the electrons do not electrically interact with one another; that is, we
shall neglect the electric potential energies of pairs of electrons. Then we can cal-
culate the total energy for the system by calculating the energy of each electron
(as in Chapter 39) and then summing those energies.

A good way to organize the energy values of a given system of electrons is
with an energy-level diagram for the system, just as we did for a single electron in
the traps of Chapter 39. The lowest level, with energy Egr, corresponds to the
ground state of the system. The next higher level, with energy Efe, corresponds to
the first excited state of the system. The next level, with energy Ese, corresponds
to the second excited state of the system, and so on.

�1
2

� 1
2

�1
2

� 1
2

�1
2� 1

2

ms � � 1
2.ms � 1

2
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in order to keep track of how we place the seven electrons in

Sample Problem 40.02 Energy levels of multiple electrons in a 2D infinite potential well

Seven electrons are confined to a square corral (two-
dimensional infinite potential well) with widths Lx � Ly � L
(Fig. 39-13). Assume that the electrons do not electrically
interact with one another.
(a) What is the electron configuration for the ground state
of the system of seven electrons?

One-electron diagram: We can determine the electron con-
figuration of the system by placing the seven electrons in the
corral one by one, to build up the system. Because we assume
the electrons do not electrically interact with one another, we
can use the energy-level diagram for a single trapped electron

A
10

8

5

(a)

2 E1,1

E2,1, E1,2

E3,1, E1,3

E2,2

E

10

8

5

(b)

2 E1,1

E

10

8

5

(c)

2 E1,1

E2,1, E1,2

E1,1

E2,1, E1,2

E2,2

E

10

8

5

(d)

2

E

These are the 
four lowest
energy levels 
of the corral.
The first
electron is in
the lowest 
level.

A second electron
can be there only if 
it has the opposite 
spin. The level is 
then full.

Two quantum
states have that 
energy. Two 
electrons (with 
opposite spins)
can be in each 
state. Then that
level is also full.

The lowest 
energy for
a third
electron is on
the next level up.

Figure 40-12 (a) Energy-level diagram
for one electron in a square corral.
(Energy E is in multiples of h2/8mL2.)
A spin-down electron occupies the
lowest level. (b) Two electrons (one
spin down, the other spin up) occupy
the lowest level of the one-electron
energy-level diagram. (c) A third
electron occupies the next energy
level. (d) Four electrons can be put
into the second level. (e) The system’s
ground-state configuration. (f) Three
transitions to consider for the first
excited state. ( g) The system’s lowest
three total energies.

the corral. That one-electron energy-level diagram is given in
Fig. 39-15 and partially reproduced here as Fig. 40-12a. Recall
that the levels are labeled as Enx,ny for their associated energy.
For example, the lowest level is for energy E1,1, where quan-
tum number nx is 1 and quantum number ny is 1.

Pauli principle: The trapped electrons must obey the Pauli
exclusion principle; that is, no two electrons can have the
same set of values for their quantum numbers nx, ny, and
ms. The first electron goes into energy level E1,1 and can
have or We arbitrarily choose the latterms � � 1

2.ms � 1
2

E1,1

E2,1, E1,2

E2,2

10

8

5

(e)

2

E

Electrons can jump
up only to levels
that are not full.
Here are three
allowed jumps.
Which uses the
least energy?
If that jump is
made, the system
is then in its first
excited state.

The lowest 
energy for
the seventh
electron is
on the next
level up. The 
system of 7
electrons is in
its lowest 
energy (system
ground state).

E1,1

E2,1, E1,2

E3,1, E1,3

E2,2

10

8

5

( f )

2 Egr

Efe

Ese
E

34

(g)

32

E Here are the 
three lowest 
energy
levels of the
system.
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and draw a down arrow (to represent spin down) on the
E1,1 level in Fig. 40-12a. The second electron also goes into
the E1,1 level but must have so that one of its
quantum numbers differs from those of the first electron.
We represent this second electron with an up arrow (for
spin up) on the E1,1 level in Fig. 40-12b.

Electrons, one by one: The level for energy E1,1 is fully oc-
cupied, and thus the third electron cannot have that energy.
Therefore, the third electron goes into the next higher level,
which is for the equal energies E2,1 and E1,2 (the level is de-
generate). This third electron can have quantum numbers nx

and ny of either 1 and 2 or 2 and 1, respectively. It can also
have a quantum number ms of either or . Let us arbi-
trarily assign it the quantum numbers nx 2, ny 1, and

.We then represent it with a down arrow on the level
for E1,2 and E2,1 in Fig. 40-12c.

You can show that the next three electrons can also go
into the level for energies E2,1 and E1,2, provided that no set
of three quantum numbers is completely duplicated. That
level then contains four electrons (Fig. 40-12d), with quan-
tum numbers (nx, ny, ms) of

and the level is fully occupied. Thus, the seventh electron
goes into the next higher level, which is the E2,2 level. Let us
assume this electron is spin down, with .

Figure 40-12e shows all seven electrons on a one-
electron energy-level diagram.We now have seven electrons
in the corral, and they are in the configuration with the low-
est energy that satisfies the Pauli exclusion principle. Thus,
the ground-state configuration of the system is that shown
in Fig. 40-12e and listed in Table 40-2.

(b) What is the total energy of the seven-electron system in
its ground state, as a multiple of h2/8mL2?

KEY IDEA

The total energy Egr is the sum of the energies of the indi-
vidual electrons in the system’s ground-state configuration.

Ground-state energy: The energy of each electron can be
read from Table 39-1, which is partially reproduced in
Table 40-2, or from Fig. 40-12e. Because there are two elec-
trons in the first (lowest) level, four in the second level,
and one in the third level, we have

(Answer)

(c) How much energy must be transferred to the system for
it to jump to its first excited state, and what is the energy of
that state?

� 32
h2

8mL2 .

Egr � 2�2
h2

8mL2 � � 4�5
h2

8mL2 � � 1�8
h2

8mL2 �

ms � �1
2

(2, 1,� 1
2), (2, 1, � 1

2), (1, 2,� 1
2), (1, 2, � 1

2),

ms � �1
2

��
�1

2�1
2

ms � �1
2

KEY IDEAS

1. If the system is to be excited, one of the seven electrons
must make a quantum jump up the one-electron energy-
level diagram of Fig. 40-12e.

2. If that jump is to occur, the energy change 
E of the
electron (and thus of the system) must be 
E � Ehigh �
Elow (Eq. 39-5), where Elow is the energy of the level
where the jump begins and Ehigh is the energy of the
level where the jump ends.

3. The Pauli exclusion principle must still apply; an electron
cannot jump to a level that is fully occupied.

First-excited-state energy: Let us consider the three jumps
shown in Fig. 40-12f ; all are allowed by the Pauli exclusion
principle because they are jumps to either empty or par-
tially occupied states. In one of those possible jumps, an
electron jumps from the E1,1 level to the partially occupied
E2,2 level.The change in the energy is

(We shall assume that the spin orientation of the electron
making the jump can change as needed.)

In another of the possible jumps in Fig. 40-12f, an elec-
tron jumps from the degenerate level of E2,1 and E1,2 to the
partially occupied E2,2 level.The change in the energy is

In the third possible jump in Fig. 40-12f, the electron in
the E2,2 level jumps to the unoccupied, degenerate level of
E1,3 and E3,1.The change in energy is


E � E1,3 � E2,2 � 10
h2

8mL2 � 8
h2

8mL2 � 2
h2

8mL2 .


E � E2,2 � E2,1 � 8
h2

8mL2 � 5
h2

8mL2 � 3
h2

8mL2 .


E � E2,2 � E1,1 � 8
h2

8mL2 � 2
h2

8mL2 � 6
h2

8mL2 .

Table 40-2 Ground-State Configuration 
and Energies

nx ny ms Energya

2 2 8

2 1 5

2 1 5

1 2 5

1 2 5

1 1 2

1 1 2
Total 32

aIn multiples of h2/8mL2.

�1
2

� 1
2

�1
2

� 1
2

�1
2

� 1
2

�1
2



Building the Periodic Table
The four quantum numbers , and ms identify the quantum states of indi-
vidual electrons in a multielectron atom. The wave functions for these states,
however, are not the same as the wave functions for the corresponding states of
the hydrogen atom because, in multielectron atoms, the potential energy associ-
ated with a given electron is determined not only by the charge and position of
the atom’s nucleus but also by the charges and positions of all the other electrons
in the atom. Solutions of Schrödinger’s equation for multielectron atoms can be
carried out numerically—in principle at least—using a computer.

Shells and Subshells
As we discussed in Module 40-1, all states with the same n form a shell, and all
states with the same value of n and � form a subshell. For a given �, there are 2� � 1
possible values of quantum number m� and, for each m�, there are two possible val-
ues for the quantum number ms (spin up and spin down).Thus, there are 2(2� � 1)

n, �, m�

1234 CHAPTER 40 ALL ABOUT ATOMS

The energy Efe of the first excited state of the system is then

(Answer)

We can represent this energy and the energy Egr for the
ground state of the system on an energy-level diagram for
the system, as shown in Fig. 40-12g.

� 32
h2

8mL2 � 2
h2

8mL2 � 34
h2

8mL2 .

Efe � Egr � 
E

Of these three possible jumps, the one requiring the least
energy change 
E is the last one. We could consider even
more possible jumps, but none would require less energy.
Thus, for the system to jump from its ground state to its first
excited state, the electron in the E2,2 level must jump to the
unoccupied, degenerate level of E1,3 and E3,1, and the re-
quired energy is

(Answer)
E � 2
h2

8mL2 .

Additional examples, video, and practice available at WileyPLUS

40-5 BUILDING THE PERIODIC TABLE

After reading this module, you should be able to . . .

40.28 Identify that all states in a subshell have the same en-
ergy that is determined primarily by quantum number n but
to a lesser extent by quantum number �.

40.29 Identify the labeling system for the orbital angular mo-
mentum quantum number.

40.30 Identify the procedure for filling up the shells and sub-
shells in building up the periodic table for as long as the
electron–electron interaction can be neglected.

40.31 Distinguish the noble gases from the other elements in
terms of chemical interactions, net angular momentum,
and ionization energy.

40.32 For a transition between two given atomic energy lev-
els, for either emission or absorption of light, apply the
relationship between the energy difference and the fre-
quency and wavelength of the light.

● In the periodic table, the elements are listed in order of in-
creasing atomic number Z, where Z is the number of protons
in the nucleus. For a neutral atom, Z is also the number of
electrons.

● States with the same value of quantum number n form a
shell.

● States with the same values of quantum numbers n and �
form a subshell.

● A closed shell and a closed subshell contain the maximum
number of electrons as allowed by the Pauli exclusion princi-
ple. The net angular momentum and net magnetic moment of
such closed structures are zero.

Learning Objectives

Key Ideas
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states in a subshell. If we count all the states throughout a given shell with quantum
number n, we find that the total number in the shell is 2n2.All states in a given sub-
shell have about the same energy, which depends primarily on the value of n, but it
also depends somewhat on the value of �.

For the purpose of labeling subshells, the values of are represented by letters:

For example, the n � 3, subshell would be labeled the 3d subshell.
When we assign electrons to states in a multielectron atom, we must be

guided by the Pauli exclusion principle of Module 40-4; that is, no two electrons
in an atom can have the same set of the quantum numbers , and ms. If this
important principle did not hold, all the electrons in any atom could jump to the
atom’s lowest energy level, which would eliminate the chemistry of atoms and
molecules, and thus also eliminate biochemistry and us. Let us examine the atoms
of a few elements to see how the Pauli exclusion principle operates in the build-
ing up of the periodic table.

Neon
The neon atom has 10 electrons. Only two of them fit into the lowest-energy
subshell, the 1s subshell. These two electrons both have n � 1, , and ,m� � 0� � 0

n, �, m�

� � 2

s p d f g h   . . . .
� � 0 1  2 3 4 5   . . .

�

2[2(0) � 1] � 2 states. Because this subshell then contains all the electrons 
permitted by the Pauli principle, it is said to be closed.

Two of the remaining eight electrons fill the next lowest energy subshell, the
2s subshell. The last six electrons just fill the 2p subshell, which, with , holds
2[2(1) � 1] � 6 states.

In a closed subshell, all allowed z projections of the orbital angular momen-
tum vector are present and, as you can verify from Fig. 40-5, these projections
cancel for the subshell as a whole; for every positive projection there is a corre-
sponding negative projection of the same magnitude. Similarly, the z projections
of the spin angular momenta also cancel. Thus, a closed subshell has no angular
momentum and no magnetic moment of any kind. Furthermore, its probability
density is spherically symmetric. Then neon with its three closed subshells (1s, 2s,
and 2p) has no “loosely dangling electrons” to encourage chemical interaction
with other atoms. Neon, like the other noble gases that form the right-hand col-
umn of the periodic table, is almost chemically inert.

Sodium
Next after neon in the periodic table comes sodium, with 11 electrons. Ten of
them form a closed neon-like core, which, as we have seen, has zero angular
momentum. The remaining electron is largely outside this inert core, in the 3s
subshell—the next lowest energy subshell. Because this valence electron of
sodium is in a state with (that is, an s state using the lettering system
above), the sodium atom’s angular momentum and magnetic dipole moment
must be due entirely to the spin of this single electron.

Sodium readily combines with other atoms that have a “vacancy” into which
sodium’s loosely bound valence electron can fit. Sodium, like the other alkali
metals that form the left-hand column of the periodic table, is chemically active.

Chlorine
The chlorine atom, which has 17 electrons, has a closed 10-electron, neon-like
core, with 7 electrons left over. Two of them fill the 3s subshell, leaving five to
be assigned to the 3p subshell, which is the subshell next lowest in energy. This
subshell, which has , can hold electrons, and so there is a 
vacancy, or a “hole,” in this subshell.

2[2(1) � 1] � 6� � 1

� � 0

L
:

� � 1

but one has and the other has . The 1s subshell containsms � �1
2ms � � 1

2
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Chlorine is receptive to interacting with other atoms that have a valence
electron that might fill this hole. Sodium chloride (NaCl), for example, is a very
stable compound. Chlorine, like the other halogens that form column VIIA of the
periodic table, is chemically active.

Iron
The arrangement of the 26 electrons of the iron atom can be represented as
follows:

1s2 2s2 2p6 3s2 3p6 3d6 4s2.

The subshells are listed in numerical order and, following convention, a super-
script gives the number of electrons in each subshell. From Table 40-1 we can see
that an s subshell can hold 2 electrons, a p subshell can hold 6,
and a d subshell can hold 10. Thus, iron’s first 18 electrons form the
five filled subshells that are marked off by the bracket, leaving 8 electrons to be
accounted for. Six of the eight go into the 3d subshell, and the remaining two go
into the 4s subshell.

The reason the last two electrons do not also go into the 3d subshell (which
can hold 10 electrons) is that the 3d6 4s2 configuration results in a lower-energy
state for the atom as a whole than would the 3d8 configuration. An iron atom
with 8 electrons (rather than 6) in the 3d subshell would quickly make a transi-
tion to the 3d6 4s2 configuration, emitting electromagnetic radiation in the
process. The lesson here is that except for the simplest elements, the states may
not be filled in what we might think of as their “logical” sequence.

(� � 2)
(� � 1)(� � 0)

40-6 X RAYS AND THE ORDERING OF THE ELEMENTS

After reading this module, you should be able to . . .

40.33 Identify where x rays are located in the electromagnetic
spectrum.

40.34 Explain how x rays are produced in a laboratory or
medical setting.

40.35 Distinguish between a continuous x-ray spectrum and
a characteristic x-ray spectrum.

40.36 In a continuous x-ray spectrum, identify the cause of
the cutoff wavelength .

40.37 Identify that in an electron–atom collision, energy and
momentum are conserved.

40.38 Apply the relationship between a cutoff wavelength
and the kinetic energy K0 of the incident electrons.lmin

lmin

40.39 Draw an energy-level diagram for holes and identify
(with labels) the transitions that produce x rays.

40.40 For a given hole transition, calculate the wavelength of
the emitted x ray.

40.41 Explain the importance of Moseley’s work with regard
to the periodic table.

40.42 Sketch a Moseley plot.
40.43 Describe the screening effect in a multielectron

atom.
40.44 Apply the relationship between the frequency of the

emitted K-alpha x rays and the atomic number Z of the
atoms.

● When a beam of high-energy electrons impact a target, the
electrons can lose their energy by scattering from atoms and
emitting a continuous spectrum of x rays.

● The shortest wavelength in the spectrum is the cutoff wave-
length , which is emitted when an incident electron loses
its full kinetic energy K0 in a single collision:

lmin �
hc
K0

.

lmin

● The characteristic x-ray spectrum is produced when inci-
dent electrons eject low-lying electrons in the target atoms
and electrons from upper levels jump down to the resulting
holes, emitting light.

● A Moseley plot is a graph of the square root of the charac-
teristic-emission frequencies versus atomic number Z of
the target atoms. The straight-line plot reveals that the posi-
tion of an element in the periodic table is set by Z and not the
atomic weight.

1f

Learning Objectives

Key Ideas
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X Rays and the Ordering of the Elements
When a solid target, such as solid copper or tungsten, is bombarded with electrons
whose kinetic energies are in the kiloelectron-volt range, electromagnetic radia-
tion called x rays is emitted. Our concern here is what these rays can teach us
about the atoms that absorb or emit them. Figure 40-13 shows the wavelength
spectrum of the x rays produced when a beam of 35 keV electrons falls on a
molybdenum target. We see a broad, continuous spectrum of radiation on which
are superimposed two peaks of sharply defined wavelengths.The continuous spec-
trum and the peaks arise in different ways, which we next discuss separately.

The Continuous X-Ray Spectrum
Here we examine the continuous x-ray spectrum of Fig. 40-13, ignoring for the
time being the two prominent peaks that rise from it. Consider an electron of
initial kinetic energy K0 that collides (interacts) with one of the target atoms, as in
Fig. 40-14. The electron may lose an amount of energy 
K, which will appear as
the energy of an x-ray photon that is radiated away from the site of the collision.
(Very little energy is transferred to the recoiling atom because of the relatively
large mass of the atom; here we neglect that transfer.)

The scattered electron in Fig. 40-14, whose energy is now less than K0, may
have a second collision with a target atom, generating a second photon, with a
different photon energy. This electron-scattering process can continue until the
electron is approximately stationary. All the photons generated by these colli-
sions form part of the continuous x-ray spectrum.

A prominent feature of that spectrum in Fig. 40-13 is the sharply defined 
cutoff wavelength lmin, below which the continuous spectrum does not exist. This
minimum wavelength corresponds to a collision in which an incident electron
loses all its initial kinetic energy K0 in a single head-on collision with a target
atom. Essentially all this energy appears as the energy of a single photon, whose
associated wavelength—the minimum possible x-ray wavelength—is found from

or (cutoff wavelength). (40-23)

The cutoff wavelength is totally independent of the target material. If we were to
switch from a molybdenum target to a copper target, for example, all features of
the x-ray spectrum of Fig. 40-13 would change except the cutoff wavelength.

�min �
hc
K0

K0 � hf �
hc

lmin
,
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Figure 40-13 The distribution by wavelength of
the x rays produced when 35 keV electrons
strike a molybdenum target.The sharp peaks
and the continuous spectrum from which they
rise are produced by different mechanisms.

Target
atom

K 0
Incident
electron

K0 –    K 

hf (=    K)
X-ray

photon

Δ

Δ

Figure 40-14 An electron of kinetic energy K0

passing near an atom in the target may gener-
ate an x-ray photon,the electron losing part
of its energy in the process. The continuous
x-ray spectrum arises in this way.

Checkpoint 2
Does the cutoff wavelength lmin of the continuous x-ray spectrum increase,decrease,or
remain the same if you (a) increase the kinetic energy of the electrons that strike the x-ray
target, (b) allow the electrons to strike a thin foil rather than a thick block of the target
material, (c) change the target to an element of higher atomic number?

The Characteristic X-Ray Spectrum
We now turn our attention to the two peaks of Fig. 40-13, labeled Ka and Kb.
These (and other peaks that appear at wavelengths beyond the range displayed
in Fig. 40-13) form the characteristic x-ray spectrum of the target material.

The peaks arise in a two-part process. (1) An energetic electron strikes an
atom in the target and, while it is being scattered, the incident electron knocks
out one of the atom’s deep-lying (low n value) electrons. If the deep-lying elec-
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tron is in the shell defined by n � 1 (called, for historical reasons, the K shell),
there remains a vacancy, or hole, in this shell. (2) An electron in one of the shells
with a higher energy jumps to the K shell, filling the hole in this shell. During this
jump, the atom emits a characteristic x-ray photon. If the electron that fills the
K-shell vacancy jumps from the shell with n � 2 (called the L shell), the emitted
radiation is the Ka line of Fig. 40-13; if it jumps from the shell with n � 3 (called
the M shell), it produces the Kb line, and so on. The hole left in either the L or M
shell will be filled by an electron from still farther out in the atom.

In studying x rays, it is more convenient to keep track of where a hole is
created deep in the atom’s “electron cloud” than to record the changes in the
quantum state of the electrons that jump to fill that hole. Figure 40-15 does
exactly that; it is an energy-level diagram for molybdenum, the element to
which Fig. 40-13 refers. The baseline (E � 0) represents the neutral atom in its
ground state. The level marked K (at E � 20 keV) represents the energy of the
molybdenum atom with a hole in its K shell, the level marked L (at E 2.7 keV)
represents the atom with a hole in its L shell, and so on.

The transitions marked Ka and Kb in Fig.40-15 are the ones that produce the two
x-ray peaks in Fig. 40-13. The Ka spectral line, for example, originates when an elec-
tron from the L shell fills a hole in the K shell.To state this transition in terms of what
the arrows in Fig.40-15 show,a hole originally in the K shell moves to the L shell.

Ordering the Elements
In 1913, British physicist H. G. J. Moseley generated characteristic x rays for as
many elements as he could find—he found 38—by using them as targets for
electron bombardment in an evacuated tube of his own design. By means of a
trolley manipulated by strings, Moseley was able to move the individual targets
into the path of an electron beam. He measured the wavelengths of the emitted
x rays by the crystal diffraction method described in Module 36-7.

Moseley then sought (and found) regularities in these spectra as he moved from
element to element in the periodic table. In particular, he noted that if, for a given
spectral line such as Ka, he plotted for each element the square root of the frequency
f against the position of the element in the periodic table, a straight line resulted.
Figure 40-16 shows a portion of his extensive data.Moseley’s conclusion was this:

We have here a proof that there is in the atom a fundamental quantity, which 
increases by regular steps as we pass from one element to the next. This quantity
can only be the charge on the central nucleus.

As a result of Moseley’s work, the characteristic x-ray spectrum became the uni-
versally accepted signature of an element, permitting the solution of a number of

�

Figure 40-15 A simplified energy-level
diagram for a molybdenum atom, showing
the transitions (of holes rather than elec-
trons) that give rise to some of the charac-
teristic x rays of that element. Each
horizontal line represents the energy of
the atom with a hole (a missing electron) in
the shell indicated.
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Figure 40-16 A Moseley plot of the Ka line of
the characteristic x-ray spectra of 21
elements.The frequency is calculated from
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periodic table puzzles. Prior to that time (1913), the positions of elements in the
table were assigned in order of atomic mass, although it was necessary to invert
this order for several pairs of elements because of compelling chemical evidence;
Moseley showed that it is the nuclear charge (that is, atomic number Z) that is
the real basis for ordering the elements.

In 1913 the periodic table had several empty squares, and a surprising num-
ber of claims for new elements had been advanced. The x-ray spectrum provided
a conclusive test of such claims. The lanthanide elements, often called the rare
earth elements, had been sorted out only imperfectly because their similar chemi-
cal properties made sorting difficult. Once Moseley’s work was reported, these
elements were properly organized.

It is not hard to see why the characteristic x-ray spectrum shows such im-
pressive regularities from element to element whereas the optical spectrum in
the visible and near-visible region does not: The key to the identity of an element
is the charge on its nucleus. Gold, for example, is what it is because its atoms have
a nuclear charge of �79e (that is, Z � 79). An atom with one more elementary
charge on its nucleus is mercury; with one fewer, it is platinum. The K electrons,
which play such a large role in the production of the x-ray spectrum, lie very close
to the nucleus and are thus sensitive probes of its charge. The optical spectrum,
on the other hand, involves transitions of the outermost electrons, which are
heavily screened from the nucleus by the remaining electrons of the atom and
thus are not sensitive probes of nuclear charge.

Accounting for the Moseley Plot
Moseley’s experimental data, of which the Moseley plot of Fig. 40-16 is but a part,
can be used directly to assign the elements to their proper places in the periodic
table. This can be done even if no theoretical basis for Moseley’s results can be
established. However, there is such a basis.

According to Eq. 39-33, the energy of the hydrogen atom is

(40-24)

Consider now one of the two innermost electrons in the K shell of a multi-
electron atom. Because of the presence of the other K-shell electron, our electron
“sees” an effective nuclear charge of approximately (Z � 1)e, where e is the
elementary charge and Z is the atomic number of the element. The factor e 4 in
Eq. 40-24 is the product of e 2—the square of hydrogen’s nuclear charge—and
(�e)2—the square of an electron’s charge. For a multielectron atom, we can
approximate the effective energy of the atom by replacing the factor e 4 in
Eq. 40-24 with (Z � 1)2e 2 3 (�e)2, or e 4(Z � 1)2.That gives us

(40-25)

We saw that the Ka x-ray photon (of energy hf ) arises when an electron makes a
transition from the L shell (with n � 2 and energy E2) to the K shell (with n � 1
and energy E1).Thus, using Eq. 40-25, we may write the energy change as

Then the frequency f of the Ka line is

(40-26)� (2.46 � 1015 Hz)(Z � 1)2.

f �

E
h

�
(10.2 eV)(Z � 1)2

(4.14 � 10�15 eV �s)

� (10.2 eV)(Z � 1)2.

�
�(13.60 eV)(Z � 1)2

22 �
�(13.60 eV)(Z � 1)2

12


E � E 2 � E1

En � �
(13.60 eV)(Z � 1)2

n2 .

En � �
me4

8´0
2h2

1
n2 � �

13.60 eV
n2 ,  for n � 1, 2, 3, . . . .
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Taking the square root of both sides yields

(40-27)

in which C is a constant (� 4.96 � 107 Hz1/2). Equation 40-27 is the equation of
a straight line. It shows that if we plot the square root of the frequency of the Ka

x-ray spectral line against the atomic number Z, we should obtain a straight line.
As Fig. 40-16 shows, that is exactly what Moseley found.

2 f � CZ � C,
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Dividing the second equation by the first neatly eliminates
C, yielding

Substituting the given data yields

Solving for the unknown, we find that

ZX � 30.0. (Answer)

Thus, the number of protons in the impurity nucleus is 30,
and a glance at the periodic table identifies the impurity as
zinc. Note that with a larger value of Z than cobalt, zinc has
a smaller value of the Ka line.This means that the energy as-
sociated with that jump must be greater in zinc than cobalt.

A
178.9 pm
143.5 pm

�
ZX � 1
27 � 1

.

A
lCo

lX
�

ZX � 1
ZCo � 1

.

Sample Problem 40.03 Characteristic spectrum in x-ray production

A cobalt target is bombarded with electrons, and the wave-
lengths of its characteristic x-ray spectrum are measured.
There is also a second, fainter characteristic spectrum, which
is due to an impurity in the cobalt. The wavelengths of the
Ka lines are 178.9 pm (cobalt) and 143.5 pm (impurity), and
the proton number for cobalt is ZCo � 27. Determine the 
impurity using only these data.

KEY IDEA

The wavelengths of the Ka lines for both the cobalt (Co)
and the impurity (X) fall on a Ka Moseley plot, and Eq.
40-27 is the equation for that plot.

Calculations: Substituting c/l for f in Eq. 40-27, we obtain

A
c

lCo
� CZCo � C  and  A

c
lX

� CZX � C.

Additional examples, video, and practice available at WileyPLUS

40-7 LASERS

After reading this module, you should be able to . . .

40.45 Distinguish the light of a laser from the light of a com-
mon lightbulb.

40.46 Sketch energy-level diagrams for the three basic ways
that light can interact with matter (atoms) and identify
which is the basis of lasing.

40.47 Identify metastable states.
40.48 For two energy states, apply the relationship between

the relative number of atoms in the higher state due to ther-
mal agitation, the energy difference, and the temperature.

40.49 Identify population inversion, explain why it is required
in a laser, and relate it to the lifetimes of the states.

40.50 Discuss how a helium–neon laser works, pointing out
which gas lases and explaining why the other gas is required.

40.51 For stimulated emission, apply the relationships be-
tween energy change, frequency, and wavelength.

40.52 For stimulated emission, apply the relationships be-
tween energy, power, time, intensity, area, photon energy,
and rate of photon emission.

● In stimulated emission, an atom in an excited state can be
induced to de-excite to a lower energy state by emitting a
photon if an identical photon passes the atom.

● The light emitted in stimulated emission is in phase with
and travels in the direction of the light causing the emission.

● A laser can emit light via stimulated emission provided that
its atoms are in a population inversion. That is, for the pair of
levels involved in the stimulated emission, more atoms must
be in the upper level than the lower level so that there is more
stimulated emission than just absorption.

Learning Objectives

Key Ideas
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Lasers and Laser Light
In the early 1960s, quantum physics made one of its many contributions to tech-
nology: the laser. Laser light, like the light from an ordinary lightbulb, is emitted
when atoms make a transition from one quantum state to a lower one. However,
in a lightbulb the emissions are random, both in time and direction, and in a laser
they are coordinated so that the emissions are at the same time and in the same
direction. As a result, laser light has the following characteristics:

1. Laser light is highly monochromatic. Light from an ordinary incandescent
lightbulb is spread over a continuous range of wavelengths and is certainly not
monochromatic. The radiation from a fluorescent neon sign is monochro-
matic, true, to about 1 part in 106, but the sharpness of definition of laser light
can be many times greater, as much as 1 part in 1015.

2. Laser light is highly coherent. Individual long waves (wave trains) for laser
light can be several hundred kilometers long. When two separated beams
that have traveled such distances over separate paths are recombined, they
“remember” their common origin and are able to form a pattern of interfer-
ence fringes. The corresponding coherence length for wave trains emitted by a
lightbulb is typically less than a meter.

3. Laser light is highly directional. A laser beam spreads very little; it departs from
strict parallelism only because of diffraction at the exit aperture of the laser. For
example, a laser pulse used to measure the distance to the Moon generates a spot
on the Moon’s surface with a diameter of only a few kilometers. Light from an or-
dinary bulb can be made into an approximately parallel beam by a lens, but the
beam divergence is much greater than for laser light. Each point on a lightbulb’s
filament forms its own separate beam, and the angular divergence of the overall
composite beam is set by the size of the filament.

4. Laser light can be sharply focused. If two light beams transport the same amount
of energy, the beam that can be focused to the smaller spot will have the greater
intensity (power per unit area) at that spot. For laser light, the focused spot can
be so small that an intensity of 1017 W/cm2 is readily obtained. An oxyacetylene
flame, by contrast, has an intensity of only about 103 W/cm2.

Lasers Have Many Uses
The smallest lasers, used for voice and data transmission over optical fibers,
have as their active medium a semiconducting crystal about the size of a pin-
head. Small as they are, such lasers can generate about 200 mW of power. The
largest lasers, used for nuclear fusion research and for astronomical and mili-
tary applications, fill a large building. The largest such laser can generate brief
pulses of laser light with a power level, during the pulse, of about 1014 W. This is
a few hundred times greater than the total electrical power generating capacity
of the United States. To avoid a brief national power blackout during a pulse,
the energy required for each pulse is stored up at a steady rate during the rela-
tively long interpulse interval.

Among the many uses of lasers are reading bar codes, manufacturing and
reading compact discs and DVDs, performing surgery of many kinds (both as a
surgical aid as in Fig. 40-17 and as a cutting and cauterizing tool), surveying, cut-
ting cloth in the garment industry (several hundred layers at a time), welding
auto bodies, and generating holograms.

Figure 40-17 A patient’s head is scanned and mapped by (red) laser light in preparation for
brain surgery. During the surgery, the laser-derived image of the head will be superim-
posed on the model of the brain shown on the monitor, to guide the surgical team into the
region shown in green (lower right) on the model displayed on the screen. Sam Ogden/Photo Researchers, Inc.
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Figure 40-18 The interaction of radiation and
matter in the processes of (a) absorption,
(b) spontaneous emission, and (c) stimu-
lated emission.An atom (matter) is repre-
sented by the red dot; the atom is in either a
lower quantum state with energy E0 or a
higher quantum state with energy Ex.
In (a) the atom absorbs a photon of energy
hf from  a passing light wave. In (b) it emits
a light wave by emitting a photon of energy
hf. In (c) a passing light wave with photon
energy hf causes the atom to emit a photon
of the same energy, increasing the energy of
the light wave.

Ex

E0

hf
(a)

Ex

E0

None(b)

Ex

E0

hf
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Radiation Matter

Ex

E0

hf

Ex
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RadiationMatter

Process

Absorption

Spontaneous
emission

Stimulated
emission

hf

These are three
ways that radiation
(light) can interact
with matter. The
third way is the
basis of lasing.

How Lasers Work
Because the word “laser” is an acronym for “light amplification by the stimulated
emission of radiation,” you should not be surprised that stimulated emission is
the key to laser operation. Einstein introduced this concept in 1917 in the paper
where he explained the Planck formula for an ideal blackbody radiator (Eq. 38-14).
Although the world had to wait until 1960 to see an operating laser, the ground-
work for its development was put in place decades earlier.

Consider an isolated atom that can exist either in its state of lowest energy
(its ground state), whose energy is E0, or in a state of higher energy (an excited
state), whose energy is Ex. Here are three processes by which the atom can move
from one of these states to the other:

1. Absorption. Figure 40-18a shows the atom initially in its ground state. If
the atom is placed in an electromagnetic field that is alternating at frequency f,
the atom can absorb an amount of energy hf from that field and move to the
higher-energy state. From the principle of conservation of energy we have

hf � Ex � E0. (40-28)

We call this process absorption.

2. Spontaneous emission. In Fig. 40-18b the atom is in its excited state and no
external radiation is present.After a time, the atom will de-excite to its ground
state, emitting a photon of energy hf in the process. We call this process spon-
taneous emission— spontaneous because the event is random and set by
chance. The light from the filament of an ordinary lightbulb or any other com-
mon light source is generated in this way.

Normally, the mean life of excited atoms before spontaneous emission
occurs is about 1028 s. However, for some excited states, this mean life is per-
haps as much as 105 times longer. We call such long-lived states metastable;
they play an important role in laser operation.

3. Stimulated emission. In Fig. 40-18c the atom is again in its excited state, but
this time radiation with a frequency given by Eq. 40-28 is present. A photon of
energy hf can stimulate the atom to move to its ground state, during which
process the atom emits an additional photon, whose energy is also hf. We call
this process stimulated emission— stimulated because the event is triggered by
the external photon.The emitted photon is in every way identical to the stimu-
lating photon. Thus, the waves associated with the photons have the same
energy, phase, polarization, and direction of travel.



Figure 40-18c describes stimulated emission for a single atom. Suppose
now that a sample contains a large number of atoms in thermal equilibrium at
temperature T. Before any radiation is directed at the sample, a number N0 of
these atoms are in their ground state with energy E0 and a number Nx are in a
state of higher energy Ex. Ludwig Boltzmann showed that Nx is given in terms
of N0 by

(40-29)

in which k is Boltzmann’s constant.This equation seems reasonable.The quantity
kT is the mean kinetic energy of an atom at temperature T. The higher the
temperature, the more atoms—on average—will have been “bumped up” by
thermal agitation (that is, by atom–atom collisions) to the higher energy state Ex.
Also, because Ex � E0, Eq. 40-29 requires that Nx � N0; that is, there will always
be fewer atoms in the excited state than in the ground state. This is what we
expect if the level populations N0 and Nx are determined only by the action of
thermal agitation. Figure 40-19a illustrates this situation.

If we now flood the atoms of Fig. 40-19a with photons of energy Ex � E0, pho-
tons will disappear via absorption by ground-state atoms and photons will be gen-
erated largely via stimulated emission of excited-state atoms. Einstein showed that
the probabilities per atom for these two processes are identical.Thus, because there
are more atoms in the ground state, the net effect will be the absorption of photons.

To produce laser light, we must have more photons emitted than absorbed;
that is, we must have a situation in which stimulated emission dominates.Thus, we
need more atoms in the excited state than in the ground state, as in Fig. 40-19b.
However, because such a population inversion is not consistent with thermal
equilibrium, we must think up clever ways to set up and maintain one.

The Helium–Neon Gas Laser
Figure 40-20 shows a common type of laser developed in 1961 by Ali Javan and
his coworkers. The glass discharge tube is filled with a 20 : 80 mixture of helium
and neon gases, neon being the medium in which laser action occurs.

Figure 40-21 shows simplified energy-level diagrams for the two types of atoms.
An electric current passed through the helium–neon gas mixture serves—through
collisions between helium atoms and electrons of the current—to raise many helium

Nx � N 0e�(Ex�E0)/kT,
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Figure 40-19 (a) The equilibrium distribution
of atoms between the ground state E0 and
excited state Ex accounted for by thermal ag-
itation. (b) An inverted population, obtained
by special methods. Such a population inver-
sion is essential for laser action.

Ex

E0

(a) (b)

Ex

E0

Figure 40-20 The elements of a helium–
neon gas laser.An applied potential Vdc

sends electrons through a discharge tube
containing a mixture of helium gas and
neon gas. Electrons collide with helium
atoms, which then collide with neon atoms,
which emit light along the length of the
tube.The light passes through transparent
windows W and reflects back and forth
through the tube from mirrors M1 and M2

to cause more neon atom emissions. Some
of the light leaks through mirror M2 to
form the laser beam.
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Then the helium atoms
excite the neon atoms
to level E2 by collisions.
Those neon atoms stay
long enough to be forced
into stimulated emission.

The current (electrons)
excite the helium atoms
by collisions (but not the
more massive neon
atoms).

Figure 40-21 Five essential en-
ergy levels for helium and
neon atoms in a helium–neon
gas laser. Laser action occurs
between levels E2 and E1 of
neon when more atoms are at
the E2 level than at the E1

level.



atoms to state E3, which is metastable with a mean life of at least 1 ms. (The neon
atoms are too massive to be excited by collisions with the (low-mass) electrons.)

The energy of helium state E3 (20.61 eV) is very close to the energy of neon
state E2 (20.66 eV). Thus, when a metastable (E3) helium atom and a ground-
state (E0) neon atom collide, the excitation energy of the helium atom is often
transferred to the neon atom, which then moves to state E2. In this manner, neon
level E2 (with a mean life of 170 ns) can become more heavily populated than
neon level E1 (which, with a mean life of only 10 ns, is almost empty).

This population inversion is relatively easy to set up because (1) initially there
are essentially no neon atoms in state E1, (2) the long mean life of helium level E3

means that there is always a good chance that collisions will excite neon atoms to
their E2 level, and (3) once those neon atoms undergo stimulated emission and fall to
their E1 level, they almost immediately fall down to their ground state (via
intermediate levels not shown) and are then ready to be re-excited by collisions.

Suppose now that a single photon is spontaneously emitted as a neon atom
transfers from state E2 to state E1. Such a photon can trigger a stimulated emis-
sion event, which, in turn, can trigger other stimulated emission events. Through
such a chain reaction, a coherent beam of laser light, moving parallel to the tube
axis, can build up rapidly.This light, of wavelength 632.8 nm (red), moves through
the discharge tube many times by successive reflections from mirrors M1 and M2

shown in Fig. 40-20, accumulating additional stimulated emission photons with
each passage. M1 is totally reflecting, but M2 is slightly “leaky” so that a small 
fraction of the laser light escapes to form a useful external beam.
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Checkpoint 3
The wavelength of light from laser A (a helium–neon gas laser) is 632.8 nm; that from
laser B (a carbon dioxide gas laser) is 10.6 mm; that from laser C (a gallium arsenide
semiconductor laser) is 840 nm. Rank these lasers according to the energy interval be-
tween the two quantum states responsible for laser action, greatest first.

Calculation: The lasing wavelength gives us

To solve Eq. 40-30, we also need the mean energy of thermal
agitation kT for an atom at room temperature (assumed to
be 300 K), which is

kT � (8.62 � 10�5 eV/K)(300 K) � 0.0259 eV,

in which k is Boltzmann’s constant.
Substituting the last two results into Eq. 40-30 gives us

the population ratio at room temperature:

(Answer)

This is an extremely small number. It is not unreasonable,
however. Atoms with a mean thermal agitation energy of

� 1.3 � 10�38.

Nx /N0 � e�(2.26 eV)/(0.0259 eV)

� 2.26 eV.

�
(6.63 � 10�34 J �s)(3.00 � 10 8 m/s)
(550 � 10�9 m)(1.60 � 10�19 J/eV)

Ex � E0 � hf �
hc
l

Sample Problem 40.04 Population inversion in a laser

In the helium–neon laser of Fig. 40-20, laser action occurs
between two excited states of the neon atom. However, in
many lasers, laser action (lasing) occurs between the ground
state and an excited state, as suggested in Fig. 40-19b.

(a) Consider such a laser that emits at wavelength l � 550
nm. If a population inversion is not generated, what is the
ratio of the population of atoms in state Ex to the population
in the ground state E0, with the atoms at room temperature?

KEY IDEAS

(1) The naturally occurring population ratio Nx/N0 of the two
states is due to thermal agitation of the gas atoms (Eq. 40-29):

(40-30)

To find Nx/N0 with Eq. 40-30, we need to find the energy
separation Ex � E0 between the two states. (2) We can ob-
tain Ex � E0 from the given wavelength of 550 nm for the
lasing between those two states.

Nx/N0 � e�(Ex�E0)/kT.
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Additional examples, video, and practice available at WileyPLUS

only 0.0259 eV will not often impart an energy of 2.26 eV to
another atom in a collision.

(b) For the conditions of (a), at what temperature would
the ratio Nx/N0 be 1/2? 

Calculation: Now we want the temperature T such that
thermal agitation has bumped enough neon atoms up to the
higher-energy state to give Nx/N0 � 1/2. Substituting that ra-
tio into Eq. 40-30, taking the natural logarithm of both sides,
and solving for T yield

(Answer)

This is much hotter than the surface of the Sun. Thus, it is
clear that if we are to invert the populations of these two
levels, some specific mechanism for bringing this about is
needed—that is, we must “pump” the atoms. No tempera-
ture, however high, will naturally generate a population 
inversion by thermal agitation.

� 38 000 K.

T �
Ex � E0

k(ln 2)
�

2.26 eV
(8.62 � 10 �5 eV/K)(ln 2)

Some Properties of Atoms Atoms have quantized ener-
gies and can make quantum jumps between them. If a jump be-
tween a higher energy and a lower energy involves the emission
or absorption of a photon, the frequency associated with the
light is given by

hf � Ehigh � Elow. (40-1)

States with the same value of quantum number n form a shell. States
with the same values of quantum numbers n and � form a subshell.

Orbital Angular Momentum and Magnetic Dipole
Moments The magnitude of the orbital angular momentum of
an electron trapped in an atom has quantized values given by

for (40-2)

where is , � is the orbital magnetic quantum number, and n is
the electron’s principal quantum number.The component Lz of the
orbital angular momentum on a z axis is quantized and given by

for , (40-3)

where is the orbital magnetic quantum number. The magnitude
of the orbital magnetic moment of the electron is quantized

with the values given by

(40-6)

where m is the electron mass. The component on a z axis is
also quantized according to

(40-7)

where is the Bohr magneton:

(40-8)

Spin Angular Momentum and Magnetic Dipole
Moment Every electron, whether trapped or free, has an intrin-
sic spin angular momentum with a magnitude that is quantized as

for (40-9)

where s is the spin quantum number. An electron is said to be a

s � 1
2,S � 1s(s � 1) �,

S
:

mB �
eh

4pm
�

e�

2m
� 9.274 � 10�24 J/T.

mB

morb,z � �
e

2m
m�� � �m�mB,

morb,z

morb �
e

2m
2�(� � 1) �,

morb

m/

m/ � 0, 	1, 	2, � � � , 	/Lz � m��,

h/2��

/ � 0, 1, 2, � � � , (n � 1),L � 2/(/ � 1) �,

Review & Summary

spin- particle. The component Sz on a z axis is also quantized ac-
cording to

for (40-10)

where ms is the spin magnetic quantum number. Every electron,
whether trapped or free, has an intrinsic spin magnetic dipole mo-
ment with a magnitude that is quantized as

for (40-12)

The component on a z axis is also quantized according to

for . (40-13)

Stern–Gerlach Experiment The Stern–Gerlach experi-
ment demonstrated that the magnetic moment of silver atoms is
quantized, experimental proof that magnetic moments at the
atomic level are quantized. An atom with magnetic dipole mo-
ment experiences a force in a nonuniform magnetic field. If the
field changes at the rate of dB/dz along a z axis, then the force is
along the z axis and is related to the component mz of the dipole
moment:

(40-17)

A proton has an intrinsic spin angular momentum and an intrin-
sic magnetic dipole moment that are in the same direction.

Magnetic Resonance The magnetic dipole moment of a
proton in a magnetic field along a z axis has two quantized
components on that axis: spin up (mz is in the direction ) and
spin down (mz is in the opposite direction). Contrary to the situa-
tion with an electron, spin up is the lower energy orientation; the
difference between the two orientations is 2mzB. The energy re-
quired of a photon to spin-flip the proton between the two orien-
tations is

hf � 2mzB. (40-22)

The field is the vector sum of an external field set up by equipment
and an internal field set up by the atoms and nuclei surrounding
the proton. Detection of spin-flips can lead to nuclear magnetic
resonance spectra by which specific substances can be identified.

B
:

B
:

m:
S
:

Fz � mz
dB
dz

.

ms � 	1
2ms,z � �2msmB,

ms,z

s � 1
2.ms �

e
m
2s(s � 1) �,

m
s

:

ms � 	s � 	1
2,Sz � ms�,

1
2
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Questions

1 How many (a) subshells and (b) electron states are in the n � 2
shell? How many (c) subshells and (d) electron states are in the 
n � 5 shell?

2 An electron in an atom of gold is in a state with n � 4.Which of
these values of are possible for it: �3, 0, 2, 3, 4, 5?

3 Label these statements as true or false: (a) One (and only one)
of these subshells cannot exist: 2p, 4f, 3d, 1p. (b) The number of val-
ues of that are allowed depends only on and not on n. (c)�m�

�

9 The Ka x-ray line for any element arises because of a
transition between the K shell (n � 1) and the L shell (n � 2).
Figure 40-13 shows this line (for a molybdenum target)
occurring at a single wavelength. With higher resolution, how-
ever, the line splits into several wavelength components because
the L shell does not have a unique energy. (a) How many com-
ponents does the Ka line have? (b) Similarly, how many compo-
nents does the Kb line have?

10 Consider the elements krypton and rubidium. (a) Which is
more suitable for use in a Stern–Gerlach experiment of the kind
described in connection with Fig. 40-8? (b) Which, if either, would
not work at all?

11 On which quantum numbers does the energy of an electron
depend in (a) a hydrogen atom and (b) a vanadium atom?

12 Which (if any) of the following are essential for laser action to
occur between two energy levels of an atom? (a) There are more
atoms in the upper level than in the lower. (b) The upper level is
metastable. (c) The lower level is metastable. (d) The lower level is
the ground state of the atom. (e) The lasing medium is a gas.

13 Figure 40-21 shows partial energy-level diagrams for the
helium and neon atoms that are involved in the operation of a
helium–neon laser. It is said that a helium atom in state E3 can
collide with a neon atom in its ground state and raise the neon
atom to state E2. The energy of helium state E3 (20.61 eV) is close
to, but not exactly equal to, the energy of neon state E2 (20.66 eV).
How can the energy transfer take place if these energies are not
exactly equal?

14 The x-ray spectrum of Fig. 40-13 is for 35.0 keV electrons
striking a molybdenum (Z � 42) target. If you substitute a silver
(Z � 47) target for the molybdenum target, will (a) lmin, (b) the
wavelength for the Ka line, and (c) the wavelength for the Kb line
increase, decrease, or remain unchanged?

There are four subshells with n � 4. (d) The smallest value of n for
a given value of is . (e) All states with also have

. (f) There are n subshells for each value of n.

4 An atom of uranium has closed 6p and 7s subshells.Which sub-
shell has the greater number of electrons?

5 An atom of silver has closed 3d and 4d subshells. Which sub-
shell has the greater number of electrons, or do they have the same
number?

6 From which atom of each of the following pairs is it easier to
remove an electron: (a) krypton or bromine, (b) rubidium or
cerium, (c) helium or hydrogen?

7 An electron in a mercury atom is in the 3d subshell. Which of
the following values are possible for it: �3,m�

m� � 0
� � 0� � 1�

Figure 40-22
Question 8.

z

B

3

2

1

Pauli Exclusion Principle Electrons in atoms and other
traps obey the Pauli exclusion principle, which requires that no two
electrons in a trap can have the same set of quantum numbers.

Building the Periodic Table In the periodic table, the ele-
ments are listed in order of increasing atomic number Z, where Z
is the number of protons in the nucleus. For a neutral atom, Z is
also the number of electrons. States with the same value of quan-
tum number n form a shell. States with the same values of quantum
numbers n and � form a subshell. A closed shell and a closed sub-
shell contain the maximum number of electrons as allowed by the
Pauli exclusion principle.The net angular momentum and net mag-
netic moment of such closed structures is zero.

X Rays and the Numbering of the Elements When a
beam of high-energy electrons impacts a target, the electrons can
lose their energy by emitting x rays when they scatter from atoms
in the target. The emission is over a range of wavelengths, said to
be a continuous spectrum. The shortest wavelength in the spec-
trum is the cutoff wavelength , which is emitted when an inci-
dent electron loses its full kinetic energy K0 in a single scattering
event, with a single x-ray emission:

lmin

The characteristic x-ray spectrum is produced when incident elec-
trons eject low-lying electrons in the target atoms and electrons
from upper levels jump down to the resulting holes, emitting
light. A Moseley plot is a graph of the square root of the charac-
teristic-emission frequencies versus atomic number Z of the
target atoms. The straight-line plot reveals that the position of an
element in the periodic table is set by Z and not by the atomic
weight.

Lasers In stimulated emission, an atom in an excited state can
be induced to de-excite to a lower energy state by emitting a pho-
ton if an identical photon passes the atom. The light emitted in
stimulated emission is in phase with and travels in the direction of
the light causing the emission.

A laser can emit light via stimulated emission provided that its
atoms are in population inversion. That is, for the pair of levels in-
volved in the stimulated emission, more atoms must be in the up-
per level than the lower level so that there is more stimulated emis-
sion than just absorption.

1f

lmin �
hc
K0

.

�1, 0, 1, 2?

8 Figure 40-22 shows three points at which a
spin-up electron can be placed in a nonuniform
magnetic field (there is a gradient along the z
axis). (a) Rank the three points according to the
energy U of the electron’s intrinsic magnetic di-
pole moment , most positive first. (b) What is
the direction of the force on the electron due to
the magnetic field if the spin-up electron is at
point 2?

�:s
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Module 40-2 The Stern–Gerlach Experiment
•13 What is the acceleration of a silver atom as it passes
through the deflecting magnet in the Stern–Gerlach experiment of
Fig. 40-8 if the magnetic field gradient is 1.4 T/mm?

•14 Suppose that a hydrogen atom in its ground state moves 80
cm through and perpendicular to a vertical magnetic field that has
a magnetic field gradient dB/dz � 1.6 � 102 T/m. (a) What is the
magnitude of force exerted by the field gradient on the atom due
to the magnetic moment of the atom’s electron, which we take to
be 1 Bohr magneton? (b) What is the vertical displacement of the
atom in the 80 cm of travel if its speed is 1.2 � 105 m/s?

•15 Calculate the (a) smaller and (b) larger value of the semiclas-
sical angle between the electron spin angular momentum vector
and the magnetic field in a Stern–Gerlach experiment. Bear in
mind that the orbital angular momentum of the valence electron in
the silver atom is zero.

•16 Assume that in the Stern–Gerlach experiment as described for
neutral silver atoms, the magnetic field has a magnitude of 0.50 T.
(a) What is the energy difference between the magnetic moment ori-
entations of the silver atoms in the two subbeams? (b) What is the
frequency of the radiation that would induce a transition between
these two states? (c) What is the wavelength of this radiation, and (d)
to what part of the electromagnetic spectrum does it belong?

Module 40-3 Magnetic Resonance
•17 In an NMR experiment, the RF source oscillates at 34 MHz
and magnetic resonance of the hydrogen atoms in the sample being in-
vestigated occurs when the external field has magnitude 0.78 T.
Assume that and are in the same direction and take the pro-
ton magnetic moment component mz to be 1.41 10�26 J/T. What is
the magnitude of ?

•18 A hydrogen atom in its ground state actually has two possi-
ble, closely spaced energy levels because the electron is in the mag-
netic field of the proton (the nucleus). Accordingly, an energy is
associated with the orientation of the electron’s magnetic moment

relative to , and the electron is said to be either spin up (higher
energy) or spin down (lower energy) in that field. If the electron is
excited to the higher-energy level, it can de-excite by spin-flipping
and emitting a photon. The wavelength associated with that
photon is 21 cm. (Such a process occurs extensively in the Milky
Way galaxy, and reception of the 21 cm radiation by radio tele-
scopes reveals where hydrogen gas lies between stars.) What is the
effective magnitude of as experienced by the electron in the
ground-state hydrogen atom?

•19 What is the wavelength associated with a photon that will induce
a transition of an electron spin from parallel to antiparallel orientation
in a magnetic field of magnitude 0.200T? Assume that .

Module 40-4 Exclusion Principle and Multiple Electrons in
a Trap
•20 A rectangular corral of widths Lx � L and Ly � 2L contains
seven electrons. What multiple of h2/8mL2 gives the energy of the

� � 0
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B
:

B
:
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�
B
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B
:
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B
:
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Module 40-1 Properties of Atoms
•1 An electron in a hydrogen atom is in a state with . What
is the minimum possible value of the semiclassical angle between

and Lz?

•2 How many electron states are there in a shell defined by the
quantum number n � 5?

•3 (a) What is the magnitude of the orbital angular momentum in
a state with ? (b) What is the magnitude of its largest
projection on an imposed z axis?

•4 How many electron states are there in the following shells: (a)
n � 4, (b) n � 1, (c) n � 3, (d) n � 2?

•5 (a) How many values are associated with n 3? (b) How
many values are associated with ?

•6 How many electron states are in these subshells: (a) n � 4,
; (b) n � 3, ; (c) n � 4, ; (d) n � 2, ?

•7 An electron in a multielectron atom has . For this
electron, what are (a) the value of , (b) the smallest possible value
of n, and (c) the number of possible values of ms?

•8 In the subshell , (a) what is the greatest (most positive)
value, (b) how many states are available with the greatest 

value, and (c) what is the total number of states available in the
subshell?

••9 An electron is in a state with . (a) What� � 3WWWSSM

m�m�

� � 3

�
m� � �4

� � 0� � 1� � 1� � 3

� � 1m�

��

� � 3

L
:

� � 5

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

multiple of gives the magnitude of ? (b) What multiple of mB

gives the magnitude of ? (c) What is the largest possible value
of , (d) what multiple of gives the corresponding value of Lz,
and (e) what multiple of mB gives the corresponding value of morb,z?
(f) What is the value of the semiclassical angle u between the direc-
tions of Lz and ? What is the value of angle u for (g) the second
largest possible value of and (h) the smallest (that is, most nega-
tive) possible value of ?

••10 An electron is in a state with n � 3.What are (a) the number
of possible values of , (b) the number of possible values of , (c)
the number of possible values of ms, (d) the number of states in the
n � 3 shell, and (e) the number of subshells in the n � 3 shell?

••11 If orbital angular momentum is measured along, say,
a z axis to obtain a value for Lz, show that

is the most that can be said about the other two components of the
orbital angular momentum.

•••12 A magnetic field is applied to a freely floating uniform
iron sphere with radius The sphere initially had no
net magnetic moment, but the field aligns 12% of the magnetic mo-
ments of the atoms (that is, 12% of the magnetic moments of the
loosely bound electrons in the sphere, with one such electron per
atom). The magnetic moment of those aligned electrons is the
sphere’s intrinsic magnetic moment . What is the sphere’s result-
ing angular speed ?v

�:s

R � 2.00 mm.

(Lx
2 � Ly

2)1/2 � [�(� � 1) � m�
2]1/2�

L
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ground state of this system? Assume that the electrons do not inter-
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shells of the electronic states are filled in the sequence

1s 2s 2p 3s 3p 3d 4s 4p . . . .

What are (a) the highest occupied subshell for selenium and (b) the
number of electrons in it, (c) the highest occupied subshell for
bromine and (d) the number of electrons in it, and (e) the highest
occupied subshell for krypton and (f) the number of electrons in it?

•32 Suppose two electrons in an atom have quantum numbers 
n � 2 and . (a) How many states are possible for those two
electrons? (Keep in mind that the electrons are indistinguishable.)
(b) If the Pauli exclusion principle did not apply to the electrons,
how many states would be possible?

Module 40-6 X Rays and the Ordering of the Elements
•33 Through what minimum potential difference must an elec-
tron in an x-ray tube be accelerated so that it can produce x rays
with a wavelength of 0.100 nm?

••34 The wavelength of the Ka line from iron is 193 pm. What is
the energy difference between the two states of the iron atom that
give rise to this transition?

••35 In Fig. 40-13, the x rays shown are produced
when 35.0 keV electrons strike a molybdenum (Z 42) target. If
the accelerating potential is maintained at this value but a silver 
(Z � 47) target is used instead, what values of (a) lmin, (b) 
the wavelength of the Ka line, and (c) the wavelength of the 
Kb line result? The K, L, and M atomic x-ray levels for silver 
(compare Fig. 40-15) are 25.51, 3.56, and 0.53 keV.

••36 When electrons bombard a molybdenum target, they produce
both continuous and characteristic x rays as shown in Fig. 40-13. In
that figure the kinetic energy of the incident electrons is 35.0 keV. If
the accelerating potential is increased to 50.0 keV, (a) what is the
value of lmin, and (b) do the wavelengths of the Ka and Kb lines in-
crease, decrease, or remain the same?

••37 Show that a moving electron cannot spontaneously change
into an x-ray photon in free space. A third body (atom or nucleus)
must be present. Why is it needed? (Hint: Examine the conserva-
tion of energy and momentum.)

••38 Here are the Ka wavelengths of a few elements:

Element l (pm) Element l (pm)

Ti 275 Co 179
V 250 Ni 166
Cr 229 Cu 154
Mn 210 Zn 143
Fe 193 Ga 134

Make a Moseley plot (like that in Fig. 40-16) from these data and ver-
ify that its slope agrees with the value given for C in Module 40-6.

••39 Calculate the ratio of the wavelength of the Ka line for
niobium (Nb) to that for gallium (Ga). Take needed data from the
periodic table of Appendix G.

••40 (a) From Eq. 40-26, what is the ratio of the photon energies
due to Ka transitions in two atoms whose atomic numbers are Z
and Z�? (b) What is this ratio for uranium and aluminum? (c) For
uranium and lithium?

SSM

�

WWWSSM

� � 1

act with one another, and do not neglect spin.

•21 Seven electrons are trapped in a one-dimensional infinite po-
tential well of width L. What multiple of h2/8mL2 gives the energy of
the ground state of this system? Assume that the electrons do not in-
teract with one another,and do not neglect spin.

•22 Figure 40-23 is an energy-level
diagram for a fictitious infinite potential
well that contains one electron. The num-
ber of degenerate states of the levels are
indicated: “non” means nondegenerate
(which includes the ground state of the
electron), “double” means 2 states, and
“triple” means 3 states. We put a total of
11 electrons in the well. If the electro-
static forces between the electrons can be
neglected, what multiple of gives
the energy of the first excited state of the
11-electron system?

••23 A cubical box of widths Lx � Ly � Lz � L contains
eight electrons. What multiple of h2/8mL2 gives the energy of the
ground state of this system? Assume that the electrons do not in-
teract with one another, and do not neglect spin.

••24 For Problem 20, what multiple of h2/8mL2 gives the
energy of (a) the first excited state, (b) the second excited state,
and (c) the third excited state of the system of seven electrons?
(d) Construct an energy-level diagram for the lowest four energy
levels.

••25 For the situation of Problem 21, what multiple of h2/8mL2

gives the energy of (a) the first excited state, (b) the second excited
state, and (c) the third excited state of the system of seven elec-
trons? (d) Construct an energy-level diagram for the lowest four
energy levels of the system.

•••26 For the situation of Problem 23, what multiple of
h2/8mL2 gives the energy of (a) the first excited state, (b) the sec-
ond excited state, and (c) the third excited state of the system of
eight electrons? (d) Construct an energy-level diagram for the
lowest four energy levels of the system.

Module 40-5 Building the Periodic Table
•27 Two of the three electrons in a lithium atomWWWSSM

SSM

h2/8mL2 Figure 40-23
Problem 22.

Non

E (h2/8mL2)

12
Triple 11

Double7
Triple 6

Ground4

have quantum numbers (n, , ms) of and .
What quantum numbers are possible for the third electron if the
atom is (a) in the ground state and (b) in the first excited state?

•28 Show that the number of states with the same quantum num-
ber n is 2n2.

•29 A recently named element is darmstadtium (Ds), which
has 110 electrons. Assume that you can put the 110 electrons into
the atomic shells one by one and can neglect any electron–
electron interaction. With the atom in ground state, what is the
spectroscopic notation for the quantum number for the last
electron?

•30 For a helium atom in its ground state, what are quantum
numbers ( ) for the (a) spin-up electron and (b) spin-
down electron?

•31 Consider the elements selenium (Z � 34), bromine (Z � 35),
and krypton (Z � 36). In their part of the periodic table, the sub-

n, �, m�, and ms

�

(1, 0, 0,�1
2)(1, 0, 0,�1

2)�, m�



••41 The binding energies of K-shell and L-shell electrons in cop-
per are 8.979 and 0.951 keV, respectively. If a Ka x ray from copper
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Module 40-7 Lasers
•47 The active volume of a laser constructed of the semi-
conductor GaAlAs is only 200 mm3 (smaller than a grain of sand),
and yet the laser can continuously deliver 5.0 mW of power at a
wavelength of 0.80 mm.At what rate does it generate photons?

•48 A high-powered laser beam (l � 600 nm) with a beam diam-
eter of 12 cm is aimed at the Moon, 3.8 � 105 km distant.The beam
spreads only because of diffraction. The angular location of the
edge of the central diffraction disk (see Eq. 36-12) is given by

where d is the diameter of the beam aperture. What is the diameter
of the central diffraction disk on the Moon’s surface?

•49 Assume that lasers are available whose wavelengths can be
precisely “tuned” to anywhere in the visible range—that is, in the
range 450 nm � l � 650 nm. If every television channel occupies a
bandwidth of 10 MHz, how many channels can be accommodated
within this wavelength range?

•50 A hypothetical atom has only two atomic energy levels, sepa-
rated by 3.2 eV. Suppose that at a certain altitude in the atmo-
sphere of a star there are 6.1 � 1013/cm3 of these atoms in the
higher-energy state and 2.5 � 1015/cm3 in the lower-energy state.
What is the temperature of the star’s atmosphere at that altitude?

•51 A hypothetical atom has energy levels uniformly sepa-
rated by 1.2 eV.At a temperature of 2000 K, what is the ratio of the
number of atoms in the 13th excited state to the number in the
11th excited state?

•52 A laser emits at 424 nm in a single pulse that lasts 
0.500 ms. The power of the pulse is 2.80 MW. If we assume that the
atoms contributing to the pulse underwent stimulated emission only
once during the 0.500 ms,how many atoms contributed?

•53 A helium–neon laser emits laser light at a wavelength of
632.8 nm and a power of 2.3 mW.At what rate are photons emitted
by this device?

•54 A certain gas laser can emit light at wavelength 550 nm,
which involves population inversion between ground state and an
excited state. At room temperature, how many moles of neon are
needed to put 10 atoms in that excited state by thermal agitation?

•55 A pulsed laser emits light at a wavelength of 694.4 nm. The
pulse duration is 12 ps, and the energy per pulse is 0.150 J. (a) What
is the length of the pulse? (b) How many photons are emitted in
each pulse?

•56 A population inversion for two energy levels is often de-
scribed by assigning a negative Kelvin temperature to the system.
What negative temperature would describe a system in which the
population of the upper energy level exceeds that of the lower
level by 10% and the energy difference between the two levels is
2.26 eV?

••57 A hypothetical atom has two energy levels, with a transition
wavelength between them of 580 nm. In a particular sample at 300
K, 4.0 � 1020 such atoms are in the state of lower energy. (a) How
many atoms are in the upper state, assuming conditions of thermal
equilibrium? (b) Suppose, instead, that 3.0 � 1020 of these atoms
are “pumped” into the upper state by an external process, with 
1.0 � 1020 atoms remaining in the lower state. What is the maxi-

SSM

sin u �
1.22l

d
,

is incident on a sodium chloride crystal and gives a first-order
Bragg reflection at an angle of 74.1° measured relative to parallel
planes of sodium atoms, what is the spacing between these parallel
planes?

••42 From Fig. 40-13, calculate approximately the energy differ-
ence EL � EM for molybdenum. Compare it with the value that
may be obtained from Fig. 40-15.

••43 A tungsten (Z � 74) target is bombarded by electrons in an x-ray
tube. The K, L, and M energy levels for tungsten (compare Fig. 40-15)
have the energies 69.5, 11.3, and 2.30 keV, respectively. (a) What is the
minimum value of the accelerating potential that will permit the produc-
tion of the characteristic Ka and Kb lines of tungsten? (b) For this same
accelerating potential, what is lmin? What are the (c) Ka and (d) Kb

wavelengths?

••44 A 20 keV electron is brought to rest by colliding twice with
target nuclei as in Fig. 40-14. (Assume the nuclei remain stationary.)
The wavelength associated with the photon emitted in the second
collision is 130 pm greater than that associated with the photon
emitted in the first collision. (a) What is the kinetic energy of the
electron after the first collision? What are (b) the wavelength l1

and (c) the energy E1 associated with the first photon? What are (d)
l2 and (e) E2 associated with the second photon?

••45 X rays are produced in an x-ray tube by electrons acceler-
ated through an electric potential difference of 50.0 kV. Let K0

be the kinetic energy of an electron at the end of the accelera-
tion. The electron collides with a target nucleus (assume the nu-
cleus remains stationary) and then has kinetic energy K1 �
0.500K0. (a) What wavelength is associated with the photon that
is emitted? The electron collides with another target nucleus (as-
sume it, too, remains stationary) and then has kinetic energy
K2 � 0.500K1. (b) What wavelength is associated with the pho-
ton that is emitted?

•••46 Determine the constant C in Eq. 40-27 to five significant
figures by finding C in terms of the fundamental constants in Eq.
40-24 and then using data from Appendix B to evaluate those
constants. Using this value of C in Eq. 40-27, determine the theo-
retical energy Etheory of the Ka photon for the low-mass elements
listed in the following table. The table includes the value (eV) of
the measured energy Eexp of the Ka photon for each listed ele-
ment. The percentage deviation between Etheory and Eexp can be
calculated as

What is the percentage deviation for (a) Li, (b) Be, (c) B, (d) C,
(e) N, (f) O, (g) F, (h) Ne, (i) Na, and (j) Mg?

Li 54.3 O 524.9
Be 108.5 F 676.8
B 183.3 Ne 848.6
C 277 Na 1041
N 392.4 Mg 1254

(There is actually more than one Ka ray because of the splitting of
the L energy level, but that effect is negligible for the elements
listed here.)

percentage deviation �
Etheory � Eexp

Eexp
 100.



mum energy that could be released by the atoms in a single laser
pulse if each atom jumps once between those two states (either via
absorption or via stimulated emission)?

••58 The mirrors in the laser of Fig. 40-20, which are separated by
8.0 cm, form an optical cavity in which standing waves of laser light
can be set up. Each standing wave has an integral number n of half
wavelengths in the 8.0 cm length, where n is large and the waves
differ slightly in wavelength. Near l � 533 nm, how far apart in
wavelength are the standing waves?

••59 Figure 40-24 shows the energy levels of two types of
atoms. Atoms A are in one tube, and atoms B are in another tube.
The energies (relative to a ground-state energy of zero) are 
indicated; the average lifetime of atoms in each level is also indi-
cated. All the atoms are initially pumped to levels higher than the
levels shown in the figure. The atoms then drop down through the
levels, and many become “stuck” on certain levels, leading to popu-
lation inversion and lasing. The light emitted by A illuminates B
and can cause stimulated emission of B. What is the energy per
photon of that stimulated emission of B?
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are in the ground state. What is the average power emitted during
the pulse? (Hint: Don’t just ignore the ground-state ions.)

Additional Problems
63 Figure 40-25 is an energy-level di-
agram for a fictitious three-dimensional
infinite potential well that contains one
electron. The number of degenerate
states of the levels are indicated: “non”
means nondegenerate (which includes the
ground state) and “triple” means 3 states.
If we put a total of 22 electrons in the well,
what multiple of gives the energy
of the ground state of the 22-electron sys-
tem? Assume that the electrostatic forces
between the electrons are negligible.

64 Martian CO2 laser. Where
sunlight shines on the atmosphere
of Mars, carbon dioxide mole-
cules at an altitude of about 75
km undergo natural laser action.
The energy levels involved in the
action are shown in Fig. 40-26;
population inversion occurs be-
tween energy levels E2 and E1.
(a) What wavelength of sunlight
excites the molecules in the las-
ing action? (b) At what wave-
length does lasing occur? (c) In what region of the electromag-
netic spectrum do the excitation and lasing wavelengths lie?

65 Excited sodium atoms emit two
closely spaced spectrum lines called
the sodium doublet (Fig. 40-27) with
wavelengths 588.995 nm and 589.592
nm. (a) What is the difference in
energy between the two upper energy
levels (n � 3, )? (b) This energy
difference occurs because the elec-
tron’s spin magnetic moment can be
oriented either parallel or antiparallel
to the internal magnetic field associ-
ated with the electron’s orbital mo-
tion. Use your result in (a) to find the
magnitude of this internal magnetic field.

66 Comet stimulated emission. When a comet approaches the
Sun, the increased warmth evaporates water from the ice on the
surface of the comet nucleus, producing a thin atmosphere of water
vapor around the nucleus. Sunlight can then dissociate H2O mole-
cules in the vapor to H atoms and OH molecules. The sunlight can
also excite the OH molecules to higher energy levels.

When the comet is still relatively far from the Sun, the sun-
light causes equal excitation to the E2 and E1 levels (Fig. 40-28a).
Hence, there is no population inversion between the two levels.
However, as the comet approaches the Sun, the excitation to the E1

level decreases and population inversion occurs. The reason has to
do with one of the many wavelengths—said to be Fraunhofer
lines—that are missing in sunlight because, as the light travels out-
ward through the Sun’s atmosphere, those particular wavelengths
are absorbed by the atmosphere.

As a comet approaches the Sun, the Doppler effect due to the
comet’s speed relative to the Sun shifts the Fraunhofer lines in

� � 1
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••60 The beam from an argon laser (of wavelength 515 nm) has a di-
ameter d of 3.00 mm and a continuous energy output rate of 5.00 W.
The beam is focused onto a diffuse surface by a lens whose focal length
f is 3.50 cm. A diffraction pattern such as that of Fig. 36-10 is formed,
the radius of the central disk being given by

(see Eq. 36-12 and Fig. 36-14).The central disk can be shown to con-
tain 84% of the incident power. (a) What is the radius of the central
disk? (b) What is the average intensity (power per unit area) in the
incident beam? (c) What is the average intensity in the central disk?

••61 The active medium in a particular laser that generates laser
light at a wavelength of 694 nm is 6.00 cm long and 1.00 cm in di-
ameter. (a) Treat the medium as an optical resonance cavity analo-
gous to a closed organ pipe. How many standing-wave nodes are
there along the laser axis? (b) By what amount 
f would the beam
frequency have to shift to increase this number by one? (c) Show
that 
f is just the inverse of the travel time of laser light for one
round trip back and forth along the laser axis. (d) What is the cor-
responding fractional frequency shift 
f /f? The appropriate index
of refraction of the lasing medium (a ruby crystal) is 1.75.

••62 Ruby lases at a wavelength of 694 nm. A certain ruby
crystal has Cr ions (which are the atoms that lase).The
lasing transition is between the first excited state and the ground
state, and the output is a light pulse lasting 2.00 ms.As the pulse be-
gins, 60.0% of the Cr ions are in the first excited state and the rest

4.00 � 1019

R �
1.22 fl

d



wavelength, apparently overlapping one of them with the wave-
length required for excitation to the E1 level in OH molecules.
Population inversion then occurs in those molecules, and they radi-
ate stimulated emission (Fig. 40-28b). For example, as comet
Kouhoutek approached the Sun in December 1973 and January
1974, it radiated stimulated emission at about 1666 MHz during
mid-January. (a) What was the energy difference E2 � E1 for that
emission? (b) In what region of the electromagnetic spectrum was
the emission?

1251PROBLEMS

ergy to eject a K electron from an atom of the substance but a photon
of x2 does not.The table gives the ionization energy of the K electron
in molybdenum and four other substances. Which substance in the
table will serve (c) best and (d) second best as the filter?

Zr Nb Mo Tc Ru

Z 40 40 42 43 44
EK (keV) 18.00 18.99 20.00 21.04 22.12

71 An electron in a multielectron atom is known to have the
quantum number . What are its possible , and ms quan-
tum numbers?

72 Show that if the 63 electrons in an atom of europium were as-
signed to shells according to the “logical” sequence of quantum
numbers, this element would be chemically similar to sodium.

73 Lasers can be used to generate pulses of light whose du-
rations are as short as 10 fs. (a) How many wavelengths of light 
(l � 500 nm) are contained in such a pulse? (b) In

what is the missing quantity X (in years)?

74 Show that .

75 Suppose that the electron had no spin and that the Pauli ex-
clusion principle still held. Which, if any, of the present noble gases
would remain in that category?

76 (A correspondence principle problem.) Estimate (a) the
quantum number for the orbital motion of Earth around the Sun
and (b) the number of allowed orientations of the plane of Earth’s
orbit. (c) Find umin, the half-angle of the smallest cone that can be
swept out by a perpendicular to Earth’s orbit as Earth revolves
around the Sun.

77 Knowing that the minimum x-ray wavelength produced by
40.0 keV electrons striking a target is 31.1 pm, determine the
Planck constant h.

78 Consider an atom with two closely spaced excited states A
and B. If the atom jumps to ground state from A or from B, it emits
a wavelength of 500 nm or 510 nm, respectively. What is the energy
difference between states A and B?

79 In 1911, Ernest Rutherford modeled an atom as being a point
of positive charge Ze surrounded by a negative charge �Ze uni-
formly distributed in a sphere of radius R centered at the point. At
distance r within the sphere, the electric potential is

(a) From this formula, determine the magnitude of electric field for
What are the (b) electric field and (c) potential for ?r � R0 � r � R.

V �
Ze

4p´0
� 1

r
�

3
2R

�
r2

2R3 �.

�

� � 1.06 � 10 �34 J �s � 6.59 � 10 �16 eV �s

10 fs
1 s

�
1 s
X

,

SSM

n, m�� � 3

67 Show that the cutoff wavelength (in picometers) in the continu-
ous x-ray spectrum from any target is given by lmin � 1240/V, where
V is the potential difference (in kilovolts) through which the elec-
trons are accelerated before they strike the target.

68 By measuring the go-and-return time for a laser pulse to
travel from an Earth-bound observatory to a reflector on the
Moon, it is possible to measure the separation between these bod-
ies. (a) What is the predicted value of this time? (b) The separation
can be measured to a precision of about 15 cm. To what uncer-
tainty in travel time does this correspond? (c) If the laser beam
forms a spot on the Moon 3 km in diameter, what is the angular di-
vergence of the beam?

69 Can an incoming intercontinental ballistic missile be
destroyed by an intense laser beam? A beam of intensity
108 W/m2 would probably burn into and destroy a nonspinning
missile in 1 s. (a) If the laser had 5.0 MW power, 3.0 mm wave-
length, and a 4.0 m beam diameter (a very powerful laser indeed),
would it destroy a missile at a distance of 3000 km? (b) If the
wavelength could be changed, what maximum value would work?
Use the equation for the central diffraction maximum as given by
Eq. 36-12 (sin u � 1.22l/d).

70 A molybdenum (Z � 42) target is bombarded with 35.0 keV
electrons and the x-ray spectrum of Fig. 40-13 results. The Kb and
Ka wavelengths are 63.0 and 71.0 pm, respectively. What photon
energy corresponds to the (a) Kb and (b) Ka radiation? The two 
radiations are to be filtered through one of the substances in the
following table such that the substance absorbs the Kb line more
strongly than the Ka line. A substance will absorb radiation x1 more
strongly than it absorbs radiation x2 if a photon of x1 has enough en-

SSM

E2

E1

E0

E2

E1

E0

(a) (b)

Figure 40-28 Problem 66.
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Conduction of Electricity in Solids

41-1 THE ELECTRICAL PROPERTIES OF METALS

After reading this module, you should be able to . . .

41.01 Identify the three basic properties of crystalline solids 
and sketch unit cells for them.

41.02 Distinguish insulators, metals, and semiconductors.
41.03 With sketches, explain the transition of an energy-level dia-

gram for a single atom to an energy-band diagram for many
atoms.

41.04 Draw a band–gap diagram for an insulator, indicating
the filled and empty bands and explaining what prevents
the electrons from participating in a current.

41.05 Draw a band–gap diagram for a metal, and explain
what feature, in contrast to an insulator, allows electrons to
participate in a current.

41.06 Identify the Fermi level, Fermi energy, and Fermi speed.
41.07 Distinguish monovalent atoms, bivalent atoms, and

trivalent atoms.
41.08 For a conducting material, apply the relationships 

between the number density n of conduction electrons
and the material’s density, volume V, and molar mass M.

41.09 Identify that in a metal’s partially filled band, thermal
agitation can jump some of the conduction electrons to 

higher energy levels.
41.10 For a given energy level in a band, calculate the density

of states N(E) and identify that it is actually a double
density (per volume and per energy).

41.11 Find the number of states per unit volume in a range

E at height E in a band by integrating N(E) over that
range or, if 
E is small relative to E, by evaluating the
product N(E) 
E.

41.12 For a given energy level, calculate the probability P(E)
that the level is occupied by electrons.

41.13 Identify that probability P(E) is 0.5 at the Fermi level.
41.14 At a given energy level, calculate the density No(E) of

occupied states.
41.15 For a given range in energy levels, calculate the num-

ber of states and the number of occupied states.
41.16 Sketch graphs of the density of states N(E),

occupancy probability P(E), and the density of
occupied states No(E), all versus height in a band.

41.17 Apply the relationship between the Fermi energy EF

and the number density of conduction electrons n.

● Crystalline solids can be broadly divided into insulators,
metals, and semiconductors.

● The quantized energy levels for a crystalline solid form
bands that are separated by gaps.

● In a metal, the highest band that contains any electrons is
only partially filled, and the highest filled level at a temperature
of 0 K is called the Fermi level EF.

● The electrons in the partially filled band are the conduction
electrons, and their number density (number per unit volume) is

where M is the material’s molar mass and NA is Avogadro’s
number.

● The number density of states of the allowed energy levels
per unit volume and per unit energy interval is

N(E) �
822p m3/2

h3 E1/2,

n �
material

,
s density

M/NA
,

where m is the electron mass and E is the energy in joules at
which N(E) is to be evaluated.

● The occupancy probability P(E) is the probability that a
given available state will be occupied by an electron:

● The density of occupied states No(E) is given by the product
of the density of states function and the occupancy probabil-
ity function:

● The Fermi energy EF for a metal can be found by integrating
No(E) for temperature T � 0 K (absolute zero) from E � 0 to
E � EF. The result is

EF � � 3

1612�
�

2/3 h2

m
n2/3 �

0.121h2

m
n2/3.

No(E) � N(E) P(E).

P(E) �
1

e(E�EF)/kT � 1
.

Key Ideas

Learning Objectives
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(a)

(b)

Figure 41-1 (a) The unit cell for copper is a
cube.There is one copper atom (darker) at
each corner of the cube and one copper
atom (lighter) at the center of each face of
the cube.The arrangement is called face-
centered cubic. (b) The unit cell for either
silicon or the carbon atoms in diamond is
also a cube, the atoms being arranged in
what is called a diamond lattice. There is one
atom (darkest) at each corner of the cube
and one atom (lightest) at the center of 
each cube face; in addition, four atoms
(medium color) lie within the cube. Every
atom is bonded to its four nearest neighbors
by a two-electron covalent bond (only the
four atoms within the cube show all four
nearest neighbors).

What Is Physics?
A major question in physics, which underlies solid-state electronic devices, is
this: What are the mechanisms by which a material conducts, or does not con-
duct, electricity? The answers are complex and poorly understood, largely be-
cause they involve the application of quantum physics to a tremendous number
of particles and atoms grouped together and interacting. Let’s start by charac-
terizing conducting and nonconducting materials.

The Electrical Properties of Solids
We shall examine only crystalline solids—that is, solids whose atoms are arranged
in a repetitive three-dimensional structure called a lattice. We shall not consider
such solids as wood, plastic, glass, and rubber, whose atoms are not arranged in
such repetitive patterns. Figure 41-1 shows the basic repetitive units (the unit cells)
of the lattice structures of copper, our prototype of a metal, and silicon and dia-
mond (carbon), our prototypes of a semiconductor and an insulator, respectively.

We can classify solids electrically according to three basic properties:

1. Their resistivity r at room temperature, with the SI unit ohm-meter (��m);
resistivity is defined in Module 26-3.

2. Their temperature coefficient of resistivity a, defined as a � (1/r)(dr/dT) in
Eq. 26-17 and having the SI unit inverse kelvin (K�1). We can evaluate a for
any solid by measuring r over a range of temperatures.

3. Their number density of charge carriers n. This quantity, the number of charge
carriers per unit volume, can be found from measurements of the Hall effect,
as discussed in Module 28-2, and has the SI unit inverse cubic meter (m�3).

From measurements of resistivity, we find that there are some materials,
insulators, that do not conduct electricity at all. These are materials with very
high resistivity. Diamond, an excellent example, has a resistivity greater than
that of copper by the enormous factor of about 1024.

We can then use measurements of r, a, and n to divide most noninsulators, at
least at low temperatures, into two categories: metals and semiconductors.

Semiconductors have a considerably greater resistivity r than metals.

Semiconductors have a temperature coefficient of resistivity a that is both high
and negative. That is, the resistivity of a semiconductor decreases with tem-
perature, whereas that of a metal increases.

Semiconductors have a considerably lower number density of charge carriers n
than metals.

Table 41-1 shows values of these quantities for copper, our prototype metal, and
silicon, our prototype semiconductor.

Now let’s consider our central question: What features make diamond an in-
sulator, copper a metal, and silicon a semiconductor?

Table 41-1 Some Electrical Properties of Two Materialsa

Material

Property Unit Copper Silicon

Type of conductor Metal Semiconductor
Resistivity, r ��m 2 � 10�8 3 � 103

Temperature coefficient of resistivity, a K�1 �4 � 10�3 �70 � 10�3

Number density of charge carriers, n m�3 9 � 1028 1 � 1016

aAll values are for room temperature.



2s

1s

(b)

2p

3p

3s

3d

4s

4p

Electron

E
n

er
gy

r

(a)

1254 CHAPTER 41 CONDUCTION OF ELECTRICITY IN SOLIDS

Figure 41-2 (a) Two copper atoms separated
by a large distance; their electron distributions
are represented by dot plots. (b) Each copper
atom has 29 electrons distributed among a set
of subshells. In the neutral atom in its ground
state,all subshells up through the 3d level are
filled, the 4s subshell contains one electron (it
can hold two),and higher subshells are empty.
For simplicity, the subshells are shown as be-
ing evenly spaced in energy.

Figure 41-3 The band–gap pattern of 
energy levels for an idealized crystalline
solid.As the magnified view suggests, each
band consists of a very large number of
very closely spaced energy levels. (In many
solids, adjacent bands may overlap; for 
clarity, we have not shown this condition.)
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Energy Levels in a Crystalline Solid
The distance between adjacent copper atoms in solid copper is 260 pm. Figure
41-2a shows two isolated copper atoms separated by a distance r that is much
greater than that. As Fig. 41-2b shows, each of these isolated neutral atoms stacks
up its 29 electrons in an array of discrete subshells as follows:

1s2 2s2 2p6 3s2 3p6 3d10 4s1.

Here we use the shorthand notation of Module 40-5 to identify the subshells.
Recall, for example, that the subshell with principal quantum number n � 3
and orbital quantum number is called the 3p subshell; it can hold up to

electrons; the number it actually contains is indicated by a nu-
merical superscript. We see above that the first six subshells in copper are filled,
but the (outermost) 4s subshell, which can hold two electrons, holds only one.

If we bring the atoms of Fig. 41-2a closer, their wave functions begin to over-
lap, starting with those of the outer electrons. We then have a single two-atom
system with 58 electrons, not two independent atoms. The Pauli exclusion princi-
ple requires that each of these electrons occupy a different quantum state. In fact,
58 quantum states are available because each energy level of the isolated atom
splits into two levels for the two-atom system.

If we bring up more atoms, we gradually assemble a lattice of solid copper.
For N atoms, each level of an isolated copper atom must split into N levels in the
solid. Thus, the individual energy levels of the solid form energy bands, adjacent
bands being separated by an energy gap, with the gap representing a range of en-
ergies that no electron can possess. A typical band ranges over only a few elec-
tron-volts. Since N may be of the order of 1024, the individual levels within a band
are very close together indeed, and there are a vast number of levels.

Figure 41-3 suggests the band–gap structure of the energy levels in a gener-
alized crystalline solid. Note that bands of lower energy are narrower than those
of higher energy. This occurs because electrons that occupy the lower energy
bands spend most of their time deep within the atom’s electron cloud. The wave
functions of these core electrons do not overlap as much as the wave functions of
the outer electrons do. Hence the splitting of the lower energy levels (core elec-
trons) is less than that of the higher energy levels (outer electrons).

Insulators
A solid is said to be an electrical insulator if no current exists within it when we
apply a potential difference across it. For a current to exist, the kinetic energy of
the average electron must increase. In other words, some electrons in the solid
must move to a higher energy level. However, as Fig. 41-4 shows, in an insulator
the highest band containing any electrons is fully occupied. Because the Pauli
exclusion principle keeps electrons from moving to occupied levels, no electrons in
the solid are allowed to move. Thus, the electrons in the filled band of an insulator
have no place to go; they are in gridlock, like a child on a ladder filled with children.

2(2� � 1) � 6
� � 1

Figure 41-4 The
band–gap pattern for
an insulator; filled
levels are shown in
red and empty levels
in blue. Insulator

Eg

In an insulator,
electrons need
a big energy
jump.
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There are plenty of unoccupied levels (or vacant levels) in the band above
the filled band in Fig. 41-4. However, if an electron is to occupy one of those
levels, it must acquire enough energy to jump across the substantial energy gap
Eg that separates the two bands. In diamond, this gap is so wide (the energy
needed to cross it is 5.5 eV, about 140 times the average thermal energy of a free
particle at room temperature) that essentially no electron can jump across it.
Diamond is thus an electrical insulator, and a very good one.

Calculations: We first set the energy difference Ex E0 to
Eg.Then the probability P of the jump is approximately equal
to the ratio Nx/N0 of the number of electrons just above the
energy gap to the number of electrons just below the gap.

For diamond, the exponent in Eq. 41-1 is

The required probability is then

(Answer)

This result tells us that approximately 3 electrons out of 1093

electrons would jump across the energy gap. Because any
diamond stone has fewer than 1023 electrons, we see that the
probability of the jump is vanishingly small. No wonder
diamond is such a good insulator.

P �
Nx

N0
� e �(Eg /kT ) � e �213 � 3 � 10 �93.

�
Eg

kT
� �

5.5 eV
(8.62 � 10 �5 eV/K)(300 K)

��213.

�

Sample Problem 41.01 Probability of electron excitation in an insulator

Approximately what is the probability that, at room temper-
ature (300 K), an electron at the top of the highest filled
band in diamond (an insulator) will jump the energy gap Eg

in Fig. 41-4? For diamond, Eg is 5.5 eV.

KEY IDEA

In Chapter 40 we used Eq. 40-29,

(41-1)

to relate the population Nx of atoms at energy level Ex to the
population N0 at energy level E0, where the atoms are part of a
system at temperature T (measured in kelvins); k is the
Boltzmann constant (8.62 � 10�5 eV/K). In this chapter we
can use Eq. 41-1 to approximate the probability P that an elec-
tron in an insulator will jump the energy gap Eg in Fig. 41-4.

Nx

N0
� e�(Ex�E0)/kT,

Additional examples, video, and practice available at WileyPLUS

Metals
The feature that defines a metal is that, as Fig. 41-5 shows, the highest occupied
energy level falls somewhere near the middle of an energy band. If we apply a
potential difference across a metal, a current can exist because there are plenty of
vacant levels at nearby higher energies into which electrons (the charge carriers
in a metal) can jump.Thus, a metal can conduct electricity because electrons in its
highest occupied band can easily move into higher energy levels.

In Module 26-4 we discussed the free-electron model of a metal, in which the
conduction electrons are free to move throughout the volume of the sample
like the molecules of a gas in a closed container. We used this model to derive an
expression for the resistivity of a metal. Here we use the model to explain the
behavior of the conduction electrons in the partially filled band of Fig. 41-5.
However, we now assume the energies of these electrons to be quantized and the
Pauli exclusion principle to hold.

Assuming that the electric potential energy U of a conduction electron is uni-
form throughout the lattice, let’s set U = 0 so that the mechanical energy E
is entirely kinetic. Then the level at the bottom of the partially filled band of Fig.
41-5 corresponds to E � 0. The highest occupied level in this band at absolute
zero (T � 0 K) is called the Fermi level, and the energy corresponding to it is
called the Fermi energy EF; for copper, EF � 7.0 eV.

The electron speed corresponding to the Fermi energy is called the Fermi
speed vF. For copper the Fermi speed is 1.6 � 106 m/s. Thus, all motion does not
cease at absolute zero; at that temperature—and solely because of the Pauli ex-

Figure 41-5 The band–gap pattern for a
metal.The highest filled level, called the
Fermi level, lies near the middle of a band.
Since vacant levels are available within
that band, electrons in the band can easily
change levels, and conduction can
take place.

EF

Metal

E = 0 

In a conductor,
electrons need
only a small
energy jump.



clusion principle—the conduction electrons are stacked up in the partially filled
band of Fig. 41-5 with energies that range from zero to the Fermi energy.

How Many Conduction Electrons Are There?
If we could bring individual atoms together to form a sample of a metal, we would
find that the conduction electrons in the metal are the valence electrons of the atoms
(the electrons in the outermost occupied shells of the atoms). A monovalent atom
contributes one such electron to the conduction electrons in a metal; a bivalent atom
contributes two such electrons.Thus, the total number of conduction electrons is

(41-2)

(In this chapter, we shall write several equations largely in words because the
symbols we have previously used for the quantities in them now represent other
quantities.) The number density n of conduction electrons in a sample is the num-
ber of conduction electrons per unit volume:

(41-3)

We can relate the number of atoms in a sample to various other properties of
the sample and to the material making up the sample with the following:

(41-4)

where the molar mass M is the mass of one mole of the material in the sample
and NA is Avogadro’s number (6.02 � 1023 mol�1).

�
(material’s density)(sample volume V)

(molar mass M)/NA
,

�number of atoms
in sample � �

sample mass Msam

atomic mass
�

sample mass Msam

(molar mass M)/NA

n �
number of conduction electrons in sample

sample volume V
.

�number of conduction
electrons in sample � � �number of atoms

in sample � �number of valence
electrons per atom�.
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and molar mass 24.312 g/mol ( 24.312 10�3 kg/mol)
(see Appendix F).The numerator gives us

(1.738 � 103 kg/m3)(2.00 � 10�6 m3)
� (6.02 � 1023 atoms/mol) � 2.0926 � 1021 kg/mol.

Thus,

Using this result and the fact that magnesium atoms are 
bivalent, we find that Eq. 41-2 yields

(Answer)� 1.72 � 10 23 electrons.

�2
electrons

atom �� (8.61 � 1022 atoms)

�
number of

conduction electrons
in sample �

�  8.61 � 1022.

�number of atoms
in sample � �

2.0926 � 10 21 kg/mol
24.312 � 10 �3 kg/mol

��

Sample Problem 41.02 Number of conduction electrons in a metal

How many conduction electrons are in a cube of magnesium
of volume 2.00 � 10�6 m3? Magnesium atoms are bivalent.

KEY IDEAS

1. Because magnesium atoms are bivalent, each magne-
sium atom contributes two conduction electrons.

2. The cube’s number of conduction electrons is related to
its number of magnesium atoms by Eq. 41-2.

3. We can find the number of atoms with Eq. 41-4 and known
data about the cube’s volume and magnesium’s properties.

Calculations: We can write Eq. 41-4 as

Magnesium has density 1.738 g/cm3 (� 1.738 � 103 kg/m3)

� number
of atoms
in sample� �

(density)(sample volume V )NA

molar mass M
.

Additional examples, video, and practice available at WileyPLUS
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Conductivity Above Absolute Zero
Our practical interest in the conduction of electricity in metals is at tempera-
tures above absolute zero. What happens to the electron distribution of 
Fig. 41-5 at such higher temperatures? As we shall see, surprisingly little. Of
the electrons in the partially filled band of Fig. 41-5, only those that are close
to the Fermi energy find unoccupied levels above them, and only those elec-
trons are free to be boosted to these higher levels by thermal agitation. Even
at T � 1000 K (the copper would glow brightly in a dark room), the electron
distribution among the available levels does not differ much from the distribu-
tion at T � 0 K.

Let us see why. The quantity kT, where k is the Boltzmann constant, is a con-
venient measure of the energy that may be given to a conduction electron by the
random thermal motions of the lattice. At T � 1000 K, we have kT � 0.086 eV.
No electron can hope to have its energy changed by more than a few times this
relatively small amount by thermal agitation alone; so at best only those few con-
duction electrons whose energies are close to the Fermi energy are likely to jump
to higher energy levels due to thermal agitation. Poetically stated, thermal agita-
tion normally causes only ripples on the surface of the Fermi sea of electrons; the
vast depths of that sea lie undisturbed.

How Many Quantum States Are There?
The ability of a metal to conduct electricity depends on how many quantum
states are available to its electrons and what the energies of those states are.
Thus, a question arises: What are the energies of the individual states in the par-
tially filled band of Fig. 41-5? This question is too difficult to answer because we
cannot possibly list the energies of so many states individually. We ask instead:
How many states in a unit volume of a sample have energies in the energy range
E to E � dE? We write this number as N(E) dE, where N(E) is called the
density of states at energy E. The conventional unit for N(E) dE is states per
cubic meter (states/m3, or simply m�3), and the conventional unit for N(E) is
states per cubic meter per electron-volt (m�3 eV�1).

We can find an expression for the density of states by counting the number
of standing electron matter waves that can fit into a box the size of the metal
sample we are considering. This is analogous to counting the number of standing
waves of sound that can exist in a closed organ pipe. Here the problem is three-
dimensional (not one-dimensional) and the waves are matter waves (not sound
waves). Such counting is covered in more advanced treatments of solid state
physics; the result is

(density of states, m�3 J�1), (41-5)

where m (� 9.109 � 10�31 kg) is the electron mass, h (� 6.626 � 10�34 J �s) is the
Planck constant, E is the energy in joules at which N(E) is to be evaluated, and
N(E) is in states per cubic meter per joule (m�3 J�1). To modify this equation so
that the value of E is in electron-volts and the value of N(E) is in states per cubic
meter per electron-volt (m�3 eV�1), multiply the right side of the equation by e 3/2,
where e is the fundamental charge, 1.602 � 10�19 C. Figure 41-6 is a plot of such a
modified version of Eq. 41-5. Note that nothing in Eq. 41-5 or Fig. 41-6 involves
the shape, temperature, or composition of the sample.

N(E) �
812�m3/2

h3 E1/2

Figure 41-6 The density of states N(E)—that
is, the number of electron energy levels
per unit energy interval per unit volume—
plotted as a function of electron energy.
The density of states function simply
counts the available states; it says nothing
about whether these states are occupied by
electrons.
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The density of energy levels
increases upward in a band.

Checkpoint 1
Is the spacing between adjacent energy levels at E � 4 eV in copper larger than, the
same as, or smaller than the spacing at E � 6 eV? 
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(b) Next,determine the number of states N in the sample within
a small energy range 
E of 0.003 eV centered at 7 eV (the
range is small relative to the energy level in the band).

Calculation: From Eq. 41-5 and Fig. 41-6, we know that the
density of states is a function of energy E. However, for an
energy range 
E that is small relative to E, we can approxi-
mate the density of states (and thus the number of states
per electron-volt) to be constant. Thus, at an energy of 7 eV,
we find the number of states N in the energy range 
E of
0.003 eV as

or

(Answer)

(When you are asked for the number of states in a certain
energy range, first see if that range is small enough to allow
this type of approximation.)

� 1.1 � 10 17 � 1 � 10 17.

N � (3.6 � 10 19 eV�1)(0.003 eV)

�number of states N
in range 
E at 7 eV���number of states

per eV at 7 eV � � energy
range 
E�

Sample Problem 41.03 Number of states per electron volt in a metal

(a) Using the data of Fig. 41-6, determine the number of
states per electron-volt at 7 eV in a metal sample with a vol-
ume V of 2 � 10�9 m3.

KEY IDEA

We can obtain the number of states per electron-volt at a
given energy by using the density of states N(E) at that en-
ergy and the sample’s volume V.

Calculations: At an energy of 7 eV, we write

From Fig. 41-6, we see that at an energy E of 7 eV, the den-
sity of states is about 1.8 � 1028 m�3 eV�1.Thus,

(Answer)� 4 � 10 19 eV�1.

� 3.6 � 10 19 eV�1

� (1.8 � 10 28 m�3 eV�1)(2 � 10�9 m3)�number of states
per eV at 7 eV �

�number of states
per eV at 7 eV � � �density of states

N(E) at 7 eV ��volume V
of sample�.

Additional examples, video, and practice available at WileyPLUS

The Occupancy Probability P(E)
If an energy level is available at energy E, what is the probability P(E) that it is
actually occupied by an electron? At T � 0 K, we know that all levels with
energies below the Fermi energy are certainly occupied (P(E) = 1) and all higher
levels are certainly not occupied (P(E) 0). Figure 41-7a illustrates this situa-
tion. To find P(E) at temperatures above absolute zero, we must use a set of
quantum counting rules called Fermi–Dirac statistics, named for the physicists
who introduced them.With these rules, the occupancy probability P(E) is

(occupancy probability), (41-6)

in which EF is the Fermi energy. Note that P(E) depends not on the energy E of
the level but only on the difference E � EF, which may be positive or negative.

To see whether Eq. 41-6 describes Fig. 41-7a, we substitute T � 0 K in it.Then,

For E � EF, the exponential term in Eq. 41-6 is e�
, or zero; so P(E) � 1, in
agreement with Fig. 41-7a.

For E � EF, the exponential term is e�
; so P(E) � 0, again in agreement with
Fig. 41-7a.

P(E) �
1

e(E�EF)/kT � 1

�

Figure 41-7 The occupancy probability P(E)
is the probability that an energy level will
be occupied by an electron. (a) At T � 0 K,
P(E) is unity for levels with energies E up
to the Fermi energy EF and zero for levels
with higher energies. (b) At T � 1000 K, a
few electrons whose energies were slightly
less than the Fermi energy at T � 0 K move
up to states with energies slightly greater
than the Fermi energy.The dot on the curve
shows that, for E � EF, P(E) � 0.5.

EF
1

P(
E)

0 2 4 6 8 10
E (eV)

(a)

T = 0
0.5

EF
1

0 2 4 6 8 10
E (eV)

(b)

T = 1000 KP(
E) 0.5

The occupancy
probability is
high below the
Fermi level.
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The Fermi energy of a given material is the energy of a quantum state that has
the probability 0.5 of being occupied by an electron.

Figure 41-7b is a plot of P(E) for T � 1000 K. Compared with Fig. 41-7a, it
shows that, as stated above, changes in the distribution of electrons among the
available states involve only states whose energies are near the Fermi energy EF.
Note that if E � EF (no matter what the temperature T), the exponential term in
Eq. 41-6 is e0 � 1 and P(E) � 0.5. This leads us to a more useful definition of the
Fermi energy:

(b) What is the probability of occupancy for a state that is
0.10 eV below the Fermi energy?

Calculation: The Key Idea of part (a) applies here also
except that now the state has an energy below the Fermi
energy. Thus, the exponent in Eq. 41-6 has the same magni-
tude we found in part (a) but is negative, and that makes the
denominator smaller. Equation 41-6 now yields

(Answer)

For states below the Fermi energy, we are often more in-
terested in the probability that the state is not occupied.
This probability is just 1 � P(E), or 19%. Note that it is the
same as the probability of occupancy in (a).

P(E) �
1

e�1.45 � 1
� 0.81 or 81%.

Sample Problem 41.04 Probability of occupancy of an energy state in a metal

(a) What is the probability that a quantum state whose
energy is 0.10 eV above the Fermi energy will be occupied?
Assume a sample temperature of 800 K.

KEY IDEA

The occupancy probability of any state in a metal can be
found from Fermi–Dirac statistics according to Eq. 41-6.

Calculations: Let’s start with the exponent in Eq. 41-6:

Inserting this exponent into Eq. 41-6 yields

(Answer)P(E) �
1

e1.45 � 1
� 0.19 or 19%.

E � EF

kT
�

0.10 eV
(8.62 � 10�5 eV/K)(800 K)

� 1.45.

Additional examples, video, and practice available at WileyPLUS

Figures 41-7a and b are plotted for copper, which has a Fermi energy of
7.0 eV. Thus, for copper both at T � 0 K and at T � 1000 K, a state at energy 
E � 7.0 eV has a probability of 0.5 of being occupied.

How Many Occupied States Are There?
Equation 41-5 and Fig. 41-6 tell us how the available states are distributed in
energy. The occupancy probability of Eq. 41-6 gives us the probability that any
given state will actually be occupied by an electron. To find No(E), the density of
occupied states, we must multiply each available state by the corresponding value
of the occupancy probability; that is,

or No(E) � N(E) P(E) (density of occupied states). (41-7)

For copper at T � 0 K, Eq. 41-7 tells us to multiply, at each energy, the value
of the density of states function (Eq. 41-6) by the value of the occupancy proba-

�density of occupied states
No(E) at energy E � � � density of states

N(E) at energy E� �occupancy probability
P(E) at energy E �
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Figure 41-8 (a) The density of occupied states No(E) for copper at absolute zero.The area under the curve is the number density of electrons n.
Note that all states with energies up to the Fermi energy EF � 7 eV are occupied, and all those with energies above the Fermi energy are vacant.
(b) The same for copper at T � 1000 K. Note that only electrons with energies near the Fermi energy have been affected and redistributed.

bility for absolute zero (Fig. 41-7a). The result is Fig. 41-8a. Figure 41-8b shows
the density of occupied states  at T � 1000 K.

Next, we write

Substituting for No(E) and V gives us

�number of occupied
states per eV

at 7 eV
�

� �volume V
of sample�.

� number of occupied
states per eV at 7 eV� � �density of occupied

states No(E) at 7 eV�

� 0.9 � 10 28 m�3 eV�1.

No(E) � N(E) P(E) � (1.8 � 10 28 m�3 eV�1)(0.50)

Sample Problem 41.05 Number of occupied states in an energy range in a metal

A lump of copper (Fermi energy 7.0 eV) has volume 
2 10�9 m3. How  many occupied states per eV lie in a nar-
row energy range around 7.0 eV?

KEY IDEAS

(1) First we want the density of occupied states No(E) as
given by Eq. 41-7 (No(E) � N(E) P(E)). (2) Because we
want to evaluate quantities for a narrow energy range
around 7.0 eV (the Fermi energy for copper), the occupancy
probability P(E) is 0.50.

Calculations: From Fig. 41-6, we see that the density of
states at 7 eV is about 1.8 � 1028 m�3 eV�1. Thus, Eq. 41-7
tells us that the density of occupied states is

�
�

Additional examples, video, and practice available at WileyPLUS

(Answer)� 2 � 1019 eV�1.

� 1.8 � 1019 eV�1

� (0.9 � 1028 m�3 eV�1)(2 � 10�9 m3)
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Calculating the Fermi Energy
Suppose we add up (via integration) the number of occupied states per unit vol-
ume in Fig. 41-8a (for T � 0 K) at all energies between E � 0 and E � EF. The
result must equal n, the number of conduction electrons per unit volume for the
metal, because at that temperature none of the energy states above the Fermi
level are occupied. In equation form, we have

(41-8)

(Graphically, the integral here represents the area under the distribution curve of
Fig. 41-8a.) Because P(E) � 1 for all energies below the Fermi energy when T �
0 K, Eq. 41-7 tells us we can replace No(E) in Eq. 41-8 with N(E) and then use
Eq. 41-8 to find the Fermi energy EF. If we substitute Eq. 41-5 into Eq. 41-8, we
find that

in which m is the electron mass. Solving for EF now leads to

(41-9)

Thus, when we know n, the number of conduction electrons per unit volume for a
metal, we can find the Fermi energy for that metal.

EF � � 3

1612� �
2/3 h2

m
n2/3 �

0.121h2

m
n2/3.

n �
812�m3/2

h3 �EF

0
E1/2 dE �

812�m3/2

h3

2E3/2
F

3
,

n � �EF

0
No(E) dE.

41-2 SEMICONDUCTORS AND DOPING

After reading this module, you should be able to . . .

41.18 Sketch a band–gap diagram for a semiconductor,
identifying the conduction and valence bands, conduction
electrons, holes, and the energy gap.

41.19 Compare the energy gap of a semiconductor with that
of an insulator.

41.20 Apply the relationship between a semiconductor’s
energy gap and the wavelength of light associated with a
transition across the gap.

41.21 Sketch the lattice structure for pure silicon and doped
silicon.

41.22 Identify holes, how they are produced, and how they
move in an applied electric field.

41.23 For metals and semiconductors, compare the
resistivity r and the temperature coefficient of resistivity a,
and explain how the resistivity changes with temperature.

41.24 Explain the procedure for producing n-type
semiconductors and p-type semiconductors.

41.25 Apply the relationship between the number of
conduction electrons in a pure material and the number in
the doped material.

41.26 Identify donors and acceptors and indicate where their
energy levels lie in an energy-level diagram.

41.27 Identify majority carriers and minority carriers.
41.28 Explain the advantage of doping a semiconductor.

Learning Objectives

● The band structure of a semiconductor is like that of an
insulator except it has a much smaller gap width Eg, which
can be jumped by thermally excited electrons.

● In silicon at room temperature, thermal agitation raises a
few electrons to the conduction band, leaving an equal num-
ber of holes in the valence band. When the silicon is put un-
der a potential difference, both electrons and holes serve as
charge carriers.

● The number of electrons in the conduction band of silicon
can be increased greatly by doping with small amounts of
phosphorus, thus forming n-type material. The phosphorus
atoms are said to be donor atoms.

● The number of holes in the valence band of silicon can be
greatly increased by doping with small amounts of aluminum,
thus forming p-type material. The aluminum atoms are said to
be acceptor atoms.

Key Ideas



Semiconductors
If you compare Fig. 41-9a with Fig. 41-4, you can see that the band structure of
a semiconductor is like that of an insulator. The main difference is that the semi-
conductor has a much smaller energy gap Eg between the top of the highest filled
band (called the valence band) and the bottom of the vacant band just above it
(called the conduction band). Thus, there is no doubt that silicon (Eg � 1.1 eV) is
a semiconductor and diamond (Eg � 5.5 eV) is an insulator. In silicon—but not
in diamond—there is a real possibility that thermal agitation at room tempera-
ture will cause electrons to jump the gap from valence to conduction band.

In Table 41-1 we compared three basic electrical properties of copper, our proto-
type metallic conductor, and silicon, our prototype semiconductor. Let us look again
at that table,one row at a time, to see how a semiconductor differs from a metal.

Number Density of Charge Carriers n
The bottom row of Table 41-1 shows that copper has far more charge carriers
per unit volume than silicon, by a factor of about 1013. For copper, each atom con-
tributes one electron, its single valence electron, to the conduction process.
Charge carriers in silicon arise only because, at thermal equilibrium, thermal agi-
tation causes a certain (very small) number of valence-band electrons to jump
the energy gap into the conduction band, leaving an equal number of unoccupied
energy states, called holes, in the valence band. Figure 41-9b shows the situation.

Both the electrons in the conduction band and the holes in the valence band
serve as charge carriers. The holes do so by permitting a certain freedom of
movement to the electrons remaining in the valence band, electrons that, in the
absence of holes, would be gridlocked. If an electric field is set up in a semicon-
ductor, the electrons in the valence band, being negatively charged, tend to drift
in the direction opposite . This causes the positions of the holes to drift in the
direction of . In effect, the holes behave like moving particles of charge �e.

It may help to think of a row of cars parked bumper to bumper, with the
lead car at one car’s length from a barrier and the empty one-car-length distance
being an available parking space. If the leading car moves forward to the barrier,
it opens up a parking space behind it.The second car can then move up to fill that
space, allowing the third car to move up, and so on. The motions of the many cars
toward the barrier are most simply analyzed by focusing attention on the drift of
the single “hole” (parking space) away from the barrier.

In semiconductors, conduction by holes is just as important as conduction by
electrons. In thinking about hole conduction, we can assume that all unoccupied
states in the valence band are occupied by particles of charge �e and that all 
electrons in the valence band have been removed, so that these positive charge
carriers can move freely throughout the band.

Resistivity r
Recall from Chapter 26 that the resistivity r of a material is m/e2nt, where m is
the electron mass, e is the fundamental charge, n is the number of charge carriers
per unit volume, and t is the mean time between collisions of the charge carriers.
Table 41-1 shows that, at room temperature, the resistivity of silicon is higher
than that of copper by a factor of about 1011. This vast difference can be
accounted for by the vast difference in n. Other factors enter, but their effect on
the resistivity is swamped by the enormous difference in n.

Temperature Coefficient of Resistivity a
Recall that a (see Eq. 26-17) is the fractional change in resistivity per unit change
in temperature:

(41-10)� �
1
�

 
d�

dT
.

E
:

E
:

E
:
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Figure 41-9 (a) The band–gap pattern for 
a semiconductor. It resembles that of an
insulator (see Fig. 41-4) except that here
the energy gap Eg is much smaller; thus
electrons, because of their thermal agita-
tion, have some reasonable probability of
being able to jump the gap. (b) Thermal
agitation has caused a few electrons to
jump the gap from the valence band to the
conduction band, leaving an equal number
of holes in the valence band.

Eg

Conduction
band

Valence 
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Semiconductor
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The resistivity of copper increases with temperature (that is, dr/dT � 0) because
collisions of copper’s charge carriers occur more frequently at higher tempera-
tures.Thus, a is positive for copper.

The collision frequency also increases with temperature for silicon. However,
the resistivity of silicon actually decreases with temperature (dr/dT � 0) because
the number of charge carriers n (electrons in the conduction band and holes
in the valence band) increases so rapidly with temperature. (More electrons jump
the gap from the valence band to the conduction band.) Thus, the fractional
change a is negative for silicon.

Doped Semiconductors
The usefulness of semiconductors in technology can be greatly improved by
introducing a small number of suitable replacement atoms (called impurities)
into the semiconductor lattice—a process called doping. Typically, only about 
1 silicon atom in 107 is replaced by a dopant atom in the doped semiconductor.
Essentially all modern semiconducting devices are based on doped material.
Such materials are of two types, called n-type and p-type; we discuss each in turn.

n-Type Semiconductors
The electrons in an isolated silicon atom are arranged in subshells according to
the scheme

1s2 2s2 2p6 3s2 3p2,

in which, as usual, the superscripts (which add to 14, the atomic number of sili-
con) represent the numbers of electrons in the specified subshells.

Figure 41-10a is a flattened-out representation of a portion of the lattice of
pure silicon in which the portion has been projected onto a plane; compare the
figure with Fig. 41-1b, which represents the unit cell of the lattice in three
dimensions. Each silicon atom contributes its pair of 3s electrons and its pair of
3p electrons to form a rigid two-electron covalent bond with each of its four near-
est neighbors. (A covalent bond is a link between two atoms in which the atoms
share a pair of electrons.) The four atoms that lie within the unit cell in Fig. 41-1b
show these four bonds.

The electrons that form the silicon–silicon bonds constitute the valence band
of the silicon sample. If an electron is torn from one of these bonds so that it
becomes free to wander throughout the lattice, we say that the electron has been
raised from the valence band to the conduction band. The minimum energy
required to do this is the gap energy Eg.

Because four of its electrons are involved in bonds, each silicon “atom” is
actually an ion consisting of an inert neon-like electron cloud (containing 10
electrons) surrounding a nucleus whose charge is �14e, where 14 is the atomic
number of silicon. The net charge of each of these ions is thus �4e, and the ions
are said to have a valence number of 4.

In Fig. 41-10b the central silicon ion has been replaced by an atom of phos-
phorus (valence � 5). Four of the valence electrons of the phosphorus form
bonds with the four surrounding silicon ions. The fifth (“extra”) electron is
only loosely bound to the phosphorus ion core. On an energy-band diagram,
we usually say that such an electron occupies a localized energy state that lies
within the energy gap, at an average energy interval Ed below the bottom of
the conduction band; this is indicated in Fig. 41-11a. Because the en-
ergy required to excite electrons from these levels into the conduction band is
much less than that required to excite silicon valence electrons into the con-
duction band.

The phosphorus atom is called a donor atom because it readily donates an
electron to the conduction band. In fact, at room temperature virtually all the

Ed � Eg,

Figure 41-10 (a) A flattened-out representa-
tion of the lattice structure of pure silicon.
Each silicon ion is coupled to its four near-
est neighbors by a two-electron covalent
bond (represented by a pair of red dots
between two parallel black lines).The elec-
trons belong to the bond—not to the indi-
vidual atoms—and form the valence band
of the sample. (b) One silicon atom is re-
placed by a phosphorus atom (valence � 5).
The “extra” electron is only loosely bound
to its ion core and may easily be elevated to
the conduction band, where it is free to
wander through the volume of the lattice.
(c) One silicon atom is replaced by an alu-
minum atom (valence � 3).There is now a
hole in one of the covalent bonds and thus
in the valence band of the sample.The hole
can easily migrate through the lattice as
electrons from neighboring bonds move in
to fill it. Here the hole migrates rightward.

+4 +4 +4 

+4 +4 +4 

+4 +4 +4 

+4 +4 +4 

+4 +5 +4 

+4 +4 +4 

+4 +4 +4 

+4 +3 +4 
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(a)

(b)

(c)



electrons contributed by the donor atoms are in the conduction band. By adding
donor atoms, it is possible to increase greatly the number of electrons in the con-
duction band, by a factor very much larger than Fig. 41-11a suggests.

Semiconductors doped with donor atoms are called n-type semiconduc-
tors; the n stands for negative, to imply that the negative charge carriers intro-
duced into the conduction band greatly outnumber the positive charge
carriers, which are the holes in the valence band. In n-type semiconductors, the
electrons are called the majority carriers and the holes are called the minority
carriers.

p-Type Semiconductors
Now consider Fig. 41-10c, in which one of the silicon atoms (valence � 4) has
been replaced by an atom of aluminum (valence � 3). The aluminum atom can
bond covalently with only three silicon atoms, and so there is now a “missing”
electron (a hole) in one aluminum–silicon bond. With a small expenditure of en-
ergy, an electron can be torn from a neighboring silicon–silicon bond to fill this
hole, thereby creating a hole in that bond. Similarly, an electron from some other
bond can be moved to fill the newly created hole. In this way, the hole can
migrate through the lattice.

The aluminum atom is called an acceptor atom because it readily accepts
an electron from a neighboring bond — that is, from the valence band of sili-
con. As Fig. 41-11b suggests, this electron occupies a localized energy state that
lies within the energy gap, at an average energy interval Ea above the top of
the valence band. Because this energy interval Ea is small, valence electrons
are easily bumped up to the acceptor level, leaving holes in the valence band.
Thus, by adding acceptor atoms, it is possible to greatly increase the number of
holes in the valence band, by a factor much larger than Fig. 41-11b suggests. In
silicon at room temperature, virtually all the acceptor levels are occupied by
electrons.

Semiconductors doped with acceptor atoms are called p-type semiconduc-
tors; the p stands for positive to imply that the holes introduced into the valence
band, which behave like positive charge carriers, greatly outnumber the electrons
in the conduction band. In p-type semiconductors, holes are the majority carriers
and electrons are the minority carriers.

Table 41-2 summarizes the properties of a typical n-type and a typical p-type
semiconductor. Note particularly that the donor and acceptor ion cores, although
they are charged, are not charge carriers because they are fixed in place.
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Figure 41-11 (a) In a doped n-type
semiconductor, the energy levels of donor
electrons lie a small interval Ed below the
bottom of the conduction band. Because
donor electrons can be easily excited to the
conduction band, there are now many more
electrons in that band.The valence band
contains the same small number of holes as
before the dopant was added. (b) In a doped
p-type semiconductor, the acceptor levels lie
a small energy interval Ea above the top of
the valence band.There are now many more
holes in the valence band.The conduction
band contains the same small number of
electrons as before the dopant was added.
The ratio of majority carriers to minority
carriers in both (a) and (b) is very much
greater than is suggested by these diagrams.

Conduction band 

n type

p type 

Valence band 

Ea

Eg

Ed

Eg

(a)

(b)

Electrons
jump up 
from donors
at the 
dashed level.

Electrons
jump up to 
acceptors
at the 
dashed
level, leaving 
holes.

Table 41-2 Properties of Two Doped Semiconductors

Type of Semiconductor

Property n p

Matrix material Silicon Silicon
Matrix nuclear charge �14e �14e

Matrix energy gap 1.2 eV 1.2 eV
Dopant Phosphorus Aluminum
Type of dopant Donor Acceptor
Majority carriers Electrons Holes
Minority carriers Holes Electrons
Dopant energy gap Ed � 0.045 eV Ea � 0.067 eV
Dopant valence 5 3
Dopant nuclear charge �15e �13e

Dopant net ion charge �e �e
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Dividing both sides by the sample volume V to get the num-
ber density of silicon atoms nSi on the left, we then have

Appendix F tells us that the density of silicon is 2.33 g/cm3

(� 2330 kg/m3) and the molar mass of silicon is 28.1 g/mol
(� 0.0281 kg/mol).Thus, we have

The fraction we seek is approximately

(Answer)

If we replace only one silicon atom in five million with a
phosphorus atom, the number of electrons in the conduc-
tion band will be increased by a factor of a million.

How can such a tiny admixture of phosphorus have what
seems to be such a big effect? The answer is that, although
the effect is very significant, it is not “big.” The number den-
sity of conduction electrons was 1016 m�3 before doping and
1022 m�3 after doping. For copper, however, the conduction-
electron number density (given in Table 41-1) is about
1029 m�3.Thus, even after doping, the number density of con-
duction electrons in silicon remains much less than that of a
typical metal, such as copper, by a factor of about 107.

nP

nSi
�

10 22 m�3

5 � 10 28 m�3 �
1

5 � 10 6 .

� 5 � 10 28 atoms/m3 � 5 � 10 28 m�3.

nSi �
(2330 kg/m3)(6.02 � 10 23 atoms/mol)

0.0281 kg/mol

nSi �
(silicon density)NA

MSi
.

Sample Problem 41.06 Doping silicon with phosphorus

The number density n0 of conduction electrons in pure
silicon at room temperature is about 1016 m�3. Assume that,
by doping the silicon lattice with phosphorus, we want to
increase this number by a factor of a million (106). What
fraction of silicon atoms must we replace with phosphorus
atoms? (Recall that at room temperature, thermal agitation
is so effective that essentially every phosphorus atom
donates its “extra” electron to the conduction band.)

Number of phosphorus atoms: Because each phosphorus
atom contributes one conduction electron and because we want
the total number density of conduction electrons to be 106n0,
the number density of phosphorus atoms nP must be given by

106n0 � n0 � nP.

Then

This tells us that we must add 1022 atoms of phosphorus per
cubic meter of silicon.

Fraction of silicon atoms: We can find the number density
nSi of silicon atoms in pure silicon (before the doping) from
Eq. 41-4, which we can write as

�
(silicon density)(sample volume V)

(silicon molar mass MSi)/NA
.

�number of atoms
in sample �

� (10 6)(10 16 m�3) � 10 22 m�3.

nP � 10 6n0 � n0 � 10 6n0

Additional examples, video, and practice available at WileyPLUS
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After reading this module, you should be able to . . .

41.29 Describe a p-n junction and outline how it works.
41.30 Identify diffusion current, space charge, depletion

zone, contact potential difference, and drift current.
41.31 Describe the functioning of a junction rectifier.

41.32 Distinguish forward bias and back bias.
41.33 Explain the general properties of a light-emitting diode,

a photodiode, a junction laser, and a MOSFET.

Learning Objectives

● A p-n junction is a single semiconducting crystal with one end
doped to form p-type material and the other end doped to form
n-type material. The two types meet at a junction plane.

● At thermal equilibrium, the following occur at the junction
plane: (1) Majority carriers diffuse across the plane, produc-
ing a diffusion current Idiff. (2) Minority carriers are swept
across the plane, forming a drift current Idrift. (3) A depletion
zone forms at the plane. (4) A contact potential V0 develops
across the depletion zone.

● A p-n junction conducts electricity better for one direction 
of an applied potential difference (forward biased) than for the
opposite direction (back biased), and thus the device can 
serve as a junction rectifier.

● A p-n junction made with certain materials can emit light when
forward biased and thus can serve as a light-emitting diode (LED).

● A light-emitting p-n junction can also be made to emit
stimulated emission and thus can serve as a laser.

Key Ideas



The p-n Junction
A p-n junction (Fig. 41-12a), essential to most semiconductor devices, is a single
semiconductor crystal that has been selectively doped so that one region is n-type
material and the adjacent region is p-type material. Let’s assume that the junc-
tion has been formed mechanically by jamming together a bar of n-type semicon-
ductor and a bar of p-type semiconductor.Thus, the transition from one region to
the other is perfectly sharp, occurring at a single junction plane.

Let us discuss the motions of electrons and holes just after the n-type bar and
the p-type bar, both electrically neutral, have been jammed together to form the
junction. We first examine the majority carriers, which are electrons in the n-type
material and holes in the p-type material.

Motions of the Majority Carriers
If you burst a helium-filled balloon, helium atoms will diffuse (spread) outward
into the surrounding air. This happens because there are very few helium atoms
in normal air. In more formal language, there is a helium density gradient at the
balloon–air interface (the number density of helium atoms varies across the
interface); the helium atoms move so as to reduce the gradient.

In the same way, electrons on the n side of Fig. 41-12a that are close to the
junction plane tend to diffuse across it (from right to left in the figure) and into
the p side, where there are very few free electrons. Similarly, holes on the p side
that are close to the junction plane tend to diffuse across that plane (from left to
right) and into the n side, where there are very few holes. The motions of both
the electrons and the holes contribute to a diffusion current Idiff, conventionally
directed from left to right as indicated in Fig. 41-12d.

Recall that the n-side is studded throughout with positively charged donor
ions, fixed firmly in their lattice sites. Normally, the excess positive charge of each
of these ions is compensated electrically by one of the conduction-band elec-
trons. When an n-side electron diffuses across the junction plane, however, the
diffusion “uncovers” one of these donor ions, thus introducing a fixed positive
charge near the junction plane on the n side. When the diffusing electron arrives
on the p side, it quickly combines with an acceptor ion (which lacks one electron),
thus introducing a fixed negative charge near the junction plane on the p side.

In this way electrons diffusing through the junction plane from right to left
in Fig. 41-12a result in a buildup of space charge on each side of the junction
plane, with positive charge on the n side and negative charge on the p side, as
shown in Fig. 41-12b. Holes diffusing through the junction plane from left to
right have exactly the same effect. (Take the time now to convince yourself of
that.) The motions of both majority carriers—electrons and holes—contribute
to the buildup of these two space charge regions, one positive and one negative.
These two regions form a depletion zone, so named because it is relatively free of
mobile charge carriers; its width is shown as d0 in Fig. 41-12b.

The buildup of space charge generates an associated contact potential differ-
ence V0 across the depletion zone, as Fig. 41-12c shows. This potential difference
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Figure 41-12 (a) A p-n junction. (b) Motions
of the majority charge carriers across the
junction plane uncover a space charge
associated with uncompensated donor ions
(to the right of the plane) and acceptor ions
(to the left). (c) Associated with the space
charge is a contact potential difference V0

across d0. (d) The diffusion of majority
carriers (both electrons and holes) across
the junction plane produces a diffusion
current Idiff. (In a real p-n junction, the
boundaries of the depletion zone would
not be sharp, as shown here, and the
contact potential curve (c) would be
smooth, with no sharp corners.)

(a)

p n

(b)

p n
––++

– +
––++
––++

d0

(c)
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limits further diffusion of electrons and holes across the junction plane. Negative
charges tend to avoid regions of low potential. Thus, an electron approaching
the junction plane from the right in Fig. 41-12b is moving toward a region of low
potential and would tend to turn back into the n side. Similarly, a positive charge
(a hole) approaching the junction plane from the left is moving toward a region
of high potential and would tend to turn back into the p side.

Motions of the Minority Carriers
As Fig. 41-11a shows, although the majority carriers in n-type material are elec-
trons, there are a few holes. Likewise in p-type material (Fig. 41-11b), although
the majority carriers are holes, there are also a few electrons.These few holes and
electrons are the minority carriers in the corresponding materials.

Although the potential difference V0 in Fig. 41-12c acts as a barrier for the
majority carriers, it is a downhill trip for the minority carriers, be they electrons
on the p side or holes on the n side. Positive charges (holes) tend to seek regions
of low potential; negative charges (electrons) tend to seek regions of high poten-
tial. Thus, both types of minority carriers are swept across the junction plane by
the contact potential difference and together constitute a drift current Idrift across
the junction plane from right to left, as Fig. 41-12d indicates.

Thus, an isolated p-n junction is in an equilibrium state in which a contact
potential difference V0 exists between its ends. At equilibrium, the average diffu-
sion current Idiff that moves through the junction plane from the p side to the n
side is just balanced by an average drift current Idrift that moves in the opposite
direction.These two currents cancel because the net current through the junction
plane must be zero; otherwise charge would be transferred without limit from
one end of the junction to the other.
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Figure 41-13 A current–voltage plot for a 
p-n junction, showing that the junction is
highly conducting when forward-biased
and essentially nonconducting when 
back-biased.
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Figure 41-14 A p-n junction connected as a
junction rectifier.The action of the circuit
in (b) is to pass the positive half of the
input wave form in (a) but to suppress the
negative half.The average potential of the
input wave form is zero; that of the output
wave form  in (c) has a positive value Vavg.
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Checkpoint 2
Which of the following five currents across the junction plane of Fig. 41-12a must be
zero?
(a) the net current due to holes, both majority and minority carriers included
(b) the net current due to electrons, both majority and minority carriers included
(c) the net current due to both holes and electrons, both majority and minority 

carriers included
(d) the net current due to majority carriers, both holes and electrons included
(e) the net current due to minority carriers, both holes and electrons included

The Junction Rectifier
Look now at Fig. 41-13. It shows that, if we place a potential difference across a
p-n junction in one direction (here labeled � and “Forward bias”), there will
be a current through the junction. However, if we reverse the direction of the
potential difference, there will be approximately zero current through the
junction.

One application of this property is the junction rectifier, whose symbol is
shown in Fig. 41-14b; the arrowhead corresponds to the p-type end of the device
and points in the allowed direction of conventional current. A sine wave input
potential to the device (Fig. 41-14a) is transformed to a half-wave output poten-
tial (Fig. 41-14c) by the junction rectifier; that is, the rectifier acts as essentially a
closed switch (zero resistance) for one polarity of the input potential and as
essentially an open switch (infinite resistance) for the other. The average input
voltage is zero, but the average output voltage is not.Thus, a junction rectifier can
be used as part of an apparatus to convert an alternating potential difference into
a constant potential difference, as for a power supply.



Figure 41-15 shows why a p-n junction operates as a junction rectifier. In Fig.
41-15a, a battery is connected across the junction with its positive terminal con-
nected at the p side. In this forward-bias connection, the p side becomes more
positive and the n side becomes more negative, thus decreasing the height of
the potential barrier V0 of Fig. 41-12c. More of the majority carriers can now sur-
mount this smaller barrier; hence, the diffusion current Idiff increases markedly.

The minority carriers that form the drift current, however, sense no barrier;
so the drift current Idrift is not affected by the external battery. The nice current
balance that existed at zero bias (see Fig. 41-12d) is thus upset, and, as shown in
Fig. 41-15a, a large net forward current IF appears in the circuit.

Another effect of forward bias is to narrow the depletion zone, as a compari-
son of Fig. 41-12b and Fig. 41-15a shows. The depletion zone narrows because the
reduced potential barrier associated with forward bias must be associated with
a smaller space charge. Because the ions producing the space charge are fixed in
their lattice sites, a reduction in their number can come about only through a
reduction in the width of the depletion zone.

Because the depletion zone normally contains very few charge carriers, it
is normally a region of high resistivity. However, when its width is substantially
reduced by a forward bias, its resistance is also reduced substantially, as is consis-
tent with the large forward current.

Figure 41-15b shows the back-bias connection, in which the negative ter-
minal of the battery is connected at the p-type end of the p-n junction. Now
the applied emf increases the contact potential difference, the diffusion current
decreases substantially while the drift current remains unchanged, and a rela-
tively small back current IB results. The depletion zone widens, its high resistance
being consistent with the small back current IB.

The Light-Emitting Diode (LED)
Nowadays, we can hardly avoid the brightly colored “electronic” numbers that
glow at us from cash registers and gasoline pumps, microwave ovens and alarm
clocks, and we cannot seem to do without the invisible infrared beams that con-
trol elevator doors and operate television sets via remote control. In nearly all
cases this light is emitted from a p-n junction operating as a light-emitting diode
(LED). How can a p-n junction generate light?

Consider first a simple semiconductor. When an electron from the bottom of
the conduction band falls into a hole at the top of the valence band, an energy
Eg equal to the gap width is released. In silicon, germanium, and many other
semiconductors, this energy is largely transformed into thermal energy of the
vibrating lattice, and as a result, no light is emitted.

In some semiconductors, however, including gallium arsenide, the energy can
be emitted as a photon of energy hf at wavelength

(41-11)

To emit enough light to be useful as an LED, the material must have a suitably
large number of electron–hole transitions.This condition is not satisfied by a pure
semiconductor because, at room temperature, there are simply not enough
electron–hole pairs. As Fig. 41-11 suggests, doping will not help. In doped n-type
material the number of conduction electrons is greatly increased, but there
are not enough holes for them to combine with; in doped p-type material
there are plenty of holes but not enough electrons to combine with them. Thus,
neither a pure semiconductor nor a doped semiconductor can provide enough
electron–hole transitions to serve as a practical LED.

What we need is a semiconductor material with a very large number of elec-
trons in the conduction band and a correspondingly large number of holes in the

l �
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Figure 41-15 (a) The forward-bias connection
of a p-n junction, showing the narrowed
depletion zone and the large forward 
current IF. (b) The back-bias connection,
showing the widened depletion zone and
the small back current IB.
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valence band. A device with this property can be fabricated by placing a strong
forward bias on a heavily doped p-n junction, as in Fig. 41-16. In such an arrange-
ment the current I through the device serves to inject electrons into the n-type ma-
terial and to inject holes into the p-type material. If the doping is heavy enough and
the current is great enough, the depletion zone can become very narrow, perhaps
only a few micrometers wide. The result is a great number density of electrons in
the n-type material facing a correspondingly great number density of holes in the
p-type material, across the narrow depletion zone. With such great number densi-
ties so near each other, many electron–hole combinations occur, causing light to be
emitted from that zone. Figure 41-17 shows the construction of an actual LED.

Commercial LEDs designed for the visible region are commonly based on gal-
lium suitably doped with arsenic and phosphorus atoms. An arrangement in which
60% of the nongallium sites are occupied by arsenic ions and 40% by phosphorus
ions results in a gap width Eg of about 1.8 eV, corresponding to red light. Other dop-
ing and transition-level arrangements make it possible to construct LEDs that emit
light in essentially any desired region of the visible and near-visible spectra.

The Photodiode
Passing a current through a suitably arranged p-n junction can generate light.The re-
verse is also true; that is, shining light on a suitably arranged p-n junction can produce
a current in a circuit that includes the junction.This is the basis for the photodiode.

When you click your television remote control, an LED in the device sends
out a coded sequence of pulses of infrared light. The receiving device in your
television set is an elaboration of the simple (two-terminal) photodiode that not
only detects the infrared signals but also amplifies them and transforms them into
electrical signals that change the channel or adjust the volume, among other tasks.

The Junction Laser
In the arrangement of Fig. 41-16, there are many electrons in the conduction
band of the n-type material and many holes in the valence band of the p-type
material. Thus, there is a population inversion for the electrons; that is, there
are more electrons in higher energy levels than in lower energy levels. As we
discussed in Module 40-7, this can lead to lasing.

When a single electron moves from the conduction band to the valence band,
it can release its energy as a photon. This photon can stimulate a second electron
to fall into the valence band, producing a second photon by stimulated emission.
In this way, if the current through the junction is great enough, a chain reaction of
stimulated emission events can occur and laser light can be generated. To bring
this about, opposite faces of the p-n junction crystal must be flat and parallel, so
that light can be reflected back and forth within the crystal. (Recall that in the
helium–neon laser of Fig. 40-20, a pair of mirrors served this purpose.) Thus, a 
p-n junction can act as a junction laser, its light output being highly coherent and
much more sharply defined in wavelength than light from an LED.

Junction lasers are built into compact
disc (CD) players, where, by detecting re-
flections from the rotating disc, they are used
to translate microscopic pits in the disc into
sound. They are also much used in optical
communication systems based on optical
fibers. Figure 41-18 suggests their tiny scale.
Junction lasers are usually designed to oper-
ate in the infrared region of the electromag-
netic spectrum because optical fibers have
two “windows” in that region (at l � 1.31
and 1.55 mm) for which the energy absorp-
tion per unit length of the fiber is a minimum.
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Figure 41-16 A forward-biased p-n junction,
showing electrons being injected into the
n-type material and holes into the p-type
material. (Holes move in the conventional
direction of the current I, equivalent to
electrons moving in the opposite direc-
tion.) Light is emitted from the narrow
depletion zone each time an electron and a
hole combine across that zone.
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Figure 41-17 Cross section of an LED (the
device has rotational symmetry about the
central axis).The p-type material, which is
thin enough to transmit light, is in the form
of a circular disk.A connection is made to
the p-type material through a circular metal
ring that touches the disk at its periphery.
The depletion zone between the n-type ma-
terial and the p-type material is not shown.

Figure 41-18 A junction laser developed
at the AT&T Bell Laboratories.
The cube at the right is a grain of salt.

Courtesy AT&T Archives and History Center, 
Warren, NJ
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(Answer)

Light of this wavelength is red.

� 6.5 � 10�7 m � 650 nm.

� �
hc
Eg

�
(6.63 � 10�34 J �s)(3.00 � 10 8 m/s)

(1.9 eV)(1.60 � 10�19 J/eV)

Sample Problem 41.07 Light-emitting diode (LED)

An LED is constructed from a p-n junction based on a cer-
tain Ga-As-P semiconducting material whose energy gap is
1.9 eV.What is the wavelength of the emitted light?

Calculation: For jumps from the bottom of the conduction
band to the top of the valence band, Eq. 41-11 tells us

Additional examples, video, and practice available at WileyPLUS

The Transistor
A transistor is a three-terminal semiconducting device that can be used to amplify
input signals. Figure 41-19 shows a generalized field-effect transistor (FET); in it,
the flow of electrons from terminal S (the source) leftward through the shaded
region to terminal D (the drain) can be controlled by an electric field (hence
field effect) set up within the device by a suitable electric potential applied to
terminal G (the gate). Transistors are available in many types; we shall discuss
only a particular FET called a MOSFET, or metal-oxide-semiconductor-field-ef-
fect transistor. The MOSFET has been described as the workhorse of the mod-
ern electronics industry.

For many applications the MOSFET is operated in only two states: with
the drain-to-source current IDS ON (gate open) or with it OFF (gate closed). The
first of these can represent a 1 and the other a 0 in the binary arithmetic on which
digital logic is based, and therefore MOSFETs can be used in digital logic circuits.
Switching between the ON and OFF states can occur at high speed, so that binary
logic data can be moved through MOSFET-based circuits very rapidly. MOSFETs
about 500 nm in length—about the same as the wavelength of yellow light—are
routinely fabricated for use in electronic devices of all kinds.

Figure 41-20 shows the basic structure of a MOSFET. A single crystal of sili-
con or other semiconductor is lightly doped to form p-type material that serves as
the substrate. Embedded in this substrate, by heavily “overdoping” with n-type
dopants, are two “islands” of n-type material, forming the drain D and the source
S. The drain and source are connected by a thin channel of n-type material,
called the n channel. A thin insulating layer of silicon dioxide (hence the O in
MOSFET) is deposited on the crystal and penetrated by two metallic terminals
(hence the M) at D and S, so that electrical contact can be made with the drain
and the source. A thin metallic layer—the gate G—is deposited facing the n
channel. Note that the gate makes no electrical contact with the transistor proper,
being separated from it by the insulating oxide layer.

Consider first that the source and p-type substrate are grounded (at zero
potential) and the gate is “floating”; that is, the gate is not connected to an exter-
nal source of emf. Let a potential VDS be applied between the drain and the
source, such that the drain is positive. Electrons will then flow through the n
channel from source to drain, and the conventional current IDS, as shown in Fig.
41-20, will be from drain to source through the n channel.

Now let a potential VGS be applied to the gate, making it negative with
respect to the source. The negative gate sets up within the device an electric field
(hence the “field effect”) that tends to repel electrons from the n channel down
into the substrate. This electron movement widens the (naturally occurring)
depletion zone between the n channel and the substrate, at the expense of the n
channel. The reduced width of the n channel, coupled with a reduction in the
number of charge carriers in that channel, increases the resistance of that channel

Figure 41-19 A circuit containing a general-
ized field-effect transistor through which
electrons flow from the source terminal S
to the drain terminal D. (The conventional
current IDS is in the opposite direction.)
The magnitude of IDS is controlled by the
electric field set up within the FET by a
potential applied to G, the gate terminal.

IDS

R

D FET S

G

Figure 41-20 A particular type of field-effect
transistor known as a MOSFET.The mag-
nitude of the drain-to-source conventional
current IDS through the n channel is con-
trolled by the potential difference VGS

applied between the source S and the gate
G.A depletion zone that exists between the
n-type material and the p-type substrate is
not shown.

n n 

p-type
semiconductor

n-type
semiconductor

Metal

Insulator
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and thus decreases the current IDS. With the proper value of VGS, this current can
be shut off completely; hence, by controlling VGS, the MOSFET can be switched
between its ON and OFF modes.

Charge carriers do not flow through the substrate because it (1) is lightly
doped, (2) is not a good conductor, and (3) is separated from the n channel and
the two n-type islands by an insulating depletion zone, not specifically shown in
Fig. 41-20. Such a depletion zone always exists at a boundary between n-type
material and p-type material, as Fig. 41-12b shows.

Computers and other electronic devices employ thousands (if not millions)
of transistors and other electronic components, such as capacitors and resistors.
These are not assembled as separate units but are crafted into a single semicon-
ducting chip, forming an integrated circuit with millions of transistors and many
other electronic components.

Metals, Semiconductors, and Insulators Three electrical
properties that can be used to distinguish among crystalline solids
are resistivity r, temperature coefficient of resistivity a, and num-
ber density of charge carriers n. Solids can be broadly divided into
insulators (very high r), metals (low r, positive and low a, large n),
and semiconductors (high r, negative and high a, small n).

Energy Levels and Gaps in a Crystalline Solid An isolated
atom can exist in only a discrete set of energy levels. As atoms come
together to form a solid, the levels of the individual atoms merge to
form the discrete energy bands of the solid. These energy bands are
separated by energy gaps, each of which corresponds to a range of
energies that no electron may possess.

Any energy band is made up of an enormous number of very
closely spaced levels.The Pauli exclusion principle asserts that only
one electron may occupy each of these levels.

Insulators In an insulator, the highest band containing electrons
is completely filled and is separated from the vacant band above it by
an energy gap so large that electrons can essentially never become
thermally agitated enough to jump across the gap.

Metals In a metal, the highest band that contains any electrons
is only partially filled. The energy of the highest filled level at a
temperature of 0 K is called the Fermi energy EF for the metal.

The electrons in the partially filled band are the conduction
electrons and their number is

(41-2)

The number of atoms in a sample is given by

(41-4)�
�material’s

density � � sample
volume V�

(molar mass M)�NA
.

�
sample mass Msam

(molar mass M)�NA

�number of atoms
in sample � �

sample mass Msam

atomic mass

� �number of valence
electrons per atom�.

�number of conduction
electrons in sample � � �number of atoms

in sample �

Review & Summary

The number density n of the conduction electrons is

(41-3)

The density of states function N(E) is the number of available
energy levels per unit volume of the sample and per unit energy in-
terval and is given by

(density of states, m�3 J�1), (41-5)

where m (� 9.109 � 10�31 kg) is the electron mass, h (� 6.626 �
10�34 J �s) is the Planck constant, and E is the energy in joules at
which N(E) is to be evaluated. To modify the equation so that the
value of E is in eV and the value of N(E) is in m�3 eV�1, multiply
the right side by e3/2 (where e � 1.602 � 10�19 C).

The occupancy probability P(E), the probability that a given
available state will be occupied by an electron, is

(occupancy probability). (41-6)

The density of occupied states No(E) is given by the product
of the two quantities in Eqs. (41-5) and (41-6):

No(E) � N(E) P(E) (density of occupied states). (41-7)

The Fermi energy for a metal can be found by integrating No(E)
for T � 0 from E � 0 to E � EF.The result is

(41-9)

Semiconductors The band structure of a semiconductor is
like that of an insulator except that the gap width Eg is much
smaller in the semiconductor. For silicon (a semiconductor) at
room temperature, thermal agitation raises a few electrons to
the conduction band, leaving an equal number of holes in the va-
lence band. Both electrons and holes serve as charge carriers.
The number of electrons in the conduction band of silicon can be
increased greatly by doping with small amounts of phosphorus,
thus forming n-type material. The number of holes in the va-
lence band can be greatly increased by doping with aluminum,
thus forming p-type material.

EF � � 3

1612�
�

2/3 h2

m
n2/3 �

0.121h2

m
n2/3.

P(E) �
1

e(E�EF)/kT � 1

N(E) �
812�m3/2

h3 E1/ 2
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number of conduction electrons in sample

sample volume V
.
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Problems

Module 41-1 The Electrical Properties of Metals
•1 Show that Eq. 41-9 can be written as EF � An2/3, where the
constant A has the value 3.65 � 10�19 m2�eV.
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The p-n Junction A p-n junction is a single semiconducting crys-
tal with one end doped to form p-type material and the other end
doped to form n-type material, the two types meeting at a junction
plane. At thermal equilibrium, the following occurs at that plane:

The majority carriers (electrons on the n side and holes on the p side)
diffuse across the junction plane, producing a diffusion current
Idiff.

The minority carriers (holes on the n side and electrons on the p
side) are swept across the junction plane, forming a drift cur-
rent Idrift. These two currents are equal in magnitude, making
the net current zero.

A depletion zone, consisting largely of charged donor and acceptor
ions, forms across the junction plane.

A contact potential difference V0 develops across the depletion zone.

Applications of the p-n Junction When a potential difference is
applied across a p-n junction, the device conducts electricity more
readily for one polarity of the applied potential difference than for the
other.Thus, a p-n junction can serve as a junction rectifier.

When a p-n junction is forward biased, it can emit light, hence can
serve as a light-emitting diode (LED). The wavelength of the emitted
light is given by

(41-11)

A strongly forward-biased p-n junction with parallel end faces can op-
erate as a junction laser, emitting light of a sharply defined wavelength.

� �
c
f

�
hc
Eg

.

This element has the same crystal structure as silicon and, like sili-
con, is a semiconductor. Which of these electrons form the valence
band of crystalline germanium?

7 If the temperature of a piece of a metal is increased, does the
probability of occupancy 0.1 eV above the Fermi level increase, de-
crease, or remain the same?

8 In the biased p-n junctions shown in Fig. 41-15, there is an elec-
tric field in each of the two depletion zones, associated with the
potential difference that exists across that zone. (a) Is the electric
field vector directed from left to right in the figure or from right to
left? (b) Is the magnitude of the field greater for forward bias or for
back bias?

9 Consider a copper wire that is carrying, say, a few amperes of
current. Is the drift speed vd of the conduction electrons that form
that current about equal to, much greater than, or much less than
the Fermi speed vF for copper (the speed associated with the Fermi
energy for copper)?

10 In a silicon lattice, where should you look if you want to find
(a) a conduction electron, (b) a valence electron, and (c) an elec-
tron associated with the 2p subshell of the isolated silicon atom?

11 The energy gaps Eg for the semiconductors silicon and
germanium are, respectively, 1.12 and 0.67 eV. Which of the
following statements, if any, are true? (a) Both substances have
the same number density of charge carriers at room temperature.
(b) At room temperature, germanium has a greater number den-
sity of charge carriers than silicon. (c) Both substances have a
greater number density of conduction electrons than holes.
(d) For each substance, the number density of electrons equals
that of holes.

E
:

1 On which of the following does the interval between adjacent
energy levels in the highest occupied band of a metal depend: (a)
the material of which the sample is made, (b) the size of the sam-
ple, (c) the position of the level in the band, (d) the temperature of
the sample, (e) the Fermi energy of the metal?

2 Figure 41-1a shows 14 atoms that represent the unit cell of copper.
However, because each of these atoms is shared with one or more ad-
joining unit cells, only a fraction of each atom belongs to the unit cell
shown.What is the number of atoms per unit cell for copper? (To an-
swer,count up the fractional atoms belonging to a single unit cell.)

3 Figure 41-1b shows 18 atoms that represent the unit cell of sili-
con. Fourteen of these atoms, however, are shared with one or
more adjoining unit cells.What is the number of atoms per unit cell
for silicon? (See Question 2.)

4 Figure 41-21 shows three la-
beled levels in a band and also the
Fermi level for the material. The
temperature is 0 K. Rank the three
levels according to the probability
of occupation, greatest first if the temperature is (a) 0 K and (b)
1000 K. (c) At the latter temperature, rank the levels according to
the density of states N(E) there, greatest first.

5 The occupancy probability at a certain energy E1 in the valence
band of a metal is 0.60 when the temperature is 300 K. Is E1 above
or below the Fermi energy?

6 An isolated atom of germanium has 32 electrons, arranged in
subshells according to this scheme:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2.

Questions

Figure 41-21 Question 4.

EF

1
2
3

•2 Calculate the density of states N(E) for a metal at energy 
E � 8.0 eV and show that your result is consistent with the curve of
Fig. 41-6.
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(a) molecules of oxygen gas at 0.0°C and 1.0 atm pressure and (b)
conduction electrons in copper. (c) What is the ratio of the latter to
the former? What is the average distance between (d) the oxygen
molecules and (e) the conduction electrons, assuming this distance
is the edge length of a cube with a volume equal to the available
volume per particle (molecule or electron)?

••17 The Fermi energy of aluminum is 11.6 eV; its density and
molar mass are 2.70 g/cm3 and 27.0 g/mol, respectively. From these
data, determine the number of conduction electrons per atom.

••18 A sample of a certain metal has a volume of 4.0 � 10�5

m3. The metal has a density of 9.0 g/cm3 and a molar mass of 60
g/mol.The atoms are bivalent. How many conduction electrons (or
valence electrons) are in the sample?

••19 The Fermi energy for silver is 5.5 eV. At T � 0°C, what are
the probabilities that states with the following energies are occu-
pied: (a) 4.4 eV, (b) 5.4 eV, (c) 5.5 eV, (d) 5.6 eV, and (e) 6.4 eV? (f)
At what temperature is the probability 0.16 that a state with en-
ergy E � 5.6 eV is occupied?

••20 What is the number of occupied states in the energy range
of 0.0300 eV that is centered at a height of 6.10 eV in the valence
band if the sample volume is 5.00 � 10�8 m3, the Fermi level is 5.00
eV, and the temperature is 1500 K?

••21 At 1000 K, the fraction of the conduction electrons in a
metal that have energies greater than the Fermi energy is equal to
the area under the curve of Fig. 41-8b beyond EF divided by the
area under the entire curve. It is difficult to find these areas by di-
rect integration. However, an approximation to this fraction at any
temperature T is

Note that frac � 0 for T � 0 K, just as we would expect. What is
this fraction for copper at (a) 300 K and (b) 1000 K? For copper,
EF � 7.0 eV. (c) Check your answers by numerical integration us-
ing Eq. 41-7.

••22 At what temperature do 1.30% of the conduction electrons
in lithium (a metal) have energies greater than the Fermi energy
EF, which is 4.70 eV? (See Problem 21.)

••23 Show that, at T � 0 K, the average energy Eavg of the con-
duction electrons in a metal is equal to . (Hint: By definition of
average, Eavg � (1/n) E No(E) dE, where n is the number density
of charge carriers.)

••24 A certain  material has a molar mass of 20.0 g/mol, a
Fermi energy of 5.00 eV, and 2 valence electrons per atom. What is
the density (g/cm3)?

••25 (a) Using the result of Problem 23 and 7.00 eV for copper’s
Fermi energy, determine how much energy would be released by
the conduction electrons in a copper coin with mass 3.10 g if we
could suddenly turn off the Pauli exclusion principle. (b) For how
long would this amount of energy light a 100 W lamp? (Note:
There is no way to turn off the Pauli principle!)

••26 At T � 300 K, how far above the Fermi energy is a state for
which the probability of occupation by a conduction electron is 0.10?

••27 Zinc is a bivalent metal. Calculate (a) the number density of
conduction electrons, (b) the Fermi energy, (c) the Fermi speed,
and (d) the de Broglie wavelength corresponding to this electron
speed. See Appendix F for the needed data on zinc.

�

3
5EF

frac �
3kT
2EF

.

•3 Copper, a monovalent metal, has molar mass 63.54 g/mol and
density 8.96 g/cm3. What is the number density n of conduction
electrons in copper?

•4 A state 63 meV above the Fermi level has a probability of oc-
cupancy of 0.090. What is the probability of occupancy for a state
63 meV below the Fermi level?

•5 (a) Show that Eq. 41-5 can be written as N(E) � CE1/2. (b)
Evaluate C in terms of meters and electron-volts. (c) Calculate
N(E) for E � 5.00 eV.

•6 Use Eq. 41-9 to verify 7.0 eV as copper’s Fermi energy.

•7 What is the probability that a state 0.0620 eV above
the Fermi energy will be occupied at (a) T 0 K and (b) T 320 K?

•8 What is the number density of conduction electrons in gold,
which is a monovalent metal? Use the molar mass and density pro-
vided in Appendix F.

••9 Silver is a monovalent metal. Calculate (a) the
number density of conduction electrons, (b) the Fermi energy, (c) the
Fermi speed, and (d) the de Broglie wavelength corresponding to this
electron speed. See Appendix F for the needed data on silver.

••10 Show that the probability P(E) that an energy level having
energy E is not occupied is

where 
E � E � EF.

••11 Calculate No(E), the density of occupied states, for copper at
T � 1000 K for an energy E of (a) 4.00 eV, (b) 6.75 eV, (c) 7.00 eV,
(d) 7.25 eV, and (e) 9.00 eV. Compare your results with the graph
of Fig. 41-8b. The Fermi energy for copper is 7.00 eV.

••12 What is the probability that, at a temperature of T � 300 K,
an electron will jump across the energy gap Eg (� 5.5 eV) in a dia-
mond that has a mass equal to the mass of Earth? Use the molar
mass of carbon in Appendix F; assume that in diamond there is one
valence electron per carbon atom.

••13 The Fermi energy for copper is 7.00 eV. For copper at
1000 K, (a) find the energy of the energy level whose probability of
being occupied by an electron is 0.900. For this energy, evaluate (b)
the density of states N(E) and (c) the density of occupied states
No(E).

••14 Assume that the total volume of a metal sample is the sum
of the volume occupied by the metal ions making up the lattice and
the (separate) volume occupied by the conduction electrons. The
density and molar mass of sodium (a metal) are 971 kg/m3 and 23.0
g/mol, respectively; assume the radius of the Na� ion is 98.0 pm. (a)
What percent of the volume of a sample of metallic sodium is occu-
pied by its conduction electrons? (b) Carry out the same calcula-
tion for copper, which has density, molar mass, and ionic radius of
8960 kg/m3, 63.5 g/mol, and 135 pm, respectively. (c) For which of
these metals do you think the conduction electrons behave more
like a free-electron gas?

••15 In Eq. 41-6 let E � EF � 
E � 1.00 eV. (a) At
what temperature does the result of using this equation differ by
1.0% from the result of using the classical Boltzmann equation
P(E) � e�
E/kT (which is Eq. 41-1 with two changes in notation)?
(b) At what temperature do the results from these two equations
differ by 10%?

••16 Calculate the number density (number per unit volume) for

WWWSSM

P(E) �
1
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E/kT � 1
,
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••28 What is the Fermi energy of gold (a monovalent metal
with molar mass 197 g/mol and density 19.3 g/cm3)?

••29 Use the result of Problem 23 to calculate the total transla-
tional kinetic energy of the conduction electrons in 1.00 cm3 of
copper at T � 0 K.

•••30 A certain metal has 1.70 � 1028 conduction electrons per
cubic meter. A sample of that metal has a volume of 
m3 and a temperature of 200 K. How many occupied states are in
the energy range of 3.20 � 10�20 J that is centered on the energy
4.00 � 10�19 J? (Caution: Avoid round-off in the exponential.)

Module 41-2 Semiconductors and Doping
•31 (a) What maximum light wavelength will excite an elec-
tron in the valence band of diamond to the conduction band? The
energy gap is 5.50 eV. (b) In what part of the electromagnetic spec-
trum does this wavelength lie?

••32 The compound gallium arsenide is a commonly used semi-
conductor, having an energy gap Eg of 1.43 eV. Its crystal structure
is like that of silicon, except that half the silicon atoms are replaced
by gallium atoms and half by arsenic atoms. Draw a flattened-out
sketch of the gallium arsenide lattice, following the pattern of Fig.
41-10a.What is the net charge of the (a) gallium and (b) arsenic ion
core? (c) How many electrons per bond are there? (Hint: Consult
the periodic table in Appendix G.)

••33 The occupancy probability function (Eq. 41-6) can be
applied to semiconductors as well as to metals. In semiconductors
the Fermi energy is close to the midpoint of the gap between the
valence band and the conduction band. For germanium, the gap
width is 0.67 eV. What is the probability that (a) a state at the
bottom of the conduction band is occupied and (b) a state at the
top of the valence band is not occupied? Assume that T � 290 K.
(Note: In a pure semiconductor, the Fermi energy lies symmetri-
cally between the population of conduction electrons and the pop-
ulation of holes and thus is at the center of the gap. There need not
be an available state at the location of the Fermi energy.)

••34 In a simplified model of an undoped semiconductor, the ac-
tual distribution of energy states may be replaced by one in which
there are Nv states in the valence band, all these states having the
same energy Ev, and Nc states in the conduction band, all these
states having the same energy Ec. The number of electrons in the
conduction band equals the number of holes in the valence band.
(a) Show that this last condition implies that

in which


Ec � Ec � EF and 
Ev � �(Ev � EF).

(b) If the Fermi level is in the gap between the two bands and its dis-
tance from each band is large relative to kT, then the exponentials
dominate in the denominators. Under these conditions, show that

and that, if Nv � Nc, the Fermi level for the undoped semiconduc-
tor is close to the gap’s center.

••35 What mass of phosphorus is needed to dope 1.0
g of silicon so that the number density of conduction electrons in
the silicon is increased by a multiply factor of 106 from the 1016 m�3

in pure silicon.

WWWSSM
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6.00 � 10�6

••36 A silicon sample is doped with atoms having donor states
0.110 eV below the bottom of the conduction band. (The energy
gap in silicon is 1.11 eV.) If each of these donor states is occupied
with a probability of 5.00 � 10�5 at T � 300 K, (a) is the Fermi
level above or below the top of the silicon valence band and (b)
how far above or below? (c) What then is the probability that a
state at the bottom of the silicon conduction band is occupied?

••37 Doping changes the Fermi
energy of a semiconductor. Consider
silicon, with a gap of 1.11 eV be-
tween the top of the valence band
and the bottom of the conduction
band. At 300 K the Fermi level of
the pure material is nearly at the
mid-point of the gap. Suppose that
silicon is doped with donor atoms,
each of which has a state 0.15 eV be-
low the bottom of the silicon con-
duction band, and suppose further
that doping raises the Fermi level to 0.11 eV below the bottom of
that band (Fig. 41-22). For (a) pure and (b) doped silicon, calculate
the probability that a state at the bottom of the silicon conduction
band is occupied. (c) Calculate the probability that a state in the
doped material (at the donor level) is occupied.

••38 Pure silicon at room temperature has an electron number den-
sity in the conduction band of about 5 � 1015 m�3 and an equal den-
sity of holes in the valence band. Suppose that one of every 107 silicon
atoms is replaced by a phosphorus atom. (a) Which type will the
doped semiconductor be, n or p? (b) What charge carrier number
density will the phosphorus add? (c) What is the ratio of the charge
carrier number density (electrons in the conduction band and holes
in the valence band) in the doped silicon to that in pure silicon?

Module 41-3 The p-n Junction and the Transistor
•39 When a photon enters the depletion zone of a p-n junc-
tion, the photon can scatter from the valence electrons there, trans-
ferring part of its energy to each electron, which then jumps to the
conduction band. Thus, the photon creates electron–hole pairs.
For this reason, the junctions are often used as light detectors, es-
pecially in the x-ray and gamma-ray regions of the electromag-
netic spectrum. Suppose a single 662 keV gamma-ray photon
transfers its energy to electrons in multiple scattering events in-
side a semiconductor with an energy gap of 1.1 eV, until all the
energy is transferred. Assuming that each electron jumps the gap
from the top of the valence band to the bottom of the conduction
band, find the number of electron – hole pairs created by the
process.

•40 For an ideal p-n junction rectifier with a sharp boundary be-
tween its two semiconducting sides, the current I is related to the
potential difference V across the rectifier by

I � I0(eeV/kT � 1),

where I0, which depends on the materials but not on I or V, is
called the reverse saturation current. The potential difference V is
positive if the rectifier is forward-biased and negative if it is back-
biased. (a) Verify that this expression predicts the behavior of a
junction rectifier by graphing I versus V from �0.12 V to �0.12 V.
Take T � 300 K and I0 � 5.0 nA. (b) For the same temperature,
calculate the ratio of the current for a 0.50 V forward bias to the
current for a 0.50 V back bias.

SSM

Figure 41-22 Problem 37.
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•41 In a particular crystal, the highest occupied band is full. The
crystal is transparent to light of wavelengths longer than 295 nm
but opaque at shorter wavelengths. Calculate, in electron-volts, the
gap between the highest occupied band and the next higher
(empty) band for this material.

•42 A potassium chloride crystal has an energy band gap of 7.6
eV above the topmost occupied band, which is full. Is this crystal
opaque or transparent to light of wavelength 140 nm?

•43 A certain computer chip that is about the size of a postage
stamp (2.54 cm � 2.22 cm) contains about 3.5 million transistors. If
the transistors are square, what must be their maximum dimen-
sion? (Note: Devices other than transistors are also on the chip,
and there must be room for the interconnections among the circuit
elements. Transistors smaller than 0.7 mm are now commonly and
inexpensively fabricated.)

•44 A silicon-based MOSFET has a square gate 0.50 mm on
edge. The insulating silicon oxide layer that separates the gate
from the p-type substrate is 0.20 mm thick and has a dielectric
constant of 4.5. (a) What is the equivalent gate – substrate
capacitance (treating the gate as one plate and the substrate as
the other plate)? (b) Approximately how many elementary
charges e appear in the gate when there is a gate – source
potential difference of 1.0 V?

Additional Problems
45 (a) Show that the slope dP/dE of Eq. 41-6 evaluated at
E EF is 1/4kT. (b) Show that the tangent line to the curve of
Fig. 41-7b evaluated at E � EF intercepts the horizontal axis at 
E � EF � 2kT.

46 Calculate dr/dT at room temperature for (a) copper and (b)
silicon, using data from Table 41-1.

��

SSM

47 (a) Find the angle u between adjacent nearest-neighbor bonds
in the silicon lattice. Recall that each silicon atom is bonded to four
of its nearest neighbors.The four neighbors form a regular tetrahe-
dron—a pyramid whose sides and base are equilateral triangles.
(b) Find the bond length, given that the atoms at the corners of the
tetrahedron are 388 pm apart.

48 Show that P(E), the occupancy probability in Eq. 41-6, is sym-
metrical about the value of the Fermi energy; that is, show that

P(EF � 
E) � P(EF � 
E) � 1.

49 (a) Show that the density of states at the Fermi energy is
given by

in which n is the number density of conduction electrons.
(b) Calculate N(EF) for copper, which is a monovalent metal with
molar mass 63.54 g/mol and density 8.96 g/cm3. (c) Verify your cal-
culation with the curve of Fig. 41-6, recalling that EF � 7.0 eV for
copper.

50 Silver melts at 961°C. At the melting point, what fraction of
the conduction electrons are in states with energies greater than
the Fermi energy of 5.5 eV? (See Problem 21.)

51 The Fermi energy of copper is 7.0 eV. Verify that the
corresponding Fermi speed is 1600 km /s.

52 Verify the numerical factor 0.121 in Eq. 41-9.

53 At what pressure, in atmospheres, would the number of mole-
cules per unit volume in an ideal gas be equal to the number
density of the conduction electrons in copper, with both gas and
copper at temperature T � 300 K?

� (4.11 � 1018 m�2 eV�1)n1/3,

N(EF) �
(4)(31/3)(� 2/3)mn1/3

h2
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C H A P T E R  4 2

Nuclear Physics

42-1 DISCOVERING THE NUCLEUS

After reading this module, you should be able to . . .

42.01 Explain the general arrangement for Rutherford
scattering and what was learned from it.

42.02 In a Rutherford scattering arrangement, apply the rela-
tionship between the projectile’s initial kinetic energy and
the distance of its closest approach to the target nucleus.

● The positive charge of an atom is concentrated in the central
nucleus rather than being spread through the volume of the
atom. This structure was proposed in 1910 by Ernest
Rutherford of England after he conducted experiments with
what we now call Rutherford scattering. Alpha particles
(positively charged particles consisting of two protons and two

neutrons) are directed through a thin metal foil to be scattered
by the (positive) nuclei within the atoms.

● The total energy (kinetic energy plus electric potential
energy) of the system of alpha particle and target nucleus
is conserved as the alpha particle approaches the nucleus.

Learning Objectives

Key Ideas

What Is Physics?
We now turn to what lies at the center of an atom — the nucleus. For the last
90 years, a principal goal of physics has been to work out the quantum physics
of nuclei, and, for almost as long, a principal goal of some types of engineering
has been to apply that quantum physics with applications ranging from radia-
tion therapy in the war on cancer to detectors of radon gas in basements.

Before we get to such applications and the quantum physics of nuclei, let’s
first discuss how physicists discovered that an atom has a nucleus. As obvious as
that fact is today, it initially came as an incredible surprise.

Discovering the Nucleus
In the first years of the 20th century, not much was known about the structure of
atoms beyond the fact that they contain electrons. The electron had been discov-
ered (by J. J. Thomson) in 1897, and its mass was unknown in those early days.
Thus, it was not possible even to say how many negatively charged electrons a
given atom contained. Scientists reasoned that because atoms were electrically
neutral, they must also contain some positive charge, but nobody knew what form
this compensating positive charge took. One popular model was that the positive
and negative charges were spread uniformly in a sphere.

In 1911 Ernest Rutherford proposed that the positive charge of the atom
is densely concentrated at the center of the atom, forming its nucleus, and that,
furthermore, the nucleus is responsible for most of the mass of the atom.
Rutherford’s proposal was no mere conjecture but was based firmly on the results
of an experiment suggested by him and carried out by his collaborators, Hans
Geiger (of Geiger counter fame) and Ernest Marsden, a 20-year-old student who
had not yet earned his bachelor’s degree.



In Rutherford’s day it was known that certain elements, called radioactive,
transform into other elements spontaneously, emitting particles in the process. One
such element is radon, which emits alpha (a) particles that have an energy of about
5.5 MeV.We now know that these particles are helium nuclei.

Rutherford’s idea was to direct energetic alpha particles at a thin target foil
and measure the extent to which they were deflected as they passed through the
foil. Alpha particles, which are about 7300 times more massive than electrons,
have a charge of �2e.

Figure 42-1 shows the experimental arrangement of Geiger and Marsden.
Their alpha source was a thin-walled glass tube of radon gas. The experiment
involves counting the number of alpha particles that are deflected through vari-
ous scattering angles f.

Figure 42-2 shows their results. Note especially that the vertical scale is log-
arithmic. We see that most of the particles are scattered through rather small
angles, but—and this was the big surprise—a very small fraction of them are
scattered through very large angles, approaching 180°. In Rutherford’s words: “It
was quite the most incredible event that ever happened to me in my life. It was
almost as incredible as if you had fired a 15-inch shell at a piece of tissue paper
and it [the shell] came back and hit you.”

Why was Rutherford so surprised? At the time of these experiments, most
physicists believed in the so-called plum pudding model of the atom, which had
been advanced by J. J. Thomson. In this view the positive charge of the atom was
thought to be spread out through the entire volume of the atom. The electrons
(the “plums”) were thought to vibrate about fixed points within this sphere of
positive charge (the “pudding”).

The maximum deflecting force that could act on an alpha particle as it passed
through such a large positive sphere of charge would be far too small to deflect the
alpha particle by even as much as 1°. (The expected deflection has been compared
to what you would observe if you fired a bullet through a sack of snowballs.) The
electrons in the atom would also have very little effect on the massive, energetic
alpha particle. They would, in fact, be themselves strongly deflected, much as a
swarm of gnats would be brushed aside by a stone thrown through them.

Rutherford saw that, to deflect the alpha particle backward, there must be a
large force; this force could be provided if the positive charge, instead of being
spread throughout the atom, were concentrated tightly at its center. Then the
incoming alpha particle could get very close to the positive charge without pene-
trating it; such a close encounter would result in a large deflecting force.

Figure 42-3 shows possible paths taken by typical alpha particles as they pass
through the atoms of the target foil. As we see, most are either undeflected or only
slightly deflected, but a few (those whose incoming paths pass, by chance, very close
to a nucleus) are deflected through large angles. From an analysis of the data,
Rutherford concluded that the radius of the nucleus must be smaller than the radius
of an atom by a factor of about 104. In other words, the atom is mostly empty space.
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Figure 42-1 An arrangement (top view) used in Rutherford’s laboratory in 1911–1913 to
study the scattering of a particles by thin metal foils.The detector can be rotated to vari-
ous values of the scattering angle f.The alpha source was radon gas, a decay product of
radium.With this simple “tabletop” apparatus, the atomic nucleus was discovered.
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Alpha source 

φ 

Gold foil 

Figure 42-2 The dots are alpha-particle
scattering data for a gold foil, obtained by
Geiger and Marsden using the apparatus of
Fig. 42-1.The solid curve is the theoretical
prediction, based on the assumption that the
atom has a small, massive, positively charged
nucleus.The data have been adjusted to fit the
theoretical curve at the experimental point
that is enclosed in a circle.
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Figure 42-3 The angle through which an incident alpha particle is scattered depends on how
close the particle’s path lies to an atomic nucleus. Large deflections result only from very
close encounters.
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That cloud then acts as a closed conducting spherical shell
and, by Gauss’ law, has no effect on the (now internal)
charged alpha particle. Then the alpha particle “sees” only
the nuclear charge qAu. Because qa and qAu are both posi-
tively charged, a repulsive electric force acts on the alpha
particle, slowing it, and the particle–atom system has a po-
tential energy

that depends on the center-to-center separation r of the 
incoming particle and the target nucleus (Fig. 42-4b).

As the repulsive force slows the alpha particle, energy
is transferred from kinetic energy to electric potential
energy. The transfer is complete when the alpha particle
momentarily stops at the distance of closest approach d to
the target nucleus (Fig. 42-4c). Just then the kinetic energy
is Kf = 0 and the particle–atom system has the electric
potential energy

.Uf �
1

4p´0

qaqAu

d

U �
1

4p´0

qaqAu

r

Sample Problem 42.01 Rutherford scattering of an alpha particle by a gold nucleus

An alpha particle with kinetic energy Ki = 5.30 MeV
happens, by chance, to be headed directly toward the nucleus
of a neutral gold atom (Fig. 42-4a). What is its distance of
closest approach d (least center-to-center separation) to the
nucleus? Assume that the atom remains stationary.

KEY IDEAS

(1) Throughout the motion, the total mechanical energy E of
the particle–atom system is conserved. (2) In addition to the
kinetic energy, that total energy includes electric potential
energy U as given by Eq. 24-46 (U = q1q2/4p´0r).

Calculations: The alpha particle has a charge of +2e because
it contains two protons. The  target nucleus has a charge of
qAu = �79e because it contains 79 protons. However, that nu-
clear charge is surrounded by an electron “cloud” with a
charge of qe = �79e, and thus the alpha particle initially
“sees” a neutral atom with a net charge of qatom = 0. The
electric force on the particle is zero and the initial electric
potential energy of the particle–atom system is Ui = 0.

Once the alpha particle enters the atom, we say that it
passes through the electron cloud surrounding the nucleus.

A

Figure 42-4 An alpha particle (a) approaches and (b) then enters a gold atom, headed toward the nucleus.The alpha particle
(c) comes to a stop at the point of closest approach and (d) is propelled back out of the atom.

Initially the particle
sees a neutral atom.

The particle
now sees a 
positive nucleus.
A repulsive
force slows it.

The force has
momentarily
stopped the
particle.

The energy
transfer is
complete.

The force propels
the particle back
out of the atom. The energy is

being transferred
back to kinetic
energy.

Energy is being
transferred from
kinetic energy to
potential energy.
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Electron cloud

(a)

Ki = 5.30 MeV

qAu = +79e

qe = –79e

qa = +2e

Ui = 0
(b)

K < 5.30 MeV
U > 0

r

(d)

K < 5.30 MeV
U > 0

(c)

Kf = 0
Uf = 5.30 MeV

d

v v
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Additional examples, video, and practice available at WileyPLUS

(Answer)

This distance is considerably larger than the sum of the radii
of the gold nucleus and the alpha particle. Thus, this alpha
particle reverses its motion (Fig. 42-4d) without ever actu-
ally “touching” the gold nucleus.

�  4.29 � 10�14 m.

�
(2 � 79)(1.60 � 10�19 C)2

4p�0 (5.30 MeV)(1.60 � 10�13 J/MeV)

d �
(2e)(79e)
4p´0Ka

To find d, we conserve the total mechanical energy between
the initial state i and this later state f, writing

Ki � Ui � Kf � Uf

and

(We are assuming that the alpha particle is not affected by
the force holding the nucleus together, which acts over only
a short distance.) Solving for d and then substituting for the
charges and initial kinetic energy lead to

Ki � 0 � 0 �
1

4p´0

qaqAu

d
.
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After reading this module, you should be able to . . .

42.03 Identify nuclides, atomic number (or proton number),
neutron number, mass number, nucleon, isotope, disinte-
gration, neutron excess, isobar, zone of stable nuclei, and
island of stability, and explain the symbols used for nuclei
(such as 197Au).

42.04 Sketch a graph of proton number versus neutron
number and identify the approximate location of the
stable nuclei, the proton-rich nuclei, and the neutron-rich
nuclei.

42.05 For spherical nuclei, apply the relationship between
radius and mass number and calculate the nuclear density.

42.06 Work with masses in atomic mass units, relate the

mass number and the approximate nuclear mass, and
convert between mass units and energy.

42.07 Calculate mass excess.
42.08 For a given nucleus, calculate the binding energy 
Ebe

and the binding energy per nucleon 
Eben, and explain the
meaning of each term.

42.09 Sketch a graph of the binding energy per nucleon ver-
sus mass number, indicating the nuclei that are the most
tightly bound, those that can undergo fission with a release
of energy, and those that can undergo fusion with a re-
lease of energy.

42.10 Identify the force that holds nucleons together.

● Different types of nuclei are called nuclides. Each is charac-
terized by an atomic number Z (the number of protons), a
neutron number N, and a mass number A (the total number
of nucleons—protons and neutrons). Thus, . A
nuclide is represented with a symbol such as 197Au or 197

79 Au,
where the chemical symbol carries a superscript with the
value of A and (possibly) a subscript with the value of Z.

● Nuclides with the same atomic number but different neu-
tron numbers are isotopes of one another.

● Nuclei have a mean radius r given by

where

● Atomic masses are often reported in terms of mass excess

where M is the actual mass of an atom in atomic mass units
and A is the mass number for that atom’s nucleus.


 � M � A,

r0 � 1.2 fm.

r � r0A1/3

A � Z � N

● The binding energy of a nucleus is the difference

where is the total mass energy of the individual protons�(mc2)


Ebe � �(mc2) � Mc2,

Learning Objectives

Key Ideas

and neutrons. The binding energy of a nucleus is the amount
of energy needed to break the nucleus into its constituent
parts (and is not an energy that resides in the nucleus).

● The binding energy per nucleon is

● The energy equivalent of one mass unit (u) is 931.494 013 MeV.

● A plot of the binding energy per nucleon 
Eben versus mass
number A shows that middle-mass nuclides are the most
stable and that energy can be released both by fission of
high-mass nuclei and by fusion of low-mass nuclei.


Eben �

Ebe

A
.



Some Nuclear Properties
Table 42-1 shows some properties of a few atomic nuclei.When we are interested
primarily in their properties as specific nuclear species (rather than as parts of
atoms), we call these particles nuclides.

Some Nuclear Terminology
Nuclei are made up of protons and neutrons. The number of protons in a nucleus
(called the atomic number or proton number of the nucleus) is represented by
the symbol Z; the number of neutrons (the neutron number) is represented by
the symbol N. The total number of neutrons and protons in a nucleus is called its
mass number A; thus

A � Z � N. (42-1)

Neutrons and protons, when considered collectively as members of a nucleus, are
called nucleons.

We represent nuclides with symbols such as those displayed in the first col-
umn of Table 42-1. Consider 197Au, for example. The superscript 197 is the mass
number A.The chemical symbol Au tells us that this element is gold, whose atomic
number is 79. Sometimes the atomic number is explicitly shown as a subscript, as in
197
79 Au. From Eq. 42-1, the neutron number of this nuclide is the difference between
the mass number and the atomic number, namely, 197 � 79, or 118.

Nuclides with the same atomic number Z but different neutron numbers N
are called isotopes of one another. The element gold has 36 isotopes, ranging
from 173Au to 204Au. Only one of them (197Au) is stable; the remaining 35 are
radioactive. Such radionuclides undergo decay (or disintegration) by emitting a
particle and thereby transforming to a different nuclide.

Organizing the Nuclides
The neutral atoms of all isotopes of an element (all with the same Z) have the
same number of electrons and the same chemical properties, and they fit into
the same box in the periodic table of the elements. The nuclear properties of the
isotopes of a given element, however, are very different from one isotope to
another. Thus, the periodic table is of limited use to the nuclear physicist, the
nuclear chemist, or the nuclear engineer.
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Table 42-1 Some Properties of Selected Nuclides

Massb Binding Energy 
Nuclide Z N A Stabilitya (u) Spinc (MeV/nucleon)

1H 1 0 1 99.985% 1.007 825 —
7Li 3 4 7 92.5% 7.016 004 5.60
31P 15 16 31 100% 30.973 762 8.48

84Kr 36 48 84 57.0% 83.911 507 0 8.72
120Sn 50 70 120 32.4% 119.902 197 0 8.51
157Gd 64 93 157 15.7% 156.923 957 8.21
197Au 79 118 197 100% 196.966 552 7.91
227Ac 89 138 227 21.8 y 227.027 747 7.65
239Pu 94 145 239 24 100 y 239.052 157 7.56

aFor stable nuclides, the isotopic abundance is given; this is the fraction of atoms of this type found
in a typical sample of the element. For radioactive nuclides, the half-life is given.
bFollowing standard practice, the reported mass is that of the neutral atom, not that of the bare nucleus.
cSpin angular momentum in units of �.
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We organize the nuclides on a nuclidic chart like that in Fig.
42-5, in which a nuclide is represented by plotting its proton num-
ber against its neutron number. The stable nuclides in this figure
are represented by the green, the radionuclides by the beige. As
you can see, the radionuclides tend to lie on either side of—and at
the upper end of—a well-defined band of stable nuclides. Note too
that light stable nuclides tend to lie close to the line N � Z, which
means that they have about the same numbers of neutrons and
protons. Heavier nuclides, however, tend to have many more neu-
trons than protons. As an example, we saw that 197Au has 118 neu-
trons and only 79 protons, a neutron excess of 39.

Nuclidic charts are available as wall charts, in which each small
box on the chart is filled with data about the nuclide it represents.
Figure 42-6 shows a section of such a chart, centered on 197Au.
Relative abundances (usually, as found on Earth) are shown for
stable nuclides, and half-lives (a measure of decay rate) are shown
for radionuclides. The sloping line points out a line of isobars—
nuclides of the same mass number, A � 198 in this case.

In recent years, nuclides with atomic numbers as high as
Z � 118 (A � 294) have been found in laboratory experiments
(no elements with Z greater than 92 occur naturally). Although
large nuclides generally should be highly unstable and last only a
very brief time, certain supermassive nuclides are relatively stable,
with fairly long lifetimes. These stable supermassive nuclides and
other predicted ones form an island of stability at high values of Z
and N on a nuclidic chart like Fig. 42-5.
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Figure 42-5 A plot of the known
nuclides.The green shading identifies
the band of stable nuclides, the beige
shading the radionuclides. Low-mass,
stable nuclides have essentially equal
numbers of neutrons and protons, but
more massive nuclides have an increas-
ing excess of neutrons.The figure shows
that there are no stable nuclides with 
Z � 83 (bismuth).
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Figure 42-6 An enlarged and detailed section of the nuclidic
chart of Fig. 42-5, centered on 197Au. Green squares represent
stable nuclides, for which relative isotopic abundances are
given. Beige squares represent radionuclides, for which half-
lives are given. Isobaric lines of constant mass number A
slope as shown by the example line for A � 198.
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Checkpoint 1
Based on Fig. 42-5, which of the following nuclides do you conclude are
not likely to be detected: 52Fe (Z � 26), 90As (Z � 33), 158Nd (Z � 60),
175Lu (Z � 71), 208Pb (Z � 82)?



Nuclear Radii
A convenient unit for measuring distances on the scale of nuclei is the femtometer
(� 10�15 m). This unit is often called the fermi; the two names share the same
abbreviation.Thus,

1 femtometer � 1 fermi � 1 fm � 10�15 m. (42-2)

We can learn about the size and structure of nuclei by bombarding them with a
beam of high-energy electrons and observing how the nuclei deflect the incident
electrons. The electrons must be energetic enough (at least 200 MeV) to have de
Broglie wavelengths that are smaller than the nuclear structures they are to probe.

The nucleus, like the atom, is not a solid object with a well-defined surface.
Furthermore, although most nuclides are spherical, some are notably ellipsoidal.
Nevertheless, electron-scattering experiments (as well as experiments of other
kinds) allow us to assign to each nuclide an effective radius given by

r � r0A1/3, (42-3)

in which A is the mass number and r0 � 1.2 fm. We see that the volume of a
nucleus, which is proportional to r 3, is directly proportional to the mass number
A and is independent of the separate values of Z and N.That is, we can treat most
nuclei as being a sphere with a volume that depends on the number of nucleons,
regardless of their type.

Equation 42-3 does not apply to halo nuclides, which are neutron-rich
nuclides that were first produced in laboratories in the 1980s. These nuclides
are larger than predicted by Eq. 42-3, because some of the neutrons form a
halo around a spherical core of the protons and the rest of the neutrons. Lithium
isotopes give an example. When a neutron is added to 8Li to form 9Li, neither of
which are halo nuclides, the effective radius increases by about 4%. However,
when two neutrons are added to 9Li to form the neutron-rich isotope 11Li (the
largest of the lithium isotopes), they do not join that existing nucleus but instead
form a halo around it, increasing the effective radius by about 30%. Apparently
this halo configuration involves less energy than a core containing all 11 nucle-
ons. (In this chapter we shall generally assume that Eq. 42-3 applies.)

Atomic Masses
Atomic masses are now measured to great precision, but usually nuclear masses
are not directly measurable because stripping off all the electrons from an atom
is difficult. As we briefly discussed in Module 37-6, atomic masses are often
reported in atomic mass units, a system in which the atomic mass of neutral 12C is
defined to be exactly 12 u.

Precise atomic masses are available in tables on the web and are usually
provided in homework problems. However, sometimes we need only an approxi-
mation of the mass of either a nucleus alone or a neutral atom. The mass number
A of a nuclide gives such an approximate mass in atomic mass units. For example,
the approximate mass of both the nucleus and the neutral atom for 197Au is 197 u,
which is close to the actual atomic mass of 196.966 552 u.

As we saw in Module 37-6,

1 u � 1.660 538 86 � 10�27 kg. (42-4)

We also saw that if the total mass of the participants in a nuclear reaction changes
by an amount 
m, there is an energy release or absorption given by Eq. 37-50
(Q � �
m c 2). As we shall now see, nuclear energies are often reported in
multiples of 1 MeV. Thus, a convenient conversion between mass units and en-
ergy units is provided by Eq. 37-46:

c 2 � 931.494 013 MeV u. (42-5)�
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Scientists and engineers working with atomic masses often prefer to report
the mass of an atom by means of the atom’s mass excess 
, defined as


 � M � A (mass excess), (42-6)

where M is the actual mass of the atom in atomic mass units and A is the mass
number for that atom’s nucleus.

Nuclear Binding Energies
The mass M of a nucleus is less than the total mass �m of its individual protons
and neutrons. That means that the mass energy Mc 2 of a nucleus is less than the
total mass energy �(mc 2) of its individual protons and neutrons. The difference
between these two energies is called the binding energy of the nucleus:


Ebe � �(mc 2) � Mc 2 (binding energy). (42-7)

Caution: Binding energy is not an energy that resides in the nucleus. Rather,
it is a difference in mass energy between a nucleus and its individual nucleons: If
we were able to separate a nucleus into its nucleons, we would have to transfer a
total energy equal to 
Ebe to those particles during the separating process.
Although we cannot actually tear apart a nucleus in this way, the nuclear binding
energy is still a convenient measure of how well a nucleus is held together, in the
sense that it measures how difficult the nucleus would be to take apart.

A better measure is the binding energy per nucleon 
Eben, which is the ratio of
the binding energy 
Ebe of a nucleus to the number A of nucleons in that nucleus:

(binding energy per nucleon). (42-8)

We can think of the binding energy per nucleon as the average energy needed to
separate a nucleus into its individual nucleons. A greater binding energy per nu-
cleon means a more tightly bound nucleus.

Figure 42-7 is a plot of the binding energy per nucleon 
Eben versus mass
number A for a large number of nuclei. Those high on the plot are very tightly


Eben �

Ebe

A
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Figure 42-7 The binding energy per nucleon for some representative nuclides.The nickel nu-
clide 62Ni has the highest binding energy per nucleon (about 8.794 60 MeV/nucleon) of any
known stable nuclide. Note that the alpha particle (4He) has a higher binding energy per nu-
cleon than its neighbors in the periodic table and thus is also particularly stable.
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bound; that is, we would have to supply a great amount of energy per nucleon to
break apart one of those nuclei. The nuclei that are lower on the plot, at the left
and right sides, are less tightly bound, and less energy per nucleon would be
required to break them apart.

These simple statements about Fig. 42-7 have profound consequences. The
nucleons in a nucleus on the right side of the plot would be more tightly bound if
that nucleus were to split into two nuclei that lie near the top of the plot. Such a
process, called fission, occurs naturally with large (high mass number A) nuclei
such as uranium, which can undergo fission spontaneously (that is, without an
external cause or source of energy). The process can also occur in nuclear
weapons, in which many uranium or plutonium nuclei are made to fission all at
once, to create an explosion.

The nucleons in any pair of nuclei on the left side of the plot would be
more tightly bound if the pair were to combine to form a single nucleus that
lies near the top of the plot. Such a process, called fusion, occurs naturally in
stars. Were this not true, the Sun would not shine and thus life could not exist
on Earth. As we shall discuss in the next chapter, fusion is also the basis of
thermonuclear weapons (with an explosive release of energy) and anticipated
power plants (with a sustained and controlled release of energy).

Nuclear Energy Levels
The energy of nuclei, like that of atoms, is quantized.
That is, nuclei can exist only in discrete quantum
states, each with a well-defined energy. Figure 42-8
shows some of these energy levels for 28Al, a typical
low-mass nuclide. Note that the energy scale is in mil-
lions of electron-volts, rather than the electron-volts
used for atoms. When a nucleus makes a transition
from one level to a level of lower energy, the emitted
photon is typically in the gamma-ray region of the
electromagnetic spectrum.

Nuclear Spin and Magnetism
Many nuclides have an intrinsic nuclear angular mo-
mentum, or spin, and an associated intrinsic nuclear
magnetic moment. Although nuclear angular mo-
menta are roughly of the same magnitude as the an-
gular momenta of atomic electrons, nuclear mag-
netic moments are much smaller than typical
atomic magnetic moments.

The Nuclear Force
The force that controls the motions of atomic electrons is the familiar electro-
magnetic force. To bind the nucleus together, however, there must be a strong
attractive nuclear force of a totally different kind, strong enough to overcome the
repulsive force between the (positively charged) nuclear protons and to bind
both protons and neutrons into the tiny nuclear volume. The nuclear force must
also be of short range because its influence does not extend very far beyond the
nuclear “surface.”

The present view is that the nuclear force that binds neutrons and protons in
the nucleus is not a fundamental force of nature but is a secondary, or “spillover,”
effect of the strong force that binds quarks together to form neutrons and
protons. In much the same way, the attractive force between certain neutral
molecules is a spillover effect of the Coulomb electric force that acts within each
molecule to bind it together.
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Figure 42-8 Energy levels for
the nuclide 28Al, deduced
from nuclear reaction
experiments.
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The radius r is given by Eq. 42-3 (r r0A1/3), where r0 is
1.2 fm (� 1.2 � 10�15 m). Substituting for r then leads to

Note that A has canceled out; thus, this equation for density
r applies to any nucleus that can be treated as spherical with
a radius given by Eq. 42-3. Using 1.67 � 10�27 kg for the
mass m of a nucleon, we then have

(Answer)

This is about 2 � 1014 times the density of water and is the
density of neutron stars, which contain only neutrons.

r �
1.67 � 10�27 kg

4
3p(1.2 � 10�15 m)3 � 2 � 1017 kg/m3.

r �
Am

4
3pr3

0 A
�

m
4
3pr3

0
.

�

Sample Problem 42.03 Density of nuclear matter

We can think of all nuclides as made up of a neutron–
proton mixture that we can call nuclear matter. What is the
density of nuclear matter?

KEY IDEA

We can find the (average) density r of a nucleus by dividing
its total mass by its volume.

Calculations: Let m represent the mass of a nucleon (either a
proton or a neutron, because those particles have about the
same mass).Then the mass of a nucleus containing A nucleons is
Am.Next,we assume the nucleus is spherical with radius r.Then
its volume is and we can write the density of the nucleus as

r �
Am
4
3pr3 .

4
3pr3,

Additional examples, video, and practice available at WileyPLUS

must also add 50 electrons on the right side to balance
Eq. 42-9. Those 50 electrons can be combined with the 50
protons, to form 50 neutral hydrogen atoms.We then have

(42-10)

From the mass column of Table 42-1, the mass MSn of a 120Sn
atom is 119.902 197 u and the mass mH of a hydrogen atom
is 1.007 825 u; the mass mn of a neutron is 1.008 665 u. Thus,
Eq. 42-7 yields

where Eq. 42-5 (c 2 � 931.494 013 MeV/u) provides an easy
unit conversion. Note that using atomic masses instead of
nuclear masses does not affect the result because the mass
of the 50 electrons in the 120Sn atom subtracts out from the
mass of the electrons in the 50 hydrogen atoms.

Now Eq. 42-8 gives us the binding energy per nucleon as

(Answer)� 8.50 MeV/nucleon.


Eben �

Ebe

A
�

1020.5 MeV
120

� 1020.5 MeV,

� (1.095 603 u)(931.494 013 MeV/u)

� (1.095 603 u)c2

� (119.902 197 u)c2

� 50(1.007 825 u)c2 � 70(1.008 665 u)c2

� 50(mHc2) � 70(mnc2) � MSnc2


Ebe � �(mc2) � Mc2

(120Sn atom) : 50�separate
H atoms� � 70�separate

neutrons�.

Sample Problem 42.02 Binding energy per nucleon

What is the binding energy per nucleon for 120Sn?

KEY IDEAS

1. We can find the binding energy per nucleon 
Eben if we
first find the binding energy 
Ebe and then divide by
the number of nucleons A in the nucleus, according to
Eq. 42-8 (
Eben � 
Ebe/A).

2. We can find 
Ebe by finding the difference between the
mass energy Mc 2 of the nucleus and the total mass en-
ergy �(mc 2) of the individual nucleons that make up the
nucleus, according to Eq. 42-7 (
Ebe � �(mc 2) � Mc 2).

Calculations: From Table 42-1, we see that a 120Sn nucleus
consists of 50 protons (Z � 50) and 70 neutrons (N �
A � Z � 120 � 50 � 70). Thus, we need to imagine a 120Sn
nucleus being separated into its 50 protons and 70 neutrons,

(42-9)

and then compute the resulting change in mass energy.
For that computation, we need the masses of a 120Sn nu-

cleus, a proton, and a neutron. However, because the mass
of a neutral atom (nucleus plus electrons) is much easier to
measure than the mass of a bare nucleus, calculations of
binding energies are traditionally done with atomic masses.
Thus, let’s modify Eq. 42-9 so that it has a neutral 120Sn atom
on the left side. To do that, we include 50 electrons on the
left side (to match the 50 protons in the 120Sn nucleus). We

(120Sn nucleus) : 50�separate
protons � � 70�separate

neutrons�,



Radioactive Decay
As Fig. 42-5 shows, most nuclides are radioactive. They each spontaneously
(randomly) emit a particle and transform into a different nuclide. Thus these de-
cays reveal that the laws for subatomic processes are statistical. For example, in a
1 mg sample of uranium metal, with 2.5 � 1018 atoms of the very long-lived ra-
dionuclide 238 U, only about 12 of the nuclei will decay in a given second by emit-
ting an alpha particle and transforming into a nucleus of 234 Th. However,
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● Most nuclides spontaneously decay at a rate R � dN/dt that
is proportional to the number N of radioactive atoms present.
The proportionality constant is the disintegration constant l.

● The number of radioactive nuclei is given as a function of time by

where N0 is the number at time t � 0.

● The rate at which the nuclei decay is given as a function of time

N � N0e�lt,

by

where R0 is the rate at time t � 0.

● The half-life T1/2 and the mean life t are measures of how
quickly radioactive nuclei decay and are related by

T1/2 �
ln 2

l
� t ln 2.

R � R0e�lt,

Key Ideas

There is absolutely no way to predict whether any given nucleus in a radioactive
sample will be among the small number of nuclei that decay during any given 
second. All have the same chance.

Although we cannot predict which nuclei in a sample will decay, we can say that if
a sample contains N radioactive nuclei, then the rate (� �dN/dt) at which nuclei will
decay is proportional to N:

(42-11)

in which l, the disintegration constant (or decay constant) has a characteristic
value for every radionuclide. Its SI unit is the inverse second (s�1).

To find N as a function of time t, we first rearrange Eq. 42-11 as

(42-12)

and then integrate both sides, obtaining

or ln N � ln N0 � �l(t � t0). (42-13)

�N

N0

dN
N

� �l �t

t0

dt,

dN
N

� �� dt,

�
dN
dt

� lN,

42-3 RADIOACTIVE DECAY

After reading this module, you should be able to . . .

42.11 Explain what is meant by radioactive decay and identify
that it is a random process.

42.12 Identify disintegration constant (or decay constant) l.
42.13 Identify that, at any given instant, the rate dN/dt at

which radioactive nuclei decay is proportional to the
number N of them still present then.

42.14 Apply the relationship that gives the number N of
radioactive nuclei as a function of time.

42.15 Apply the relationship that gives the decay rate R of
radioactive nuclei as a function of time.

42.16 For any given time, apply the relationship between the de-
cay rate R and the remaining number N of radioactive nuclei.

42.17 Identify activity.
42.18 Distinguish Becquerel (Bq), curie (Ci), and counts per

unit time.
42.19 Distinguish half-life T1/2 and mean life t.
42.20 Apply the relationship between half-life T1/2, mean life t,

and disintegration constant l.
42.21 Identify that in any nuclear process, including radioactive

decay, the charge and the number of nucleons are conserved.

Learning Objectives



Here N0 is the number of radioactive nuclei in the sample at some arbitrary initial
time t0. Setting t0 � 0 and rearranging Eq. 42-13 give us

(42-14)

Taking the exponential of both sides (the exponential function is the antifunction of
the natural logarithm) leads to

or N � N0e�lt (radioactive decay), (42-15)

in which N0 is the number of radioactive nuclei in the sample at t � 0 and N is
the number remaining at any subsequent time t. Note that lightbulbs (for one
example) follow no such exponential decay law. If we life-test 1000 bulbs, we
expect that they will all “decay” (that is, burn out) at more or less the same time.
The decay of radionuclides follows quite a different law.

We are often more interested in the decay rate R (� �dN/dt) than in N itself.
Differentiating Eq. 42-15, we find

or R � R0e�lt (radioactive decay), (42-16)

an alternative form of the law of radioactive decay (Eq. 42-15). Here R0 is the
decay rate at time t � 0 and R is the rate at any subsequent time t. We can now
rewrite Eq. 42-11 in terms of the decay rate R of the sample as

R � lN, (42-17)

where R and the number of radioactive nuclei N that have not yet undergone
decay must be evaluated at the same instant.

The total decay rate R of a sample of one or more radionuclides is called the
activity of that sample. The SI unit for activity is the becquerel, named for Henri
Becquerel, the discoverer of radioactivity:

1 becquerel � 1 Bq � 1 decay per second.

An older unit, the curie, is still in common use:

1 curie � 1 Ci � 3.7 � 1010 Bq.

Often a radioactive sample will be placed near a detector that does not record all
the disintegrations that occur in the sample.The reading of the detector under these
circumstances is proportional to (and smaller than) the true activity of the sample.
Such proportional activity measurements are reported not in becquerel units but
simply in counts per unit time.

Lifetimes. There are two common time measures of how long any given type
of radionuclides lasts. One measure is the half-life T1/2 of a radionuclide, which is
the time at which both N and R have been reduced to one-half their initial values.
The other measure is the mean (or average) life t, which is the time at which both
N and R have been reduced to e�1 of their initial values.

To relate T1/2 to the disintegration constant l, we put in Eq. 42-16
and substitute T1/2 for t.We obtain

Taking the natural logarithm of both sides and solving for T1/2, we find

Similarly, to relate t to l, we put R � e�1R0 in Eq. 42-16, substitute t for t, and

T1/2 �
ln 2

l
.

1
2R0 � R0e�lT1/2.

R � 1
2R0

R � �
dN
dt

� lN0e�lt

N
N 0

� e�lt

ln
N
N 0

� �lt.

128742-3 RADIOACTIVE DECAY



solve for t, finding

We summarize these results with the following:

(42-18)T1/2 �
ln 2

l
� t ln 2.

t �
1
l

.
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Checkpoint 2
The nuclide 131I is radioactive, with a half-life of 8.04 days.At noon on January 1, the ac-
tivity of a certain sample is 600 Bq. Using the concept of half-life, without written calcu-
lation, determine whether the activity at noon on January 24 will be a little less than 200
Bq, a little more than 200 Bq, a little less than 75 Bq, or a little more than 75 Bq.

should get a straight line. Further, the slope of the line
should be equal to �l.

Figure 42-9 shows a plot of ln R versus time t for the
given measurements. The slope of the straight line that fits
through the plotted points is

Thus, �l � �0.0276 min�1

or l � 0.0276 min�1 � 1.7 h�1. (Answer)

The time for the decay rate R to decrease by 1/2 is re-
lated to the disintegration constant l via Eq. 42-18 (T1/2 �
(ln 2)/l). From that equation, we find

(Answer)T1/2 �
ln 2

l
�

ln 2
0.0276 min�1 � 25 min.

slope �
0 � 6.2

225 min � 0
� �0.0276 min�1.

Sample Problem 42.04 Finding the disintegration constant and half-life from a graph

The table that follows shows some measurements of the
decay rate of a sample of 128I, a radionuclide often used
medically as a tracer to measure the rate at which iodine is
absorbed by the thyroid gland.

Time R Time R
(min) (counts/s) (min) (counts/s)

4 392.2 132 10.9
36 161.4 164 4.56
68 65.5 196 1.86

100 26.8 218 1.00

Find the disintegration constant l and the half-life T1/2 for
this radionuclide.

KEY IDEAS

The disintegration constant l determines the exponential rate
at which the decay rate R decreases with time t (as indicated by
Eq. 42-16, R � R0e�lt). Therefore, we should be able to deter-
mine l by plotting the measurements of R against the mea-
surement times t. However, obtaining l from a plot of R versus
t is difficult because R decreases exponentially with t, according
to Eq. 42-16. A neat solution is to transform Eq. 42-16 into a
linear function of t, so that we can easily find l. To do so, we
take the natural logarithms of both sides of Eq.42-16.

Calculations: We obtain

(42-19)

Because Eq. 42-19 is of the form y � b � mx, with b and m
constants, it is a linear equation giving the quantity ln R as a
function of t. Thus, if we plot ln R (instead of R) versus t, we

� ln R0 � lt.

 ln R � ln(R0e�lt) � ln R0 � ln(e�lt)

Figure 42-9 A semilogarithmic plot of the decay of a sample of 128I,
based on the data in the table.
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600 mg of potassium) and M is the molar mass of potassium.
Combining those two equations to eliminate n, we can write 

(42-21)

From Appendix F, we see that the molar mass of potassium
is 39.102 g/mol. Equation 42-21 then yields 

Substituting this value for N40 and the given half-life of
1.25 � 109 y for T1/2 into Eq. 42-20 leads to

(Answer)

This is about 0.51 nCi. Your body always has about 160 g of
potassium. If you repeat our calculation here, you will find
that the 40K component of that everyday amount has an ac-
tivity of 5.06 � 103 Bq (or 0.14 mCi). So, eating a banana
adds less than 1% to the radiation your body receives daily
from radioactive potassium.

� 18.96 Bq � 19.0 Bq.

R �
(1.081 � 1018)(ln 2)

(1.25 � 109 y)(3.16 � 107 s/y)

� 1.081 � 1018.

N40 � (1.17 � 10�4)
(600 � 10�3 g)(6.02 � 1023 mol�1)

39.102 g/mol

N40 � (1.17 � 10�4)
MsamNA

M
.

Sample Problem 42.05 Radioactivity of the potassium in a banana

Of the 600 mg of potassium in a large banana, 0.0117% is
radioactive 40K, which has a half-life T1/2 of 1.25 � 109 y.
What is the activity of the banana?

KEY IDEAS

(1) We can relate the activity R to the disintegration con-
stant l with Eq. 42-17, but let’s write it as R � lN40, where
N40 is the number of 40K nuclei (and thus atoms) in the ba-
nana. (2) We can relate the disintegration constant to the
known half-life T1/2 with Eq. 42-18 (T1/2 � (ln 2)/l).

Calculations: Combining Eqs. 42-18 and 42-17 yields

(42-20)

We know that N40 is 0.0117% of the total number N of potas-
sium atoms in the banana. We can find an expression for N
by combining two equations that give the number of moles n
of potassium in the banana. From Eq. 19-2, n � N/NA, where
NA is Avogadro’s number (6.02 � 1023 mol�1). From Eq. 19-3,
n � Msam/M, where Msam is the sample mass (here the given

R �
N40 ln 2

T1/2
.

Additional examples, video, and practice available at WileyPLUS

42-4 ALPHA DECAY

After reading this module, you should be able to . . .

42.22 Identify alpha particle and alpha decay.
42.23 For a given alpha decay, calculate the mass change

and the Q of the reaction.
42.24 Determine the change in atomic number Z and mass

number A of a nucleus undergoing alpha decay.
42.25 In terms of the potential barrier, explain how an alpha

particle can escape from a nucleus with less energy than
the barrier height.

● Some nuclides decay by emitting an alpha particle (a helium nucleus, 4He). Such decay is inhibited by a potential energy
barrier that must be penetrated by tunneling.

Learning Objectives

Key Idea

Alpha Decay
When a nucleus undergoes alpha decay, it transforms to a different nuclide by
emitting an alpha particle (a helium nucleus, 4He). For example, when uranium
238U undergoes alpha decay, it transforms to thorium 234Th:

(42-22)

This alpha decay of 238U can occur spontaneously (without an external
source of energy) because the total mass of the decay products 234Th and 4He is
less than the mass of the original 238U. Thus, the total mass energy of the decay

238U : 234Th � 4He.



products is less than the mass energy of the original nuclide. As defined by
Eq. 37-50 (Q � �
M c 2), in such a process the difference between the initial
mass energy and the total final mass energy is called the Q of the process.

For a nuclear decay, we say that the difference in mass energy is the decay’s
disintegration energy Q. The Q for the decay in Eq. 42-22 is 4.25 MeV — that
amount of energy is said to be released by the alpha decay of 238U, with the
energy transferred from mass energy to the kinetic energy of the two products.

The half-life of 238U for this decay process is 4.5 � 109 y.Why so long? If 238U can
decay in this way, why doesn’t every 238U nuclide in a sample of 238U atoms simply de-
cay at once? To answer the questions,we must examine the process of alpha decay.

We choose a model in which the alpha particle is imagined to exist (already
formed) inside the nucleus before it escapes from the nucleus. Figure 42-10 shows
the approximate potential energy U(r) of the system consisting of the alpha parti-
cle and the residual 234Th nucleus, as a function of their separation r. This energy
is a combination of (1) the potential energy associated with the (attractive)
strong nuclear force that acts in the nuclear interior and (2) a Coulomb potential
associated with the (repulsive) electric force that acts between the two particles
before and after the decay has occurred.

The horizontal black line marked Q � 4.25 MeV shows the disintegration
energy for the process. If we assume that this represents the total energy of the
alpha particle during the decay process, then the part of the U(r) curve above this
line constitutes a potential energy barrier like that in Fig. 38-17. This barrier can-
not be surmounted. If the alpha particle were able to be at some separation r
within the barrier, its potential energy U would exceed its total energy E. This
would mean, classically, that its kinetic energy K (which equals E � U) would be
negative, an impossible situation.

Tunneling. We can see now why the alpha particle is not immediately emitted
from the 238U nucleus. That nucleus is surrounded by an impressive potential bar-
rier, occupying—if you think of it in three dimensions—the volume lying between
two spherical shells (of radii about 8 and 60 fm). This argument is so convincing
that we now change our last question and ask: Since the particle seems perma-
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Figure 42-10 A potential energy function for the emission of an alpha particle by 238U.
The horizontal black line marked Q � 4.25 MeV shows the disintegration energy for the
process.The thick gray portion of this line represents separations r that are classically for-
bidden to the alpha particle.The alpha particle is represented by a dot, both inside this
potential energy barrier (at the left) and outside it (at the right), after the particle has
tunneled through.The horizontal black line marked Q� � 6.81 MeV shows the disintegra-
tion energy for the alpha decay of 228U. (Both isotopes have the same potential energy
function because they have the same nuclear charge.)
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nently trapped inside the nucleus by the barrier, how can the 238U nucleus ever emit
an alpha particle? The answer is that, as you learned in Module 38-9, there is a finite
probability that a particle can tunnel through an energy barrier that is classically
insurmountable. In fact, alpha decay occurs as a result of barrier tunneling.

The very long half-life of 238U tells us that the barrier is apparently not very
“leaky.” If we imagine that an already-formed alpha particle is rattling back and
forth inside the nucleus, it would arrive at the inner surface of the barrier about 1038

times before it would succeed in tunneling through the barrier. This is about 1021

times per second for about 4 � 109 years (the age of Earth)! We, of course, are wait-
ing on the outside, able to count only the alpha particles that do manage to escape
without being able to tell what’s going on inside the nucleus.

We can test this explanation of alpha decay by examining other alpha
emitters. For an extreme contrast, consider the alpha decay of another ura-
nium isotope, 228U, which has a disintegration energy Q� of 6.81 MeV, about
60% higher than that of 238U. (The value of Q� is also shown as a horizontal
black line in Fig. 42-10.) Recall from Module 38-9 that the transmission coeffi-
cient of a barrier is very sensitive to small changes in the total energy of the
particle seeking to penetrate it. Thus, we expect alpha decay to occur more
readily for this nuclide than for 238U. Indeed it does. As Table 42-2 shows, its
half-life is only 9.1 min! An increase in Q by a factor of only 1.6 produces a de-
crease in half-life (that is, in the effectiveness of the barrier) by a factor of 3 �
1014. This is sensitivity indeed.
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Table 42-2 Two Alpha Emitters Compared

Radionuclide Q Half-Life

238U 4.25 MeV 4.5 � 109 y
228U 6.81 MeV 9.1 min

(Answer)

Note that using atomic masses instead of nuclear masses
does not affect the result because the total mass of the elec-
trons in the products subtracts out from the mass of the nu-
cleons � electrons in the original 238U.

(b) Show that 238U cannot spontaneously emit a proton;
that is, protons do not leak out of the nucleus in spite of the
proton–proton repulsion within the nucleus.

Solution: If this happened, the decay process would be

(You should verify that both nuclear charge and the num-
ber of nucleons are conserved in this process.) Using the
same Key Idea as in part (a) and proceeding as we did there,
we would find that the mass of the two decay products

237.051 21 u � 1.007 83 u

would exceed the mass of 238U by 
m � 0.008 25 u, with disin-
tegration energy

Q � �7.68 MeV.

The minus sign indicates that we must add 7.68 MeV to a 238U
nucleus before it will emit a proton; it will certainly not do so
spontaneously.

238U : 237Pa � 1H.

� 4.25 MeV.

� (0.004 56 u)c2 � (0.004 56 u)(931.494 013 MeV/u)

Q � (238.050 79 u)c2 � (234.043 63 u � 4.002 60 u)c2

Sample Problem 42.06 Q value in an alpha decay, using masses

We are given the following atomic masses:
238U 238.050 79 u 4He 4.002 60 u
234Th 234.043 63 u 1H 1.007 83 u
237Pa 237.051 21 u

Here Pa is the symbol for the element protactinium 
(Z � 91).

(a) Calculate the energy released during the alpha decay of
238U.The decay process is

Note, incidentally, how nuclear charge is conserved in this
equation: The atomic numbers of thorium (90) and helium
(2) add up to the atomic number of uranium (92). The num-
ber of nucleons is also conserved: 238 � 234 � 4.

KEY IDEA

The energy released in the decay is the disintegration en-
ergy Q, which we can calculate from the change in mass 
M
due to the 238U decay.

Calculation: To do this, we use Eq. 37-50,

Q � Mic 2 � Mf c 2, (42-23)

where the initial mass Mi is that of 238U and the final mass
Mf is the sum of the 234Th and 4He masses. Using the atomic
masses given in the problem statement, Eq. 42-23 becomes

238U : 234Th � 4He.

Additional examples, video, and practice available at WileyPLUS



Beta Decay
A nucleus that decays spontaneously by emitting an electron or a positron (a
positively charged particle with the mass of an electron) is said to undergo beta
decay. Like alpha decay, this is a spontaneous process, with a definite disintegra-
tion energy and half-life. Again like alpha decay, beta decay is a statistical
process, governed by Eqs. 42-15 and 42-16. In beta-minus (b�) decay, an electron
is emitted by a nucleus, as in the decay

(42-24)

In beta-plus (b�) decay, a positron is emitted by a nucleus, as in the decay

(42-25)

The symbol n represents a neutrino, a neutral particle which has a very small mass,
that is emitted from the nucleus along with the electron or positron during the decay
process. Neutrinos interact only very weakly with matter and—for that reason—
are so extremely difficult to detect that their presence long went unnoticed.*

Both charge and nucleon number are conserved in the above two processes.
In the decay of Eq. 42-24, for example, we can write for charge conservation

(�15e) � (�16e) � (�e) � (0),

because 32P has 15 protons, 32S has 16 protons, and the neutrino � has zero charge.
Similarly, for nucleon conservation, we can write

(32) � (32) � (0) � (0),

because 32P and 32S each have 32 nucleons and neither the electron nor the
neutrino is a nucleon.

It may seem surprising that nuclei can emit electrons, positrons, and neutri-
nos, since we have said that nuclei are made up of neutrons and protons only.
However, we saw earlier that atoms emit photons, and we certainly do not say
that atoms “contain” photons. We say that the photons are created during the
emission process.

64Cu : 64Ni � e� � �  (T1/2 � 12.7 h).

32P : 32S � e� � �  (T1/2 � 14.3 d).
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42-5 BETA DECAY

After reading this module, you should be able to . . .

42.26 Identify the two types of beta particles and the two
types of beta decay.

42.27 Identify neutrino.
42.28 Explain why the beta particles in beta decays are emit-

ted with a range of energies.

42.29 For a given beta decay, calculate the mass change and
the Q of the reaction.

42.30 Determine the change in the atomic number Z of a nu-
cleus undergoing a beta decay and identify that the mass
number A does not change.

● In beta decay, either an electron or a positron is emitted by
a nucleus, along with a neutrino.

● The emitted particles share the available disintegration

energy. Sometimes the neutrino gets most of the energy and
sometimes the electron or positron gets most of it.

Learning Objectives

Key Ideas

*Beta decay also includes electron capture, in which a nucleus decays by absorbing one of its atomic
electrons, emitting a neutrino in the process. We do not consider that process here. Also, the neutral
particle emitted in the decay process of Eq. 42-24 is actually an antineutrino, a distinction we shall
not make in this introductory treatment.



It is the same with the electrons, positrons, and neutrinos emitted from nuclei
during beta decay. They are created during the emission process. For beta-minus
decay, a neutron transforms into a proton within the nucleus according to

(42-26)

For beta-plus decay, a proton transforms into a neutron via

(42-27)

These processes show why the mass number A of a nuclide undergoing beta de-
cay does not change; one of its constituent nucleons simply changes its character
according to Eq. 42-26 or 42-27.

In both alpha decay and beta decay, the same amount of energy is released
in every individual decay of a particular radionuclide. In the alpha decay of a
particular radionuclide, every emitted alpha particle has the same sharply
defined kinetic energy. However, in the beta-minus decay of Eq. 42-26 with elec-
tron emission, the disintegration energy Q is shared—in varying proportions—be-
tween the emitted electron and neutrino. Sometimes the electron gets nearly all the
energy, sometimes the neutrino does. In every case, however, the sum of the elec-
tron’s energy and the neutrino’s energy gives the same value Q. A similar sharing
of energy, with a sum equal to Q, occurs in beta-plus decay (Eq. 42-27).

Thus, in beta decay the energy of the emitted electrons or positrons may
range from near zero up to a certain maximum Kmax. Figure 42-11 shows the
distribution of positron energies for the beta decay of 64Cu (see Eq. 42-25). The
maximum positron energy Kmax must equal the disintegration energy Q because
the neutrino has approximately zero energy when the positron has Kmax:

Q � Kmax. (42-28)

The Neutrino
Wolfgang Pauli first suggested the existence of neutrinos in 1930. His neutrino
hypothesis not only permitted an understanding of the energy distribution of
electrons or positrons in beta decay but also solved another early beta-decay
puzzle involving “missing” angular momentum.

The neutrino is a truly elusive particle; the mean free path of an energetic
neutrino in water has been calculated as no less than several thousand light-
years. At the same time, neutrinos left over from the big bang that presumably
marked the creation of the universe are the most abundant particles of physics.
Billions of them pass through our bodies every second, leaving no trace.

In spite of their elusive character, neutrinos have been detected in the lab-
oratory. This was first done in 1953 by F. Reines and C. L. Cowan, using neutrinos
generated in a high-power nuclear reactor. (In 1995, Reines received a Nobel
Prize for this work.) In spite of the difficulties of detection, experimental neu-
trino physics is now a well-developed branch of experimental physics, with avid
practitioners at laboratories throughout the world.

The Sun emits neutrinos copiously from the nuclear furnace at its core,
and at night these messengers from the center of the Sun come up at us from
below, Earth being almost totally transparent to them. In February 1987, light
from an exploding star in the Large Magellanic Cloud (a nearby galaxy) reached
Earth after having traveled for 170 000 years. Enormous numbers of neutrinos
were generated in this explosion, and about 10 of them were picked up by a sensi-
tive neutrino detector in Japan; Fig. 42-12 shows a record of their passage.

Radioactivity and the Nuclidic Chart
We can increase the amount of information obtainable from the nuclidic chart
of Fig. 42-5 by including a third axis showing the mass excess 
 expressed in the

p : n � e� � �.

n : p � e� � �.
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Figure 42-11 The distribution of the kinetic
energies of positrons emitted in the beta
decay of 64Cu.The maximum kinetic energy
of the distribution (Kmax) is 0.653 MeV. In
all 64Cu decay events, this energy is shared
between the positron and the neutrino, in
varying proportions.The most probable
energy for an emitted positron is about
0.15 MeV.
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Figure 42-12 A burst of neutrinos from the
supernova SN 1987A, which occurred at
(relative) time 0, stands out from the usual
background of neutrinos. (For neutrinos, 10
is a “burst.”) The particles were detected by
an elaborate detector housed deep in a
mine in Japan. The supernova was visible
only in the Southern Hemisphere; so the
neutrinos had to penetrate Earth (a trifling
barrier for them) to reach the detector.
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unit MeV/c 2. The inclusion of such an axis gives Fig. 42-13, which reveals the
degree of nuclear stability of the nuclides. For the low-mass nuclides, we find a
“valley of the nuclides,” with the stability band of Fig. 42-5 running along its
bottom. Nuclides on the proton-rich side of the valley decay into it by emitting
positrons, and those on the neutron-rich side do so by emitting electrons.
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Figure 42-13 A portion of the valley of the
nuclides, showing only the nuclides of low
mass. Deuterium, tritium, and helium lie at
the near end of the plot, with helium at the
high point.The valley stretches away from
us, with the plot stopping at about Z � 22
and N � 35. Nuclides with large values of
A, which would be plotted much beyond
the valley, can decay into the valley by re-
peated alpha emissions and by fission
(splitting of a nuclide).

Checkpoint 3
238U decays to 234Th by the emission of an alpha particle.There follows a chain of fur-
ther radioactive decays, either by alpha decay or by beta decay. Eventually a stable
nuclide is reached and, after that, no further radioactive decay is possible.Which of
the following stable nuclides is the end product of the 238U radioactive decay chain:
206Pb, 207Pb, 208Pb, or 209Pb? (Hint: You can decide by considering the changes in mass
number A for the two types of decay.)

mP and mS represent their atomic masses. Then we can write
the change in mass for the decay of Eq. 42-24 as


m � (mS � me) � mP,

in which me is the mass of the electron. If we add and sub-
tract 15me on the right side of this equation, we obtain


m � (mS � 16me) � (mP � 15me).

The quantities in parentheses are the atomic masses of 32S
and 32P; so


m � mS � mP.

We thus see that if we subtract only the atomic masses, the mass
of the emitted electron is automatically taken into account. (This
procedure will not work for positron emission.)

Sample Problem 42.07 Q value in a beta decay, using masses

Calculate the disintegration energy Q for the beta decay of
32P, as described by Eq. 42-24.The needed atomic masses are
31.973 91 u for 32P and 31.972 07 u for 32S.

KEY IDEA

The disintegration energy Q for the beta decay is the
amount by which the mass energy is changed by the decay.

Calculations: Q is given by Eq. 37-50 (Q � �
M c 2).
However, we must be careful to distinguish between nuclear
masses (which we do not know) and atomic masses (which
we do know). Let the boldface symbols mP and mS represent
the nuclear masses of 32P and 32S, and let the italic symbols



Radioactive Dating
If you know the half-life of a given radionuclide, you can in principle use the
decay of that radionuclide as a clock to measure time intervals. The decay of very
long-lived nuclides, for example, can be used to measure the age of rocks—that
is, the time that has elapsed since they were formed. Such measurements for
rocks from Earth and the Moon, and for meteorites, yield a consistent maximum
age of about 4.5 � 109 y for these bodies.

The radionuclide 40K, for example, decays to 40Ar, a stable isotope of the noble
gas argon. The half-life for this decay is 1.25 � 109 y. A measurement of the ratio of
40K to 40Ar, as found in the rock in question, can be used to calculate the age of that
rock. Other long-lived decays, such as that of 235U to 207Pb (involving a number of in-
termediate stages of unstable nuclei), can be used to verify this calculation.

For measuring shorter time intervals, in the range of historical interest, radio-
carbon dating has proved invaluable. The radionuclide 14C (with T1/2 � 5730 y) is
produced at a constant rate in the upper atmosphere as atmospheric nitrogen
is bombarded by cosmic rays. This radiocarbon mixes with the carbon that is
normally present in the atmosphere (as CO2) so that there is about one atom of
14C for every 1013 atoms of ordinary stable 12C. Through biological activity such
as photosynthesis and breathing, the atoms of atmospheric carbon trade places
randomly, one atom at a time, with the atoms of carbon in every living thing,
including broccoli, mushrooms, penguins, and humans. Eventually an exchange
equilibrium is reached at which the carbon atoms of every living thing contain
a fixed small fraction of the radioactive nuclide 14C.

This equilibrium persists as long as the organism is alive. When the organism
dies, the exchange with the atmosphere stops and the amount of radiocarbon trapped
in the organism, since it is no longer being replenished, dwindles away with a half-life
of 5730 y. By measuring the amount of radiocarbon per gram of organic matter, it is
possible to measure the time that has elapsed since the organism died. Charcoal from
ancient campfires, the Dead Sea scrolls (actually, the cloth used to plug the jars hold-
ing the scrolls),and many prehistoric artifacts have been dated in this way.
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Experimentally, this calculated quantity proves to be equal
to Kmax, the maximum energy the emitted electrons can
have. Although 1.71 MeV is released every time a 32P nu-
cleus decays, in essentially every case the electron carries
away less energy than this. The neutrino gets all the rest,
carrying it stealthily out of the laboratory.

Additional examples, video, and practice available at WileyPLUS

42-6 RADIOACTIVE DATING

After reading this module, you should be able to . . .

42.31 Apply the equations for radioactive decay to determine
the age of rocks and archaeological materials.

42.32 Explain how radiocarbon dating can be used to date
the age of biological samples.

● Naturally occurring radioactive nuclides provide a means for estimating the dates of historic and prehistoric events. For exam-
ple, the ages of organic materials can often be found by measuring their 14C content, and rock samples can be dated using the
radioactive 40K.

Learning Objectives

Key Idea

A fragment of the Dead Sea scrolls and the
caves from which the scrolls were recovered.

Top photo: George Rockwin/Bruce Coleman, Inc./Photoshot 
Holdings Ltd. Inset photo: www.BibleLandPictures.com/Alamy

The disintegration energy for the 32P decay is then

(Answer)� 1.71 MeV.

� �(31.972 07 u � 31.973 91 u)(931.494 013 MeV/u)

Q � �
m c2



Measuring Radiation Dosage
The effect of radiation such as gamma rays, electrons, and alpha particles on
living tissue (particularly our own) is a matter of public interest. Such radiation is
found in nature in cosmic rays (from astronomical sources) and in the emissions
by radioactive elements in Earth’s crust. Radiation associated with some human
activities, such as using x rays and radionuclides in medicine and in industry, also
contributes.

Our task here is not to explore the various sources of radiation but simply
to describe the units in which the properties and effects of such radiations are
expressed. We have already discussed the activity of a radioactive source. There
are two remaining quantities of interest.

1. Absorbed Dose. This is a measure of the radiation dose (as energy per unit
mass) actually absorbed by a specific object, such as a patient’s hand or chest.
Its SI unit is the gray (Gy). An older unit, the rad (from radiation absorbed
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Calculations: We cannot measure N0; so let’s eliminate it
from Eqs. 42-29 and 42-30. We find, after some algebra, that

(42-31)

in which NAr/NK can be measured. Solving for t and using
Eq. 42-18 to replace l with (ln 2)/T1/2 yield

(Answer)

Lesser ages may be found for other lunar or terrestrial rock sam-
ples, but no substantially greater ones. Thus, the oldest rocks
were formed soon after the solar system formed, and the solar
system must be about 4 billion years old.

� 4.37 � 109 y.

�
(1.25 � 109 y)[ln(1 � 10.3)]

ln 2

t �
T 1/2 ln(1 � NAr/NK)

ln 2

lt � ln �1 �
NAr

NK
�,

Sample Problem 42.08 Radioactive dating of a moon rock

In a Moon rock sample, the ratio of the number of (stable)
40Ar atoms present to the number of (radioactive) 40K
atoms is 10.3. Assume that all the argon atoms were pro-
duced by the decay of potassium atoms, with a half-life of
1.25 � 109 y. How old is the rock?

KEY IDEAS

(1) If N0 potassium atoms were present at the time the rock
was formed by solidification from a molten form, the number
of potassium atoms now remaining at the time of analysis is

NK � N0e�lt, (42-29)

in which t is the age of the rock. (2) For every potassium atom
that decays, an argon atom is produced.Thus, the number of ar-
gon atoms present at the time of the analysis is

NAr � N0 � NK. (42-30)

Additional examples, video, and practice available at WileyPLUS

42-7 MEASURING RADIATION DOSAGE

After reading this module, you should be able to . . .

42.33 Identify absorbed dose, dose equivalent, and the asso-
ciated units.

42.34 Calculate absorbed dose and dose equivalent.

● The Becquerel (1 Bq � 1 decay per second) measures the
activity of a source.

● The amount of energy actually absorbed is measured in

grays, with 1 Gy corresponding to 1 J/kg.

● The estimated biological effect of the absorbed energy is
the dose equivalent and is measured in sieverts.

Learning Objectives

Key Ideas



dose) is still in common use.The terms are defined and related as follows:

1 Gy � 1 J/kg � 100 rad. (42-32)

A typical dose-related statement is: “A whole-body, short-term gamma-ray
dose of 3 Gy (� 300 rad) will cause death in 50% of the population exposed to
it.” Thankfully, our present average absorbed dose per year, from sources of
both natural and human origin, is only about 2 mGy (� 0.2 rad).

2. Dose Equivalent. Although different types of radiation (gamma rays and
neutrons, say) may deliver the same amount of energy to the body, they do not
have the same biological effect. The dose equivalent allows us to express
the biological effect by multiplying the absorbed dose (in grays or rads) by a
numerical RBE factor (from relative biological effectiveness). For x rays and
electrons, for example, RBE � 1; for slow neutrons, RBE � 5; for alpha parti-
cles, RBE � 10; and so on. Personnel-monitoring devices such as film badges
register the dose equivalent.

The SI unit of dose equivalent is the sievert (Sv). An earlier unit, the rem,
is still in common use.Their relationship is

1 Sv � 100 rem. (42-33)

An example of the correct use of these terms is: “The recommendation of
the National Council on Radiation Protection is that no individual who is
(nonoccupationally) exposed to radiation should receive a dose equivalent
greater than 5 mSv (� 0.5 rem) in any one year.” This includes radiation of all
kinds; of course the appropriate RBE factor must be used for each kind.
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42-8 NUCLEAR MODELS

After reading this module, you should be able to . . .

42.35 Distinguish the collective model and the independent
model, and explain the combined model.

42.36 Identify compound nucleus.
42.37 Identify magic numbers.

● The collective model of nuclear structure assumes that
nucleons collide constantly with one another and that rela-
tively long-lived compound nuclei are formed when a projec-
tile is captured. The formation and eventual decay of a com-
pound nucleus are totally independent events.

● The independent particle model of nuclear structure

assumes that each nucleon moves, essentially without colli-
sion, in a quantized state within the nucleus. The model pre-
dicts nucleon levels and magic nucleon numbers associated
with closed shells of nucleons.

● The combined model assumes that extra nucleons occupy
quantized states outside a central core of closed shells.

Learning Objectives

Key Ideas

Nuclear Models
Nuclei are more complicated than atoms. For atoms, the basic force law
(Coulomb’s law) is simple in form and there is a natural force center, the nucleus.
For nuclei, the force law is complicated and cannot, in fact, be written down
explicitly in full detail. Furthermore, the nucleus—a jumble of protons and
neutrons—has no natural force center to simplify the calculations.

In the absence of a comprehensive nuclear theory, we turn to the construc-
tion of nuclear models. A nuclear model is simply a way of looking at the nucleus
that gives a physical insight into as wide a range of its properties as possible. The
usefulness of a model is tested by its ability to provide predictions that can be
verified experimentally in the laboratory.



Two models of the nucleus have proved useful. Although based on assump-
tions that seem flatly to exclude each other, each accounts very well for a selected
group of nuclear properties. After describing them separately, we shall see how
these two models may be combined to form a single coherent picture of the
atomic nucleus.

The Collective Model
In the collective model, formulated by Niels Bohr, the nucleons, moving around
within the nucleus at random, are imagined to interact strongly with each other,
like the molecules in a drop of liquid. A given nucleon collides frequently with
other nucleons in the nuclear interior, its mean free path as it moves about being
substantially less than the nuclear radius.

The collective model permits us to correlate many facts about nuclear masses
and binding energies; it is useful (as you will see later) in explaining nuclear
fission. It is also useful for understanding a large class of nuclear reactions.

Consider, for example, a generalized nuclear reaction of the form

(42-34)

We imagine that projectile a enters target nucleus X, forming a compound nucleus C
and conveying to it a certain amount of excitation energy. The projectile, perhaps a
neutron, is at once caught up by the random motions that characterize the nuclear
interior. It quickly loses its identity—so to speak—and the excitation energy it car-
ried into the nucleus is quickly shared with all the other nucleons in C.

The quasi-stable state represented by C in Eq. 42-34 may have a mean life of
10�16 s before it decays to Y and b. By nuclear standards, this is a very long time,
being about one million times longer than the time required for a nucleon with
a few million electron-volts of energy to travel across a nucleus.

The central feature of this compound-nucleus concept is that the formation
of the compound nucleus and its eventual decay are totally independent events.
At the time of its decay, the compound nucleus has “forgotten” how it was
formed. Hence, its mode of decay is not influenced by its mode of formation. As
an example, Fig. 42-14 shows three possible ways in which the compound nucleus
20Ne might be formed and three in which it might decay. Any of the three forma-
tion modes can lead to any of the three decay modes.

The Independent Particle Model
In the collective model, we assume that the nucleons move around at random and
bump into one another frequently. The independent particle model, however, is
based on just the opposite assumption—namely, that each nucleon remains in a
well-defined quantum state within the nucleus and makes hardly any collisions at
all! The nucleus, unlike the atom, has no fixed center of charge; we assume in this
model that each nucleon moves in a potential well that is determined by the
smeared-out (time-averaged) motions of all the other nucleons.

A nucleon in a nucleus, like an electron in an atom, has a set of quantum num-
bers that defines its state of motion. Also, nucleons obey the Pauli exclusion princi-
ple, just as electrons do; that is, no two nucleons in a nucleus may occupy the same
quantum state at the same time. In this regard, the neutrons and the protons are
treated separately, each particle type with its own set of quantum states.

X � a : C : Y � b.
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Figure 42-14 The formation modes and the decay
modes of the compound nucleus 20Ne.

16O + α 

19F + p 

20Ne + γ 

18F + 2H

19Ne + n 

17O + 3He

Three
formation
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Three
decay
modes

20Ne



The fact that nucleons obey the Pauli exclusion principle helps us to under-
stand the relative stability of nucleon states. If two nucleons within the nucleus
are to collide, the energy of each of them after the collision must correspond to
the energy of an unoccupied state. If no such state is available, the collision sim-
ply cannot occur. Thus, any given nucleon experiencing repeated “frustrated
collision opportunities” will maintain its state of motion long enough to give
meaning to the statement that it exists in a quantum state with a well-defined
energy.

In the atomic realm, the repetitions of physical and chemical properties that
we find in the periodic table are associated with a property of atomic electrons—
namely, they arrange themselves in shells that have a special stability when fully
occupied.We can take the atomic numbers of the noble gases,

2, 10, 18, 36, 54, 86, . . . ,

as magic electron numbers that mark the completion (or closure) of such shells.
Nuclei also show such closed-shell effects, associated with certain magic

nucleon numbers:

2, 8, 20, 28, 50, 82, 126, . . . .

Any nuclide whose proton number Z or neutron number N has one of these
values turns out to have a special stability that may be made apparent in a variety
of ways.

Examples of “magic” nuclides are 18O (Z � 8), 40Ca (Z � 20, N � 20), 92Mo
(N � 50), and 208Pb (Z � 82, N � 126). Both 40Ca and 208Pb are said to be “doubly
magic” because they contain both filled shells of protons and filled shells of
neutrons.

The magic number 2 shows up in the exceptional stability of the alpha parti-
cle (4He), which, with Z � N � 2, is doubly magic. For example, on the binding
energy curve of Fig. 42-7, the binding energy per nucleon for this nuclide stands
well above those of its periodic-table neighbors hydrogen, lithium, and beryllium.
The neutrons and protons making up the alpha particle are so tightly bound to
one another, in fact, that it is impossible to add another proton or neutron to it;
there is no stable nuclide with A � 5.

The central idea of a closed shell is that a single particle outside a closed
shell can be relatively easily removed, but considerably more energy must be
expended to remove a particle from the shell itself. The sodium atom, for exam-
ple, has one (valence) electron outside a closed electron shell. Only about 5 eV is
required to strip the valence electron away from a sodium atom; however, to
remove a second electron (which must be plucked out of a closed shell) requires
22 eV. As a nuclear case, consider 121Sb (Z � 51), which contains a single proton
outside a closed shell of 50 protons.To remove this lone proton requires 5.8 MeV;
to remove a second proton, however, requires an energy of 11 MeV. There is
much additional experimental evidence that the nucleons in a nucleus form
closed shells and that these shells exhibit stable properties.

We have seen that quantum theory can account beautifully for the magic
electron numbers—that is, for the populations of the subshells into which atomic
electrons are grouped. It turns out that, under certain assumptions, quantum
theory can account equally well for the magic nucleon numbers! The 1963 Nobel
Prize in physics was, in fact, awarded to Maria Mayer and Hans Jensen “for their
discoveries concerning nuclear shell structure.”

A Combined Model
Consider a nucleus in which a small number of neutrons (or protons) exist
outside a core of closed shells that contains magic numbers of neutrons or
protons. The outside nucleons occupy quantized states in a potential well

129942-8 NUCLEAR MODELS
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Calculation: Substituting that uncertainty of 0.20 eV into
Eq. 42-36 gives us

(Answer)

This is several hundred times greater than the time a 5.2
eV neutron takes to cross the diameter of a 109Ag nucleus.
Therefore, the neutron is spending this time of 3 � 10�15 s
as part of the nucleus.

� 3 � 10�15 s.


t � tavg �
�


E
�

(4.14 � 10�15 eV �s)/2p

0.20 eV

Sample Problem 42.09 Lifetime of a compound nucleus made by neutron capture

Consider the neutron capture reaction

(42-35)

in which a compound nucleus (110Ag) is formed. Figure
42-15 shows the relative rate at which such events take
place, plotted against the energy of the incoming neutron.
Find the mean lifetime of this compound nucleus by using
the uncertainty principle in the form

(42-36)

Here 
E is a measure of the uncertainty with which the
energy of a state can be defined. The quantity 
t is a mea-
sure of the time available to measure this energy. In fact,
here 
t is just tavg, the average life of the compound nucleus
before it decays to its ground state.

Reasoning: We see that the relative reaction rate peaks
sharply at a neutron energy of about 5.2 eV. This suggests
that we are dealing with a single excited energy level of the
compound nucleus 110Ag. When the available energy (of the
incoming neutron) just matches the energy of this level above
the 110Ag ground state, we have “resonance” and the reaction
of Eq. 42-35 really “goes.”

However, the resonance peak is not infinitely sharp but has
an approximate half-width (
E in the figure) of about 0.20 eV.
We can account for this resonance-peak width by saying that the
excited level is not sharply defined in energy but has an energy
uncertainty 
E of about 0.20 eV.


E �
t � �.

109Ag � n : 110Ag : 110Ag � �,

Additional examples, video, and practice available at WileyPLUS

Figure 42-15 A plot of the relative number of reaction events of the
type described by Eq. 42-35 as a function of the energy of the inci-
dent neutron.The half-width 
E of the resonance peak is about
0.20 eV.
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Here the energy of the
incident neutron matches
the excited state energy
of the nucleus.

The Nuclides Approximately 2000 nuclides are known to exist.
Each is characterized by an atomic number Z (the number of pro-
tons), a neutron number N, and a mass number A (the total number
of nucleons—protons and neutrons). Thus, A � Z � N. Nuclides
with the same atomic number but different neutron numbers are
isotopes of one another. Nuclei have a mean radius r given by

r � r0A1/3, (42-3)
where r0 � 1.2 fm.

Mass and Binding Energy Atomic masses are often re-

Review & Summary

ported in terms of mass excess


 � M � A (mass excess), (42-6)

where M is the actual mass of an atom in atomic mass units and A
is the mass number for that atom’s nucleus.The binding energy of a
nucleus is the difference


Ebe � �(mc 2) � Mc 2 (binding energy), (42-7)

where �(mc 2) is the total mass energy of the individual protons
and neutrons.The binding energy per nucleon is

established by the central core, thus preserving the central feature of the
independent-particle model. These outside nucleons also interact with the
core, deforming it and setting up “tidal wave” motions of rotation or vibration
within it. These collective motions of the core preserve the central feature of
the collective model. Such a model of nuclear structure thus succeeds in com-
bining the seemingly irreconcilable points of view of the collective and
independent-particle models. It has been remarkably successful in explaining
observed nuclear properties.



(binding energy per nucleon). (42-8)

Mass–Energy Exchanges The energy equivalent of one
mass unit (u) is 931.494 013 MeV. The binding energy curve
shows that middle-mass nuclides are the most stable and that en-
ergy can be released both by fission of high-mass nuclei and by
fusion of low-mass nuclei.

The Nuclear Force Nuclei are held together by an attractive
force acting among the nucleons, part of the strong force acting
between the quarks that make up the nucleons.

Radioactive Decay Most known nuclides are radioactive;
they spontaneously decay at a rate R (� �dN/dt) that is
proportional to the number N of radioactive atoms present, the
proportionality constant being the disintegration constant l. This
leads to the law of exponential decay:

N � N0e�lt, R � lN � R0e�lt

(radioactive decay). (42-15, 42-17, 42-16)

The half-life T1/2 � (ln 2)/l of a radioactive nuclide is the time re-
quired for the decay rate R (or the number N) in a sample to
drop to half its initial value.

Alpha Decay Some nuclides decay by emitting an alpha parti-
cle (a helium nucleus, 4He). Such decay is inhibited by a potential
energy barrier that cannot be penetrated according to classical
physics but is subject to tunneling according to quantum physics.
The barrier penetrability, and thus the half-life for alpha decay, is
very sensitive to the energy of the emitted alpha particle.

Beta Decay In beta decay either an electron or a positron


Eben �

Ebe

A
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is emitted by a nucleus, along with a neutrino.The emitted particles
share the available disintegration energy. The electrons and
positrons emitted in beta decay have a continuous spectrum of en-
ergies from near zero up to a limit Kmax (� Q � �
m c 2).

Radioactive Dating Naturally occurring radioactive nuclides
provide a means for estimating the dates of historic and prehistoric
events. For example, the ages of organic materials can often be
found by measuring their 14C content; rock samples can be dated
using the radioactive isotope 40K.

Radiation Dosage Three units are used to describe exposure
to ionizing radiation. The becquerel (1 Bq � 1 decay per second)
measures the activity of a source. The amount of energy actually
absorbed is measured in grays, with 1 Gy corresponding to 1 J/kg.
The estimated biological effect of the absorbed energy is measured
in sieverts; a dose equivalent of 1 Sv causes the same biological ef-
fect regardless of the radiation type by which it was acquired.

Nuclear Models The collective model of nuclear structure as-
sumes that nucleons collide constantly with one another and that rel-
atively long-lived compound nuclei are formed when a projectile is
captured. The formation and eventual decay of a compound nucleus
are totally independent events.

The independent particle model of nuclear structure assumes
that each nucleon moves, essentially without collisions, in a quantized
state within the nucleus.The model predicts nucleon levels and magic
nucleon numbers (2, 8, 20, 28, 50, 82, and 126) associated with closed
shells of nucleons; nuclides with any of these numbers of neutrons or
protons are particularly stable.

The combined model, in which extra nucleons occupy quan-
tized states outside a central core of closed shells, is highly success-
ful in predicting many nuclear properties.

Questions

1 The radionuclide 196Ir decays by emitting an electron. (a) Into
which square in Fig. 42-6 is it transformed? (b) Do further decays
then occur?

2 Is the mass excess of an alpha particle (use a straightedge on
Fig. 42-13) greater than or less than the particle’s total binding en-
ergy (use the binding energy per nucleon from Fig. 42-7)?

3 At t � 0, a sample of radionuclide A has the same decay rate as
a sample of radionuclide B has at t � 30 min. The disintegration
constants are lA and lB, with lA � lB. Will the two samples ever
have (simultaneously) the same decay rate? (Hint: Sketch a
graph of their activities.)

4 A certain nuclide is said to be particularly stable. Does its bind-
ing energy per nucleon lie slightly above or slightly below the
binding energy curve of Fig. 42-7?

5 Suppose the alpha particle in a Rutherford scattering exper-
iment is replaced with a proton of the same initial kinetic en-
ergy and also headed directly toward the nucleus of the gold
atom. (a) Will the distance from the center of the nucleus at
which the proton stops be greater than, less than, or the same as
that of the alpha particle? (b) If, instead, we switch the target to
a nucleus with a larger value of Z, is the stopping distance of the
alpha particle greater than, less than, or the same as with the
gold target?

7 The nuclide 244Pu (Z � 94) is an alpha-emitter. Into which of
the following nuclides does it decay: 240Np (Z � 93), 240U (Z � 92),
248Cm (Z � 96), or 244Am (Z � 95)?

8 The radionuclide 49Sc has a half-life of 57.0 min.At t � 0, the count-
ing rate of a sample of it is 6000 counts/min above the general back-
ground activity, which is 30 counts/min. Without computation, deter-
mine whether the counting rate of the sample will be about equal to
the background rate in 3 h, 7 h, 10 h, or a time much longer than 10 h.

R

t

A

B

C

Figure 42-16 Question 6.

6 Figure 42-16 gives the activities of three radioactive samples ver-
sus time. Rank the samples according to their (a) half-life and (b) dis-
integration constant, greatest first. (Hint: For (a), use a straightedge
on the graph.)



9 At t � 0 we begin to observe two identical radioactive nuclei that
have a half-life of 5 min.At t � 1 min, one of the nuclei decays. Does
that event increase or decrease the chance that the second nucleus
will decay in the next 4 min, or is there no effect on the second nu-
cleus? (Are the events cause and effect, or random?)

10 Figure 42-17 shows the curve for the binding energy per nu-
cleon 
Eben versus mass number A. Three isotopes are indicated.
Rank them according to the energy required to remove a nucleon
from the isotope, greatest first.
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ΔEben
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3

A

Figure 42-17 Question 10.

11 At t � 0, a sample of radionuclide A has twice the decay rate as a
sample of radionuclide B. The disintegration constants are lA and lB,

with lA � lB. Will the two samples ever
have (simultaneously) the same decay rate?

12 Figure 42-18 is a plot of mass num-
ber A versus charge number Z. The loca-
tion of a certain nucleus is represented by
a dot.Which of the arrows extending from
the dot would best represent the transi-
tion were the nucleus to undergo (a) a b2

decay and (b) an a decay?

13 (a) Which of the following nuclides
are magic: 122Sn, 132Sn, 98Cd, 198Au, 208Pb?
(b) Which, if any, are doubly magic?

14 If the mass of a radioactive sample is doubled, do (a) the ac-
tivity of the sample and (b) the disintegration constant of the
sample increase, decrease, or remain the same?

15 The magic nucleon numbers for nuclei are given in Module 42-8
as 2, 8, 20, 28, 50, 82, and 126.Are nuclides magic (that is, especially sta-
ble) when (a) only the mass number A, (b) only the atomic number Z,
(c) only the neutron number N, or (d) either Z or N (or both) is equal
to one of these numbers? Pick all correct phrases.

A

Z

f

b
a c

g

h d

e

Figure 42-18
Question 12.

neutrons are in the (c) first and (d) second? (e) Approximately
how many neutrons are left over?

•7 What is the nuclear mass density rm of (a) the fairly low-mass
nuclide 55Mn and (b) the fairly high-mass nuclide 209Bi? (c)
Compare the two answers, with an explanation.What is the nuclear
charge density rq of (d) 55Mn and (e) 209Bi? (f) Compare the two
answers, with an explanation.

•8 (a) Show that the mass M of an atom is given approximately
by Mapp � Amp, where A is the mass number and mp is the proton
mass. For (b) 1H, (c) 31P, (d) 120Sn, (e) 197Au, and (f) 239Pu, use Table
42-1 to find the percentage deviation between Mapp and M:

(g) Is a value of Mapp accurate enough to be used in a calculation of
a nuclear binding energy?

•9 The nuclide 14C contains (a) how many protons and (b) how
many neutrons?

•10 What is the mass excess 
1 of 1H (actual mass is 1.007 825 u) in
(a) atomic mass units and (b) MeV/c2? What is the mass excess 
n of
a neutron (actual mass is 1.008 665 u) in (c) atomic mass units and
(d) MeV/c2? What is the mass excess 
120 of 120Sn (actual mass is
119.902 197 u) in (e) atomic mass units and (f) MeV/c 2?

•11 Nuclear radii may be measured by scattering high-
energy (high speed) electrons from nuclei. (a) What is the de
Broglie wavelength for 200 MeV electrons? (b) Are these elec-
trons suitable probes for this purpose?

SSM
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Module 42-1 Discovering the Nucleus
•1 A 7Li nucleus with a kinetic energy of 3.00 MeV is sent toward
a 232Th nucleus. What is the least center-to-center separation be-
tween the two nuclei, assuming that the (more massive) 232Th nu-
cleus does not move?

•2 Calculate the distance of closest approach for a head-on colli-
sion between a 5.30 MeV alpha particle and a copper nucleus.

••3 A 10.2 MeV Li nucleus is shot directly at the center of a Ds
nucleus. At what center-to-center distance does the Li momentar-
ily stop, assuming the Ds does not move?

••4 In a Rutherford scattering experiment, assume that an
incident alpha particle (radius 1.80 fm) is headed directly toward a
target gold nucleus (radius 6.23 fm). What energy must the alpha
particle have to just barely “touch” the gold nucleus?

••5 When an alpha particle collides elastically with a nucleus,
the nucleus recoils. Suppose a 5.00 MeV alpha particle has a head-
on elastic collision with a gold nucleus that is initially at rest. What
is the kinetic energy of (a) the recoiling nucleus and (b) the re-
bounding alpha particle?

Module 42-2 Some Nuclear Properties
•6 The strong neutron excess (defined as N � Z) of high-mass
nuclei is illustrated by noting that most high-mass nuclides could
never fission into two stable nuclei without neutrons being left
over. For example, consider the spontaneous fission of a 235U nu-
cleus into two stable daughter nuclei with atomic numbers 39 and
53. From Appendix F, determine the name of the (a) first and (b)
second daughter nucleus. From Fig. 42-5, approximately how many

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems



•12 The electric potential energy of a uniform sphere of charge q
and radius r is given by

(a) Does the energy represent a tendency for the sphere to bind to-
gether or blow apart? The nuclide 239Pu is spherical with radius 6.64
fm. For this nuclide, what are (b) the electric potential energy U ac-
cording to the equation, (c) the electric potential energy per proton,
and (d) the electric potential energy per nucleon? The binding en-
ergy per nucleon is 7.56 MeV. (e) Why is the nuclide bound so well
when the answers to (c) and (d) are large and positive?

•13 A neutron star is a stellar object whose density is about that of
nuclear matter, 2 � 1017 kg/m3. Suppose that the Sun were to collapse
and become such a star without losing any of its present mass. What
would be its radius?

••14 What is the binding energy per nucleon of the americium
isotope Am? Here are some atomic masses and the neutron
mass.

244.064 279 u 1H 1.007 825 u
n 1.008 665 u

••15 (a) Show that the energy associated with the strong force
between nucleons in a nucleus is proportional to A, the mass num-
ber of the nucleus in question. (b) Show that the energy associated
with the Coulomb force between protons in a nucleus is propor-
tional to Z(Z � 1). (c) Show that, as we move to larger and larger
nuclei (see Fig. 42-5), the importance of the Coulomb force in-
creases more rapidly than does that of the strong force.

••16 What is the binding energy per nucleon of the europium
isotope Eu? Here are some atomic masses and the neutron mass.

151.921 742 u 1H 1.007 825 u
n 1.008 665 u

••17 Because the neutron has no charge, its mass must be found
in some way other than by using a mass spectrometer.When a neu-
tron and a proton meet (assume both to be almost stationary), they
combine and form a deuteron, emitting a gamma ray whose energy
is 2.2233 MeV. The masses of the proton and the deuteron are
1.007 276 467 u and 2.013 553 212 u, respectively. Find the mass of
the neutron from these data.

••18 What is the binding energy per nucleon of the ruther-
fordium isotope Rf? Here are some atomic masses and the neu-
tron mass.

259.105 63 u
1.008 665 u

••19 A periodic table might list the average atomic mass of mag-
nesium as being 24.312 u, which is the result of weighting the
atomic masses of the magnesium isotopes according to their natu-
ral abundances on Earth. The three isotopes and their masses are
24Mg (23.985 04 u), 25Mg (24.985 84 u), and 26Mg (25.982 59 u).
The natural abundance of 24Mg is 78.99% by mass (that is, 78.99%
of the mass of a naturally occurring sample of magnesium is due
to the presence of 24Mg). What is the abundance of (a) 25Mg and
(b) 26Mg?

••20 What is the binding energy per nucleon of 262Bh? The mass
of the atom is 262.1231 u.

n

1H 1.007 825 u 259
104Rf

259
104

152
63 Eu

152
63

244
95 Am

244
95

U �
3q2

20p´0r
.
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••21 (a) Show that the total binding energy Ebe of a
given nuclide is

Ebe � Z
H � N
n � 
,

where 
H is the mass excess of 1H, 
n is the mass excess of a neutron,
and 
 is the mass excess of the given nuclide. (b) Using this method,
calculate the binding energy per nucleon for 197Au. Compare your re-
sult with the value listed in Table 42-1. The needed mass excesses,
rounded to three significant figures, are 
H � �7.29 MeV, 
n �
�8.07 MeV, and 
197 � �31.2 MeV. Note the economy of calculation
that results when mass excesses are used in place of the actual
masses.

••22 An a particle (4He nucleus) is to be taken apart in the fol-
lowing steps. Give the energy (work) required for each step: (a) re-
move a proton, (b) remove a neutron, and (c) separate the remain-
ing proton and neutron. For an a particle, what are (d) the total
binding energy and (e) the binding energy per nucleon? (f) Does
either match an answer to (a), (b), or (c)? Here are some atomic
masses and the neutron mass.

4He 4.002 60 u 2H 2.014 10 u
3H 3.016 05 u 1H 1.007 83 u
n 1.008 67 u

••23 Verify the binding energy per nucleon given in Table
42-1 for the plutonium isotope 239Pu. The mass of the neutral atom
is 239.052 16 u.

••24 A penny has a mass of 3.0 g. Calculate the energy that would
be required to separate all the neutrons and protons in this coin
from one another. For simplicity, assume that the penny is made en-
tirely of 63Cu atoms (of mass 62.929 60 u).The masses of the proton-
plus-electron and the neutron are 1.007 83 u and 1.008 66 u,
respectively.

Module 42-3 Radioactive Decay
•25 Cancer cells are more vulnerable to x and gamma radiation
than are healthy cells. In the past, the standard source for radiation
therapy was radioactive 60Co, which decays, with a half-life of 5.27
y, into an excited nuclear state of 60Ni. That nickel isotope then im-
mediately emits two gamma-ray photons, each with an approxi-
mate energy of 1.2 MeV. How many radioactive 60Co nuclei are
present in a 6000 Ci source of the type used in hospitals?
(Energetic particles from linear accelerators are now used in radia-
tion therapy.)

•26 The half-life of a radioactive isotope is 140 d. How many days
would it take for the decay rate of a sample of this isotope to fall to
one-fourth of its initial value?

•27 A radioactive nuclide has a half-life of 30.0 y. What fraction
of an initially pure sample of this nuclide will remain undecayed at
the end of (a) 60.0 y and (b) 90.0 y?

•28 The plutonium isotope 239Pu is produced as a by-product in nu-
clear reactors and hence is accumulating in our environment. It is ra-
dioactive,decaying with a half-life of 2.41 � 104 y.(a) How many nuclei
of Pu constitute a chemically lethal dose of 2.00 mg? (b) What is the
decay rate of this amount?

•29 A radioactive isotope of mercury, 197Hg, decays to
gold, 197Au, with a disintegration constant of 0.0108 h�1. (a) Calculate
the half-life of the 197Hg.What fraction of a sample will remain at the
end of (b) three half-lives and (c) 10.0 days?

WWWSSM
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•30 The half-life of a particular radioactive isotope is 6.5 h. If
there are initially 48 � 1019 atoms of this isotope, how many re-
main at the end of 26 h?

•31 Consider an initially pure 3.4 g sample of 67Ga, an isotope
that has a half-life of 78 h. (a) What is its initial decay rate? (b)
What is its decay rate 48 h later?

•32 When aboveground nuclear tests were conducted, the explo-
sions shot radioactive dust into the upper atmosphere. Global air cir-
culations then spread the dust worldwide before it settled out on
ground and water. One such test was conducted in October 1976.
What fraction of the 90Sr produced by that explosion still existed in
October 2006? The half-life of 90Sr is 29 y.

••33 The air in some caves includes a significant amount of radon
gas, which can lead to lung cancer if breathed over a prolonged
time. In British caves, the air in the cave with the greatest amount
of the gas has an activity per volume of 1.55 � 105 Bq/m3. Suppose
that you spend two full days exploring (and sleeping in) that cave.
Approximately how many 222Rn atoms would you take in and out
of your lungs during your two-day stay? The radionuclide 222Rn in
radon gas has a half-life of 3.82 days. You need to estimate your
lung capacity and average breathing rate.

••34 Calculate the mass of a sample of (initially pure) 40K that
has an initial decay rate of 1.70 � 105 disintegrations/s.The isotope
has a half-life of 1.28 � 109 y.

••35 A certain radionuclide is being manufactured in a
cyclotron at a constant rate R. It is also decaying with disintegration
constant l. Assume that the production process has been going on
for a time that is much longer than the half-life of the radionuclide.
(a) Show that the number of radioactive nuclei present after such
time remains constant and is given by N � R/l. (b) Now show that
this result holds no matter how many radioactive nuclei were pres-
ent initially. The nuclide is said to be in secular equilibrium with its
source; in this state its decay rate is just equal to its production rate.

••36 Plutonium isotope 239Pu decays by alpha decay with a half-
life of 24 100 y. How many milligrams of helium are produced by
an initially pure 12.0 g sample of 239Pu at the end of 20 000 y?
(Consider only the helium produced directly by the plutonium and
not by any by-products of the decay process.)

••37 The radionuclide 64Cu has a half-life of 12.7 h. If a sample
contains 5.50 g of initially pure 64Cu at t � 0, how much of it will
decay between t � 14.0 h and t � 16.0 h?

••38 A dose of 8.60 mCi of a radioactive isotope is injected into a
patient. The isotope has a half-life of 3.0 h. How many of the iso-
tope parents are injected?

••39 The radionuclide 56Mn has a half-life of 2.58 h and is pro-
duced in a cyclotron by bombarding a manganese target with
deuterons. The target contains only the stable manganese isotope
55Mn, and the manganese–deuteron reaction that produces 56Mn is

If the bombardment lasts much longer than the half-life of 56Mn,
the activity of the 56Mn produced in the target reaches a final value
of 8.88 � 1010 Bq. (a) At what rate is 56Mn being produced? (b)
How many 56Mn nuclei are then in the target? (c) What is their
total mass?

••40 A source contains two phosphorus radionuclides, 32P (T1/2 �
14.3 d) and 33P (T1/2 � 25.3 d). Initially, 10.0% of the decays come
from 33P.How long must one wait until 90.0% do so?

55Mn � d : 56Mn � p.

SSM
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••41 A 1.00 g sample of samarium emits alpha particles at a rate
of 120 particles/s. The responsible isotope is 147Sm, whose natural
abundance in bulk samarium is 15.0%. Calculate the half-life.

••42 What is the activity of a 20 ng sample of 92Kr, which has a
half-life of 1.84 s?

••43 A radioactive sample intended for irradiation of a hospital
patient is prepared at a nearby laboratory. The sample has a half-
life of 83.61 h.What should its initial activity be if its activity is to be
7.4 � 108 Bq when it is used to irradiate the patient 24 h later?

••44 Figure 42-19 shows the decay of parents in a radioactive
sample. The axes are scaled by Ns � 2.00 � 106 and ts � 10.0 s.
What is the activity of the sample at t � 27.0 s?

0

N
Ns

ts
t

Figure 42-19 Problem 44.

••45 In 1992, Swiss police arrested two men who were attempting
to smuggle osmium out of Eastern Europe for a clandestine sale.
However, by error, the smugglers had picked up 137Cs. Reportedly,
each smuggler was carrying a 1.0 g sample of 137Cs in a pocket! In
(a) bequerels and (b) curies, what was the activity of each sample?
The isotope 137Cs has a half-life of 30.2 y. (The activities of radio-
isotopes commonly used in hospitals range up to a few millicuries.)

••46 The radioactive nuclide 99Tc can be injected into a patient’s
bloodstream in order to monitor the blood flow, measure the blood
volume, or find a tumor, among other goals. The nuclide is pro-
duced in a hospital by a “cow” containing 99Mo, a radioactive nu-
clide that decays to 99Tc with a half-life of 67 h. Once a day, the cow
is “milked” for its 99Tc, which is produced in an excited state by the
99Mo; the 99Tc de-excites to its lowest energy state by emitting a
gamma-ray photon, which is recorded by detectors placed around
the patient. The de-excitation has a half-life of 6.0 h. (a) By what
process does 99Mo decay to 99Tc? (b) If a patient is injected with an
8.2 � 107 Bq sample of 99Tc, how many gamma-ray photons are
initially produced within the patient each second? (c) If the
emission rate of gamma-ray photons from a small tumor that has
collected 99Tc is 38 per second at a certain time, how many excited-
state 99Tc are located in the tumor at that time?

••47 After long effort, in 1902 Marie and Pierre Curie
succeeded in separating from uranium ore the first substantial
quantity of radium, one decigram of pure RaCl2. The radium was
the radioactive isotope 226Ra, which has a half-life of 1600 y. (a)
How many radium nuclei had the Curies isolated? (b) What was
the decay rate of their sample, in disintegrations per second?

Module 42-4 Alpha Decay
•48 How much energy is released when a 238U nucleus decays
by emitting (a) an alpha particle and (b) a sequence of neutron,
proton, neutron, proton? (c) Convince yourself both by rea-
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soned argument and by direct calculation that the difference be-
tween these two numbers is just the total binding energy of the al-
pha particle. (d) Find that binding energy. Some needed atomic
and particle masses are

238U 238.050 79 u 234Th 234.043 63 u
237U 237.048 73 u 4He 4.002 60 u
236Pa 236.048 91 u 1H 1.007 83 u
235Pa 235.045 44 u n 1.008 66 u

•49 Generally, more massive nuclides tend to be more un-
stable to alpha decay. For example, the most stable isotope of ura-
nium, 238U, has an alpha decay half-life of 4.5 � 109 y.The most stable
isotope of plutonium is 244Pu with an 8.0 � 107 y half-life, and for
curium we have 248Cm and 3.4 � 105 y. When half of an original sam-
ple of 238U has decayed,what fraction of the original sample of (a) plu-
tonium and (b) curium is left?

••50 Large radionuclides emit an alpha particle rather than other
combinations of nucleons because the alpha particle has such a sta-
ble, tightly bound structure. To confirm this statement, calculate
the disintegration energies for these hypothetical decay processes
and discuss the meaning of your findings:

(a) (b)
(c)

The needed atomic masses are

232Th 232.0381 u 3He 3.0160 u
231Th 231.0363 u 4He 4.0026 u
230Th 230.0331 u 5He 5.0122 u
235U 235.0429 u

••51 A 238U nucleus emits a 4.196 MeV alpha particle. Calculate
the disintegration energy Q for this process, taking the recoil en-
ergy of the residual 234Th nucleus into account.

••52 Under certain rare circumstances, a nucleus can decay by
emitting a particle more massive than an alpha particle. Consider
the decays

and

Calculate the Q value for the (a) first and (b) second decay and
determine that both are energetically possible. (c) The Coulomb
barrier height for alpha-particle emission is 30.0 MeV. What is the
barrier height for 14C emission? (Be careful about the nuclear
radii.) The needed atomic masses are

223Ra 223.018 50 u 14C 14.003 24 u
209Pb 208.981 07 u 4He 4.002 60 u
219Rn 219.009 48 u

Module 42-5 Beta Decay
•53 The cesium isotope 137Cs is present in the fallout from
aboveground detonations of nuclear bombs. Because it decays with a
slow (30.2 y) half-life into 137Ba, releasing considerable energy in the
process, it is of environmental concern. The atomic masses of the Cs
and Ba are 136.9071 and 136.9058 u, respectively; calculate the total
energy released in such a decay.

•54 Some radionuclides decay by capturing one of their own
atomic electrons, a K-shell electron, say.An example is

49V � e� : 49Ti � �,    T1/2 � 331 d.

SSM

223Ra : 219Rn � 4He.223Ra : 209Pb � 14C

235U : 230Th � 5He.

235U : 231Th � 4He,235U : 232Th � 3He,
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Show that the disintegration energy Q for this process is given by

Q � (mV � mTi)c 2 � EK,

where mV and mTi are the atomic masses of 49V and 49Ti, respectively,
and EK is the binding energy of the vanadium K-shell electron.
(Hint: Put mV and mTi as the corresponding nuclear masses and then
add in enough electrons to use the atomic masses.)

•55 A free neutron decays according to Eq. 42-26. If the
neutron–hydrogen atom mass difference is 840 mu, what is the
maximum kinetic energy Kmax possible for the electron produced
in a neutron decay?

•56 An electron is emitted from a middle-mass nuclide (A � 150,
say) with a kinetic energy of 1.0 MeV. (a) What is its de Broglie
wavelength? (b) Calculate the radius of the emitting nucleus. (c)
Can such an electron be confined as a standing wave in a “box” of
such dimensions? (d) Can you use these numbers to disprove the
(abandoned) argument that electrons actually exist in nuclei?

••57 The radionuclide 11C decays according to

The maximum energy of the emitted positrons is 0.960 MeV. (a)
Show that the disintegration energy Q for this process is given by

Q � (mC � mB � 2me)c 2,

where mC and mB are the atomic masses of 11C and 11B, re-
spectively, and me is the mass of a positron. (b) Given the mass val-
ues mC � 11.011 434 u, mB � 11.009 305 u, and me � 0.000 548 6 u,
calculate Q and compare it with the maximum energy of the emit-
ted positron given above. (Hint: Let mC and mB be the nuclear
masses and then add in enough electrons to use the atomic
masses.)

••58 Two radioactive materials that alpha decay, 238U and 232Th,
and one that beta decays, 40K, are sufficiently abundant in granite
to contribute significantly to the heating of Earth through the de-
cay energy produced. The alpha-decay isotopes give rise to decay
chains that stop when stable lead isotopes are formed. The isotope
40K has a single beta decay. (Assume this is the only possible decay of
that isotope.) Here is the information:

Stable
Decay Half-Life End Q f

Parent Mode (y) Point (MeV) (ppm)

238U a 4.47 � 109 206Pb 51.7 4
232Th a 1.41 � 1010 208Pb 42.7 13
40K b 1.28 � 109 40Ca 1.31 4

In the table Q is the total energy released in the decay of one par-
ent nucleus to the final stable end point and f is the abundance of
the isotope in kilograms per kilogram of granite; ppm means parts
per million. (a) Show that these materials produce energy as heat
at the rate of 1.0 � 10�9 W for each kilogram of granite. (b)
Assuming that there is 2.7 � 1022 kg of granite in a 20-km-thick
spherical shell at the surface of Earth, estimate the power of this
decay process over all of Earth. Compare this power with the total
solar power intercepted by Earth, 1.7 � 1017 W.

•••59 The radionuclide 32P decays to 32S as described
by Eq. 42-24. In a particular decay event, a 1.71 MeV electron is
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emitted, the maximum possible value. What is the kinetic energy
of the recoiling 32S atom in this event? (Hint: For the electron it is
necessary to use the relativistic expressions for kinetic energy and
linear momentum.The 32S atom is nonrelativistic.)

Module 42-6 Radioactive Dating
•60 A 5.00 g charcoal sample from an ancient fire pit has a 14C
activity of 63.0 disintegrations/min. A living tree has a 14C activity
of 15.3 disintegrations/min per 1.00 g. The half-life of 14C is 5730 y.
How old is the charcoal sample?

•61 The isotope 238U decays to 206Pb with a half-life of 4.47 � 109

y.Although the decay occurs in many individual steps, the first step
has by far the longest half-life; therefore, one can often consider
the decay to go directly to lead.That is,

A rock is found to contain 4.20 mg of 238U and 2.135 mg of 206Pb.
Assume that the rock contained no lead at formation, so all the
lead now present arose from the decay of uranium. How many
atoms of (a) 238U and (b) 206Pb does the rock now contain? (c) How
many atoms of 238U did the rock contain at formation? (d) What is
the age of the rock?

••62 A particular rock is thought to be 260 million years old. If it
contains 3.70 mg of 238U, how much 206Pb should it contain? See
Problem 61.

••63 A rock recovered from far underground is found to con-
tain 0.86 mg of 238U, 0.15 mg of 206Pb, and 1.6 mg of 40Ar. How
much 40K will it likely contain? Assume that 40K decays to only
40Ar with a half-life of 1.25 � 109 y. Also assume that 238U has a
half-life of 4.47 � 109 y.

•••64 The isotope 40K can decay to either 40Ca or 40Ar; assume

238U : 206Pb � various decay products.
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energy absorbed by the body, (d) the resulting physical dose in
grays, and (e) the dose equivalent in sieverts.

Module 42-8 Nuclear Models
•70 A typical kinetic energy for a nucleon in a middle-mass
nucleus may be taken as 5.00 MeV. To what effective nuclear tem-
perature does this correspond, based on the assumptions of the
collective model of nuclear structure?

•71 A measurement of the energy E of an intermediate nucleus must
be made within the mean lifetime 
t of the nucleus and necessarily car-
ries an uncertainty 
E according to the uncertainty principle 


E . 
t .

(a) What is the uncertainty 
E in the energy for an intermediate nu-
cleus if the nucleus has a mean lifetime of 10�22 s? (b) Is the nucleus a
compound nucleus?

•72 In the following list of nuclides, identify (a) those with filled
nucleon shells, (b) those with one nucleon outside a filled shell, and
(c) those with one vacancy in an otherwise filled shell: 13C, 18O, 40K,
49Ti, 60Ni, 91Zr, 92Mo, 121Sb, 143Nd, 144Sm, 205Tl, and 207Pb.

••73 Consider the three formation processes shown for the
compound nucleus 20Ne in Fig. 42-14. Here are some of the atomic
and particle masses:

20Ne 19.992 44 u a 4.002 60 u
19F 18.998 40 u p 1.007 83 u
16O 15.994 91 u

What energy must (a) the alpha particle, (b) the proton, and (c) the
g-ray photon have to provide 25.0 MeV of excitation energy to the
compound nucleus?

Additional Problems
74 In a certain rock, the ratio of lead atoms to uranium 
atoms is 0.300.Assume that uranium has a half-life of 4.47 × 109 y and
that the rock had no lead atoms when it formed. How old is the rock?

75 A certain stable nuclide, after absorbing a neutron, emits
an electron, and the new nuclide splits spontaneously into two al-
pha particles. Identify the nuclide.

76 A typical chest x-ray radiation dose is 250 mSv, delivered by x
rays with an RBE factor of 0.85. Assuming that the mass of the ex-
posed tissue is one-half the patient’s mass of 88 kg, calculate the
energy absorbed in joules.

77 How many years are needed to reduce the activity of 14C to
0.020 of its original activity? The half-life of 14C is 5730 y.

78 Radioactive element AA can decay to either element BB or
element CC. The decay depends on chance, but the ratio of the result-
ing number of BB atoms to the resulting number of CC atoms is al-
ways 2/1.The decay has a half-life of 8.00 days.We start with a sample
of pure AA. How long must we wait until the number of CC atoms is
1.50 times the number  of AA atoms?

79 One of the dangers of radioactive fallout from a nu-
clear bomb is its 90Sr, which decays with a 29-year half-life. Because
it has chemical properties much like those of calcium, the stron-
tium, if ingested by a cow, becomes concentrated in the cow’s milk.
Some of the 90Sr ends up in the bones of whoever drinks the milk.
The energetic electrons emitted in the beta decay of 90Sr damage
the bone marrow and thus impair the production of red blood cells.
A 1 megaton bomb produces approximately 400 g of 90Sr. If the
fallout spreads uniformly over a 2000 km2 area, what ground area

SSM

SSM

SSM

SSM

� �

both decays have a half-life of 1.26 � 109 y. The ratio of the Ca pro-
duced to the Ar produced is 8.54/1 � 8.54. A sample originally had
only 40K. It now has equal amounts of 40K and 40Ar; that is, the ratio of
K to Ar is 1/1 � 1. How old is the sample? (Hint: Work this like other
radioactive-dating problems, except that this decay has two products.)

Module 42-7 Measuring Radiation Dosage
•65 The nuclide 198Au, with a half-life of 2.70 d, is used
in cancer therapy. What mass of this nuclide is required to produce
an activity of 250 Ci?

•66 A radiation detector records 8700 counts in 1.00 min.
Assuming that the detector records all decays, what is the activity
of the radiation source in (a) becquerels and (b) curies?

•67 An organic sample of mass 4.00 kg absorbs 2.00 mJ via slow
neutron radiation (RBE � 5). What is the dose equivalent (mSv)?

••68 A 75 kg person receives a whole-body radiation dose of 
2.4 � 10�4 Gy, delivered by alpha particles for which the RBE fac-
tor is 12. Calculate (a) the absorbed energy in joules and the dose
equivalent in (b) sieverts and (c) rem.

••69 An 85 kg worker at a breeder reactor plant accidentally in-
gests 2.5 mg of 239Pu dust. This isotope has a half-life of 24 100 y,
decaying by alpha decay. The energy of the emitted alpha particles
is 5.2 MeV, with an RBE factor of 13. Assume that the plutonium
resides in the worker’s body for 12 h (it is eliminated naturally by
the digestive system rather than being absorbed by any of the in-
ternal organs) and that 95% of the emitted alpha particles are
stopped within the body. Calculate (a) the number of plutonium
atoms ingested, (b) the number that decay during the 12 h, (c) the

SSM



would hold an amount of radioactivity equal to the “allowed” limit
for one person, which is 74 000 counts/s?

80 Because of the 1986 explosion and fire in a reactor at the
Chernobyl nuclear power plant in northern Ukraine, part of
Ukraine is contaminated with 137Cs, which undergoes beta-minus
decay with a half-life of 30.2 y. In 1996, the total activity of this con-
tamination over an area of 2.6 � 105 km2 was estimated to be 1 �
1016 Bq. Assume that the 137Cs is uniformly spread over that area
and that the beta-decay electrons travel either directly upward or
directly downward. How many beta-decay electrons would you in-
tercept were you to lie on the ground in that area for 1 h (a) in 1996
and (b) today? (You need to estimate your cross-sectional area
that intercepts those electrons.)

81 Figure 42-20 shows part of the decay scheme of 237Np on a plot
of mass number A versus proton number Z; five lines that represent
either alpha decay or beta-minus decay connect dots that represent
isotopes.What is the isotope at the end of the five decays (as marked
with a question mark in Fig. 42-20)?
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bel (a) all isobaric (constant A) lines and (b) all lines of constant
neutron excess, defined as N � Z.

86 A projectile alpha particle is headed directly toward a
target aluminum nucleus. Both objects are assumed to be spheres.
What energy is required of the alpha particle if it is to momentarily
stop just as its “surface” touches the “surface” of the aluminum nu-
cleus? Assume that the target nucleus remains stationary.

87 Consider a 238U nucleus to be made up of an alpha particle
(4He) and a residual nucleus (234Th). Plot the electrostatic potential
energy U(r), where r is the distance between these particles. Cover
the approximate range 10 fm � r � 100 fm and compare your plot
with that of Fig. 42-10.

88 Characteristic nuclear time is a useful but loosely defined
quantity, taken to be the time required for a nucleon with a few
million electron-volts of kinetic energy to travel a distance equal to
the diameter of a middle-mass nuclide.What is the order of magni-
tude of this quantity? Consider 5 MeV neutrons traversing a nu-
clear diameter of 197Au; use Eq. 42-3.

89 What is the likely mass number of a spherical nucleus with a
radius of 3.6 fm as measured by electron-scattering methods?

90 Using a nuclidic chart, write the symbols for (a) all stable iso-
topes with Z � 60, (b) all radioactive nuclides with N � 60, and (c)
all nuclides with A � 60.

91 If the unit for atomic mass were defined so that the mass of 1H
were exactly 1.000 000 u, what would be the mass of (a) 12C (actual
mass 12.000 000 u) and (b) 238U (actual mass 238.050 785 u)?

92 High-mass radionuclides, which may be either alpha or beta
emitters, belong to one of four decay chains, depending on whether
their mass number A is of the form 4n, 4n � 1, 4n � 2, or 4n � 3,
where n is a positive integer. (a) Justify this statement and show that
if a nuclide belongs to one of these families, all its decay products be-
long to the same family. Classify the following nuclides as to family:
(b) 235U, (c) 236U, (d) 238U, (e) 239Pu, (f) 240Pu, (g) 245Cm, (h) 246Cm, (i)
249Cf, and (j) 253Fm.

93 Find the disintegration energy Q for the decay of 49V by K-
electron capture (see Problem 54). The needed data are mV �
48.948 52 u, mTi � 48.947 87 u, and EK � 5.47 keV.

94 Locate the nuclides displayed in Table 42-1 on the nuclidic chart
of Fig.42-5.Verify that they lie in the stability zone.

95 The radionuclide 32P (T1/2 � 14.28 d) is often used as a tracer to
follow the course of biochemical reactions involving phosphorus. (a)
If the counting rate in a particular experimental setup is initially
3050 counts/s, how much time will the rate take to fall to 170
counts/s? (b) A solution containing 32P is fed to the root system of an
experimental tomato plant, and the 32P activity in a leaf is measured
3.48 days later. By what factor must this reading be multiplied to cor-
rect for the decay that has occurred since the experiment began?

96 At the end of World War II, Dutch authorities arrested Dutch
artist Hans van Meegeren for treason because, during the war, he
had sold a masterpiece painting to the Nazi Hermann Goering.The
painting, Christ and His Disciples at Emmaus by Dutch master
Johannes Vermeer (1632–1675), had been discovered in 1937 by
van Meegeren, after it had been lost for almost 300 years. Soon af-
ter the discovery, art experts proclaimed that Emmaus was possi-
bly the best Vermeer ever seen. Selling such a Dutch national
treasure to the enemy was unthinkable treason.

However, shortly after being imprisoned, van Meegeren sud-
denly announced that he, not Vermeer, had painted Emmaus. He

?

Z

A
237Np

Figure 42-20 Problem 81.

82 After a brief neutron irradiation of silver, two isotopes are
present: 108Ag (T1/2 � 2.42 min) with an initial decay rate of 3.1 �
105/s, and 110Ag (T1/2 � 24.6 s) with an initial decay rate of 4.1 �
106/s. Make a semilog plot similar to Fig. 42-9 showing the total
combined decay rate of the two isotopes as a function of time from
t � 0 until t � 10 min. We used Fig. 42-9 to illustrate the extraction
of the half-life for simple (one isotope) decays. Given only your
plot of total decay rate for the two-isotope system here, suggest a
way to analyze it in order to find the half-lives of both isotopes.

83 Because a nucleon is confined to a nucleus, we can take the
uncertainty in its position to be approximately the nuclear radius r.
Use the uncertainty principle to determine the uncertainty 
p in
the linear momentum of the nucleon. Using the approximation 
p � 
p and the fact that the nucleon is nonrelativistic, calculate the
kinetic energy of the nucleon in a nucleus with A � 100.

84 A radium source contains 1.00 mg of 226Ra, which decays with
a half-life of 1600 y to produce 222Rn, a noble gas. This radon iso-
tope in turn decays by alpha emission with a half-life of 3.82 d. If
this process continues for a time much longer than the half-life of
222Rn, the 222Rn decay rate reaches a limiting value that matches
the rate at which 222Rn is being produced, which is approximately
constant because of the relatively long half-life of 226Ra. For the
source under this limiting condition, what are (a) the activity of
226Ra, (b) the activity of 222Rn, and (c) the total mass of 222Rn?

85 Make a nuclidic chart similar to Fig. 42-6 for the 25 nuclides
118–122Te, 117–121Sb, 116–120Sn, 115–119In, and 114–118Cd. Draw in and la-



explained that he had carefully mimicked Vermeer's style, using a
300-year-old canvas and Vermeer’s choice of pigments; he had then
signed Vermeer’s name to the work and baked the painting to give
it an authentically old look.

Was van Meegeren lying to avoid a conviction of treason, hop-
ing to be convicted of only the lesser crime of fraud? To art experts,
Emmaus certainly looked like a Vermeer but, at the time of van
Meegeren’s trial in 1947, there was no scientific way to answer the
question. However, in 1968 Bernard Keisch of Carnegie-Mellon
University was able to answer the question with newly developed
techniques of radioactive analysis.

Specifically, he analyzed a small sample of white lead-bearing
pigment removed from Emmaus.This pigment is refined from lead
ore, in which the lead is produced by a long radioactive decay se-
ries that starts with unstable 238U and ends with stable 206Pb.To fol-
low the spirit of Keisch’s analysis, focus on the following abbrevi-
ated portion of that decay series, in which intermediate, relatively
short-lived radionuclides have been omitted:

230Th 999: 226Ra999: 210Pb999: 206Pb.

The longer and more important half-lives in this portion of the de-
cay series are indicated.

(a) Show that in a sample of lead ore, the rate at which the
number of 210Pb nuclei changes is given by

dN210

dt
� l226N226 � l210N210,
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where N210 and N226 are the numbers of 210Pb nuclei and 226Ra nu-
clei in the sample and l210 and l226 are the corresponding disinte-
gration constants.

Because the decay series has been active for billions of years
and because the half-life of 210Pb is much less than that of 226Ra, the
nuclides 226Ra and 210Pb are in equilibrium; that is, the numbers of
these nuclides (and thus their concentrations) in the sample do not
change. (b) What is the ratio R226/R210 of the activities of these nu-
clides in the sample of lead ore? (c) What is the ratio N226/N210 of
their numbers?

When lead pigment is refined from the ore, most of the 226Ra
is eliminated. Assume that only 1.00% remains. Just after the pig-
ment is produced, what are the ratios (d) R226/R210 and (e)
N226/N210?

Keisch realized that with time the ratio R226/R210 of the pig-
ment would gradually change from the value in freshly refined
pigment back to the value in the ore, as equilibrium between the
210Pb and the remaining 226Ra is established in the pigment. If
Emmaus were painted by Vermeer and the sample of pigment
taken from it were 300 years old when examined in 1968, the ratio
would be close to the answer of (b). If Emmaus were painted by
van Meegeren in the 1930s and the sample were only about 30
years old, the ratio would be close to the answer of (d). Keisch
found a ratio of 0.09. (f) Is Emmaus a Vermeer?

97 From data presented in the first few paragraphs of Module 42-3,
find (a) the disintegration constant l and (b) the half-life of 238U.

75.4 ky 1.60 ky 22.6 ky
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Energy from the Nucleus

43-1 NUCLEAR FISSION

After reading this module, you should be able to . . . 

43.01 Distinguish atomic and nuclear burning, noting that in
both processes energy is produced because of a reduction
of mass.

43.02 Define the fission process.
43.03 Describe the process of a thermal neutron causing a

235U nucleus to undergo fission, and explain the role of the
intermediate compound nucleus.

43.04 For the absorption of a thermal neutron, calculate the
change in the system’s mass and the energy put into the
resulting oscillation of the intermediate compound nucleus.

43.05 For a given fission process, calculate the Q value in
terms of the binding energy per nucleon.

43.06 Explain the Bohr–Wheeler model for nuclear fission,
including the energy barrier.

43.07 Explain why thermal neutrons cannot cause 238U to
undergo fission.

43.08 Identify the approximate amount of energy (MeV) in the
fission of any high-mass nucleus to two middle-mass nuclei.

43.09 Relate the rate at which nuclei fission and the rate at
which energy is released.

● Nuclear processes are about a million times more effective,
per unit mass, than chemical processes in transforming mass
into other forms of energy.

● If a thermal neutron is captured by a 235U nucleus, the re-
sulting 236U can undergo fission, producing two intermediate-
mass nuclei and one or more neutrons.

● The energy released in such a fission event is Q � 200 MeV.

● Fission can be understood in terms of the collective
model, in which a nucleus is likened to a charged liquid
drop carrying a certain excitation energy.

● A potential barrier must be tunneled through if fission is to
occur. Fissionability depends on the relationship between the
barrier height Eb and the excitation energy En transferred to
the nucleus in the neutron capture.

Key Ideas

Learning Objectives

What Is Physics?
Let’s now turn to a central concern of physics and certain types of engineering:
Can we get useful energy from nuclear sources, as people have done for
thousands of years from atomic sources by burning materials like wood
and coal? As you already know, the answer is yes, but there are major differ-
ences between the two energy sources. When we get energy from wood and coal
by burning them, we are tinkering with atoms of carbon and oxygen, rearranging
their outer electrons into more stable combinations. When we get energy from
uranium in a nuclear reactor, we are again burning a fuel, but now we are tin-
kering with the uranium nucleus, rearranging its nucleons into more stable com-
binations.

Electrons are held in atoms by the electromagnetic Coulomb force,
and it takes only a few electron-volts to pull one of them out. On the
other hand, nucleons are held in nuclei by the strong force, and it takes a
few million electron-volts to pull one of them out. This factor of a few
million is reflected in the fact that we can extract a few million times
more energy from a kilogram of uranium than we can from a kilogram of
coal.
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In both atomic and nuclear burning, the release of energy is accompanied by
a decrease in mass, according to the equation Q � �
m c2. The central differ-
ence between burning uranium and burning coal is that, in the former case, a much
larger fraction of the available mass (again, by a factor of a few million) is con-
sumed.

The different processes that can be used for atomic or nuclear burning pro-
vide different levels of power, or rates at which the energy is delivered. In the
nuclear case, we can burn a kilogram of uranium explosively in a bomb or slowly
in a power reactor. In the atomic case, we might consider exploding a stick of
dynamite or digesting a jelly doughnut.

Table 43-1 shows how much energy can be extracted from 1 kg of matter by
doing various things to it. Instead of reporting the energy directly, the table shows
how long the extracted energy could operate a 100 W lightbulb. Only processes
in the first three rows of the table have actually been carried out; the remaining
three represent theoretical limits that may not be attainable in practice. The
bottom row, the total mutual annihilation of matter and antimatter, is an ultimate
energy production goal. In that process, all the mass energy is transferred to other
forms of energy.

The comparisons of Table 43-1 are computed on a per-unit-mass basis. Kilo-
gram for kilogram, you get several million times more energy from uranium than
you do from coal or from falling water. On the other hand, there is a lot of coal
in Earth’s crust, and water is easily backed up behind a dam.

Nuclear Fission: The Basic Process
In 1932 English physicist James Chadwick discovered the neutron. A few years
later Enrico Fermi in Rome found that when various elements are bombarded
by neutrons, new radioactive elements are produced. Fermi had predicted that
the neutron, being uncharged, would be a useful nuclear projectile; unlike the
proton or the alpha particle, it experiences no repulsive Coulomb force when it
nears a nuclear surface. Even thermal neutrons, which are slowly moving neu-
trons in thermal equilibrium with the surrounding matter at room temperature,
with a kinetic energy of only about 0.04 eV, are useful projectiles in nuclear
studies.

In the late 1930s physicist Lise Meitner and chemists Otto Hahn and Fritz
Strassmann, working in Berlin and following up on the work of Fermi and his
co-workers, bombarded solutions of uranium salts with such thermal neutrons.
They found that after the bombardment a number of new radionuclides were
present. In 1939 one of the radionuclides produced in this way was positively
identified, by repeated tests, as barium. But how, Hahn and Strassmann won-
dered, could this middle-mass element (Z � 56) be produced by bombarding
uranium (Z � 92) with neutrons?

Table 43-1 Energy Released by 1 kg of Matter

Form of Matter Process Timea

Water A 50 m waterfall 5 s
Coal Burning 8 h
Enriched UO2 Fission in a reactor 690 y
235U Complete fission 3 � 104 y
Hot deuterium gas Complete fusion 3 � 104 y
Matter and antimatter Complete annihilation 3 � 107 y

aThis column shows the time interval for which the generated energy could power a 100 W lightbulb.
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The puzzle was solved within a few weeks by Meitner and her nephew Otto
Frisch.They suggested the mechanism by which a uranium nucleus, having absorbed
a thermal neutron, could split, with the release of energy, into two roughly equal
parts, one of which might well be barium. Frisch named the process fission.

Meitner’s central role in the discovery of fission was not fully recognized until
recent historical research brought it to light. She did not share in the Nobel Prize
in chemistry that was awarded to Otto Hahn in 1944. However, in 1997 Meitner
was (finally) honored by having an element named after her: meitnerium (symbol
Mt, Z � 109).

A Closer Look at Fission
Figure 43-1 shows the distribution by mass number of the fragments produced
when 235U is bombarded with thermal neutrons. The most probable mass num-
bers, occurring in about 7% of the events, are centered around A � 95 and A �
140. Curiously, the “double-peaked” character of Fig. 43-1 is still not understood.

In a typical 235U fission event, a 235U nucleus absorbs a thermal neutron,
producing a compound nucleus 236U in a highly excited state. It is this nucleus
that actually undergoes fission, splitting into two fragments. These fragments—
between them—rapidly emit two neutrons, leaving (in a typical case) 140Xe
(Z � 54) and 94Sr (Z � 38) as fission fragments. Thus, the stepwise fission equa-
tion for this event is

(43-1)

Note that during the formation and fission of the compound nucleus, there is
conservation of the number of protons and of the number of neutrons involved
in the process (and thus conservation of their total number and the net charge).

In Eq. 43-1, the fragments 140Xe and 94Sr are both highly unstable, under-
going beta decay (with the conversion of a neutron to a proton and the emission
of an electron and a neutrino) until each reaches a stable end product. For xenon,
the decay chain is

T1/2 14 s 64 s 13 d 40 h Stable (43-2)
Z 54 55 56 57 58

140Xe : 140Cs : 140Ba : 140La : 140Ce

235U � n : 236U : 140Xe � 94Sr � 2n.

Figure 43-1 The distribution by mass number of the fragments that are found when many
fission events of 235U are examined. Note that the vertical scale is logarithmic.
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For strontium, it is

T1/2 75 s 19 min Stable (43-3)
Z 38 39 40

As we should expect from Module 42-5, the mass numbers (140 and 94) of the
fragments remain unchanged during these beta-decay processes and the atomic
numbers (initially 54 and 38) increase by unity at each step.

Inspection of the stability band on the nuclidic chart of Fig. 42-5 shows
why the fission fragments are unstable. The nuclide 236U, which is the fission-
ing nucleus in the reaction of Eq. 43-1, has 92 protons and 236 � 92, or 144,
neutrons, for a neutron /proton ratio of about 1.6. The primary fragments
formed immediately after the fission reaction have about this same
neutron /proton ratio. However, stable nuclides in the middle-mass region
have smaller neutron /proton ratios, in the range of 1.3 to 1.4. The primary
fragments are thus neutron rich (they have too many neutrons) and will eject
a few neutrons, two in the case of the reaction of Eq. 43-1. The fragments that
remain are still too neutron rich to be stable. Beta decay offers a mechanism
for getting rid of the excess neutrons — namely, by changing them into pro-
tons within the nucleus.

We can estimate the energy released by the fission of a high-mass nuclide by
examining the total binding energy per nucleon 
Eben before and after the
fission. The idea is that fission can occur because the total mass energy will
decrease; that is, 
Eben will increase so that the products of the fission are more
tightly bound.Thus, the energy Q released by the fission is

(43-4)

For our estimate, let us assume that fission transforms an initial high-mass nucleus
to two middle-mass nuclei with the same number of nucleons.Then we have

(43-5)

From Fig. 42-7, we see that for a high-mass nuclide (A � 240), the binding energy
per nucleon is about 7.6 MeV/nucleon. For middle-mass nuclides (A � 120), it
is about 8.5 MeV/nucleon. Thus, the energy released by fission of a high-mass
nuclide to two middle-mass nuclides is

(43-6)� �7.6
MeV

nucleon �(240 nucleons) � 200 MeV.

Q � �8.5
MeV

nucleon �(2 nuclei)�120
nucleons
nucleus �

Q � � final

Eben

� �final number
of nucleons � � �initial


Eben
� �initial number

of nucleons �.

Q � � total final
binding energy� � � initial

binding energy�.

94Sr : 94Y : 94Zr

Checkpoint 1
A generic fission event is

Which of the following pairs cannot represent X and Y: (a) 141Xe and 93Sr; (b) 139Cs
and 95Rb; (c) 156Nd and 79Ge; (d) 121In and 113Ru?

235U � n : X � Y � 2n.

A Model for Nuclear Fission
Soon after the discovery of fission, Niels Bohr and John Wheeler used the col-
lective model of the nucleus (Module 42-8), based on the analogy between a
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nucleus and a charged liquid drop, to explain the main nuclear features. Figure
43-2 suggests how the fission process proceeds from this point of view. When a
high-mass nucleus — let us say 235U — absorbs a slow (thermal) neutron, as in
Fig. 43-2a, that neutron falls into the potential well associated with the strong
forces that act in the nuclear interior. The neutron’s potential energy is then
transformed into internal excitation energy of the nucleus, as Fig. 43-2b sug-
gests. The amount of excitation energy that a slow neutron carries into a
nucleus is equal to the binding energy En of the neutron in that nucleus, which
is the change in mass energy of the neutron – nucleus system due to the neu-
tron’s capture.

Figures 43-2c and d show that the nucleus, behaving like an energetically
oscillating charged liquid drop, will sooner or later develop a short “neck” and
will begin to separate into two charged “globs.” Two competing forces then act on
the globs: Because they are positively charged, the electric force attempts to sep-
arate them. Because they hold protons and neutrons, the strong force attempts
to pull them together. If the electric repulsion drives them far enough apart to
break the neck, the two fragments, each still carrying some residual excitation en-
ergy, will fly apart (Figs. 43-2e and f ). Fission has occurred.

This model gave a good qualitative picture of the fission process. What
remained to be seen, however, was whether it could answer a hard question: Why
are some high-mass nuclides (235U and 239Pu, say) readily fissionable by thermal
neutrons when other, equally massive nuclides (238U and 243Am, say) are not?

A

Figure 43-2 The stages of a typical fission process, according to the collective model of Bohr and Wheeler.

(a) (b)

Neutron

(c)

( f ) (g)(e)

r

(h)

Neutrons

(d)

The 235U absorbs
a slow neutron
(with little
kinetic energy),
becoming 236U.

The strong force,
however, decreases
very quickly with
distance between
the globs.

This fission decreases
the mass energy,
thus releasing energy.

So, if the globs
move apart enough,
the electric repulsion
rips apart the nucleus.

The two fragments
eject neutrons, further
reducing mass energy.

Energy is transferred
from mass energy
to energy of the
oscillations caused
by the absorption.

Both globs contain
protons and are
positively charged
and thus they repel
each other.

But the protons and
neutrons also attract
one another by the
strong force that
binds the nucleus.
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Bohr and Wheeler were able to answer this question. Figure 43-3 shows a
graph of the potential energy of the fissioning nucleus at various stages, derived
from their model for the fission process. This energy is plotted against the distor-
tion parameter r, which is a rough measure of the extent to which the oscillating
nucleus departs from a spherical shape.When the fragments are far apart, this pa-
rameter is simply the distance between their centers (Fig. 43-2e).

The energy difference between the initial state (r � 0) and the final state 
(r � 
) of the fissioning nucleus—that is, the disintegration energy Q—is
labeled in Fig. 43-3. The central feature of that figure, however, is that the poten-
tial energy curve passes through a maximum at a certain value of r. Thus, there is
a potential barrier of height Eb that must be surmounted (or tunneled through)
before fission can occur. This reminds us of alpha decay (Fig. 42-10), which is also
a process that is inhibited by a potential barrier.

We see then that fission will occur only if the absorbed neutron provides
an excitation energy En great enough to overcome the barrier. This energy En

need not be quite as great as the barrier height Eb because of the possibility of
quantum-physics tunneling.

Table 43-2 shows, for four high-mass nuclides, this test of whether capture
of a thermal neutron can cause fissioning. For each nuclide, the table shows
both the barrier height Eb of the nucleus that is formed by the neutron capture
and the excitation energy En due to the capture. The values of Eb are calculated
from the theory of Bohr and Wheeler. The values of En are calculated from the
change in mass energy due to the neutron capture.

For an example of the calculation of En, we can go to the first line in the
table, which represents the neutron capture process

The masses involved are 235.043 922 u for 235U, 1.008 665 u for the neutron,
and 236.045 562 u for 236U. It is easy to show that, because of the neutron
capture, the mass decreases by 7.025 � 10�3 u.Thus, energy is transferred from mass
energy to excitation energy En. Multiplying the change in mass by c2 (� 931.494 013
MeV/u) gives us En � 6.5 MeV, which is listed on the first line of the table.

The first and third results in Table 43-2 are historically profound because they
are the reasons the two atomic bombs used in World War II contained 235U (first
bomb) and 239Pu (second bomb).That is, for 235U and 239Pu, En � Eb.This means that
fission by absorption of a thermal neutron is predicted to occur for these nuclides.
For the other two nuclides in Table 43-2 (238U and 243Am), we have En � Eb; thus,

235U � n : 236U.

Table 43-2 Test of the Fissionability of Four Nuclides

Target Nuclide Nuclide Being Fissioned En (MeV) Eb (MeV) Fission by Thermal Neutrons?

235U 236U 6.5 5.2 Yes
238U 239U 4.8 5.7 No
239Pu 240Pu 6.4 4.8 Yes
243Am 244Am 5.5 5.8 No

Figure 43-3 The potential energy at various
stages in the fission process, as predicted
from the collective model of Bohr and
Wheeler. The Q of the reaction (about 200
MeV) and the fission barrier height Eb are
both indicated.
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there is not enough energy from a thermal neutron for the excited nucleus to sur-
mount the barrier or to tunnel through it effectively. Instead of fissioning, the nu-
cleus gets rid of its excitation energy by emitting a gamma-ray photon.

The nuclides 238U and 243Am can be made to fission, however, if they absorb
a substantially energetic (rather than a thermal) neutron. A 238U nucleus, for
example, might fission if it happens to absorb a neutron of at least 1.3 MeV in a
so-called fast fission process (“fast” because the neutron is fast).

The two atomic bombs used in World War II depended on the ability of
thermal neutrons to cause many high-mass nuclides in the cores of the bombs to
fission nearly all at once. The process is initiated by a neutron emitter such as
beryllium. After its emitted thermal neutrons cause the fission of the first set of
235U, each fission releases more thermal neutrons, which cause more 235U to fis-
sion and release thermal neutrons. This chain reaction would rapidly spread
through the 235U in the bomb, resulting in an explosive and devastating output of
energy. Researchers knew that 235U would work, but they had refined only
enough for one bomb from uranium ore, which consists mainly of 238U, which
thermal neutrons will not fission. As the first bomb was being deployed, a 239Pu
bomb was tested successfully in New Mexico (Fig. 43-4), so the next deployed
bomb contained 239Pu rather than 235U.

Courtesy U.S. Department of Energy

Figure 43-4 This image has transfixed the world since World War II. When Robert
Oppenheimer, the head of the scientific team that developed the atomic bomb,
witnessed the first atomic explosion, he quoted from a sacred Hindu text: “Now I am
become Death, the destroyer of worlds.”
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The Nuclear Reactor
For large-scale energy release due to fission, one fission event must trigger oth-
ers, so that the process spreads throughout the nuclear fuel like flame through a
log.The fact that more neutrons are produced in fission than are consumed raises
the possibility of just such a chain reaction, with each neutron that is produced
potentially triggering another fission. The reaction can be either rapid (as in a
nuclear bomb) or controlled (as in a nuclear reactor).

Suppose that we wish to design a reactor based on the fission of 235U by
thermal neutrons. Natural uranium contains 0.7% of this isotope, the remaining
99.3% being 238U, which is not fissionable by thermal neutrons. Let us give our-

Additional examples, video, and practice available at WileyPLUS

neutrons on the right of that equation. The mass difference
for the reaction of Eq. 43-7 is

and the corresponding disintegration energy is

(Answer)

which is in good agreement with our estimate of Eq. 43-6.
If the fission event takes place in a bulk solid, most of

this disintegration energy, which first goes into kinetic en-
ergy of the decay products, appears eventually as an in-
crease in the internal energy of that body, revealing itself
as a rise in temperature. Five or six percent or so of the dis-
integration energy, however, is associated with neutrinos
that are emitted during the beta decay of the primary fis-
sion fragments. This energy is carried out of the system and
is lost.

� 208 MeV,

Q � �
m c2 � �(�0.223 54 u)(931.494 013 MeV/u)

� �0.223 54 u,

� (235.0439 u)


m � (139.9054 u � 93.9063 u � 1.008 66 u)

Find the disintegration energy Q for the fission event of 
Eq. 43-1, taking into account the decay of the fission frag-
ments as displayed in Eqs. 43-2 and 43-3. Some needed
atomic and particle masses are

235U 235.0439 u 140Ce 139.9054 u

n 1.008 66 u 94Zr 93.9063 u

KEY IDEAS

(1) The disintegration energy Q is the energy transferred
from mass energy to kinetic energy of the decay products.
(2) Q � �
m c2, where 
m is the change in mass.

Calculations: Because we are to include the decay of the
fission fragments, we combine Eqs. 43-1, 43-2, and 43-3 to
write the overall transformation as

(43-7)

Only the single neutron appears here because the initiating
neutron on the left side of Eq. 43-1 cancels one of the two

235U : 140Ce � 94Zr � n.

43-2 THE NUCLEAR REACTOR

After reading this module, you should be able to . . .

43.10 Define chain reaction.
43.11 Explain the neutron leakage problem, the neutron

energy problem, and the neutron capture problem.
43.12 Identify the multiplication factor and apply it to relate

the number of neutrons and power output after a given

number of cycles to the initial number of neutrons and
power output.

43.13 Distinguish subcritical, critical, and supercritical.
43.14 Describe the control over the response time.
43.15 Give a general description of a complete generation.

● A nuclear reactor uses a controlled chain reaction of fission events to generate electrical power.

Learning Objectives

Key Idea

Sample Problem 43.01 Q value in a fission of uranium-235
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selves an edge by artificially enriching the uranium fuel so that it contains
perhaps 3% 235U.Three difficulties still stand in the way of a working reactor.

1. The Neutron Leakage Problem. Some of the neutrons produced by fission
will leak out of the reactor and so not be part of the chain reaction. Leakage
is a surface effect; its magnitude is proportional to the square of a typical
reactor dimension (the surface area of a cube of edge length a is 6a2).
Neutron production, however, occurs throughout the volume of the fuel and
is thus proportional to the cube of a typical dimension (the volume of the
same cube is a3). We can make the fraction of neutrons lost by leakage as
small as we wish by making the reactor core large enough, thereby reducing
the surface-to-volume ratio (� 6/a for a cube).

2. The Neutron Energy Problem. The neutrons produced by fission are fast,
with kinetic energies of about 2 MeV. However, fission is induced most effec-
tively by thermal neutrons. The fast neutrons can be slowed down by mixing
the uranium fuel with a substance—called a moderator—that has two prop-
erties: It is effective in slowing down neutrons via elastic collisions, and it does
not remove neutrons from the core by absorbing them so that they do not
result in fission. Most power reactors in North America use water as a moder-
ator; the hydrogen nuclei (protons) in the water are the effective component.
We saw in Chapter 9 that if a moving particle has a head-on elastic collision
with a stationary particle, the moving particle loses all its kinetic energy if the
two particles have the same mass. Thus, protons form an effective moderator
because they have approximately the same mass as the fast neutrons whose
speed we wish to reduce.

3. The Neutron Capture Problem. As the fast (2 MeV) neutrons generated by
fission are slowed down in the moderator to thermal energies (about 0.04 eV),
they must pass through a critical energy interval (from 1 to 100 eV) in which
they are particularly susceptible to nonfission capture by 238U nuclei. Such
resonance capture, which results in the emission of a
gamma ray, removes the neutron from the fission
chain. To minimize such nonfission capture, the ura-
nium fuel and the moderator are not intimately
mixed but rather are placed in different regions of
the reactor volume.

In a typical reactor, the uranium fuel is in the
form of uranium oxide pellets, which are inserted
end to end into long, hollow metal tubes. The liquid
moderator surrounds bundles of these fuel rods,
forming the reactor core. This geometric arrange-
ment increases the probability that a fast neutron,
produced in a fuel rod, will find itself in the moder-
ator when it passes through the critical energy in-
terval. Once the neutron has reached thermal ener-
gies, it may still be captured in ways that do not
result in fission (called thermal capture). However,
it is much more likely that the thermal neutron will
wander back into a fuel rod and produce a fission
event.

Figure 43-5 shows the neutron balance in a typical
power reactor operating at constant power. Let us trace
a sample of 1000 thermal neutrons through one com-
plete cycle, or generation, in the reactor core. They pro-
duce 1330 neutrons by fission in the 235U fuel and 40
neutrons by fast fission in 238U, which gives 370 neu-
trons more than the original 1000, all of them fast.

1000
thermal
neutrons

1330
fast

neutrons

1370
fast

neutrons

1300
fast neutrons 

Fast neutron 
leakage

Resonance
captures

Thermal
captures

Thermal neutron 
leakage

1170 thermal 
neutrons

1050
thermal
neutrons

1000
thermal
neutrons

Fast
fissions

238U

Thermal
fissions

235U fuel Moderator

Figure 43-5 Neutron bookkeeping in a reactor.A generation of 1000 ther-
mal neutrons interacts with the 235U fuel, the 238U matrix, and the modera-
tor.They produce 1370 neutrons by fission, but 370 of these are lost by
nonfission capture or by leakage, meaning that 1000 thermal neutrons are
left to form the next generation.The figure is drawn for a reactor running
at a steady power level.
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When the reactor is operating at a steady power level, exactly the same number
of neutrons (370) is then lost by leakage from the core and by nonfission capture,
leaving 1000 thermal neutrons to start the next generation. In this cycle, of
course, each of the 370 neutrons produced by fission events represents a deposit
of energy in the reactor core, heating up the core.

The multiplication factor k—an important reactor parameter—is the ratio
of the number of neutrons present at the conclusion of a particular generation 
to the number present at the beginning of that generation. In Fig. 43-5, the
multiplication factor is 1000/1000, or exactly unity. For k � 1, the operation of
the reactor is said to be exactly critical, which is what we wish it to be for
steady-power operation. Reactors are actually designed so that they are inher-
ently supercritical (k � 1); the multiplication factor is then adjusted to critical
operation (k � 1) by inserting control rods into the reactor core. These rods, con-
taining a material such as cadmium that absorbs neutrons readily, can be inserted
farther to reduce the operating power level and withdrawn to increase the power
level or to compensate for the tendency of reactors to go subcritical as (neutron-
absorbing) fission products build up in the core during continued operation.

If you pulled out one of the control rods rapidly, how fast would the reactor
power level increase? This response time is controlled by the fascinating circum-
stance that a small fraction of the neutrons generated by fission do not escape
promptly from the newly formed fission fragments but are emitted from these frag-
ments later, as the fragments decay by beta emission. Of the 370 “new” neutrons
produced in Fig. 43-5, for example, perhaps 16 are delayed, being emitted from frag-
ments following beta decays whose half-lives range from 0.2 to 55 s. These delayed
neutrons are few in number, but they serve the essential purpose of slowing the re-
actor response time to match practical mechanical reaction times.

Figure 43-6 shows the broad outlines of an electrical power plant based on
a pressurized-water reactor (PWR), a type in common use in North America. In
such a reactor, water is used both as the moderator and as the heat transfer
medium. In the primary loop, water is circulated through the reactor vessel and

Figure 43-6 A simplified layout of a nuclear power plant, based on a pressurized-water
reactor. Many features are omitted—among them the arrangement for cooling the
reactor core in case of an emergency.
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transfers energy at high temperature and pressure (possibly 600 K and 150 atm)
from the hot reactor core to the steam generator, which is part of the secondary
loop. In the steam generator, evaporation provides high-pressure steam to oper-
ate the turbine that drives the electric generator. To complete the secondary
loop, low-pressure steam from the turbine is cooled and condensed to water and
forced back into the steam generator by a pump. To give some idea of scale, a
typical reactor vessel for a 1000 MW (electric) plant may be 12 m high and weigh
4 MN.Water flows through the primary loop at a rate of about 1 ML/min.

An unavoidable feature of reactor operation is the accumulation of radio-
active wastes, including both fission products and heavy transuranic nuclides such
as plutonium and americium. One measure of their radioactivity is the rate at
which they release energy in thermal form. Figure 43-7 shows the thermal power
generated by such wastes from one year’s operation of a typical large nuclear
plant. Note that both scales are logarithmic. Most “spent” fuel rods from power
reactor operation are stored on site, immersed in water; permanent secure stor-
age facilities for reactor waste have yet to be completed. Much weapons-derived
radioactive waste accumulated during World War II and in subsequent years is
also still in on-site storage.

Figure 43-7 The thermal power released by
the radioactive wastes from one year’s
operation of a typical large nuclear power
plant, shown as a function of time.The curve
is the superposition of the effects of many
radionuclides, with a wide variety of half-
lives. Note that both scales are logarithmic.
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Calculation: For steady-state operation (P is constant), we
find

(Answer)

(c) At what rate (in kilograms per day) is the 235U fuel dis-
appearing? Assume conditions at start-up.

KEY IDEA

235U disappears due to two processes: (1) the fission process
with the rate calculated in part (b) and (2) the nonfission
capture of neutrons at about one-fourth that rate.

Calculations: The total rate at which the number of atoms
of 235U decreases is

(1 � 0.25)(1.06 � 1020 atoms/s) � 1.33 � 1020 atoms/s.

We want the corresponding decrease in the mass of the 235U
fuel. We start with the mass of each 235U atom. We cannot use
the molar mass for uranium listed in Appendix F because that
molar mass is for 238U, the most common uranium isotope.
Instead, we shall assume that the mass of each 235U atom in
atomic mass units is equal to the mass number A. Thus, the
mass of each 235U atom is 235 u (� 3.90 � 10�25 kg). Then
the rate at which the 235U fuel disappears is

(Answer)

(d) At this rate of fuel consumption, how long would the
fuel supply of 235U last?

� 5.19 � 10�5 kg /s � 4.5 kg/d.

dM
dt

� (1.33 � 10 20 atoms/s)(3.90 � 10�25 kg/atom)

� 1.1 � 1020 fissions/s.

� 1.06 � 1020 fissions/s

R �
P
Q

� � 3.4 � 109 J/s
200 MeV/fission � �

1 MeV
1.60 � 10�13 J �

Sample Problem 43.02 Nuclear reactor: efficiency, fission rate, consumption rate

A large electric generating station is powered by a pressurized-
water nuclear reactor. The thermal power produced in the re-
actor core is 3400 MW, and 1100 MW of electricity is generated
by the station. The fuel charge is 8.60 � 104 kg of uranium, in
the form of uranium oxide, distributed among 5.70 � 104 fuel
rods.The uranium is enriched to 3.0% 235U.

(a) What is the station’s efficiency?

KEY IDEA

The efficiency for this power plant or any other energy de-
vice is given by this: Efficiency is the ratio of the output
power (rate at which useful energy is provided) to the input
power (rate at which energy must be supplied).

Calculation: Here the efficiency (eff) is

(Answer)

The efficiency—as for all power plants—is controlled by
the second law of thermodynamics. To run this plant, energy
at the rate of 3400 MW � 1100 MW, or 2300 MW, must be
discharged as thermal energy to the environment.

(b) At what rate R do fission events occur in the reactor core?

KEY IDEAS

1. The fission events provide the input power P of 3400 MW
(� 3.4 � 109 J/s).

2. From Eq. 43-6, the energy Q released by each event is
about 200 MeV.

� 0.32, or 32%.

 eff �
useful output
energy input

�
1100 MW (electric)
3400 MW (thermal)
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A Natural Nuclear Reactor
On December 2, 1942, when their reactor first became operational (Fig. 43-8),
Enrico Fermi and his associates had every right to assume that they had put into
operation the first fission reactor that had ever existed on this planet. About
30 years later it was discovered that, if they did in fact think that, they were wrong.

Some two billion years ago, in a uranium deposit recently mined in Gabon,West
Africa, a natural fission reactor apparently went into operation and ran for perhaps
several hundred thousand years before shutting down.We can test whether this could
actually have happened by considering two questions:

1. Was There Enough Fuel? The fuel for a uranium-based fission reactor must
be the easily fissionable isotope 235U, which, as noted earlier, constitutes only
0.72% of natural uranium.This isotopic ratio has been measured for terrestrial
samples, in Moon rocks, and in meteorites; in all cases the abundance values
are the same. The clue to the discovery in West Africa was that the uranium
in that deposit was deficient in 235U, some samples having abundances as low
as 0.44%. Investigation led to the speculation that this deficit in 235U could be
accounted for if, at some earlier time, the 235U was partially consumed by the
operation of a natural fission reactor.

The serious problem remains that, with an isotopic abundance of only
0.72%, a reactor can be assembled (as Fermi and his team learned) only after

Additional examples, video, and practice available at WileyPLUS

linked only to the fissioning that produces the input power
(3400 MW) and not to the nonfission capture of neutrons
(although both these processes affect the rate at which 235U
is consumed).

Calculation: From Einstein’s relation E � mc2, we can
write

(43-8)

(Answer)

We see that the mass conversion rate is about the mass of
one common coin per day, considerably less (by about three
orders of magnitude) than the fuel consumption rate calcu-
lated in (c).

� 3.8 � 10�8 kg /s � 3.3 g /d.

dm
dt

�
dE/dt

c2 �
3.4 � 109 W

(3.00 � 108 m/s)2

Calculation: At start-up, we know that the total mass of
235U is 3.0% of the 8.60 � 104 kg of uranium oxide. So, the
time T required to consume this total mass of 235U at the
steady rate of 4.5 kg/d is

(Answer)

In practice, the fuel rods must be replaced (usually in
batches) before their 235U content is entirely consumed.

(e) At what rate is mass being converted to other forms of
energy by the fission of 235U in the reactor core?

KEY IDEA

The conversion of mass energy to other forms of energy is

T �
(0.030)(8.60 � 104 kg)

4.5 kg/d
� 570 d.

43-3 A NATURAL NUCLEAR REACTOR

After reading this module, you should be able to . . .

43.16 Describe the evidence that a natural nuclear reactor
operated in Gabon, West Africa, about 2 billion years ago.

43.17 Explain why a deposit of uranium ore could go critical
in the past but not today.

● A natural nuclear reactor occurred in West Africa about two billion years ago.

Learning Objectives

Key Idea
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thoughtful design and with scrupulous attention to
detail. There seems no chance that a nuclear reactor
could go critical “naturally.”

However, things were different in the distant
past. Both 235U and 238U are radioactive, with half-
lives of 7.04 � 108 y and 44.7 � 108 y, respectively.
Thus, the half-life of the readily fissionable 235U is
about 6.4 times shorter than that of 238U. Because
235U decays faster, there was more of it, relative to
238U, in the past. Two billion years ago, in fact, this
abundance was not 0.72%, as it is now, but 3.8%.
This abundance happens to be just about the abun-
dance to which natural uranium is artificially en-
riched to serve as fuel in modern power reactors.

With this readily fissionable fuel available, the
presence of a natural reactor (provided certain other conditions are met) is
less surprising. The fuel was there. Two billion years ago, incidentally, the high-
est order of life-form to have evolved was the blue-green alga.

2. What Is the Evidence? The mere depletion of 235U in an ore deposit does
not prove the existence of a natural fission reactor. One looks for more con-
vincing evidence.

If there was a reactor, there must now be fission products. Of the 30 or so el-
ements whose stable isotopes are produced in a reactor, some must still remain.
Study of their isotopic abundances could provide the evidence we need.

Of the several elements investigated, the case of neodymium is spectacularly
convincing. Figure 43-9a shows the isotopic abundances of the seven stable
neodymium isotopes as they are normally found in nature. Figure 43-9b shows
these abundances as they appear among the ultimate stable fission products of
the fission of 235U.The clear differences are not surprising, considering the totally
different origins of the two sets of isotopes. Note particularly that 142Nd, the dom-
inant isotope in the natural element, is absent from the fission products.

The big question is: What do the neodymium isotopes found in the uranium
ore body in West Africa look like? If a natural reactor operated there, we would
expect to find isotopes from both sources (that is, natural isotopes as well as
fission-produced isotopes). Figure 43-9c shows the abundances after dual-source
and other corrections have been made to the data. Comparison of Figs. 43-9b and
c indicates that there was indeed a natural fission reactor at work.

Figure 43-8 A painting of the first nuclear re-
actor, assembled during World War II on
a squash court at the University of Chicago
by a team headed by Enrico Fermi.This re-
actor was built of lumps of uranium embed-
ded in blocks of graphite.

Gary Sheehan, Birth of the Atomic Age, 1957. Reproduced courtesy Chicago 
Historical Society.
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Figure 43-9 The distribution by mass number of the isotopes of neodymium as they occur in
(a) natural terrestrial deposits of the ores of this element and (b) the spent fuel of a power
reactor. (c) The distribution (after several corrections) found for neodymium from the
uranium mine in Gabon,West Africa. Note that (b) and (c) are virtually identical and are
quite different from (a).
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Thermonuclear Fusion: The Basic Process
The binding energy curve of Fig. 42-7 shows that energy can be released if two
light nuclei combine to form a single larger nucleus, a process called nuclear
fusion. That process is hindered by the Coulomb repulsion that acts to prevent
the two positively charged particles from getting close enough to be within range
of their attractive nuclear forces and thus “fusing.”The range of the nuclear force
is short, hardly beyond the nuclear “surface,” but the range of the repulsive
Coulomb force is long and that force thus forms an energy barrier. The height of
this Coulomb barrier depends on the charges and the radii of the two interacting
nuclei. For two protons (Z � 1), the barrier height is 400 keV. For more highly
charged particles, of course, the barrier is correspondingly higher.

To generate useful amounts of energy, nuclear fusion must occur in bulk matter.
The best hope for bringing this about is to raise the temperature of the material until
the particles have enough energy—due to their thermal motions alone—to pene-
trate the Coulomb barrier.We call this process thermonuclear fusion.

In thermonuclear studies, temperatures are reported in terms of the kinetic
energy K of interacting particles via the relation

K � kT, (43-9)

in which K is the kinetic energy corresponding to the most probable speed of the
interacting particles, k is the Boltzmann constant, and the temperature T is in
kelvins. Thus, rather than saying, “The temperature at the center of the Sun is
1.5 � 107 K,” it is more common to say,“The temperature at the center of the Sun
is 1.3 keV.”

Room temperature corresponds to K � 0.03 eV; a particle with only this
amount of energy could not hope to overcome a barrier as high as, say, 400 keV.
Even at the center of the Sun, where kT � 1.3 keV, the outlook for thermonu-
clear fusion does not seem promising at first glance. Yet we know that thermo-
nuclear fusion not only occurs in the core of the Sun but is the dominant feature
of that body and of all other stars.

The puzzle is solved when we realize two facts: (1) The energy calculated
with Eq. 43-9 is that of the particles with the most probable speed, as defined
in Module 19-6; there is a long tail of particles with much higher speeds and,
correspondingly, much higher energies. (2) The barrier heights that we have
calculated represent the peaks of the barriers. Barrier tunneling can occur at
energies considerably below those peaks, as we saw with alpha decay in
Module 42-4.

43-4 THERMONUCLEAR FUSION: THE BASIC PROCESS

After reading this module, you should be able to . . .

43.18 Define thermonuclear fusion, explaining why the nuclei
must be at a high temperature to fuse. 

43.19 For nuclei, apply the relationship between their kinetic
energy and their temperature.

43.20 Explain the two reasons why fusion of two nuclei can
occur even when the kinetic energy associated with their
most probable speed is insufficient to overcome their
energy barrier.

● The release of energy by fusion of two light nuclei is inhib-
ited by their mutual Coulomb barrier (due to the electric repul-
sion between the two collections of protons).

● Fusion can occur in bulk matter only if the temperature is
high enough (that is, if the particle energy is high enough) for
appreciable barrier tunneling to occur.

Learning Objectives

Key Ideas
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Figure 43-10 sums things up. The curve marked n(K) in this figure is a
Maxwell distribution curve for the protons in the Sun’s core, drawn to correspond
to the Sun’s central temperature. This curve differs from the Maxwell distribution
curve given in Fig. 19-8 in that here the curve is drawn in terms of energy and not
of speed. Specifically, for any kinetic energy K, the expression n(K) dK gives the
probability that a proton will have a kinetic energy lying between the values K and
K � dK. The value of kT in the core of the Sun is indicated by the vertical line in
the figure; note that many of the Sun’s core protons have energies greater than
this value.

The curve marked p(K) in Fig. 43-10 is the probability of barrier penetration
by two colliding protons. The two curves in Fig. 43-10 suggest that there is a par-
ticular proton energy at which proton–proton fusion events occur at a maximum
rate.At energies much above this value, the barrier is transparent enough but too
few protons have these energies, and so the fusion reaction cannot be sustained.
At energies much below this value, plenty of protons have these energies but the
Coulomb barrier is too formidable.

Figure 43-10 The curve marked n(K) gives the
number density per unit energy for protons
at the center of the Sun.The curve marked
p(K) gives the probability of barrier pene-
tration (and hence fusion) for proton–proton
collisions at the Sun’s core temperature.
The vertical line marks the value of kT at
this temperature. Note that the two curves
are drawn to (separate) arbitrary vertical
scales.

0 1 2 3 4 5 6 7 
Kinetic energy (keV) 

kT

n(K)

p(K)

Checkpoint 2
Which of these potential fusion reactions will not result in the net release of energy:
(a) 6Li � 6Li, (b) 4He � 4He, (c) 12C � 12C, (d) 20Ne � 20Ne, (e) 35Cl � 35Cl, and (f) 
14N � 35Cl? (Hint: Consult the curve of Fig. 42-7.)

This yields, with known values,

(Answer)

(b) At what temperature would a proton in a gas of protons
have the average kinetic energy calculated in (a) and thus have
energy equal to the height of the Coulomb barrier?

KEY IDEA

If we treat the proton gas as an ideal gas, then from Eq.
19-24, the average energy of the protons is 
where k is the Boltzmann constant.

Calculation: Solving that equation for T and using the 
result of (a) yield

(Answer)

The temperature of the core of the Sun is only about 
1.5 � 107 K; thus fusion in the Sun’s core must involve pro-
tons whose energies are far above the average energy.

� 3 � 109 K.

T �
2Kavg

3k
�

(2)(5.75 � 10�14 J)

(3)(1.38 � 10�23 J/K)

Kavg � 3
2 kT,

� 5.75 � 10�14 J � 360 keV � 400 keV.

�
(1.60 � 10�19 C)2

(16p)(8.85 � 10�12 F/m)(1 � 10�15 m)

K �
e2

16p´0R

Sample Problem 43.03 Fusion in a gas of protons, and the required temperature

Assume a proton is a sphere of radius R 1 fm. Two protons
are fired at each other with the same kinetic energy K.

(a) What must K be if the particles are brought to rest
by their mutual Coulomb repulsion when they are just
“touching” each other? We can take this value of K as a
representative measure of the height of the Coulomb
barrier.

KEY IDEAS

The mechanical energy E of the two-proton system is con-
served as the protons move toward each other and momen-
tarily stop. In particular, the initial mechanical energy Ei is
equal to the mechanical energy Ef when they stop. The ini-
tial energy Ei consists only of the total kinetic energy 2K of
the two protons. When the protons stop, energy Ef consists
only of the electric potential energy U of the system, as
given by Eq. 24-46 (U � q1q2/4p´0r).

Calculations: Here the distance r between the protons
when they stop is their center-to-center distance 2R, and
their charges q1 and q2 are both e. Then we can write the
conservation of energy Ei � Ef as

2K �
1

4p´0

e2

2R
.

�

Additional examples, video, and practice available at WileyPLUS
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Thermonuclear Fusion in the Sun and Other Stars
The Sun has been radiating energy at the rate of 3.9 � 1026 W for several billion
years.Where does all this energy come from? It does not come from chemical burn-
ing. (Even if the Sun were made of coal and had its own oxygen, burning the coal
would last only 1000 y.) It also does not come from the Sun shrinking, transferring
gravitational potential energy to thermal energy. (Its lifetime would be short by a fac-
tor of at least 500.) That leaves only thermonuclear fusion. The Sun, as you will see,
burns not coal but hydrogen, and in a nuclear furnace, not an atomic or chemical one.

The fusion reaction in the Sun is a multistep process in which hydrogen is
burned to form helium, hydrogen being the “fuel” and helium the “ashes.”
Figure 43-11 shows the proton–proton (p-p) cycle by which this occurs.

The p-p cycle starts with the collision of two protons (1H � 1H) to form a
deuteron (2H), with the simultaneous creation of a positron (e�) and a neutrino
(n). The positron immediately annihilates with any nearby electron (e�), their
mass energy appearing as two gamma-ray photons (g) as in Module 21-3.

A pair of such events is shown in the top row of Fig. 43-11. These events
are actually extremely rare. In fact, only once in about 1026 proton –
proton collisions is a deuteron formed; in the vast majority of cases, the two
protons simply rebound elastically from each other. It is the slowness of this
“bottleneck” process that regulates the rate of energy production and keeps the
Sun from exploding. In spite of this slowness, there are so very many protons in
the huge and dense volume of the Sun’s core that deuterium is produced in just
this way at the rate of 1012 kg/s.

Once a deuteron has been produced, it quickly collides with another proton and
forms a 3He nucleus, as the middle row of Fig. 43-11 shows.Two such 3He nuclei may
eventually (within 105 y; there is plenty of time) find each other, forming an alpha
particle (4He) and two protons, as the bottom row in the figure shows.

Overall, we see from Fig. 43-11 that the p-p cycle amounts to the combination
of four protons and two electrons to form an alpha particle, two neutrinos, and

43-5 THERMONUCLEAR FUSION IN THE SUN AND OTHER STARS

After reading this module, you should be able to . . .

43.21 Explain the proton–proton cycle for the Sun.
43.22 Explain the stages after the Sun has consumed its

hydrogen.

43.23 Explain the probable source of the elements that are
more massive than hydrogen and helium.

● The Sun’s energy arises mainly from the thermonuclear
burning of hydrogen to form helium by the proton–proton
cycle.

● Elements up to (the peak of the binding energy
curve) can be built up by other fusion processes once the hy-
drogen fuel supply of a star has been exhausted.

A � 56

Learning Objectives

Key Ideas

Figure 43-11 The proton–proton mechanism
that accounts for energy production in the
Sun. In this process, protons fuse to form an
alpha particle (4He), with a net energy
release of 26.7 MeV for each event.

(Q = 0.42 MeV)1H + 1H 2H + e++ v← 
← e+ + e– γ + γ (Q = 1.02 MeV)

(Q = 0.42 MeV)1H + 1H 2H + e++ v← 
← e+ + e– γ + γ (Q = 1.02 MeV)

(Q = 5.49 MeV)2H + 1H 3He + γ ← (Q = 5.49 MeV)2H + 1H 3He + γ ← 

(Q = 12.86 MeV)3He + 3He 4He + 1H + 1H← 
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six gamma-ray photons.That is,

(43-10)

Let us now add two electrons to each side of Eq. 43-10, obtaining

(43-11)

The quantities in the two sets of parentheses then represent atoms (not bare
nuclei) of hydrogen and of helium. That allows us to compute the energy release
in the overall reaction of Eq. 43-10 (and Eq. 43-11) as

in which 4.002 603 u is the mass of a helium atom and 1.007 825 u is the mass of a hy-
drogen atom. Neutrinos have a negligibly small mass, and gamma-ray photons have
no mass; thus, they do not enter into the calculation of the disintegration energy.

This same value of Q follows (as it must) from adding up the Q values for the
separate steps of the proton–proton cycle in Fig. 43-11.Thus,

About 0.5 MeV of this energy is carried out of the Sun by the two neutrinos indi-
cated in Eqs. 43-10 and 43-11; the rest (� 26.2 MeV) is deposited in the core of
the Sun as thermal energy. That thermal energy is then gradually transported to
the Sun’s surface, where it is radiated away from the Sun as electromagnetic
waves, including visible light.

Hydrogen burning has been going on in the Sun for about 5 � 109 y, and
calculations show that there is enough hydrogen left to keep the Sun going for about
the same length of time into the future. In 5 billion years, however, the Sun’s core,
which by that time will be largely helium, will begin to cool and the Sun will start to
collapse under its own gravity. This will raise the core temperature and cause the
outer envelope to expand, turning the Sun into what is called a red giant.

If the core temperature increases to about 108 K again, energy can be produced
through fusion once more—this time by burning helium to make carbon. As a star
evolves further and becomes still hotter, other elements can be formed by other fu-
sion reactions. However, elements more massive than those near the peak of the
binding energy curve of Fig.42-7 cannot be produced by further fusion processes.

Elements with mass numbers beyond the peak are thought to be formed by neu-
tron capture during cataclysmic stellar explosions that we call supernovas (Fig. 43-12).

� 26.7 MeV.

Q � (2)(0.42 MeV) � (2)(1.02 MeV) � (2)(5.49 MeV) � 12.86 MeV

� 26.7 MeV,

� �[4.002 603 u � (4)(1.007 825 u)][931.5 MeV/u]

Q � �
m c2

(4 1H � 4e�) : (4He � 2e�) � 2� � 6�.

4 1H � 2e� : 4He � 2� � 6�.

Figure 43-12 (a) The star
known as Sanduleak,as
it appeared until 1987.
(b) We then began to
intercept light from the
star’s supernova,desig-
nated SN1987a; the ex-
plosion was 100 million
times brighter than our
Sun and could be seen
with the unaided eye
even through it was
outside our Galaxy.

(b) Courtesy Anglo Australian Telescope Board(a)
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where 
E is the energy produced when protons of mass 
m
are consumed. From our discussion in this module, we know
that 26.2 MeV (� 4.20 � 10�12 J) of thermal energy is pro-
duced when four protons are consumed.That is, 
E � 4.20 �
10�12 J for a mass consumption of 
m � 4(1.67 � 10�27 kg).
Substituting these data into Eq. 43-12 and using the power P
of the Sun given in Appendix C, we find that

(Answer)

Thus, a huge amount of hydrogen is consumed by the Sun
every second. However, you need not worry too much
about the Sun running out of hydrogen,because its mass of 2 �
1030 kg will keep it burning for a long, long time.

� 6.2 � 1011 kg/s.

dm
dt

�

m

E

P �
4(1.67 � 10�27 kg)

4.20 � 10�12 J
 (3.90 � 1026 W)

Sample Problem 43.04 Consumption rate of hydrogen in the Sun

At what rate dm/dt is hydrogen being consumed in the core
of the Sun by the p-p cycle of Fig. 43-11?

KEY IDEA

The rate dE/dt at which energy is produced by hydrogen
(proton) consumption within the Sun is equal to the rate P at
which energy is radiated by the Sun:

Calculations: To bring the mass consumption rate dm/dt
into the power equation, we can rewrite it as

(43-12)P �
dE
dt

�
dE
dm

dm
dt

�

E

m

dm
dt

,

P �
dE
dt

.

Additional examples, video, and practice available at WileyPLUS

43-6 CONTROLLED THERMONUCLEAR FUSION

After reading this module, you should be able to . . .

43.24 Give the three requirements for a thermonuclear reactor.
43.25 Define Lawson’s criterion.

43.26 Give general descriptions of the magnetic confinement
approach and the inertial confinement approach.

● Controlled thermonuclear fusion for energy generation has
not yet been achieved. The d-d and d-t reactions are the most
promising mechanisms.

● A successful fusion reactor must satisfy Lawson’s criterion, 

and must have a suitably high plasma temperature T.
● In a tokamak, the plasma is confined by a magnetic field.
● In laser fusion, inertial confinement is used.

nt � 1020 s/m3,

Learning Objectives

Key Ideas

In such an event the outer shell of the star is blown outward into space, where it
mixes with the tenuous medium that fills the space between the stars. It is from this
medium, continually enriched by debris from stellar explosions, that new stars form,
by condensation under the influence of the gravitational force.

The abundance on Earth of elements heavier than hydrogen and helium
suggests that our solar system has condensed out of interstellar material that
contained the remnants of such explosions. Thus, all the elements around us—
including those in our own bodies—were manufactured in the interiors of stars that
no longer exist.As one scientist put it:“In truth, we are the children of the stars.”

Controlled Thermonuclear Fusion
The first thermonuclear reaction on Earth occurred at Eniwetok Atoll on
November 1, 1952, when the United States exploded a fusion device, generating
an energy release equivalent to 10 million tons of TNT. The high temperatures
and densities needed to initiate the reaction were provided by using a fission
bomb as a trigger.
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A sustained and controllable source of fusion power—a fusion reactor as
part of, say, an electric generating plant—is considerably more difficult to
achieve. That goal is nonetheless being pursued vigorously in many countries
around the world, because many people look to the fusion reactor as the power
source of the future, at least for the generation of electricity.

The p-p scheme displayed in Fig. 43-11 is not suitable for an Earth-bound fusion
reactor because it is hopelessly slow. The process succeeds in the Sun only because
of the enormous density of protons in the center of the Sun.The most attractive re-
actions for terrestrial use appear to be two deuteron–deuteron (d-d) reactions,

(Q � �3.27 MeV), (43-13)

(Q � �4.03 MeV), (43-14)

and the deuteron–triton (d-t) reaction

(Q � �17.59 MeV). (43-15)

(The nucleus of the hydrogen isotope 3H (tritium) is called the triton and has a
half-life of 12.3 y.) Deuterium, the source of deuterons for these reactions, has an
isotopic abundance of only 1 part in 6700 but is available in unlimited quantities
as a component of seawater. Proponents of power from the nucleus have de-
scribed our ultimate power choice—after we have burned up all our fossil fuels—
as either “burning rocks” (fission of uranium extracted from ores) or “burning
water” (fusion of deuterium extracted from water).

There are three requirements for a successful thermonuclear reactor:

1. A High Particle Density n. The number density of interacting particles (the
number of, say, deuterons per unit volume) must be great enough to ensure
that the d-d collision rate is high enough. At the high temperatures required,
the deuterium would be completely ionized, forming an electrically neutral
plasma (ionized gas) of deuterons and electrons.

2. A High Plasma Temperature T. The plasma must be hot. Otherwise the col-
liding deuterons will not be energetic enough to penetrate the Coulomb
barrier that tends to keep them apart. A plasma ion temperature of 35 keV,
corresponding to 4 � 108 K, has been achieved in the laboratory. This is about
30 times higher than the Sun’s central temperature.

3. A Long Confinement Time t. A major problem is containing the hot plasma
long enough to maintain it at a density and a temperature sufficiently high to
ensure the fusion of enough of the fuel. Because it is clear that no solid con-
tainer can withstand the high temperatures that are necessary, clever confining
techniques are called for; we shall shortly discuss two of them.

It can be shown that, for the successful operation of a thermonuclear reactor
using the d-t reaction, it is necessary to have

nt � 1020 s/m3. (43-16)

This condition, known as Lawson’s criterion, tells us that we have a choice
between confining a lot of particles for a short time or fewer particles for a longer
time.Also, the plasma temperature must be high enough.

Two approaches to controlled nuclear power generation are currently under
study.Although neither approach has yet been successful, both are being pursued
because of their promise and because of the potential importance of controlled
fusion to solving the world’s energy problems.

Magnetic Confinement
One avenue to controlled fusion is to contain the fusing material in a very strong
magnetic field—hence the name magnetic confinement. In one version of this
approach, a suitably shaped magnetic field is used to confine the hot plasma in an
evacuated doughnut-shaped chamber called a tokamak (the name is an abbrevia-
tion consisting of parts of three Russian words). The magnetic forces acting on

2H � 3H : 4He � n

2H � 2H : 3H � 1H

2H � 2H : 3He � n
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Figure 43-13 The small spheres on the quarter
are deuterium–tritium fuel pellets, designed
to be used in a laser fusion chamber.

Courtesy Los Alamos National Laboratory, New Mexico

write the (mass) density (the mass per unit volume) of the
system in terms of the particle masses and number density
(the number of particles per unit volume):

(43-17)

Let n be the total number of particles per unit volume in the
compressed pellet. Then, because we know that the device
contains equal numbers of deuterium and tritium atoms, the
number of deuterium atoms per unit volume is n/2, and the
number of tritium atoms per unit volume is also n/2.

Calculations: We can extend Eq. 43-17 to the system consist-

�number density,
m�3 � �particle mass,

kg �.�density,
kg/m3 � �

Sample Problem 43.05 Laser fusion: number of particles and Lawson’s criterion

Suppose a fuel pellet in a laser fusion device contains equal
numbers of deuterium and tritium atoms (and no other mate-
rial). The density d � 200 kg/m3 of the pellet is increased by a
factor of 103 by the action of the laser pulses.

(a) How many particles per unit volume (both deuterons
and tritons) does the pellet contain in its compressed state?
The molar mass Md of deuterium atoms is 2.0 � 10�3

kg/mol, and the molar mass Mt of tritium atoms is 3.0 �
10�3 kg/mol.

KEY IDEA

For a system consisting of only one type of particle, we can

the charged particles that make up the hot plasma keep the plasma from touch-
ing the walls of the chamber.

The plasma is heated by inducing a current in it and by bombarding it with an
externally accelerated beam of particles. The first goal of this approach is to
achieve breakeven, which occurs when the Lawson criterion is met or exceeded.
The ultimate goal is ignition, which corresponds to a self-sustaining thermonu-
clear reaction and a net generation of energy.

Inertial Confinement
A second approach, called inertial confinement, involves “zapping” a solid fuel
pellet from all sides with intense laser beams, evaporating some material from the
surface of the pellet. This boiled-off material causes an inward-moving shock
wave that compresses the core of the pellet, increasing both its particle density
and its temperature. The process is called inertial confinement because (a) the
fuel is confined to the pellet and (b) the particles do not escape from the heated
pellet during the very short zapping interval because of their inertia (their mass).

Laser fusion, using the inertial confinement approach, is being investigated in
many laboratories in the United States and elsewhere. At the Lawrence Livermore
Laboratory, for example, deuterium–tritium fuel pellets, each smaller than a grain
of sand (Fig. 43-13), are to be zapped by 10 synchronized high-power laser pulses
symmetrically arranged around the pellet. The laser pulses are designed to deliver,
in total, some 200 kJ of energy to each fuel pellet in less than a nanosecond.This is a
delivered power of about 2 � 1014 W during the pulse, which is roughly 100 times
the total installed (sustained) electrical power generating capacity of the world!
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Additional examples, video, and practice available at WileyPLUS

Energy from the Nucleus Nuclear processes are about a
million times more effective, per unit mass, than chemical pro-
cesses in transforming mass into other forms of energy.

Nuclear Fission Equation 43-1 shows a fission of 236U induced
by thermal neutrons bombarding 235U. Equations 43-2 and 43-3
show the beta-decay chains of the primary fragments. The energy
released in such a fission event is Q � 200 MeV.

Fission can be understood in terms of the collective model, in
which a nucleus is likened to a charged liquid drop carrying a cer-
tain excitation energy. A potential barrier must be tunneled
through if fission is to occur.The ability of a nucleus to undergo fis-
sion depends on the relationship between the barrier height Eb and
the excitation energy En.

The neutrons released during fission make possible a fission
chain reaction. Figure 43-5 shows the neutron balance for one
cycle of a typical reactor. Figure 43-6 suggests the layout of a
complete nuclear power plant.

Nuclear Fusion The release of energy by the fusion of two
light nuclei is inhibited by their mutual Coulomb barrier (due to

Review & Summary

the electric repulsion between the two collections of protons).
Fusion can occur in bulk matter only if the temperature is high
enough (that is, if the particle energy is high enough) for apprecia-
ble barrier tunneling to occur.

The Sun’s energy arises mainly from the thermonuclear
burning of hydrogen to form helium by the proton–proton cycle
outlined in Fig. 43-11. Elements up to A � 56 (the peak of the
binding energy curve) can be built up by other fusion processes
once the hydrogen fuel supply of a star has been exhausted. Fusion
of more massive elements requires an input of energy and thus
cannot be the source of a star’s energy output.

Controlled Fusion Controlled thermonuclear fusion for
energy generation has not yet been achieved. The d-d and d-t
reactions are the most promising mechanisms. A successful fusion
reactor must satisfy Lawson’s criterion,

nt � 1020 s/m3, (43-16)

and must have a suitably high plasma temperature T.
In a tokamak the plasma is confined by a magnetic field. In

laser fusion inertial confinement is used.

ing of the two types of particles by writing the density d* of the
compressed pellet as the sum of the individual densities:

(43-18)

where md and mt are the masses of a deuterium atom and a
tritium atom, respectively. We can replace those masses with
the given molar masses by substituting

where NA is Avogadro’s number. After making those 
replacements and substituting 1000d for the compressed
density d*, we solve Eq. 43-18 for the particle number den-
sity n to obtain

n �
2000dNA

Md � Mt
,

md �
Md

NA
 and mt �

Mt

NA
,

d* �
n
2

md �
n
2

mt,

which gives us

(Answer)

(b) According to Lawson’s criterion, how long must the
pellet maintain this particle density if breakeven operation
is to take place at a suitably high temperature?

KEY IDEA

If breakeven operation is to occur, the compressed density
must be maintained for a time period t given by Eq. 43-16
(nt � 1020 s/m3).

Calculation: We can now write

(Answer)t �
1020 s/m3

4.8 � 1031 m�3 � 10�12 s.

� 4.8 � 1031 m�3.

n �
(2000)(200 kg/m3)(6.02 � 1023 mol�1)

2.0 � 10�3 kg/mol � 3.0 � 10�3 kg/mol

Questions

1 In the fission process
235U + n : 132Sn + �

�� + 3n,

what number goes in (a) the elevated box (the superscript) and (b)
the descended box (the value of Z)?

2 If a fusion process requires an absorption of energy, does the
average binding energy per nucleon increase or decrease?

3 Suppose a 238U nucleus “swallows” a neutron and then decays
not by fission but by beta-minus decay, in which it emits an elec-
tron and a neutrino. Which nuclide remains after this decay: 239Pu,
238Np, 239Np, or 238Pa?

4 Do the initial fragments formed by fission have more protons
than neutrons, more neutrons than protons, or about the same
number of each?
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5 For the fission reaction

rank the following possibilities for X (or Y), most likely first: 152Nd,
140I, 128In, 115Pd, 105Mo. (Hint: See Fig. 43-1.)

6 To make the newly discovered, very large elements of the peri-
odic table, researchers shoot a medium-size nucleus at a large nu-
cleus. Sometimes a projectile nucleus and a target nucleus fuse to
form one of the very large elements. In such a fusion, is the mass of
the product greater than or less than the sum of the masses of the
projectile and target nuclei?

7 If we split a nucleus into two smaller nuclei, with a release of
energy, has the average binding energy per nucleon increased or
decreased?

8 Which of these elements is not “cooked up” by thermonuclear
fusion processes in stellar interiors: carbon, silicon, chromium,
bromine?

235U � n : X � Y � 2n,

9 Lawson’s criterion for the d-t reaction (Eq. 43-16) is 
nt � 1020 s/m3. For the d-d reaction, do you expect the number on
the right-hand side to be the same, smaller, or larger?

10 About 2% of the energy generated in the Sun’s core by the
p-p reaction is carried out of the Sun by neutrinos. Is the energy
associated with this neutrino flux equal to, greater than, or less
than the energy radiated from the Sun’s surface as electromag-
netic radiation?

11 A nuclear reactor is operating at a certain power level, with
its multiplication factor k adjusted to unity. If the control rods are
used to reduce the power output of the reactor to 25% of its for-
mer value, is the multiplication factor now a little less than unity,
substantially less than unity, or still equal to unity?

12 Pick the most likely member of each pair to be one of the ini-
tial fragments formed by a fission event: (a) 93Sr or 93Ru, (b) 140Gd
or 140I, (c) 155Nd or 155Lu. (Hint: See Fig. 42-5 and the periodic table,
and consider the neutron abundance.)

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 43-1 Nuclear Fission
•1 The isotope 235U decays by alpha emission with a half-life of
7.0 � 108 y. It also decays (rarely) by spontaneous fission, and if the
alpha decay did not occur, its half-life due to spontaneous fission
alone would be 3.0 � 1017 y. (a) At what rate do spontaneous fis-
sion decays occur in 1.0 g of 235U? (b) How many 235U alpha-decay
events are there for every spontaneous fission event?

•2 The nuclide 238Np requires 4.2 MeV for fission. To remove a
neutron from this nuclide requires an energy expenditure of 5.0
MeV. Is 237Np fissionable by thermal neutrons?

•3 A thermal neutron (with approximately zero kinetic energy) is
absorbed by a 238U nucleus. How much energy is transferred from
mass energy to the resulting oscillation of the nucleus? Here are some
atomic masses and the neutron mass.

237U 237.048 723 u 238U 238.050 782 u
239U 239.054 287 u 240U 240.056 585 u

n 1.008 664 u

•4 The fission properties of the plutonium isotope 239Pu are very
similar to those of 235U. The average energy released per fission is
180 MeV. How much energy, in MeV, is released if all the atoms in
1.00 kg of pure 239Pu undergo fission?

•5 During the Cold War, the Premier of the Soviet Union threat-
ened the United States with 2.0 megaton 239Pu warheads. (Each
would have yielded the equivalent of an explosion of 2.0 megatons
of TNT, where 1 megaton of TNT releases MeV of en-
ergy.) If the plutonium that actually fissioned had been 8.00% of
the total mass of the plutonium in such a warhead, what was that
total mass?

•6 (a)–(d) Complete the following table, which refers to the gen-
eralized fission reaction 235U � n : X � Y � bn.

2.6 � 1028

X Y b

140Xe (a) 1
139I (b) 2

(c) 100Zr 2
141Cs 92Rb (d)

•7 At what rate must 235U nuclei undergo fission by neutron
bombardment to generate energy at the rate of 1.0 W? Assume
that Q � 200 MeV.

•8 (a) Calculate the disintegration energy Q for the fission of the
molybdenum isotope 98Mo into two equal parts. The masses you
will need are 97.905 41 u for 98Mo and 48.950 02 u for 49Sc. (b) If Q
turns out to be positive, discuss why this process does not occur
spontaneously.

•9 (a) How many atoms are contained in 1.0 kg of pure 235U? (b)
How much energy, in joules, is released by the complete fissioning
of 1.0 kg of 235U? Assume Q � 200 MeV. (c) For how long would
this energy light a 100 W lamp?

•10 Calculate the energy released in the fission reaction

Here are some atomic and particle masses.

235U 235.043 92 u 93Rb 92.921 57 u
141Cs 140.919 63 u n 1.008 66 u

•11 Calculate the disintegration energy Q for the fission of
52Cr into two equal fragments.The masses you will need are 

52Cr 51.940 51 u 26Mg 25.982 59 u.

235U � n : 141Cs � 93Rb � 2n.
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••12 Consider the fission of 238U by fast neutrons. In one
fission event, no neutrons are emitted and the final stable end
products, after the beta decay of the primary fission fragments, are
140Ce and 99Ru. (a) What is the total of the beta-decay events in the
two beta-decay chains? (b) Calculate Q for this fission process.
The relevant atomic and particle masses are

238U 238.050 79 u 140Ce 139.905 43 u
n 1.008 66 u 99Ru 98.905 94 u

••13 Assume that immediately after the fission of 236U accord-
ing to Eq. 43-1, the resulting 140Xe and 94Sr nuclei are just touching
at their surfaces. (a) Assuming the nuclei to be spherical, calculate
the electric potential energy associated with the repulsion between
the two fragments. (Hint: Use Eq. 42-3 to calculate the radii of the
fragments.) (b) Compare this energy with the energy released in a
typical fission event.

••14 A 236U nucleus undergoes fission and breaks into two mid-
dle-mass fragments, 140Xe and 96Sr. (a) By what percentage does
the surface area of the fission products differ from that of the origi-
nal 236U nucleus? (b) By what percentage does the volume change?
(c) By what percentage does the electric potential energy change?
The electric potential energy of a uniformly charged sphere of ra-
dius r and charge Q is given by

••15 A 66 kiloton atomic bomb is fueled with pure 235U (Fig.
43-14), 4.0% of which actually undergoes fission. (a) What is the
mass of the uranium in the bomb? (It is not 66 kilotons—that is
the amount of released energy specified in terms of the mass of
TNT required to produce the same amount of energy.) (b) How
many primary fission fragments are produced? (c) How many fis-
sion neutrons generated are released to the environment? (On av-
erage, each fission produces 2.5 neutrons.)

SSM

U �
3
5 � Q2

4p´0 r �.

Figure 43-14 Problem 15. A “button” of 235U ready to be recast and
machined for a warhead.

Courtesy Martin Marietta Energy Systems/U.S. Department 
of Energy

nitude of the released energy, specified in terms of the mass of
TNT required to produce the same energy release. One megaton
of TNT releases 2.6 1028 MeV of energy. (a) Calculate the rating,
in tons of TNT, of an atomic bomb containing 95.0 kg of 239Pu, of
which 2.5 kg actually undergoes fission. (See Problem 4.) (b) Why
is the other 92.5 kg of 239Pu needed if it does not fission?

••17 In a particular fission event in which 235U is fis-
sioned by slow neutrons, no neutron is emitted and one of the pri-
mary fission fragments is 83Ge. (a) What is the other fragment? The
disintegration energy is Q � 170 MeV. How much of this energy
goes to (b) the 83Ge fragment and (c) the other fragment? Just af-
ter the fission, what is the speed of (d) the 83Ge fragment and (e)
the other fragment?

Module 43-2 The Nuclear Reactor
•18 A 200 MW fission reactor consumes half its fuel in 3.00 y.
How much 235U did it contain initially? Assume that all the energy
generated arises from the fission of 235U and that this nuclide is
consumed only by the fission process.

••19 The neutron generation time tgen in a reactor is the average
time needed for a fast neutron emitted in one fission event to be
slowed to thermal energies by the moderator and then initiate an-
other fission event. Suppose the power output of a reactor at time 
t � 0 is P0. Show that the power output a time t later is P(t), where

and k is the multiplication factor. For constant
power output, k � 1.

••20 A reactor operates at 400 MW with a neutron generation
time (see Problem 19) of 30.0 ms. If its power increases for 5.00
min with a multiplication factor of 1.0003, what is the power output
at the end of the 5.00 min?

••21 The thermal energy generated when radiation from radionu-
clides is absorbed in matter can serve as the basis for a small power
source for use in satellites, remote weather stations, and other iso-
lated locations. Such radionuclides are manufactured in abundance
in nuclear reactors and may be separated chemically from the spent
fuel. One suitable radionuclide is 238Pu (T1/2 � 87.7 y), which is an
alpha emitter with Q � 5.50 MeV. At what rate is thermal energy
generated in 1.00 kg of this material?

••22 The neutron generation time tgen (see Problem 19) in a par-
ticular reactor is 1.0 ms. If the reactor is operating at a power level
of 500 MW, about how many free neutrons are present in the reac-
tor at any moment?

••23 The neutron generation time (see Problem 19)
of a particular reactor is 1.3 ms. The reactor is generating energy at
the rate of 1200.0 MW.To perform certain maintenance checks, the
power level must temporarily be reduced to 350.00 MW. It is de-
sired that the transition to the reduced power level take 2.6000 s.
To what (constant) value should the multiplication factor be set to
effect the transition in the desired time?

••24 (See Problem 21.) Among the many fission products that
may be extracted chemically from the spent fuel of a nuclear reac-
tor is 90Sr (T1/2 � 29 y). This isotope is produced in typical large re-
actors at the rate of about 18 kg/y. By its radioactivity, the isotope
generates thermal energy at the rate of 0.93 W/g. (a) Calculate the
effective disintegration energy Qeff associated with the decay of a
90Sr nucleus. (This energy Qeff includes contributions from the de-
cay of the 90Sr daughter products in its decay chain but not from
neutrinos, which escape totally from the sample.) (b) It is desired
to construct a power source generating 150 W (electric power) to
use in operating electronic equipment in an underwater acoustic

WWWSSM

P(t) � P0 kt/tgen

WWWSSM

�

••16 In an atomic bomb, energy release is due to the uncontrolled
fission of plutonium 239Pu (or 235U). The bomb’s rating is the mag-
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2H

235U or
239Pu

Figure 43-15 Problem 43.

beacon. If the power source is based on the thermal energy gener-
ated by 90Sr and if the efficiency of the thermal–electric conver-
sion process is 5.0%, how much 90Sr is needed?

••25 (a) A neutron of mass mn and kinetic energy K makes a
head-on elastic collision with a stationary atom of mass m. Show
that the fractional kinetic energy loss of the neutron is given by

Find 
K/K for each of the following acting as the stationary atom:
(b) hydrogen, (c) deuterium, (d) carbon, and (e) lead. (f) If 
K � 1.00 MeV initially, how many such head-on collisions would it
take to reduce the neutron’s kinetic energy to a thermal value
(0.025 eV) if the stationary atoms it collides with are deuterium, a
commonly used moderator? (In actual moderators, most collisions
are not head-on.)

Module 43-3 A Natural Nuclear Reactor
•26 How long ago was the ratio 235U/238U in natural uranium de-
posits equal to 0.15?

•27 The natural fission reactor discussed in Module 43-3 is esti-
mated to have generated 15 gigawatt-years of energy during its
lifetime. (a) If the reactor lasted for 200 000 y, at what average
power level did it operate? (b) How many kilograms of 235U did it
consume during its lifetime?

••28 Some uranium samples from the natural reactor site de-
scribed in Module 43-3 were found to be slightly enriched in 235U,
rather than depleted. Account for this in terms of neutron absorp-
tion by the abundant isotope 238U and the subsequent beta and
alpha decay of its products.

••29 The uranium ore mined today contains only 0.72% of
fissionable 235U, too little to make reactor fuel for thermal-neutron
fission. For this reason, the mined ore must be enriched with 235U.
Both 235U (T1/2 � 7.0 � 108 y) and 238U (T1/2 � 4.5 � 109 y) are ra-
dioactive. How far back in time would natural uranium ore have
been a practical reactor fuel, with a 235U/238U ratio of 3.0%?

Module 43-4 Thermonuclear Fusion: The Basic Process
•30 Verify that the fusion of 1.0 kg of deuterium by the reaction

(Q � �3.27 MeV)

could keep a 100 W lamp burning for 2.5 � 104 y.

•31 Calculate the height of the Coulomb barrier for the
head-on collision of two deuterons, with effective radius 2.1 fm.

••32 For overcoming the Coulomb barrier for fusion, methods
other than heating the fusible material have been suggested. For
example, if you were to use two particle accelerators to accelerate
two beams of deuterons directly toward each other so as to collide
head-on, (a) what voltage would each accelerator require in order
for the colliding deuterons to overcome the Coulomb barrier? (b)
Why do you suppose this method is not presently used?

••33 Calculate the Coulomb barrier height for two 7Li nuclei that
are fired at each other with the same initial kinetic energy K. (Hint:
Use Eq. 42-3 to calculate the radii of the nuclei.)

••34 In Fig. 43-10, the equation for n(K), the number density per
unit energy for particles, is

where n is the total particle number density. At the center of the

n(K) � 1.13n
K1/2

(kT)3/2 e�K/kT,

SSM

2H � 2H : 3He � n

SSM


K
K

�
4mnm

(m � mn)2 .

SSM

Sun, the temperature is 1.50 107 K and the average proton en-
ergy Kavg is 1.94 keV. Find the ratio of the proton number density
at 5.00 keV to the number density at the average proton energy.

Module 43-5 Thermonuclear Fusion in the Sun 
and Other Stars
•35 Assume that the protons in a hot ball of protons each have a
kinetic energy equal to kT, where k is the Boltzmann constant and
T is the absolute temperature. If T � 1 � 107 K, what (approxi-
mately) is the least separation any two protons can have?

•36 What is the Q of the following fusion process?

Here are some atomic masses.

2H1 2.014 102 u 1H1 1.007 825 u
3He2 3.016 029 u

•37 The Sun has mass 2.0 � 1030 kg and radiates energy at the
rate 3.9 � 1026 W. (a) At what rate is its mass changing? (b) What
fraction of its original mass has it lost in this way since it began to
burn hydrogen, about 4.5 � 109 y ago?

•38 We have seen that Q for the overall proton–proton fusion
cycle is 26.7 MeV. How can you relate this number to the Q values
for the reactions that make up this cycle, as displayed in Fig. 43-11?

•39 Show that the energy released when three alpha particles
fuse to form 12C is 7.27 MeV. The atomic mass of 4He is 4.0026 u,
and that of 12C is 12.0000 u.

••40 Calculate and compare the energy released by (a) the fusion
of 1.0 kg of hydrogen deep within the Sun and (b) the fission of 1.0
kg of 235U in a fission reactor.

••41 A star converts all its hydrogen to helium, achieving a
100% helium composition. Next it converts the helium to carbon
via the triple-alpha process,

The mass of the star is 4.6 � 1032 kg, and it generates energy at the
rate of 5.3 � 1030 W. How long will it take to convert all the helium
to carbon at this rate?

••42 Verify the three Q values reported for the reactions given in
Fig. 43-11.The needed atomic and particle masses are

1H 1.007 825 u 4He 4.002 603 u
2H 2.014 102 u e	 0.000 548 6 u
3He 3.016 029 u

(Hint: Distinguish carefully between atomic and nuclear masses,
and take the positrons properly into account.)

••43 Figure 43-15 shows an early proposal for a hydrogen bomb.
The fusion fuel is deuterium, 2H.The high temperature and particle
density needed for fusion are provided by an atomic bomb “trig-

4He � 4He � 4He : 12C � 7.27 MeV.

2H1 � 1H1 : 3He2 � photon

�
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ger” that involves a 235U or 239Pu fission fuel arranged to impress
an imploding, compressive shock wave on the deuterium. The fu-
sion reaction is

(a) Calculate Q for the fusion reaction. For needed atomic masses,
see Problem 42. (b) Calculate the rating (see Problem 16) of the fu-
sion part of the bomb if it contains 500 kg of deuterium, 30.0% of
which undergoes fusion.

••44 Assume that the core of the Sun has one-eighth of the Sun’s
mass and is compressed within a sphere whose radius is one-fourth
of the solar radius.Assume further that the composition of the core
is 35% hydrogen by mass and that essentially all the Sun’s energy
is generated there. If the Sun continues to burn hydrogen at the
current rate of 6.2 � 1011 kg/s, how long will it be before the hydro-
gen is entirely consumed? The Sun’s mass is 2.0 � 1030 kg.

••45 (a) Calculate the rate at which the Sun generates neutrinos.
Assume that energy production is entirely by the proton–proton
fusion cycle. (b) At what rate do solar neutrinos reach Earth?

••46 In certain stars the carbon cycle is more effective than the
proton–proton cycle in generating energy.This carbon cycle is

Q1 � 1.95 MeV,

Q2 � 1.19,

Q3 � 7.55,

Q4 � 7.30,

Q5 � 1.73,

Q6 � 4.97.

(a) Show that this cycle is exactly equivalent in its overall effects to
the proton–proton cycle of Fig. 43-11. (b) Verify that the two cy-
cles, as expected, have the same Q value.

••47 Coal burns according to the reaction C � O2 :WWWSSM

15N � 1H : 12C � 4He,

15O : 15N � e� � �,

14N � 1H : 15O � g,

13C � 1H : 14N � g,

13N : 13C � e� � �,

12C � 1H : 13N � g,

5 2H : 3He � 4He � 1H � 2n.

sumed. (b) The power of the Sun is 3.9 � 1026 W. If its energy derives
from the proton–proton cycle, at what rate is it losing hydrogen? (c)
At what rate is it losing mass? (d) Account for the difference in the
results for (b) and (c). (e) The mass of the Sun is 2.0 � 1030 kg. If it
loses mass at the constant rate calculated in (c), how long will it take
to lose 0.10% of its mass?

51 Many fear that nuclear power reactor technology will
increase the likelihood of nuclear war because reactors can be used
not only to produce electrical energy but also, as a by-product
through neutron capture with inexpensive 238U, to make 239Pu,
which is a “fuel” for nuclear bombs.What simple series of reactions
involving neutron capture and beta decay would yield this pluto-
nium isotope?

52 In the deuteron–triton fusion reaction of Eq. 43-15, what is the
kinetic energy of (a) the alpha particle and (b) the neutron? Neglect
the relatively small kinetic energies of the two combining particles.

53 Verify that, as stated in Module 43-1, neutrons in equilibrium
with matter at room temperature, 300 K, have an average kinetic
energy of about 0.04 eV.

54 Verify that, as reported in Table 43-1, fissioning of the 235U in
1.0 kg of UO2 (enriched so that 235U is 3.0% of the total uranium)
could keep a 100 W lamp burning for 690 y.

55 At the center of the Sun, the density of the gas is 1.5 � 105

kg/m3 and the composition is essentially 35% hydrogen by mass
and 65% helium by mass. (a) What is the number density of pro-
tons there? (b) What is the ratio of that proton density to the den-
sity of particles in an ideal gas at standard temperature (0°C) and
pressure (1.01 � 105 Pa)?

56 Expressions for the Maxwell speed distribution for molecules
in a gas are given in Chapter 19. (a) Show that the most probable
energy is given by

Verify this result with the energy distribution curve of Fig. 43-10, for
which T � 1.5 � 107 K. (b) Show that the most probable speed is
given by

Find its value for protons at T � 1.5 � 107 K. (c) Show that the 
energy corresponding to the most probable speed (which is not the
same as the most probable energy) is

Kv, p � kT.

Locate this quantity on the curve of Fig. 43-10.

57 The uncompressed radius of the fuel pellet of Sample
Problem 43.05 is 20 mm. Suppose that the compressed fuel pellet
“burns” with an efficiency of 10%—that is, only 10% of the
deuterons and 10% of the tritons participate in the fusion reaction
of Eq. 43-15. (a) How much energy is released in each such mi-
croexplosion of a pellet? (b) To how much TNT is each such pellet
equivalent? The heat of combustion of TNT is 4.6 MJ/kg. (c) If a
fusion reactor is constructed on the basis of 100 microexplosions
per second, what power would be generated? (Part of this power
would be used to operate the lasers.)

58 Assume that a plasma temperature of 1 � 108 K is reached in
a laser-fusion device. (a) What is the most probable speed of a
deuteron at that temperature? (b) How far would such a deuteron
move in a confinement time of 1 � 10�12 s?

vp � A
2kT
m

.

Kp � 1
2 kT.

CO2.The heat of combustion is 3.3 � 107 J/kg of atomic carbon con-
sumed. (a) Express this in terms of energy per carbon atom. (b)
Express it in terms of energy per kilogram of the initial reactants,
carbon and oxygen. (c) Suppose that the Sun (mass � 2.0 � 1030 kg)
were made of carbon and oxygen in combustible proportions and
that it continued to radiate energy at its present rate of 3.9 � 1026 W.
How long would the Sun last?

Module 43-6 Controlled Thermonuclear Fusion
•48 Verify the Q values reported in Eqs. 43-13, 43-14, and 43-15.
The needed masses are

1H 1.007 825 u 4He 4.002 603 u
2H 2.014 102 u n 1.008 665 u
3H 3.016 049 u

••49 Roughly 0.0150% of the mass of ordinary water is due to
“heavy water,” in which one of the two hydrogens in an H2O mole-
cule is replaced with deuterium, 2H. How much average fusion
power could be obtained if we “burned” all the 2H in 1.00 liter of
water in 1.00 day by somehow causing the deuterium to fuse via
the reaction 

Additional Problems
50 The effective Q for the proton–proton cycle of Fig. 43-11 is 26.2
MeV. (a) Express this as energy per kilogram of hydrogen con-

2H � 2H : 3He � n?
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Quarks, Leptons, and the Big Bang

44-1 GENERAL PROPERTIES OF ELEMENTARY PARTICLES

After reading this module, you should be able to . . . 

44.01 Identify that a great many different elementary particles
exist or can be created and that nearly all of them are
unstable.

44.02 For the decay of an unstable particle, apply the same
decay equations as used for the radioactive decay of
nuclei.

44.03 Identify spin as the intrinsic angular momentum of a
particle.

44.04 Distinguish fermions from bosons, and identify which
are required to obey the Pauli exclusion principle.

44.05 Distinguish leptons and hadrons, and then identify the
two types of hadrons.

44.06 Distinguish particle from antiparticle, and identify that if
they meet, they undergo  annihilation and are transformed
into photons or into other elementary particles.

44.07 Distinguish the strong force and the weak force.
44.08 To see if a given process for elementary particles is

physically possible, apply the conservation laws for charge,
linear momentum, spin angular momentum, and energy (in-
cluding mass energy).

● The term fundamental particles refers to the basic building
blocks of matter. We can divide the particles into several broad
categories.

● The terms particles and antiparticles originally referred
to common particles (such as the electrons, protons, and
neutrons in your body) and their antiparticle counterparts

(the positrons, antiprotons, and antineutrons), but for most
of the rarely detected particles, the distinction between
particles and antiparticles is made largely to be consistent
with experimental results.

● Fermions (such as the particles in your body) obey the Pauli
exclusion principle; bosons do not.

Learning Objectives

Key Ideas

What Is Physics?
Physicists often refer to the theories of relativity and quantum physics as “mod-
ern physics,” to distinguish them from the theories of Newtonian mechanics and
Maxwellian electromagnetism, which are lumped together as “classical physics.”
As the years go by, the word “modern” seems less and less appropriate for
theories whose foundations were laid down in the opening years of the 20th
century. After all, Einstein published his paper on the photoelectric effect and
his first paper on special relativity in 1905, Bohr published his quantum model of
the hydrogen atom in 1913, and Schrödinger published his matter wave equation
in 1926. Nevertheless, the label of “modern physics” hangs on.

In this closing chapter we consider two lines of investigation that are truly
“modern” but at the same time have the most ancient of roots. They center
around two deceptively simple questions:

What is the universe made of?

How did the universe come to be the way it is?

Progress in answering these questions has been rapid in the last few decades.
Many new insights are based on experiments carried out with large particle

accelerators. However, as they bang particles together at higher and higher
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energies using larger and larger accelerators, physicists come to realize that no
conceivable Earth-bound accelerator can generate particles with energies great
enough to test the ultimate theories of physics.There has been only one source of
particles with these energies, and that was the universe itself within the first
millisecond of its existence.

In this chapter you will encounter a host of new terms and a veritable
flood of particles with names that you should not try to remember. If you are
temporarily bewildered, you are sharing the bewilderment of the physicists
who lived through these developments and who at times saw nothing but 
increasing complexity with little hope of understanding. If you stick with it,
however, you will come to share the excitement physicists felt as marvelous
new accelerators poured out new results, as the theorists put forth ideas each
more daring than the last, and as clarity finally sprang from obscurity. The
main message of this book is that, although we know a lot about the physics of
the world, grand mysteries remain.

Particles, Particles, Particles
In the 1930s, there were many scientists who thought that the problem of the 
ultimate structure of matter was well on the way to being solved. The atom
could be understood in terms of only three particles — the electron, the proton,
and the neutron. Quantum physics accounted well for the structure of the atom
and for radioactive alpha decay. The neutrino had been postulated and,
although not yet observed, had been incorporated by Enrico Fermi into a suc-
cessful theory of beta decay. There was hope that quantum theory applied to
protons and neutrons would soon account for the structure of the nucleus.What
else was there?

The euphoria did not last. The end of that same decade saw the beginning
of a period of discovery of new particles that continues to this day. The new
particles have names and symbols such as muon (m), pion (p), kaon (K), and
sigma ( ). All the new particles are unstable; that is, they spontaneously trans-
form into other types of particles according to the same functions of time that
apply to unstable nuclei. Thus, if N0 particles of any one type are present in a
sample at time t � 0, the number N of those particles present at some later time t
is given by Eq. 42-15,

N � N0e�lt, (44-1)

the rate of decay R, from an initial value of R0, is given by Eq. 42-16,

R � R0e�lt, (44-2)

and the half-life T1/2, decay constant l, and mean life t are related by Eq. 42-18,

(44-3)

The half-lives of the new particles range from about 10�6 s to 10�23 s. Indeed,
some of the particles last so briefly that they cannot be detected directly but can
only be inferred from indirect evidence.

These new particles have been commonly produced in head-on collisions
between protons or electrons accelerated to high energies in accelerators at
places like Brookhaven National Laboratory (on Long Island, New York),
Fermilab (near Chicago), CERN (near Geneva, Switzerland), SLAC (at
Stanford University in California), and DESY (near Hamburg, Germany).They
have been discovered with particle detectors that have grown in sophistication
until they rival the size and complexity of entire accelerators of only a few
decades ago.

T1/2 �
ln 2

l
� t ln 2.

�



Today there are several hundred known particles. Naming them has strained
the resources of the Greek alphabet, and most are known only by an assigned
number in a periodically issued compilation. To make sense of this array of par-
ticles, we look for simple physical criteria by which we can place the particles in
categories. The result is known as the Standard Model of particles. Although
this model is continuously challenged by theorists, it remains our best scheme of
understanding all the particles discovered to date.

To explore the Standard Model, we make the following three rough cuts
among the known particles: fermion or boson, hadron or lepton, particle or
antiparticle? Let’s now look at the categories one by one.

Fermion or Boson?
All particles have an intrinsic angular momentum called spin, as we discussed for
electrons, protons, and neutrons in Module 32-5. Generalizing the notation of
that section, we can write the component of spin in any direction (assume the
component to be along a z axis) as

(44-4)

in which is h/2p, ms is the spin magnetic quantum number, and s is the spin
quantum number. This last can have either positive half-integer values 
or nonnegative integer values (0, 1, 2, . . .). For example, an electron has the value

. Hence the spin of an electron (measured along any direction, such as the
z direction) can have the values

(spin up)

or (spin down).

Confusingly, the term spin is used in two ways: It properly means a particle’s
intrinsic angular momentum , but it is often used loosely to mean the particle’s
spin quantum number s. In the latter case, for example, an electron is said to be
a spin- particle.

Particles with half-integer spin quantum numbers (like electrons) are called
fermions, after Fermi, who (simultaneously with Paul Dirac) discovered the sta-
tistical laws that govern their behavior. Like electrons, protons and neutrons also
have and are fermions.s � 1

2

1
2

S
:

Sz � �1
2�

Sz � 1
2 �

s � 1
2

(1
2,

3
2, . . .)

�

Sz � ms�  for ms � s, s � 1, . . . , �s,

S
:
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One of the detectors at the Large Hadron Collider at CERN, where the Standard Model
of the elementary particles is being put to the test.

© CERN Geneva



Particles with zero or integer spin quantum numbers are called bosons,
after Indian physicist Satyendra Nath Bose, who (simultaneously with Albert
Einstein) discovered the governing statistical laws for those particles. Photons,
which have s � 1, are bosons; you will soon meet other particles in this class.

This may seem a trivial way to classify particles, but it is very important for
this reason:
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Fermions obey the Pauli exclusion principle, which asserts that only a single parti-
cle can be assigned to a given quantum state. Bosons do not obey this principle.
Any number of bosons can occupy a given quantum state.

We saw how important the Pauli exclusion principle is when we “built up” the
atoms by assigning (spin- ) electrons to individual quantum states. Using that
principle led to a full accounting of the structure and properties of atoms of
different types and of solids such as metals and semiconductors.

Because bosons do not obey the Pauli principle, those particles tend to pile
up in the quantum state of lowest energy. In 1995 a group in Boulder, Colorado,
succeeded in producing a condensate of about 2000 rubidium-87 atoms—they
are bosons—in a single quantum state of approximately zero energy.

For this to happen, the rubidium has to be a vapor with a temperature so low
and a density so great that the de Broglie wavelengths of the individual atoms are
greater than the average separation between the atoms. When this condition is
met, the wave functions of the individual atoms overlap and the entire assembly
becomes a single quantum system (one big atom) called a Bose–Einstein 
condensate. Figure 44-1 shows that, as the temperature of the rubidium vapor is
lowered to about 1.70 � 10�7 K, the atoms do indeed “collapse” into a single
sharply defined state corresponding to approximately zero speed.

1
2

Figure 44-1 Three plots of the particle speed distribution in a vapor of rubidium-87
atoms.The temperature of the vapor is successively reduced from plot (a) to plot (c).
Plot (c) shows a sharp peak centered around zero speed; that is, all the atoms are in the
same quantum state.The achievement of such a Bose–Einstein condensate, often
called the Holy Grail of atomic physics, was finally recorded in 1995.

(a) (b) (c)
Courtesy Michael Mathews



Hadron or Lepton?
We can also classify particles in terms of the four fundamental forces that act on
them. The gravitational force acts on all particles, but its effects at the level of
subatomic particles are so weak that we need not consider that force (at least not
in today’s research). The electromagnetic force acts on all electrically charged
particles; its effects are well known, and we can take them into account when we
need to; we largely ignore this force in this chapter.

We are left with the strong force, which is the force that binds nucleons
together, and the weak force, which is involved in beta decay and similar
processes.The weak force acts on all particles, the strong force only on some.

We can, then, roughly classify particles on the basis of whether the strong
force acts on them. Particles on which the strong force acts are called hadrons.
Particles on which the strong force does not act, leaving the weak force and the
electromagnetic force as the dominant forces, are called leptons. Protons, neu-
trons, and pions are hadrons; electrons and neutrinos are leptons.

We can make a further distinction among the hadrons because some of them
are bosons (we call them mesons); the pion is an example. The other hadrons are
fermions (we call them baryons); the proton is an example.

Particle or Antiparticle?
In 1928 Dirac predicted that the electron e� should have a positively charged
counterpart of the same mass and spin. The counterpart, the positron e�, was dis-
covered in cosmic radiation in 1932 by Carl Anderson. Physicists then gradually
realized that every particle has a corresponding antiparticle. The members of such
pairs have the same mass and spin but opposite signs of electric charge (if they are
charged) and opposite signs of quantum numbers that we have not yet discussed.

At first, particle was used to refer to the common particles such as elec-
trons, protons, and neutrons, and antiparticle referred to their rarely detected
counterparts. Later, for the less common particles, the assignment of particle
and antiparticle was made so as to be consistent with certain conservation laws
that we shall discuss later in this chapter. (Confusingly, both particles and an-
tiparticles are sometimes called particles when no distinction is needed.) We of-
ten, but not always, represent an antiparticle by putting a bar over the symbol
for the particle. Thus, p is the symbol for the proton, and p̄ (pronounced “p
bar”) is the symbol for the antiproton.

Annihilation. When a particle meets its antiparticle, the two can annihilate
each other.That is, the particle and antiparticle disappear and their combined en-
ergies reappear in other forms. For an electron annihilating with a positron, this
energy reappears as two gamma-ray photons:

e� � e� : g � g. (44-5)

If the electron and positron are stationary when they annihilate, their total
energy is their total mass energy, and that energy is then shared equally by the
two photons. To conserve momentum and because photons cannot be stationary,
the photons fly off in opposite directions.

Antihydrogen atoms (each with an antiproton and positron instead of a pro-
ton and electron in a hydrogen atom) are now being manufactured and studied at
CERN. The Standard Model predicts that a transition in an antihydrogen atom
(say, between the first excited state and the ground state) is identical to the same
transition in a hydrogen atom.Thus, any difference in the transitions would clearly
signal that the Standard Model is erroneous; no difference has yet been spotted.

An assembly of antiparticles, such as an antihydrogen atom, is often called
antimatter to distinguish it from an assembly of common particles (matter). (The
terms can easily be confusing when the word “matter” is used to describe any-
thing that has mass.) We can speculate that future scientists and engineers may
construct objects of antimatter. However, no evidence suggests that nature has
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already done this on an astronomical scale because all stars and galaxies appear
to consist largely of matter and not antimatter. This is a perplexing observation
because it means that when the universe began, some feature biased the con-
ditions toward matter and away from antimatter. (For example, electrons are
common but positrons are not.) This bias is still not well understood.

An Interlude
Before pressing on with the task of classifying the particles, let us step aside for a
moment and capture some of the spirit of particle research by analyzing a typical
particle event—namely, that shown in the bubble-chamber photograph of Fig.44-2a.

The tracks in this figure consist of bubbles formed along the paths of 
electrically charged particles as they move through a chamber filled with liquid
hydrogen. We can identify the particle that makes a particular track by —
among other means — measuring the relative spacing between the bubbles. The
chamber lies in a uniform magnetic field that deflects the tracks of positively
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A

Figure 44-2 (a) A bubble-chamber photograph of a series of events initiated by an antiproton that enters the
chamber from the left. (b) The tracks redrawn and labeled for clarity. (c) The tracks are curved because a magnetic
field present in the chamber exerts a deflecting force on each moving charged particle.
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collides with a stationary
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produces all the other
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Part (a): Courtesy Lawrence Berkeley Laboratory



charged particles counterclockwise and the tracks of negatively charged parti-
cles clockwise. By measuring the radius of curvature of a track, we can calculate
the momentum of the particle that made it.Table 44-1 shows some properties of
the particles and antiparticles that participated in the event of Fig. 44-2a, in-
cluding those that did not make tracks. Following common practice, we express
the masses of the particles listed in Table 44-1 — and in all other tables in this
chapter — in the unit MeV/c 2. The reason for this notation is that the rest en-
ergy of a particle is needed more often than its mass. Thus, the mass of a proton
is shown in Table 44-1 to be 938.3 MeV/c 2. To find the proton’s rest energy, mul-
tiply this mass by c 2 to obtain 938.3 MeV.

The general tools used for the analysis of photographs like Fig. 44-2a are the
laws of conservation of energy, linear momentum, angular momentum, and elec-
tric charge, along with other conservation laws that we have not yet discussed.
Figure 44-2a is actually one of a stereo pair of photographs so that, in practice,
these analyses are carried out in three dimensions.

The event of Fig. 44-2a is triggered by an energetic antiproton (p̄) that,
generated in an accelerator at the Lawrence Berkeley Laboratory, enters the
chamber from the left. There are three separate subevents; one occurs at point 1
in Fig. 44-2b, the second occurs at point 2, and the third occurs out of the frame of
the figure. Let’s examine each:

1. Proton–Antiproton Annihilation. At point 1 in Fig. 44-2b, the initiating
antiproton (blue track) slams into a proton of the liquid hydrogen in the cham-
ber, and the result is mutual annihilation. We can tell that annihilation
occurred while the incoming antiproton was in flight because most of the
particles generated in the encounter move in the forward direction—that is,
toward the right in Fig. 44-2. From the principle of conservation of linear
momentum, the incoming antiproton must have had a forward momentum
when it underwent annihilation. Further, because the particles are charged
and moving through a magnetic field, the curvature of the paths reveal
whether the particles are negatively charged (like the incident antiproton) or
positively charged (Fig. 44-2c).

The total energy involved in the collision of the antiproton and the pro-
ton is the sum of the antiproton’s kinetic energy and the two (identical) rest
energies of those two particles (2 � 938.3 MeV, or 1876.6 MeV). This is
enough energy to create a number of lighter particles and give them kinetic
energy. In this case, the annihilation produces four positive pions (red tracks
in Fig. 44-2b) and four negative pions (green tracks). (For simplicity, we
assume that no gamma-ray photons, which would leave no tracks because
they lack electric charge, are produced.) Thus we conclude that the annihila-
tion process is

(44-6)

We see from Table 44-1 that the positive pions (p�) are particles and the neg-
ative pions (p�) are antiparticles. The reaction of Eq. 44-6 is a strong interac-

p � p̄ : 4p� � 4p�.
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Table 44-1 The Particles or Antiparticles Involved in the Event of Fig. 44-2

Mass Spin Quantum Mean Life 
Particle Symbol Charge q (MeV/c 2) Number s Identity (s) Antiparticle

Neutrino n 0 � 1 � 10�7 Lepton Stable n̄

Electron e� �1 0.511 Lepton Stable e�

Muon m� �1 105.7 Lepton 2.2 � 10�6 m�

Pion p� �1 139.6 0 Meson 2.6 � 10�8 p�

Proton p �1 938.3 Baryon Stable p̄1
2

1
2

1
2

1
2



tion (it involves the strong force) because all the particles involved are
hadrons.

Let us check whether electric charge is conserved in the reaction.To do so,
we can write the electric charge of a particle as qe, in which q is a charge
quantum number. Then determining whether electric charge is conserved in
a process amounts to determining whether the initial net charge quantum
number is equal to the final net charge quantum number. In the process of
Eq. 44-6, the initial net charge number is 1 � (�1), or 0, and the final net
charge number is 4(1) � 4(�1), or 0.Thus, charge is conserved.

For the energy balance, note from above that the energy available from
the p-p̄ annihilation process is at least the sum of the proton and antiproton
rest energies, 1876.6 MeV.The rest energy of a pion is 139.6 MeV, which means
the rest energies of the eight pions amount to 8 � 139.6 MeV, or 1116.8 MeV.
This leaves at least about 760 MeV to distribute among the eight pions as
kinetic energy.Thus, the requirement of energy conservation is easily met.

2. Pion Decay. Pions are unstable particles and decay with a mean lifetime of
2.6 � 10�8 s. At point 2 in Fig. 44-2b, one of the positive pions comes to rest in
the chamber and decays spontaneously into an antimuon m� (purple track)
and a neutrino n:

(44-7)

The neutrino, being uncharged, leaves no track. Both the antimuon and
the neutrino are leptons; that is, they are particles on which the strong force
does not act. Thus, the decay process of Eq. 44-7, which is governed by
the weak force, is described as a weak interaction.

Let’s consider the energies in the decay. From Table 44-1, the rest energy
of an antimuon is 105.7 MeV and the rest energy of a neutrino is approxi-
mately 0. Because the pion is at rest when it decays, its energy is just its rest en-
ergy, 139.6 MeV. Thus, an energy of 139.6 MeV � 105.7 MeV, or 33.9 MeV, is
available to share between the antimuon and the neutrino as kinetic energy.

Let us check whether spin angular momentum is conserved in the
process of Eq. 44-7. This amounts to determining whether the net compo-
nent Sz of spin angular momentum along some arbitrary z axis can be con-
served by the process. The spin quantum numbers s of the particles in the
process are 0 for the pion p� and for both the antimuon m� and the neu-
trino n. Thus, for p�, the component Sz must be , and for m� and n, it can be
either or .

The net component Sz is conserved by the process of Eq. 44-7 if there is
any way in which the initial can be equal to the final net Sz. We seeSz (� 0�)

�1
2��1

2�
0�

1
2

p� : m� � n.
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that if one of the products, either m� or n, has and the other has
, then their final net value is . Thus, because Sz can be conserved,

the decay process of Eq. 44-7 can occur.
From Eq. 44-7, we also see that the net charge is conserved by the process:

before the process the net charge quantum number is �1, and after the
process it is �1 � 0 � �1.

3. Muon Decay. Muons (whether m� or m�) are also unstable, decaying with
a mean life of 2.2 � 10�6 s. Although the decay products are not shown in
Fig. 44-2, the antimuon produced in the reaction of Eq. 44-7 comes to rest and
decays spontaneously according to

(44-8)

The rest energy of the antimuon is 105.7 MeV, and that of the positron is only
0.511 MeV, leaving 105.2 MeV to be shared as kinetic energy among the three
particles produced in the decay process of Eq. 44-8.

You may wonder: Why two neutrinos in Eq. 44-8? Why not just one, as in
the pion decay in Eq. 44-7? One answer is that the spin quantum numbers of the

m� : e� � n � n̄.

0�Sz � �1
2 �

Sz � � 1
2�
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which, with pp � 0, gives us

pm � �pn. (44-10)

Relating p and K: We want to relate these momenta pm and
�pn to the kinetic energies Km and Kn so that we can solve for
the kinetic energies. Because we have no reason to believe
that classical physics can be applied, we use Eq. 37-54, the
momentum–kinetic energy relation from special relativity:

( pc)2 � K 2 � 2Kmc 2. (44-11)

From Eq. 44-10, we know that

( pmc)2 � ( pnc)2. (44-12)

Substituting from Eq. 44-11 for each side of Eq. 44-12
yields

Approximating the neutrino mass to be mn � 0, substituting
Kn � 33.9 MeV � Km from Eq. 44-9, and then solving for
Km, we find

(Answer)

The kinetic energy of the neutrino is then, from Eq. 44-9,

(Answer)

We see that, although the magnitudes of the momenta of the
two recoiling particles are the same, the neutrino gets the
larger share (88%) of the kinetic energy.

� 29.8 MeV.

Kn � 33.9 MeV � Km � 33.9 MeV � 4.12 MeV

� 4.12 MeV.

�
(33.9 MeV)2

(2)(33.9 MeV � 105.7 MeV)

Km �
(33.9 MeV)2

(2)(33.9 MeV � mmc2)

Km
2 � 2Kmmmc2 � Kn

2 � 2Kn mnc2.

Sample Problem 44.01 Momentum and kinetic energy in a pion decay

A stationary positive pion can decay according to

What is the kinetic energy of the antimuon m�? What is the
kinetic energy of the neutrino?

KEY IDEA

The pion decay process must conserve both total energy and
total linear momentum.

Energy conservation: Let us first write the conservation of
total energy (rest energy mc 2 plus kinetic energy K) for the
decay process as

mpc 2 � Kp � mmc 2 � Km � mnc 2 � Kn.

Because the pion was stationary, its kinetic energy Kp is
zero. Then, using the masses listed for mp, mm, and mn in
Table 44-1, we find

(44-9)

where we have approximated mn as zero.

Momentum conservation: We cannot solve Eq. 44-9 for ei-
ther Km or Kn separately, and so let us next apply the princi-
ple of conservation of linear momentum to the decay
process. Because the pion is stationary when it decays, that
principle requires that the muon and neutrino move in oppo-
site directions after the decay. Assume that their motion is
along an axis. Then, for components along that axis, we can
write the conservation of linear momentum for the decay as

pp � pm � pn,

� 33.9 MeV,
� 139.6 MeV � 105.7 MeV � 0

Km � Kn � mp c2 � mmc2 � mnc2

p� : m� � n.

KEY IDEA

The Q of a reaction is

Calculation: For the given reaction, we find

(Answer)� �605 MeV.

�(493.7 MeV � 1189.4 MeV)

� (139.6 MeV � 938.3 MeV)

Q � (mpc2 � mpc2) � (mKc2 � m�c2)

Q � � initial total
mass energy� � � final total

mass energy �.

Sample Problem 44.02 Q in a proton-pion reaction

The protons in the material filling a bubble chamber are
bombarded with a beam of high-energy antiparticles
known as negative pions.At collision points, a proton and a
pion transform into a negative kaon and a positive sigma
in this reaction:

The rest energies of these particles are

What is the Q of the reaction?

p  938.3 MeV    ��  1189.4 MeV
p�  139.6 MeV    K�  493.7 MeV

p� � p : K� � ��.

antimuon, the positron, and the neutrino are each ; with only one neutrino,
the net component Sz of spin angular momentum could not be conserved in the
antimuon decay of Eq. 44-8. In Module 44-2 we shall discuss another reason.

1
2



The Leptons
In this module, we discuss some of the particles of one of our classification
schemes: lepton or hadron. We begin with the leptons, those particles on which
the strong force does not act. So far, we have encountered the familiar electron
and the neutrino that accompanies it in beta decay. The muon, whose decay is
described in Eq. 44-8, is another member of this family. Physicists gradually
learned that the neutrino that appears in Eq. 44-7, associated with the production
of a muon, is not the same particle as the neutrino produced in beta decay, associ-
ated with the appearance of an electron. We call the former the muon neutrino
(symbol nm) and the latter the electron neutrino (symbol ne) when it is necessary
to distinguish between them.
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Additional examples, video, and practice available at WileyPLUS
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After reading this module, you should be able to . . .

44.09 Identify that there are six leptons (with an antiparticle
each) in three families, with a different type of neutrino in
each family.

44.10 To see if a given process for elementary particles is
physically possible, determine whether it conserves lepton
number and whether it conserves the individual family lep-
ton numbers.

44.11 Identify that there is a quantum number called baryon
number associated with the baryons.

44.12 To see if a given process for elementary particles is
physically possible, determine whether the process con-
serves baryon number.

44.13 Identify that there is a quantum number called strange-
ness associated with some of the baryons and mesons.

44.14 Identify that strangeness must be conserved in an in-
teraction involving the strong force, but this conservation
law can be broken for other interactions.

44.15 Describe the eightfold-way patterns.

● We can classify particles and their antiparticles into two
main types: leptons and hadrons. The latter consists of
mesons and baryons.

● Three of the leptons (the electron, muon, and tau) have
electric charge equal to . There are also three uncharged
neutrinos (also leptons), one corresponding to each of the
charged leptons. The antiparticles for the charged leptons
have positive charge.

● To explain the possible and impossible reactions of these
particles, each is assigned a lepton quantum number, which
must be conserved in a reaction.

● The leptons have half-integer spin quantum numbers and
are thus fermions, which obey the Pauli exclusion principle.

�1e

● Baryons, including protons and neutrons, are hadrons
with half-integer spin quantum numbers and thus are also
fermions.

● Mesons are hadrons with integer spin quantum numbers
and thus are bosons, which do not obey the Pauli exclusion
principle.

● To explain the possible and impossible reactions of these
particles, baryons are assigned a baryon quantum number,
which must be conserved in a reaction.

● Baryons are also assigned a strangeness quantum
number, but it is conserved only in reactions involving the
strong force.

Learning Objectives

Key Ideas

The minus sign means that the reaction is endothermic; that
is, the incoming pion (p�) must have a kinetic energy greater
than a certain threshold value if the reaction is to occur. The
threshold energy is actually greater than 605 MeV because
linear momentum must be conserved. (The incoming pion

has momentum.) This means that the kaon (K�) and the
sigma ( �) not only must be created but also must be given
some kinetic energy. A relativistic calculation whose details
are beyond our scope shows that the threshold energy for
the reaction is 907 MeV.

�



These two types of neutrino are known to be different particles because, if
a beam of muon neutrinos (produced from pion decay as in Eq. 44-7) strikes a
solid target, only muons — and never electrons — are produced. On the other
hand, if electron neutrinos (produced by the beta decay of fission products in
a nuclear reactor) strike a solid target, only electrons—and never muons—are
produced.

Another lepton, the tau, was discovered at SLAC in 1975; its discoverer,
Martin Perl, shared the 1995 Nobel Prize in physics. The tau has its own associ-
ated neutrino, different still from the other two. Table 44-2 lists all the leptons
(both particles and antiparticles); all have a spin quantum number s of .

There are reasons for dividing the leptons into three families, each consist-
ing of a particle (electron, muon, or tau), its associated neutrino, and the corre-
sponding antiparticles. Furthermore, there are reasons to believe that there are
only the three families of leptons shown in Table 44-2. Leptons have no internal
structure and no measurable dimensions; they are believed to be truly pointlike
fundamental particles when they interact with other particles or with electro-
magnetic waves.

The Conservation of Lepton Number
According to experiment, particle interactions involving leptons obey a conser-
vation law for a quantum number called the lepton number L. Each (normal)
particle in Table 44-2 is assigned L � �1, and each antiparticle is assigned 
L � �1. All other particles, which are not leptons, are assigned L � 0. Also 
according to experiment,

1
2
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Table 44-2 The Leptonsa

Mass
Family Particle Symbol (MeV/c 2) Charge q Antiparticle

Electron
Electron e� 0.511 �1 e�

Electron neutrinob ne � 1 � 10�7 0 n̄ e

Muon
Muon m� 105.7 �1 m�

Muon neutrinob nm � 1 � 10�7 0 n̄ m

Tau
Tau t� 1777 �1 t�

Tau neutrinob nt � 1 � 10�7 0 n̄ t

aAll leptons have spin quantum numbers of  and are thus fermions.
bThe neutrino masses have not been well determined.Also, because of neutrino oscillations, we might
not be able to associate a particular mass with a particular neutrino.

1
2

In all particle interactions, the net lepton number is conserved.

This experimental fact is called the law of conservation of lepton number. We do
not know why the law must be obeyed; we only know that this conservation law is
part of the way our universe works.

There are actually three types of lepton number, one for each lepton family:
the electron lepton number Le, the muon lepton number Lm, and the tau lepton
number Lt. In nearly all observed interactions, these three quantum numbers are
separately conserved. An important exception involves the neutrinos. For rea-
sons that we cannot explore here, the fact that neutrinos are not massless means
that they can “oscillate” between different types as they travel long distances.
Such oscillations were proposed to explain why only about a third of the 
expected number of electron neutrinos arrive at Earth from the proton-proton
fusion mechanism in the Sun (Fig. 43-11).The rest change on the way.The oscilla-



tions, then, mean that the individual family lepton numbers are not conserved for
neutrinos. In this book we shall not consider such violations and shall always con-
serve the individual family lepton numbers.

Let’s illustrate such conservation by reconsidering the antimuon decay
process shown in Eq. 44-8, which we now write more fully as

(44-13)

Consider this first in terms of the muon family of leptons. The m� is an antiparticle
(see Table 44-2) and thus has the muon lepton number Lm � �1. The two particles
e� and ne do not belong to the muon family and thus have Lm � 0.This leaves n̄m on
the right which, being an antiparticle, also has the muon lepton number Lm � �1.
Thus, both sides of Eq. 44-13 have the same net muon lepton number—namely,
Lm � �1; if they did not, the m� would not decay by this process.

No members of the electron family appear on the left in Eq. 44-13; so there
the net electron lepton number must be Le � 0. On the right side of Eq. 44-13, the
positron, being an antiparticle (again see Table 44-2), has the electron lepton
number Le � �1.The electron neutrino ne, being a particle, has the electron num-
ber Le � �1. Thus, the net electron lepton number for these two particles on the
right in Eq. 44-13 is also zero; the electron lepton number is also conserved in the
process.

Because no members of the tau family appear on either side of Eq. 44-13,
we must have Lt � 0 on each side. Thus, each of the lepton quantum numbers
Lm, Le, and Lt remains unchanged during the decay process of Eq. 44-13, their
constant values being �1, 0, and 0, respectively.

m� : e� � ne � n̄m.
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Checkpoint 1
(a) The p� meson decays by the process .To what lepton family does
the neutrino n belong? (b) Is this neutrino a particle or an antiparticle? (c) What is its
lepton number?

p� : m� � n

The Hadrons
We are now ready to consider hadrons (baryons and mesons), those particles
whose interactions are governed by the strong force. We start by adding another
conservation law to our list: conservation of baryon number.

To develop this conservation law, let us consider the proton decay process

(44-14)

This process never happens.We should be glad that it does not because otherwise
all protons in the universe would gradually change into positrons, with disastrous
consequences for us. Yet this decay process does not violate the conservation
laws involving energy, linear momentum, or lepton number.

We account for the apparent stability of the proton—and for the absence of
many other processes that might otherwise occur—by introducing a new quan-
tum number, the baryon number B, and a new conservation law, the conservation
of baryon number:

p : e� � ne.

To every baryon we assign B � �1. To every antibaryon we assign B � �1. To all
particles of other types we assign B � 0. A particle process cannot occur if it
changes the net baryon number.

In the process of Eq. 44-14, the proton has a baryon number of B � �1 and
the positron and neutrino both have a baryon number of B � 0.Thus, the process
does not conserve baryon number and cannot occur.



Still Another Conservation Law
Particles have intrinsic properties in addition to the ones we have listed so far:
mass, charge, spin, lepton number, and baryon number. The first of these addi-
tional properties was discovered when researchers observed that certain new
particles, such as the kaon (K) and the sigma ( ), always seemed to be produced
in pairs. It seemed impossible to produce only one of them at a time. Thus, if
a beam of energetic pions interacts with the protons in a bubble chamber, the
reaction

(44-15)

often occurs.The reaction

(44-16)

which violates no conservation law known in the early days of particle physics,
never occurs.

It was eventually proposed (by Murray Gell-Mann in the United States and
independently by K. Nishijima in Japan) that certain particles possess a new
property, called strangeness, with its own quantum number S and its own con-
servation law. (Be careful not to confuse the symbol S here with the symbol for
spin.) The name strangeness arises from the fact that, before the identities of
these particles were pinned down, they were known as “strange particles,” and
the label stuck.

The proton, neutron, and pion have S � 0; that is, they are not “strange.” It
was proposed, however, that the K� particle has strangeness S � �1 and that 

� has S � �1. In the reaction of Eq. 44-15, the net strangeness is initially zero
and finally zero; thus, the reaction conserves strangeness. However, in the reac-
tion shown in Eq. 44-16, the final net strangeness is �1; thus, that reaction does
not conserve strangeness and cannot occur. Apparently, then, we must add one
more conservation law to our list — the conservation of strangeness:

�

p� � p : p� � ��,

p� � p : K� � ��

�
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Strangeness is conserved in interactions involving the strong force.

Strange particles are produced only (rapidly) by strong interactions and only in
pairs with a net strangeness of zero. They then decay (slowly) through weak inter-
actions without conserving strangeness.

It may seem heavy-handed to invent a new property of particles just to account
for a little puzzle like that posed by Eqs. 44-15 and 44-16. However, strangeness
soon solved many other puzzles. Still, do not be misled by the whimsical name.
Strangeness is no more mysterious a property of particles than is charge. Both are
properties that particles may (or may not) have; each is described by an appropri-
ate quantum number. Each obeys a conservation law. Still other properties of
particles have been discovered and given even more whimsical names, such as
charm and bottomness, but all are perfectly legitimate properties. Let us see, as an
example, how the new property of strangeness “earns its keep” by leading us to
uncover important regularities in the properties of the particles.

Checkpoint 2
This mode of decay for a neutron is not observed:

Which of the following conservation laws does this process violate: (a) energy, (b) angular
momentum,(c) linear momentum,(d) charge, (e) lepton number, (f) baryon number?
The masses are mn � 939.6 MeV/c2, mp � 938.3 MeV/c2,and me � 0.511 MeV/c2.

n : p � e�.



The Eightfold Way
There are eight baryons—the neutron and the proton among them—that have
a spin quantum number of . Table 44-3 shows some of their other properties.
Figure 44-3a shows the fascinating pattern that emerges if we plot the strangeness
of these baryons against their charge quantum number, using a sloping axis for
the charge quantum numbers. Six of the eight form a hexagon with the two
remaining baryons at its center.

Let us turn now from the hadrons called baryons to the hadrons called mesons.
Nine with a spin of zero are listed in Table 44-4. If we plot them on a sloping
strangeness–charge diagram, as in Fig. 44-3b, the same fascinating pattern
emerges! These and related plots, called the eightfold way patterns,* were pro-
posed independently in 1961 by Murray Gell-Mann at the California Institute of
Technology and by Yuval Ne’eman at Imperial College, London. The two patterns
of Fig. 44-3 are representative of a larger number of symmetrical patterns in which
groups of baryons and mesons can be displayed.

The symmetry of the eightfold way pattern for the spin- baryons (not shown
here) calls for ten particles arranged in a pattern like that of the tenpins in a bowl-
ing alley. However, when the pattern was first proposed, only nine such particles
were known; the “headpin” was missing. In 1962, guided by theory and the symme-
try of the pattern, Gell-Mann made a prediction in which he essentially said:

There exists a spin- baryon with a charge of �1, a strangeness of �3, and a rest
energy of about 1680 MeV. If you look for this omega minus particle (as I propose
to call it), I think you will find it.

A team of physicists headed by Nicholas Samios of the Brookhaven National
Laboratory took up the challenge and found the “missing” particle, confirming all
its predicted properties. Nothing beats prompt experimental confirmation for
building confidence in a theory!

The eightfold way patterns bear the same relationship to particle physics
that the periodic table does to chemistry. In each case, there is a pattern of or-
ganization in which vacancies (missing particles or missing elements) stick out
like sore thumbs, guiding experimenters in their searches. In the case of the 
periodic table, its very existence strongly suggests that the atoms of the ele-
ments are not fundamental particles but have an underlying structure.

3
2

3
2

1
2
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Table 44-3 Eight Spin- Baryons

Mass
Quantum Numbers

Particle Symbol (MeV/c 2) Charge q Strangeness S

Proton p 938.3 �1 0
Neutron n 939.6 0 0
Lambda !0 1115.6 0 �1
Sigma � 1189.4 �1 �1
Sigma 0 1192.5 0 �1
Sigma � 1197.3 �1 �1
Xi "0 1314.9 0 �2
Xi "� 1321.3 �1 �2

�
�
�

1
2

Table 44-4 Nine Spin-Zero Mesonsa

Mass
Quantum Numbers

Particle Symbol (MeV/c 2) Charge q Strangeness S

Pion p0 135.0 0 0
Pion p� 139.6 �1 0
Pion p� 139.6 �1 0
Kaon K� 493.7 �1 �1
Kaon K� 493.7 �1 �1
Kaon K0 497.7 0 �1
Kaon 0 497.7 0 �1
Eta h 547.5 0 0
Eta prime h� 957.8 0 0

aAll mesons are bosons, having spins of 0, 1, 2, . . . .The ones listed here all
have a spin of 0.

K
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S = –1
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π –

(b)

0 +
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– 0

K K 
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Figure 44-3 (a) The eightfold way pattern for
the eight spin- baryons listed in Table 44-3.
The particles are represented as disks on 
a strangeness–charge plot, using a sloping
axis for the charge quantum number. (b)
A similar pattern for the nine spin-zero
mesons listed in Table 44-4.

1
2

*The name is a borrowing from Eastern mysticism.The “eight” refers to the eight quantum numbers
(only a few of which we have defined here) that are involved in the symmetry-based theory that pre-
dicts the existence of the patterns.



Similarly, the eightfold way patterns strongly suggest that the mesons and the
baryons must have an underlying structure, in terms of which their properties
can be understood. That structure can be explained in terms of the quark
model, which we now discuss.
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energies and kinetic energies of the pions. To answer, we
evaluate the Q of the decay:

The fact that Q is positive indicates that the initial mass
energy exceeds the final mass energy. Thus, the proton does
have enough mass energy to create the pair of pions.

Spin: Is spin angular momentum conserved by the decay?
This amounts to determining whether the net component Sz

of spin angular momentum along some arbitrary z axis can
be conserved by the decay. The spin quantum numbers s of
the particles in the process are for the proton and 0 for
both pions. Thus, for the proton the component Sz can be 
either or and for each pion it is . We see that
there is no way that Sz can be conserved. Hence, spin angular
momentum is not conserved, and the proposed decay of the
proton cannot occur.

Baryon number: The decay also violates the conservation of
baryon number: The proton has a baryon number of B � �1,
and both pions have a baryon number of B � 0.Thus, noncon-
servation of baryon number is another reason the proposed
decay cannot occur.

0��1
2�� 1

2�

1
2

� 663.7 MeV.
� 938.3 MeV � (135.0 MeV � 139.6 MeV)
� mpc2 � (m0c2 � m�c2)

Q � � initial total
mass energy� � � final total

mass energy�

Sample Problem 44.03 Proton decay: conservation of quantum numbers, energy, and momentum

Determine whether a stationary proton can decay according
to the scheme

Properties of the proton and the p� pion are listed in
Table 44-1. The p0 pion has zero charge, zero spin, and a
mass energy of 135.0 MeV.

KEY IDEA

We need to see whether the proposed decay violates any of
the conservation laws we have discussed.

Electric charge: We see that the net charge quantum
number is initially �1 and finally 0 � 1, or �1. Thus, charge
is conserved by the decay. Lepton number is also conserved,
because none of the three particles is a lepton and thus each
lepton number is zero.

Linear momentum: Because the proton is stationary, with
zero linear momentum, the two pions must merely move in
opposite directions with equal magnitudes of linear
momentum (so that their total linear momentum is also
zero) to conserve linear momentum.The fact that linear mo-
mentum can be conserved means that the process does not
violate the conservation of linear momentum.

Energy: Is there energy for the decay? Because the proton
is stationary, that question amounts to asking whether the
proton’s mass energy is sufficient to produce the mass 

p : p 0 � p�.

hadron. (2) To answer the second question we need to
determine the baryon number of the "� particle. If it is
�1 or �1, then the "� is a baryon. If, instead, it is 0, then
the "� is a meson.

Baryon number: To see, let us write the overall decay
scheme, from the initial "� to the final relatively stable
products, as

(44-17)

On the right side, the proton has a baryon number of �1
and each electron and neutrino has a baryon number of 0.
Thus, the net baryon number of the right side is �1. That
must then be the baryon number of the lone "� particle on
the left side.We conclude that the "� particle is a baryon.

(b) Does the decay process conserve the three lepton numbers?

"� : p � 2(e� � n̄e) � 2(vm � n̄m).

Sample Problem 44.04 Xi-minus decay: conservation of quantum numbers 

A particle called xi-minus and having the symbol "� decays
as follows:

The !0 particle (called lambda-zero) and the p� particle are
both unstable. The following decay processes occur in 
cascade until only relatively stable products remain:

(a) Is the "� particle a lepton or a hadron? If the latter, is it
a baryon or a meson?

KEY IDEAS

(1) Only three families of leptons exist (Table 44-2) and
none include the "� particle. Thus, the "� must be a

m� : e� � nm � n̄e.
!0 : p � p� p� : m� � n̄m

"� : !0 � p�.
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Additional examples, video, and practice available at WileyPLUS

KEY IDEA

Any process must separately conserve the net lepton 
number for each lepton family of Table 44-2.

Lepton number: Let us first consider the electron lepton
number Le, which is �1 for the electron e�, �1 for the anti-
electron neutrino , and 0 for the other particles in the over-
all decay of Eq. 44-17. We see that the net Le is 0 before the
decay and 2[�1 � (�1)] � 2(0 � 0) � 0 after the decay.
Thus, the net electron lepton number is conserved. You can
similarly show that the net muon lepton number and the net
tau lepton number are also conserved.

(c) What can you say about the spin of the "� particle?

n̄e

KEY IDEA

The overall decay scheme of Eq. 44-17 must conserve the
net spin component Sz.

Spin: We can determine the spin component Sz of the "�

particle on the left side of Eq. 44-17 by considering the Sz

components of the nine particles on the right side. All nine
of those particles are spin- particles and thus can have Sz of1

2
either or . No matter how we choose between those
two possible values of Sz, the net Sz for those nine particles
must be a half-integer times . Thus, the "� particle must
have Sz of a half-integer times , and that means that its spin
quantum number s must be a half-integer. (It is ) 1

2.
�
�

�1
2��1

2�
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After reading this module, you should be able to . . .

44.16 Identify that there are six quarks (with an antiparticle for each).
44.17 Identify that baryons contain three quarks (or antiquarks)

and mesons contain a quark and an antiquark, and that many
of these hadrons are excited states of the basic quark combi-
nations.

44.18 For a given hadron, identify the quarks it contains, and
vice versa.

44.19 Identify virtual particles.
44.20 Apply the relationship between the violation of energy

by a virtual particle and the time interval allowed for that vi-
olation (an uncertainty principle written in terms of energy).

44.21 Identify the messenger particles for electromagnetic
interactions, weak interactions, and strong interactions.

Learning Objectives

● The six quarks (up, down, strange, charm, bottom, and top,
in order of increasing mass) each have baryon number and�1

3

● Particles with electric charge interact through the electro-
magnetic force by exchanging virtual photons.

● Leptons can also interact with each other and with quarks
through the weak force, via massive W and Z particles as
messengers.

● Quarks primarily interact with each other through the color
force, via gluons.

● The electromagnetic and weak forces are different manifes-
tations of the same force, called the electroweak force.

charge equal to either or . The strange quark has strange-
ness , whereas the others all have strangeness 0. These four
algebraic signs are reversed for the antiquarks.

● Leptons do not contain quarks and have no internal structure.
Mesons contain one quark and one antiquark. Baryons contain
three quarks or antiquarks. The quantum numbers of the quarks
and antiquarks are assigned to be consistent with the quantum
numbers of the mesons and baryons.

�1
�1

3�2
3

Key Ideas

The Quark Model
In 1964 Gell-Mann and George Zweig independently pointed out that the eight-
fold way patterns can be understood in a simple way if the mesons and the
baryons are built up out of subunits that Gell-Mann called quarks. We deal first
with three of them, called the up quark (symbol u), the down quark (symbol d),
and the strange quark (symbol s). The names of the quarks, along with those as-
signed to three other quarks that we shall meet later, have no meaning other than
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The violent head-on collision of two 30 GeV
beams of gold atoms in the RHIC
accelerator at the Brookhaven National
Laboratory. In the moment of collision, a gas
of individual quarks and gluons was created.

Courtesy Brookhaven National Laboratory

as convenient labels. Collectively, these names are called the quark flavors. We
could just as well call them vanilla, chocolate, and strawberry instead of up, down,
and strange. Some properties of the quarks are displayed in Table 44-5.

The fractional charge quantum numbers of the quarks may jar you a little.
However, withhold judgment until you see how neatly these fractional charges ac-
count for the observed integer charges of the mesons and the baryons. In all normal
situations, whether here on Earth or in an astronomical process, quarks are always
bound up together in twos or threes (and perhaps more) for reasons that are still not
well understood.Such requirements are our normal rule for quark combinations.

An exciting exception to the normal rule occurred in experiments at the
RHIC particle collider at the Brookhaven National Laboratory. At the spot
where two high-energy beams of gold nuclei collided head-on, the kinetic energy
of the particles was so large that it matched the kinetic energy of particles that
were present soon after the beginning of the universe (as we discuss in Module
44-4). The protons and neutrons of the gold nuclei were ripped apart to form a
momentary gas of individual quarks. (The gas also contained gluons, the particles
that normally hold quarks together.) These experiments at RHIC may be the first
time that quarks have been set free of one another since the universe began.

Quarks and Baryons
Each baryon is a combination of three quarks; some of the combinations are
given in Fig. 44-4a. With regard to baryon number, we see that any three quarks
(each with ) yield a proper baryon (with B � �1).

Charges also work out, as we can see from three examples. The proton has a
quark composition of uud, and so its charge quantum number is

The neutron has a quark composition of udd, and its charge quantum number is
therefore

The � (sigma-minus) particle has a quark composition of dds, and its charge
quantum number is therefore

The strangeness quantum numbers work out as well. You can check this by
using Table 44-3 for the � strangeness number and Table 44-5 for the strange-
ness numbers of the dds quarks.

�

q(dds) � �1
3 � (�1

3) � (�1
3) � �1.

�

q(udd) � 2
3 � (�1

3) � (�1
3) � 0.

q(uud) � 2
3 � 2

3 � (�1
3) � �1.

B � �1
3

Table 44-5 The Quarksa

Quantum Numbers

Mass Charge Strangeness Baryon 
Particle Symbol (MeV/c 2) q S Number B Antiparticle

Up u 5 0 ū

Down d 10 0 d̄

Charm c 1500 0 c̄

Strange s 200 �1 s̄

Top t 175 000 0 t̄

Bottom b 4300 0 b̄

aAll quarks (including antiquarks) have spin and thus are fermions.The quantum numbers q, S,
and B for each antiquark are the negatives of those for the corresponding quark.

1
2

�1
3�1

3

�1
3�2

3
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3

Figure 44-4 (a) The quark compositions 
of the eight spin- baryons plotted in 
Fig. 44-3a. (Although the two central
baryons share the same quark structure,
they are different particles.The sigma is an
excited state of the lambda, decaying into
the lambda by emission of a gamma-ray
photon.) (b) The quark compositions of the
nine spin-zero mesons plotted in Fig. 44-3b.
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Note, however, that the mass of a proton, neutron, �, or any other baryon is
not the sum of the masses of the constituent quarks. For example, the total mass of
the three quarks in a proton is only 20 MeV/c2, woefully less than the proton’s mass
of 938.3 MeV/c2. Nearly all of the proton’s mass is due to the internal energies of (1)
the quark motion and (2) the fields that bind the quarks together. (Recall that mass
is related to energy via Einstein’s equation, which we can write as m � E/c2.) Thus,
because most of your mass is due to the protons and neutrons in your body, your
mass (and therefore your weight on a bathroom scale) is primarily a measure of the
energies of the quark  motion and the quark-binding fields within you.

Quarks and Mesons
Mesons are quark–antiquark pairs; some of their compositions are given in
Fig. 44-4b.The quark–antiquark model is consistent with the fact that mesons are
not baryons; that is, mesons have a baryon number B � 0. The baryon number
for a quark is and for an antiquark is ; thus, the combination of baryon
numbers in a meson is zero.

Consider the meson p�, which consists of an up quark u and an antidown
quark d̄.We see from Table 44-5 that the charge quantum number of the up quark

�1
3�1

3

�

Checkpoint 3
Is a combination of a down quark (d) and an antiup quark (ū) called (a) a p0 meson,
(b) a proton, (c) a p� meson, (d) a p� meson, or (e) a neutron?

A New Look at Beta Decay
Let us see how beta decay appears from the quark point of view. In Eq. 42-24, we
presented a typical example of this process:

32P : 32S � e� � n.

After the neutron was discovered and Fermi had worked out his theory of beta
decay, physicists came to view the fundamental beta-decay process as the chang-
ing of a neutron into a proton inside the nucleus, according to the scheme

in which the neutrino is identified more completely. Today we look deeper and
see that a neutron (udd) can change into a proton (uud) by changing a down
quark into an up quark.We now view the fundamental beta-decay process as

Thus, as we come to know more and more about the fundamental nature of mat-
ter, we can examine familiar processes at deeper and deeper levels. We see too
that the quark model not only helps us to understand the structure of particles
but also clarifies their interactions.

Still More Quarks
There are other particles and other eightfold way patterns that we have not
discussed. To account for them, it turns out that we need to postulate three more
quarks, the charm quark c, the top quark t, and the bottom quark b.Thus, a total of
six quarks exist, as listed in Table 44-5.

d : u � e� � n̄e.

n : p � e� � n̄e,

is and that of the antidown quark is (the sign is opposite that of the down
quark).This adds nicely to a charge quantum number of 1 for the p� meson; that is,

All the charge and strangeness quantum numbers of Fig. 44-4b agree with
those of Table 44-4 and Fig. 44-3b. Convince yourself that all possible up, down,
and strange quark–antiquark combinations are used. Everything fits.

q(ud̄) � 2
3 � 1

3 � �1.

�
�1

3�2
3



Note that three quarks are exceptionally massive, the most massive of them
(top) being almost 190 times more massive than a proton.To generate particles that
contain such quarks, with such large mass energies, we must go to higher and higher
energies, which is the reason that these three quarks were not discovered earlier.

The first particle containing a charm quark to be observed was the J/c
meson, whose quark structure is . It was discovered simultaneously and inde-
pendently in 1974 by groups headed by Samuel Ting at the Brookhaven National
Laboratory and Burton Richter at Stanford University.

The top quark defied all efforts to generate it in the laboratory until 1995,
when its existence was finally demonstrated in the Tevatron, a large particle
accelerator at Fermilab. In this accelerator, protons and antiprotons, each with
an energy of 0.9 TeV (� 9 � 1011 eV), were made to collide at the centers of two
large particle detectors. In a very few cases, the colliding particles generated
a top–antitop quark pair, which very quickly decays into particles that can be
detected and thus can be used to infer the existence of the top–antitop pair.

Look back for a moment at Table 44-5 (the quark family) and Table 44-2 (the
lepton family) and notice the neat symmetry of these two “six-packs” of particles,
each dividing naturally into three corresponding two-particle families. In terms of
what we know today, the quarks and the leptons seem to be truly fundamental
particles having no internal structure.

(t t̄ )

cc̄
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strange quark is . Thus, the third quark x must have a�1
3

Sample Problem 44.05 Quark composition of a xi-minus particle

The "� (xi-minus) particle is a baryon with a spin quantum
number s of , a charge quantum number q of �1, and a
strangeness quantum number S of �2.Also, it does not contain
a bottom quark.What combination of quarks makes up "�?

Reasoning: Because the "� is a baryon, it must consist of
three quarks (not two as for a meson).

Let us next consider the strangeness S � �2 of the "�.
Only the strange quark s and the antistrange quark s̄ have
nonzero values of strangeness (see Table 44-5). Further, be-
cause only the strange quark s has a negative value of
strangeness, "� must contain that quark. In fact, for "� to
have a strangeness of �2, it must contain two strange quarks.

To determine the third quark, call it x, we can consider
the other known properties of "�. Its charge quantum 
number q is �1, and the charge quantum number q of each

1
2

Additional examples, video, and practice available at WileyPLUS

charge quantum number of , so that we can have

.

Besides the strange quark, the only quarks with are
the down quark d and bottom quark b. Because the problem
statement ruled out a bottom quark, the third quark must be
a down quark. This conclusion is also consistent with the
baryon quantum numbers:

Thus, the quark composition of the "� particle is ssd.

� 1
3 � 1

3 � 1
3 � �1.

B("�) � B(ssd)

q � �1
3

� �1
3 � (�1

3) � (�1
3) � �1

q("�) � q(ssx)

�1
3

The Basic Forces and Messenger Particles
We turn now from cataloging the particles to considering the forces between them.

The Electromagnetic Force
At the atomic level, we say that two electrons exert electromagnetic forces on
each other according to Coulomb’s law. At a deeper level, this interaction is
described by a highly successful theory called quantum electrodynamics (QED).
From this point of view, we say that each electron senses the presence of the other
by exchanging photons with it.



We cannot detect these photons because they are emitted by one electron and
absorbed by the other a very short time later. Because of their undetectable exis-
tence, we call them virtual photons. Because they communicate between the two
interacting charged particles, we sometimes call these photons messenger particles.

If a stationary electron emits a photon and remains itself unchanged, energy
is not conserved.The principle of conservation of energy is saved, however, by an
uncertainty principle written in the form

. (44-18)

Here we interpret this relation to mean that you can “overdraw” an amount of
energy 
E, violating conservation of energy, provided you “return” it within an
interval 
t given by so that the violation cannot be detected. The virtual
photons do just that. When, say, electron A emits a virtual photon, the overdraw
in energy is quickly set right when that electron receives a virtual photon from
electron B, and the violation is hidden by the inherent uncertainty.

The Weak Force
A theory of the weak force, which acts on all particles, was developed by analogy
with the theory of the electromagnetic force. The messenger particles that trans-
mit the weak force between particles, however, are not (massless) photons but
massive particles, identified by the symbols W and Z.The theory was so successful
that it revealed the electromagnetic force and the weak force as being different
aspects of a single electroweak force. This accomplishment is a logical extension
of the work of Maxwell, who revealed the electric and magnetic forces as being
different aspects of a single electromagnetic force.

The electroweak theory was specific in predicting the properties of the messen-
ger particles. In addition to the massless photon, the messenger of the electromag-
netic interactions, the theory gives us three messengers for the weak interactions:

Particle Charge Mass

W 	e 80.4 GeV/c 2

Z 0 91.2 GeV/c 2

Recall that the proton mass is only 0.938 GeV/c 2; these are massive particles! The
1979 Nobel Prize in physics was awarded to Sheldon Glashow, Steven Weinberg,
and Abdus Salam for their electroweak theory.The theory was confirmed in 1983
by Carlo Rubbia and his group at CERN, and the 1984 Nobel Prize in physics
went to Rubbia and Simon van der Meer for this brilliant experimental work.

Some notion of the complexity of particle physics in this day and age can
be found by looking at an earlier particle physics experiment that led to the
Nobel Prize in physics—the discovery of the neutron. This vitally important dis-
covery was a “tabletop” experiment, employing particles emitted by naturally oc-
curring radioactive materials as projectiles; it was reported in 1932 under the title
“Possible Existence of a Neutron,” the single author being James Chadwick.

The discovery of the W and Z messenger particles in 1983, by contrast, was car-
ried out at a large particle accelerator, about 7 km in circumference and operating in
the range of several hundred billion electron-volts. The principal particle detector
alone weighed 20 MN. The experiment employed more than 130 physicists from 12
institutions in 8 countries, along with a large support staff.

The Strong Force
A theory of the strong force—that is, the force that acts between quarks to bind
hadrons together—has also been developed.The messenger particles in this case

�/
E


E �
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are called gluons and, like the photon, they are predicted to be massless. The the-
ory assumes that each “flavor” of quark comes in three varieties that, for conven-
ience, have been labeled red, yellow, and blue. Thus, there are three up quarks,
one of each color, and so on. The antiquarks also come in three colors, which we
call antired, antiyellow, and antiblue. You must not think that quarks are actually
colored, like tiny jelly beans. The names are labels of convenience, but (for once)
they do have a certain formal justification, as you will see.

The force acting between quarks is called a color force and the underlying
theory, by analogy with quantum electrodynamics (QED), is called quantum
chromodynamics (QCD). Apparently, quarks can be assembled only in combina-
tions that are color-neutral.

There are two ways to bring about color neutrality. In the theory of actual col-
ors, red � yellow � blue yields white, which is color-neutral, and we use the same
scheme in dealing with quarks. Thus we can assemble three quarks to form a
baryon, provided one is a yellow quark, one is a red quark, and one is a blue quark.
Antired � antiyellow � antiblue is also white, so that we can assemble three anti-
quarks (of the proper anticolors) to form an antibaryon. Finally, red � antired, or
yellow � antiyellow, or blue � antiblue also yields white. Thus, we can assemble a
quark–antiquark combination to form a meson. The color-neutral rule does not
permit any other combination of quarks, and none are observed.

The color force not only acts to bind together quarks as baryons and mesons,
but it also acts between such particles, in which case it has traditionally been called
the strong force. Hence, not only does the color force bind together quarks to form
protons and neutrons, but it also binds together the protons and neutrons to form
nuclei.

The Higgs Field and Particle
The Standard Model of the fundamental particles consists of the theory for the
electroweak interactions and the theory for the strong interactions.A key success
in the model has been to demonstrate the existence of the four messenger parti-
cles in the electroweak interactions: the photon, and the Z and W particles.
However, a key puzzle has involved the masses of those particles.Why is the pho-
ton massless while the Z and W particles are extremely massive?

In the 1960s, Peter Higgs and, independently, Robert Brout and François
Englert suggested that the mass discrepancy is due to a field (now called the Higgs
field) that permeates all of space and thus is a property of the vacuum.Without this
field, the four messenger particles would be massless and indistinguishable—they
would be symmetric. The Brout–Englert–Higgs theory demonstrates how the field
breaks that symmetry, producing the electroweak messengers with one being mass-
less. It also explains why all other particles, except for the gluon, have mass. The
quantum of that field is the Higgs boson. Because of its pivotal role for all particles
and because the theory behind its existence is compelling (even beautiful), intense
searches for the Higgs boson were conducted on the Tevatron at Brookhaven and
the Large Hadron Collider at CERN. In 2012, tantalizing experimental evidence
was announced for the Higgs boson, at a mass of 125 GeV/c2.

Einstein’s Dream
The unification of the fundamental forces of nature into a single force—which oc-
cupied Einstein’s attention for much of his later life—is very much a current fo-
cus of research.We have seen that the weak force has been successfully combined
with electromagnetism so that they may be jointly viewed as aspects of a single
electroweak force. Theories that attempt to add the strong force to this combina-
tion—called grand unification theories (GUTs)—are being pursued actively.
Theories that seek to complete the job by adding gravity—sometimes called the-
ories of everything (TOE)—are at a speculative stage at this time. String theory
(in which particles are tiny oscillating loops) is one approach.
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A Pause for Reflection
Let us put what you have just learned in perspective. If all we are interested in is
the structure of the world around us, we can get along nicely with the electron,
the neutrino, the neutron, and the proton. As someone has said, we can operate
“Spaceship Earth” quite well with just these particles. We can see a few of the
more exotic particles by looking for them in the cosmic rays; however, to see most
of them, we must build massive accelerators and look for them at great effort and
expense.

The reason we must go to such effort is that—measured in energy terms—
we live in a world of very low temperatures. Even at the center of the Sun, the
value of kT is only about 1 keV. To produce the exotic particles, we must be able
to accelerate protons or electrons to energies in the GeV and TeV range and
higher.

Once upon a time the temperature everywhere was high enough to provide
such energies.That time of extremely high temperatures occurred in the big bang
beginning of the universe, when the universe (and both space and time) came
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After reading this module, you should be able to . . .

44.22 Identify that the universe (all of spacetime) began with
the big bang and has been expanding ever since.

44.23 Identify that all distant galaxies (and thus their stars,
black holes, etc.), in all directions, are receding from us
because of the expansion.

44.24 Apply Hubble’s law to relate the recession speed v of
a distant galaxy, its distance r from us, and the Hubble
constant H.

44.25 Apply the Doppler equation for the red shift of light to
relate the wavelength shift 
l, the recession speed v, and
the proper wavelength l0 of the emission.

44.26 Approximate the age of the universe using the Hubble
constant.

44.27 Identify the cosmic background radiation and explain
the importance of its detection.

44.28 Explain the evidence for the dark matter that apparently
surrounds every galaxy.

44.29 Discuss the various stages of the universe from very
soon after the big bang until atoms began to form.

44.30 Identify that the expansion of the universe is being
accelerated by some unknown property dubbed dark
energy.

44.31 Identify that the total energy of baryonic matter (pro-
tons and neutrons) is only a small part of the total energy
of the universe.

● The universe is expanding, which means that empty space
is continuously appearing between us and any distant galaxy.

● The rate v at which a distance to a distant galaxy is increas-
ing (the galaxy appears to be moving at speed v) is given by
the Hubble law:

where r is the current distance to the galaxy and H is the
Hubble constant, which we take to be

● The expansion causes a red shift in the light we receive
from distant galaxies. We can assume that the wavelength
shift 
l is given (approximately) by the Doppler shift equa-

H � 71.0 km/s �  Mpc � 21.8 mm/s �  ly.

v � Hr,

tion for light discussed in Module 37-5:

where l0 is the proper wavelength as measured in the frame
of the light source (the galaxy).

● The expansion described by Hubble’s law and the pres-
ence of ubiquitous background microwave radiation reveal
that the universe began in a “big bang” 13.7 billion years ago.

● The rate of expansion is increasing due to a mysterious
property of the vacuum called dark energy.

● Much of the energy of the universe is hidden in dark matter
that apparently interacts with normal (baryonic) matter
through the gravitational force.

v �
�
l�
l0

c,

Learning Objectives

Key Ideas



into existence. Thus, one reason scientists study particles at high energies is to 
understand what the universe was like just after it began.

As we shall discuss shortly, all of space within the universe was initially tiny
in extent, and the temperature of the particles within that space was incredibly
high. With time, however, the universe expanded and cooled to lower tempera-
tures, eventually to the size and temperature we see today.

Actually, the phrase “we see today” is complicated: When we look out into
space, we are actually looking back in time because the light from the stars and
galaxies has taken a long time to reach us. The most distant objects that we can
detect are quasars (quasistellar objects), which are the extremely bright cores of
galaxies that are as much as 13 � 109 ly from us. Each such core contains a
gigantic black hole; as material (gas and even stars) is pulled into one of those
black holes, the material heats up and radiates a tremendous amount of light,
enough for us to detect in spite of the huge distance. We therefore “see” a quasar
not as it looks today but rather as it once was, when that light began its journey to
us billions of years ago.

The Universe Is Expanding
As we saw in Module 37-5, it is possible to measure the relative speeds at
which galaxies are approaching us or receding from us by measuring the shifts
in the wavelength of the light they emit. If we look only at distant galaxies, be-
yond our immediate galactic neighbors, we find an astonishing fact: They are
all moving away (receding) from us! In 1929 Edwin P. Hubble connected the
recession speed v of a galaxy and its distance r from us — they are directly pro-
portional:

v � Hr (Hubble’s law), (44-19)

in which H is called the Hubble constant. The value of H is usually measured in
the unit kilometers per second-megaparsec (km/s �Mpc), where the megaparsec
is a length unit commonly used in astrophysics and astronomy:

1 Mpc � 3.084 � 1019 km � 3.260 � 106 ly. (44-20)

The Hubble constant H has not had the same value since the universe began.
Determining its current value is extremely difficult because doing so involves
measurements of very distant galaxies. However, the Hubble constant is now
known to be

H � 71.0 km/s �Mpc � 21.8 mm/s � ly. (44-21)

We interpret the recession of the galaxies to mean that the universe is expanding,
much as the raisins in what is to be a loaf of raisin bread grow farther apart as the
dough expands. Observers on all other galaxies would find that distant galaxies were
rushing away from them also, in accordance with Hubble’s law. In keeping with our
analogy,we can say that no raisin (galaxy) has a unique or preferred view.

Hubble’s law is consistent with the hypothesis that the universe began with
the big bang and has been expanding ever since. If we assume that the rate of
expansion has been constant (that is, the value of H has been constant), then we
can estimate the age T of the universe by using Eq. 44-19. Let us also assume that
since the big bang, any given part of the universe (say, a galaxy) has been reced-
ing from our location at a speed v given by Eq. 44-19. Then the time required for
the given part to recede a distance r is

(estimated age of universe). (44-22)

For the value of H in Eq. 44-21, T works out to be 13.8 � 109 y. Much more
sophisticated studies of the expansion of the universe put T at 13.7 � 109 y.

T �
r
v

�
r

Hr
�

1
H
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The Cosmic Background Radiation
In 1965 Arno Penzias and Robert Wilson, of what was then the Bell Telephone
Laboratories, were testing a sensitive microwave receiver used for commu-
nications research. They discovered a faint background “hiss” that remained
unchanged in intensity no matter where their antenna was pointed. It soon
became clear that Penzias and Wilson were observing a cosmic background
radiation, generated in the early universe and filling all space almost uniformly.
Currently this radiation has a maximum intensity at a wavelength of 1.1 mm,
which lies in the microwave region of electromagnetic radiation (or light, for
short). The wavelength distribution of this radiation matches the wavelength dis-
tribution of light that would be emitted by a laboratory enclosure with walls at a
temperature of 2.7 K. Thus, for the cosmic background radiation, we say that the
enclosure is the entire universe and that the universe is at an (average) tempera-
ture of 2.7 K. For their discovery of the cosmic background radiation, Penzias and
Wilson were awarded the 1978 Nobel Prize in physics.

The cosmic background radiation is now known to be light that has been in
flight across the universe since shortly after the universe began billions of years
ago. When the universe was even younger, light could scarcely go any significant
distance without being scattered by all the individual, high-speed particles along
its path. If a light ray started from, say, point A, it would be scattered in so many
directions that if you could have intercepted part of it, you would have not been
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Calculation: From Eqs. 44-19 and 44-21, we find

(Answer)
This is only an approximation because the quasar has not
always been receding from our location at the same speed v;
that is, H has not had its current value throughout the time
during which the universe has been expanding.

� 12.8 � 10 9 ly.

r �
v
H

�
2.8 � 10 8 m/s
21.8 mm/s � ly

 (1000 mm/m)

Sample Problem 44.06 Using Hubble’s law to relate distance and recessional speed

The wavelength shift in the light from a particular quasar indi-
cates that the quasar has a recessional speed of 2.8 � 108 m/s
(which is 93% of the speed of light). Approximately how far
from us is the quasar?

KEY IDEA

We assume that the distance and speed are related by
Hubble’s law.

which leads us to

(44-24)

In this equation,


l � ldet � l � 1.1l � l � 0.1l.

Substituting this into Eq. 44-24 then gives us

(Answer)� 1.4 � 10 9 ly.

�
(0.1)(3.0 � 10 8 m/s)

21.8 mm/s � ly
 (1000 mm/m)

r �
c(0.1l)

Hl
�

0.1c
H

r �
c � 
l �

Hl
.

Sample Problem 44.07 Using Hubble’s law to relate distance and Doppler shift

A particular emission line detected in the light from a
galaxy has a detected wavelength ldet � 1.1l, where l is the
proper wavelength of the line. What is the galaxy’s distance
from us?

KEY IDEAS

(1) We assume that Hubble’s law (v � Hr) applies to the 
recession of the galaxy. (2) We also assume that the astro-
nomical Doppler shift of Eq. 37-36 (v � c 
l /l, for v � c)
applies to the shift in wavelength due to the recession.

Calculations: We can then set the right side of these two
equations equal to each other to write

(44-23)Hr �
c �
l�

l
,

��

Additional examples, video, and practice available at WileyPLUS



able to tell that it originated at point A. However, after the particles began to
form atoms, the scattering of light greatly decreased. A light ray from point A
might then be able to travel for billions of years without being scattered. This
light is the cosmic background radiation.

As soon as the nature of the radiation was recognized, researchers won-
dered, “Can we use this incoming radiation to distinguish the points at which it
originated, so that we then can produce an image of the early universe, back
when atoms first formed and light scattering largely ceased?” The answer is yes,
and that image is coming up in a moment.

Dark Matter
At the Kitt Peak National Observatory in Arizona, Vera Rubin and her 
co-worker Kent Ford measured the rotational rates of a number of distant galax-
ies. They did so by measuring the Doppler shifts of bright clusters of stars located
within each galaxy at various distances from the galactic center. As Fig. 44-5
shows, their results were surprising: The orbital speed of stars at the outer visible
edge of the galaxy is about the same as that of stars close to the galactic center.

As the solid curve in Fig. 44-5 attests, that is not what we would expect to find
if all the mass of the galaxy were represented by visible light. Nor is the pattern
found by Rubin and Ford what we find in the solar system. For example, the
orbital speed of Pluto (the “planet” most distant from the Sun) is only about
one-tenth that of Mercury (the planet closest to the Sun).

The only explanation for the findings of Rubin and Ford that is consistent
with Newtonian mechanics is that a typical galaxy contains much more matter
than what we can actually see. In fact, the visible portion of a galaxy represents
only about 5 to 10% of the total mass of the galaxy. In addition to these studies of
galactic rotation, many other observations lead to the conclusion that the universe
abounds in matter that we cannot see.This unseen matter is called dark matter be-
cause either it does not emit light or its light emission is too dim for us to detect.

Normal matter (such as stars, planets, dust, and molecules) is often called
baryonic matter because its mass is primarily due to the combined mass of
the protons and neutrons (baryons) it contains. (The much smaller mass of the
electrons is neglected.) Some of the normal matter, such as burned-out stars and
dim interstellar gas, is part of the dark matter in a galaxy.

However, according to various calculations, this dark normal matter is only
a small part of the total dark matter. The rest is called nonbaryonic dark matter
because it does not contain protons and neutrons. We know of only one member
of this type of dark matter—the neutrinos. Although the mass of a neutrino is
very small relative to the mass of a proton or neutron, the number of neutrinos in
a galaxy is huge and thus the total mass of the neutrinos is large. Nevertheless,
calculations indicate that not even the total mass of the neutrinos is enough to
account for the total mass of the nonbaryonic dark matter. In spite of over a hun-
dred years in which elementary particles have been detected and studied, the
particles that make up the rest of this type of dark matter are undetected and
their nature is unknown. Because we have no experience with them, they must
interact only gravitationally with the common particles.

The Big Bang
In 1985, a physicist remarked at a scientific meeting:

It is as certain that the universe started with a big bang about 15 billion years ago as
it is that the Earth goes around the Sun.

This strong statement suggests the level of confidence in which the big bang
theory, first advanced by Belgian physicist Georges Lemaître, is held by those
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Figure 44-5 The rotational speed of stars in a
typical galaxy as a function of their distance
from the galactic center.The theoretical
solid curve shows that if a galaxy contained
only the mass that is visible, the observed
rotational speed would drop off with
distance at large distances.The dots are the
experimental data, which show that the
rotational speed is approximately constant
at large distances.
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who study these matters. However, you must not imagine that the big bang was
like the explosion of some gigantic firecracker and that, in principle at least, you
could have stood to one side and watched. There was no “one side” because the
big bang represents the beginning of spacetime itself. From the point of view of
our present universe, there is no position in space to which you can point and say,
“The big bang happened there.” It happened everywhere.

Moreover, there was no “before the big bang,” because time began with
that creation event. In this context, the word “before” loses its meaning. We can,
however, conjecture about what went on during succeeding intervals of time after
the big bang (Fig. 44-6).

t � 10�43 s. This is the earliest time at which we can say anything meaningful
about the development of the universe. It is at this moment that the concepts
of space and time come to have their present meanings and the laws of
physics as we know them become applicable. At this instant, the entire uni-
verse (that is, the entire spatial extent of the universe) is much smaller than a
proton and its temperature is about 1032 K. Quantum fluctuations in the fab-
ric of spacetime are the seeds that will eventually lead to the formation of
galaxies, clusters of galaxies, and superclusters of galaxies.

t � 10�34 s. By this moment the universe has undergone a tremendously rapid
inflation, increasing in size by a factor of about 1030, causing the formation of
matter in a distribution set by the initial quantum fluctuations. The universe
has become a hot soup of photons, quarks, and leptons at a temperature of
about 1027 K, which is too hot for protons and neutrons to form.

t � 10 �4 s. Quarks can now combine to form protons and neutrons and their
antiparticles. The universe has now cooled to such an extent by continued
(but much slower) expansion that photons lack the energy needed to break
up these new particles. Particles of matter and antimatter collide and annihi-
late each other.There is a slight excess of matter, which, failing to find annihi-
lation partners, survives to form the world of matter that we know today.

t � 1 min. The universe has now cooled enough so that protons and neutrons, in
colliding, can stick together to form the low-mass nuclei 2H, 3He, 4He, and 7Li.
The predicted relative abundances of these nuclides are just what we observe
in the universe today. Also, there is plenty of radiation present at t � 1 min,
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Courtesy NASA

Figure 44-6 An illustration of the universe
from the initial quantum fluctuations just
after t � 0 (at the left) to the current
accelerated expansion, later
(at the right). Don’t take the illustration
literally—there is no such “external view”
of the universe because there is no exterior
to the universe.

13.7 � 109 y



but this light cannot travel far before it interacts with a nucleus. Thus the
universe is opaque.

t � 379 000 y. The temperature has now fallen to 2970 K, and electrons can stick to
bare nuclei when the two collide, forming atoms. Because light does not interact
appreciably with (uncharged) particles, such as neutral atoms, the light is now
free to travel great distances.This radiation forms the cosmic background radia-
tion that we discussed earlier. Atoms of hydrogen and helium, under the influ-
ence of gravity, begin to clump together, eventually starting the formation of
galaxies and stars,but until then, the universe is relatively dark (Fig.44-6).

Early measurements suggested that the cosmic background radiation is uniform
in all directions, implying that 379 000 y after the big bang all matter in the uni-
verse was uniformly distributed. This finding was most puzzling because matter
in the present universe is not uniformly distributed, but instead is collected in
galaxies, clusters of galaxies, and superclusters of galactic clusters. There are also
vast voids in which there is relatively little matter, and there are regions so
crowded with matter that they are called walls. If the big bang theory of the
beginning of the universe is even approximately correct, the seeds for this non-
uniform distribution of matter must have been in place before the universe was
379 000 y old and now should show up as a nonuniform distribution of the
microwave background radiation.

In 1992, measurements made by NASA’s Cosmic Background Explorer
(COBE) satellite revealed that the background radiation is, in fact, not perfectly
uniform. In 2003, measurements by NASA’s Wilkinson Microwave Anisotropy
Probe (WMAP) greatly increased our resolution of this nonuniformity. The re-
sulting image (Fig. 44-7) is effectively a color-coded photograph of the universe
when it was only 379 000 y old. As you can see from the variations in the colors,
large-scale collecting of matter had already begun. Thus, the big bang theory and
the theory of inflation at t � 10�34 s are on the right track.

The Accelerated Expansion of the Universe
Recall from Module 13-8 the statement that mass causes curvature of space.
Now that we have seen that mass is a form of energy, as given by Einstein’s equa-
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Courtesy WMAP Science Team/NASA

Figure 44-7 This color-coded
image is effectively a pho-
tograph of the universe
when it was only 379 000 y
old, which was about 13.7 �
109 y ago.This is what you
would have seen then as
you looked away in all di-
rections (the view has been
condensed to this oval).
Patches of light from col-
lections of atoms stretch
across the “sky,” but galax-
ies, stars, and planets have
not yet formed.



tion E � mc 2, we can generalize the statement: energy can cause curvature of
space. This certainly happens to the space around the energy packed into a black
hole and, more weakly, to the space around any other astronomical body, but is
the space of the universe as a whole curved by the energy the universe contains?

The question was answered first by the 1992 COBE measurements of the
cosmic background radiation. It was then answered more definitively by the 2003
WMAP measurements that produced the image in Fig. 44-7. The spots we see in
that image are the original sources of the cosmic background radiation, and the an-
gular distribution of the spots reveals the curvature of the universe through which
the light has to travel to reach us. If adjacent spots subtend either more than 1° (Fig.
44-8a) or less than 1° (Fig. 44-8b) in the detector’s view (or our view) into the uni-
verse, then the universe is curved. Analysis of the spot distribution in the WMAP
image shows that the spots subtend about 1° (Fig. 44-8c), which means that the
universe is flat (having no curvature). Thus, the initial curvature the universe pre-
sumably had when it began must have been flattened out by the rapid inflation
the universe underwent at t � 10�34 s.

This flatness poses a very difficult problem for physicists because it requires
that the universe contain a certain amount of energy (as mass or otherwise). The
trouble is that all estimations of the amount of energy in the universe (both in
known forms and in the form of the unknown type of dark matter) fall dramati-
cally short of the required amount.

One theory proposed about this missing energy gave it the gothic name of
dark energy and predicted that it has the strange property of causing the expan-
sion of the universe to accelerate. Until 1998, determining whether the expansion
is, in fact, accelerating was very difficult because it requires measuring distances
to very distant astronomical bodies where the acceleration might show up.

In 1998, however, advances in astronomical technology allowed astronomers to
detect a certain type of supernovae at very great distances. More important, the as-
tronomers could measure the duration of the burst of light from such a supernova.
The duration reveals the brightness of the supernova that would be seen by an ob-
server near the supernova. By measuring the brightness of the supernova as seen
from Earth, astronomers could then determine the distance to the supernova. From
the redshift of the light from the galaxy containing the supernova, astronomers
could also determine how fast the galaxy is receding from us. Combining all this in-
formation, they could then calculate the expansion rate of the universe.The conclu-
sion is that the expansion is indeed accelerating as predicted by the theory of dark
energy (Fig. 44-6). However, we have no clue as to what this dark energy is.

Figure 44-9 gives our current state of knowledge about the energy in the uni-
verse. About 4% is associated with baryonic matter, which we understand fairly
well. About 23% is associated with nonbaryonic dark matter, about which we
have a few clues that might be fruitful. The rest, a whopping 73%, is associated
with dark energy, about which we are clueless. There have been times in the his-
tory of physics, even in the 1990s, when pontiffs proclaimed that physics was
nearly complete, that only details were left. In fact, we are nowhere near the end.

A Summing Up
In this closing paragraph, let’s consider where we are headed as we accumulate
knowledge about the universe more and more rapidly.What we have found is mar-
velous and profound, but it is also humbling in that each new step seems to reveal
more clearly our own relative insignificance in the grand scheme of things. Thus, in
roughly chronological order, we humans have come to realize that

Our Earth is not the center of the solar system.

Our Sun is but one star among many in our galaxy.

Our galaxy is but one of many, and our Sun is an insignificant star in it.
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Figure 44-8 Light rays from two adjacent
spots in our view of the cosmic background
radiation would reach us at an angle (a)
greater than 1° or (b) less than 1° if the
space along the light-ray paths through the
universe were curved. (c) An angle of 1°
means that the space is not curved.

Spot

Spot

Us

(a)

(b)

(c)

Baryonic 
matter

Dark energy 
(no clues)

Nonbaryonic 
dark matter 
(a few clues)

73%

23%

4%

Figure 44-9 The distribution of energy 
(including mass) in the universe.



Questions

1 An electron cannot decay into two neutrinos. Which of the
following conservation laws would be violated if it did: (a) energy,
(b) angular momentum, (c) charge, (d) lepton number, (e) linear
momentum, (f) baryon number?

2 Which of the eight pions in Fig. 44-2b
has the least kinetic energy?

3 Figure 44-10 shows the paths of two par-
ticles circling in a uniform magnetic field.
The particles have the same magnitude of
charge but opposite signs. (a) Which path
corresponds to the more massive particle?
(b) If the magnetic field is directed into the
plane of the page, is the more massive parti-
cle positively or negatively charged?

4 A proton has enough mass energy to decay into a shower made
up of electrons, neutrinos, and their antiparticles. Which of the fol-
lowing conservation laws would necessarily be violated if it did:
electron lepton number or baryon number?

5 A proton cannot decay into a neutron and a neutrino. Which of
the following conservation laws would be violated if it did: (a) energy
(assume the proton is stationary), (b) angular momentum, (c) charge,
(d) lepton number, (e) linear momentum, (f) baryon number?

6 Does the proposed decay !0 : p � K� conserve (a) electric
charge, (b) spin angular momentum, and (c) strangeness? (d) If the
original particle is stationary, is there enough energy to create the
decay products?

7 Not only particles such as electrons and protons but also entire
Figure 44-10

Question 3.

Our Earth has existed for perhaps only a third of the age of the universe and will
surely disappear when our Sun burns up its fuel and becomes a red giant.

Our species has inhabited Earth for less than a million years—a blink in cosmo-
logical time.

Although our position in the universe may be insignificant, the laws of physics that
we have discovered (uncovered?) seem to hold throughout the universe and—as
far as we know—have held since the universe began and will continue to hold for
all future time. At least, there is no evidence that other laws hold in other parts of
the universe. Thus, until someone complains, we are entitled to stamp the laws of
physics “Discovered on Earth.” Much remains to be discovered. In the words of
writer Eden Phillpotts, “The universe is full of magical things, patiently waiting for
our wits to grow sharper.” That declaration allows us to answer one last time the
question “What is physics?” that we have explored repeatedly in this book. Physics
is the gateway to those magical things.
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Leptons and Quarks Current research supports the view that
all matter is made of six kinds of leptons (Table 44-2), six kinds of
quarks (Table 44-5), and 12 antiparticles, one corresponding to
each lepton and each quark. All these particles have spin quantum
numbers equal to and are thus fermions (particles with half-
integer spin quantum numbers).

The Interactions Particles with electric charge interact
through the electromagnetic force by exchanging virtual photons.
Leptons can also interact with each other and with quarks through
the weak force, via massive W and Z particles as messengers. In ad-
dition, quarks interact with each other through the color force. The
electromagnetic and weak forces are different manifestations of
the same force, called the electroweak force.

Leptons Three of the leptons (the electron, muon, and tau)
have electric charge equal to �1e. There are also three uncharged
neutrinos (also leptons), one corresponding to each of the charged
leptons. The antiparticles for the charged leptons have positive
charge.

Quarks The six quarks (up, down, strange, charm, bottom, and
top, in order of increasing mass) each have baryon number and
charge equal to either or . The strange quark has strange-�1

3 e�2
3 e

�1
3

1
2

Review & Summary

ness �1, whereas the others all have strangeness 0. These four alge-
braic signs are reversed for the antiquarks.

Hadrons: Baryons and Mesons Quarks combine into
strongly interacting particles called hadrons. Baryons are hadrons
with half-integer spin quantum numbers ( or ). Mesons are
hadrons with integer spin quantum numbers (0 or 1) and thus are
bosons. Baryons are fermions. Mesons have baryon number equal
to zero; baryons have baryon number equal to �1 or �1. Quantum
chromodynamics predicts that the possible combinations of quarks
are either a quark with an antiquark, three quarks, or three anti-
quarks (this prediction is consistent with experiment).

Expansion of the Universe Current evidence strongly sug-
gests that the universe is expanding, with the distant galaxies mov-
ing away from us at a rate v given by Hubble’s law:

v � Hr (Hubble’s law). (44-19)

Here we take H, the Hubble constant, to have the value

H � 71.0 km/s �Mpc � 21.8 mm/s � ly. (44-21)

The expansion described by Hubble’s law and the presence of
ubiquitous background microwave radiation reveal that the uni-
verse began in a “big bang” 13.7 billion years ago.

3
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1363PROBLEMS

meson, which decays by the reaction . Calculate the
rest energy of the r0 meson given that the oppositely directed mo-
menta of the created pions each have magnitude 358.3 MeV/c. See
Table 44-4 for the rest energies of the pions.

••8 A positive tau (t�, rest energy � 1777 MeV) is moving
with 2200 MeV of kinetic energy in a circular path perpendicular
to a uniform 1.20 T magnetic field. (a) Calculate the momentum of
the tau in kilogram-meters per second. Relativistic effects must be
considered. (b) Find the radius of the circular path.

••9 Observations of neutrinos emitted by the supernova
SN1987a (Fig. 43-12b) place an upper limit of 20 eV on the rest en-
ergy of the electron neutrino. If the rest energy of the electron neu-
trino were, in fact, 20 eV, what would be the speed difference
between light and a 1.5 MeV electron neutrino?

••10 A neutral pion has a rest energy of 135 MeV and a mean
life of If it is produced with an initial kinetic energy
of 80 MeV and decays after one mean lifetime, what is the longest
possible track this particle could leave in a bubble chamber? Use
relativistic time dilation.

Module 44-2 Leptons, Hadrons, and Strangeness
•11 Which conservation law is violated in each of
these proposed decays? Assume that the initial particle is station-
ary and the decay products have zero orbital angular momentum.
(a) m� : e� � nm; (b) m� : e� � ne � n̄m; (c) m� : p� � nm.

•12 The particle and its products decay according to the scheme

(a) What are the final stable decay products? From the evidence,
(b) is the particle a fermion or a boson and (c) is it a meson or a
baryon? (d) What is its baryon number? 

•13 Show that if, instead of plotting strangeness S versus charge q

A2
�

m� : e� � n � n̄.p� : m� � n,
p�  : m� � n̄,r0 : p� � p�,
m�  : e� � n � n̄,A2

� : r0 � p�,

A2
�

WWWSSM

8.3 � 10�17 s.

r0 : p� � p�Module 44-1 General Properties of Elementary Particles
•1 A positively charged pion decays by Eq. 44-7: .
What must be the decay scheme of the negatively charged pion?
(Hint: The p� is the antiparticle of the p�.)

•2 Certain theories predict that the proton is unstable,with a half-life
of about 1032 years.Assuming that this is true, calculate the number of
proton decays you would expect to occur in one year in the water of
an Olympic-sized swimming pool holding 4.32 � 105 L of water.

•3 An electron and a positron undergo pair annihilation 
(Eq. 44-5). If they had approximately zero kinetic energy before
the annihilation, what is the wavelength of each g produced by the
annihilation?

•4 A neutral pion initially at rest decays into two gamma rays:
. Calculate the wavelength of the gamma rays. Why

must they have the same wavelength?

•5 An electron and a positron are separated by distance r. Find
the ratio of the gravitational force to the electric force between
them. From the result, what can you conclude concerning the
forces acting between particles detected in a bubble chamber?
(Should gravitational interactions be considered?)

••6 (a) A stationary particle 1 decays into particles 2 and 3, which
move off with equal but oppositely directed momenta. Show that
the kinetic energy K2 of particle 2 is given by

where E1, E2, and E3 are the rest energies of the particles.
(b) A stationary positive pion p� (rest energy 139.6 MeV) can de-
cay to an antimuon m� (rest energy 105.7 MeV) and a neutrino n
(rest energy approximately 0). What is the resulting kinetic energy
of the antimuon?

••7 The rest energy of many short-lived particles cannot be mea-
sured directly but must be inferred from the measured momenta
and known rest energies of the decay products. Consider the r0

K2 �
1

2E1
 [(E1 � E2)2 � E3

2],

p 0 : g � g

m� � np� :

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

atoms can be classified as fermions or bosons, depend-
ing on whether their overall spin quantum numbers are, respectively,
half-integral or integral. Consider the helium isotopes 3He and 4He.
Which of the following statements is correct? (a) Both are fermions.
(b) Both are bosons. (c) 4He is a fermion, and 3He is a boson. (d) 3He
is a fermion, and 4He is a boson. (The two helium electrons form a
closed shell and play no role in this 
determination.)

8 Three cosmologists have each plot-
ted a line on the Hubble-like graph of
Fig. 44-11. If we calculate the corre-
sponding age of the universe from the
three plots, rank the plots according to
that age, greatest first.

9 A � particle has these quantum numbers: strangeness 
S � �1, charge q � �1, and spin . Which of the following
quark combinations produces it: (a) dds, (b) ss̄, (c) uus, (d) ssu, or
(e) uus̄?

10 As we have seen, the p� meson has the quark structure .
Which of the following conservation laws would be violated if a p�

were formed, instead, from a d quark and a u quark: (a) energy, (b)
angular momentum, (c) charge, (d) lepton number, (e) linear mo-
mentum, (f) baryon number?

11 Consider the neutrino whose symbol is . (a) Is it a quark, a
lepton, a meson, or a baryon? (b) Is it a particle or an
antiparticle? (c) Is it a boson or a fermion? (d) Is it stable
against spontaneous decay?

n̄t

dū

s � 1
2

�

v

r

3

2
1

Figure 44-11
Question 8.
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for the spin- baryons in Fig. 44-3a and for the spin-zero mesons in
Fig. 44-3b, we plot the quantity versus the quantity

, we get the hexagonal patterns without using
sloping axes. (The quantity Y is called hypercharge, and Tz is re-
lated to a quantity called isospin.)

•14 Calculate the disintegration energy of the reactions 
(a) p� � p : � � K� and (b) K� � p : !0 � p0.

•15 Which conservation law is violated in each of these proposed re-
actions and decays? (Assume that the products have zero orbital an-
gular momentum.) (a) !0 : p � K�; (b) �� : � � p0 (S � �3,q �
�1,m � 1672 MeV/c2,and for ��); (c) K� � p : !0 � p�.

•16 Does the proposed reaction

p � p̄ : !0 � � � e�

conserve (a) charge, (b) baryon number, (c) electron lepton num-
ber, (d) spin angular momentum, (e) strangeness, and (f) muon
lepton number?

•17 Does the proposed decay process

"� : p� � n � K� � p

conserve (a) charge, (b) baryon number, (c) spin angular momen-
tum, and (d) strangeness?

•18 By examining strangeness, determine which of the follow-
ing decays or reactions proceed via the strong interaction: (a)
K0 : p� � p�; (b) !0 � p : � � n; (c) !0 : p � p�;
(d) K� � p : !0 � p0.

•19 The reaction p� � p : p � p � n̄ proceeds via the strong
interaction. By applying the conservation laws, deduce the
(a) charge quantum number, (b) baryon number, and (c) strange-
ness of the antineutron.

•20 There are 10 baryons with spin .Their symbols and quantum
numbers for charge q and strangeness S are as follows:

q S q S


� �1 0 *0 0 �1

0 0 0 *� �1 �1

� �1 0 "*� �1 �2

�� �2 0 "*0 0 �2

*� �1 �1 �� �1 �3

Make a charge–strangeness plot for these baryons, using the sloping
coordinate system of Fig. 44-3. Compare your plot with this figure.

••21 Use the conservation laws and Tables 44-3 and 44-4 to iden-
tify particle x in each of the following reactions, which proceed by
means of the strong interaction: (a) p � p : p � !0 � x ; (b) p �
p̄ : n � x ; (c) p� � p : "0 � K0 � x.

••22 A 220 MeV � particle decays: � : p� � n. Calculate
the total kinetic energy of the decay products.

••23 Consider the decay !0 : p � p� with the !0 at rest.
(a) Calculate the disintegration energy. What is the kinetic energy
of (b) the proton and (c) the pion? (Hint: See Problem 6.)

••24 The spin- baryon (see table in Problem 24) has a rest
energy of 1385 MeV (with an intrinsic uncertainty ignored here);
the spin- baryon has a rest energy of 1192.5 MeV. If each of
these particles has a kinetic energy of 1000 MeV, (a) which is mov-
ing faster and (b) by how much?

1
2 �0

3
2 �*0

��

�

�
�

3
2

�

�

ms � 3
2

�

�

Tz � q � 1
2(B � S)

Y � B � S

1
2 Module 44-3 Quarks and Messenger Particles

•25 The quark makeups of the proton and neutron are uud and
udd, respectively. What are the quark makeups of (a) the antipro-
ton and (b) the antineutron?

•26 From Tables 44-3 and 44-5, determine the identity of the
baryon formed from quarks (a) ddu, (b) uus, and (c) ssd. Check
your answers against the baryon octet shown in Fig. 44-3a.

•27 What is the quark makeup of ?

•28 What quark combination is needed to form (a) !0 and (b) "0?

•29 Which hadron in Tables 44-3 and 44-4 corresponds to the
quark bundles (a) ssu and (b) dds?

•30 Using the up, down, and strange quarks only,WWWSSM

K0

construct, if possible, a baryon (a) with q � �1 and strangeness 
S � �2 and (b) with q � �2 and strangeness S � 0.

Module 44-4 Cosmology
•31 In the laboratory, one of the lines of sodium is emitted at a
wavelength of 590.0 nm. In the light from a particular galaxy,
however, this line is seen at a wavelength of 602.0 nm. Calculate
the distance to the galaxy, assuming that Hubble’s law holds and
that the Doppler shift of Eq. 37-36 applies.

•32 Because of the cosmological expansion, a particular emission
from a distant galaxy has a wavelength that is 2.00 times the wave-
length that emission would have in a laboratory. Assuming that
Hubble’s law holds and that we can apply Doppler-shift calculations,
what was the distance (ly) to that galaxy when the light was emitted?

•33 What is the observed wavelength of the 656.3 nm (first
Balmer) line of hydrogen emitted by a galaxy at a distance of
2.40 � 108 ly? Assume that the Doppler shift of Eq. 37-36 and
Hubble’s law apply.

•34 An object is from us and does not have any mo-
tion relative to us except for the motion due to the expansion of
the universe. If the space between us and it expands according to
Hubble’s law, with H � 21.8 mm/s � ly, (a) how much extra distance
(meters) will be between us and the object by this time next year
and (b) what is the speed of the object away from us?

•35 If Hubble’s law can be extrapolated to very large distances, at
what distance would the apparent recessional speed become equal
to the speed of light?

•36 What would the mass of the Sun have to be if Pluto (the out-
ermost “planet” most of the time) were to have the same orbital
speed that Mercury (the innermost planet) has now? Use data
from Appendix C, express your answer in terms of the Sun’s cur-
rent mass MS, and assume circular orbits.

•37 The wavelength at which a thermal radiator at temperature T
radiates electromagnetic waves most intensely is given by Wien’s
law: lmax � (2898 mm �K)/T. (a) Show that the energy E of a photon
corresponding to that wavelength can be computed from

E � (4.28 � 10�10 MeV/K)T.

(b) At what minimum temperature can this photon create an elec-
tron–positron pair (as discussed in Module 21-3)?

•38 Use Wien’s law (see Problem 37) to answer the following
questions: (a) The cosmic background radiation peaks in intensity
at a wavelength of 1.1 mm. To what temperature does this corre-
spond? (b) About 379 000 y after the big bang, the universe became
transparent to electromagnetic radiation. Its temperature then was

1.5 � 104 ly
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2970 K.What was the wavelength at which the background radiation
was then most intense?

••39 Will the universe continue to expand forever? To attack this
question, assume that the theory of dark energy is in error and that
the recessional speed v of a galaxy a distance r from us is determined
only by the gravitational interaction of the matter that lies inside 
a sphere of radius r centered on us. If the total mass inside this 
sphere is M, the escape speed ve from the sphere is 
(Eq. 13-28). (a) Show that to prevent unlimited expansion, the aver-
age density r inside the sphere must be at least equal to

(b) Evaluate this “critical density” numerically; express your an-
swer in terms of hydrogen atoms per cubic meter. Measurements
of the actual density are difficult and are complicated by the pres-
ence of dark matter.

••40 Because the apparent recessional speeds of galaxies and
quasars at great distances are close to the speed of light, the rela-
tivistic Doppler shift formula (Eq. 37-31) must be used. The shift is
reported as fractional red shift z � 
l/l0. (a) Show that, in terms of
z, the recessional speed parameter b � v/c is given by

(b) A quasar detected in 1987 has z � 4.43. Calculate its speed pa-
rameter. (c) Find the distance to the quasar, assuming that
Hubble’s law is valid to these distances.

••41 An electron jumps from n � 3 to n � 2 in a hydrogen atom
in a distant galaxy, emitting light. If we detect that light at a wave-
length of 3.00 mm, by what multiplication factor has the wavelength,
and thus the universe, expanded since the light was emitted?

••42 Due to the presence everywhere of the cosmic background
radiation, the minimum possible temperature of a gas in interstel-
lar or intergalactic space is not 0 K but 2.7 K. This implies that a
significant fraction of the molecules in space that can be in a low-
level excited state may, in fact, be so. Subsequent de-excitation
would lead to the emission of radiation that could be detected.
Consider a (hypothetical) molecule with just one possible excited
state. (a) What would the excitation energy have to be for 25% of
the molecules to be in the excited state? (Hint: See Eq. 40-29.) (b)
What would be the wavelength of the photon emitted in a transi-
tion back to the ground state?

••43 Suppose that the radius of the Sun were increased to
5.90 1012 m (the average radius of the orbit of Pluto), that the
density of this expanded Sun were uniform, and that the planets
revolved within this tenuous object. (a) Calculate Earth’s orbital
speed in this new configuration. (b) What is the ratio of the orbital
speed calculated in (a) to Earth’s present orbital speed of 29.8
km/s? Assume that the radius of Earth’s orbit remains un-
changed. (c) What would be Earth’s new period of revolution?
(The Sun’s mass remains unchanged.)

••44 Suppose that the matter (stars, gas, dust) of a particular
galaxy, of total mass M, is distributed uniformly throughout a
sphere of radius R. A star of mass m is revolving about the center
of the galaxy in a circular orbit of radius r � R. (a) Show that the
orbital speed v of the star is given by

v � r 2GM/R3,

�

SSM

b �
z2 � 2z

z2 � 2z � 2
.

r �
3H2

8pG
.

ve � 12GM/r

and therefore that the star’s period T of revolution is

independent of r. Ignore any resistive forces. (b) Next suppose that
the galaxy’s mass is concentrated near the galactic center, within a
sphere of radius less than r. What expression then gives the star’s
orbital period?

Additional Problems
45 There is no known meson with charge quantum numberSSM

T � 2p 2R3/GM,

Figure 44-13 Problem 48.

7

8

9

6

2

4

5
1

3

q � �1 and strangeness S � �1 or with q � �1 and S � �1.
Explain why in terms of the quark model.

46 Figure 44-12 is a hypothetical plot of the recessional speeds v of
galaxies against their distance r from us; the best-fit straight line
through the data points is shown. From this plot determine the age of
the universe, assuming that Hubble’s law holds and that Hubble’s con-
stant has always had the same value.

Figure 44-12 Problem 46.

0.40c

5.3

Sp
ee

d
v

Distance r (109 ly) 

47 How much energy would be released if Earth were anni-
hilated by collision with an anti-Earth?

48 A particle game. Figure 44-13 is a sketch of the tracks made by
particles in a fictional cloud chamber experiment (with a uniform
magnetic field directed perpendicular to the page), and Table 44-6
gives fictional quantum numbers associated with the particles making
the tracks. Particle A entered the chamber at the lower left, leaving
track 1 and decaying into three particles. Then the particle creating
track 6 decayed into three other particles, and the particle creating

SSM
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counter S2 and then through two Cerenkov counters C1 and C2.
These latter detectors can be manufactured so that they send a sig-
nal only when the particle passing through them is moving with a
speed that falls within a certain range. In the experiment, a particle
with a speed greater than 0.79c would trigger C1 and a particle
with a speed between 0.75c and 0.78c would trigger C2.

There were then two ways to distinguish the predicted rare
antiprotons from the abundant negative pions. Both ways involved
the fact that the speed of a 1.19 GeV/c p̄ differs from that of a 1.19
GeV/c p�: (1) According to calculations, a p̄ would trigger one of
the Cerenkov counters and a p� would trigger the other. (2) The
time interval 
t between signals from S1 and S2, which were sepa-
rated by 12 m, would have one value for a p̄ and another value for a
p�. Thus, if the correct Cerenkov counter were triggered and the
time interval 
t had the correct value, the experiment would prove
the existence of antiprotons.

What is the speed of (a) an antiproton with a momentum of
1.19 GeV/c and (b) a negative pion with that same momentum?
(The speed of an antiproton through the Cerenkov detectors
would actually be slightly less than calculated here because the an-
tiproton would lose a little energy within the detectors.) Which
Cerenkov detector was triggered by (c) an antiproton and (d) a
negative pion? What time interval 
t indicated the passage of (e)
an antiproton and (f) a negative pion? [Problem adapted from O.
Chamberlain, E. Segrè, C.Wiegand, and T.Ypsilantis,“Observation
of Antiprotons,” Physical Review, Vol. 100, pp. 947–950 (1955).]

track 4 decayed into two other particles, one of which was electrically
uncharged—the path of that uncharged particle is represented by the
dashed straight line because,being electrically neutral, it would not ac-
tually leave a track in a cloud chamber.The particle that created track
8 is known to have a seriousness quantum number of zero.

By conserving the fictional quantum numbers at each decay
point and by noting the directions of curvature of the tracks, iden-
tify which particle goes with track (a) 1, (b) 2, (c) 3, (d) 4, (e) 5,
(f) 6, (g) 7, (h) 8, and (i) 9. One of the listed particles is not formed;
the others appear only once each.

49 Figure 44-14 shows part of the experimental arrangement in
which antiprotons were discovered in the 1950s. A beam of 6.2 GeV
protons emerged from a particle accelerator and collided with nuclei
in a copper target. According to theoretical predictions at the time,
collisions between protons in the beam and the protons and neutrons
in those nuclei should produce antiprotons via the reactions

and

However, even if these reactions did occur, they would be rare
compared to the reactions

p � p : p � p � �� � ��

p � n : p � n � p � p̄.

p � p : p � p � p � p̄

Table 44-6 Problem 44-48

Particle Charge Whimsy Seriousness Cuteness

A 1 1 �2 �2
B 0 4 3 0
C 1 2 �3 �1
D �1 �1 0 1
E �1 0 �4 �2
F 1 0 0 0
G �1 �1 1 �1
H 3 3 1 0
I 0 6 4 6
J 1 �6 �4 �6

Figure 44-14 Problem 49.

50 Verify that the hypothetical proton decay scheme in Eq. 44-14
does not violate the conservation law of (a) charge, (b) energy, and
(c) linear momentum. (d) How about angular momentum?
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and

Thus, most of the particles produced by the collisions between the
6.2 GeV protons and the copper target were pions.

To prove that antiprotons exist and were produced by some
limited number of the collisions, particles leaving the target were
sent into a series of magnetic fields and detectors as shown in 
Fig. 44-14. The first magnetic field (M1) curved the path of any
charged particle passing through it; moreover, the field was
arranged so that the only particles that emerged from it to reach
the second magnetic field (Q1) had to be negatively charged
(either a p̄ or a p�) and have a momentum of 1.19 GeV/c. Field Q1
was a special type of magnetic field (a quadrapole field) that
focused the particles reaching it into a beam, allowing them to pass
through a hole in thick shielding to a scintillation counter S1. The
passage of a charged particle through the counter triggered a sig-
nal, with each signal indicating the passage of either a 1.19 GeV/c
p� or (presumably) a 1.19 GeV/c p̄.

After being refocused by magnetic field Q2, the particles were
directed by magnetic field M2 through a second scintillation

p � n : p � n � �� � ��.
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51 Cosmological red shift. The expansion of the universe is
often represented with a drawing like Fig. 44-15a. In that figure, we
are located at the symbol labeled MW (for the Milky Way galaxy),
at the origin of an r axis that extends radially away from us in any
direction. Other, very distant galaxies are also represented.
Superimposed on their symbols are their velocity vectors as in-
ferred from the red shift of the light reaching us from the galaxies.
In accord with Hubble’s law, the speed of each galaxy is propor-
tional to its distance from us. Such drawings can be misleading be-
cause they imply (1) that the red shifts are due to the motions of
galaxies relative to us, as they rush away from us through static (sta-
tionary) space, and (2) that we are at the center of all this motion.

Actually, the expansion of the universe and the increased sep-
aration of the galaxies are due not to an outward rush of the galax-
ies into pre-existing space but to an expansion of space itself
throughout the universe. Space is dynamic, not static.

Figures 44-15b, c, and d show a different way of representing
the universe and its expansion. Each part of the figure gives part of
a one-dimensional section of the universe (along an r axis); the
other two spatial dimensions of the universe are not shown. Each
of the three parts of the figure shows the Milky Way and six other
galaxies (represented by dots); the parts are positioned along a
time axis, with time increasing upward. In part b, at the earliest
time of the three parts, the Milky Way and the six other galaxies
are represented as being relatively close to one another. As time
progresses upward in the figures, space expands, causing the galax-
ies to move apart. Note that the figure parts are drawn relative to
the Milky Way, and from that observation point all the other galax-
ies move away because of the expansion. However, there is nothing
special about the Milky Way—the galaxies also move away from
any other observation point we might have chosen.

Figures 44-16a and b focus on just the Milky Way galaxy and
one of the other galaxies, galaxy A, at two particular times during
the expansion. In part a, galaxy A is a distance r from the Milky
Way and is emitting a light wave of wavelength l. In part b, after a
time interval 
t, that light wave is being detected at Earth. Let us
represent the universe’s expansion rate per unit length of space
with �, which we assume to be constant during time interval 
t.
Then during 
t, every unit length of space (say, every meter) ex-

SSM pands by an amount � 
t; hence, a distance r expands by r� 
t. The
light wave of Figs. 44.16a and b travels at speed c from galaxy A to
Earth. (a) Show that

The detected wavelength of the light is greater than the emit-
ted wavelength l because space expanded during time interval 
t.
This increase in wavelength is called the cosmological red shift; it is
not a Doppler effect. (b) Show that the change in wavelength

is given by

(c) Expand the right side of this equation using the binomial ex-
pansion (given in Appendix E). (d) If you retain only the first term


l

l
�

ra

c � ra
.


l (�l� � l)

l�
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r
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.
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Figure 44-15 Problem 51.
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Figure 44-16 Problem 51.
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of the expansion, what is the resulting equation for 
l/l?
If, instead, we assume that Fig. 44-15a applies and that 
l is

due to a Doppler effect, then from Eq. 37-36 we have

where v is the radial velocity of galaxy A relative to Earth. (e)
Using Hubble’s law, compare this Doppler-effect result with the
cosmological-expansion result of (d) and find a value for a. From
this analysis you can see that the two results, derived with very dif-
ferent models about the red shift of the light we detect from distant
galaxies, are compatible.

Suppose that the light we detect from galaxy A has a red shift
of and that the expansion rate of the universe has
been constant at the current value given in the chapter. (f) Using
the result of (b), find the distance between the galaxy and Earth
when the light was emitted. Next, determine how long ago the light
was emitted by the galaxy (g) by using the result of (a) and (h) by
assuming that the red shift is a Doppler effect. (Hint: For (h), the
time is just the distance at the time of emission divided by the speed
of light, because if the red shift is just a Doppler effect, the distance


l/l � 0.050


l

l
�

v
c

,

does not change during the light’s travel to us. Here the two mod-
els about the red shift of the light differ in their results.) (i) At the
time of detection, what is the distance between Earth and galaxy
A? (We make the assumption that galaxy A still exists; if it ceased
to exist, humans would not know about its death until the last light
emitted by the galaxy reached Earth.)

Now suppose that the light we detect from galaxy B (Fig. 44-16c)
has a red shift of . (j) Using the result of (b), find the dis-
tance between galaxy B and Earth when the light was emitted. (k)
Using the result of (a), find how long ago the light was emitted by
galaxy B. (1) When the light that we detect from galaxy A was emit-
ted, what was the distance between galaxy A and galaxy B?

52 Calculate the difference in mass, in kilograms, between the
muon and pion of Sample Problem 44.01.

53 What is the quark formation that makes up (a) the xi-minus
particle and (b) the anti-xi-minus particle? The particles have no
charm, bottom, or top.

54 An electron and a positron, each with a kinetic energy of
2.500 MeV, annihilate, creating two photons that travel away in
opposite directions. What is the frequency of each photon?


l/l � 0.080



A P P E N D I X  A

THE INTERNATIONAL SYSTEM OF UNITS (SI)*

A-1A-1

Table 1 The SI Base Units

Quantity Name Symbol Definition

length meter m “. . . the length of the path traveled by light in vacuum in
1/299,792,458 of a second.” (1983)

mass kilogram kg “. . . this prototype [a certain platinum–iridium cylinder] shall 
henceforth be considered to be the unit of mass.” (1889)

time second s “. . . the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine 
levels of the ground state of the cesium-133 atom.” (1967)

electric current ampere A “. . . that constant current which, if maintained in two 
straight parallel conductors of infinite length, of negligible 
circular cross section, and placed 1 meter apart in vacuum,
would produce between these conductors a force equal to 
2 � 10�7 newton per meter of length.” (1946)

thermodynamic temperature kelvin K “. . . the fraction 1/273.16 of the thermodynamic temperature
of the triple point of water.” (1967)

amount of substance mole mol “. . . the amount of substance of a system which contains as 
many elementary entities as there are atoms in 0.012 kilo-
gram of carbon-12.” (1971)

luminous intensity candela cd “. . . the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 �
1012 hertz and that has a radiant intensity in that direction 
of 1/683 watt per steradian.” (1979)

*Adapted from “The International System of Units (SI),” National Bureau of Standards Special Publication 330, 1972 edition.The definitions above were
adopted by the General Conference of Weights and Measures, an international body, on the dates shown. In this book we do not use the candela.
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Table 2 Some SI Derived Units

Quantity Name of Unit Symbol

area square meter m2

volume cubic meter m3

frequency hertz Hz s�1

mass density (density) kilogram per cubic meter kg/m3

speed, velocity meter per second m/s

angular velocity radian per second rad/s
acceleration meter per second per second m/s2

angular acceleration radian per second per second rad/s2

force newton N kg �m/s2

pressure pascal Pa N/m2

work, energy, quantity of heat joule J N �m
power watt W J/s
quantity of electric charge coulomb C A �s
potential difference, electromotive force volt V W/A
electric field strength volt per meter (or newton per coulomb) V/m N/C

electric resistance ohm � V/A
capacitance farad F A �s/V
magnetic flux weber Wb V �s
inductance henry H V �s/A
magnetic flux density tesla T Wb/m2

magnetic field strength ampere per meter A/m
entropy joule per kelvin J/K
specific heat joule per kilogram kelvin J/(kg �K)
thermal conductivity watt per meter kelvin W/(m �K)
radiant intensity watt per steradian W/sr

Table 3 The SI Supplementary Units

Quantity Name of Unit Symbol

plane angle radian rad
solid angle steradian sr
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*The values in this table were selected from the 1998 CODATA recommended values (www.physics.nist.gov).

Best (1998) Value

Constant Symbol Computational Value Valuea Uncertaintyb

Speed of light in a vacuum c 3.00 � 108 m/s 2.997 924 58 exact
Elementary charge e 1.60 � 10�19 C 1.602 176 487 0.025
Gravitational constant G 6.67 � 10�11 m3/s2�kg 6.674 28 100
Universal gas constant R 8.31 J/mol �K 8.314 472 1.7
Avogadro constant NA 6.02 � 1023 mol�1 6.022 141 79 0.050
Boltzmann constant k 1.38 � 10�23 J/K 1.380 650 4 1.7
Stefan–Boltzmann constant s 5.67 � 10�8 W/m2�K4 5.670 400 7.0
Molar volume of ideal gas at STPd Vm 2.27 � 10�2 m3/mol 2.271 098 1 1.7
Permittivity constant e0 8.85 � 10�12 F/m 8.854 187 817 62 exact
Permeability constant m0 1.26 � 10�6 H/m 1.256 637 061 43 exact
Planck constant h 6.63 � 10�34 J �s 6.626 068 96 0.050

Electron massc me 9.11 � 10�31 kg 9.109 382 15 0.050
5.49 � 10�4 u 5.485 799 094 3 4.2 � 10�4

Proton massc mp 1.67 � 10�27 kg 1.672 621 637 0.050
1.0073 u 1.007 276 466 77 1.0 � 10�4

Ratio of proton mass to electron mass mp/me 1840 1836.152 672 47 4.3 � 10�4

Electron charge-to-mass ratio e/me 1.76 � 1011 C/kg 1.758 820 150 0.025
Neutron massc mn 1.68 � 10�27 kg 1.674 927 211 0.050

1.0087 u 1.008 664 915 97 4.3 � 10�4

Hydrogen atom massc 1.0078 u 1.007 825 031 6 0.0005
Deuterium atom massc 2.0136 u 2.013 553 212 724 3.9 � 10�5

Helium atom massc 4.0026 u 4.002 603 2 0.067
Muon mass mm 1.88 � 10�28 kg 1.883 531 30 0.056

Electron magnetic moment me 9.28 � 10�24 J/T 9.284 763 77 0.025
Proton magnetic moment mp 1.41 � 10�26 J/T 1.410 606 662 0.026
Bohr magneton mB 9.27 � 10�24 J/T 9.274 009 15 0.025
Nuclear magneton mN 5.05 � 10�27 J/T 5.050 783 24 0.025
Bohr radius a 5.29 � 10�11 m 5.291 772 085 9 6.8 � 10�4

Rydberg constant R 1.10 � 107 m�1 1.097 373 156 852 7 6.6 � 10�6

Electron Compton wavelength lC 2.43 � 10�12 m 2.426 310 217 5 0.0014

aValues given in this column should be given the same unit and power of 10 as the computational value.
bParts per million.
cMasses given in u are in unified atomic mass units, where 1 u � 1.660 538 782 � 10�27 kg.
dSTP means standard temperature and pressure: 0#C and 1.0 atm (0.1 MPa).

m4He

m2H

m1H
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Some Distances from Earth

To the Moon* 3.82 � 108 m To the center of our galaxy 2.2 � 1020 m
To the Sun* 1.50 � 1011 m To the Andromeda Galaxy 2.1 � 1022 m
To the nearest star (Proxima Centauri) 4.04 � 1016 m To the edge of the observable universe �1026 m

*Mean distance.

The Sun, Earth, and the Moon

Property Unit Sun Earth Moon

Mass kg 1.99 � 1030 5.98 � 1024 7.36 � 1022

Mean radius m 6.96 � 108 6.37 � 106 1.74 � 106

Mean density kg/m3 1410 5520 3340
Free-fall acceleration at the surface m/s2 274 9.81 1.67
Escape velocity km/s 618 11.2 2.38
Period of rotationa — 37 d at polesb 26 d at equatorb 23 h 56 min 27.3 d
Radiation powerc W 3.90 � 1026

aMeasured with respect to the distant stars.
bThe Sun, a ball of gas, does not rotate as a rigid body.
cJust outside Earth’s atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m2.

Some Properties of the Planets

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Plutod

Mean distance from Sun,
106 km

57.9 108 150 228 778 1430 2870 4500 5900

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotation,a d 58.7 �243b 0.997 1.03 0.409 0.426 �0.451b 0.658 6.39

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Inclination of axis to orbit �28# �3# 23.4# 25.0# 3.08# 26.7# 97.9# 29.6# 57.5#

Inclination of orbit to 
Earth’s orbit

7.00# 3.39# 1.85# 1.30# 2.49# 0.77# 1.77# 17.2#

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 0.0086 0.250

Equatorial diameter, km 4880 12 100 12 800 6790 143 000 120 000 51 800 49 500 2300

Mass (Earth � 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Density (water � 1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03

Surface value of g,c m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5

Escape velocity,c km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.3

Known satellites 0 0 1 2 67 � ring 62 � rings 27 � rings 13 � rings 4

aMeasured with respect to the distant stars.
bVenus and Uranus rotate opposite their orbital motion.
cGravitational acceleration measured at the planet’s equator.
dPluto is now classified as a dwarf planet.
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Plane Angle

° � $ RADIAN rev

1 degree � 1 60 3600 1.745 � 10�2 2.778 � 10�3

1 minute � 1.667 � 10�2 1 60 2.909 � 10�4 4.630 � 10�5

1 second � 2.778 � 10�4 1.667 � 10�2 1 4.848 � 10�6 7.716 � 10�7

1 RADIAN � 57.30 3438 2.063 � 105 1 0.1592
1 revolution � 360 2.16 � 104 1.296 � 106 6.283 1

Solid Angle

1 sphere � 4p steradians � 12.57 steradians

Length

cm METER km in. ft mi

1 centimeter � 1 10�2 10�5 0.3937 3.281 � 10�2 6.214 � 10�6

1 METER � 100 1 10�3 39.37 3.281 6.214 � 10�4

1 kilometer � 105 1000 1 3.937 � 104 3281 0.6214
1 inch � 2.540 2.540 � 10�2 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot � 30.48 0.3048 3.048 � 10�4 12 1 1.894 � 10�4

1 mile � 1.609 � 105 1609 1.609 6.336 � 104 5280 1

1 angström � 10�10 m 1 fermi � 10�15 m 1 fathom � 6 ft 1 rod � 16.5 ft

1 nautical mile � 1852 m 1 light-year � 9.461 � 1012 km 1 Bohr radius � 5.292 � 10�11 m 1 mil � 10�3 in.
� 1.151 miles � 6076 ft 1 parsec � 3.084 � 1013 km 1 yard � 3 ft 1 nm � 10�9 m

Area

METER2 cm2 ft2 in.2

1 SQUARE METER � 1 104 10.76 1550
1 square centimeter � 10�4 1 1.076 � 10�3 0.1550

1 square foot � 9.290 � 10�2 929.0 1 144
1 square inch � 6.452 � 10�4 6.452 6.944 � 10�3 1

1 square mile � 2.788 � 107 ft2 � 640 acres 1 acre � 43 560 ft2

1 barn � 10�28 m2 1 hectare � 104 m2 � 2.471 acres

Conversion factors may be read directly from these tables. For example, 1 degree � 2.778 �
10�3 revolutions, so 16.7# � 16.7 � 2.778 � 10�3 rev. The SI units are fully capitalized. Adapted
in part from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood
Cliffs, NJ.
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Volume

METER3 cm3 L ft3 in.3

1 CUBIC METER � 1 106 1000 35.31 6.102 � 104

1 cubic centimeter � 10�6 1 1.000 � 10�3 3.531 � 10�5 6.102 � 10�2

1 liter � 1.000 � 10�3 1000 1 3.531 � 10�2 61.02
1 cubic foot � 2.832 � 10�2 2.832 � 104 28.32 1 1728
1 cubic inch � 1.639 � 10�5 16.39 1.639 � 10�2 5.787 � 10�4 1

1 U.S. fluid gallon � 4 U.S. fluid quarts � 8 U.S. pints � 128 U.S. fluid ounces � 231 in.3

1 British imperial gallon � 277.4 in.3 � 1.201 U.S. fluid gallons

Mass

Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg “�”
2.205 lb, this means that a kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value 
of 9.80665 m/s2.

g KILOGRAM slug u oz lb ton

1 gram � 1 0.001 6.852 � 10�5 6.022 � 1023 3.527 � 10�2 2.205 � 10�3 1.102 � 10�6

1 KILOGRAM � 1000 1 6.852 � 10�2 6.022 � 1026 35.27 2.205 1.102 � 10�3

1 slug � 1.459 � 104 14.59 1 8.786 � 1027 514.8 32.17 1.609 � 10�2

1 atomic 
mass unit � 1.661 � 10�24 1.661 � 10�27 1.138 � 10�28 1 5.857 � 10�26 3.662 � 10�27 1.830 � 10�30

1 ounce � 28.35 2.835 � 10�2 1.943 � 10�3 1.718 � 1025 1 6.250 � 10�2 3.125 � 10�5

1 pound � 453.6 0.4536 3.108 � 10�2 2.732 � 1026 16 1 0.0005
1 ton � 9.072 � 105 907.2 62.16 5.463 � 1029 3.2 � 104 2000 1

1 metric ton � 1000 kg

Density

Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities.
See the note for the mass table.

KILOGRAM/
slug/ft3 METER3 g/cm3 lb/ft3 lb/in.3

1 slug per foot3 � 1 515.4 0.5154 32.17 1.862 � 10�2

1 KILOGRAM 
per METER3 � 1.940 � 10�3 1 0.001 6.243 � 10�2 3.613 � 10�5

1 gram per centimeter3 � 1.940 1000 1 62.43 3.613 � 10�2

1 pound per foot3 � 3.108 � 10�2 16.02 16.02 � 10�2 1 5.787 � 10�4

1 pound per inch3 � 53.71 2.768 � 104 27.68 1728 1

T i m e

y d h min SECOND

1 year � 1 365.25 8.766 � 103 5.259 � 105 3.156 � 107

1 day � 2.738 � 10�3 1 24 1440 8.640 � 104

1 hour � 1.141 � 10�4 4.167 � 10�2 1 60 3600
1 minute � 1.901 � 10�6 6.944 � 10�4 1.667 � 10�2 1 60

1 SECOND � 3.169 � 10�8 1.157 � 10�5 2.778 � 10�4 1.667 � 10�2 1

Time
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Force

Force units in the colored areas are now little used. To clarify: 1 gram-force (� 1 gf) is the force of gravity that 
would act on an object whose mass is 1 gram at a location where g has the standard value of 9.80665 m/s2.

Speed

ft/s km/h METER/SECOND mi/h cm/s

1 foot per second � 1 1.097 0.3048 0.6818 30.48
1 kilometer per hour � 0.9113 1 0.2778 0.6214 27.78

1 METER per SECOND � 3.281 3.6 1 2.237 100
1 mile per hour � 1.467 1.609 0.4470 1 44.70

1 centimeter per second � 3.281 � 10�2 3.6 � 10�2 0.01 2.237 � 10�2 1

1 knot � 1 nautical mi/h � 1.688 ft/s 1 mi/min � 88.00 ft/s � 60.00 mi/h

Pressure

atm dyne/cm2 inch of water cm Hg PASCAL lb/in.2 lb/ft2

1 atmosphere � 1 1.013 � 106 406.8 76 1.013 � 105 14.70 2116
1 dyne per 

centimeter2 � 9.869 � 10�7 1 4.015 � 10�4 7.501 � 10�5 0.1 1.405 � 10�5 2.089 � 10�3

1 inch of 
watera at 4°C � 2.458 � 10�3 2491 1 0.1868 249.1 3.613 � 10�2 5.202
1 centimeter 
of mercurya

at 0°C � 1.316 � 10�2 1.333 � 104 5.353 1 1333 0.1934 27.85
1 PASCAL � 9.869 � 10�6 10 4.015 � 10�3 7.501 � 10�4 1 1.450 � 10�4 2.089 � 10�2

1 pound per inch2 � 6.805 � 10�2 6.895 � 104 27.68 5.171 6.895 � 103 1 144
1 pound per foot2 � 4.725 � 10�4 478.8 0.1922 3.591 � 10�2 47.88 6.944 � 10�3 1

aWhere the acceleration of gravity has the standard value of 9.80665 m/s2.

1 bar � 106 dyne/cm2 � 0.1 MPa 1 millibar � 103 dyne/cm2 � 102 Pa 1 torr � 1 mm Hg

dyne NEWTON lb pdl gf kgf

1 dyne � 1 10�5 2.248 � 10�6 7.233 � 10�5 1.020 � 10�3 1.020 � 10�6

1 NEWTON � 105 1 0.2248 7.233 102.0 0.1020
1 pound � 4.448 � 105 4.448 1 32.17 453.6 0.4536

1 poundal � 1.383 � 104 0.1383 3.108 � 10�2 1 14.10 1.410 � 102

1 gram-force � 980.7 9.807 � 10�3 2.205 � 10�3 7.093 � 10�2 1 0.001
1 kilogram-force � 9.807 � 105 9.807 2.205 70.93 1000 1

1 ton � 2000 lb
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Energy, Work, Heat
Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic
mass–energy equivalence formula E � mc2 and represent the energy released if a kilogram or unified atomic mass
unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to 
one unit of energy (rightmost two columns).

Btu erg ft � lb hp �h JOULE cal kW �h eV MeV kg u

1 British 1.055 3.929 2.930 6.585 6.585 1.174 7.070
thermal unit � 1 � 1010

777.9
� 10�4

1055 252.0
� 10�4 � 1021 � 1015 � 10�14 � 1012

9.481 7.376 3.725 2.389 2.778 6.242 6.242 1.113
1 erg � � 10�11 1 � 10�8 � 10�14 10�7 � 10�8 � 10�14 � 1011 � 105 � 10�24

670.2

1.285 1.356 5.051 3.766 8.464 8.464 1.509 9.037
1 foot-pound � � 10�3 � 107 1 � 10�7 1.356 0.3238 � 10�7 � 1018 � 1012 � 10�17 � 109

1 horsepower- 2.685 1.980 2.685 6.413 1.676 1.676 2.988 1.799
hour � 2545 � 1013 � 106 1 � 106 � 105 0.7457 � 1025 � 1019 � 10�11 � 1016

9.481 3.725 2.778 6.242 6.242 1.113 6.702
1 JOULE � � 10�4 107 0.7376 � 10�7 1 0.2389 � 10�7 � 1018 � 1012 � 10�17 � 109

3.968 4.1868 1.560 1.163 2.613 2.613 4.660 2.806
1 calorie � � 10�3 � 107 3.088 � 10�6 4.1868 1 � 10�6 � 1019 � 1013 � 10�17 � 1010

1 kilowatt- 3.600 2.655 3.600 8.600 2.247 2.247 4.007 2.413
hour � 3413 � 1013 � 106 1.341 � 106 � 105 1 � 1025 � 1019 � 10�11 � 1016

1.519 1.602 1.182 5.967 1.602 3.827 4.450 1.783 1.074
1 electron-volt � � 10�22 � 10�12 � 10�19 � 10�26 � 10�19 � 10�20 � 10�26 1 10�6 � 10�36 � 10�9

1 million 1.519 1.602 1.182 5.967 1.602 3.827 4.450 1.783 1.074
electron-volts � � 10�16 � 10�6 � 10�13 � 10�20 � 10�13 � 10�14 � 10�20 10�6 1 � 10�30 � 10�3

8.521 8.987 6.629 3.348 8.987 2.146 2.497 5.610 5.610 6.022
1 kilogram � � 1013 � 1023 � 1016 � 1010 � 1016 � 1016 � 1010 � 1035 � 1029

1
� 1026

1 unified 
atomic mass 1.415 1.492 1.101 5.559 1.492 3.564 4.146 9.320 932.0 1.661

unit � � 10�13 � 10�3 � 10�10 � 10�17 � 10�10 � 10�11 � 10�17 � 108 � 10�27
1

Power

Btu/h ft � lb/s hp cal/s kW WATT

1 British thermal unit per hour � 1 0.2161 3.929 � 10�4 6.998 � 10�2 2.930 � 10�4 0.2930
1 foot-pound per second � 4.628 1 1.818 � 10�3 0.3239 1.356 � 10�3 1.356

1 horsepower � 2545 550 1 178.1 0.7457 745.7
1 calorie per second � 14.29 3.088 5.615 � 10�3 1 4.186 � 10�3 4.186

1 kilowatt � 3413 737.6 1.341 238.9 1 1000
1 WATT � 3.413 0.7376 1.341 � 10�3 0.2389 0.001 1

Magnetic Field

gauss TESLA milligauss

1 gauss � 1 10�4 1000
1 TESLA � 104 1 107

1 milligauss � 0.001 10�7 1

1 tesla � 1 weber/meter2

Magnetic Flux

maxwell WEBER

1 maxwell � 1 10�8

1 WEBER � 108 1
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Geometry
Circle of radius r: circumference � 2pr; area � pr2.

Sphere of radius r: area � 4pr2; .

Right circular cylinder of radius r and height h:
area � 2pr2 � 2prh; volume � pr2h.

Triangle of base a and altitude h: .

Quadratic Formula

If ax2 � bx � c � 0, then .

Trigonometric Functions of Angle u

Pythagorean Theorem
In this right triangle,

a2 � b2 � c2

Triangles
Angles are A, B, C

Opposite sides are a, b, c

Angles A � B � C � 180#

c2 � a2 � b2 � 2ab cos C
Exterior angle D � A � C

Mathematical Signs and Symbols
� equals

� equals approximately

� is the order of magnitude of

sin A
a

�
sin B

b
�

sin C
c

 sec u �
r
x
 csc u �

r
y

 tan u �
y
x
 cot u �

x
y

 sin u �
y
r
 cos u �

x
r

x �
�b 	 1b2 � 4ac

2a

area � 1
2ah

volume � 4
3pr3

� is not equal to

� is identical to, is defined as

� is greater than (% is much greater than)

� is less than (� is much less than)

� is greater than or equal to (or, is no less than)

� is less than or equal to (or, is no more than)

	 plus or minus

& is proportional to

� the sum of

xavg the average value of x

Trigonometric Identities
sin(90# � u) � cos u

cos(90# � u) � sin u

sin u/cos u � tan u

sin2 u � cos2 u � 1

sec2 u � tan2 u � 1

csc2 u � cot2 u � 1

sin 2u � 2 sin u cos u

cos 2u � cos2 u � sin2 u � 2 cos2 u � 1 � 1 � 2 sin2 u

sin(a 	 b) � sin a cos b 	 cos a sin b

cos(a 	 b) � cos a cos b ' sin a sin b

Binomial Theorem

Exponential Expansion

ex � 1 � x �
x2

2!
�

x3

3!
� � � �

(1 � x)n � 1 �
nx
1!

�
n(n � 1)x2

2!
� � � �  (x2 � 1)

cos a � cos b � �2 sin 12(a � b) sin 12(a � b)

cos a � cos b � 2 cos 12(a � b) cos 12(a � b)

sin a 	 sin b � 2 sin 12(a 	 b) cos 12(a ' b)

tan(a 	 b) �
tan a 	 tan b

1 ' tan a tan b

y axis 

x axis
θ 

r
y

x0

c
a

b

b a

c

C

B
D

A



Logarithmic Expansion

Trigonometric Expansions 
(u in radians)

Cramer’s Rule
Two simultaneous equations in unknowns x and y,

a1x � b1y � c1 and a2x � b2y � c2,

have the solutions

and

.y �
� a1

a2

c1

c2
�

� a1

a2

b1

b2
�

�
a1c2 � a2c1

a1b2 � a2b1

x �
� c1

c2

b1

b2
�

� a1

a2

b1

b2
�

�
c1b2 � c2b1

a1b2 � a2b1

tan u � u �
u3

3
�

2u5

15
� � � �

cos u � 1 �
u2

2!
�

u4

4!
� � � �

sin u  � u �
u3

3!
�

u5

5!
� � � �

ln(1 � x) � x � 1
2x2 � 1

3x3 � � � �  (|x| � 1)
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Products of Vectors
Let , , and be unit vectors in the x, y, and z direc-
tions.Then

� � � � � � 1, � � � � � � 0,

Any vector with components ax, ay, and az along the 
x, y, and z axes can be written as

Let , , and be arbitrary vectors with magnitudes a,
b, and c.Then

.

Let u be the smaller of the two angles between and 
.Then

a: � (b
:

� c:) � (a:� c:)b
:

� (a:� b
:

)c:
a:�(b

:
� c:) � b

:
�(c: � a:) � c:�(a: � b

:
)

|a: � b
:

| � ab sin u

� (axby � bxay)k̂

� (aybz � byaz)î � (azbx � bzax)ĵ

� î � ay

by

az

bz
� � ĵ � ax

bx

az

bz
� � k̂ � ax

bx

ay

by
�

a: � b
:

� �b
:

� a: � � î
ax

bx

ĵ
ay

by

k̂
az

bz
�

a:� b
:

� b
:

� a: � axbx � ayby � azbz � ab cos �

b
:

a:
(sa:) � b

:
� a: � (sb

:
) � s(a: � b

:
)  (s � a scalar)

a: � (b
:

� c:) � (a: � b
:

) � (a: � c:)

c:b
:

a:
a: � ax î � ay ĵ � azk̂.

a:
î � ĵ � k̂,  ĵ � k̂ � î,  k̂ � î � ĵ

î � î � ĵ � ĵ � k̂ � k̂ � 0,

îk̂k̂ĵĵîk̂k̂ĵĵîî

k̂ĵî



Derivatives and Integrals
In what follows, the letters u and v stand for any functions of
x, and a and m are constants. To each of the indefinite inte-
grals should be added an arbitrary constant of integration.
The Handbook of Chemistry and Physics (CRC Press Inc.)
gives a more extensive tabulation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.
d

dx
 cos u � �sin u

du
dx

d
dx

 sin u � cos u
du
dx

d
dx

eu � eu du
dx

d
dx

 csc x � �cot x csc x

d
dx

 sec x � tan x sec x

d
dx

 cot x � �csc2 x

d
dx

 tan x � sec2 x

d
dx

 cos x � �sin x

d
dx

 sin x � cos x

d
dx

ex � ex

d
dx

 (uv) � u
dv
dx

� v
du
dx

d
dx

 ln x �
1
x

d
dx

xm � mxm�1

d
dx

 (u � v) �
du
dx

�
dv
dx

d
dx

 (au) � a
du
dx

dx
dx

� 1
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. � x dx
x � d

� x � d ln(x � d)

�


0
x2n�1 e�ax2

dx �
n!

 2an�1   (a � 0)

� dx
(x2 � a2)3/2 �

x
a2(x2 � a2)1/2

� x dx
(x2 � a2)3/2 � �

1
(x2 � a2)1/2

� dx

2x2 � a2
� ln(x � 2x2 � a2)

�


0
x2ne�ax2

dx �
1 �3 �5 � � �  (2n � 1)

2n�1an A
p

a

�


0
xne�ax dx �

n!
an�1

� x2e�ax dx � �
1
a3  (a2x2 � 2ax � 2)e�ax

� xe�ax dx � �
1
a2  (ax � 1) e�ax

� e�ax dx � �
1
a

e�ax

� sin2 x dx � 1
2 x � 1

4 sin 2x

� tan x dx � ln |sec x|

� cos x dx � sin x

� sin x dx � �cos x

� ex dx � ex

� u
dv
dx

dx � uv � � v
du
dx

dx

� dx
x

� ln |x|

� xm dx �
xm�1

m � 1
  ( m ( �1)

� (u � v) dx � � u dx � � v dx

� au dx � a � u dx

� dx � x
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PROPERTIES OF THE ELEMENTS

A-12

All physical properties are for a pressure of 1 atm unless otherwise specified.

Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g �#C)

Element Symbol Z g/mol g/cm3 at 20#C Point, #C #C at 25#C

Actinium Ac 89 (227) 10.06 1323 (3473) 0.092
Aluminum Al 13 26.9815 2.699 660 2450 0.900
Americium Am 95 (243) 13.67 1541 — —
Antimony Sb 51 121.75 6.691 630.5 1380 0.205
Argon Ar 18 39.948 1.6626 � 10�3 �189.4 �185.8 0.523
Arsenic As 33 74.9216 5.78 817 (28 atm) 613 0.331
Astatine At 85 (210) — (302) — —
Barium Ba 56 137.34 3.594 729 1640 0.205
Berkelium Bk 97 (247) 14.79 — — —
Beryllium Be 4 9.0122 1.848 1287 2770 1.83
Bismuth Bi 83 208.980 9.747 271.37 1560 0.122
Bohrium Bh 107 262.12 — — — —
Boron B 5 10.811 2.34 2030 — 1.11
Bromine Br 35 79.909 3.12 (liquid) �7.2 58 0.293
Cadmium Cd 48 112.40 8.65 321.03 765 0.226
Calcium Ca 20 40.08 1.55 838 1440 0.624
Californium Cf 98 (251) — — — —
Carbon C 6 12.01115 2.26 3727 4830 0.691
Cerium Ce 58 140.12 6.768 804 3470 0.188
Cesium Cs 55 132.905 1.873 28.40 690 0.243
Chlorine Cl 17 35.453 3.214 � 10�3 (0#C) �101 �34.7 0.486
Chromium Cr 24 51.996 7.19 1857 2665 0.448
Cobalt Co 27 58.9332 8.85 1495 2900 0.423
Copernicium Cn 112 (285) — — — —
Copper Cu 29 63.54 8.96 1083.40 2595 0.385
Curium Cm 96 (247) 13.3 — — —
Darmstadtium Ds 110 (271) — — — —
Dubnium Db 105 262.114 — — — —
Dysprosium Dy 66 162.50 8.55 1409 2330 0.172
Einsteinium Es 99 (254) — — — —
Erbium Er 68 167.26 9.15 1522 2630 0.167
Europium Eu 63 151.96 5.243 817 1490 0.163
Fermium Fm 100 (237) — — — —
Flerovium* Fl 114 (289) — — — —
Fluorine F 9 18.9984 1.696 � 10�3 (0#C) �219.6 �188.2 0.753
Francium Fr 87 (223) — (27) — —
Gadolinium Gd 64 157.25 7.90 1312 2730 0.234
Gallium Ga 31 69.72 5.907 29.75 2237 0.377
Germanium Ge 32 72.59 5.323 937.25 2830 0.322
Gold Au 79 196.967 19.32 1064.43 2970 0.131



Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g �#C)

Element Symbol Z g/mol g/cm3 at 20#C Point, #C #C at 25#C

Hafnium Hf 72 178.49 13.31 2227 5400 0.144
Hassium Hs 108 (265) — — — —
Helium He 2 4.0026 0.1664 � 10�3 �269.7 �268.9 5.23
Holmium Ho 67 164.930 8.79 1470 2330 0.165
Hydrogen H 1 1.00797 0.08375 � 10�3 �259.19 �252.7 14.4
Indium In 49 114.82 7.31 156.634 2000 0.233
Iodine I 53 126.9044 4.93 113.7 183 0.218
Iridium Ir 77 192.2 22.5 2447 (5300) 0.130
Iron Fe 26 55.847 7.874 1536.5 3000 0.447
Krypton Kr 36 83.80 3.488 � 10�3 �157.37 �152 0.247
Lanthanum La 57 138.91 6.189 920 3470 0.195
Lawrencium Lr 103 (257) — — — —
Lead Pb 82 207.19 11.35 327.45 1725 0.129
Lithium Li 3 6.939 0.534 180.55 1300 3.58
Livermorium* Lv 116 (293) — — — —
Lutetium Lu 71 174.97 9.849 1663 1930 0.155
Magnesium Mg 12 24.312 1.738 650 1107 1.03
Manganese Mn 25 54.9380 7.44 1244 2150 0.481
Meitnerium Mt 109 (266) — — — —
Mendelevium Md 101 (256) — — — —
Mercury Hg 80 200.59 13.55 �38.87 357 0.138
Molybdenum Mo 42 95.94 10.22 2617 5560 0.251
Neodymium Nd 60 144.24 7.007 1016 3180 0.188
Neon Ne 10 20.183 0.8387 � 10�3 �248.597 �246.0 1.03
Neptunium Np 93 (237) 20.25 637 — 1.26
Nickel Ni 28 58.71 8.902 1453 2730 0.444
Niobium Nb 41 92.906 8.57 2468 4927 0.264
Nitrogen N 7 14.0067 1.1649 � 10�3 �210 �195.8 1.03
Nobelium No 102 (255) — — — —
Osmium Os 76 190.2 22.59 3027 5500 0.130
Oxygen O 8 15.9994 1.3318 � 10�3 �218.80 �183.0 0.913
Palladium Pd 46 106.4 12.02 1552 3980 0.243
Phosphorus P 15 30.9738 1.83 44.25 280 0.741
Platinum Pt 78 195.09 21.45 1769 4530 0.134
Plutonium Pu 94 (244) 19.8 640 3235 0.130
Polonium Po 84 (210) 9.32 254 — —
Potassium K 19 39.102 0.862 63.20 760 0.758
Praseodymium Pr 59 140.907 6.773 931 3020 0.197
Promethium Pm 61 (145) 7.22 (1027) — —
Protactinium Pa 91 (231) 15.37 (estimated) (1230) — —
Radium Ra 88 (226) 5.0 700 — —
Radon Rn 86 (222) 9.96 � 10�3 (0#C) (�71) �61.8 0.092
Rhenium Re 75 186.2 21.02 3180 5900 0.134
Rhodium Rh 45 102.905 12.41 1963 4500 0.243
Roentgenium Rg 111 (280) — — — —
Rubidium Rb 37 85.47 1.532 39.49 688 0.364
Ruthenium Ru 44 101.107 12.37 2250 4900 0.239
Rutherfordium Rf 104 261.11 — — — —
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Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g �#C)

Element Symbol Z g/mol g/cm3 at 20#C Point, #C #C at 25#C

Samarium Sm 62 150.35 7.52 1072 1630 0.197
Scandium Sc 21 44.956 2.99 1539 2730 0.569
Seaborgium Sg 106 263.118 — — — —
Selenium Se 34 78.96 4.79 221 685 0.318
Silicon Si 14 28.086 2.33 1412 2680 0.712
Silver Ag 47 107.870 10.49 960.8 2210 0.234
Sodium Na 11 22.9898 0.9712 97.85 892 1.23
Strontium Sr 38 87.62 2.54 768 1380 0.737
Sulfur S 16 32.064 2.07 119.0 444.6 0.707
Tantalum Ta 73 180.948 16.6 3014 5425 0.138
Technetium Tc 43 (99) 11.46 2200 — 0.209
Tellurium Te 52 127.60 6.24 449.5 990 0.201
Terbium Tb 65 158.924 8.229 1357 2530 0.180
Thallium Tl 81 204.37 11.85 304 1457 0.130
Thorium Th 90 (232) 11.72 1755 (3850) 0.117
Thulium Tm 69 168.934 9.32 1545 1720 0.159
Tin Sn 50 118.69 7.2984 231.868 2270 0.226
Titanium Ti 22 47.90 4.54 1670 3260 0.523
Tungsten W 74 183.85 19.3 3380 5930 0.134
Unnamed Uut 113 (284) — — — —
Unnamed Uup 115 (288) — — — —
Unnamed Uus 117 — — — — —
Unnamed Uuo 118 (294) — — — —
Uranium U 92 (238) 18.95 1132 3818 0.117
Vanadium V 23 50.942 6.11 1902 3400 0.490
Xenon Xe 54 131.30 5.495 � 10�3 �111.79 �108 0.159
Ytterbium Yb 70 173.04 6.965 824 1530 0.155
Yttrium Y 39 88.905 4.469 1526 3030 0.297
Zinc Zn 30 65.37 7.133 419.58 906 0.389
Zirconium Zr 40 91.22 6.506 1852 3580 0.276

The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are radioactive.
Melting points and boiling points in parentheses are uncertain.

The data for gases are valid only when these are in their usual molecular state, such as H2, He, O2, Ne, etc.The specific heats of the gases are the
values at constant pressure.

Source: Adapted from J. Emsley, The Elements, 3rd ed., 1998, Clarendon Press, Oxford. See also www.webelements.com for the latest values and
newest elements.

*The names and symbols for elements 114 (Flerovium, Fl) and 116 (Livermorium, Lv) have been suggested but are not official.
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A P P E N D I X  G

PERIODIC TABLE OF THE ELEMENTS

A-15

Evidence for the discovery of elements 113 through 118 has been reported. See www.webelements.com for the latest information and newest
elements.The names and symbols for elements 114 and 116 have been suggested but are not official.
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A N S W E R S

To Checkpoints and Odd-Numbered Questions and Problems

AN-1AN-1

Chapter 1
P 1. (a) 4.00 � 104 km; (b) 5.10 � 108 km2; (c) 1.08 � 1012 km3

3. (a) 109 mm; (b) 10�4; (c) 9.1 � 105 mm 5. (a) 160 rods; (b) 40
chains 7. 1.1 � 103 acre-feet 9. 1.9 � 1022 cm3 11. (a) 1.43;
(b) 0.864 13. (a) 495 s; (b) 141 s; (c) 198 s; (d) �245 s 15. 1.21 �
1012 ms 17. C, D,A, B, E; the important criterion is the consistency
of the daily variation, not its magnitude 19. 5.2 � 106 m 21. 9.0 �
1049 atoms 23. (a) 1 � 103 kg; (b) 158 kg/s 25. 1.9 � 105 kg
27. (a) 1.18 � 10�29 m3; (b) 0.282 nm 29. 1.75 � 103 kg 31. 1.43
kg/min 33. (a) 293 U.S. bushels; (b) 3.81 � 103 U.S. bushels 35.
(a) 22 pecks; (b) 5.5 Imperial bushels; (c) 200 L 37. 8 � 102 km
39. (a) 18.8 gallons; (b) 22.5 gallons 41. 0.3 cord 43. 3.8 mg/s
45. (a) yes; (b) 8.6 universe seconds 47. 0.12 AU/min 49. (a) 3.88;
(b) 7.65; (c) 156 ken3; (d) 1.19 � 103 m3 51. (a) 3.9 m, 4.8 m;
(b) 3.9 � 103 mm, 4.8 � 103 mm; (c) 2.2 m3, 4.2 m3 53. (a) 4.9 � 
10�6 pc; (b) 1.6 � 10�5 ly 55. (a) 3 nebuchadnezzars, 1 methuselah;
(b) 0.37 standard bottle; (c) 0.26 L 57. 10.7 habaneros
59. 700 to 1500 oysters

Chapter 2
CP 1. b and c 2. (check the derivative dx/dt) (a) 1 and 4;
(b) 2 and 3 3. (a) plus; (b) minus; (c) minus; (d) plus 4. 1 and 4
(a � d 2x/dt2 must be constant) 5. (a) plus (upward displacement
on y axis); (b) minus (downward displacement on y axis); (c) a �
�g � �9.8 m/s2

Q 1. (a) negative; (b) positive; (c) yes; (d) positive; (e) constant
3. (a) all tie; (b) 4, tie of 1 and 2, then 3 5. (a) positive direction;
(b) negative direction; (c) 3 and 5; (d) 2 and 6 tie, then 3 and 5 tie,
then 1 and 4 tie (zero) 7. (a) D; (b) E 9. (a) 3, 2, 1; (b) 1, 2, 3;
(c) all tie; (d) 1, 2, 3 11. 1 and 2 tie, then 3
P 1. 13 m 3. (a) �40 km/h; (b) 40 km/h 5. (a) 0; (b) �2 m;
(c) 0; (d) 12 m; (e) �12 m; (f) �7 m/s 7. 60 km 9. 1.4 m 11. 128
km/h 13. (a) 73 km/h; (b) 68 km/h; (c) 70 km/h; (d) 0 15. (a) �6
m/s; (b) �x direction; (c) 6 m/s; (d) decreasing; (e) 2 s; (f) no
17. (a) 28.5 cm/s; (b) 18.0 cm/s; (c) 40.5 cm/s; (d) 28.1 cm/s; (e) 30.3 cm/s
19. �20 m/s2 21. (a) 1.10 m/s; (b) 6.11 mm/s2; (c) 1.47 m/s; (d) 6.11
mm/s2 23. 1.62 � 1015 m/s2 25. (a) 30 s;(b) 300 m 27. (a) �1.6 m/s;
(b) �18 m/s 29. (a) 10.6 m; (b) 41.5 s 31. (a) 3.1 � 106 s; (b) 4.6 �
1013 m 33. (a) 3.56 m/s2; (b) 8.43 m/s 35. 0.90 m/s2 37. (a) 4.0 m/s2;
(b) �x 39. (a) �2.5 m/s2; (b) 1; (d) 0; (e) 2 41. 40 m
43. (a) 0.994 m/s2 45. (a) 31 m/s; (b) 6.4 s 47. (a) 29.4 m; (b) 2.45 s
49. (a) 5.4 s; (b) 41 m/s 51. (a) 20 m; (b) 59 m 53. 4.0 m/s
55. (a) 857 m/s2; (b) up 57. (a) 1.26 � 103 m/s2; (b) up 59. (a) 89 cm;
(b) 22 cm 61. 20.4 m 63. 2.34 m 65. (a) 2.25 m/s; (b) 3.90 m/s
67. 0.56 m/s 69. 100 m 71. (a) 2.00 s; (b) 12 cm; (c) �9.00 cm/s2;
(d) right; (e) left; (f) 3.46 s 73. (a) 82 m; (b) 19 m/s 75. (a) 0.74 s;
(b) 6.2 m/s2 77. (a) 3.1 m/s2; (b) 45 m; (c) 13 s 79. 17 m/s 81. �47
m/s 83. (a) 1.23 cm; (b) 4 times; (c) 9 times; (d) 16 times; (e) 25
times 85. 25 km/h 87. 1.2 h 89. 4H 91. (a) 3.2 s; (b) 1.3 s
93. (a) 8.85 m/s; (b) 1.00 m 95. (a) 2.0 m/s2; (b) 12 m/s; (c) 45 m
97. (a) 48.5 m/s; (b) 4.95 s; (c) 34.3 m/s; (d) 3.50 s 99. 22.0 m/s
101. (a) v � (v2

0 � 2gh)0.5; (b) t � [(v2
0 � 2gh)0.5 � v0] / g; (c) same as

(a);(d) t � [(v2
0 � 2gh)0.5 � v0] / g,greater 103. 414 ms 105. 90 m

107. 0.556 s 109. (a) 0.28 m/s2; (b) 0.28 m/s2 111. (a) 10.2 s;

(b) 10.0 m 113. (a) 5.44 s; (b) 53.3 m/s; (c) 5.80 m 115. 2.3 cm/min
117. 0.15 m/s 119. (a) 1.0 cm/s;(b) 1.6 cm/s,1.1 cm/s,0;(c) �0.79 cm/s2;
(d) 0, �0.87 cm/s2, �1.2 cm/s2

Chapter 3
CP 1. (a) 7 m ( and are in same direction);(b) 1 m ( and are in
opposite directions) 2. c,d, f (components must be head to tail;
must extend from tail of one component to head of the other) 3. (a)
� ,� ; (b) � ,� ; (c) � ,� (draw vector from tail of to head of )
4. (a) 90°;(b) 0° (vectors are parallel—same direction);(c) 180° (vec-
tors are antiparallel—opposite directions) 5. (a) 0° or 180°; (b) 90°
Q 1. yes, when the vectors are in same direction 3. Either the se-
quence , or the sequence , , 5. all but (e) 7. (a) yes;d

:

3d
:

2d
:

2d
:

1d
:

2

d
:

2d
:

1

a:
b
:

a:b
:

a:

(b) yes;(c) no 9. (a) �x for (1),�z for (2),�z for (3);(b) �x for (1),
�z for (2), �z for (3) 11. , , or , , 13. Correct:c,d, f,h.
Incorrect:a (cannot dot a vector with a scalar),b (cannot cross a vector
with a scalar),e,g, i, j (cannot add a scalar and a vector).
P 1. (a) �2.5 m; (b) �6.9 m 3. (a) 47.2 m; (b) 122° 5. (a) 156
km; (b) 39.8° west of due north 7. (a) parallel; (b) antiparallel;
(c) perpendicular 9. (a) (3.0 m) � (2.0 m) � (5.0 m) ; (b) (5.0k̂ĵî

r:s:p:r:p:s:

m) � (4.0 m) � (3.0 m) ; (c) (�5.0 m) � (4.0 m) � (3.0 m)k̂ĵîk̂ĵî
11. (a) (�9.0 m) � (10 m) ; (b) 13 m; (c) 132° 13. 4.74 km 15.ĵî
(a) 1.59 m; (b) 12.1 m; (c) 12.2 m; (d) 82.5° 17. (a) 38 m; (b) �37.5°;
(c) 130 m; (d) 1.2°; (e) 62 m; (f) 130° 19. 5.39 m at 21.8° left of
forward 21. (a) �70.0 cm; (b) 80.0 cm; (c) 141 cm; (d) �172°
23. 3.2 25. 2.6 km 27. (a) 8 � 16 ; (b) 2 � 4 29. (a) 7.5 cm;
(b) 90°; (c) 8.6 cm; (d) 48° 31. (a) 9.51 m; (b) 14.1 m; (c) 13.4 m;
(d) 10.5 m 33. (a) 12; (b) �z; (c) 12; (d) �z; (e) 12; (f) �z
35. (a) �18.8 units; (b) 26.9 units,�z direction 37. (a) �21; (b) �9;
(c) 5 � 11 � 9 39. 70.5° 41. 22° 43. (a) 3.00 m; (b) 0; (c) 3.46k̂ĵî

ĵîĵî

m; (d) 2.00 m; (e) �5.00 m; (f) 8.66 m; (g) �6.67; (h) 4.33
45. (a) �83.4; (b) (1.14 � 103) ; (c) 1.14 � 103,u not defined,f � 0°;
(d) 90.0°; (e) �5.14 � 6.13 � 3.00 ; (f) 8.54, u � 130°, f � 69.4°
47. (a) 140°; (b) 90.0°; (c) 99.1° 49. (a) 103 km; (b) 60.9° north of
due west 51. (a) 27.8 m; (b) 13.4 m 53. (a) 30; (b) 52 55. (a)
�2.83 m;(b) �2.83 m;(c) 5.00 m;(d) 0;(e) 3.00 m;(f) 5.20 m;(g) 5.17 m;
(h) 2.37 m; (i) 5.69 m; (j) 25° north of due east; (k) 5.69 m; (l) 25°
south of due west 57. 4.1 59. (a) (9.19 m) � (7.71 m) ; (b)ĵ�î�

k̂ĵî
k̂

(14.0 m) � (3.41 m) 61. (a) 11 � 5.0 � 7.0 ; (b) 120°; (c) �4.9;k̂ĵîĵ�î�
(d) 7.3 63. (a) 3.0 m2; (b) 52 m3; (c) (11 m2) � (9.0 m2) � (3.0 m2)k̂ĵî
65. (a) (�40 � 20 � 25 ) m; (b) 45 m 67. (a) 0; (b) 0; (c) �1;k̂ĵî
(d) west; (e) up; (f) west 69. (a) 168 cm; (b) 32.5# 71. (a) 15 m;
(b) south; (c) 6.0 m; (d) north 73. (a) 2 ; (b) 26; (c) 46; (d) 5.81
75. (a) up; (b) 0; (c) south; (d) 1; (e) 0 77. (a) (1300 m) �
(2200 m) � (410 m) ; (b) 2.56 � 103 m 79. 8.4

Chapter 4
CP 1. (draw tangent to path, tail on path) (a) first; (b) third
2. (take second derivative with respect to time) (1) and (3) ax and
ay are both constant and thus is constant; (2) and (4) ay is con-
stant but ax is not, thus is not 3. yes 4. (a) vx constant; (b) vy

initially positive, decreases to zero, and then becomes progressively
more negative; (c) ax � 0 throughout; (d) ay � �g throughout
5. (a) �(4 m/s) ; (b) �(8 m/s2)ĵî

a:
a:

v:

k̂ĵ
î

k̂



Q 1. a and c tie, then b 3. decreases 5. a, b, c 7. (a) 0; (b) 350
km/h; (c) 350 km/h; (d) same (nothing changed about the vertical
motion) 9. (a) all tie; (b) all tie; (c) 3, 2, 1; (d) 3, 2, 1 11. 2, then 1
and 4 tie, then 3 13. (a) yes; (b) no; (c) yes 15. (a) decreases;
(b) increases 17. maximum height
P 1. (a) 6.2 m 3. (�2.0 m) � (6.0 m) � (10 m) 5. (a) 7.59k̂ĵî

AN-2 ANSWERS

(�32.0 N) � (20.8 N) ; (b) 38.2 N; (c) �147° 9. (a) 8.37 N; (b) ĵî

km/h; (b) 22.5° east of due north 7. (�0.70 m/s) � (1.4 m/s) �ĵî
(0.40 m/s) 9. (a) 0.83 cm/s; (b) 0°; (c) 0.11 m/s; (d) �63° 11. (a)k̂
(6.00 m) � (106 m) ; (b) (19.0 m/s) � (224 m/s) ; (c) (24.0 m/s2) �îĵîĵî
(336 m/s2) ; (d) �85.2° 13. (a) (8 m/s2)t � (1 m/s) ; (b) (8 m/s2)ĵk̂ĵĵ
15. (a) (�1.50 m/s) ; (b) (4.50 m) � (2.25 m) 17. (32 m/s)îĵîĵ
19. (a) (72.0 m) � (90.7 m) ; (b) 49.5° 21. (a) 18 cm; (b) 1.9 m
23. (a) 3.03 s; (b) 758 m; (c) 29.7 m/s 25. 43.1 m/s (155 km/h) 27. (a)
10.0 s; (b) 897 m 29. 78.5° 31. 3.35 m 33. (a) 202 m/s; (b) 806 m;
(c) 161 m/s; (d) �171 m/s 35. 4.84 cm 37. (a) 1.60 m; (b) 6.86 m;
(c) 2.86 m 39. (a) 32.3 m; (b) 21.9 m/s; (c) 40.4°; (d) below
41. 55.5° 43. (a) 11 m; (b) 23 m; (c) 17 m/s; (d) 63° 45. (a) ramp;
(b) 5.82 m; (c) 31.0° 47. (a) yes; (b) 2.56 m 49. (a) 31°; (b) 63°
51. (a) 2.3°; (b) 1.1 m; (c) 18° 53. (a) 75.0 m; (b) 31.9 m/s; (c) 66.9°;
(d) 25.5 m 55. the third 57. (a) 7.32 m; (b) west; (c) north 59. (a)
12 s; (b) 4.1 m/s2; (c) down; (d) 4.1 m/s2; (e) up 61. (a) 1.3 � 105 m/s;
(b) 7.9 � 105 m/s2; (c) increase 63. 2.92 m 65. (3.00 m/s2) �
(6.00 m/s2) 67. 160 m/s2 69. (a) 13 m/s2; (b) eastward; (c) 13 m/s2;ĵ

î

ĵî

(d) eastward 71. 1.67 73. (a) (80 km/h) � (60 km/h) ; (b) 0°;
(c) answers do not change 75. 32 m/s 77. 60° 79. (a) 38 knots;
(b) 1.5° east of due north; (c) 4.2 h; (d) 1.5° west of due south
81. (a) (�32 km/h) � (46 km/h) ; (b) [(2.5 km) � (32 km/h)t] �îĵî

ĵî

[(4.0 km) � (46 km/h)t] ; (c) 0.084 h; (d) 2 � 102 m 83. (a) �30°;
(b) 69 min; (c) 80 min; (d) 80 min; (e) 0°; (f) 60 min 85. (a) 2.7 km;
(b) 76° clockwise 87. (a) 44 m; (b) 13 m; (c) 8.9 m 89. (a) 45 m;
(b) 22 m/s 91. (a) 2.6 � 102 m/s; (b) 45 s; (c) increase 93. (a) 63 km;
(b) 18° south of due east; (c) 0.70 km/h; (d) 18° south of due east;
(e) 1.6 km/h; (f) 1.2 km/h; (g) 33° north of due east 95. (a) 1.5;
(b) (36 m, 54 m) 97. (a) 62 ms; (b) 4.8 � 102 m/s 99. 2.64 m
101. (a) 2.5 m;(b) 0.82 m;(c) 9.8 m/s2; (d) 9.8 m/s2 103. (a) 6.79 km/h;
(b) 6.96° 105. (a) 16 m/s; (b) 23°; (c) above; (d) 27 m/s; (e) 57°;
(f) below 107. (a) 4.2 m, 45°; (b) 5.5 m, 68°; (c) 6.0 m, 90°; (d) 4.2 m,
135°; (e) 0.85 m/s, 135°; (f) 0.94 m/s, 90°; (g) 0.94 m/s, 180°; (h) 0.30
m/s2, 180°; (i) 0.30 m/s2, 270° 109. (a) 5.4 � 10–13 m; (b) decrease
111. (a) 0.034 m/s2; (b) 84 min 113. (a) 8.43 m; (b) �129° 115. (a)
2.00 ns; (b) 2.00 mm; (c) 1.00 � 107 m/s; (d) 2.00 � 106 m/s 117.
(a) 24 m/s; (b) 65° 119. 93° from the car’s direction of motion 121.
(a) 4.6 � 1012 m; (b) 2.4 � 105 s 123. (a) 6.29#; (b) 83.7# 125. (a) 3 �
101 m 127. (a) (6.0 � 4.2 ) m/s; (b) (18 � 6.3 ) m 129. (a) 38 ft/s;
(b) 32 ft/s; (c) 9.3 ft 131. (a) 11 m; (b) 45 m/s 133. (a) 5.8 m/s;
(b) 17 m; (c) 67# 135. (a) 32.4 m; (b) �37.7 m 137. 88.6 km/h

Chapter 5
CP 1. c, d, and e ( and must be head to  tail, must be
from tail of one of them to head of the other) 2. (a) and (b) 2 N,
leftward (acceleration is zero in each situation) 3. (a) equal; (b)
greater (acceleration is upward, thus net force on body must be up-
ward) 4. (a) equal; (b) greater; (c) less 5. (a) increase; (b) yes;
(c) same; (d) yes
Q 1. (a) 2, 3, 4; (b) 1, 3, 4; (c) 1, �y; 2, �x; 3, fourth quadrant; 4,
third quadrant 3. increase 5. (a) 2 and 4; (b) 2 and 4 7. (a) M;
(b) M; (c) M; (d) 2M; (e) 3M 9. (a) 20 kg; (b) 18 kg; (c) 10 kg; (d)
all tie; (e) 3, 2, 1 11. (a) increases from initial value mg; (b) de-
creases from mg to zero (after which the block moves up away
from the floor)
P 1. 2.9 m/s2 3. (a) 1.88 N; (b) 0.684 N; (c) (1.88 N) � (0.684 N)
5. (a) (0.86 m/s2) � (0.16 m/s2) ; (b) 0.88 m/s2; (c) �11° 7. (a)ĵî

ĵî

F
:

netF
:

2F
:

1

ĵîĵî

ĵ

�133°; (c) �125° 11. 9.0 m/s2 13. (a) 4.0 kg; (b) 1.0 kg; (c) 4.0 kg;
(d) 1.0 kg 15. (a) 108 N; (b) 108 N; (c) 108 N 17. (a) 42 N; (b) 72 N;
(c) 4.9 m/s2 19. 1.2 � 105 N 21. (a) 11.7 N; (b) �59.0° 23. (a)
(285 N) � (705 N) ; (b) (285 N) � (115 N) ; (c) 307 N; (d) �22.0°;ĵîĵî
(e) 3.67 m/s2; (f) �22.0° 25. (a) 0.022 m/s2; (b) 8.3 � 104 km;
(c) 1.9 � 103 m/s 27. 1.5 mm 29. (a) 494 N; (b) up; (c) 494 N;
(d) down 31. (a) 1.18 m; (b) 0.674 s; (c) 3.50 m/s 33. 1.8 � 104 N
35. (a) 46.7°; (b) 28.0° 37. (a) 0.62 m/s2; (b) 0.13 m/s2; (c) 2.6 m
39. (a) 2.2 � 10�3 N; (b) 3.7 � 10�3 N 41. (a) 1.4 m/s2; (b) 4.1 m/s
43. (a) 1.23 N; (b) 2.46 N; (c) 3.69 N; (d) 4.92 N; (e) 6.15 N; (f) 0.250 N
45. (a) 31.3 kN; (b) 24.3 kN 47. 6.4 � 103 N 49. (a) 2.18 m/s2;
(b) 116 N; (c) 21.0 m/s2 51. (a) 3.6 m/s2; (b) 17 N 53. (a) 0.970 m/s2;
(b) 11.6 N; (c) 34.9 N 55. (a) 1.1 N 57. (a) 0.735 m/s2; (b) down;
(c) 20.8 N 59. (a) 4.9 m/s2; (b) 2.0 m/s2; (c) up; (d) 120 N 61.
2Ma/(a � g) 63. (a) 8.0 m/s; (b) �x 65. (a) 0.653 m/s3; (b) 0.896
m/s3; (c) 6.50 s 67. 81.7 N 69. 2.4 N 71. 16 N 73. (a) 2.6 N;
(b) 17° 75. (a) 0; (b) 0.83 m/s2; (c) 0 77. (a) 0.74 m/s2; (b) 7.3 m/s2

79. (a) 11 N; (b) 2.2 kg; (c) 0; (d) 2.2 kg 81. 195 N 83. (a) 4.6 m/s2;
(b) 2.6 m/s2 85. (a) rope breaks; (b) 1.6 m/s2 87. (a) 65 N; (b) 49 N
89. (a) 4.6 � 103 N; (b) 5.8 � 103 N 91. (a) 1.8 � 102 N; (b) 6.4 �
102 N 93. (a) 44 N; (b) 78 N; (c) 54 N; (d) 152 N 95. (a) 4 kg;
(b) 6.5 m/s2; (c) 13 N 97. (a) (1.0 � 2.0 ) N; (b) 2.2 N; (c) �63#;
(d) 2.2 m/s2; (e) �63#

Chapter 6
CP 1. (a) zero (because there is no attempt at sliding); (b) 5 N;
(c) no; (d) yes; (e) 8 N 2. ( is directed toward center of circular
path) (a) downward, upward; (b) and upward; (c) same;
(d) greater at lowest point
Q 1. (a) decrease; (b) decrease; (c) increase; (d) increase; (e) in-
crease 3. (a) same; (b) increases; (c) increases; (d) no 5. (a) up-
ward; (b) horizontal, toward you; (c) no change; (d) increases; (e)
increases 7. At first, is directed up the ramp and its magnitude
increases from mg sin u until it reaches fs,max.Thereafter the force is
kinetic friction directed up the ramp, with magnitude fk (a constant
value smaller than fs,max). 9. 4, 3, then 1, 2, and 5 tie 11. (a) all tie;
(b) all tie; (c) 2, 3, 1 13. (a) increases; (b) increases; (c) decreases;
(d) decreases; (e) decreases
P 1. 36 m 3. (a) 2.0 � 102 N; (b) 1.2 � 102 N 5. (a) 6.0 N; (b) 
3.6 N; (c) 3.1 N 7. (a) 1.9 � 102 N; (b) 0.56 m/s2 9. (a) 11 N; (b)
0.14 m/s2 11. (a) 3.0 � 102 N; (b) 1.3 m/s2 13. (a) 1.3 � 102 N; (b)
no; (c) 1.1 � 102 N; (d) 46 N; (e) 17 N 15. 2° 17. (a) (17 N) ; (b)
(20 N) ; (c) (15 N) 19. (a) no; (b) (�12 N) � (5.0 N)ĵîîî

î
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s

F
:
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:

Na:
a:

ĵî

21. (a) 19°;(b) 3.3 kN 23. 0.37 25. 1.0 � 102 N 27. (a) 0;
(b) (�3.9 m/s2) ; (c) (�1.0 m/s2) 29. (a) 66 N; (b) 2.3 m/s2

31. (a) 3.5 m/s2; (b) 0.21 N 33. 9.9 s 35. 4.9 � 102 N 37. (a) 3.2 �
102 km/h; (b) 6.5 � 102 km/h; (c) no 39. 2.3 41. 0.60 43. 21 m
45. (a) light; (b) 778 N; (c) 223 N; (d) 1.11 kN 47. (a) 10 s; (b) 4.9 �
102 N; (c) 1.1 � 103 N 49. 1.37 � 103 N 51. 2.2 km 53. 12°
55. 2.6 � 103 N 57. 1.81 m/s 59. (a) 8.74 N; (b) 37.9 N; (c) 6.45 m/s;
(d) radially inward 61. (a) 27 N; (b) 3.0 m/s2 63. (b) 240 N;
(c) 0.60 65. (a) 69 km/h; (b) 139 km/h; (c) yes 67.
g(sin u � 20.5mk cos u) 69. 3.4 m/s2 71. (a) 35.3 N; (b) 39.7 N; (c)
320 N 73. (a) 7.5 m/s2; (b) down; (c) 9.5 m/s2; (d) down 75. (a)
3.0 � 105 N; (b) 1.2° 77. 147 m/s 79. (a) 13 N; (b) 1.6 m/s2

81. (a) 275 N; (b) 877 N 83. (a) 84.2 N; (b) 52.8 N; (c) 1.87 m/s2

85. 3.4% 87. (a) 3.21 � 103 N; (b) yes 89. (a) 222 N; (b) 334 N;
(c) 311 N; (d) 311 N; (e) c, d 91. (a) v2

0/(4g sin u); (b) no 93. (a)
0.34; (b) 0.24 95. (a) mkmg/(sin u � mk cos u); (b) u0 � tan�1 ms

97. 0.18 99. (a) 56 N; (b) 59 N; (c) 1.1 � 103 N 101. 0.76
103. (a) bottom of circle; (b) 9.5 m/s 105. 0.56

îî



Chapter 7
CP 1. (a) decrease; (b) same; (c) negative, zero 2. (a) positive;
(b) negative; (c) zero 3. zero
Q 1. all tie 3. (a) positive; (b) negative; (c) negative 5. b (posi-
tive work), a (zero work), c (negative work), d (more negative
work) 7. all tie 9. (a) A; (b) B 11. 2, 3, 1
P 1. (a) 2.9 � 107 m/s; (b) 2.1 � 10�13 J 3. (a) 5 � 1014 J; (b) 
0.1 megaton TNT; (c) 8 bombs 5. (a) 2.4 m/s; (b) 4.8 m/s 7. 0.96 J
9. 20 J 11. (a) 62.3°; (b) 118° 13. (a) 1.7 � 102 N; (b) 3.4 � 102 m;
(c) �5.8 � 104 J; (d) 3.4 � 102 N; (e) 1.7 � 102 m; (f) �5.8 � 104 J
15. (a) 1.50 J; (b) increases 17. (a) 12 kJ; (b) �11 kJ;
(c) 1.1 kJ; (d) 5.4 m/s 19. 25 J 21. (a) �3Mgd/4; (b) Mgd; (c)
Mgd/4; (d) (gd/2)0.5 23. 4.41 J 25. (a) 25.9 kJ; (b) 2.45 N
27. (a) 7.2 J; (b) 7.2 J; (c) 0; (d) �25 J 29. (a) 0.90 J; (b) 2.1 J; (c) 0
31. (a) 6.6 m/s; (b) 4.7 m 33. (a) 0.12 m; (b) 0.36 J; (c) �0.36 J;
(d) 0.060 m; (e) 0.090 J 35. (a) 0; (b) 0 37. (a) 42 J; (b) 30 J; (c)
12 J; (d) 6.5 m/s, �x axis; (e) 5.5 m/s, �x axis; (f) 3.5 m/s, �x axis
39. 4.00 N/m 41. 5.3 � 102 J 43. (a) 0.83 J; (b) 2.5 J; (c) 4.2 J;
(d) 5.0 W 45. 4.9 � 102 W 47. (a) 1.0 � 102 J; (b) 8.4 W
49. 7.4 � 102 W 51. (a) 32.0 J; (b) 8.00 W; (c) 78.2° 53. (a) 1.20 J;
(b) 1.10 m/s 55. (a) 1.8 � 105 ft � lb; (b) 0.55 hp 57. (a) 797 N;
(b) 0; (c) �1.55 kJ; (d) 0; (e) 1.55 kJ; (f) F varies during displace-
ment 59. (a) 11 J; (b) �21 J 61. �6 J 63. (a) 314 J; (b) �155
J; (c) 0; (d) 158 J 65. (a) 98 N; (b) 4.0 cm; (c) 3.9 J; (d) �3.9 J
67. (a) 23 mm; (b) 45 N 69. 165 kW 71. �37 J 73. (a) 13 J;
(b) 13 J 75. 235 kW 77. (a) 6 J; (b) 6.0 J 79. (a) 0.6 J; (b) 0;
(c) �0.6 J 81. (a) 3.35 m/s; (b) 22.5 J; (c) 0; (d) 0; (e) 0.212 m
83. (a) �5.20 � 10�2 J; (b) �0.160 J 85. 6.63 m/s

Chapter 8
CP 1. no (consider round trip on the small loop) 2. 3, 1, 2 (see
Eq. 8-6) 3. (a) all tie; (b) all tie 4. (a) CD, AB, BC (0) (check
slope magnitudes); (b) positive direction of x 5. all tie
Q 1. (a) 3, 2, 1; (b) 1, 2, 3 3. (a) 12 J; (b) �2 J 5. (a) increasing;
(b) decreasing; (c) decreasing; (d) constant in AB and BC, de-
creasing in CD 7. �30 J 9. 2, 1, 3 11. �40 J
P 1. 89 N/cm 3. (a) 167 J; (b) �167 J; (c) 196 J; (d) 29 J; (e) 167 J;
(f) �167 J; (g) 296 J; (h) 129 J 5. (a) 4.31 mJ; (b) �4.31 mJ;
(c) 4.31 mJ; (d) �4.31 mJ; (e) all increase 7. (a) 13.1 J; (b) �13.1 J;
(c) 13.1 J; (d) all increase 9. (a) 17.0 m/s; (b) 26.5 m/s; (c) 33.4 m/s;
(d) 56.7 m; (e) all the same 11. (a) 2.08 m/s; (b) 2.08 m/s; (c) in-
crease 13. (a) 0.98 J; (b) �0.98 J; (c) 3.1 N/cm 15. (a) 2.6 � 102 m;
(b) same; (c) decrease 17. (a) 2.5 N; (b) 0.31 N; (c) 30 cm 19. (a)
784 N/m; (b) 62.7 J; (c) 62.7 J; (d) 80.0 cm 21. (a) 8.35 m/s; (b) 4.33
m/s; (c) 7.45 m/s; (d) both decrease 23. (a) 4.85 m/s; (b) 2.42 m/s
25. �3.2 � 102 J 27. (a) no; (b) 9.3 � 102 N 29. (a) 35 cm; (b) 
1.7 m/s 31. (a) 39.2 J; (b) 39.2 J; (c) 4.00 m 33. (a) 2.40 m/s; (b)
4.19 m/s 35. (a) 39.6 cm; (b) 3.64 cm 37. �18 mJ 39. (a) 2.1 m/s;
(b) 10 N; (c) �x direction; (d) 5.7 m; (e) 30 N; (f) �x direction
41. (a) �3.7 J; (c) 1.3 m; (d) 9.1 m; (e) 2.2 J; (f) 4.0 m; (g) (4 � x)e�x/4;
(h) 4.0 m 43. (a) 5.6 J; (b) 3.5 J 45. (a) 30.1 J; (b) 30.1 J; (c) 0.225
47. 0.53 J 49. (a) �2.9 kJ; (b) 3.9 � 102 J; (c) 2.1 � 102 N 51.
(a) 1.5 MJ; (b) 0.51 MJ; (c) 1.0 MJ; (d) 63 m/s 53. (a) 67 J; (b) 67 J;
(c) 46 cm 55. (a) �0.90 J; (b) 0.46 J; (c) 1.0 m/s 57. 1.2 m 59.
(a) 19.4 m; (b) 19.0 m/s 61. (a) 1.5 � 10� 2 N; (b) (3.8 � 102)g
63. (a) 7.4 m/s; (b) 90 cm; (c) 2.8 m; (d) 15 m 65. 20 cm 67. (a) 7.0 J;
(b) 22 J 69. 3.7 J 71. 4.33 m/s 73. 25 J 75. (a) 4.9 m/s; (b) 4.5 N;
(c) 71°; (d) same 77. (a) 4.8 N;(b) �x direction; (c) 1.5 m;(d) 13.5 m;
(e) 3.5 m/s 79. (a) 24 kJ; (b) 4.7 � 102 N 81. (a) 5.00 J; (b) 9.00 J;
(c) 11.0 J; (d) 3.00 J; (e) 12.0 J; (f) 2.00 J; (g) 13.0 J; (h) 1.00 J;
(i) 13.0 J; (j) 1.00 J; (l) 11.0 J; (m) 10.8 m; (n) It returns to x � 0
and stops. 83. (a) 6.0 kJ; (b) 6.0 � 102 W; (c) 3.0 � 102 W;
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(d) 9.0 � 102 W 85. 880 MW 87. (a) v0 � (2gL)0.5; (b) 5mg;
(c) �mgL; (d) �2mgL 89. (a) 109 J; (b) 60.3 J; (c) 68.2 J; (d) 41.0 J
91. (a) 2.7 J; (b) 1.8 J; (c) 0.39 m 93. (a) 10 m; (b) 49 N; (c) 4.1 m;
(d) 1.2 � 102 N 95. (a) 5.5 m/s; (b) 5.4 m; (c) same 97. 80 mJ 99.
24 W 101. �12 J 103. (a) 8.8 m/s;(b) 2.6 kJ;(c) 1.6 kW 105. (a)
7.4 � 102 J; (b) 2.4 � 102 J 107. 15 J 109. (a) 2.35 � 103 J;
(b) 352 J 111. 738 m 113. (a) �3.8 kJ; (b) 31 kN 115. (a) 300 J;
(b) 93.8 J; (c) 6.38 m 117. (a) 5.6 J; (b) 12 J; (c) 13 J 119. (a) 1.2 J;
(b) 11 m/s; (c) no; (d) no 121. (a) 2.1 � 106 kg; (b) (100 � 1.5t)0.5

m/s; (c) (1.5 � 106)/(100 � 1.5t)0.5 N; (d) 6.7 km 123. 54% 125.
(a) 2.7 � 109 J; (b) 2.7 � 109 W; (c) $2.4 � 108 127. 5.4 kJ 129. 3.1 �
1011 W 131. because your force on the cabbage (as you lower it)
does work 135. (a) 8.6 kJ; (b) 8.6 � 102 W; (c) 4.3 � 102 W;
(d) 1.3 kW

Chapter 9
CP 1. (a) origin; (b) fourth quadrant; (c) on y axis below origin;
(d) origin; (e) third quadrant; (f) origin 2. (a) � (c) at the center
of mass, still at the origin (their forces are internal to the system
and cannot move the center of mass) 3. (Consider slopes and
Eq. 9-23.) (a) 1, 3, and then 2 and 4 tie (zero force); (b) 3 4. (a)
unchanged; (b) unchanged (see Eq. 9-32); (c) decrease (Eq. 9-35)
5. (a) zero; (b) positive (initial py down y; final py up y); (c) positive
direction of y 6. (No net external force; conserved.) (a) 0;
(b) no; (c) �x 7. (a) 10 kg �m/s; (b) 14 kg �m/s; (c) 6 kg �m/s
8. (a) 4 kg �m/s; (b) 8 kg �m/s; (c) 3 J 9. (a) 2 kg �m/s (conserve
momentum along x); (b) 3 kg �m/s (conserve momentum along y)
Q 1. (a) 2 N, rightward; (b) 2 N, rightward; (c) greater than 2 N,
rightward 3. b, c, a 5. (a) x yes, y no; (b) x yes, y no; (c) x no, y yes
7. (a) c, kinetic energy cannot be negative; d, total kinetic energy
cannot increase; (b) a; (c) b 9. (a) one was stationary; (b) 2; (c) 5;
(d) equal (pool player’s result) 11. (a) C; (b) B; (c) 3
P 1. (a) �1.50 m; (b) �1.43 m 3. (a) �6.5 cm; (b) 8.3 cm; (c) 1.4
cm 5. (a) �0.45 cm; (b) �2.0 cm 7. (a) 0; (b) 3.13 � 10� 11 m
9. (a) 28 cm; (b) 2.3 m/s 11. (�4.0 m) � (4.0 m) 13. 53 m 15.ĵî

P
:

(a) (2.35 � 1.57 ) m/s2; (b) (2.35 � 1.57 )t m/s, with t in seconds; (d)ĵîĵî
straight, at downward angle 34° 17. 4.2 m 19. (a) 7.5 � 104 J;
(b) 3.8 � 104 kg �m/s; (c) 39° south of due east 21. (a) 5.0 kg �m/s;
(b) 10 kg �m/s 23. 1.0 � 103 to 1.2 � 103 kg �m/s 25. (a) 42 N �s;
(b) 2.1 kN 27. (a) 67 m/s; (b) �x; (c) 1.2 kN; (d) �x 29. 5 N
31. (a) 2.39 � 103 N �s; (b) 4.78 � 105 N; (c) 1.76 � 103 N �s; (d) 
3.52 � 105 N 33. (a) 5.86 kg �m/s; (b) 59.8°; (c) 2.93 kN; (d) 59.8°
35. 9.9 � 102 N 37. (a) 9.0 kg �m/s; (b) 3.0 kN; (c) 4.5 kN; (d) 20 m/s
39. 3.0 mm/s 41. (a) �(0.15 m/s) ; (b) 0.18 m 43. 55 cm 45. (a)
(1.00 � 0.167 ) km/s; (b) 3.23 MJ 47. (a) 14 m/s; (b) 45° 49.ĵî

î

3.1 � 102 m/s 51. (a) 721 m/s; (b) 937 m/s 53. (a) 33%; (b) 23%;
(c) decreases 55. (a) �2.0 m/s; (b) �1.3 J; (c) �40 J; (d) system got
energy from some source, such as a small explosion 57. (a) 4.4 m/s;
(b) 0.80 59. 25 cm 61. (a) 99 g; (b) 1.9 m/s; (c) 0.93 m/s 63. (a)
3.00 m/s; (b) 6.00 m/s 65. (a) 1.2 kg; (b) 2.5 m/s 67. �28 cm 69.
(a) 0.21 kg; (b) 7.2 m 71. (a) 4.15 � 105 m/s; (b) 4.84 � 105 m/s
73. 120° 75. (a) 433 m/s; (b) 250 m/s 77. (a) 46 N; (b) none 79.
(a) 1.57 � 106 N; (b) 1.35 � 105 kg; (c) 2.08 km/s 81. (a) 7290 m/s;
(b) 8200 m/s; (c) 1.271 � 1010 J; (d) 1.275 � 1010 J 83. (a) 1.92 m;
(b) 0.640 m 85. (a) 1.78 m/s; (b) less; (c) less; (d) greater 87. (a)
3.7 m/s; (b) 1.3 N �s; (c) 1.8 � 102 N 89. (a) (7.4 � 103 N �s) � 
(7.4 � 103 N �s) ; (b) (�7.4 � 103 N �s) ; (c) 2.3 � 103 N;(d) 2.1 � 104 N;îĵ

î

(e) �45° 91. �4.4 m/s 93. 1.18 � 104 kg 95. (a) 1.9 m/s;
(b) �30°; (c) elastic 97. (a) 6.9 m/s; (b) 30°; (c) 6.9 m/s; (d) �30°;
(e) 2.0 m/s; (f) �180° 99. (a) 25 mm; (b) 26 mm; (c) down; (d) 
1.6 � 10�2 m/s2 101. 29 J 103. 2.2 kg 105. 5.0 kg 107. (a) 50
kg/s; (b) 1.6 � 102 kg/s 109. (a) 4.6 � 103 km;(b) 73% 111. 190 m/s



113. 28.8 N 115. (a) 0.745 mm; (b) 153°; (c) 1.67 mJ 117. (a)
(2.67 m/s) � (�3.00 m/s) ; (b) 4.01 m/s; (c) 48.4° 119. (a)ĵî
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(�22 N �m) 23. (a) (�1.5 N �m) � (4.0 N �m) � (1.0 N �m) ;
(b) (�1.5 N �m) � (4.0 N �m) � (1.0 N �m) 25. (a) (50 N �m) ;
(b) 90º 27. (a) 0; (b) (8.0 N �m) � (8.0 N �m) 29. (a) 9.8 kg �m2/s;
(b) �z direction 31. (a) 0; (b) �22.6 kg �m2/s; (c) �7.84 N �m;
(d) �7.84 N �m 33. (a) (�1.7 � 102 kg �m2/s) ; (b) (�56 N �m) ;
(c) (�56 kg�m2/s2) 35. (a) 48t N �m;(b) increasing 37. (a) 4.6 �
10�3 kg �m2; (b) 1.1 � 10�3 kg �m2/s; (c) 3.9 � 10�3 kg �m2/s
39. (a) 1.47 N �m; (b) 20.4 rad; (c) �29.9 J; (d) 19.9 W 41. (a) 1.6
kg �m2; (b) 4.0 kg �m2/s 43. (a) 1.5 m; (b) 0.93 rad/s; (c) 98 J; (d) 8.4
rad/s; (e) 8.8 � 102 J; (f) internal energy of the skaters 45. (a) 3.6
rev/s; (b) 3.0; (c) forces on the bricks from the man transferred en-
ergy from the man’s internal energy to kinetic energy 47. 0.17 rad/s
49. (a) 750 rev/min; (b) 450 rev/min; (c) clockwise 51. (a) 267 rev/min;
(b) 0.667 53. 1.3 � 103 m/s 55. 3.4 rad/s 57. (a) 18 rad/s; (b) 0.92
59. 11.0 m/s 61. 1.5 rad/s 63. 0.070 rad/s 65. (a) 0.148 rad/s; (b)
0.0123; (c) 181° 67. (a) 0.180 m;(b) clockwise 69. 0.041 rad/s 71.
(a) 1.6 m/s2; (b) 16 rad/s2; (c) (4.0 N) 73. (a) 0; (b) 0; (c) �30t3

kg �m2/s; (d) �90t2 N �m; (e) 30t3 kg �m2/s; (f) 90t2 N �m 75. (a)
149 kg �m2; (b) 158 kg �m2/s; (c) 0.744 rad/s 77. (a) 6.65 � 10�5

kg �m2/s; (b) no; (c) 0; (d) yes 79. (a) 0.333;(b) 0.111 81. (a) 58.8 J;
(b) 39.2 J 83. (a) 61.7 J; (b) 3.43 m; (c) no 85. (a) mvR/(I � MR2);
(b) mvR2/(I � MR2)

Chapter 12
CP 1. c, e, f 2. (a) no; (b) at site of , perpendicular to plane of
figure; (c) 45 N 3. d
Q 1. (a) 1 and 3 tie, then 2; (b) all tie; (c) 1 and 3 tie, then 2 (zero)
3. a and c (forces and torques balance) 5. (a) 12 kg; (b) 3 kg;
(c) 1 kg 7. (a) at C (to eliminate forces there from a torque
equation); (b) plus; (c) minus; (d) equal 9. increase 11. A and B,
then C
P 1. (a) 1.00 m; (b) 2.00 m; (c) 0.987 m; (d) 1.97 m 3. (a) 9.4 N;
(b) 4.4 N 5. 7.92 kN 7. (a) 2.8 � 102 N; (b) 8.8 � 102 N; (c) 71°
9. 74.4 g 11. (a) 1.2 kN; (b) down; (c) 1.7 kN; (d) up; (e) left;
(f) right 13. (a) 2.7 kN; (b) up; (c) 3.6 kN; (d) down 15. (a) 5.0 N;
(b) 30 N; (c) 1.3 m 17. (a) 0.64 m; (b) increased 19. 8.7 N
21. (a) 6.63 kN; (b) 5.74 kN; (c) 5.96 kN 23. (a) 192 N; (b) 96.1 N;
(c) 55.5 N 25. 13.6 N 27. (a) 1.9 kN; (b) up; (c) 2.1 kN; (d) down
29. (a) (�80 N) � (1.3 � 102 N) ; (b) (80 N) � (1.3 � 102 N)
31. 2.20 m 33. (a) 60.0°;(b) 300 N 35. (a) 445 N; (b) 0.50; (c) 315 N
37. 0.34 39. (a) 207 N; (b) 539 N; (c) 315 N 41. (a) slides;
(b) 31°; (c) tips; (d) 34° 43. (a) 6.5 � 106 N/m2; (b) 1.1 � 10�5 m
45. (a) 0.80; (b) 0.20; (c) 0.25 47. (a) 1.4 � 109 N; (b) 75
49. (a) 866 N; (b) 143 N; (c) 0.165 51. (a) 1.2 � 102 N; (b) 68 N
53. (a) 1.8 � 107 N; (b) 1.4 � 107 N; (c) 16 55. 0.29 57. 76 N
59. (a) 8.01 kN; (b) 3.65 kN; (c) 5.66 kN 61. 71.7 N 63. (a) L/2;
(b) L/4; (c) L/6; (d) L/8; (e) 25L/24 65. (a) 88 N; (b) (30 � 97 ) N
67. 2.4 � 109 N/m2 69. 60° 71. (a) m � 0.57; (b) m � 0.57
73. (a) (35 � 200 ) N; (b) (�45 � 200 ) N; (c) 1.9 � 102 N
75. (a) BC, CD, DA; (b) 535 N; (c) 757 N 77. (a) 1.38 kN; (b) 180 N
79. (a) a1 � L/2, a2 � 5L/8, h � 9L/8; (b) b1 � 2L/3, b2 � L/2,
h � 7L/6 81. L/4 83. (a) 106 N; (b) 64.0° 85. 1.8 � 102 N
87. (a) �24.4 N; (b) 1.60 N; (c) �3.75#

Chapter 13
CP 1. all tie 2. (a) 1, tie of 2 and 4, then 3; (b) line d
3. (a) increase; (b) negative 4. (a) 2; (b) 1 5. (a) path 1
(decreased E (more negative) gives decreased a); (b) less
(decreased a gives decreased T)
Q 1. 3GM2/d2, leftward 3. Gm2/r2, upward 5. b and c tie, then a
(zero) 7. 1, tie of 2 and 4, then 3 9. (a) positive y; (b) yes, rotates

ĵîĵî

ĵî

ĵîĵî

F
:

1

k̂k̂k̂
k̂î

k̂k̂
k̂k̂

k̂î
k̂k̂ĵî

k̂ĵîî

�0.50 m; (b) �1.8 cm; (c) 0.50 m 121. 0.22% 123. 36.5 km/s
125. (a) (�1.00 � 10�19 � 0.67 � 10�19 ) kg �m/s; (b) 1.19 � 10�12 J
127. 2.2 � 10�3

Chapter 10
CP 1. b and c 2. (a) and (d) (a � d 2u/dt2 must be a constant)
3. (a) yes; (b) no; (c) yes; (d) yes 4. all tie 5. 1, 2, 4, 3 (see Eq. 10-36)
6. (see Eq. 10-40) 1 and 3 tie, 4, then 2 and 5 tie (zero) 7. (a)
downward in the figure (tnet � 0); (b) less (consider moment arms)
Q 1. (a) c, a, then b and d tie; (b) b, then a and c tie, then d 3. all
tie 5. (a) decrease; (b) clockwise; (c) counterclockwise 7. larger
9. c, a, b 11. less
P 1. 14 rev 3. (a) 4.0 rad/s; (b) 11.9 rad/s 5. 11 rad/s 7. (a) 4.0
m/s; (b) no 9. (a) 3.00 s; (b) 18.9 rad 11. (a) 30 s; (b) 1.8 � 103 rad
13. (a) 3.4 � 102 s; (b) �4.5 � 10� 3 rad/s2; (c) 98 s 15. 8.0 s
17. (a) 44 rad; (b) 5.5 s; (c) 32 s; (d) �2.1 s; (e) 40 s 19. (a) 2.50 �
10�3 rad/s; (b) 20.2 m/s2; (c) 0 21. 6.9 � 10�13 rad/s 23. (a) 20.9
rad/s; (b) 12.5 m/s; (c) 800 rev/min2; (d) 600 rev 25. (a) 7.3 � 10�5

rad/s; (b) 3.5 � 102 m/s; (c) 7.3 � 10�5 rad/s; (d) 4.6 � 102 m/s 27.
(a) 73 cm/s2; (b) 0.075; (c) 0.11 29. (a) 3.8 � 103 rad/s; (b) 1.9 � 102

m/s 31. (a) 40 s; (b) 2.0 rad/s2 33. 12.3 kg �m2 35. (a) 1.1 kJ; (b)
9.7 kJ 37. 0.097 kg �m2 39. (a) 49 MJ;(b) 1.0 � 102 min 41. (a)
0.023 kg �m2; (b) 1.1 mJ 43. 4.7 � 10�4 kg �m2 45. �3.85 N �m
47. 4.6 N �m 49. (a) 28.2 rad/s2; (b) 338 N �m 51. (a) 6.00 cm/s2;
(b) 4.87 N; (c) 4.54 N; (d) 1.20 rad/s2; (e) 0.0138 kg �m2 53. 0.140 N
55. 2.51 � 10�4 kg �m2 57. (a) 4.2 � 102 rad/s2; (b) 5.0 � 102 rad/s
59. 396 N �m 61. (a) �19.8 kJ; (b) 1.32 kW 63. 5.42 m/s 65. (a)
5.32 m/s2; (b) 8.43 m/s2; (c) 41.8º 67. 9.82 rad/s 69. 6.16 � 10�5

kg �m2 71. (a) 31.4 rad/s2; (b) 0.754 m/s2; (c) 56.1 N; (d) 55.1 N
73. (a) 4.81 � 105 N; (b) 1.12 � 104 N �m; (c) 1.25 � 106 J
75. (a) 2.3 rad/s2; (b) 1.4 rad/s2 77. (a) �67 rev/min2; (b) 8.3 rev
81. 3.1 rad/s 83. (a) 1.57 m/s2; (b) 4.55 N; (c) 4.94 N 85. 30 rev
87. 0.054 kg �m2 89. 1.4 � 102 N �m 91. (a) 10 J; (b) 0.27 m
93. 4.6 rad/s2 95. 2.6 J 97. (a) 5.92 � 104 m/s2; (b) 4.39 � 104 s�2

99. (a) 0.791 kg �m2; (b) 1.79 � 10� 2 N �m 101. (a) 1.5 � 102 cm/s;
(b) 15 rad/s; (c) 15 rad/s; (d) 75 cm/s; (e) 3.0 rad/s 103. (a) 7.0 kg �m2;
(b) 7.2 m/s; (c) 71º 105. (a) 0.32 rad/s; (b) 1.0 � 102 km/h
107. (a) 1.4 � 102 rad; (b) 14 s

Chapter 11
CP 1. (a) same; (b) less 2. less (consider the transfer of energy
from rotational kinetic energy to gravitational potential energy)
3. (draw the vectors, use right-hand rule) (a) 	z; (b) �y; (c) �x
4. (see Eq. 11-21) (a) 1 and 3 tie; then 2 and 4 tie, then 5 (zero); (b) 2
and 3 5. (see Eqs. 11-23 and 11-16) (a) 3, 1; then 2 and 4 tie (zero);
(b) 3 6. (a) all tie (same t, same t, thus same ); (b) sphere,disk,
hoop (reverse order of I) 7. (a) decreases; (b) same (tnet � 0, so L is
conserved); (c) increases
Q 1. a, then b and c tie, then e, d (zero) 3. (a) spins in place; (b)
rolls toward you; (c) rolls away from you 5. (a) 1, 2, 3 (zero); (b) 1
and 2 tie, then 3; (c) 1 and 3 tie, then 2 7. (a) same;(b) increase; (c)
decrease; (d) same, decrease, increase 9. D,B, then A and C tie
11. (a) same;(b) same
P 1. (a) 0; (b) (22 m/s) ; (c) (�22 m/s) ; (d) 0; (e) 1.5 � 103 m/s2; (f)
1.5 � 103 m/s2; (g) (22 m/s) ; (h) (44 m/s) ; (i) 0; (j) 0; (k) 1.5 � 103 m/s2;
(l) 1.5 � 103 m/s2 3. �3.15 J 5. 0.020 7. (a) 63 rad/s; (b) 4.0 m
9. 4.8 m 11. (a) (�4.0 N) ; (b) 0.60 kg �m2 13. 0.50 15. (a)
�(0.11 m) ; (b) �2.1 m/s2; (c) �47 rad/s2; (d) 1.2 s; (e) 8.6 m; (f) 6.1
m/s 17. (a) 13 cm/s2; (b) 4.4 s; (c) 55 cm/s; (d) 18 mJ; (e) 1.4 J; (f) 27
rev/s 19. (�2.0 N �m) 21. (a) (6.0 N �m) � (8.0 N �m) ; (b) k̂ĵî

v
î

îî
îî


L

ĵî



counterclockwise until it points toward particle B 11. b, d, and f
all tie, then e, c, a

P 1. 3. 19 m 5. 0.8 m 7. �5.00d 9. 2.60 � 105 km1
2
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4. (a) 5 J; (b) 2 J; (c) 5 J 5. all tie (in Eq. 15-29, m is included in I)
6. 1, 2, 3 (the ratio m/b matters; k does not)
Q 1. a and b 3. (a) 2; (b) positive; (c) between 0 and �xm

5. (a) between D and E; (b) between 3p/2 rad and 2p rad
7. (a) all tie; (b) 3, then 1 and 2 tie; (c) 1, 2, 3 (zero); (d) 1, 2, 3 (zero);
(e) 1, 3, 2 9. b (infinite period, does not oscillate), c, a
11. (a) greater; (b) same; (c) same; (d) greater; (e) greater
P 1. (a) 0.50 s; (b) 2.0 Hz; (c) 18 cm 3. 37.8 m/s2 5. (a) 1.0 mm;
(b) 0.75 m/s; (c) 5.7 � 102 m/s2 7. (a) 498 Hz; (b) greater
9. (a) 3.0 m; (b) �49 m/s; (c) �2.7 � 102 m/s2; (d) 20 rad; (e) 1.5 Hz;
(f) 0.67 s 11. 39.6 Hz 13. (a) 0.500 s; (b) 2.00 Hz; (c) 12.6 rad/s;
(d) 79.0 N/m;(e) 4.40 m/s; (f) 27.6 N 15. (a) 0.18A; (b) same direction
17. (a) 5.58 Hz; (b) 0.325 kg; (c) 0.400 m 19. (a) 25 cm; (b) 2.2 Hz
21. 54 Hz 23. 3.1 cm 25. (a) 0.525 m; (b) 0.686 s
27. (a) 0.75; (b) 0.25; (c) 2�0.5xm 29. 37 mJ 31. (a) 2.25 Hz;
(b) 125 J; (c) 250 J; (d) 86.6 cm 33. (a) 1.1 m/s; (b) 3.3 cm
35. (a) 3.1 ms; (b) 4.0 m/s; (c) 0.080 J; (d) 80 N; (e) 40 N
37. (a) 2.2 Hz; (b) 56 cm/s; (c) 0.10 kg; (d) 20.0 cm 39. (a) 39.5
rad/s; (b) 34.2 rad/s; (c) 124 rad/s2 41. (a) 0.205 kg�m2; (b) 47.7 cm;
(c) 1.50 s 43. (a) 1.64 s; (b) equal 45. 8.77 s 47. 0.366 s 
49. (a) 0.845 rad; (b) 0.0602 rad 51. (a) 0.53 m; (b) 2.1 s
53. 0.0653 s 55. (a) 2.26 s; (b) increases; (c) same 57. 6.0%
59. (a) 14.3 s; (b) 5.27 61. (a) Fm/bv; (b) Fm/b 63. 5.0 cm
65. (a) 2.8 � 103 rad/s; (b) 2.1 m/s; (c) 5.7 km/s2 67. (a) 1.1 Hz;
(b) 5.0 cm 69. 7.2 m/s 71. (a) 7.90 N/m; (b) 1.19 cm; (c) 2.00 Hz
73. (a) 1.3 � 102 N/m; (b) 0.62 s; (c) 1.6 Hz; (d) 5.0 cm; (e) 0.51 m/s
75. (a) 16.6 cm; (b) 1.23% 77. (a) 1.2 J; (b) 50 79. 1.53 m
81. (a) 0.30 m; (b) 0.28 s; (c) 1.5 � 102 m/s2; (d) 11 J 83. (a) 1.23
kN/m; (b) 76.0 N 85. 1.6 kg 87. (a) 0.735 kg � m2; (b) 0.0240 N � m;
(c) 0.181 rad/s 89. (a) 3.5 m; (b) 0.75 s 91. (a) 0.35 Hz; (b) 0.39 Hz;
(c) 0 (no oscillation) 93. (a) 245 N/m; (b) 0.284 s
95. 0.079 kg � m2 97. (a) 8.11 � 10�5 kg � m2; (b) 3.14 rad/s
99. 14.0° 101. (a) 3.2 Hz; (b) 0.26 m; (c) x � (0.26 m) cos(20t � p/2),
with t in seconds 103. (a) 0.44 s; (b) 0.18 m 105. (a) 0.45 s; (b) 0.10 m
above and 0.20 m below; (c) 0.15 m; (d) 2.3 J 107. 7 � 102 N/m
109. 0.804 m 111. (a) 0.30 m; (b) 30 m/s2; (c) 0; (d) 4.4 s
113. (a) F/m; (b) 2F/mL; (c) 0 115. 2.54 m

Chapter 16
CP 1. a, 2; b, 3; c, 1 (compare with the phase in Eq. 16-2, then see
Eq. 16-5) 2. (a) 2, 3, 1 (see Eq. 16-12); (b) 3, then 1 and 2 tie (find
amplitude of dy/dt) 3. (a) same (independent of f); (b) decrease 
(l � v/f); (c) increase; (d) increase 4. 0.20 and 0.80 tie, then 0.60,
0.45 5. (a) 1; (b) 3; (c) 2 6. (a) 75 Hz; (b) 525 Hz
Q 1. (a) 1, 4, 2, 3; (b) 1, 4, 2, 3 3. a, upward; b, upward; c, down-
ward; d, downward; e, downward; f, downward; g, upward; h, upward
5. intermediate (closer to fully destructive) 7. (a) 0, 0.2 wave-
length, 0.5 wavelength (zero); (b) 4Pavg,1 9. d 11. c, a, b
P 1. 1.1 ms 3. (a) 3.49 m�1; (b) 31.5 m/s 5. (a) 0.680 s; (b) 1.47
Hz; (c) 2.06 m/s 7. (a) 64 Hz; (b) 1.3 m; (c) 4.0 cm; (d) 5.0 m�1;
(e) 4.0 � 102 s�1; (f) p/2 rad; (g) minus 9. (a) 3.0 mm; (b) 16 m�1;
(c) 2.4 � 102 s�1; (d) minus 11. (a) negative; (b) 4.0 cm; (c) 0.31
cm�1; (d) 0.63 s�1; (e) p rad; (f) minus; (g) 2.0 cm/s; (h) �2.5 cm/s
13. (a) 11.7 cm; (b) p rad 15. (a) 0.12 mm; (b) 141 m�1; (c) 628 s�1;
(d) plus 17. (a) 15 m/s; (b) 0.036 N 19. 129 m/s 21. 2.63 m
23. (a) 5.0 cm; (b) 40 cm; (c) 12 m/s; (d) 0.033 s; (e) 9.4 m/s;
(f) 16 m�1; (g) 1.9 � 102 s�1; (h) 0.93 rad; (i) plus 27. 3.2 mm
29. 0.20 m/s 31. 1.41ym 33. (a) 9.0 mm; (b) 16 m�1; (c) 1.1 � 103

s�1; (d) 2.7 rad; (e) plus 35. 5.0 cm 37. (a) 3.29 mm; (b) 1.55 rad;
(c) 1.55 rad 39. 84° 41. (a) 82.0 m/s; (b) 16.8 m; (c) 4.88 Hz
43. (a) 7.91 Hz; (b) 15.8 Hz; (c) 23.7 Hz 45. (a) 105 Hz; (b) 158 m/s
47. 260 Hz 49. (a) 144 m/s; (b) 60.0 cm; (c) 241 Hz 51. (a) 0.50 cm;

11. (a) M � m; (b) 0 13. 8.31 � 10�9 N 15. (a) �1.88d;
(b) �3.90d; (c) 0.489d 17. (a) 17 N; (b) 2.4 19. 2.6 � 106 m
21. 5 � 1024 kg 23. (a) 7.6 m/s2; (b) 4.2 m/s2 25. (a) (3.0 �
10�7 N/kg)m; (b) (3.3 � 10�7 N/kg)m; (c) (6.7 � 10�7 N/kg � m)mr
27. (a) 9.83 m/s2; (b) 9.84 m/s2; (c) 9.79 m/s2 29. 5.0 � 109 J
31. (a) 0.74; (b) 3.8 m/s2; (c) 5.0 km/s 33. (a) 0.0451; (b) 28.5
35. �4.82 � 10�13 J 37. (a) 0.50 pJ; (b) �0.50 pJ 39. (a) 1.7 km/s;
(b) 2.5 � 105 m; (c) 1.4 km/s 41. (a) 82 km/s; (b) 1.8 � 104 km/s
43. (a) 7.82 km/s; (b) 87.5 min 45. 6.5 � 1023 kg 47. 5 � 1010 stars
49. (a) 1.9 � 1013 m; (b) 6.4RP 51. (a) 6.64 � 103 km; (b) 0.0136
53. 5.8 � 106 m 57. 0.71 y 59. (GM/L)0.5 61. (a) 3.19 � 103 km;
(b) lifting 63. (a) 2.8 y; (b) 1.0 � 10�4 65. (a) r1.5; (b) r�1; (c) r0.5;
(d) r�0.5 67. (a) 7.5 km/s; (b) 97 min; (c) 4.1 � 102 km; (d) 7.7 km/s;
(e) 93 min; (f) 3.2 � 10�3 N; (g) no; (h) yes 69. 1.1 s
71. (a) GMmx(x2 � R2)�3/2; (b) [2GM(R�1 � (R2 � x2)�1/2)]1/2

73. (a) 1.0 � 103 kg; (b) 1.5 km/s 75. 3.2 � 10�7 N 77. 037 mN
79. 2pr1.5G�0.5(M � m/4)�0.5 81. (a) 2.2 � 10�7 rad/s; (b) 89 km/s
83. (a) 2.15 � 104 s; (b) 12.3 km/s; (c) 12.0 km/s; (d) 2.17 � 1011 J;
(e) �4.53 � 1011 J; (f) �2.35 � 1011 J; (g) 4.04 � 107 m; (h) 1.22 �
103 s; (i) elliptical 85. 2.5 � 104 km 87. (a) 1.4 � 106 m/s; (b) 3 �
106 m/s2 89. (a) 0; (b) 1.8 � 1032 J; (c) 1.8 � 1032 J; (d) 0.99 km/s
91. (a) Gm2/Ri; (b) Gm2/2Ri; (c) (Gm/Ri)0.5; (d) 2(Gm/Ri)0.5;
(e) Gm2/Ri; (f) (2Gm/Ri)0.5; (g) The center-of-mass frame is an in-
ertial frame, and in it the principle of conservation of energy may
be written as in Chapter 8; the reference frame attached to body A
is noninertial, and the principle cannot be written as in Chapter 8.
Answer (d) is correct. 93. 2.4 � 104 m/s 95. �0.044 mN
97. GMEm/12RE 99. 1.51 � 10�12 N 101. 3.4 � 105 km

Chapter 14
CP 1. all tie 2. (a) all tie (the gravitational force on the penguin
is the same); (b) 0.95r0, r0, 1.1r0 3. 13 cm3/s, outward
4. (a) all tie; (b) 1, then 2 and 3 tie, 4 (wider means slower);
(c) 4, 3, 2, 1 (wider and lower mean more pressure)
Q 1. (a) moves downward; (b) moves downward 3. (a) down-
ward; (b) downward; (c) same 5. b, then a and d tie (zero), then c
7. (a) 1 and 4; (b) 2; (c) 3 9. B, C,A
P 1. 0.074 3. 1.1 � 105 Pa 5. 2.9 � 104 N 7. (b) 26 kN
9. (a) 1.0 � 103 torr; (b) 1.7 � 103 torr 11. (a) 94 torr; (b) 4.1 � 102

torr; (c) 3.1 � 102 torr 13. 1.08 � 103 atm 15. �2.6 � 104 Pa
17. 7.2 � 105 N 19. 4.69 � 105 N 21. 0.635 J 23. 44 km
25. 739.26 torr 27. (a) 7.9 km; (b) 16 km 29. 8.50 kg 31. (a)
6.7 � 102 kg/m3; (b) 7.4 � 102 kg/m3 33. (a) 2.04 � 10�2 m3;
(b) 1.57 kN 35. five 37. 57.3 cm 39. (a) 1.2 kg; (b) 1.3 � 103

kg/m3 41. (a) 0.10; (b) 0.083 43. (a) 637.8 cm3; (b) 5.102 m3;
(c) 5.102 � 103 kg 45. 0.126 m3 47. (a) 1.80 m3; (b) 4.75 m3

49. (a) 3.0 m/s; (b) 2.8 m/s 51. 8.1 m/s 53. 66 W 55. 1.4 � 105 J
57. (a) 1.6 � 10�3 m3/s; (b) 0.90 m 59. (a) 2.5 m/s; (b) 2.6 � 105 Pa
61. (a) 3.9 m/s; (b) 88 kPa 63. 1.1 � 102 m/s 65. (b) 2.0 � 10�2

m3/s 67. (a) 74 N; (b) 1.5 � 102 m3 69. (a) 0.0776 m3/s; (b) 69.8
kg/s 71. (a) 35 cm; (b) 30 cm; (c) 20 cm 73. 1.5 g/cm3 75. 5.11 �
10�7 kg 77. 44.2 g 79. 6.0 � 102 kg/m3 81. 45.3 cm3

83. (a) 3.2 m/s; (b) 9.2 � 104 Pa; (c) 10.3 m 85. 1.07 � 103 g
87. 26.3 m2 89. (a) 5.66 � 109 N; (b) 25.4 atm

Chapter 15
CP 1. (sketch x versus t) (a) �xm; (b) �xm; (c) 0 2. c (a must have
the form of Eq. 15-8) 3. a (F must have the form of Eq. 15-10)
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(b) 3.1 m�1; (c) 3.1 � 102 s�1; (d) minus 53. (a) 0.25 cm; (b) 1.2 � 102

cm/s; (c) 3.0 cm; (d) 0 55. 0.25 m 57. (a) 2.00 Hz; (b) 2.00 m; (c) 4.00
m/s; (d) 50.0 cm; (e) 150 cm; (f) 250 cm; (g) 0; (h) 100 cm; (i) 200 cm
59. (a) 324 Hz; (b) eight 61. 36 N 63. (a) 75 Hz; (b) 13 ms
65. (a) 2.0 mm; (b) 95 Hz; (c) �30 m/s; (d) 31 cm; (e) 1.2 m/s
67. (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 69. (a) 0.83y1; (b) 37°
71. (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) 	0.50 cm
73. 1.2 rad 75. (a) 300 m/s; (b) no 77. (a) [k 
/(/ � 
/)/m]0.5

79. (a) 144 m/s; (b) 3.00 m; (c) 1.50 m; (d) 48.0 Hz; (e) 96.0 Hz
81. (a) 1.00 cm; (b) 3.46 � 103 s�1; (c) 10.5 m�1; (d) plus 83. (a)
2pym/l; (b) no 85. (a) 240 cm; (b) 120 cm; (c) 80 cm 87. (a) 1.33
m/s; (b) 1.88 m/s; (c) 16.7 m/s2; (d) 23.7 m/s2 89. (a) 0.52 m; (b) 40
m/s; (c) 0.40 m 91. (a) 0.16 m; (b) 2.4 � 102 N; (c) y(x, t) �
(0.16 m) sin[(1.57 m�1)x] sin[(31.4 s�1)t] 93. (c) 2.0 m/s; (d) �x
95. (a) ; (b) 1.0; (c) 4.0%

Chapter 17
CP 1. beginning to decrease (example: mentally move the curves
of Fig. 17-6 rightward past the point at x � 42 cm) 2. (a) 1 and 2
tie, then 3 (see Eq. 17-28); (b) 3, then 1 and 2 tie (see Eq. 17-26)
3. second (see Eqs.17-39 and 17-41) 4. a, greater; b, less; c, can’t
tell; d, can’t tell; e, greater; f, less
Q 1. (a) 0, 0.2 wavelength, 0.5 wavelength (zero); (b) 4Pavg,1

3. C, then A and B tie 5. E, A, D, C, B 7. 1, 4, 3, 2 9. 150 Hz 
and 450 Hz 11. 505, 507, 508 Hz or 501, 503, 508 Hz 
P 1. (a) 79 m; (b) 41 m; (c) 89 m 3. (a) 2.6 km; (b) 2.0 � 102

5. 1.9 � 103 km 7. 40.7 m 9. 0.23 ms 11. (a) 76.2 mm;(b) 0.333 mm
13. 960 Hz 15. (a) 2.3 � 102 Hz; (b) higher 17. (a) 143 Hz; (b) 3;
(c) 5; (d) 286 Hz; (e) 2; (f) 3 19. (a) 14; (b) 14 21. (a) 343 Hz;
(b) 3; (c) 5; (d) 686 Hz; (e) 2; (f) 3 23. (a) 0; (b) fully constructive;
(c) increase; (d) 128 m; (e) 63.0 m; (f) 41.2 m 25. 36.8 nm
27. (a) 1.0 � 103; (b) 32 29. 15.0 mW 31. 2 mW 33. 0.76 mm
35. (a) 5.97 � 10�5 W/m2; (b) 4.48 nW 37. (a) 0.34 nW; (b) 0.68 nW;
(c) 1.4 nW; (d) 0.88 nW; (e) 0 39. (a) 405 m/s; (b) 596 N; (c) 44.0
cm; (d) 37.3 cm 41. (a) 833 Hz; (b) 0.418 m 43. (a) 3; (b) 1129 Hz;
(c) 1506 Hz 45. (a) 2; (b) 1 47. 12.4 m 49. 45.3 N 51. 2.25 ms
53. 0.020 55. (a) 526 Hz; (b) 555 Hz 57. 0 59. (a) 1.022 kHz;
(b) 1.045 kHz 61. 41 kHz 63. 155 Hz 65. (a) 2.0 kHz; (b) 2.0
kHz 67. (a) 485.8 Hz; (b) 500.0 Hz; (c) 486.2 Hz; (d) 500.0 Hz
69. (a) 42º; (b) 11 s 71. 1 cm 73. 2.1 m 75. (a) 39.7 mW/m2;
(b) 171 nm; (c) 0.893 Pa 77. 0.25 79. (a) 2.10 m; (b) 1.47 m
81. (a) 59.7; (b) 2.81 � 10�4 83. (a) rightward; (b) 0.90 m/s; (c) less
85. (a) 11 ms; (b) 3.8 m 87. (a) 9.7 � 102 Hz; (b) 1.0 kHz; (c) 60 Hz,
no 89. (a) 21 nm; (b) 35 cm; (c) 24 nm; (d) 35 cm 91. (a) 7.70 Hz;
(b) 7.70 Hz 93. (a) 5.2 kHz; (b) 2 95. (a) 10 W; (b) 0.032 W/m2;
(c) 99 dB 97. (a) 0; (b) 0.572 m; (c) 1.14 m 99. 171 m 101. (a)
3.6 � 102 m/s; (b) 150 Hz 103. 400 Hz 105. (a) 14; (b) 12
107. 821 m/s 109. (a) 39.3 Hz; (b) 118 Hz 111. 4.8 � 102 Hz

Chapter 18
CP 1. (a) all tie; (b) 50°X, 50°Y, 50°W 2. (a) 2 and 3 tie, then 1,
then 4; (b) 3, 2, then 1 and 4 tie (from Eqs. 18-9 and 18-10, assume
that change in area is proportional to initial area) 3. A (see
Eq. 18-14) 4. c and e (maximize area enclosed by a clockwise
cycle) 5. (a) all tie (
Eint depends on i and f, not on path); (b) 4, 3,
2, 1 (compare areas under curves); (c) 4, 3, 2, 1 (see Eq. 18-26)
6. (a) zero (closed cycle); (b) negative (Wnet is negative; see 
Eq. 18-26) 7. b and d tie, then a, c (Pcond identical; see Eq. 18-32)
Q 1. c, then the rest tie 3. B, then A and C tie 5. (a) f, because
ice temperature will not rise to freezing point and then drop; (b) b
and c at freezing point, d above, e below; (c) in b liquid partly
freezes and no ice melts; in c no liquid freezes and no ice melts; in d




AN-6 ANSWERS

no liquid freezes and ice fully melts; in e liquid fully freezes and no
ice melts 7. (a) both clockwise; (b) both clockwise 9. (a) greater;
(b) 1, 2, 3; (c) 1, 3, 2; (d) 1, 2, 3; (e) 2, 3, 1 11. c, b, a
P 1. 1.366 3. 348 K 5. (a) 320°F; (b) �12.3°F 7. �92.1°X
9. 2.731 cm 11. 49.87 cm3 13. 29 cm3 15. 360°C 17. 0.26 cm3

19. 0.13 mm 21. 7.5 cm 23. 160 s 25. 94.6 L 27. 42.7 kJ
29. 33 m2 31. 33 g 33. 3.0 min 35. 13.5 C° 37. (a) 5.3°C; (b) 0;
(c) 0°C; (d) 60 g 39. 742 kJ 41. (a) 0°C; (b) 2.5°C 43. (a) 1.2 �
102 J; (b) 75 J; (c) 30 J 45. �30 J 47. (a) 6.0 cal; (b) �43 cal;
(c) 40 cal; (d) 18 cal; (e) 18 cal 49. 60 J 51. (a) 1.23 kW; (b) 
2.28 kW; (c) 1.05 kW 53. 1.66 kJ/s 55. (a) 16 J/s; (b) 0.048 g/s
57. (a) 1.7 � 104 W/m2; (b) 18 W/m2 59. 0.50 min 61. 0.40 cm/h
63. �4.2°C 65. 1.1 m 67. 10% 69. (a) 80 J; (b) 80 J 71. 4.5 �
102 J/kg�K 73. 0.432 cm3 75. 3.1 � 102 J 77. 79.5ºC 79. 23 J
81. (a) 11p1V1; (b) 6p1V1 83. 4.83 � 10�2 cm3 85. 10.5ºC
87. (a) 90 W; (b) 2.3 � 102 W; (c) 3.3 � 102 W 89. (a) 1.87 � 104;
(b) 10.4 h 91. 333 J 93. 8.6 J 95. (a) �45 J; (b) �45 J 97. 4.0 �
103 min 99. �6.1 nW 101. 1.17 C# 103. 8.0 � 10�3 m2

105. (a) too fast; (b) 0.79 s/h 107. 1.9

Chapter 19
CP 1. all but c 2. (a) all tie; (b) 3, 2, 1 3. gas A 4. 5 (greatest
change in T), then tie of 1, 2, 3, and 4 5. 1, 2, 3 (Q3 � 0, Q2 goes
into work W2, but Q1 goes into greater work W1 and increases 
gas temperature)
Q 1. d, then a and b tie, then c 3. 20 J 5. (a) 3; (b) 1; (c) 4; (d) 2;
(e) yes 7. (a) 1, 2, 3, 4; (b) 1, 2, 3 9. constant-volume process
P 1. 0.933 kg 3. (a) 0.0388 mol; (b) 220°C 5. 25 molecules/cm3

7. (a) 3.14 � 103 J; (b) from 9. 186 kPa 11. 5.60 kJ
13. (a) 1.5 mol; (b) 1.8 � 103 K; (c) 6.0 � 102 K; (d) 5.0 kJ
15. 360 K 17. 2.0 � 105 Pa 19. (a) 511 m/s; (b) �200°C; (c) 899°C
21. 1.8 � 102 m/s 23. 1.9 kPa 25. (a) 5.65 � 10�21 J; (b) 7.72 �
10�21 J; (c) 3.40 kJ; (d) 4.65 kJ 27. (a) 6.76 � 10�20 J; (b) 10.7
29. (a) 6 � 109 km 31. (a) 3.27 � 1010 molecules/cm3; (b) 172 m
33. (a) 6.5 km/s; (b) 7.1 km/s 35. (a) 420 m/s; (b) 458 m/s; (c) yes
37. (a) 0.67; (b) 1.2; (c) 1.3; (d) 0.33 39. (a) 1.0 � 104 K; (b) 1.6 �
105 K; (c) 4.4 � 102 K; (d) 7.0 � 103 K; (e) no; (f) yes 41. (a) 7.0
km/s; (b) 2.0 � 10�8 cm; (c) 3.5 � 1010 collisions/s 43. (a) 3.49 kJ;
(b) 2.49 kJ; (c) 997 J; (d) 1.00 kJ 45. (a) 6.6 � 10�26 kg; (b) 40
g/mol 47. (a) 0; (b) �374 J; (c) �374 J; (d) �3.11 � 10�22 J
49. 15.8 J/mol�K 51. 8.0 kJ 53. (a) 6.98 kJ; (b) 4.99 kJ; (c) 1.99 kJ;
(d) 2.99 kJ 55. (a) 14 atm; (b) 6.2 � 102 K 57. (a) diatomic;
(b) 446 K; (c) 8.10 mol 59. �15 J 61. �20 J 63. (a) 3.74 kJ;
(b) 3.74 kJ; (c) 0; (d) 0; (e) �1.81 kJ; (f) 1.81 kJ; (g) �3.22 kJ;
(h) �1.93 kJ; (i) �1.29 kJ; (j) 520 J; (k) 0; (l) 520 J; (m) 0.0246 m3;
(n) 2.00 atm; (o) 0.0373 m3; (p) 1.00 atm 65. (a) monatomic;
(b) 2.7 � 104 K; (c) 4.5 � 104 mol; (d) 3.4 kJ; (e) 3.4 � 102 kJ;
(f) 0.010 67. (a) 2.00 atm; (b) 333 J; (c) 0.961 atm; (d) 236 J
69. 349 K 71. (a) �374 J; (b) 0; (c) �374 J; (d) �3.11 � 10�22 J
73. 7.03 � 109 s�1 75. (a) 900 cal; (b) 0; (c) 900 cal; (d) 450 cal;
(e) 1200 cal; (f) 300 cal; (g) 900 cal; (h) 450 cal; (i) 0; (j) �900 cal;
(k) 900 cal; (l) 450 cal 77. (a) 3/ ; (b) 0.750v0; (c) 0.775v0

79. (a) �2.37 kJ; (b) 2.37 kJ 81. (b) 125 J; (c) to 83. (a) 8.0 atm;
(b) 300 K; (c) 4.4 kJ; (d) 3.2 atm; (e) 120 K; (f) 2.9 kJ; (g) 4.6 atm;
(h) 170 K; (i) 3.4 kJ 85. (a) 38 L; (b) 71 g 87. �3.0 J 89. 22.8 m
95. 1.40 97. 4.71

Chapter 20
CP 1. a, b, c 2. smaller (Q is smaller) 3. c, b, a 4. a, d, c, b 5. b
Q 1. b, a, c, d 3. unchanged 5. a and c tie, then b and d tie
7. (a) same; (b) increase; (c) decrease 9. A, first; B, first and
second; C, second; D, neither
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P 1. (a) 9.22 kJ; (b) 23.1 J/K; (c) 0 3. 14.4 J/K 5. (a) 5.79 �
104 J; (b) 173 J/K 7. (a) 320 K; (b) 0; (c) �1.72 J/K 9. �0.76 J/K
11. (a) 57.0°C; (b) �22.1 J/K; (c) �24.9 J/K; (d) �2.8 J/K
13. (a) �710 mJ/K; (b) �710 mJ/K; (c) �723 mJ/K; (d) �723 mJ/K;
(e) �13 mJ/K; (f) 0 15. (a) �943 J/K; (b) �943 J/K; (c) yes
17. (a) 0.333; (b) 0.215; (c) 0.644; (d) 1.10; (e) 1.10; (f) 0; (g) 1.10;
(h) 0; (i) �0.889; (j) �0.889; (k) �1.10; (l) �0.889; (m) 0; (n) 0.889;
(o) 0 19. (a) 0.693; (b) 4.50; (c) 0.693; (d) 0; (e) 4.50; (f) 23.0 J/K;
(g) �0.693; (h) 7.50; (i) �0.693; (j) 3.00; (k) 4.50; (l) 23.0 J/K
21. �1.18 J/K 23. 97 K 25. (a) 266 K; (b) 341 K 27. (a) 23.6%;
(b) 1.49 � 104 J 29. (a) 2.27 kJ; (b) 14.8 kJ; (c) 15.4%; (d) 75.0%;
(e) greater 31. (a) 33 kJ; (b) 25 kJ; (c) 26 kJ; (d) 18 kJ
33. (a) 1.47 kJ; (b) 554 J; (c) 918 J; (d) 62.4% 35. (a) 3.00; (b) 1.98;
(c) 0.660; (d) 0.495; (e) 0.165; (f) 34.0% 37. 440 W 39. 20 J
41. 0.25 hp 43. 2.03 47. (a) W � N!/(n1! n2! n3!); (b)
[(N/2)! (N/2)!]/[(N/3)! (N/3)! (N/3)!]; (c) 4.2 � 1016 49. 0.141 J/K�s
51. (a) 87 m/s; (b) 1.2 � 102 m/s; (c) 22 J/K 53. (a) 78%; (b) 82 kg/s
55. (a) 40.9°C; (b) �27.1 J/K; (c) 30.3 J/K; (d) 3.18 J/K 57. �3.59
J/K 59. 1.18 � 103 J/K 63. (a) 0; (b) 0; (c) �23.0 J/K; (d) 23.0 J/K
65. (a) 25.5 kJ; (b) 4.73 kJ; (c) 18.5% 67. (a) 1.95 J/K; (b) 0.650 J/K;
(c) 0.217 J/K; (d) 0.072 J/K; (e) decrease 69. (a) 4.45 J/K; (b) no
71. (a) 1.26 � 1014; (b) 4.71 � 1013; (c) 0.37; (d) 1.01 � 1029;
(e) 1.37 � 1028; (f) 0.14; (g) 9.05 � 1058; (h) 1.64 � 1057; (i) 0.018;
(j) decrease 73. (a) 42.6 kJ; (b) 7.61 kJ 75. (a) 1; (b) 1; (c) 3;
(d) 10; (e) 1.5 � 10�23 J/K; (f) 3.2 � 10�23 J/K 77. e � (1 � K)�1

79. 6.7

Chapter 21
CP 1. C and D attract; B and D attract 2. (a) leftward;
(b) leftward; (c) leftward 3. (a) a, c, b; (b) less than 4. �15e
(net charge of �30e is equally shared) 
Q 1. 3, 1, 2, 4 (zero) 3. a and b 5. 2kq2/r2, up the page
7. b and c tie, then a (zero) 9. (a) same; (b) less than; (c) cancel;
(d) add; (e) adding components; (f) positive direction of y;
(g) negative direction of y; (h) positive direction of x; (i) negative
direction of x 11. (a) �4e; (b) �2e upward; (c) �3e upward;
(d) �12e upward
P 1. 0.500 3. 1.39 m 5. 2.81 N 7. �4.00 9. (a) �1.00 mC;
(b) 3.00 mC 11. (a) 0.17 N; (b) �0.046 N 13. (a) �14 cm; (b) 0
15. (a) 35 N; (b) �10º; (c) �8.4 cm; (d) �2.7 cm 17. (a) 1.60 N;
(b) 2.77 N 19. (a) 3.00 cm; (b) 0; (c) �0.444 21. 3.8 � 10�8 C
23. (a) 0; (b) 12 cm; (c) 0; (d) 4.9 � 10�26 N 25. 6.3 � 1011

27. (a) 3.2 � 10�19 C; (b) 2 29. (a) �6.05 cm; (b) 6.05 cm
31. 122 mA 33. 1.3 � 107 C 35. (a) 0; (b) 1.9 � 10�9 N
37. (a) 9B; (b) 13N; (c) 12C 39. 1.31 � 10�22 N 41. (a) 5.7 � 1013 C;
(b) cancels out; (c) 6.0 � 105 kg 43. (b) 3.1 cm 45. 0.19 MC
47. �45 mC 49. 3.8 N 51. (a) 2.00 � 1010 electrons; (b) 1.33 � 1010

electrons 53. (a) 8.99 � 109 N; (b) 8.99 kN 55. (a) 0.5; (b) 0.15;
(c) 0.85 57. 1.7 � 108 N 59. �1.32 � 1013 C 61. (a) (0.829 N) ;
(b) (�0.621 N) 63. 2.2 � 10�6 kg 65. 4.68 � 10�19 N
67. (a) 2.72L; (b) 0 69. (a) 5.1 � 102 N; (b) 7.7 � 1028 m/s2

71. (a) 0; (b) 3.43 � 109 m/s2 73. (a) 2.19 � 106 m/s;
(b) 1.09 � 106 m/s; (c) decrease 75. 4.16 � 1042

Chapter 22
CP 1. (a) rightward; (b) leftward; (c) leftward; (d) rightward 
(p and e have same charge magnitude, and p is farther)
2. (a) toward positive y; (b) toward positive x; (c) toward negative y
3. (a) leftward; (b) leftward; (c) decrease 4. (a) all tie; (b) 1 and 3
tie, then 2 and 4 tie
Q 1. a, b, c 3. (a) yes; (b) toward; (c) no (the field vectors are not
along the same line); (d) cancel; (e) add; (f) adding components;
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(g) toward negative y 5. (a) to their left; (b) no 7. (a) 4, 3, 1, 2;
(b) 3, then 1 and 4 tie, then 2 9. a, b, c 11. e, b, then a and c tie,
then d (zero) 13. a, b, c
P 3. (a) 3.07 � 1021 N/C; (b) outward 5. 56 pC 7. (1.02 �
105 N/C) 9. (a) 1.38 � 10�10 N/C; (b) 180º 11. �30 cm
13. (a) 3.60 � 10�6 N/C; (b) 2.55 � 10�6 N/C; (c) 3.60 � 10�4 N/C;
(d) 7.09 � 10�7 N/C; (e) As the proton nears the disk, the forces on
it from electrons es more nearly cancel. 15. (a) 160 N/C; (b) 45º
17. (a) �90º; (b) �2.0 mC; (c) �1.6 mC 19. (a) qd/4p�0r3; (b) �90º
23. 0.506 25. (a) 1.62 �106 N/C; (b) �45º 27. (a) 23.8 N/C;
(b) �90º 29. 1.57 31. (a) �5.19 � 10�14 C/m; (b) 1.57 � 10�3 N/C;
(c) �180º; (d) 1.52 � 10�8 N/C; (e) 1.52 � 10�8 N/C 35. 0.346 m
37. 28% 39. �5e 41. (a) 1.5 � 103 N/C; (b) 2.4 � 10�16 N; (c) up;
(d) 1.6 � 10�26 N; (e) 1.5 � 1010 43. 3.51 � 1015 m/s2

45. 6.6 � 10�15 N 47. (a) 1.92 � 1012 m/s2; (b) 1.96 � 105 m/s
49. (a) 0.245 N; (b) �11.3º; (c) 108 m; (d) �21.6 m 51. 2.6 �10�10 N;
(b) 3.1 � 10�8 N; (c) moves to stigma 53. 27 mm 55. (a) 2.7 � 106

m/s; (b) 1.0 kN/C 57. (a) 9.30 � 10�15 C�m; (b) 2.05 � 10�11 J
59. 1.22 � 10�23 J 61. (1/2p)(pE/I)0.5 63. (a) 8.87 � 10�15 N;
(b) 120 65. 217º 67. 61 N/C 69. (a) 47 N/C; (b) 27 N/C
71. 38 N/C 73. (a) �1.0 cm; (b) 0; (c) 10 pC 75. �1.00 mC
77. (a) 6.0 mm; (b) 180º 79. 9:30 81. (a) �0.029 C; (b) repulsive
forces would explode the sphere 83. (a) �1.49 � 10�26 J;
(b) (�1.98 � 10�26 N�m) ; (c) 3.47 � 10�26 J 85. (a) top row: 4, 8,
12; middle row: 5, 10, 14; bottom row: 7, 11, 16; (b) 1.63 � 10�19 C
87. (a) (�1.80 N/C) ; (b) (43.2 N/C) ; (c) (�6.29 N/C)

Chapter 23
CP 1. (a) �EA; (b) �EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1
3. (a) equal; (b) equal; (c) equal 4. 3 and 4 tie, then 2, 1
Q 1. (a) 8 N�m2/C; (b) 0 3. all tie 5. all tie 7. a, c, then b and d
tie (zero) 9. (a) 2, 1, 3; (b) all tie (�4q) 11. (a) impossible;
(b) �3q0; (c) impossible 
P 1. �0.015 N�m2/C 3. (a) 0; (b) �3.92 N�m2/C; (c) 0; (d) 0
5. 3.01 nN�m2/C 7. 2.0 � 105 N�m2/C 9. (a) 8.23 N�m2/C;
(b) 72.9 pC; (c) 8.23 N�m2/C; (d) 72.9 pC 11. �1.70 nC
13. 3.54 mC 15. (a) 0; (b) 0.0417 17. (a) 37 mC;(b) 4.1 � 106 N�m2/C
19. (a) 4.5 � 10�7 C/m2; (b) 5.1 � 104 N/C 21. (a) �3.0 � 10�6 C;
(b) �1.3 � 10�5 C 23. (a) 0.32 mC; (b) 0.14 mC 25. 5.0 mC/m
27. 3.8 � 10�8 C/m2 29. (a) 0.214 N/C; (b) inward; (c) 0.855 N/C;
(d) outward; (e) �3.40 � 10�12 C; (f) �3.40 � 10�12 C 31. (a) 2.3 �
106 N/C; (b) outward; (c) 4.5 � 105 N/C; (d) inward 33. (a) 0;
(b) 0; (c) (�7.91 � 10�11 N/C) 35. �1.5 37. (a) 5.3 � 107 N/C;
(b) 60 N/C 39. 5.0 nC/m2 41. 0.44 mm 43. (a) 0; (b) 1.31 mN/C;
(c) 3.08 mN/C; (d) 3.08 mN/C 45. (a) 2.50 � 104 N/C; (b) 1.35 �
104 N/C 47. �7.5 nC 49. (a) 0; (b) 56.2 mN/C; (c) 112 mN/C;
(d) 49.9 mN/C; (e) 0; (f) 0; (g) �5.00 fC; (h) 0 51. 1.79 � 10�11 C/m2

53. (a) 7.78 fC; (b) 0; (c) 5.58 mN/C; (d) 22.3 mN/C 55. 6K�0r3

57. (a) 0; (b) 2.88 � 104 N/C; (c) 200 N/C 59. (a) 5.4 N/C;
(b) 6.8 N/C 61. (a) 0; (b) qa/4p�0r2; (c) (qa � qb)/4p�0r2

63. �1.04 nC 65. (a) 0.125; (b) 0.500 67. (a) �2.0 nC;
(b) �1.2 nC; (c) �1.2 nC; (d) �0.80 nC 69. (5.65 � 104 N/C)
71. (a) �2.53 � 10�2 N�m2/C; (b) �2.53 � 10�2 N�m2/C
75. 3.6 nC 77. (a) �4.0 mC; (b) �4.0 mC 79. (a) 693 kg/s;
(b) 693 kg/s; (c) 347 kg/s; (d) 347 kg/s; (e) 575 kg/s 81. (a) 0.25R;
(b) 2.0R

Chapter 24
CP 1. (a) negative; (b) increase; (c) positive; (d) higher
2. (a) rightward; (b) 1, 2, 3, 5: positive; 4, negative; (c) 3, then 1, 2,
and 5 tie, then 4 3. all tie 4. a, c (zero), b 5. (a) 2, then 1 and 3
tie; (b) 3; (c) accelerate leftward
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Q 1. �4q/4p�0d 3. (a) 1 and 2; (b) none; (c) no; (d) 1 and 2, yes;
3 and 4, no 5. (a) higher; (b) positive; (c) negative; (d) all tie
7. (a) 0; (b) 0; (c) 0; (d) all three quantities still 0 9. (a) 3 and 4 tie,
then 1 and 2 tie; (b) 1 and 2, increase; 3 and 4, decrease 11. a, b, c
P 1. (a) 3.0 � 105 C; (b) 3.6 � 106 J 3. 2.8 � 105 5. 8.8 mm
7. �32.0 V 9. (a) 1.87 � 10�21 J; (b) �11.7 mV 11. (a) �0.268 mV;
(b) �0.681 mV 13. (a) 3.3 nC; (b) 12 nC/m2 15. (a) 0.54 mm;
(b) 790 V 17. 0.562 mV 19. (a) 6.0 cm; (b) �12.0 cm 21. 16.3 mV
23. (a) 24.3 mV; (b) 0 25. (a) �2.30 V; (b) �1.78 V 27. 13 kV
29. 32.4 mV 31. 47.1 mV 33. 18.6 mV 35. (�12 V/m) �(12 V/m)
37. 150 N/C 39. (�4.0 � 10�16 N) �(1.6 � 10�16 N)
41. (a) 0.90 J; (b) 4.5 J 43. �0.192 pJ 45. 2.5 km/s 47. 22 km/s
49. 0.32 km/s 51. (a) �6.0 � 104 V; (b) �7.8 � 105 V; (c) 2.5 J;
(d) increase; (e) same; (f) same 53. (a) 0.225 J; (b) A 45.0 m/s2,
B 22.5 m/s2; (c) A 7.75 m/s, B 3.87 m/s 55. 1.6 � 10�9 m
57. (a) 3.0 J; (b) �8.5 m 59. (a) proton; (b) 65.3 km/s 61. (a) 12;
(b) 2 63. (a) �1.8 � 102 V; (b) 2.9 kV; (c) �8.9 kV
65. 2.5 � 10�8 C 67. (a) 12 kN/C; (b) 1.8 kV; (c) 5.8 cm
69. (a) 64 N/C; (b) 2.9 V; (c) 0 71. p/2p�0r3 73. (a) 3.6 � 105 V;
(b) no 75. 6.4 � 108 V 77. 2.90 kV 79. 7.0 � 105 m/s
81. (a) 1.8 cm; (b) 8.4 � 105 m/s; (c) 2.1 � 10�17 N; (d) positive;
(e) 1.6 � 10�17 N; (f) negative 83. (a) �7.19 � 10�10 V;
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ĵî

AN-8 ANSWERS

Chapter 26
CP 1. 8 A, rightward 2. (a)�(c) rightward 3. a and c tie, then b
4. device 2 5. (a) and (b) tie, then (d), then (c)
Q 1. tie of A, B, and C, then tie of A � B and B � C, then 
A � B � C 3. (a) top-bottom, front-back, left-right; (b) top-
bottom, front-back, left-right; (c) top-bottom, front-back, left-right;
(d) top-bottom, front-back, left-right 5. a, b, and c all tie, then d
7. (a) B, A, C; (b) B, A, C 9. (a) C, B, A; (b) all tie; (c) A, B, C;
(d) all tie 11. (a) a and c tie, then b (zero); (b) a, b, c; (c) a and b
tie, then c
P 1. (a) 1.2 kC; (b) 7.5 � 1021 3. 6.7 mC/m2 5. (a) 6.4 A/m2;
(b) north; (c) cross-sectional area 7. 0.38 mm 9. 18.1 mA
11. (a) 1.33 A; (b) 0.666 A; (c) Ja 13. 13 min 15. 2.4 �
17. 2.0 � 106 (��m)�1 19. 2.0 � 10�8 ��m 21. (1.8 � 103)ºC
23. 8.2 � 10�8 ��m 25. 54 � 27. 3.0 29. 3.35 � 10�7 C
31. (a) 6.00 mA; (b) 1.59 � 10�8 V; (c) 21.2 n� 33. (a) 38.3 mA;
(b) 109 A/m2; (c) 1.28 cm/s; (d) 227 V/m 35. 981 k� 39. 150 s
41. (a) 1.0 kW; (b) US$0.25 43. 0.135 W 45. (a) 10.9 A;
(b) 10.6 �; (c) 4.50 MJ 47. (a) 5.85 m; (b) 10.4 m 49. (a) US$4.46;
(b) 144 �; (c) 0.833 A 51. (a) 5.1 V; (b) 10 V; (c) 10 W; (d) 20 W
53. (a) 28.8 �; (b) 2.60 � 1019 s�1 55. 660 W 57. 28.8 kC
59. (a) silver; (b) 51.6 n� 61. (a) 2.3 � 1012; (b) 5.0 � 103; (c) 10 MV
63. 2.4 kW 65. (a) 1.37; (b) 0.730 67. (a) �8.6%; (b) smaller
69. 146 kJ 71. (a) 250ºC; (b) yes 73. 3.0 � 106 J/kg 75. 560 W
77. 0.27 m/s 79. (a) 10 A/cm2; (b) eastward 81. (a) 9.4 � 1013 s�1;
(b) 2.40 � 102 W 83. 113 min 85. (a) 225 mC; (b) 60.0 mA;
(c) 0.450 mW 

Chapter 27
CP 1. (a) rightward; (b) all tie; (c) b, then a and c tie;
(d) b, then a and c tie 2. (a) all tie; (b) R1, R2, R3 3. (a) less;
(b) greater; (c) equal 4. (a) V/2, i; (b) V, i/2 5. (a) 1, 2, 4, 3;
(b) 4, tie of 1 and 2, then 3
Q 1. (a) equal; (b) more 3. parallel, R2, R1, series 5. (a) series;
(b) parallel; (c) parallel 7. (a) less; (b) less; (c) more
9. (a) parallel; (b) series 11. (a) same; (b) same; (c) less; (d) more
13. (a) all tie; (b) 1, 3, 2
P 1. (a) 0.50 A; (b) 1.0 W; (c) 2.0 W; (d) 6.0 W; (e) 3.0 W; (f) sup-
plied; (g) absorbed 3. (a) 14 V; (b) 1.0 � 102 W; (c) 6.0 � 102 W;
(d) 10 V; (e) 1.0 � 102 W 5. 11 kJ 7. (a) 80 J; (b) 67 J; (c) 13 J
9. (a) 12.0 eV; (b) 6.53 W 11. (a) 50 V; (b) 48 V; (c) negative
13. (a) 6.9 km; (b) 20 � 15. 8.0 � 17. (a) 0.004 �; (b) 1
19. (a) 4.00 �; (b) parallel 21. 5.56 A 23. (a) 50 mA; (b) 60 mA;
(c) 9.0 V 25. 3d 27. 3.6 � 103 A 29. (a) 0.333 A; (b) right;
(c) 720 J 31. (a) �11 V; (b) �9.0 V 33. 48.3 V 35. (a) 5.25 V;
(b) 1.50 V; (c) 5.25 V; (d) 6.75 V 37. 1.43 � 39. (a) 0.150 �;
(b) 240 W 41. (a) 0.709 W; (b) 0.050 W; (c) 0.346 W; (d) 1.26 W;
(e) �0.158 W 43. 9 45. (a) 0.67 A; (b) down; (c) 0.33 A; (d) up;
(e) 0.33 A; (f) up; (g) 3.3 V 47. (a) 1.11 A; (b) 0.893 A; (c) 126 m
49. (a) 0.45 A 51. (a) 55.2 mA; (b) 4.86 V; (c) 88.0 �; (d) decrease
53. �3.0% 57. 0.208 ms 59. 4.61 61. (a) 2.41 ms; (b) 161 pF
63. (a) 1.1 mA; (b) 0.55 mA; (c) 0.55 mA; (d) 0.82 mA; (e) 0.82 mA;
(f) 0; (g) 4.0 � 102 V; (h) 6.0 � 102 V 65. 411 mA 67. 0.72 M�
69. (a) 0.955 mC/s; (b) 1.08 mW; (c) 2.74 mW; (d) 3.82 mW
71. (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 73. (a) 1.32 � 107 A/m2;
(b) 8.90 V; (c) copper; (d) 1.32 � 107 A/m2; (e) 51.1 V; (f) iron
75. (a) 3.0 kV; (b) 10 s; (c) 11 G� 77. (a) 85.0 �; (b) 915 �
81. 4.0 V 83. (a) 24.8 �; (b) 14.9 k� 85. the cable 87. �13 mC
89. 20 � 91. (a) 3.00 A; (b) down; (c) 1.60 A; (d) down; (e) supply;
(f) 55.2 W; (g) supply; (h) 6.40 W 93. (a) 1.0 V; (b) 50 m�
95. 3 99. (a) 1.5 mA; (b) 0; (c) 1.0 mA 101. 7.50 V

(b) �2.30 � 10�28 J; (c) �2.43 � 10�29 J 85. 2.30 � 10�28 J
87. 2.1 days 89. 2.30 10�22 J 91. 1.48 107 m/s 93. �1.92 MV
95. (a) Q/4p�0r; (b) (r/3�0) (1.5r � 0.50r2 � r r�1),3
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r Q/[(4p/3)(r � r )]; (c) (r/2�0)(r � r ), with r as in (b);
(d) yes 97. (a) 38 s; (b) 2.7 102 days 101. (a) 0.484 MeV;
(b) 0 103. �1.7

Chapter 25
CP 1. (a) same; (b) same 2. (a) decreases; (b) increases;
(c) decreases 3. (a) V, q/2; (b) V/2; q
Q 1. a, 2; b, 1; c, 3 3. (a) no; (b) yes; (c) all tie 5. (a) same;
(b) same; (c) more; (d) more 7. a, series; b, parallel; c, parallel
9. (a) increase; (b) same; (c) increase; (d) increase; (e) increase;
(f) increase 11. parallel, C1 alone, C2 alone, series
P 1. (a) 3.5 pF; (b) 3.5 pF; (c) 57 V 3. (a) 144 pF; (b)17.3 nC
5. 0.280 pF 7. 6.79 � 10�4 F/m2 9. 315 mC 11. 3.16 mF
13. 43 pF 15. (a) 3.00 mF; (b) 60.0 mC; (c) 10.0 V; (d) 30.0 mC;
(e) 10.0 V; (f) 20.0 mC; (g) 5.00 V; (h) 20.0 mC 17. (a) 789 mC;
(b) 78.9 V 19. (a) 4.0 mF;(b) 2.0 mF 21. (a) 50 V;(b) 5.0 � 10�5 C;
(c) 1.5 � 10�4 C 23. (a) 4.5 � 1014; (b) 1.5 � 1014; (c) 3.0 � 1014;
(d) 4.5 � 1014; (e) up; (f) up 25. 3.6 pC 27. (a) 9.00 mC;
(b) 16.0 mC; (c) 9.00 mC; (d) 16.0 mC; (e) 8.40 mC; (f) 16.8 mC;
(g) 10.8 mC; (h) 14.4 mC 29. 72 F 31. 0.27 J 33. 0.11 J/m3

35. (a) 9.16 � 10�18 J/m3; (b) 9.16 � 10�6 J/m3; (c) 9.16 � 106 J/m3;
(d) 9.16 � 1018 J/m3; (e) 
 37. (a) 16.0 V; (b) 45.1 pJ; (c) 120 pJ;
(d) 75.2 pJ 39. (a) 190 V; (b) 95 mJ 41. 81 pF/m 43. Pyrex
45. 66 mJ 47. 0.63 m2 49. 17.3 pF 51. (a) 10 kV/m; (b) 5.0 nC;
(c) 4.1 nC 53. (a) 89 pF; (b) 0.12 nF; (c) 11 nC; (d) 11 nC;
(e) 10 kV/m; (f) 2.1 kV/m; (g) 88 V; (h) �0.17 mJ 55. (a) 0.107 nF;
(b) 7.79 nC; (c) 7.45 nC 57. 45 mC 59. 16 mC 61. (a) 7.20 mC;
(b) 18.0 mC; (c) Battery supplies charges only to plates to which it
is connected; charges on other plates are due to electron transfers
between plates, in accord with new distribution of voltages across
the capacitors. So the battery does not directly supply charge on
capacitor 4. 63. (a) 10 mC; (b) 20 mC 65. 1.06 nC 67. (a) 2.40 mF;
(b) 0.480 mC; (c) 80 V; (d) 0.480 mC; (e) 120 V 69. 4.9%
71. (a) 0.708 pF; (b) 0.600 ; (c) 1.02 � 10�9 J; (d) sucked in
73. 5.3 V 75. 40 mF 77. (a) 200 kV/m; (b) 200 kV/m; (c) 1.77
mC/m2; (d) 4.60 mC/m2; (e) �2.83 mC/m2 79. (a) q2/2�0A
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103. (a) 60.0 mA; (b) down; (c) 180 mA; (d) left; (e) 240 mA;
(f) up 105. (a) 4.0 A; (b) up; (c) 0.50 A; (d) down; (e) 64 W;
(f) 16 W; (g) supplied; (h) absorbed 

Chapter 28
CP 1. a, �z; b, �x; c, = 0 2. (a) 2, then tie of 1 and 3 (zero);
(b) 4 3. (a) electron; (b) clockwise 4. �y 5. (a) all tie; (b) 1 and
4 tie, then 2 and 3 tie 
Q 1. (a) no, because and must be perpendicular; (b) yes;
(c) no, because and must be perpendicular
3. (a) �z and �z tie, then �y and �y tie, then �x and �x tie (zero);
(b) �y 5. (a) ; (b) 7. (a) ; (b) into page, out of page;
(c) less 9. (a) positive; (b) 2 S 1 and 2 S 4 tie, then 2 S 3 (which
is zero) 11. (a) negative; (b) equal; (c) equal; (d) half-circle
P 1. (a) 400 km/s; (b) 835 eV 3. (a) (6.2 � 10�14 N) ;
(b) (�6.2 � 10�14 N) 5. �2.0 T 7. (�11.4 V/m) � (6.00 V/m) �
(4.80 V/m) 9. �(0.267 mT) 11. 0.68 MV/m 13. 7.4 mV
15. (a) (�600 mV/m) ; (b) 1.20 V 17. (a) 2.60 � 106 m/s;
(b) 0.109 ms; (c) 0.140 MeV; (d) 70.0 kV 19. 1.2 � 10�9 kg/C
21. (a) 2.05 � 107 m/s; (b) 467 mT; (c) 13.1 MHz; (d) 76.3 ns
23. 21.1 mT 25. (a) 0.978 MHz; (b) 96.4 cm 27. (a) 495 mT;
(b) 22.7 mA; (c) 8.17 MJ 29. 65.3 km/s 31. 5.07 ns
33. (a) 0.358 ns; (b) 0.166 mm; (c) 1.51 mm 35. (a) 200 eV;
(b) 20.0 keV; (c) 0.499% 37. 2.4 � 102 m 39. (a) 28.2 N;
(b) horizontally west 41. (a) 467 mA;(b) right 43. (a) 0;(b) 0.138 N;
(c) 0.138 N; (d) 0 45. (�2.50 mN) � (0.750 mN) 47. (a) 0.10 T;
(b) 31º 49. (�4.3 � 10�3 N�m) 51. 2.45 A 55. (a) 2.86 A�m2;
(b) 1.10 A�m2 57. (a) 12.7 A; (b) 0.0805 N�m 59. (a) 0.30 A�m2;
(b) 0.024 N�m 61. (a) �72.0 mJ; (b) (96.0 � 48.0 ) mN�m
63. (a) �(9.7 � 10�4 N�m) � (7.2 � 10�4 N�m) � (8.0 � 10�4 N�m) ;
(b) �6.0 � 10�4 J 65. (a) 90º; (b) 1; (c) 1.28 � 10�7 N�m
67. (a) 20 min; (b) 5.9 � 10�2 N�m 69. 8.2 mm 71. 127 u
73. (a) 6.3 � 1014 m/s2; (b) 3.0 mm 75. (a) 1.4; (b) 1.0
77. (�500 V/m) 79. (a) 0.50; (b) 0.50; (c) 14 cm; (d) 14 cm
81. (0.80 �1.1 ) mN 83. �40 mC 85. (a) (12.8 + 6.41 ) � 
10�22 N; (b) 90°; (c) 173° 87. (a) up the conducting path; (b) rim;
(c) 47.1 V; (d) 47.1 V; (e) 2.36 kW 89. (mV/2ed2)0.5 91. n � JB/eE

Chapter 29
CP 1. b, c, a 2. d, tie of a and c, then b 3. d, a, tie of b and c (zero)
Q 1. c, a, b 3. c, d, then a and b tie (zero) 5. a, c, b
7. c and d tie, then b, a 9. b, a, d, c (zero) 11. (a) 1, 3, 2; (b) less
P 1. (a) 3.3 mT; (b) yes 3. (a) 16 A; (b) east 5. (a) 1.0 mT;
(b) out; (c) 0.80 mT; (d) out 7. (a) 0.102 mT; (b) out
9. (a) opposite; (b) 30 A 11. (a) 4.3 A; (b) out 13. 50.3 nT
15. (a) 1.7 mT; (b) into; (c) 6.7 mT; (d) into 17. 132 nT
19. 5.0 mT 21. 256 nT 23. (�7.75 � 10�23 N) 25. 2.00 rad
27. 61.3 mA 29. (80 mT) 31. (a) 20 mT; (b) into 33. (22.3 pT)
35. 88.4 pN/m 37. (�125 mN/m) � (41.7 mN/m) 39. 800 nN/m
41. (3.20 mN) 43. (a) 0; (b) 0.850 mT; (c) 1.70 mT; (d) 0.850 mT
45. (a) 2.5 mT�m; (b) 0 47. (a) 0; (b) 0.10 mT; (c) 0.40 mT
49. (a) 533 mT; (b) 400 mT 51. 0.30 mT 53. 0.272 A
55. (a) 4.77 cm; (b) 35.5 mT 57. (a) 2.4 A�m2; (b) 46 cm
59. 0.47 A�m2 61. (a) 79 mT;(b) 1.1 � 10�6 N�m 63. (a) (0.060 A�m2) ;
(b) (96 pT) 65. 1.28 mm 69. (a) 15 A; (b) �z 71. 7.7 mT
73. (a) 15.3 mT 75. (a) (0.24 ) nT; (b) 0; (c) (�43 ) pT; (d) (0.14 )
nT 79. (a) 4.8 mT; (b) 0.93 mT; (c) 0 83. (�0.20 mT)
87. (a) m0ir/2pc2; (b) m0i/2pr; (c) m0i(a2 � r2)/2p(a2 � b2)r; (d) 0

Chapter 30
CP 1. b, then d and e tie, and then a and c tie (zero) 2. a and b
tie, then c (zero) 3. c and d tie, then a and b tie 4. b, out; c, out; d,
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into; e, into 5. d and e 6. (a) 2, 3, 1 (zero); (b) 2, 3, 1
7. a and b tie, then c
Q 1. out 3. (a) all tie (zero); (b) 2, then 1 and 3 tie (zero) 5. d
and c tie, then b, a 7. (a) more; (b) same; (c) same; (d) same (zero)
9. (a) all tie (zero); (b) 1 and 2 tie, then 3; (c) all tie (zero) 11. b
P 1. 0 3. 30 mA 5. 0 7. (a) 31 mV; (b) left 9. 0.198 mV
11. (b) 0.796 m2 13. 29.5 mC 15. (a) 21.7 V; (b) counterclock-
wise 17. (a) 1.26 � 10�4 T; (b) 0; (c) 1.26 � 10�4 T; (d) yes;
(e) 5.04 � 10�8 V 19. 5.50 kV 21. (a) 40 Hz; (b) 3.2 mV
23. (a) m0iR2pr2/2x3; (b) 3m0ipR2r2v/2x4; (c) counterclockwise
25. (a) 13 mWb/m; (b) 17%; (c) 0 27. (a) 80 mV; (b) clockwise
29. (a) 48.1 mV; (b) 2.67 mA; (c) 0.129 mW 31. 3.68 mW
33. (a) 240 mV; (b) 0.600 mA; (c) 0.144 mW; (d) 2.87 � 10�8 N;
(e) 0.144 mW 35. (a) 0.60 V; (b) up; (c) 1.5 A; (d) clockwise;
(e) 0.90 W; (f) 0.18 N; (g) 0.90 W 37. (a) 71.5 mV/m; (b) 143 mV/m
39. 0.15 V/m 41. (a) 2.45 mWb; (b) 0.645 mH 43. 1.81 mH/m
45. (a) decreasing; (b) 0.68 mH 47. (b) Leq = �Lj, sum from j = 1
to j = N 49. 59.3 mH 51. 46 � 53. (a) 8.45 ns; (b) 7.37 mA
55. 6.91 57. (a) 1.5 s 59. (a) i[1 � exp(�Rt/L)]; (b) (L/R) ln 2
61. (a) 97.9 H; (b) 0.196 mJ 63. 25.6 ms 65. (a) 18.7 J; (b) 5.10 J;
(c) 13.6 J 67. (a) 34.2 J/m3; (b) 49.4 mJ 69. 1.5 � 108 V/m
71. (a) 1.0 J/m3; (b) 4.8 � 10�15 J/m3 73. (a) 1.67 mH; (b) 6.00 mWb
75. 13 mH 77. (b) have the turns of the two solenoids wrapped in
opposite directions 79. (a) 2.0 A; (b) 0; (c) 2.0 A; (d) 0; (e) 10 V;
(f) 2.0 A/s; (g) 2.0 A; (h) 1.0 A; (i) 3.0 A; (j) 10 V; (k) 0; (l) 0
81. (a) 10 mT; (b) out; (c) 3.3 mT; (d) out 83. 0.520 ms
85. (a) (4.4 � 107 m/s2) ; (b) 0; (c) (�4.4 � 107 m/s2)
87. (a) 0.40 V; (b) 20 A 89. (a) 10 A; (b) 1.0 � 102 J 91. (a) 0;
(b) 8.0 � 102 A/s; (c) 1.8 mA; (d) 4.4 � 102 A/s; (e) 4.0 mA; (f) 0
93. 1.15 W 95. (a) 20 A/s; (b) 0.75 A 97. 12 A/s 99. 3 � 1036 J
101. (a) 13.9 H; (b) 120 mA 

Chapter 31
CP 1. (a) T/2; (b) T; (c) T/2; (d) T/4 2. (a) 5 V; (b) 150 mJ
3. (a) remains the same; (b) remains the same 4. (a) C, B, A; (b) 1,
A; 2, B; 3, S; 4, C; (c) A 5. (a) remains the same; (b) increases;
(c) remains the same; (d) decreases 6. (a) 1, lags; 2, leads; 3, in
phase; (b) 3 (vd = v when XL = XC) 7. (a) increase (circuit is
mainly capacitive; increase C to decrease XC to be closer to reso-
nance for maximum Pavg); (b) closer 8. (a) greater; (b) step-up 
Q 1. b, a, c 3. (a) T/4; (b) T/4; (c) T/2; (d) T/2 5. c, b, a 7. a
inductor; b resistor; c capacitor 9. (a) positive; (b) decreased (to
decrease XL and get closer to resonance); (c) decreased (to increase
XC and get closer to resonance) 11. (a) rightward, increase 
(XL increases, closer to resonance); (b) rightward, increase 
(XC decreases, closer to resonance); (c) rightward, increase 
(vd/v increases, closer to resonance) 13. (a) inductor;
(b) decrease
P 1. (a) 1.17 mJ; (b) 5.58 mA 3. (a) 6.00 ms; (b) 167 kHz;
(c) 3.00 ms 5. 45.2 mA 7. (a) 1.25 kg; (b) 372 N/m;
(c) 1.75 � 10�4 m; (d) 3.02 mm/s 9. 7.0 � 10�4 s 11. (a) 6.0;
(b) 36 pF; (c) 0.22 mH 13. (a) 0.180 mC; (b) 70.7 ms; (c) 66.7 W
15. (a) 3.0 nC; (b) 1.7 mA; (c) 4.5 nJ 17. (a) 275 Hz; (b) 365 mA
21. (a) 356 ms; (b) 2.50 mH; (c) 3.20 mJ 23. (a) 1.98 mJ;
(b) 5.56 mC; (c) 12.6 mA; (d) �46.9#; (e) �46.9# 25. 8.66 m�
29. (a) 95.5 mA; (b) 11.9 mA 31. (a) 0.65 kHz; (b) 24 �
33. (a) 6.73 ms; (b) 11.2 ms; (c) inductor; (d) 138 mH 35. 89 �
37. 7.61 A 39. (a) 267 �; (b) �41.5#; (c) 135 mA 41. (a) 206 �;
(b) 13.7#; (c) 175 mA 43. (a) 218 �; (b) 23.4#; (c) 165 mA
45. (a) yes; (b) 1.0 kV 47. (a) 224 rad/s; (b) 6.00 A; (c) 219 rad/s;
(d) 228 rad/s; (e) 0.040 49. (a) 796 Hz; (b) no change;
(c) decreased; (d) increased 53. (a) 12.1 �; (b) 1.19 kW
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55. 1.84 A 57. (a) 117 mF; (b) 0; (c) 90.0 W; (d) 0#; (e) 1; (f) 0;
(g) �90#; (h) 0 59. (a) 2.59 A; (b) 38.8 V; (c) 159 V; (d) 224 V;
(e) 64.2 V; (f) 75.0 V; (g) 100 W; (h) 0; (i) 0 61. (a) 0.743; (b) lead;
(c) capacitive; (d) no; (e) yes; (f) no; (g) yes; (h) 33.4 W
63. (a) 2.4 V; (b) 3.2 mA; (c) 0.16 A 65. (a) 1.9 V; (b) 5.9 W; (c) 19 V;
(d) 5.9 � 102 W; (e) 0.19 kV; (f) 59 kW 67. (a) 6.73 ms; (b) 2.24 ms;
(c) capacitor; (d) 59.0 mF 69. (a) �0.405 rad; (b) 2.76 A;
(c) capacitive 71. (a) 64.0 �; (b) 50.9 �; (c) capacitive
73. (a) 2.41 mH; (b) 21.4 pJ; (c) 82.2 nC 75. (a) 39.1 �; (b) 21.7 �;
(c) capacitive 79. (a) 0.577Q; (b) 0.152 81. (a) 45.0#; (b) 70.7 �
83. 1.84 kHz 85. (a) 0.689 mH; (b) 17.9 pJ; (c) 0.110 mC
87. (a) 165 �; (b) 313 mH; (c) 14.9 mF 93. (a) 36.0 V; (b) 29.9 V;
(c) 11.9 V; (d) �5.85 V 

Chapter 32
CP 1. d, b, c, a (zero) 2. a, c, b, d (zero) 3. tie of b, c, and d,
then a 4. (a) 2; (b) 1 5. (a) away; (b) away; (c) less 6. (a) toward;
(b) toward; (c) less
Q 1. 1 a, 2 b, 3 c and d 3. a, decreasing; b, decreasing
5. supplied 7. (a) a and b tie, then c, d; (b) none (because plate
lacks circular symmetry, not tangent to any circular loop);
(c) none 9. (a) 1 up, 2 up, 3 down; (b) 1 down, 2 up, 3 zero
11. (a) 1, 3, 2; (b) 2
P 1.�3 Wb 3. (a) 47.4 mWb; (b) inward 5. 2.4 � 1013 V/m�s
7. (a) 1.18 � 10�19 T; (b) 1.06 � 10�19 T 9. (a) 5.01 � 10�22 T;
(b) 4.51 � 10�22 T 11. (a) 1.9 pT 13. 7.5 � 105 V/s
17. (a) 0.324 V/m; (b) 2.87 � 10�16A; (c) 2.87 � 10�18

19. (a) 75.4 nT; (b) 67.9 nT 21. (a) 27.9 nT; (b) 15.1 nT
23. (a) 2.0 A; (b) 2.3 � 1011 V/m�s; (c) 0.50 A; (d) 0.63 mT�m
25. (a) 0.63 mT; (b) 2.3 � 1012 V/m�s 27. (a) 0.71 A; (b) 0; (c) 2.8 A
29. (a) 7.60 mA; (b) 859 kV�m/s; (c) 3.39 mm; (d) 5.16 pT 31. 55 mT
33. (a) 0; (b) 0; (c) 0; (d) 	3.2 � 10�25 J; (e) �3.2 � 10�34 J�s;
(f) 2.8 � 10�23 J/T; (g) �9.7 � 10�25 J; (h) 	3.2 � 10�25 J
35. (a) �9.3 � 10�24 J/T; (b) 1.9 � 10�23 J/T 37. (b) �x;
(c) clockwise; (d) �x 39. yes 41. 20.8 mJ/T 43. (b) Ki /B;
(c) �z; (d) 0.31 kA/m 47. (a) 1.8 � 102 km; (b) 2.3 � 10�5

49. (a) 3.0 mT; (b) 5.6 � 10�10 eV 51. 5.15 � 10�24 A�m2

53. (a) 0.14 A; (b) 79 mC 55. (a) 6.3 � 108 A; (b) yes; (c) no
57. 0.84 kJ/T 59. (a) (1.2 � 10�13 T) exp[�t/(0.012 s)];
(b) 5.9 � 10�15 T 63. (a) 27.5 mm; (b) 110 mm 65. 8.0 A
67. (a) �8.8 � 1015 V/m�s; (b) 5.9 � 10�7 T�m 69. (b) sign is
minus; (c) no, because there is compensating positive flux through
open end nearer to magnet 71. (b) �x; (c) counterclockwise;
(d) �x 73. (a) 7; (b) 7; (c) 3h/2 (d) 3eh/4pm; (e) 3.5h/2
(f) 8 75. (a) 9; (b) 3.71 10 23 J/T; (c) 9.27 10 24 J;
(d) �9.27 � 10�24 J

Chapter 33
CP 1. (a) (Use Fig. 33-5.) On right side of rectangle, is in 
negative y direction; on left side, � d is greater and in same 
direction; (b) is downward. On right side, is in negative z
direction; on left side, � d is greater and in same direction.
2. positive direction of x 3. (a) same; (b) decrease 4. a, d, b, c
(zero) 5. a
Q 1. (a) positive direction of z; (b) x 3. (a) same; (b) increase;
(c) decrease 5. (a) and (b) A = 1, n = 4, u = 30° 7. a, b, c 9. B
11. none
P 1. 7.49 GHz 3. (a) 515 nm; (b) 610 nm; (c) 555 nm;
(d) 5.41 � 1014 Hz;(e) 1.85 � 10�15 s 5. 5.0 � 10�21 H 7. 1.2 MW/m2

9. 0.10 MJ 11. (a) 6.7 nT; (b) y; (c) negative direction of y
13. (a) 1.03 kV/m; (b) 3.43 mT 15. (a) 87 mV/m; (b) 0.29 nT;
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(c) 6.3 kW 17. (a) 6.7 nT; (b) 5.3 mW/m2; (c) 6.7 W 19. 1.0 � 107 Pa
21. 5.9 � 10�8 Pa 23. (a) 4.68 � 1011 W; (b) any chance 
disturbance could move sphere from directly above source—the
two force vectors no longer along the same axis 27. (a) 1.0 � 108 Hz;
(b) 6.3 � 108 rad/s; (c) 2.1 m�1; (d) 1.0 mT; (e) z; (f) 1.2 � 102 W/m2;
(g) 8.0 � 10�7 N; (h) 4.0 � 10�7 Pa 29. 1.9 mm/s 31. (a) 0.17 mm;
(b) toward the Sun 33. 3.1% 35. 4.4 W/m2 37. (a) 2 sheets;
(b) 5 sheets 39. (a) 1.9 V/m; (b) 1.7 � 10�11 Pa 41. 20° or 70°
43. 0.67 45. 1.26 47. 1.48 49. 180° 51. (a) 56.9°; (b) 35.3°
55. 1.07 m 57. 182 cm 59. (a) 48.9°; (b) 29.0° 61. (a) 26.8°;
(b) yes 63. (a) (1 � sin2 u)0.5; (b) 20.5; (c) yes; (d) no 65. 23.2°
67. (a) 1.39; (b) 28.1°; (c) no 69. 49.0° 71. (a) 0.50 ms; (b) 8.4 min;
(c) 2.4 h; (d) 5446 B.C. 73. (a) (16.7 nT) sin[(1.00 � 106 m�1)z �
(3.00 � 1014 s�1)t]; (b) 6.28 mm; (c) 20.9 fs; (d) 33.2 mW/m2; (e) x;
(f) infrared 75. 1.22 77. (c) 137.6°; (d) 139.4°; (e) 1.7°
81. (a) z axis; (b) 7.5 � 1014 Hz; (c) 1.9 kW/m2 83. (a) white;
(b) white dominated by red end; (c) no refracted light
85. 1.5 � 10�9 m/s2 87. (a) 3.5 mW/m2; (b) 0.78 mW;
(c) 1.5 � 10�17 W/m2; (d) 1.1 � 10�7 V/m; (e) 0.25 fT 89. (a) 55.8°;
(b) 55.5° 91. (a) 83 W/m2; (b) 1.7 MW 93. 35° 97. cos�1(p/50)0.5

99. 8RI/3c 101. 0.034 103. 9.43 � 10�10 T 105. (a) �y; (b) z;
(c) 1.91 kW/m2; (d) Ez � (1.20 kV/m) sin[(6.67 � 106 m�1)y �
(2.00 � 1015 s�1)t]; (e) 942 nm; (f) infrared 107. (a) 1.60; (b) 58.0°

Chapter 34
CP 1. 0.2d, 1.8d, 2.2d 2. (a) real; (b) inverted; (c) same
3. (a) e; (b) virtual, same 4. virtual, same as object, diverging 
Q 1. (a) a; (b) c 3. (a) a and c; (b) three times; (c) you
5. convex 7. (a) all but variation 2; (b) 1, 3, 4: right, inverted; 5, 6:
left, same 9. d (infinite), tie of a and b, then c 11. (a) x; (b) no;
(c) no; (d) the direction you are facing
P 1. 9.10 m 3. 1.11 5. 351 cm 7. 10.5 cm 9. (a) �24 cm;
(b) �36 cm; (c) �2.0; (d) R; (e) I; (f) same 11. (a) �20 cm;
(b) �4.4 cm; (c) �0.56; (d) V; (e) NI; (f) opposite 13. (a) �36 cm;
(b) �36 cm; (c) �3.0; (d) V; (e) NI; (f) opposite 15. (a) �16 cm;
(b) �4.4 cm; (c) �0.44; (d) V; (e) NI; (f) opposite 17. (b) plus;
(c) �40 cm; (e) �20 cm; (f) �2.0; (g) V; (h) NI; (i) opposite
19. (a) convex; (b) �20 cm; (d) �20 cm; (f) �0.50; (g) V; (h) NI;
(i) opposite 21. (a) concave; (c) �40 cm; (e) �60 cm; (f) �2.0;
(g) R; (h) I; (i) same 23. (a) convex; (b) minus; (c) �60 cm;
(d) �1.2 m; (e) �24 cm; (g) V; (h) NI; (i) opposite 25. (a) concave;
(b) �8.6 cm; (c) �17 cm; (e) �12 cm; (f) minus; (g) R; (i) same
27. (a) convex; (c) �60 cm; (d) �30 cm; (f) �0.50; (g) V; (h) NI;
(i) opposite 29. (b) �20 cm; (c) minus; (d) �5.0 cm; (e) minus;
(f) �0.80; (g) V; (h) NI; (i) opposite 31. (b) 0.56 cm/s; (c) 11 m/s;
(d) 6.7 cm/s 33. (c) 33 cm; (e) V; (f) same 35. (d) 26 cm; (e) V;
(f) same 37. (c) �30 cm; (e) V; (f) same 39. (a) 2.00; (b) none
41. (a) �40 cm; (b) q 43. 5.0 mm 45. 1.86 mm 47. (a) 45 mm;
(b) 90 mm 49. 22 cm 51. (a) 48 cm; (b) 4.0; (c) V; (d) NI;
(e) same 53. (a) �4.8 cm; (b) �0.60; (c) V; (d) NI; (e) same
55. (a) �8.6 cm; (b) �0.39; (c) V; (d) NI; (e) same 57. (a) �36 cm;
(b) �0.80; (c) R; (d) I; (e) opposite 59. (a) �55 cm; (b) �0.74;
(c) R; (d) I; (e) opposite 61. (a) �18 cm; (b) �0.76; (c) V; (d) NI;
(e) same 63. (a) �30 cm; (b) �0.86; (c) V; (d) NI; (e) same
65. (a) �7.5 cm; (b) �0.75; (c) V; (d) NI; (e) same 67. (a) �84 cm;
(b) �1.4; (c) R; (d) I; (e) opposite 69. (a) C; (d) �10 cm; (e) �2.0;
(f) V; (g) NI; (h) same 71. (a) D; (b) �5.3 cm; (d) �4.0 cm; (f) V;
(g) NI; (h) same 73. (a) C; (b) �3.3 cm; (d) �5.0 cm; (f) R; (g) I;
(h) opposite 75. (a) D; (b) minus; (d) �3.3 cm; (e) �0.67; (f) V;
(g) NI 77. (a) C; (b) �80 cm; (d) �20 cm; (f) V; (g) NI; (h) same
79. (a) C; (b) plus; (d) �13 cm; (e) �1.7; (f)V; (g) NI; (h) same
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81. (a) �24 cm; (b) �6.0; (c) R; (d) NI; (e) opposite
83. (a) �3.1 cm; (b) �0.31; (c) R; (d) I; (e) opposite 85. (a) �4.6 cm;
(b) �0.69; (c) V; (d) NI; (e) same 87. (a) �5.5 cm; (b) �0.12; (c)V;
(d) NI; (e) same 89. (a) 13.0 cm; (b) 5.23 cm; (c) �3.25; (d) 3.13;
(e) �10.2 91. (a) 2.35 cm; (b) decrease 93. (a) 3.5; (b) 2.5
95. (a) �8.6 cm; (b) �2.6; (c) R; (d) NI; (e) opposite
97. (a) �7.5 cm; (b) �0.75; (c) R; (d) I; (e) opposite 99. (a) �24 cm;
(b) �0.58; (c) R; (d) I; (e) opposite 105. (a) 3.00 cm; (b) 2.33 cm
107. (a) 40 cm; (b) 20 cm; (c) �40 cm; (d) 40 cm 109. (a) 20 cm;
(b) 15 cm 111. (a) 6.0 mm; (b) 1.6 kW/m2; (c) 4.0 cm 113. 100 cm
115. 2.2 mm2 119. (a) �30 cm; (b) not inverted; (c) virtual; (d) 1.0
121. (a) �12 cm 123. (a) 80 cm; (b) 0 to 12 cm 127. (a) 8.0 cm;
(b) 16 cm; (c) 48 cm 129. (a) a � 0.500 rad: 7.799 cm; a = 0.100 rad:
8.544 cm; a = 0.0100 rad: 8.571 cm; mirror equation: 8.571 cm;
(b) a = 0.500 rad: �13.56 cm; a =  0.100 rad: �12.05 cm; a � 0.0100
rad: �12.00 cm; mirror equation: �12.00 cm 131. 42 mm
133. (b) Pn 135. (a) (0.5)(2 � n)r/(n � 1); (b) right 137. 2.67 cm
139. (a) 3.33 cm; (b) left; (c) virtual; (d) not inverted
141. (a) 1 � (25 cm)/f; (b) (25 cm)/f; (c) 3.5; (d) 2.5

Chapter 35
CP 1. b (least n), c, a 2. (a) top; (b) bright intermediate illumina-
tion (phase difference is 2.1 wavelengths) 3. (a) 3l, 3; (b) 2.5l, 2.5
4. a and d tie (amplitude of resultant wave is 4E0), then b and c tie
(amplitude of resultant wave is 2E0) 5. (a) 1 and 4; (b) 1 and 4 
Q 1. (a) decrease; (b) decrease; (c) decrease; (d) blue 3. (a) 2d;
(b) (odd number)l/2; (c) l/4 5. (a) intermediate closer to 
maximum, m = 2; (b) minimum, m = 3; (c) intermediate closer to
maximum, m = 2; (d) maximum, m = 1 7. (a) maximum;
(b) minimum; (c) alternates 9. (a) peak; (b) valley 11. c, d 13. c
P 1. (a) 155 nm; (b) 310 nm 3. (a) 3.60 mm; (b) intermediate
closer to fully constructive 5. 4.55 � 107 m/s 7. 1.56
9. (a) 1.55 mm; (b) 4.65 mm 11. (a) 1.70; (b) 1.70; (c) 1.30;
(d) all tie 13. (a) 0.833; (b) intermediate closer to fully
constructive 15. 648 nm 17. 16 19. 2.25 mm 21. 72 mm
23. 0 25. 7.88 mm 27. 6.64 mm 29. 2.65 31. 27 sin(vt � 8.5°)
33. (17.1 mV/m) sin[(2.0 � 1014 rad/s)t] 35. 120 nm 37. 70.0 nm
39. (a) 0.117 mm; (b) 0.352 mm 41. 161 nm 43. 560 nm
45. 478 nm 47. 509 nm 49. 273 nm 51. 409 nm 53. 338 nm
55. (a) 552 nm; (b) 442 nm 57. 608 nm 59. 528 nm 61. 455 nm
63. 248 nm 65. 339 nm 67. 329 nm 69. 1.89 mm 71. 0.012°
73. 140 75. [(m � )lR]0.5, for m = 0, 1, 2,… 77. 1.00 m
79. 588 nm 81. 1.00030 83. (a) 50.0 nm; (b) 36.2 nm 85. 0.23°
87. (a) 1500 nm; (b) 2250 nm; (c) 0.80 89. x = (D/2a)(m � 0.5)l,
for m = 0, 1, 2,… 91. (a) 22°; (b) refraction reduces u 93. 600
nm 95. (a) 1.75 mm; (b) 4.8 mm 97. Im cos2(2px/l) 99. (a)
42.0 ps; (b) 42.3 ps; (c) 43.2 ps; (d) 41.8 ps; (e) 4 101. 33 mm
103. (a) bright; (b) 594 nm; (c) Primary reason: the colored bands
begin to overlap too much to be distinguished. Secondary reason:
the two reflecting surfaces are too separated for the light reflect-
ing from them to be coherent.

Chapter 36
CP 1. (a) expand; (b) expand 2. (a) second side maximum;
(b) 2.5 3. (a) red; (b) violet 4. diminish 5. (a) left; (b) less
Q 1. (a) m � 5 minimum; (b) (approximately) maximum between
the m � 4 and m � 5 minima 3. (a) A, B, C; (b) A, B, C
5. (a) 1 and 3 tie, then 2 and 4 tie; (b) 1 and 2 tie, then 3 and 4 tie
7. (a) larger; (b) red 9. (a) decrease; (b) same; (c) remain in place
11. (a) A; (b) left; (c) left; (d) right 13. (a) 1 and 2 tie, then 3;
(b) yes; (c) no
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P 1. (a) 2.5 mm; (b) 2.2 � 10�4 rad 3. (a) 70 cm; (b) 1.0 mm
5. (a) 700 nm; (b) 4; (c) 6 7. 60.4 mm 9. 1.77 mm 11. 160°
13. (a) 0.18°; (b) 0.46 rad; (c) 0.93 15. (d) 52.5°; (e) 10.1°; (f) 5.06°
17. (b) 0; (c) �0.500; (d) 4.493 rad; (e) 0.930; (f) 7.725 rad; (g) 1.96
19. (a) 19 cm; (b) larger 21. (a) 1.1 � 104 km; (b) 11 km
23. (a) 1.3 � 10�4 rad; (b) 10 km 25. 50 m 27. 1.6 � 103 km
29. (a) 8.8 � 10�7 rad;(b) 8.4 � 107 km;(c) 0.025 mm 31. (a) 0.346°;
(b) 0.97° 33. (a) 17.1 m; (b) 1.37 � 10�10 35. 5 37. 3
39. (a) 5.0 mm; (b) 20 mm 41. (a) 7.43 � 10�3; (b) between the 
m = 6 minimum (the seventh one) and the m � 7 maximum (the
seventh side maximum); (c) between the m � 3 minimum 
(the third one) and the m = 4 minimum (the fourth one)
43. (a) 9; (b) 0.255 45. (a) 62.1°; (b) 45.0°; (c) 32.0° 47. 3
49. (a) 6.0 mm; (b) 1.5 mm; (c) 9; (d) 7; (e) 6 51. (a) 2.1°; (b) 21°;
(c) 11 53. (a) 470 nm; (b) 560 nm 55. 3.65 � 103

57. (a) 0.032°/nm; (b) 4.0 � 104; (c) 0.076°/nm; (d) 8.0 � 104;
(e) 0.24°/nm; (f) 1.2 � 105 59. 0.15 nm 61. (a) 10 mm; (b) 3.3 mm
63. 1.09 � 103 rulings/mm 65. (a) 0.17 nm; (b) 0.13 nm
67. (a) 25 pm; (b) 38 pm 69. 0.26 nm 71. (a) 15.3°; (b) 30.6°;
(c) 3.1°; (d) 37.8° 73. (a) 0.7071a0; (b) 0.4472a0; (c) 0.3162a0;
(d) 0.2774a0; (e) 0.2425a0 75. (a) 625 nm; (b) 500 nm; (c) 416 nm
77. 3.0 mm 83. (a) 13; (b) 6 85. 59.5 pm 87. 4.9 km 89. 1.36 � 104

91. 2 93. 4.7 cm 97. 36 cm 99. (a) fourth; (b) seventh
103. (a) 2.4 mm; (b) 0.80 mm; (c) 2 107. 9

Chapter 37
CP 1. (a) same (speed of light postulate); (b) no (the start and
end of the flight are spatially separated); (c) no (because his 
measurement is not a proper time) 2. (a) Eq. 2; (b) �0.90c;
(c) 25 ns; (d) �7.0 m 3. (a) right; (b) more 4. (a) equal; (b) less
Q 1. c 3. b 5. (a) C1; (b) C1 7. (a) 4 s; (b) 3 s; (c) 5 s; (d) 4 s;
(e) 10 s 9. (a) a tie of 3, 4, and 6, then a tie of 1, 2, and 5; (b) 1, then
a tie of 2 and 3, then 4, then a tie of 5 and 6; (c) 1, 2, 3, 4, 5, 6; (d) 2
and 4; (e) 1, 2, 5 11. (a) 3, tie of 1 and 2, then 4; (b) 4, tie of 1 and 2,
then 3; (c) 1, 4, 2, 3
P 1. 0.990 50 3. (a) 0.999 999 50 5. 0.446 ps 7. 2.68 � 103 y
9. (a) 87.4 m; (b) 394 ns 11. 1.32 m 13. (a) 26.26 y;
(b) 52.26 y; (c) 3.705 y 15. (a) 0.999 999 15; (b) 30 ly
17. (a) 138 km; (b) �374 ms 19. (a) 25.8 ms; (b) small flash
21. (a) g[1.00 ms �b(400 m)/(2.998 � 108 m/s)]; (d) 0.750;
(e) 0 � b� 0.750; (f) 0.750 � b� 1; (g) no 23. (a) 1.25; (b) 0.800 ms
25. (a) 0.480; (b) negative; (c) big flash; (d) 4.39 ms 27. 0.81c
29. (a) 0.35; (b) 0.62 31. 1.2 ms 33. (a) 1.25 y; (b) 1.60 y; (c) 4.00 y
35. 22.9 MHz 37. 0.13c 39. (a) 550 nm; (b) yellow
41. (a) 196.695; (b) 0.999 987 43. (a) 1.0 keV; (b) 1.1 MeV
45. 110 km 47. 1.01 � 107 km 49. (a) 0.222 cm; (b) 701 ps;
(c) 7.40 ps 51. 2.83mc 53. g(2pm/|q|B); (b) no; (c) 4.85 mm;
(d) 15.9 mm; (e) 16.3 ps; (f) 0.334 ns 55. (a) 0.707; (b) 1.41;
(c) 0.414 57. 18 smu/y 59. (a) 2.08 MeV; (b) �1.21 MeV
61. (d) 0.801 63. (a) vt sin u ; (b) t[1 � (v/c) cos u]; (c) 3.24c
67. (b) �0.44c 69. (a) 1.93 m; (b) 6.00 m; (c) 13.6 ns; (d) 13.6 ns;
(e) 0.379 m; (f) 30.5 m; (g) �101 ns; (h) no; (i) 2; (k) no; (l) both
71. (a) 5.4 � 104 km/h; (b) 6.3 � 10�10 73. 189 MeV
75. 8.7 � 10�3 ly 77. 7 79. 2.46 MeV/c 81. 0.27c
83. (a) 5.71 GeV; (b) 6.65 GeV; (c) 6.58 GeV/c; (d) 3.11 MeV;
(e) 3.62 MeV; (f) 3.59 MeV/c 85. 0.95c 87. (a) 256 kV; (b) 0.745c
89. (a) 0.858c; (b) 0.185c 91. 0.500c 93. (a) 119 MeV;
(b) 64.0 MeV/c; (c) 81.3 MeV; (d) 64.0 MeV/c 95. 4.00 u, probably
a helium nucleus 97. (a) 534; (b) 0.999 998 25; (c) 2.23 T
99. (a) 415 nm; (b) blue 101. (a) 88 kg; (b) no 103. (a) 3 � 10�18;
(b) 2 � 10�12; (c) 8.2 � 10�8; (d) 6.4 � 10�6; (e) 1.1 � 10�6;
(f) 3.7 � 10�5; (g) 9.9 � 10�5; (h) 0.10  
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Chapter 38
CP 1. b, a, d, c 2. (a) lithium, sodium, potassium, cesium;
(b) all tie 3. (a) same; (b)�(d) x rays 4. (a) proton; (b) same;
(c) proton 5. same
Q 1. (a) greater; (b) less 3. potassium 5. only e 7. none
9. (a) decreases by a factor of (1/2)0.5; (b) decreases by a factor of 1/2
11. amplitude of reflected wave is less than that of incident wave
13. electron, neutron, alpha particle 15. all tie
P 1. (a) 2.1 mm; (b) infrared 3. 1.0 � 1045 photons/s 5. 2.047 eV
7. 1.1 � 10�10 W 9. (a) 2.96 � 1020 photons/s; (b) 4.86 � 107 m;
(c) 5.89 � 1018 photons/m2 · s 11. (a) infrared;(b) 1.4 � 1021 photons/s
13. 4.7 � 1026 photons 15. 170 nm 17. 676 km/s 19. 1.3 V;
(b) 6.8 � 102 km/s 21. (a) 3.1 keV; (b) 14 keV 23. (a) 2.00 eV;
(b) 0; (c) 2.00 V; (d) 295 nm 25. (a) 382 nm; (b) 1.82 eV
27. (a) 2.73 pm;(b) 6.05 pm 29. (a) 8.57 � 1018 Hz; (b) 3.55 � 104 eV;
(c) 35.4 keV/c 31. 300% 33. (a) �8.1 � 10�9%; (b) �4.9 � 10�4%;
(c) �8.9%; (d) �66% 35. (a) 2.43 pm; (b) 1.32 fm; (c) 0.511 MeV;
(d) 939 MeV 37. (a) 41.8 keV;(b) 8.2 keV 39. 44º 41. (a) 2.43 pm;
(b) 4.11 � 10�6; (c) �8.67 � 10�6 eV; (d) 2.43 pm; (e) 9.78 � 10�2;
(f) �4.45 keV 43. (a) 2.9 � 10�10 m; (b) x ray; (c) 2.9 � 10�8 m;
(d) ultraviolet 45. (a) 9.35 mm; (b) 1.47 � 10�5 W; (c) 6.93 � 1014

photons/s; (d) 2.33 � 10�37 W; (e) 5.87 � 10�19 photons/s
47. 7.75 pm 49. (a) 1.9 � 10�21 kg · m/s;(b) 346 fm 51. 4.3 meV
53. (a) 1.24 mm; (b) 1.22 nm; (c) 1.24 fm; (d) 1.24 fm 55. (a) 15 keV;
(b) 120 keV 57. neutron 59. (a) 3.96 � 106 m/s; (b) 81.7 kV
67. 2.1 � 10�24 kg · m/s 71. (a) 1.45 � 1011 m�1; (b) 7.25  � 1010 m�1;
(c) 0.111; (d) 5.56 � 104 73. 4.81 mA 75. (a) 9.02 � 10�6;
(b) 3.0 MeV; (c) 3.0 MeV;(d) 7.33 � 10�8; (e) 3.0 MeV;(f) 3.0 MeV
77. (a) �20%; (b) �10%; (c) �15% 79. (a) no; (b) plane wave-
fronts of infinite extent, perpendicular to x axis 83. (a) 38.8 meV;
(b) 146 pm 85. (a) 4.14 � 10�15 eV � s; (b) 2.31 eV 89. (a) no;
(b) 544 nm; (c) green 

Chapter 39
CP 1. b, a, c 2. (a) all tie; (b) a, b, c 3. a, b, c, d 4. E1,1 (neither nx

nor ny can be zero) 5. (a) 5; (b) 7
Q 1. a, c, b 3. (a) 18; (b) 17 5. equal 7. c 9. (a) decrease;
(b) increase 11. n � 1, n � 2, n � 3 13. (a) n � 3; (b) n � 1;
(c) n � 5 15. b, c, and d
P 1. 1.41 3. 0.65 eV 5. 0.85 nm 7. 1.9 GeV 9. (a) 72.2 eV;
(b) 13.7 nm; (c) 17.2 nm; (d) 68.7 nm; (e) 41.2 nm; (g) 68.7 nm;
(h) 25.8 nm 11. (a) 13; (b) 12 13. (a) 0.020; (b) 20 15. (a) 0.050;
(b) 0.10; (c) 0.0095 17. 56 eV 19. 109 eV 23. 3.21 eV
25. 1.4 � 10�3 27. (a) 8; (b) 0.75; (c) 1.00; (d) 1.25; (e) 3.75; (f) 3.00;
(g) 2.25 29. (a) 7; (b) 1.00; (c) 2.00; (d) 3.00; (e) 9.00; (f) 8.00;
(g) 6.00 31. 4.0 33. (a) 12.1 eV; (b) 6.45 � 10�27 kg · m/s; (c) 102
nm 35. (a) 291 nm�3; (b) 10.2 nm�1 41. (a) 0.0037; (b) 0.0054
43. (a) 13.6 eV; (b) �27.2 eV 45. (a) (r4/8a5)[exp(�r/a)] cos2 u;
(b) (r4/16a5)[exp(�r/a)] sin2 u 47. 4.3 � 103 49. (a) 13.6 eV;
(b) 3.40 eV 51. 0.68 59. (b) (2p/h)[2m(U0 � E)]0.5

61. (b) meter�2.5 63. (a) n; (b) 2 � 1; (c) n2 65. (a) nh/p md 2;
(b) n2h2/4p 2md2 67. (a) 3.9 � 10�22 eV; (b) 1020; (c) 3.0 � 10�18 K
71. (a) e2r/4p�0a3; (b) e/(4p �0ma )0.5 73. 18.1, 36.2, 54.3, 66.3,
72.4 meV

Chapter 40
CP 1. 7 2. (a) decrease; (b)�(c) remain the same 3. A, C, B
Q 1. (a) 2; (b) 8; (c) 5; (d) 50 3. all true 5. same number (10)
7. 2, �1, 0, and 1 9. (a) 2; (b) 3 11. (a) n; (b) n and 13. In addi-
tion to the quantized energy, a helium atom has kinetic energy; its
total energy can equal 20.66 eV.
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P 1. 24.1º 3. (a) 3.65 � 10�34 J · s; (b) 3.16 � 10�34 J · s 5. (a) 3;
(b) 3 7. (a) 4; (b) 5; (c) 2 9. (a) 3.46; (b) 3.46; (c) 3; (d) 3; (e) �3;
(f) 30.0º; (g) 54.7º; (h) 150º 13. 72 km/s2 15. (a) 54.7º; (b) 125º
17. 19 mT 19. 5.35 cm 21. 44 23. 42 25. (a) 51; (b) 53; (c) 56
27. (a) (2, 0, 0, � ), (2, 0, 0, � ); (b) (2, 1, 1, � ), (2, 1, 1, � ),
(2, 1, 0, � ), (2, 1, 0,� ), (2, 1, �1, � ), (2, 1, �1,� ) 29. g
31. (a) 4p; (b) 4; (c) 4p; (d) 5; (e) 4p; (f) 6 33. 12.4 kV 35. (a) 35.4 pm;
(b) 56.5 pm;(c) 49.6 pm 39. 0.563 41. 80.3 pm 43. (a) 69.5 kV;
(b) 17.8 pm; (c) 21.3 pm; (d) 18.5 pm 45. (a) 49.6 pm; (b) 99.2 pm
47. 2.0 � 1016 s�1 49. 2 � 107 51. 9.0 � 10�7 53. 7.3 � 1015 s�1

55. (a) 3.60 mm; (b) 5.24 � 1017 57. (a) 0; (b) 68 J 59. 3.0 eV
61. (a) 3.03 � 105; (b) 1.43 GHz; (d) 3.31 � 10�6 63. 186
65. (a) 2.13 meV; (b) 18 T 69. (a) no; (b) 140 nm 71. n � 3;

�3, �2, �1, 0, �1, �2, �3; ms 73. (a) 6.0;	1
2��� � 3; m�
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(b) 3.2 106 y 75. argon 79. (Ze/4p�0)

Chapter 41
CP 1. larger 2. a, b, and c
Q 1. b, c, d (the latter due to thermal expansion) 3. 8
5. below 7. increase 9. much less than 11. b and d
P 3. 8.49 � 1028 m�3 5. (b) 6.81 � 1027 m�3 eV�3/2;
(c) 1.52 � 1028 m�3 eV�1 7. (a) 0; (b) 0.0955 9. (a) 5.86 � 1028 m�3;
(b) 5.49 eV; (c) 1.39 � 103 km/s; (d) 0.522 nm 11. (a) 1.36 �
1028 m�3 eV�1; (b) 1.68 � 1028 m�3 eV�1; (c) 9.01 � 1027 m�3 eV�1;
(d) 9.56 � 1026 m�3 eV�1; (e) 1.71 � 1018 m�3 eV�1 13. (a) 6.81 eV;
(b) 1.77 � 1028 m�3 eV�1; (c) 1.59 � 1028 m�3 eV�1

15. (a) 2.50 � 103 K; (b) 5.30 � 103 K 17. 3 19. (a) 1.0; (b) 0.99;
(c) 0.50; (d) 0.014; (e) 2.4 � 10�17; (f) 7.0 � 102 K 21. (a) 0.0055;
(b) 0.018 25. (a) 19.7 kJ; (b) 197 s 27. (a) 1.31 � 1029 m�3;
(b) 9.43 eV; (c) 1.82 � 103 km/s; (d) 0.40 nm 29. 57.1 kJ
31. (a) 226 nm; (b) ultraviolet 33. (a) 1.5 � 10�6; (b) 1.5 � 10�6

35. 0.22 mg 37. (a) 4.79 � 10�10; (b) 0.0140; (c) 0.824 39. 6.0 � 105

41. 4.20 eV 43. 13 mm 47. (a) 109.5º; (b) 238 pm
49. (b) 1.8 � 1028 m�3 eV�1 53. 3.49 � 103 atm

Chapter 42
CP 1. 90As and 158Nd 2. a little more than 75 Bq (elapsed time is
a little less than three half-lives) 3. 206Pb
Q 1. (a) 196Pt; (b) no 3. yes 5. (a) less; (b) greater 7. 240U
9. no effect 11. yes 13. (a) all except 198Au; (b) 132Sn and 208Pb
15. d
P 1. 1.3 � 10�13 m 3. 46.6 fm 5. (a) 0.390 MeV; (b) 4.61 MeV
7. (a) 2.3 � 1017 kg/m3; (b) 2.3 � 1017 kg/m3; (d) 1.0 � 1025 C/m3;
(e) 8.8 � 1024 C/m3 9. (a) 6; (b) 8 11. (a) 6.2 fm; (b) yes
13. 13 km 17. 1.0087 u 19. (a) 9.303%; (b) 11.71%
21. (b) 7.92 MeV/nucleon 25. 5.3 � 1022 27. (a) 0.250; (b) 0.125
29. (a) 64.2 h; (b) 0.125; (c) 0.0749 31. (a) 7.5 � 1016 s�1;
(b) 4.9 � 1016 s�1 33. 1 � 1013 atoms 37. 265 mg
39. (a) 8.88 � 1010 s�1; (b) 1.19 � 1015; (c) 0.111 mg 41. 1.12 � 1011 y
43. 9.0 � 108 Bq 45. (a) 3.2 � 1012 Bq; (b) 86 Ci 47. (a) 2.0 � 1020;
(b) 2.8 � 109 s�1 49. (a) 1.2 � 10�17; (b) 0 51. 4.269 MeV
53. 1.21 MeV 55. 0.783 MeV 57. (b) 0.961 MeV 59. 78.3 eV
61. (a) 1.06 � 1019; (b) 0.624 � 1019; (c) 1.68 � 1019; (d) 2.97 � 109 y
63. 1.7 mg 65. 1.02 mg 67. 2.50 mSv 69. (a) 6.3 � 1018;
(b) 2.5 � 1011; (c) 0.20 J; (d) 2.3 mGy; (e) 30 mSv 71. (a) 6.6 MeV;
(b) no 73. (a) 25.4 MeV; (b) 12.8 MeV; (c) 25.0 MeV 75. 7Li
77. 3.2 � 104 y 79. 730 cm2 81. 225Ac 83. 30 MeV 89. 27
91. (a) 11.906 83 u; (b) 236.2025 u 93. 600 keV 95. (a) 59.5 d;
(b) 1.18 97. (a) 4.8 � 10�18 s�1; (b) 4.6  � 109 y

(r �2 � rR�3)�



Chapter 43
CP 1. c and d 2. e
Q 1. (a) 101; (b) 42 3. 239Np 5. 140I, 105Mo, 152Nd, 123In, 115Pd
7. increased 9. less than 11. still equal to 1
P 1. (a) 16 day�1; (b) 4.3 � 108 3. 4.8 MeV 5. 1.3 � 103 kg
7. 3.1 � 1010 s�1 9. (a) 2.6 � 1024; (b) 8.2 � 1013 J; (c) 2.6 � 104 y
11. �23.0 MeV 13. (a) 251 MeV; (b) typical fission energy is 
200 MeV 15. (a) 84 kg; (b) 1.7 � 1025; (c) 1.3 � 1025 17. (a) 153Nd;
(b) 110 MeV; (c) 60 MeV; (d) 1.6 � 107 m/s; (e) 8.7 � 106 m/s
21. 557 W 23. 0.99938 25. (b) 1.0; (c) 0.89; (d) 0.28; (e) 0.019;
(f) 8 27. (a) 75 kW; (b) 5.8 � 103 kg 29. 1.7 � 109 y
31. 170 keV 33. 1.41 MeV 35. 10�12 m 37. (a) 4.3 � 109 kg/s;
(b) 3.1 � 10�4 41. 1.6 � 108 y 43. (a) 24.9 MeV; (b) 8.65 mega-
tons TNT 45. (a) 1.8 � 1038 s�1; (b) 8.2 � 1028 s�1 47. (a) 4.1
eV/atom; (b) 9.0 MJ/kg; (c) 1.5 � 103 y 49. 14.4 kW
51. 238U � n S 239U S 239Np � e � n, 239Np S 239Pu � e � n 55.
(a) 3.1 � 1031 protons/m3; (b) 1.2 � 106 57. (a) 227 J; (b) 49.3 mg;
(c) 22.7 kW 

AN-13ANSWERS

Chapter 44
CP 1. (a) the muon family; (b) a particle; (c) Lm � �1
2. b and e 3. c
Q 1. b, c, d 3. (a) 1; (b) positively charged 5. a, b, c, d 7. d
9. c 11. (a) lepton; (b) antiparticle; (c) fermion; (d) yes
P 1. p� S m� � n� 3. 2.4 pm 5. 2.4 � 10�43 7. 769 MeV
9. 2.7 cm/s 11. (a) angular momentum, Le; (b) charge, Lm;
(c) energy, Lm 15. (a) energy; (b) strangeness; (c) charge
17. (a) yes; (b)�(d) no 19. (a) 0; (b) �1; (c) 0 21. (a) K�; (b) n�;
(c) K0 23. (a) 37.7 MeV; (b) 5.35 MeV; (c) 32.4 MeV 25. (a) u–u–d

–
;

(b) u–d
–
d
–

27. sd
�

29. (a) "0; (b) �� 31. 2.77 � 108 ly 33. 668 nm
35. 1.4 � 1010 ly 37. (a) 2.6 K; (b) 976 nm 39. (b) 5.7 H atoms/m3

41. 4.57 � 103 43. (a) 121 m/s; (b) 0.00406; (c) 248 y
47. 1.08 � 1042 J 49. (a) 0.785c; (b) 0.993c; (c) C2; (d) C1;
(e) 51 ns; (f) 40 ns 51. (c) ra/c � (ra/c)2 � (ra/c)3 � � � �;
(d) ra/c; (e) a H; (f) 6.5 � 108 ly; (g) 6.9 � 108 y; (h) 6.5 � 108 y;
(i) 6.9 � 108 ly; (j) 1.0 � 109 ly; (k) 1.1 � 109 y; (l) 3.9 � 108 ly
53. (a) ssd; (b) s9s9d9

�
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I N D E X

Figures are noted by page numbers in italics, tables are indicated by t following the page number.

I-1

A
ag (gravitational acceleration),

360, 360t
absolute pressure, 390
absolute zero, 515
absorption:

of heat, 522–527, 523
photon, see photon absorption

absorption lines, 1206, 1207
ac (alternating current), 903, 913
acceleration, 20–30, 283t

average, 20
centripetal, 76
constant, 23, 23–27, 24t
free-fall, 27, 27–28
graphical integration in motion

analysis, 29, 29–30
instantaneous, 20–22, 21, 67–69
negative, 21–22
and Newton’s first law, 95–98
Newton’s laws applied to,

108–113
and Newton’s second law,

98–101
principle of equivalence (with

gravitation), 374–375
projectile motion, 70–75
reference particle, 429
relating linear to angular, 269,

269–270
relative motion in one

dimension, 79
relative motion in two

dimensions, 79–80
rockets, 241–243, 242
rolling down ramp, 299,

299–300
sign of, 21–22
simple harmonic motion, 418,

418
system of particles, 220–223
two- and three-dimensional

motion, 79–80
uniform circular motion, 76,

76–78, 77, 133
as vector quantity, 41
yo-yo, 302

acceleration amplitude, in simple
harmonic motion, 418

acceleration vectors, 41
accelerators, 818–819, 1334–1336,

1336
acceptor atoms, 1264
acre-foot, 9
action at a distance, 630
activity, of radioactive sample, 1287
addition:

of vectors by components, 46,
46–47, 49

of vectors geometrically, 41,
41–42, 42, 44

adiabat, 571, 572
adiabatic expansion, 531–532, 532

ideal gas, 571–575, 572
adiabatic processes:

first law of thermodynamics
for, 531–533, 532t

summarized, 575, 575t
adiabatic wind, 580
air:

bulk modulus, 480–481
density, 387t
dielectric properties at 1 atm,

732, 732t
and drag force, 130–132
effect on projectile motion, 73,

73–74
electric breakdown, 646, 646
index of refraction at STP, 992t
speed of sound in, 480–481,

481t
terminal speeds in, 131t
thermal conductivity, 535t
thin-film interference of water

film in, 1067
air conditioners, 596
airplanes:

projectile dropped from, 74
turns by top gun pilots, 77–78
two-dimensional relative

motion of, 80–81
vector components for flight, 44

airspeed, 90
alkali metals, 1235
alpha decay, 1289–1291, 1290
alpha particles, 621, 705, 1277,

1277–1279, 1289
binding energy per nucleon,

1283
magic nucleon number, 1299
radiation dosage, 1296–1297
in thermonuclear fusion,

1324–1325
alternating current (ac), 903, 913
alternating current circuits,

903–934
damped oscillations in RLC,

910–912, 911
forced oscillations, 912–920, 914
inductive load, 919
LC oscillations, 903–910, 904
phase and amplitude relation-

ships, 920t
power in, 927–929
resistive load, 915
series RLC circuits, 921–926,

922
in transformers, 930–933

alternating current generator,
913–914

with capacitive load,
916–918, 917

with inductive load,
918–919, 919

with resistive load, 914–916, 915
ammeters, 788, 788
ampere (unit), 614, 746, 843
Ampère, André-Marie, 844
Ampere–Maxwell law, 944–945,

949t
Ampere’s law, 844–850
Amperian loop, 844, 844–848
amplitude:

alternating current, 920t
current, 922, 922–923, 926
of emf in ac, 914
exponentially decaying in RLC

circuits, 911
LC oscillations, 905
simple harmonic motion,

416–418, 417
waves, 447, 447, 448, 448

amplitude ratio, traveling 
electromagnetic waves, 976

amusement park rides:
roller coasters, 21
Rotor, 267–268

analyzer, 988
Andromeda Galaxy, 354–355, 355
anechoic chamber, 513
angles, 45

angle between two vectors, 54
degrees and radian measures, 45
vector, 43, 43, 45

angled force, applied to initially
stationary block, 128

angle of incidence, 991, 991
angle of minimum deviation, 1005,

1007
angle of reflection, 991, 991
angle of refraction, 991, 991
angular acceleration, 261, 283t

relating, to linear, 269, 269–270
rolling wheel, 299, 300
rotation with constant, 266–268

angular amplitude (simple pendu-
lum), 426

angular displacement, 259, 260, 265
angular frequency:

circulating charged particle, 815
damped harmonic oscillator,

430–432
driving, 914
LC oscillations, 908–909
natural, 433, 914
simple harmonic motion,

414–418, 417

simple pendulum, 426
sound waves, 483
waves, 448

angular magnification:
compound microscope, 1032
refracting telescope, 1033
simple magnifying lens, 1031

angular momentum, 305–318, 312t
atoms, 1221, 1221
conservation of, 312–316,

313, 314
defined, 305, 305–316
at equilibrium, 328
intrinsic, 953, 954
Newton’s second law in angular

form, 307–308
nuclear, 1284
orbital, 954, 955, 1222–1224,

1223, 1223t
rigid body rotating about fixed

axis, 311, 311–312
sample problems involving, 306,

308–309, 315–316
spin, 953–954, 1223t, 1224, 1225
system of particles, 310–311

angular motion, 259
angular position, 259, 259–260,

283t
relating, to linear, 269

angular simple harmonic motion,
423, 423–424

angular simple harmonic oscilla-
tor, 423, 423–424

angular speed, 261, 262
relating, to linear, 268–270
in rolling, 295–297, 296

angular velocity, 260–264, 283t
average, 260–261
instantaneous, 260
vector nature of, 264–265, 265

angular wave number, 447, 1171
sound waves, 483

annihilation:
electron–positron, 622, 622,

1338
particle–antiparticle, 1338
proton–antiproton, 1339–1340,

1340t
annular cylinder, rotational inertia

for, 274t
antenna, 974, 974
antiderivative, 26
antihydrogen, 1338, 1340, 1340t
antimatter, 1310t, 1338–1339
antineutrino, 1292n
antinodes, 465, 466, 467–468
antiparticles, 1338–1341, 1359
antiprotons, 1338
antisolar point, 994, 994



I-2 INDEX

aphelion distance, 371
apparent weight, 104

in fluids, 396–397
applied force, work and, 688–689
Archimedes’ principle, 394–397,

395
areas, law of, 369, 369–370
area vector, 661
astronomical Doppler effect,

1135–1136
astronomical unit, 12
atmosphere (atm), 388
atmospheric pressure, 388t
atmospheric sprites, 637–638
atoms, 1186–1187, 1219–1246.

See also electrons; neutrons;
protons

Bohr model, 1203, 1203–1204
exclusion principle in, 1230
formation in early universe,

1360
and lasers, 1240–1245
magnetic resonance,

1229–1230, 1230
matter wave interference, 1167,

1168
and multiple electrons in a

trap, 1230–1234
and periodic table, 1234–1236
properties of, 1219–1225
Stern–Gerlach experiment,

1226, 1226–1228
x rays and ordering of

elements, 1236–1240
atoms, elasticity of, 339, 339
atomic bomb, 1284, 1314–1315,

1326–1327
atomic clocks, 5–6
atomic clocks, time dilation tests,

1123–1124
atomic mass, 1280t, 1282–1283
atomic mass units, 7, 1282–1283
atomic number, 621, 1225, 1280
attractive forces, 356, 611
Atwood’s machine, 120
aurora, 610
automobile(s). See also race cars

acceleration of motorcycle vs.,
25–26

average velocity of truck, 17
in banked circular turn,

137–138
in flat circular turn, 136–137
magnet applications, 804
sliding to stop on icy roads,

129–130
spark discharge from, 707, 707
tire pressure, 388t

average acceleration:
one-dimensional motion, 20
two- and three-dimensional

motion, 67–69
average angular acceleration, 261
average angular velocity, 260–261
average force (of collision), 228
average life, radionuclide,

1287–1288

average power, 166, 197–198
engines, 594
traveling wave on stretched

string, 455
average speed:

of gas molecules, 561–563
one-dimensional motion, 16

average velocity:
constant acceleration, 24
one-dimensional motion,

15–17, 16
two- and three-dimensional

motion, 65
Avogadro’s number, 550, 748
axis(--es):

rotating, of vectors, 47
of rotation, 259, 259
separation of, in Newton’s

second law, 98–99
of symmetry, 632

B
Babinet’s principle, 1109
background noise, 508
ball, motion of, 70–72, 71, 72
ballet dancing:

grand jeté, 221–222, 222
tour jeté, 314

ballistic pendulum, 236, 236
balloons, lifting capacity, 581
Balmer series, 1203, 1206, 1207
bands, energy bands in crystalline

solids, 1254, 1254
band–gap pattern:

crystalline solid, 1254
insulator, 1254
metal, 1255
semiconductor, 1262

bar magnets:
Earth as, 950, 950
magnetic dipole moment of

small, 826, 826t
magnetic field, 942, 942
magnetic field lines, 806–807,

807
barrel units, 11
barrier tunneling, 1176–1179,

1177, 1290–1291
baryons, 1338, 1345–1346

conservation of baryon
number, 1345

and eightfold way, 1347–1348,
1347t

and quark model, 1349, 1355
baryonic matter, 1358, 1361, 1361
baryon number, conservation

of, 1345
baseball:

collision of ball with bat, 226,
226, 227

fly ball, air resistance to, 73, 73,
73t

time of free-fall flight, 28
base quantities, 2
base standards, 2
basic equations for constant

acceleration, 23–24

basilisk lizards, 249, 249
basketball free throws, 62
bats, navigation using ultrasonic

waves, 502
batteries. See also electromotive

force (emf)
connected to capacitors, 718,

718–719, 727–728
and current, 746, 746–747
as emf devices, 772–774
in multiloop circuits, 781,

781–787
multiple batteries in multiloop

circuit, 784–785, 785
potential difference across,

777–780, 779
and power in circuits, 760,

760–761
in RC circuits, 788–792, 789
real, 773, 773, 777, 777–778
rechargeable, 773–774
recharging, 779
in RL circuits, 883–886
in single-loop circuits, 774–775
work and energy, 773, 773–774

beam, 976
beam expander, 1044
beam separation, in

Stern–Gerlach experiment,
1228

beam splitter, 1071, 1164, 1164
beats, 496–498, 497
becquerel, 1287
bends, the, 407, 549
Bernoulli’s equation, 401–404
beta decay, 627, 1292–1295, 1293,

1351
beta-minus decay, 1292
beta-plus decay, 1292
bi-concave lens, 1044
bi-convex lens, 1044
bicycle wheels:

rolling, 295–297, 296–297
rolling, with friction, 299,

299–300
bifurcate (term), 58
Big Bang, 1355–1356, 1358–1361,

1359
billiard balls, Newton’s second law

and motion of, 221
binding energy, see nuclear

binding energy
Biot–Savart law, 837–838, 844,

852
bivalent atom, 1256
blackbody radiator, 536
black holes, 355

event horizon, 362
gravitational lensing caused by,

375, 376
miniature, 379
supermassive, 355

blocks:
acceleration of falling, 281
connected to massless-

frictionless pulleys, 105, 106,
108, 108–109

floating, 397

forces on stationary, 125–126,
125–126

friction of sliding, 105, 105
hanging and sliding, 108,

108–109
Newton’s laws applied to, 99,

108–113
normal forces, 104, 104–105
power used in work on, 168, 168
stable static equilibrium,

328–329, 329, 332–337
third-law force pair, 106,

106–107
work done by external force

with friction, 192–193, 193
block-spring oscillator, 907–908
block-spring systems:

damped oscillating systems,
430, 430–431

and electrical–mechanical
analogy, 906–907, 906t

kinetic energy, 159, 159–162,
161

oscillating systems, 420–421
potential energy, 179, 179,

182–183
blood pressure, normal systolic,

387t
blue shift, 1135
bob, of pendulum, 425
body armor, 477–478, 478
body diagonal, 58–59
body wave, 512
Bohr, Niels, 1193, 1298, 1312
Bohr magneton, 953–955, 1224
Bohr model, of hydrogen, 629,

1203, 1203–1204
Bohr radius, 1204, 1211
boiling point, 526

for selected substances, 526t
of water, 518t

Boltzmann, Ludwig, 601, 1243
Boltzmann constant, 551, 1165
Bose, Satyendra Nath, 1337
Bose–Einstein condensate, 1337,

1337
bosons, 1337, 1337
bottomness, 1346
bottom quark, 1350t, 1351
boundary condition, 1175, 1210
Bragg angle, 1106
Bragg’s law, 1106
Brahe, Tycho, 369
branches, circuits, 781
breakdown potential, 732
breakeven, in magnetic confine-

ment, 1328
Brewster angle, 998, 998
Brewster’s law, 998
bright fringes:

double-slit interference, 1055,
1055, 1056

single-slit diffraction, 1083,
1083–1085

British thermal unit (Btu),
524–525

Brookhaven accelerator, 1335



Brout, Robert, 1354
bubble chambers, 622, 622, 806,

806
gamma ray track, 1169, 1169
proton–antiproton annihilation

event, 1339, 1339–1340
buildings:

mile-high, 380
natural angular frequency, 433
swaying in wind, 422–424, 468

bulk modulus, 341, 480–481
bungee-cord jumping, 178, 178
buoyant force, 394–397, 395

C
c, see speed of light
Calorie (Cal) (nutritional),

524–525
calorie (cal) (heat), 524–525
cameras, 1030
canal effect, 410
cancer radiation therapy, 1276
capacitance, 717–738

calculating, 719–723
of capacitors, 717–718
of capacitors with dielectrics,

731–734
and dielectrics/Gauss’ law, 735,

735–737
and energy stored in electric

fields, 728–730
LC oscillations, 903–910
for parallel and series

capacitors, 723–728
parallel circuits, 783t
RC circuits, 788–792, 789
RLC circuits, 910–912
RLC series circuits, 921–926
series circuits, 783t

capacitive reactance, 917
capacitive time constant, for RC

circuits, 789, 790
capacitors, 717, 717–719, 718.

See also parallel-plate
capacitors

with ac generator, 916–918, 917
capacitance of, 717–718
charging, 718–719, 727–728, 789,

789–790, 994
cylindrical, 721, 721–722
with dielectrics, 731, 731–733
discharging, 719, 789, 790–792
displacement current, 947,

947–949
electric field calculation, 720
energy density, 730
Faraday’s, 731, 731–732
induced magnetic field, 944–946
isolated spherical, 722, 730
LC oscillations, 904, 905–906
in parallel, 724, 724, 726–727,

783t
and phase/amplitude for ac

circuits, 920t
potential difference calculation,

719–723
RC circuits, 788–792, 789

in series, 724–727, 725, 783t,
922, 922

series RLC circuits, 922
variable, 742

cars, see automobiles
carbon cycle, 1333
carbon14 dating, 1295
carbon dioxide:

molar specific heat at constant
volume, 565t

RMS speed at room
temperature, 556t

carbon disulfide, index of
refraction, 992t

Carnot cycle, 591, 591, 592
Carnot engines, 590–593, 591

efficiency, 592–593, 597–598
real vs., 597–598

Carnot refrigerators, 596, 597–598
carrier charge density, 750. See

also current density
cascade, decay process, 1348–1349
cat, terminal speed of falling, 131,

131–132
cathode ray tube, 809, 809–810
cavitation, 508
Celsius temperature scale, 518,

518–519
center of curvature:

spherical mirrors, 1015, 1015
spherical refracting surfaces,

1020–1021, 1021
center of gravity, 330–332, 331
center of mass, 216–219

and center of gravity, 330–332
defined, 215
motion of system’s, 220–221
one-dimensional inelastic

collisions, 234–236, 235
rolling wheel, 296, 296
sample problems involving,

217–218, 223
solid bodies, 216–219, 219
system of particles, 215,

215–216, 220–223
center of momentum frame, 1151
center of oscillation (physical

pendulum), 427
centigrade temperature scale,

518–519
central axis, spherical mirror,

1015, 1016
central configuration peak, 600
central diffraction maximum,

1089, 1089
central interference maximum,

1056
central line, 1099
central maximum, diffraction pat-

terns, 1082, 1082, 1086–1087
centripetal acceleration, 76
centripetal force, 133–138, 134
Cerenkov counters, 1366
Ceres, escape speed for, 367t
CERN accelerator, 1335, 1353

antihydrogen, 1338
pion beam experiments, 1118

chain-link conversion, of units, 3
chain reaction:

of elastic collisions, 239–240
nuclear, 1315

characteristic x-ray spectrum,
1237–1238, 1238

charge, see electric charge
charge carriers, 747

doped semiconductors,
1263–1265

silicon vs. copper, 762–763, 762t
charge density. See also current

density
carrier, 750
linear, 638–639, 639t
surface, 629, 639t
volume, 626, 628, 639t

charged disk:
electric field due to, 643–644
electric potential due to, 700,

700
charged isolated conductor:

with cavity, 668, 669
electric potential, 706, 706–707
in external electric field,

707, 707
Gauss’ law for, 668–670

charge distributions:
circular arc, 642
continuous, 638–639, 698–700,

699, 700
ring, 638–640, 639, 642
spherically symmetric, 675–677,

676, 695
straight line, 642–643
uniform, 631, 631–632, 632,

642–643
charged objects, 631
charged particles, 612

in cyclotron, 819
electric field due to, 633,

633–635
electric potential due to group

of, 695–696, 696
electric potential energy of

system, 703–705, 704
equilibrium of forces on, 618
helical paths of, 816, 816–817
magnetic field due to, 804–805
motion, in electric field, 647
net force due to, 616–618

charged rod, electric field of,
641–642

charge number, 1225
charge quantum number, 1341
charging:

of capacitors, 718–719, 727–728,
789, 789–790, 944

electrostatic, 611
charm, 1346
charm quark, 1350t, 1351, 1352
chip (integrated circuits), 1271
chromatic aberration, 1033
chromatic dispersion, 993,

993–994
circuits, 718, 719, 771–793, 783t.

See also alternating current
circuits

ammeter and voltmeter for
measuring, 788

capacitive load, 916–918, 917
direct-current (dc), 772
inductive load, 918–919, 919
integrated, 1270, 1271
multiloop, 774, 781, 781–787,

782
oscillating, 903
parallel capacitors, 724, 724,

726–727, 783t
parallel resistors, 782, 782–787,

783t
power in, 760–761
RC, 788–792, 789
resistive load, 914–916, 915
RL, 882–886, 883, 884
RLC, 910–912, 911, 921–926,

922
series capacitors, 724–727, 725,

783t
series resistors, 776, 776–777,

783t
single-loop, 771–780, 914

circuit elements, 718
circular aperture, diffraction

patterns, 1090–1094, 1091
circular arc, current in, 839–841
circular arc charge distributions,

642
circular orbits, 373–374
clocks:

event measurement with array
of, 1119, 1119

time dilation tests, 1123–1124,
1153

closed circuit, 776, 776
closed cycle processes, first law of

thermodynamics for, 532, 532t
closed path, 179–180, 180
closed-path test, for conservative

force, 179–180
closed shell, 1299
closed subshell, 1235
closed surface, electric flux in,

661–664
closed system, 221

entropy, 589
linear momentum conservation,

230–231
COBE (Cosmic Background

Explorer) satellite, 1360, 1361
coefficient of kinetic friction,

127–130
coefficient of linear expansion,

521, 521t
coefficient of performance (refrig-

erators), 596
coefficient of static friction,

127–130
coefficient of volume expansion,

521
coherence, 1059–1060
coherence length, 1241
coherent light, 1059, 1241
coils, 823–824. See also inductors

of current loops, 823–824
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in ideal transformers, 931, 931
induced emf, 867–868
magnetic field, 851–854, 852
mutual induction, 890–892, 891
self-induction, 881, 881–882

cold-weld, 126–127, 127
collective model, of nucleus, 1298
collimated slit, 1226
collimator, 1100, 1226
collision(s), 226–229

elastic in one dimension, 237,
237–240

glancing, 240, 240–241
impulse of series of, 227–229,

229
impulse of single, 226–227, 227
inelastic, in one dimension, 234,

234–236, 235
momentum and kinetic energy

in, 233
two-dimensional, 240, 240–241

color force, 1354–1355
color-neutral quarks, 1354–1355
color-shifting inks, 1048
compass, 950, 964
completely inelastic collisions,

234, 234–236, 235
components:

of light, 993–994
vector, 42–44, 43, 46, 46–47,

47, 49
component notation (vectors), 43
composite slab, conduction

through, 535, 535
compound microscope, 1032, 1032
compound nucleus, 1298, 1300
compressibility, 342, 388
compressive stress, 340–341
Compton scattering, 1159,

1159–1162, 1160
Compton shift, 1159, 1159–1162
Compton wavelength, 1161
concave lenses, 1044
concave mirrors, 1013, 1016,

1017–1018
concrete:

coefficient of linear expansion,
521t

elastic properties, 341t
condensing, 526
conducting devices, 619, 756–757
conducting path, 612
conducting plates:

eddy currents, 874
Gauss’ law, 674, 674–675

conduction, 534, 535, 535,
1252–1272

and electrical properties of
metals, 1252–1261

in p-n junctions, 1266–1270
by semiconductors, 1261–1265
in transistors, 1270–1271

conduction band, 1262, 1262
conduction electrons, 612, 746,

752, 1255–1261
conduction rate, 534–535
conductivity, 754, 1257

conductors, 612–613, 746. See also
electric current

drift speed in, 749–750, 752
Hall effect for moving, 812–813
metallic, 746, 762
Ohm’s law, 756–759
potential difference across,

812–813
configurations, in statistical

mechanics, 599–600
confinement principle, 1187
conical pendulum, 146
conservation of angular momen-

tum, 312–316, 313, 314
conservation of baryon number,

1345
conservation of electric charge,

621–622
conservation of energy, 149,

195–199, 197
in electric field, 688
mechanical and electric

potential energy, 705
principle of conservation of

mechanical energy, 185
in proton decay, 1348
sample problems involving,

186–187, 198–199
conservation of lepton number,

1344–1345
conservation of linear momen-

tum, 230–232, 236, 242
conservation of quantum

numbers, 1348–1349
conservation of strangeness, 1346
conservative forces, 179–181,

180, 685
constant acceleration (one-dimen-

sional motion), 23, 23–27, 24t
constant angular acceleration,

rotation with, 266–268
constant linear acceleration, 266
constant-pressure molar specific

heat, 566–568
constant-pressure processes, 529,

529–530
summarized, 575, 575t
work done by ideal gases,

554–555
constant-pressure specific heat, 525
constant-temperature processes:

summarized, 575, 575t
work done by ideal gases,

552–553
constant-volume gas thermome-

ter, 516, 516–517
constant-volume molar specific

heat, 565–566
constant-volume processes, 529,

529–530
first law of thermodynamics

for, 532, 532t
summarized, 575, 575t
work done by ideal gases, 553

constant-volume specific heat, 525
consumption rate, nuclear reactor,

1319–1320

contact potential difference,
1266–1267

continuity, equation of, 398–401,
400

continuous bodies, 272
continuous charge distribution,

638–639, 698–700, 699, 700
continuous x-ray spectrum, 1237,

1237
contracted length, 1126–1128
convection, 537
converging lens, 1023, 1024, 1025
conversion factors, 3
convex lenses, 1044
convex mirrors, 1013, 1016,

1017–1018
cooling:

evaporative, 545
super-, 605

Coordinated Universal Time
(UTC), 6

copper:
coefficient of linear expansion,

521t
conduction electrons, 612
electric properties of silicon vs.,

762–763, 762t, 1253t, 1262
energy levels, 1254, 1254
Fermi energy, 1255
Fermi speed, 1255–1256
heats of transformation, 526t
mean free time, 759
resistivity, 754t, 755, 755, 1262
rubbing rod with wool, 612
temperature coefficient of

resistivity, 1262
unit cell, 1253, 1253

copper wire:
as conductor, 612, 612, 746,

746–747
drift speed in, 749–750
magnetic force on current

carrying, 820, 820–822
cord (unit of wood), 11
core (Earth), 380, 380

density, 360, 360, 388t
pressure, 388t

core (Sun):
density, 387t
pressure, 388t
speed distribution of photons

in, 562
corner reflectors, 1046
corn–hog ratio, 12
corona discharge, 707
correspondence principle, 1193
cosine, 45, 45
cosine-squared rule, for intensity

of transmitted polarized
light, 987

Cosmic Background Explorer
(COBE) satellite, 1360, 1361

cosmic background radiation,
1357–1358, 1360, 1361

cosmic ray protons, 627
cosmological red shift, 1367–1368
cosmology, 1355–1362

background radiation,
1357–1358

Big Bang theory, 1358–1361
dark matter, 1358
expansion of universe,

1356–1357
coulomb (unit), 614
Coulomb barrier, 1322
coulomb per second, 746
Coulomb’s law, 609–622

conductors and insulators,
612–613

conservation of charge, 621–622
electric charge, 610–611
formulas for, 613–615
and Gauss’ law, 666–667
quantization of charge, 619–621
for spherical conductors,

615–619
crimp hold, 348
critical angle, for total internal

reflection, 996
crossed magnetic fields:

and discovery of electrons,
808–810

Hall effect in, 810–813, 811
crossed sheets, polarizers, 988, 988
cross product, 52–55
crust (Earth), 360, 380, 380, 387t
crystals:

matter waves incident after
scattering, 1167, 1168, 1168

polycrystalline solids, 963
x-ray diffraction, 1105,

1105–1106
crystal defects, 627
crystalline solids:

electrical properties, 1252–1261,
1253

energy bands, 1254, 1254
crystal planes, 1105, 1105
curie (unit), 1287
Curie constant, 960
Curie’s law, 960
Curie temperature, 962
curled–straight right-hand rule,

838
currency, anti-counterfeiting

measures, 1048
current, see electric current
current amplitude:

alternating current, 926
series RLC circuits, 922,

922–923, 926
current-carrying wire:

energy dissipation in, 761
magnetic field due to, 837,

837–842, 838
magnetic field inside long

straight, 846, 846
magnetic field outside long

straight, 845, 845–846
magnetic force between

parallel, 842–843, 843
magnetic force on, 820, 820–822

current density, 749, 749–752
current law, Kirchoff’s, 781



current-length element, 837, 837
current loops, 746, 746

electrons, 955, 955–956, 956
Faraday’s law of induction,

865–866
Lenz’s law for finding direction

of current, 868, 868–871, 869
as magnetic dipoles, 851–854,

852
solenoids and toroids, 848–851
torque on, 822–824, 823

curvature, of space, 375, 375–376,
1360–1361

cutoff frequency, photoelectric
effect, 1156–1157

cutoff wavelength:
continuous x-ray spectrum, 1237
photoelectric effect, 1156–1157

cycle:
engines, 591
simple harmonic motion, 414
thermodynamic, 529, 530, 532

cyclotrons, 818, 818–819
cylinders:

of current, 847–848
rotational inertia, 274t
tracer study of flow around, 399

cylindrical capacitor, capacitance
of, 721, 721–722

cylindrical symmetry, Gauss’ law,
671, 671–672

D
damped energy, 431
damped oscillations, 430–431, 431,

910–912
damped simple harmonic motion,

430, 430–432, 431
damped simple harmonic

oscillator, 430, 430–432
damping constant, simple

harmonic motion, 430–431
damping force, simple harmonic

motion, 430–431
dark energy, 1361
dark fringes:

double-slit interference, 1055,
1055, 1057

single-slit diffraction, 1083,
1083–1085, 1088–1089

dark matter, 1358, 1361, 1361
daughter nuclei, 622, 1302
day:

10-hour day, 5
variations in length of, 6

dc (direct current), 772, 913
de Broglie wavelength, 1167, 1171,

1189
decay, see radioactive decay
decay constant, 1286
decay rate, 1286–1288
deceleration, 21
decibel, 490–492
decimal places, significant figures

with, 4
dees, cyclotron, 818
de-excitation, of electrons, 1190

deformation, 340, 340
degenerate energy levels, 1200
degrees of freedom, ideal gas mol-

ecules, 568–570
density:

defined, 7
fluids, 387
kinetic energy density, 402
linear, of stretched string,

452, 453
and liquefaction, 7–8
nuclear matter, 1285
occupied states, 1259–1260,

1260
selected engineering materials,

341t
selected materials and objects,

387t
states, 1257, 1257–1258
uniform, for solid bodies,

216–217
density gradient, 1266
depletion zone, p-n junction, 1266
derived units, 2
detection, see probability of

detection
deuterium, 1294
deuterium–tritium fuel pellets,

1328, 1328
deuterons, 819, 1327
deuteron–triton reaction, 1327
deviation angle, 1005
diamagnetic material, 957
diamagnetism, 957–958, 958
diamond:

as insulator, 1255, 1262
unit cell, 1253, 1253

diamond lattice, 1253
diatomic molecules, 566

degrees of freedom, 568–570,
569, 569t

molar specific heats at constant
volume, 565t

potential energy, 205
dielectrics:

atomic view, 733–734, 734
capacitors with, 731–733
and Gauss’ law, 735, 735–737
polarization of light by

reflection, 998
dielectric constant, 731–732, 732t
dielectric strength, 731–733, 732t
differential equations, 907
diffraction, 1081–1107. See also

interference; single-slit
diffraction

circular aperture, 1090–1094,
1091

double-slit, 1094–1097, 1095,
1096

Fresnel bright spot, 1083
intensity in double-slit, 1095,

1096–1097
intensity in single-slit,

1086–1090, 1089
interference vs., 1097
neutron, 1168

pinhole, 1082
and wave theory of light,

1081–1083
x-ray, 1104–1106, 1105
and Young’s interference

experiment, 1053–1054, 1054
diffraction factor, 1096
diffraction gratings, 1098,

1098–1101
dispersion, 1101–1104
resolving power, 1102–1104,

1103
spacing, 1099–1100
x rays, 1105

diffraction patterns:
defined, 1082
double-slit, 1095–1096, 1096
single-slit, 1095–1096, 1096

diffusion current, p-n junctions,
1266

dimensional analysis, 452
dip angle, 141
dip meter, 951
dip north pole, 951
dipole antenna, 974, 974
dipole axis, 636, 950
dip-slip, 60
direct current (dc), 772, 913
direction:

of acceleration in one-
dimensional motion, 20

of acceleration in two- and
three-dimensional motion, 68

of angular momentum, 305
of displacement in one-

dimensional motion, 14–15
of vector components, 43
of vectors, 41–42, 42
of velocity in one-dimensional

motion, 16
of velocity in two- and three-

dimensional motion, 66
discharging, 611

capacitors, 719, 789, 790–792
charged objects, 612

disintegration, 1280
disintegration constant, 1286, 1288
disintegration energy, 1290
disks:

diffraction by circular aperture,
1090–1094, 1091

electric field due to charged,
643–644

electric potential due to
charged, 700, 700

dispersion:
chromatic, 993, 993–994
by diffraction gratings,

1101–1104
displacement:

damped harmonic oscillator,
430–431, 431

electric, 736
one-dimensional motion, 14–15
simple harmonic motion, 416,

417, 418
traveling waves, 449–450

two- and three-dimensional
motion, 63–64, 64

as vector quantity, 15, 41, 41
waves on vibrating string,

446–448, 447
displacement amplitude:

forced oscillations, 433, 433
sound waves, 483, 483–484

displacement current, 946–950, 947
displacement ton, 11
displacement vector, 15, 41, 41
dissipated energy, in resistors, 761,

774
distortion parameter, 1314
distribution of molecular speeds,

560–563, 561
diverging lens, 1023, 1024, 1025
dominoes, 328, 328
donor atoms, 1263–1264
doped semiconductors, 762, 1263,

1263–1265
Doppler effect, 498–502, 1120

detector moving, source
stationary, 500, 500

for light, 1134–1137, 1136, 1357
source moving, detector

stationary, 501, 501
dose equivalent, radiation, 1297
dot product, 51, 51, 54, 661
double-slit diffraction, 1094–1097,

1095, 1096
double-slit interference:

intensity, 1060–1062, 1061, 1096
from matter waves, 1167,

1167–1168
single-photon, wide-angle

version, 1163–1164, 1164
single-photon version,

1162–1164
Young’s experiment,

1053–1058, 1055
doubly magic nuclides, 1299
down quark, 1349, 1350t, 1351
drag coefficient, 130–131
drag force, 130–132

damped simple harmonic
motion, 430

mechanical energy not con-
served in presence of, 186

as nonconservative force, 179
drain, FETs, 1270, 1270
drift current, p-n junctions, 1267
drift speed:

and current density, 749,
749–750, 752

Hall effect for determining,
810–813, 811

driven oscillations, 433, 914, 914
driving angular frequency, 914
driving frequency, of emf, 914
d subshells, 1235, 1236

E
E (exponent of 10), 2
Earth, 354–355, 1362. See also

gravitational force
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atmospheric electric field, 717
average density, 387t
density of, as function of

distance from center, 360
eccentricity of orbit, 369
effective magnetic dipole

moment, 1225
ellipsoidal shape of, 360
escape speed, 367–368, 367t
gravitation near surface,

359–362
interior of, 380, 380
Kepler’s law of periods, 370t
level of compensation, 408
magnetic dipole moment, 826t
magnetism, 950–951
nonuniform distribution of

mass, 360, 360
rotation, 360–361, 361
satellite orbits and energy,

371–373, 372
variation in length of day over

4-year period, 6
earthquakes:

building oscillations during, 414
buildings submerged during, 7
and liquefaction, 7–8
natural angular frequency of

buildings, 433, 433
S and P waves, 506

Earth’s magnetic field, 807, 950,
950–951

polarity reversal, 950, 951
at surface, 806t

eccentricity, of orbits, 369, 369
and orbital energy, 371–372
planets of Solar System, 370t

eddy currents, 874
edges, diffraction of light at, 1082
edge effect, 674
effective cross-sectional area, 131
effective magnetic dipole

moment, 1225
effective phase difference, optical

interference, 1051
efficiency:

Carnot engines, 592–593
real engines, 593, 597–598
Stirling engines, 594

eightfold way, 1347, 1347–1348,
1347t

Einstein, Albert, 95, 977, 1117,
1117, 1120, 1166. See also
relativity

Bose–Einstein condensate,
1337, 1337

and bosons, 1337
and lasers, 1242
view of gravitation, 374,

374–376
work on photoelectric effect,

1156–1158
work on photons, 1153–1155

Einstein–de Haas experiment,
1221, 1222

Einstein ring, 376, 376
elastic bodies, 339

elastic collisions:
defined, 233
elasticity, 327, 339–342, 340
in one dimension, with moving

target, 238–239
in one dimension, with

stationary target, 237,
237–238

in two dimensions, 240, 240–241
and wave speed on stretched

string, 452
elasticity, 338–342

of atoms and rigid bodies, 339,
339–340

and dimensions of solids, 340,
340

and equilibrium of indetermi-
nate structures, 338–339, 339

hydraulic stress, 341–342, 341t
sample problem involving, 342
shearing, 341
tension and compression,

340–341, 341
elastic potential energy, 178

determining, 182–183
traveling wave on stretched

string, 454, 454
electrical breakdown, 646, 646
electrically isolated object, 611
electrically neutral objects, 611
electrical–mechanical analogy,

906–907, 906t
electric charge, 610–611. See also

circuits
conservation of, 621–622
and current, 747–748
enclosed, 667, 670
excess, 611
free, 735
hypercharge, 1364
induced, 612–613
LC oscillations, 904, 908
lines of, 638–643, 639, 699,

699–700
measures of, 639t
negative, 611, 611
net, 611
neutralization of, 611
positive, 611, 734
quantization of, 619–621
in RLC circuits, 911, 912
sharing of, 619
in single-loop circuits, 772

electric circuits, see circuits
electric current, 745–752, 746, 747

in alternating current, 913–914
for capacitive load, 918
current density, 748–752, 749
decay, 885
direction in circuits, 747,

747–748
induced, 864–865, 870–874
for inductive load, 920
LC oscillations, 904, 908–910
magnetic field due to, 837,

837–842, 838
in multiloop circuits, 781–782

power in, 760–761
for resistive load, 916
in single-loop circuits, 774,

774–775
time-varying, in RC circuits, 790

electric dipole, 825
in electric field, 647–650
electric field due to, 635–638,

636
electric potential due to,

697–698, 698
induced, 698
potential energy of, 648

electric dipole antenna, 974,
974–975

electric dipole moment, 637, 648
dielectrics, 733–734
induced, 698
permanent, 698

electric displacement, 736
electric field, 630–651, 804

calculating from potential,
701, 701–702

calculating potential from,
691, 691–693

capacitors, 720
crossed fields, 810–813, 811
as displacement current,

948–949
due to charged disk, 643–644,

700, 700
due to charged particle, 633,

633–635
due to electric dipole, 635–638,

636
due to line of charge, 638–643,

639
electric dipole in, 647–650
energy stored in capacitor,

728–730
equipotential surfaces, 690,

690–691, 691
external, 669–670, 707, 707
field lines in, 631–632
and Gauss’ law, 666–667, 844,

942, 949t
Hall effect, 810–813, 811, 820
induced, 874–879, 875, 977,

977–978
net, 634–635
nonuniform, 632, 663–664
point charge in, 645–647
polarized light, 907, 988
potential energy in, 687–689,

730
rms of, 982–983
in spherical metal shell, 670
system of charged particles in,

703–705, 704
traveling electromagnetic

waves in, 974–977, 975, 976
uniform, 632, 660–662, 692
as vector field, 631
work done by, 686–689

electric field lines, 631, 631–632,
632

electric fish, 786–787

electric flux, 659–664
in closed surface, 661–664
and Gauss’ law, 659–664
and induction, 872
net, 661–662
through Gaussian surfaces, 660,

660–664, 661
in uniform electric fields,

660–662
electric force, 803
electric generator, 772
electric motor, 822–824, 823, 950
electric potential, 685–708

calculating field from, 701,
701–702

charged isolated conductor,
706, 706–707

defined, 686
due to charged particles, 694,

694–696, 695
due to continuous charge

distribution, 698–700, 699,
700

due to electric dipole, 697–698,
698

from electric fields, 691–693
and electric potential energy,

686, 686–689, 689
equipotential surfaces, 690–691,

691
and induced electric field,

877–878
in LC oscillator, 909–910
potential energy of charged

particle system, 703–705, 704
and power/emf, 779
and self-induction, 882

electric potential energy:
and electric potential, 686,

686–689, 689
for system of charged particles,

703–705, 704
electric quadrupole, 654
electric spark, 646, 646

airborne dust explosions set off
by, 729–730

dangers of, 707, 707
and pit stop fuel dispenser fire,

792, 792
electric wave component, of

electromagnetic waves,
975–976, 976

electromagnets, 804, 804, 806t
electromagnetic energy, 909.

See also electromagnetic
waves

electromagnetic force, 1338,
1352–1353

electromagnetic oscillations, 904
damped, in RLC circuits,

910–912
defined, 904
forced, 912–920, 914
LC oscillations, 903–910

electromagnetic radiation, 974
electromagnetic spectrum, 973,

973–974
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electromagnetic waves, 445,
972–999. See also reflection;
refraction

energy transport and Poynting
vector, 980–983, 982

Maxwell’s rainbow, 973–974
polarization, 907, 985–990, 986,

988, 997–998
radiation pressure, 983–985
reflection of, 990–998, 998
refraction of, 990–996
traveling, 974–980, 976, 977

electromagnetism, 836, 950, 1334
electromotive force (emf),

772–774. See also emf
devices

in alternating current, 913–914
defined, 772, 876–877
and energy and work, 773,

773–774
induced, 865, 867–868, 870–871
potential and power in circuits,

779
self-induced, 881

electrons, 612, 1335
accelerator studies, 818
in alternating current, 913
barrier tunneling, 1176–1179,

1177
in Bohr model, 1203, 1203–1204
bubble chamber tracks, 622,

622, 806
charge, 620, 620t
Compton scattering, 1159–1162,

1160
conduction, 1255–1261
discovery by Thomson,

808–810, 809, 1276
energy of, 1142, 1186–1191
excitation of, 1189, 1189, 1255
as fermions, 1336
in hydrogen atom, 1212
kinetic energy of, 1118, 1118
as leptons, 1338, 1344, 1344t
magnetic dipole moment, 826,

826t
and magnetism, 952–957
majority carrier in n-type

semiconductors, 1264, 1264t
matter waves, 1166–1170, 1167,

1168
matter waves of, 1166–1170,

1167, 1168, 1173, 1186
momentum, 954
momentum of, 953–955, 955,

1142
orbits of, 955, 955–956, 956
from proton–antiproton annihi-

lation, 1340t
in p-type semiconductors, 1264,

1264t
radial probability density of,

1211–1212
radiation dosage, 1296–1297
speed of, 1118, 1118
spin, 1336–1337, 1337
spin-flip, 966

in superconductors, 763
valence, 1187, 1235, 1256
wave functions of trapped,

1191–1195
electron capture, 1292n
electron diffraction, 1168
electron microscope, 1183
electron neutrinos, 1343–1344,

1344t
electron–positron annihilation,

622, 622, 1338
electron spin, 1336–1337, 1337
electron traps:

finite well, 1195, 1195–1197
hydrogen atoms as, 1202
multiple electrons in rectangu-

lar, 1230–1234
nanocrystallites, 1197–1198,

1198
one-dimensional, 1187–1199
quantum corrals, 1199, 1199
quantum dots, 1187, 1198,

1198–1199
two- and three-dimensional,

1200, 1200–1201
wave functions, 1191–1195,

1192
electron-volt, 689, 1258
electroplaques, 786, 786–787
electrostatic equilibrium, 668
electrostatic force, 611, 631

and Coulomb’s law, 613,
613–619

electric field due to point
charge, 633, 633–635

point charge in electric field,
645–647

work done by, 686, 688–689
electrostatic stress, 744
electroweak force, 1353
elementary charge, 620, 645–646
elementary particles, 1334–1354

bosons, 1337, 1337
conservation of strangeness,

1346–1347
eightfold way patterns,

1347–1348
fermions, 1336, 1337
general properties, 1334–1343
hadrons, 1338, 1345–1346
leptons, 1338, 1343–1345
messenger particles, 1352–1354
quarks, 1349–1352

elevator cab, velocity and acceler-
ation of, 18–19

elliptical orbits, 373–374
emf, see electromotive force
emf devices, 772, 773. See also

batteries
internal dissipation rate, 779
real and ideal, 773, 773

emf rule, 775
emission. See also photon

emission
from hydrogen atom, 1212
spontaneous, 1242, 1242–1243
stimulated, 1242–1243

emission lines, 1098, 1098–1099,
1206

emissivity, 536, 1166
enclosed charge, 667, 670
endothermic reactions, 1343
energy. See also kinetic energy;

potential energy; work
for capacitor with dielectric,

733
conservation of, 149, 195–199,

197, 705
in current-carrying wire, 761
damped, 431
defined, 149
of electric dipole in electric

field, 650
in electric field, 728–730
and induction, 873
and magnetic dipole moment,

825, 954
in magnetic field, 887–888
and relativity, 1138–1143
in RLC circuits, 911
scalar nature of, 41
in simple harmonic motion,

421–423, 422
as state property, 585
in transformers, 932
transport, by electromagnetic

waves, 980–983, 982
of trapped electrons, 1186–1191
traveling wave on stretched

string, 454, 454–455
energy bands, 1254, 1254
energy density, 730, 889–890
energy density, kinetic, 402
energy gap, 1254, 1254
energy levels:

excitation and de-excitation,
1189–1190

full, empty, and partially occu-
pied, 1231

hydrogen, 1204, 1206, 1207
in infinite potential well,

1190–1191, 1201, 1232–1234
multiple electron traps,

1231–1233
nuclear, 1284
in single electron traps, 1188,

1189
of trapped electrons, 1187–1191

energy-level diagrams, 1189, 1189,
1232, 1232

energy method, of calculating cur-
rent in single-loop circuits,
774

engines:
Carnot, 590–593, 591, 597–598
efficiency, 591, 592–593, 596,

597, 597–598
ideal, 591–592
perfect, 593, 593
Stirling, 594, 594

Englert, François, 1354
entoptic halos, 1108, 1110
entropy, 583–603

change in, 584–588

engines, 590–595
force due to, 589–590
and irreversible processes, 584
and probability, 601–602
refrigerators, 595–598, 596
sample problems involving,

587–588, 594–595, 600–602
and second law of thermody-

namics, 588–590
as state function, 585, 586–587
statistical mechanics view of,

598–602
entropy changes, 584–588

Carnot engines, 592–593
Stirling engines, 594

entropy postulate, 584
envelope, in diffraction intensity,

1095
equation of continuity, 398–401,

400
equations of motion:

constant acceleration, 24, 24t
constant linear vs. angular

acceleration, 266t
free-fall, 27–28

equilibrium, 99, 327–342, 1308
and center of gravity, 330–332,

331
electrostatic, 668
of forces on particles, 618
and Hall effect, 811
of indeterminate structures,

338–339, 339
protons, 618
requirements of, 329–330
sample problems involving,

332–337, 526–527
secular, 1304
static, 327–329, 328, 329
thermal, 515

equilibrium charge, capacitors in
RC circuits, 789

equilibrium points, in potential
energy curves, 189–190

equilibrium position, simple pen-
dulum, 425

equilibrium separation, atoms in
diatomic molecules, 205

equipartition of energy, 569
equipotential surfaces, 690,

690–691
equivalence, principle of, 374–375
equivalent capacitance:

in parallel capacitors, 724, 724,
726–727, 783t

in series capacitors, 724–727,
783t

equivalent resistance:
in parallel resistors, 782,

782–787, 783t
in series resistors, 777, 783t

escape speed, 367–368, 367t, 704,
713

evaporative cooling, 545
events, 1117

Lorentz factor, 1122–1123,
1123, 1138
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Lorentz transformation,
1129–1133

measuring, 1118–1119, 1119
relativity of length, 1125–1128,

1126, 1132–1133
relativity of simultaneity, 1120,

1120–1121, 1131
relativity of time, 1121,

1121–1125, 1131
relativity of velocity, 1133,

1133–1134
event horizon, 362
excess charge, 611
exchange coupling, 962
excitation, of electrons, 1189, 1189,

1255
excitation energy, 1217
excited states, 1189, 1189
expansion, of universe, 1356–1357
exploding bodies, Newton’s sec-

ond law and motion of, 221
explosions:

one-dimensional, 231, 231
two-dimensional, 232, 232

extended objects, 108
drawing rays to locate, 1026,

1026
in plane mirrors, 1012,

1012–1013
external agents, applied force

from, 688
external electric field:

Gaussian surfaces, 669–670
isolated conductor in, 707, 707

external forces, 99
collisions and internal energy

transfers, 196–197
system of particles, 220–223
work done with friction,

192–194
work done without friction, 192

external magnetic field:
and diamagnetism, 958
and ferromagnetism, 957
and paramagnetism, 957, 959,

960
external torque, 310–311, 313, 314
eye, see human eye
eyepiece:

compound microscope, 1032,
1032

refracting telescope, 1033

F
face-centered cubic, 1253
Fahrenheit temperature scale, 518,

518–519
falling body, terminal speed of,

130–132, 131
farad, 718
Faraday, Michael, 610, 631,

731–732, 865, 880
Faraday’s experiments, 865–866

and Lenz’s law, 868, 868–871,
869

Maxwell’s equation form, 949t
mutual induction, 891

reformulation, 876–877
self-induction, 881, 881–882

Faraday’s law of induction,
865–866, 943, 978

faults, rock, 60
femtometer, 1282
fermi (unit), 1282
Fermi, Enrico, 1310, 1320, 1336
Fermi–Dirac statistics, 1258
Fermi energy, 1255, 1257–1259,

1261
Fermilab accelerator, 1335, 1352
Fermi level, 1255
fermions, 1336, 1337
Fermi speed, 1255–1256
ferromagnetic materials, 957, 996
ferromagnetism, 957, 961–964,

962. See also iron
FET (field-effect-transistor), 1270,

1270–1271
field declination, 951
field-effect-transistor (FET), 1270,

1270–1271
field inclination, 951
field of view:

refracting telescope, 1033
spherical mirror, 1015

final state, 528, 529, 565
finite well electron traps, 1195,

1195–1197
fires, pit stop fuel dispenser,

792, 792
first law of thermodynamics,

528–533
equation and rules, 531
heat, work, and energy of a

system, 528–530, 533
sample problem involving, 533
special cases of, 532–533, 532t

first-order line, 1099
first reflection point, 1006
fish, electric, 786–787
fission, nuclear, 1309–1316
fission rate, nuclear reactor,

1319–1320
fixed axis, 259, 311, 311–312
floaters, 1082
floating, 395, 395
flow, 398–400, 399, 400, 402
flow calorimeter, 547
fluids, 130, 386–405

apparent weight in, 396–397
Archimedes’ principle, 394–397,

395
Bernoulli’s equation, 401–404
defined, 386–387
density, 387
equation of continuity, 398–401,

400
motion of ideal, 398, 398–399
Pascal’s principle, 393, 393–394
pressure, 387–388
pressure measurement, 392,

392–393
at rest, 388–391, 389
sample problems involving, 388,

391, 397, 401, 403–404

fluid streamlines, 399–400, 400
flux. See also electric flux

magnetic, 866–867, 880, 942
volume, 660

focal length:
compound microscope, 1032,

1032
refracting telescope, 1033, 1033
simple magnifying lens, 1031,

1031–1032
spherical mirrors, 1015,

1015–1016
thin lenses, 1024, 1024–1025

focal plane, 1057
focal point:

compound microscope, 1032,
1032

objects outside, 1017
real, 1016, 1016
refracting telescope, 1033, 1033
simple magnifying lens, 1031,

1031–1032
spherical mirrors, 1015,

1015–1016
thin lenses, 1024, 1024–1025
two-lens system, 1027,

1027–1028
virtual, 1016, 1016

force(s), 312t. See also specific
forces, e.g.: gravitational
force

attractive, 356
buoyant, 394–397, 395
centripetal, 133–138, 134
conservative, 179–181, 180
in crossed magnetic fields,

809–810
defined, 94
and diamagnetism, 958
due to entropy, 589–590
electric field vs., 631
equilibrium, 99
equilibrium of, on particles, 618
external vs. internal, 99
and linear momentum, 224–225
lines of, 631
and motion, 14
net, 99, 616–618
and Newton’s first law, 96–98
Newton’s laws applied to,

108–113
and Newton’s second law, 98–101
and Newton’s third law, 106–107
nonconservative, 179
normal, 104, 104–105
path independence of

conservative, 179–181, 180
principle of superposition

for, 96
and radiation pressure, 984
resultant, 99
of rolling, 299, 299–301
superposition principle for, 615
tension, 105, 105–106
unit of, 96, 96–97
as vector quantities, 96
and weight, 103–104

force constant, 159
forced oscillations, 432–433, 433,

912–920, 914
forced oscillators, 432–433, 433
force law, for simple harmonic

motion, 419
forward-bias connection, junction

rectifiers, 1267–1268, 1268
fractional efficiency, 1182
Franklin, Benjamin, 611, 619, 621
Fraunhofer lines, 1250–1251
free-body diagrams, 99–101, 100,

108–113
free charge, 735
free electrons, 746
free-electron model, 758, 1255
free expansion:

first law of thermodynamics
for, 532, 532t

ideal gases, 573–575, 585,
585–588, 586

free-fall acceleration (g), 27,
27–28, 427

free-fall flight, 28
free oscillations, 432–433, 914
free particle:

Heisenberg’s uncertainty prin-
ciple for, 1172, 1172–1174

matter waves for, 1187
free space, 974
freeze-frames, 414, 415, 416
freezing point, 518t, 525
freight ton, 11
frequency. See also angular

frequency
of circulating charged particles,

814–817
cutoff, 1156–1157
of cyclotrons, 818–819
driving, 914
and index of refraction, 1050
of photons, 1154
proper, 1135
simple harmonic motion,

414–417, 417
sound waves, 483
waves, 448
and wavelength, 446–449
wave on stretched string, 453

Fresnel bright spot, 1082–1083,
1083

friction, 105, 105, 124–130, 125–126
cold-weld, 126–127, 127
as nonconservative force

(kinetic friction), 179
properties of, 127
and rolling, 299, 299
sample problems involving,

128–130, 132
types of, 125, 126
work done by external force

with, 192, 192–194, 193
frictionless surface, 95, 105
fringing, 674
f subshells, 1235
fuel charge, nuclear reactor,

1320–1321
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fuel rods, 1317, 1320–1321
fulcrum, 345
full electron levels, 1231
fully charged capacitor, 719
fully constructive interference,

460, 460, 461t, 465, 486
fully destructive interference, 460,

460, 461t, 465, 486–487
fundamental mode, 468, 494
fused quartz:

coefficient of linear expansion
for, 521t

index of refraction, 992t
index of refraction as function

of wavelength, 993
resistivity, 754t

fusion, 1140, 1284, 1322–1329
controlled, 1326–1329
laser, 1328–1329
most probable speed in, 1322,

1333
process of, 1322–1323
in Sun and stars, 1322, 1324,

1324–1326

G
g (free-fall acceleration), 27, 27–28

measuring, with physical
pendulum, 427

G (gravitational constant), 355
g units (acceleration), 21
galaxies, 354

Doppler shift, 1135–1136, 1148,
1148

formation in early universe,
1360

gravitational lensing caused by,
375, 376

matter and antimatter in,
1338–1339

recession of, and expansion of
universe, 1356

superluminal jets, 1149
Galilean transformation

equations, 1129
Galileo, 382
gamma rays, 622, 806, 974

bubble chamber track, 1169,
1169

radiation dosage, 1297
ultimate speed, 1118

gamma-ray photons, 1324, 1338
gas constant, 551
gases, 549. See also ideal gases;

kinetic theory of gases
compressibility, 387
confined to cylinder with

movable piston, 528–530, 529
density of selected, 387t
as fluids, 387
polyatomic, 565
specific heats of selected, 525t
speed of sound in, 481t
thermal conductivity of

selected, 535t
gas state, 526
gauge pressure, 390

gauss (unit), 806
Gauss, Carl Friedrich, 660
Gaussian form, of thin-lens

formula, 1043
Gaussian surfaces:

capacitors, 719–723
defined, 660
electric field flux through, 660,

660–664, 661
external electric field, 669,

669–670
and Gauss’ law for magnetic

fields, 942
Gauss’ law, 659–677

charged isolated conductor,
668–670

and Coulomb’s law, 666–667
cylindrical symmetry, 671,

671–672
dielectrics, 735, 735–737
for electric fields, 942, 949t
and electric flux, 659–664
formulas, 664–665
for magnetic fields, 941–943,

942, 949t
and Maxwell’s equation, 949t
planar symmetry, 673,

673–675, 674
spherical symmetry,

675–677, 676
Geiger counter, 1276
general theory of relativity,

374–376, 1117, 1123–1124
generator. See also alternating

current generator
electric, 772
homopolar, 835

geomagnetic pole, 807, 950
geometric addition of vectors, 41,

41–42, 42, 44
geometrical optics, 991, 1054, 1082
geosynchronous orbit, 382
glass:

coefficient of linear expansion,
521t

index of refraction, 992t
as insulator, 612
polarization of light by

reflection, 998
rubbing rod with silk, 610,

610, 621
shattering by sound waves, 490

Global Positioning System (GPS),
1, 1117

g-LOC (g-induced loss of con-
sciousness), 77, 408

gluons, 818, 1350, 1354
gold, 1239

alpha particle scattering,
1277–1279

impact with alpha particle, 705
isotopes, 1280

GPS (Global Positioning System),
1, 1117

grand jeté, 221–222, 222
grand unification theories

(GUTs), 1355

graphs, average velocity on, 15,
16, 16

graphical integration:
of force in collision, 227, 227
for one-dimensional motion,

29, 29–30
work calculated by, 164–166

grating spectroscope, 1100,
1100–1101

gravitation, 354–377
and Big Bang, 1360
defined, 355
Einstein’s view of, 374–376, 376
gravitational acceleration

(ag), 360
inside Earth, 362–364
near Earth’s surface, 359–362,

360
Newton’s law of, 355–356, 369
potential energy of, 364–368
sample problems involving, 358,

362, 368, 373–374
variation with altitude, 360t

gravitational constant (G), 355
gravitational force, 102–103, 621,

1338
center of gravity, 330–332, 331
and Newton’s law of gravita-

tion, 355–356, 356
pendulums, 425, 425
and potential energy, 366–367
and principle of superposition,

357–359
work done by, 155–158, 156

gravitational lensing, 376, 376
gravitational potential energy,

178, 364–368, 365
determining, 182
and escape speed, 367–368
and gravitational force, 366–367

graviton, 376
gray (unit), 1296
grounding, 612
ground speed, 90
ground state, 1189, 1189–1190

wave function of hydrogen,
1208–1210, 1209

zero-point energy, 1193–1194
gry (unit), 8
g subshells, 1235
gyroscope precession, 317,

317–318

H
hadrons, 1338, 1345–1346
half-life, 1281, 1287, 1295, 1335
half-width of diffraction grating

lines, 1098, 1099–1100
Hall effect, 810–813, 811, 820
Hall potential difference, 811
halogens, 1236
halo nuclides, 1282
hang, in basketball, 86–87
hanging blocks, 108, 108–109
hard reflection, of traveling waves

at boundary, 467

harmonic motion, 414
harmonic number, 468, 492–496
harmonic series, 468
hearing threshold, 490t
heat, 520–538, 594–595

absorption of, 522–527
defined, 523
first law of thermodynamics,

528–533
path-dependent quantity, 531
sample problems involving,

526–527, 533, 537–538
signs for, 523–524
and temperature, 523, 523–524,

526–527
thermal expansion, 520
and thermal expansion,

520–522
transfer of, 534–538
and work, 528–530

heat capacity, 524
heat engines, 590–595
heat of fusion, 526, 526t
heats of transformation, 525–527,

526t
heat of vaporization, 526, 526t
heat pumps, 596
heat transfer, 534–538
hectare, 11
hedge maze, searching through,

48–49
height, of potential energy step,

1174
Heisenberg’s uncertainty

principle, 1172, 1172–1174
helical paths, charged particles,

816, 816–817
helium burning, in fusion, 1325
helium–neon gas laser, 1243,

1243–1245
henry (unit), 880
hertz, 414
Higgs, Peter, 1354
Higgs boson, 1354
Higgs field, 1354
holes, 1238, 1262

majority carrier in p-type
semiconductors, 1264, 1264t

minority carrier in n-type
semiconductors, 1264, 1264t

holograms, 1241
home-base level, for spectral

series, 1206
homopolar generator, 835
Hooke, Robert, 159
Hooke’s law, 159–160, 188
hoop, rotational inertia 

for, 274t
horizontal motion, in projectile

motion, 72, 73
horizontal range, in projectile

motion, 71, 73
horsepower (hp), 167
hot chocolate effect, 506
h subshells, 1235
Hubble constant, 1356
Hubble’s law, 1356–1357
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human body:
as conductor, 612
physiological emf devices, 772

human eye, 1031
floaters, 1082
image production, 1012
and resolvability in vision,

1092, 1093
sensitivity to different

wavelengths, 973, 974
human wave, 472
Huygens, Christian, 1048
Huygens’ principle, 1048, 1048–1049
Huygens’ wavelets, 1083
hydraulic compression, 341
hydraulic engineering, 386
hydraulic jack, 394
hydraulic lever, 393, 393–394
hydraulic stress, 341–342, 341t
hydrogen, 1201–1212

Bohr model, 1203, 1203–1204
as electron trap, 1202
emission lines, 1100, 1100–1101
formation in early universe,

1360
in fusion, 1140, 1322–1329
heats of transformation, 526t
quantum numbers, 1206–1208,

1208t
RMS speed at room

temperature, 556t
and Schrödinger’s equation,

1205–1212
spectrum of, 1206
speed of sound in, 481t
thermal conductivity, 535t
wave function of ground state,

1208–1210, 1209
hydrogen bomb (thermonuclear

bomb), 1326–1327
hydrostatic pressures, 388–391
hypercharge, 1364
hysteresis, 963, 963–964

I
icicles, 546
ideal emf devices, 773
ideal engines, 591–592
ideal fluids, 398, 398–399
ideal gases, 550–554

adiabatic expansion, 571–575,
572

average speed of molecules,
561–563

free expansion, 585, 585–588,
586

ideal gas law, 551–552
internal energy, 564–568
mean free path, 558, 558–560
molar specific heats, 564–568
most probable speed of

molecules, 562
RMS speed, 554–556, 555, 556t
sample problems involving,

553–554, 556, 560, 563,
567–570, 574–575

translational kinetic energy, 557
work done by, 552–554

ideal gas law, 551–552, 552
ideal gas temperature, 517
ideal inductor, 882
ideal refrigerators, 596
ideal solenoid, 849–850
ideal spring, 160
ideal toroids, 850
ideal transformers, 931, 931–932
ignition, in magnetic confinement,

1328
images, 1010–1036

extended objects, 1026, 1026
locating by drawing rays, 1026,

1026
from plane mirrors, 1010–1014,

1012
from spherical mirrors,

1014–1020, 1015, 1016, 1033,
1033–1034

from spherical refracting sur-
faces, 1020–1022, 1021, 1034,
1034

from thin lenses, 1023–1030,
1025, 1026, 1034–1036, 1035

types of, 1010–1011
image distances, 1012
impedance, 923, 926, 932
impedance matching, in

transformers, 932
impulse, 227

series of collisions, 227–228, 228
single collision, 226, 226–227

incident ray, 991, 991
incoherent light, 1059
incompressible flow, 398
indefinite integral, 26
independent particle model, of

nucleus, 1298–1299
indeterminate structures,

equilibrium of, 338–339, 339
index of refraction:

and chromatic dispersion,
993–994

common materials, 992t
defined, 992, 1049
and wavelength, 1050–1052

induced charge, 612–613
induced current, 864–865
induced electric dipole moment,

698
induced electric fields, 874–879,

875, 977, 977–978
induced emf, 865, 867–868, 870–873
induced magnetic fields, 943–946,

944
displacement current, 947, 948
finding, 948
from traveling electromagnetic

waves, 979, 979–980
inductance, 879–880

LC oscillations, 903–910
RLC circuits, 910–912
RL circuits, 882–886
series RLC circuits, 921–926
solenoids, 880, 881

induction:
of electric fields, 874–879
and energy density of magnetic

fields, 889–890
and energy stored in magnetic

fields, 887–888
and energy transfers, 871–874,

872
Faraday’s and Lenz’s laws,

864–871, 978
in inductors, 879–880
Maxwell’s law, 944, 979
mutual, 890–892, 891
and RL circuits, 882–886
self-, 881, 881–882, 890

inductive reactance, 919
inductive time constant, 884–885
inductors, 879–880

with ac generator, 918, 918–919,
919

phase and amplitude relation-
ships for ac circuits, 920t

RL circuits, 882–886
series RLC circuits, 922

inelastic collisions:
defined, 233
in one dimension, 234,

234–236, 235
in two dimensions, 240–241

inertial confinement, 1328
inertial reference frames,

86–87, 1117
inexact differentials, 531
infinitely deep potential energy

well, 1188, 1189
infinite potential well, 1189

detection probability in,
1192–1194

energy levels in, 1190–1191,
1201, 1232–1234

wave function normalization in,
1194–1195

inflation, of early universe, 1359
initial conditions, 420
initial state, 528, 529, 565
in phase:

ac circuits, 920t
resistive load, 915
sound waves, 486
thin-film interference, 1064
traveling electromagnetic

waves, 974
waves, 459, 461

instantaneous acceleration:
one-dimensional motion,

20–22, 21
two- and three-dimensional

motion, 67–69
instantaneous angular

acceleration, 261
instantaneous angular 

velocity, 260
instantaneous power, 167, 198
instantaneous velocity:

one-dimensional motion, 18–19
two- and three-dimensional

motion, 65

insulators, 612–613, 762
electrical properties, 1254,

1254–1255
resistivities of selected, 754t
unit cell, 1253

integrated circuits, 1271
intensity:

defined, 981
diffraction gratings, 1098–1099
double-slit diffraction, 1095,

1096–1097
double-slit interference,

1060–1062, 1061, 1096
electromagnetic waves, 982,

982–983
single-slit diffraction,

1086–1090, 1087, 1089
of sound waves, 488–492, 489
of transmitted polarized light,

987–990, 988
interference, 459, 459–461, 460,

1047–1072. See also
diffraction

combining more than two
waves, 1062

diffraction vs., 1095–1097
double-slit from matter waves,

1167, 1167–1168
double-slit from single photons,

1162, 1162–1164
fully constructive, 460, 460,

461t, 465, 486
fully destructive, 460, 460, 461t,

465, 486–487
intensity in double-slit,

1059–1063, 1061
intermediate, 460, 460, 461t, 487
and rainbows, 1051–1052, 1052
sound waves, 485–488, 486
thin films, 1064, 1064–1071
and wave theory of light,

1047–1052
Young’s double-slit experiment,

1053–1058, 1055
interference factor, 1096
interference fringes, 1055,

1055–1056
interference pattern, 1055,

1055, 1057
interfering waves, 459
interferometer, 1070–1071
intermediate interference, 460,

460, 461t, 487
internal energy, 514

and conservation of total
energy, 195

and external forces, 196–197
and first law of

thermodynamics, 531
of ideal gas by kinetic theory,

564–568
internal forces, 99, 220–223
internal resistance:

ammeters, 788
circuits, 776, 776
emf devices, 779–780

internal torque, 310
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International Bureau of Weights
and Standards, 3, 6–7

International System of Units,
2–3, 2t

interplanar spacing, 1106
intrinsic angular momentum, 953,

954
inverse cosine, 45, 45
inverse sine, 45, 45
inverse tangent, 45, 45
inverse trigonometric functions,

45, 45
inverted images, 1016, 1017
ionization energy, 1220, 1221
ionized atoms, 1206
ion tail, 1002
iron, 1236

Curie temperature, 962
ferromagnetic material, 957,

962
quantum corral, 1199, 1199
radius of nucleus, 620–621
resistivity, 754t

iron filings:
bar magnet’s effect on, 942, 942
current-carrying wire’s effect

on, 838
irreversible processes, 584,

588–590
irrotational flow, 398, 402
island of stability, 1281
isobars, 1281
isobaric processes summarized,

575, 575t
isochoric processes summarized,

575, 575t
isolated spherical capacitors,

722, 730
isolated system, 184–185

conservation of total energy,
196

linear momentum conservation,
230–231

isospin, 1364
isotherm, 552, 552
isothermal compression, 552,

591, 591
isothermal expansion, 552

Carnot engine, 591, 591
entropy change, 585–586, 586

isothermal processes, 575, 575t
isotopes, 1280
isotopic abundance, 1280n.a
isotropic materials, 754
isotropic point source, 982
isotropic sound source, 489

J
joint, in rock layers, 141
Josephson junction, 1178
joule (J), 150, 524
jump seat, 443
junctions, circuits, 781. See also

p-n junctions
junction diodes, 762
junction lasers, 1269, 1269
junction plane, 1266, 1266

junction rectifiers, 1267–1268, 1268
junction rule, Kirchoff’s, 781
Jupiter, escape speed for, 367t

K
kaons, 1124–1125, 1335

and eightfold way, 1347t
and strangeness, 1346

kelvins, 515, 516, 518, 521
Kelvin temperature scale, 515,

516–517, 518
Kepler, Johannes, 369
Kepler’s first law (law of orbits),

369, 369
Kepler’s second law (law of

areas), 369, 369–370
Kepler’s third law (law of

periods), 370, 370–371, 370t
kilogram, 6, 6–7
kilowatt-hour, 167
kinematics, 14
kinetic energy, 283t

in collisions, 233
and conservation of mechanical

energy, 184–187
and conservation of total

energy, 195–199
defined, 150
and momentum, 1141, 1142
in pion decay, 1342
and relativity, 1140–1141, 1141
of rolling, 297, 298–301
of rotation, 271–273, 272
sample problems involving, 150,

161–162, 277
satellites in orbit, 371–372, 372
simple harmonic motion,

422, 422
traveling wave on stretched

string, 454, 454–455
and work, 152, 152–155
yo-yo, 302

kinetic energy density, of fluids, 402
kinetic energy function, 188
kinetic frictional force,

126–127, 127
as nonconservative force, 179
rolling wheel, 299

kinetic theory of gases, 549–576
adiabatic expansion of ideal

gases, 571–575, 572
average speed of molecules,

561–563
and Avogadro’s number, 550
distribution of molecular

speeds, 560–563, 561
ideal gases, 550–554
mean free path, 558, 558–560
molar specific heat, 564–571
most probable speed of

molecules, 562
pressure, temperature, and

RMS speed, 554–556
and quantum theory, 569,

570–571
RMS speed, 554–556, 556t
translational kinetic energy, 557

Kirchoff’s current law, 781
Kirchoff’s junction rule, 781
Kirchoff’s loop rule, 775
Kirchoff’s voltage law, 775
K shell, 1238, 1238
Kundt’s method, 513

L
lagging, in ac circuits, 920, 920t
lagging waves, 461
lambda particles, eightfold way

and, 1347t
lambda-zero particle, 1348
laminar flow, 398
Large Magellanic Cloud, 1293
lasers, 1240–1245

coherence, 1060
helium–neon gas, 1243,

1243–1245
junction, 1269, 1269
operation, 1242, 1242–1245
radiation pressure, 985
surgery applications, 1241, 1241

laser fusion, 1328–1329
lasing, 1244
lateral magnification:

compound microscope, 1032
spherical mirrors, 1017
two-lens system, 1027–1030

lateral manipulation, using
STM, 1178

lattice, 339, 339, 1253, 1253
law of areas (Kepler’s second

law), 369, 369–370
law of Biot and Savart, 837–838,

844, 852
law of conservation of angular

momentum, 312, 312–316
law of conservation of electric

charge, 621–622
law of conservation of energy,

195–199, 197
law of conservation of linear

momentum, 230
law of orbits (Kepler’s first law),

369, 369
law of periods (Kepler’s third

law), 370, 370, 370t
laws of physics, 47
law of reflection, 991
law of refraction, 992, 1048,

1048–1052
Lawson’s criteria, 1327,

1328–1329
LC oscillations, 903–910

and electrical–mechanical
analogy, 906–907, 906t

qualitative aspects, 904,
904–906

quantitative aspects, 907–910
LC oscillators, 906–910, 906t

electrical–mechanical analogy,
906–907

quantitative treatment of,
907–910

radio wave creation, 974,
974–977

lead:
coefficient of linear expansion,

521t
heats of transformation, 526t
specific heats, 525t
thermal conductivity, 535t

leading, in ac circuits, 920, 920t
leading waves, 461
LEDs (light-emitting diodes),

1268–1270, 1269
Leidenfrost effect, 545
length:

coherence, 1241
consequences of Lorentz

transformation equations,
1131–1132

length contraction, 1126–1128
proper, 1126
relativity of, 1125–1128, 1126,

1131–1132
rest, 1126
of selected objects, 4t
units of, 3–4
in wavelengths of light, 1071

lens, 1023. See also thin lenses
bi-concave, 1044
bi-convex, 1044
converging, 1023, 1024, 1025
diffraction by, 1091
diverging, 1023, 1024, 1025
magnifying, 1031, 1031–1032
meniscus concave, 1044
meniscus convex, 1044
plane-concave, 1044
plane-convex, 1044
simple magnifying, 1031,

1031–1032
symmetric, 1025–1026
thin-film interference of coat-

ing on, 1068
lens maker’s equation, 1024
Lenz’s law, 868, 868–871, 869, 881
leptons, 1338, 1343–1345, 1344t

conservation of lepton number,
1344–1345

formation in early universe,
1359

lepton number, 1344–1345
lifetime:

compound nucleus, 1300
radionuclide, 1287–1288
subatomic particles, 1123

lifting capacity, balloons, 581
light, 445, 977. See also diffraction;

interference; photons;
reflection; refraction

absorption and emission by
atoms, 1221

coherent, 1059, 1241
components of, 993–994
Doppler effect, 499
in early universe, 1359–1360
Huygens’ principle, 1048,

1048–1049
incoherent, 1059
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law of reflection, 991
law of refraction, 992, 1048,

1048–1052
monochromatic, 993, 995–996,

1241
polarized light, 907, 986,

986–989, 988
as probability wave, 1162–1164
speed of, 445
travel through media of

different indices of
refraction, 1050, 1050

unpolarized light, 986, 986
visible, 974, 1118
as wave, 1047–1052, 1048
wave theory of, 1047–1052,

1081–1083
white, 993, 993–994, 994, 1085

light-emitting diodes (LEDs),
1268–1270, 1269

light-gathering power refracting
telescope, 1033

lightning, 610, 717
in creation of lodestones, 964
upward streamers, 672, 672

light quantum, 1154–1155
light wave, 977, 982–983
light-year, 12
line(s):

diffraction gratings, 1099–1100
spectral, 1206
as unit, 8

linear charge density, 638–639, 639t
linear density, of stretched string,

452, 453
linear expansion, 521, 521
linear momentum, 224–225, 312t

completely inelastic collisions
in one dimension, 234–236

conservation of, 230–232, 242
elastic collisions in one

dimension, with moving
target, 238–239

elastic collisions in one
dimension, with stationary
target, 237–238

elastic collisions in two
dimensions, 240–241

at equilibrium, 328
and impulse of series of

collisions, 227–228
and impulse of single collision,

226–227
inelastic collisions in one

dimension, 234, 234–236, 235
inelastic collisions in two

dimensions, 240–241
of photons, 1159, 1159–1162,

1160
sample problems involving, 229,

231–232, 236, 239–240, 243
system of particles, 225

linear momentum-impulse
theorem, 227

linear motion, 259
linear oscillator, 419, 419–421

linear simple harmonic oscillators,
419, 419–421

line integral, 692
line of action, of torque, 278, 278
lines of charge:

electric field due to, 638–643,
639

electric potential due to, 699,
699–700

lines of force, 631
line of symmetry, center of mass

of solid bodies with, 217
line shapes, diffraction grating,

1103
liquefaction, of ground during

earthquakes, 7–8
liquids:

compressibility, 341, 387
density of selected, 387t
as fluids, 386–387
heat absorption, 524–527
speed of sound in, 481t
thermal expansion, 520–522

liquid state, 525–526
Local Group, 354
Local Supercluster, 354
lodestones, 950, 964
longitudinal magnification, 1045
longitudinal motion, 446
longitudinal waves, 446, 446
long jump, conservation of

angular momentum in,
314, 314

loop model, for electron orbits,
955, 955–956, 956

loop rule, 775, 781, 883, 883–884
Lorentz factor, 1122–1123, 1123,

1138
Lorentz transformation,

1129–1133
consequences of, 1131–1133
pairs of events, 1130t

Loschmidt number, 581
loudness, 489
L shell, 1238, 1238
Lyman series, 1206, 1207, 1212

M
Mach cone, 503, 503
Mach cone angle, 503, 503
Mach number, 503
magic electron numbers, 1299
magnets, 610, 803–808, 804, 807,

950–952
applications, 803–804
bar, 806–807, 807, 826, 826t,

942, 942, 950, 950
electromagnets, 804, 804, 806t
north pole, 807, 807, 942
permanent, 804

magnetically hard material,
966, 996

magnetically soft material,
966, 996

magnetic confinement, 1327
magnetic dipoles, 807, 824–826,

825, 942, 942

magnetic dipole moment,
824–826, 825, 1221, 1222,
1222. See also orbital mag-
netic dipole moment; spin
magnetic dipole moment

of compass needle, 964
diamagnetic materials, 957–958
effective, 1225
ferromagnetic materials,

957, 962
paramagnetic materials,

957, 959
magnetic domains, 962–964, 963
magnetic energy, 887–888
magnetic energy density, 889–890
magnetic field, 803–827, 836–854.

See also Earth’s magnetic
field

Ampere’s law, 844, 844–848
circulating charged particle,

814–817, 815, 816
crossed fields and electrons,

808–810, 811
current-carrying coils as

magnetic dipoles, 851–854
cyclotrons and synchrotrons,

818, 818–819
defined, 804–808, 805
dipole moment, 824–826
displacement current,

946–950, 947
due to current, 836–842
Earth, 950, 950–951
energy density of, 889–890
energy stored in, 887–888
external, 957–960
and Faraday’s law of induction,

865–866
force on current-carrying wires,

820–822
Gauss’ law for, 941–943, 949t
Hall effect, 810, 810–813
induced, 943–946, 944
induced electric field from,

878–879
induced emf in, 870–871
and Lenz’ law, 868, 868–871, 869
parallel currents, 842–843, 843
producing, 804
rms of, 982–983
selected objects and situations,

806t
solenoids and toroids, 848–851
torque on current loops,

822–824, 823
traveling electromagnetic

waves, 974–977, 975, 976
magnetic field lines, 806–807, 807,

838–839
magnetic flux, 866–867, 880, 942
magnetic force, 610, 805

circulating charged particle,
814–817, 815, 816

current-carrying wire, 820,
820–822, 842–843, 843

particle in magnetic field, 805,
805–806

magnetic materials, 941, 956–957
magnetic monopole, 804, 942
magnetic potential energy,

887–888
magnetic resonance, 1229–1230,

1230
magnetic resonance imaging

(MRI), 941, 941
magnetic wave component, of

electromagnetic waves,
975–976, 976

magnetism, 941–965. See also
Earth’s magnetic field

of atoms, 1221, 1221
diamagnetism, 957–958, 958
and displacement current,

946–950
of electrons, 952–957
ferromagnetism, 957, 961–964,

962
Gauss’ law for magnetic fields,

941–943
induced magnetic fields,

943–946
magnets, 950–952
Mid-Atlantic Ridge, 951, 951
paramagnetism, 957, 959,

959–961
magnetization:

ferromagnetic materials, 962
paramagnetic materials,

959, 960
magnetization curves:

ferromagnetic materials, 962
hysteresis, 963, 963
paramagnetic materials, 960

magnetizing current, transformers,
931

magnetometers, 951
magnification:

angular, 1031–1033
lateral, 1017, 1027–1030, 1032
longitudinal, 1045

magnifying lens, simple, 1031,
1031–1032

magnitude:
of acceleration, in one-

dimensional motion, 20
of acceleration, in two- and

three-dimensional motion, 68
of angular momentum, 305–306
of displacement in one-dimen-

sional motion, 14–15
estimating order of, 4–5
of free-fall acceleration, 27
of vectors, 41–42, 42
of velocity, in one-dimensional

motion, 15
of velocity, in two- and three-

dimensional motion, 68
magnitude-angle notation (vec-

tors), 43
magnitude ratio, traveling electro-

magnetic waves, 976
majority carriers, 1264, 1266,

1266–1267
mantle (Earth), 360, 380, 380
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mass, 283t
defined, 97–98
sample problems involving, 243
scalar nature of, 41, 98
of selected objects, 7t
units of, 6–8
and wave speed on stretched

string, 452
weight vs., 104

mass dampers, 422
mass energy, 1138–1139, 1139t
mass excess, 1283
mass flow rate, 400
massless cord, 105, 105
massless-frictionless pulleys, 105,

106, 108, 108–109
massless spring, 160
mass number, 621–622, 1280,

1280t
mass spectrometer, 817, 817
matter:

antimatter, 1310t, 1338–1339
baryonic, 1358, 1361
dark, 1358, 1361, 1361
energy released by 1 kg, 1310t
magnetism of, see magnetism
nonbaryonic, 1361, 1361
nuclear, 1285
particle nature of, 1168,

1168–1169, 1169
wave nature of, 1166–1170

matter waves, 445, 1166–1179,
1186–1213

barrier tunneling by, 1176–1179
of electrons, 1166–1170, 1167,

1169, 1173, 1186
of electrons in finite wells,

1195–1197, 1196
energies of trapped electrons,

1186–1191
and Heisenberg uncertainty

principle, 1172–1174
hydrogen atom models,

1201–1212
reflection from a potential step,

1174–1176
Schrödinger’s equation for,

1170–1172
two- and three-dimensional

electron traps, 1197–1201
wave functions of trapped

electrons, 1191–1195
matter wave interference, 1168
maxima:

diffraction patterns, 1082, 1082
double-slit interference, 1055,

1055–1057, 1060–1061
single-slit diffraction,

1083–1085, 1088, 1090
thin-film interference, 1066

Maxwell, James Clerk, 561, 569,
610, 844, 944, 973–974, 984,
1048, 1353

Maxwellian electromagnetism,
1334

Maxwell’s equations, 941,
949t, 1171

Maxwell’s law of induction, 944,
979

Maxwell’s rainbow, 973–974
Maxwell’s speed distribution law,

561, 561–563
mean free distance, 759
mean free path, of gases, 558,

558–560
mean free time, 759
mean life, radioactive decay, 1287,

1335
measurement, 1–8

of angles, 45
conversion factors, 3
International System of

Units, 2–3
of length, 3–4
of mass, 6–8
of pressure, 392, 392–393
sample problems involving,

4–5, 7–8
significant figures and decimal

places, 4
standards for, 1–2
of time, 5–6

mechanical energy:
conservation of, 184–187
and conservation of total

energy, 195
damped harmonic oscillator,

430–431
and electric potential energy,

705
satellites in orbit, 371–372, 372
simple harmonic motion,

421–422, 422
mechanical waves, 445. See also

wave(s)
medium, 977
megaphones, 1082
melting point, 525, 526t
meniscus concave lens, 1044
meniscus convex lens, 1044
mercury barometer, 388, 392, 392
mercury thermometer, 520
mesons, 1338, 1345–1346

and eightfold way, 1347–1348,
1347t

and quark model, 1349–1351,
1355

underlying structure suggested,
1348

messenger particles, 1352–1354
metals:

coefficients of linear expansion,
521t

density of occupied states,
1259–1260, 1260

density of states, 1257,
1257–1258

elastic properties of selected,
341t

electrical properties, 1252–1261
lattice, 339, 339
occupancy probability, 1258,

1258–1259
resistivities of selected, 754t

speed of sound in, 481t
thermal conductivity of

selected, 535t
unit cell, 1253

metallic conductors, 746, 762
metal-oxide-semiconductor-field

effect-transistor (MOSFET),
1270, 1270–1271

metastable states, 1242
meter (m), 1–4
metric system, 2
Michelson’s interferometer,

1070–1071, 1071
microfarad, 718
micron, 8
microscopes, 1030, 1032, 1032
microscopic clocks, time dilation

tests, 1123
microstates, in statistical mechan-

ics, 599–600
microwaves, 445, 499, 649
Mid-Atlantic Ridge, magnetism,

951, 951
Milky Way galaxy, 354, 355
Millikan oil-drop experiment,

645, 645–646
millimeter of mercury (mm Hg),

388
miniature black holes, 379
minima:

circular aperture diffraction,
1091, 1091

diffraction patterns, 1082, 1082
double-slit interference, 1055,

1055, 1056, 1060–1061
single-slit diffraction,

1083–1088, 1087
thin-film interference, 1067

minority carriers, 1264, 1267
mirage, 1011, 1011
mirrors, 1012

in Michelson’s interferometer,
1071

plane, 1010–1014, 1012
spherical, 1015, 1015–1021,

1016, 1033, 1033–1034
moderators, for nuclear reactors,

1317
modulus of elasticity, 340
Mohole, 380
molar mass, 550
molar specific heat, 525, 564–571

at constant pressure, 566–567,
566–567

at constant volume, 565,
565–566, 565t, 567

and degrees of freedom,
568–570, 569t

of ideal gas, 564–568
and rotational/oscillatory

motion, 570, 570–571
of selected materials, 525t

molecular mass, 550
molecular speeds, Maxwell’s

distribution of, 560–563, 561
molecules, 1220
moment arm, 278, 278

moment of inertia, 272
momentum, 224–225. See also

angular momentum; linear
momentum

center of momentum frame,
1151

and kinetic energy, 1141, 1142
in pion decay, 1342
in proton decay, 1348
and relativity, 1138
and uncertainty principle,

1173–1174
monatomic molecules, 564,

568–570, 569, 569t
monochromatic light, 993

lasers, 1241
reflection and refraction of,

995–996
monovalent atom, 1256
Moon, 354, 355

escape speed, 367t
potential effect on humans,

378–379
radioactive dating of rocks,

1296
more capacitive than inductive

circuit, 924
more inductive than capacitive

circuit, 924
Moseley plot, 1238, 1239–1240
MOSFET (metal-oxide-semicon-

ductor-field-effect transis-
tor), 1270, 1270–1271

most probable configuration, 600
most probable speed in fusion,

562, 1322, 1333
motion:

graphical integration, 29, 29–30
one-dimensional, see one-

dimensional motion
oscillatory and rotational, 570,

570–571
projectile, 70, 70–75
properties of, 14
relative in one dimension, 78,

78–79
relative in two dimensions, 80,

80–81
of system’s center of mass,

220–221
three-dimensional, see

three-dimensional motion
two-dimensional, see

two-dimensional motion
motorcycle, acceleration of, 25–26
mountain pull, 380
MRI (magnetic resonance

imaging), 941, 941
M shell, 1238, 1238
multiloop circuits, 781,

781–787, 782
current in, 781–782
resistances in parallel, 782,

782–787
multimeter, 788
multiplication factor, nuclear

reactors, 1318
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multiplication of vectors, 50–55
multiplying a vector by a

scalar, 50
multiplying two vectors, 50–55
scalar product of, 51, 51–52
vector product of, 50, 52–55, 53

multiplicity, of configurations in
statistical mechanics, 599

muons, 1123–1124, 1335, 1343,
1344t

decay, 1341–1342
from proton–antiproton

annihilation, 1340, 1340t
muon neutrinos, 1343, 1344t
musical sounds, 492–496, 493, 495
mutual induction, 890–892, 891
mysterious sliding stones, 140

N
nanotechnology, 1187
National Institute of Standards

and Technology (NIST), 6
natural angular frequency, 433,

914
nautical mile, 11
NAVSTAR satellites, 1117
n channel, in MOSFET, 1270
near point, 1031, 1031
negative charge, 611, 611
negative charge carriers, 747, 750
negative direction, 14, 14
negative lift, in race cars, 136,

136–137
negative terminal, batteries, 718,

718–719, 773
negative work, 530
net current, 845, 850
net electric charge, 611
net electric field, 634–635
net electric flux, 661–662
net electric potential, 692
net force, 99, 616–618
net torque, 278, 310–311, 823
net wave, 458, 495
net work, 153, 592
neutral equilibrium (potential

energy curves), 190
neutralization, of charge, 611
neutral pion, 1118
neutrinos, 1292

and beta decay, 1292, 1293
and conservation of lepton

number, 1344–1345
in fusion, 1325
as leptons, 1338
as nonbaryonic dark matter,

1358
from proton–antiproton annihi-

lation, 1340t
neutrons, 612, 1335

accelerator studies, 818
balance in nuclear reactors,

1317, 1317–1318
charge, 620, 620t
control in nuclear reactors,

1317, 1317–1320
discovery of, 1353

and eightfold way, 1347t
as fermions, 1336
formation in early universe,

1359
as hadrons, 1338
magnetic dipole moment, 826
and mass number, 621–622
as matter wave, 1168
spin angular momentum, 953
thermal, 1311–1315, 1317

neutron capture, 1300
neutron diffraction, 1168
neutron excess, 1281
neutron number, 1280, 1280t
neutron rich fragments, 1312
neutron stars, 88, 380

density of core, 387t
escape speed, 367t
magnetic field at surface of,

806t
newton (N), 96
Newton, Isaac, 95, 355, 369, 1082
Newtonian form, of thin-lens for-

mula, 1043
Newtonian mechanics, 95, 1171,

1334
Newtonian physics, 1187
newton per coulomb, 631
Newton’s first law, 95–98
Newton’s law of gravitation,

355–356, 369
Newton’s laws, 95, 108–113
Newton’s second law, 98–101

angular form, 307–308
and Bohr model of hydrogen,

1203–1204
for rotation, 279–281
sample problems involving,

100–101, 108–113, 223,
280–281

system of particles, 220–223,
221

in terms of momentum,
224–225

translational vs. rotational
forms, 283t, 312t

units in, 99t
Newton’s third law, 106–107
NIST (National Institute of

Standards and Technology), 6
NMR (nuclear magnetic reso-

nance), 1229–1230
NMR spectrum, 1229–1230, 1230
noble gases, 1235, 1299
nodes, 465, 466, 467–468
noise, background, 508
nonbaryonic dark matter, 1358
nonbaryonic matter, 1361, 1361
nonconductors, 612

electric field near parallel,
674–675

Gauss’ law for, 673, 673
nonconservative forces, 179
noninertial frame, 97
nonlaminar flow, 398
nonpolar dielectrics, 734
nonpolar molecules, 698

nonquantized portion, of energy
level diagram, 1196, 1196

nonsteady flow, 398
nonuniform electric field, 632,

663–664
nonuniform magnetic field, 955,

956, 956
nonviscous flow, 398
normal (optics), 991, 991
normal force, 104, 104–105
normalizing, wave function,

1193–1195
normal vector, for a coil of

current loop, 824
north magnetic pole, 950
north pole, magnets, 807, 807, 942,

942
n-type semiconductors, 1263,

1263–1264. See also p-n
junctions

nuclear angular momentum,
1284

nuclear binding energy, 1217,
1283, 1283–1284, 1312, 1313

per nucleon, 1283, 1283, 1285,
1312

selected nuclides, 1280t
nuclear energy, 1284, 1309–1329

fission, 1309–1316
in nuclear reactors, 1316–1321
thermonuclear fusion,

1322–1329
nuclear fission, 1284, 1309–1316,

1313
nuclear force, 1284
nuclear fusion, see thermonuclear

fusion
nuclear magnetic moment, 1284
nuclear magnetic resonance

(NMR), 1229–1230
nuclear physics, 1276–1301

alpha decay, 1289–1291
beta decay, 1292–1295
discovery of nucleus, 1276–1279
nuclear models, 1297–1300
nuclear properties, 1279–1287
radiation dosage, 1296–1297
radioactive dating, 1295–1296
radioactive decay, 1286–1289

nuclear power plant, 1318
nuclear radii, 1282
nuclear reactions, 1139
nuclear reactors, 1316–1321
nuclear spin, 1284
nuclear weapons, 1284
nucleons, 1280, 1338

binding energy per, 1283, 1283,
1285, 1312

magic nucleon numbers, 1299
nucleus, 612

discovery of, 1276–1279
models, 1297–1300, 1298
mutual electric repulsion in,

620–621
properties of, 1279–1287
radioactive decay, 621–622,

1335–1336

nuclides, 1279, 1280t. See also
radioactive decay

halo, 1282
magic nucleon numbers, 1299
organizing, 1280–1281, 1281
transuranic, 1319
valley of, 1294, 1294

nuclidic chart, 1280–1281, 1281,
1293–1294, 1294

number density:
of charge carriers, 811–812,

1253t, 1262
of conduction electrons, 1256

O
objects:

charged objects, 631
electrically isolated, 611
electrically neutral, 611
extended, 1012, 1012–1013,

1026, 1026
object distance, 1012
objective:

compound microscope, 1032,
1032

refracting telescope, 1033, 1033
occupancy probability, 1258,

1258–1259
occupied levels, 1231
occupied state density, 1259–1260,

1260
ohm (unit), 753, 754
ohmic losses, 930
ohmmeter, 754
ohm-meter, 754
Ohm’s law, 756–759, 757, 758
oil slick, interference patterns

from, 1064
one-dimensional elastic collisions,

237, 237–240
one-dimensional electron traps:

infinite potential well, 1188
multiple electrons in, 1231
single electron, 1187–1199

one-dimensional explosions, 231,
231

one-dimensional inelastic
collisions, 234, 234–236, 235

one-dimensional motion, 13–32
acceleration, 20–30
average velocity and speed,

15–17
constant acceleration, 23–27
defined, 13
free-fall acceleration, 27–28
graphical integration for,

29–30
instantaneous acceleration,

20–22
instantaneous velocity and

speed, 18–19
position and displacement,

14–15
properties of, 14
relative, 78, 78–79
sample problems involving,

17–19, 22, 25–26, 28, 30, 79

I-14 INDEX



Schrödinger’s equation for,
1170–1172

one-dimensional variable force,
162–163, 163

one-half rule, for intensity of trans-
mitted polarized light, 987

one-way processes, 584
open ends (sound waves), 493–495
open-tube manometer, 392,

392–393
optics, 973
optical fibers, 997, 1241, 1269
optical instruments, 1030–1036
optical interference, 1047. See also

interference
orbit(s):

circular vs. elliptical, 373–374
eccentricity of, 369, 370t, 371–372
geosynchronous, 382
law of, 369, 369
sample problems involving,

373–374
of satellites, 371–373, 372
semimajor axis of, 369, 369
of stars, 382

orbital angular momentum, 954,
955, 1222–1224, 1223, 1223t

orbital energy, 1204–1205
orbital magnetic dipole moment,

954, 1223–1224
diamagnetic materials, 957–958
ferromagnetic materials, 957
paramagnetic materials, 959

orbital magnetic quantum
number, 954–955, 1208,
1208t, 1223t

orbital quantum number, 1208,
1208t, 1223t, 1254

orbital radius, 1203–1204
order numbers, diffraction

gratings, 1099
order of magnitude, 4–5
organizing tables, for images in

mirrors, 1018, 1018t
orienteering, 44
origin, 14
oscillation(s), 413–434. See also

electromagnetic oscillations;
simple harmonic motion
(SHM)

of angular simple harmonic
oscillator, 423, 423–424

damped, 430–431, 431
damped simple harmonic

motion, 430–432
energy in simple harmonic

motion, 421–423
forced, 432–433, 433
free, 432–433
and molar specific heat, 570,

570–571
of pendulums, 424–428
simple harmonic motion,

413–421
simple harmonic motion and

uniform circular motion,
428–429

oscillation mode, 467–468
out of phase:

ac circuits, 920t
capacitive load, 917–918
inductive load, 919
sound waves, 486
thin-film interference, 1066
waves, 459

overpressure, 393
oxygen, 569

distribution of molecular
speeds at 300 K, 561

heats of transformation, 526t
molar specific heat and degrees

of freedom, 569t
molar specific heat at constant

volume, 565t
paramagnetism of liquid, 959
RMS speed at room tempera-

ture, 556t

P
pair production, 622
pancake collapse, of tall building,

253
parallel-axis theorem, for

calculating rotational inertia,
273–275, 274

parallel circuits:
capacitors, 724, 724, 726–727,

783t
resistors, 782, 782–787, 783t
summary of relations, 783t

parallel components, of unpolar-
ized light, 998

parallel currents, magnetic field
between two, 842–843, 843

parallel-plate capacitors, 718, 718
capacitance, 720–721
with dielectrics, 733–734, 734, 735
displacement current, 947,

947–949
energy density, 730
induced magnetic field, 943–946

paramagnetic material, 957
paramagnetism, 957, 959, 959–961
parent nucleus, 622
partial derivatives, 484, 978
partially occupied levels, 1231
partially polarized light, 907, 986
particles, 14, 620. See also specific

types, e.g.: alpha particles
particle accelerators, 818–819,

1334–1335, 1336
particle–antiparticle annihilation,

1338
particle detectors, 1335, 1336
particle nature of matter, 1168,

1168–1169, 1169
particle systems. See also collisions

angular momentum, 310–311
center of mass, 214–219, 215, 219
electric potential energy of,

703–705, 704
linear momentum, 225
Newton’s second law for,

220–223, 221

pascal (Pa), 388, 480, 985
Pascal’s principle, 393, 393–394
Paschen series, 1206, 1207
patch elements, 661
path-dependent quantities, 530
path-independent quantities, 688

conservative forces, 179–181,
180

gravitational potential energy,
366

path length difference:
double-slit interference, 1055,

1055–1056, 1061–1063
and index of refraction, 1051
single-slit diffraction, 1083,

1083–1084, 1084, 1086
sound waves, 486
thin-film interference, 1065–1066

Pauli exclusion principle, 1230
and bosons, 1337
and energy levels in crystalline

solids, 1254
and fermions, 1337
and Fermi speed, 1255–1256
nucleons, 1298–1299
and periodic table, 1235

pendulum(s), 424–428
as angular simple harmonic

oscillator, 423, 423–424
ballistic, 236, 236
bob of, 425
conical, 146
conservation of mechanical

energy, 185, 185–186
physical, 426, 426–428, 427
simple, 425, 425–426
torsion, 423, 423
underwater swinging (damped),

430
perfect engines, 593, 593
perfect refrigerators, 596, 596
perihelion distance, 371
period(s):

law of, 370, 370, 370t
of revolution, 76
simple harmonic motion, 414,

417, 418
sound waves, 483
waves, 448, 448

periodic motion, 414
periodic table, 1154, 1221

building, 1234–1236
x rays and ordering of

elements, 1236–1240
permanent electric dipole

moment, 698
permanent magnets, 804
permeability constant, 837
permittivity constant, 614–615
perpendicular components, of

unpolarized light, 998
phase:

simple harmonic motion, 416,
417

waves, 447, 447
phase angle:

alternating current, 920t

simple harmonic motion,
416, 417

phase change, 525–526
phase constant:

alternating current, 920t, 926
series RLC circuits, 923–924,

924, 926
simple harmonic motion,

416, 417
waves, 448, 448–449

phase difference:
double-slit interference, 1055,

1060, 1061–1063
Michelson’s interferometer,

1071
optical interference, 1050–1052
and resulting interference

type, 461t
single-slit diffraction, 1086
sound waves, 486
thin-film interference, 1066
waves, 459–460

phase shifts, reflection, 1065, 1065
phase-shifted sound waves, 487
phase-shifted waves, 459–460
phasors, 462–464, 463

capacitive load, 917, 917–918
double-slit interference,

1061–1063
inductive load, 919
resistive load, 915–916
series RLC circuits, 924
single-slit diffraction,

1086–1090, 1087, 1089
phasor diagram, 462–463
phosphorus, doping silicon with,

1265
photodiode, 1269
photoelectric current, 1156
photoelectric effect, 1057,

1155–1158
photoelectric equation, 1157–1158
photoelectrons, 1156
photomultiplier tube, 1164
photons, 1153–1155

as bosons, 1337
in early universe, 1359
gamma-ray, 1324, 1338
and light as probability wave,

1162–1164
momentum, 1159, 1159–1162,

1160
and photoelectric effect,

1155–1158
as quantum of light, 1153–1155
in quantum physics, 1164–1166
virtual, 1353

photon absorption, 1154, 1155,
1221

absorption lines, 1206, 1207
energy changes in hydrogen

atom, 1205
energy for electrons from,

1189–1190
lasers, 1242

photon emission, 1154, 1221
emission lines, 1206, 1207
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energy changes in hydrogen
atom, 1205

energy from electrons for, 1190
lasers, 1242, 1242–1243
stimulated emission, 1242, 1243

physics, laws of, 47
physical pendulum, 426–428, 427
picofarad, 718
piezoelectricity, 1178
pinhole diffraction, 1082
pions, 1118, 1335

decay, 1341, 1342
and eightfold way, 1347t
as hadrons, 1338
as mesons, 1338
from proton–antiproton

annihilation, 1339–1343, 1340t
reaction with protons,

1342–1343
pipes, resonance between, 495–496
pitch, 387
pitot tube, 410–411
planar symmetry, Gauss’ law, 673,

673–675, 674
planar waves, 480
Planck, Max, 1165–1166
Planck constant, 1154
plane-concave lens, 1044
plane-convex lens, 1044
plane mirrors, 1010–1014, 1012
plane of incidence, 991
plane of oscillation, polarized

light, 986, 986
plane of symmetry, center of mass

of solid bodies with, 217
plane-polarized waves, 985–986
plane waves, 974
plastics:

electric field of plastic rod,
641–642

as insulators, 612
plates, capacitor, 718, 718–719
plate tectonics, 13
plum pudding model, of atom,

1277
p-n junctions, 1266, 1266–1270

junction lasers, 1269, 1269
junction rectifiers, 1267–1268,

1268
light-emitting diodes (LEDs),

1268–1270, 1269
pn junction diode, 757, 762
point (unit), 8
point charges. See also charged

particles
Coulomb’s law, 613, 613–619
in electric field, 633–635,

645–647
electric potential due to, 694,

694–695, 695
pointillism, 1092–1093
point image, 1012–1013
point of symmetry, center of mass

of solid bodies with, 217
point source, 480

isotropic, 489, 982
light, 982, 1012

polar dielectrics, 733–734
polarity:

of applied potential difference,
756–757

of Earth’s magnetic field,
reversals in, 950, 951

polarization, 907, 985–990, 986, 988
intensity of transmitted

polarized light, 987–990
and polarized light, 986,

986–987
by reflection, 997–998, 998

polarized light, 907, 986, 986–989,
988

polarized waves, 907, 985–990, 986
polarizer, 988
polarizing direction, 986–987, 987
polarizing sheets, 907, 988, 988–990
polarizing sunglasses, 998
polar molecules, 698
Polaroid filters, 986
pole faces, horseshoe magnet, 807
polyatomic gases, 565
polyatomic molecules, 566

degrees of freedom, 568–570,
569, 569t

molar specific heats at constant
volume, 565t

polycrystalline solids, 963
population inversion, in lasers,

1243–1245, 1269
porcelain, dielectric properties,

733
position, 283t

one-dimensional motion, 14,
14–15, 15

reference particle, 429
relating linear to angular, 269
simple harmonic motion, 417
two- and three-dimensional

motion, 63, 63–64, 64
uncertainty of particle,

1173–1174
position vector, 63, 63
positive charge, 611, 734
positive charge carriers, 747

drift speed, 750
emf devices, 773

positive direction, 14, 14
positive ions, 612
positive kaons, 1124–1125
positive terminal, batteries, 718,

718–719, 773
positrons:

antihydrogen, 1338
bubble chamber tracks, 622, 806
electron–positron annihilation,

622, 622, 1338
in fusion, 1322–1323

potassium, radioactivity of, 1289
potential, see electric potential
potential barrier, 1176–1179, 1177,

1290–1291, 1314
potential difference, 779

across moving conductors,
812–813

across real battery, 778–780

for capacitive load, 918
capacitors, 719–723, 720
capacitors in parallel, 724, 724,

726–727
capacitors in series, 724–727,

725
Hall, 811
for inductive load, 920
LC oscillations, 904
and Ohm’s law, 756–757
for resistive load, 916
resistors in parallel, 782–787
resistors in series, 776, 776–777,

784–787
RL circuits, 882–886, 883
single-loop circuits, 774,

774–775
between two points in circuit,

777, 777–780, 779
potential energy, 177–183

and conservation of
mechanical energy, 184,
184–187, 185

and conservation of total
energy, 195–196

defined, 177
determining, 181–183
electric, 686, 686–689, 689,

703–705, 704
of electric dipoles, 648
in electric field, 689, 730
magnetic, 887–888
sample problems involving, 181,

183, 190–191, 194
satellites in orbit, 371–372,

372
simple harmonic motion,

421–422, 422
and work, 178, 178–181, 179
yo-yo, 301–302

potential energy barrier,
1176–1179, 1177

potential energy curves,
187–191, 189

potential energy function,
188–190, 189

potential energy step, reflection
from, 1174–1176, 1175

potential method, of calculating
current in single-loop
circuits, 774–775

potential well, 190
potentiometer, 732
pounds per square inch (psi),

388
power, 166–168, 167, 197–198, 283t

in alternating current circuits,
927–929

average, 166
defined, 166
in direct current circuits,

760–761
of electric current, 760–761
and emf in circuits, 779
radiated, 1166
resolving, 1033, 1033,

1102–1104, 1103, 1183

in RLC circuit, 929, 933
in rotation, 283
sample problem involving, 168
traveling wave on stretched

string, 454, 454–455
power factor, 927, 929
power lines, transformers for, 930
power transmission systems, 745,

930–931
Poynting vector, 980–983, 982
precession, of gyroscope, 317,

317–318
precession rate, of gyroscope, 318
prefixes, for SI units, 2t
pressure:

fluids, 387–388
and ideal gas law, 550–554
measuring, 392, 392–393
radiation, 983–985
and RMS speed of ideal gas,

554–556
scalar nature of, 41
as state property, 585
triple point of water, 516
work done by ideal gas at

constant, 553
pressure amplitude (sound

waves), 483, 484
pressure field, 631
pressure sensor, 387
pressurized-water nuclear reactor,

1318, 1318
primary coil, transformer, 931
primary loop, pressurized-water

reactor, 1318, 1318–1319
primary rainbows, 994, 1007, 1052,

1052
primary winding, transformer, 931
principal quantum number, 1208,

1208t, 1223t, 1254
principle of conservation of

mechanical energy, 185
principle of energy conservation,

149
principle of equivalence, 374–375
principle of superposition,

96, 615
for gravitation, 357–359
for waves, 458, 458

prisms, 994, 994, 1005
probability, entropy and, 601–602
probability density, 1171–1172

barrier tunneling, 1177
finding, 1172
trapped electrons, 1192,

1192–1194
probability distribution function,

561
probability of detection:

hydrogen electron, 1209, 1212
trapped electrons, 1192–1194

probability wave:
light as, 1162–1164
matter wave as, 1167

projectile(s):
defined, 70
dropped from airplane, 74
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elastic collisions in one
dimension, with moving
target, 238–239

elastic collisions in one
dimension, with stationary
target, 237–238

inelastic collisions in one
dimension, 234

launched from water slide, 75
series of collisions, 228
single collision, 226–227

projectile motion, 70, 70–75
effects of air on, 73, 73
trajectory of, 73, 73
vertical and horizontal

components of, 70–73, 71–73
proper frequency, 1135
proper length, 1126
proper period, 1137
proper time, 1122
proper wavelength, 1135
protons, 612, 1335

accelerator studies, 818
and atomic number, 621
as baryons, 1338
charge, 620, 620t
decay of, 1348
in equilibrium, 618
as fermions, 1336
formation in early universe, 1359
in fusion, 1322–1329
as hadrons, 1338
magnetic dipole moment,

826, 826t
mass energy, 1139t
and mass number, 621–622
as matter wave, 1168, 1187
reaction with pions, 1342–1343
spin angular momentum, 953
ultrarelativistic, 1142–1143

proton number, 1280, 1280t
proton-proton (p-p) cycle, 1324,

1324–1326
proton synchrotrons, 819
p subshells, 1235
p-type semiconductors, 1264, 1264
pulleys, massless-frictionless, 105,

106, 108, 108–109
pulsars, secondary time standard

based on, 9
pulse, wave, 445, 446
P waves, 506

Q
QCD (quantum chromodynamics),

1354
QED (quantum electrodynamics),

954, 1352
quadrupole moment, 654
quanta, 1154
quantization, 629, 1154, 1187

electric charge, 619–621
energy of trapped electrons,

1187–1191
orbital angular momentum, 954
of orbital energy, 1204–1205
spin angular momentum, 953

quantum, 1154
quantum chromodynamics

(QCD), 1354
quantum corrals, 1199, 1199
quantum dots, 1187, 1198,

1198–1199
quantum electrodynamics (QED),

954, 1352
quantum jump, 1189
quantum mechanics, 95, 1154
quantum numbers, 1188, 1223t

charge, 1341
conservation of, 1348–1349
for hydrogen, 1206–1208
orbital, 1208, 1208t, 1223t, 1254
orbital magnetic, 954–955, 1208,

1208t, 1223t
and Pauli exclusion principle,

1230
and periodic table, 1234–1236
principal, 1208, 1208t, 1223t,

1254
spin, 1223t, 1225, 1335–1336
spin magnetic, 953, 1223t, 1224,

1335–1336
quantum physics. See also electron

traps; Pauli exclusion princi-
ple; photons; Schrödinger’s
equation

barrier tunneling, 1176–1179,
1177

and basic properties of atoms,
1220–1222

confinement principle, 1187
correspondence principle, 1193
defined, 1154
Heisenberg’s uncertainty prin-

ciple, 1172, 1172–1174
hydrogen wave function,

1208–1210
matter waves, 1187
nucleus, 1276
occupancy probability, 1258,

1258–1259
particles, 1335
photons in, 1164–1166
and solid-state electronic

devices, 1253
quantum states, 1187, 1221

degenerate, 1200
density of, 1257, 1257–1258
density of occupied, 1259–1260,

1260
hydrogen with n = 2, 1210,

1210–1211
quantum theory, 569, 570–571,

1154, 1187
quantum transition, 1189
quantum tunneling, 1176–1179,

1177
quarks, 818, 1349–1352, 1350,

1350t
charge, 620
formation in early universe,

1359
quark family, 1350t
quark flavors, 1350, 1353–1354

quasars, 376, 1356
quicksand, 412
Q value, 1140, 1291, 1294–1295,

1316, 1324–1325

R
R-value, 534–535
race cars:

collision with wall, 229, 229
fuel dispenser fires, 792, 792
negative lift in Grand Prix cars,

136, 136–137
rad (unit), 1296–1297
radar waves, 445
radial component:

of linear acceleration, 270
of torque, 278

radial probability density, 1209,
1211–1212

radians, 45, 260
radiated power, 1166
radiated waves, 974
radiation:

in cancer therapy, 1276
cosmic background, 1357–1358,

1360, 1361
dose equivalent, 1297
electromagnetic, 974
reflected, 984
short wave, 974
ultraviolet, 950

radiation dosage, 1296–1297
radiation heat transfer, 536–538
radiation pressure, 983–985
radioactive dating, 1295,

1295–1296
radioactive decay, 621–622,

1286–1289, 1335–1336
alpha decay, 1289–1291, 1290
beta decay, 1292–1295, 1293,

1351
muons, 1123
and nuclidic chart, 1293–1294,

1294
process, 1286–1288

radioactive elements, 1277
radioactive wastes, 1318, 1319
radioactivity, of potassium, 1289
radionuclides, 1280
radio waves, 445, 499, 974
radius of curvature:

spherical mirrors, 1015,
1015–1016, 1016

spherical refracting surfaces,
1020–1021, 1021

radon, 1276
rail gun, 843, 843
rainbows, 994, 994–995

Maxwell’s, 973–974
and optical interference,

1051–1052, 1052
primary, 994, 1007, 1052, 1052
secondary, 994, 994, 1007, 1052
tertiary, 1007

ramp, rolling down, 299, 299–300
randomly polarized light, 986,

986

range, in projectile motion, 73, 73
rare earth elements, 957, 1239
rattlesnake, thermal radiation

sensors, 537
rays, 480, 480

incident, 991, 991
locating direct images with,

1018, 1018–1019
locating indirect object images

with, 1026, 1026
reflected, 991, 991
refracted, 991, 991

ray diagrams, 1018, 1018–1019
Rayleigh’s criterion, 1091,

1091–1094
RBE (relative biology effective-

ness factor), 1297
RC circuits, 788–792, 789

capacitor charging, 789,
789–790

capacitor discharging, 789,
790–792

real batteries, 773, 773, 777,
777–778

real emf devices, 773, 773
real engines, efficiency of, 593,

597–598
real fluids, 398
real focal point, 1016, 1016
real images, 1011

spherical mirrors, 1017
spherical refracting surfaces,

1020–1021, 1021
thin lenses, 1025, 1025

real solenoids, 849
recessional speed, of universe,

1357
rechargeable batteries, 773–774
recharging batteries, 779
red giant, 1325
red shift, 1135, 1367–1368
reference circle, 429
reference configuration, for

potential energy, 182
reference frames, 78–79

inertial, 86–87
noninertial, 97

reference line, 259, 259
reference particle, 429
reference point, for potential

energy, 182
reflected light, 991
reflected radiation, 984
reflected ray, 991, 991
reflecting planes, 1105, 1105–1106
reflection, 990–998, 991

first and second reflection
points, 1006

law of, 991
polarization by, 997–998, 998
from potential energy step,

1174–1176, 1175
from a potential step,

1174–1176
of standing waves at boundary,

466–467, 467
total internal, 996–997, 997
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reflection coefficient, 1176
reflection phase shifts, 1065, 1065
reflectors, corner, 1046
refracted light, 991
refracted ray, 991, 991
refracting telescope, 1032–1033,

1033
refraction, 990–996, 991. See also

index of refraction
angle of, 991, 991
and chromatic dispersion, 993,

993–994
law of, 992, 1048, 1048–1052

refrigerators, 595–598, 596
relative biology effectiveness

(RBE) factor, 1297
relative motion:

in one dimension, 78, 78–79
in two dimensions, 80, 80–81

relative speed, 242
relativistic particles, 1124–1125
relativity, 1116–1144, 1153, 1334

Doppler effect for light,
1134–1137, 1136

and energy, 1138–1143
general theory of, 374–376,

1117, 1123–1124
of length, 1125–1128, 1126,

1131–1132
Lorentz transformation,

1129–1133
measuring events, 1118–1119,

1119
and momentum, 1138
postulates, 1117–1118
simultaneity of, 1120,

1120–1121, 1131
special theory of, 95, 977, 1117
of time, 1121, 1121–1125, 1131
of velocities, 1133, 1133–1134

relaxed state, of spring, 159,
159–160

released energy, from fusion
reaction, 1140

rem (unit), 1297
repulsion, in nucleus, 620–621
repulsive force, 610
resistance, 752–763

alternating current, 920t
Ohm’s law, 756–759, 757
parallel circuits, 782, 782–787
and power in electric current,

760–761
RC circuits, 788–792
and resistivity, 752–756, 754
RLC circuits, 910–912,

921–926
RL circuits, 882–886
in semiconductors, 762–763
series circuits, 776, 776–777,

921–926
superconductors, 763

resistance rule, 775
resistivity, 754, 1253

calculating resistance from, 754,
754–755

Ohm’s law, 756–759

selected materials at room
temperature, 754t

semiconductors, 1262
silicon vs. copper, 762–763, 762t,

1253t
resistors, 753, 753–754

with ac generator, 914, 914–916
in multiloop circuits, 781–787,

782, 785
Ohm’s law, 756–759, 757
in parallel, 782, 782–787
phase and amplitude in ac

circuits, 920t
power dissipation in ac

circuits, 927
and power in circuits, 760–761
RC circuits, 788–792, 789
RLC circuits, 922
RL circuits, 882–886, 883
in series, 776, 776–777, 922
single-loop circuits, 774,

774–775
work, energy, and emf, 773,

773–774
resolvability, 1091, 1091–1093
resolving power:

diffraction grating, 1102–1104,
1103

microscope, 1183
refracting telescope, 1033, 1033

resolving vectors, 43
resonance:

forced oscillations, 433
magnetic, 1229–1230, 1230
magnetic resonance imaging,

941, 941
nuclear magnetic, 1229–1230
between pipes, 495–496
series RLC circuits, 924–926,

925
and standing waves, 467,

467–470, 468
resonance capture, of neutrons in

nuclear reactors, 1317
resonance condition cyclotrons,

818
resonance curves, series RLC

circuits, 925, 925–926
resonance peak, 433, 1230
resonant frequencies, 467,

467–468, 493, 494
response time, nuclear reactor

control rods, 1318
rest, fluids at, 388–391, 389
rest energy, 1139
rest frame, 1123
rest length, 1126
restoring torque, 425–426
resultant, of vector addition, 41
resultant force, 99
resultant torque, 278
resultant wave, 458, 458
reverse saturation current,

junction rectifiers, 1274
reversible processes, 585–588
right-handed coordinate system,

46, 46

right-hand rule, 264–265, 265
Ampere’s law, 843, 845
angular quantities, 264–265, 265
displacement current, 947
induced current, 868, 869
Lenz’s law, 868, 868
magnetic dipole moment,

825, 825
magnetic field due to current,

838, 838
magnetic force, 805, 805–806
magnetism, 843
vector products, 52, 53, 54, 842

rigid bodies:
angular momentum of

rotation about fixed axis,
311, 311–312

defined, 259
elasticity of real, 339–340

ring charge distributions, 638–640,
639, 642

Ritz combination principle, 1218
RLC circuits, 910–912, 911

resonance curves, 925, 925–926
series, 921–926, 922
transient current series, 923

RL circuits, 882–886, 883, 884
RMS, see root-mean-square
RMS current:

in ac circuits, 927–928
in transformers, 933

rock climbing:
crimp hold, 348, 348
energy conservation in descent

using rings, 196, 196
energy expended against

gravitational force climbing
Mount Everest, 211

friction coefficients between
shoes and rock, 127

lie-back climb along fissure,
347, 347

rockets, 241–243, 242
roller coasters, maximum

acceleration of, 21
rolling, 295–302

down ramp, 299, 299–301
forces of, 299, 299–301
friction during, 299, 299
kinetic energy of, 297, 298–301
as pure rotation, 296, 296–297
sample problem involving, 301
as translation and rotation

combined, 295–297, 297
yo-yo, 301–302, 302

room temperature, 515
root-mean-square (RMS):

and distribution of molecular
speeds, 562

of electric/magnetic fields,
982–983

for selected substances, 556t
speed, of ideal gas, 554–556, 555

rotation, 257–287
angular momentum of rigid

body rotating about fixed
axis, 311, 311–312

conservation of angular
momentum, 313, 313–315,
314, 315

constant angular acceleration,
266–268

kinetic energy of, 271–273, 272
and molar specific heat, 570,

570–571
Newton’s second law for,

279–281
relating linear and angular

variables, 268–271, 269
in rolling, 295–297, 296
sample problems involving,

262–264, 267–268, 270–271,
275–277, 280–281, 284

rotational equilibrium, 329
rotational inertia, 272,

273–277, 283t
rotational kinetic energy, 271–272

of rolling, 299
and work, 282–284
yo-yo, 301–302

rotational symmetry, 632, 633
rotational variables, 259–265, 312t
rotation axis, 259, 259
Rotor (amusement park ride),

267–268
Rowland ring, 962, 962
rubber band, entropy change on

stretching, 589–590
rulers, 2
rulings, diffraction grating, 1098
Rutherford, Ernest, 1276–1277
Rutherford scattering, 1278–1279
Rydberg constant, 1205

S
Sagittarius A*, 355
satellites:

energy of, in orbit, 371–373
geosynchronous orbit, 382
gravitational potential energy,

365
Kepler’s laws, 368–371
orbits and energy, 372

scalars:
multiplying vectors by, 50
vectors vs., 40–41

scalar components, 46
scalar fields, 631
scalar product, 51, 51–52
scanning tunneling microscope

(STM), 1178, 1178, 1199,
1199

scattering:
Compton, 1159, 1159–1162,

1160
of polarized light, 988
Rutherford, 1278–1279
x rays, 1105, 1105

schematic diagrams, 718
Schrödinger’s equation,

1170–1172
for electron in finite well, 1195
for electron in infinite well,

1192
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for electron in rectangular
box, 1200

for electron in rectangular
corral, 1200

and hydrogen, 1205–1212
for hydrogen ground state,

1208–1210, 1209
for multicomponent atoms,

1234
probability density from, 1172

scientific notation, 2–3
Scoville heat unit, 12
screen, in Young’s experiment,

1057
seat of emf, 772
secondary coil, transformer, 931
secondary loop, pressurized water

reactor, 1318, 1319
secondary maxima, diffraction

patterns, 1082, 1082
secondary rainbows, 994, 994,

1007, 1052
secondary standards, 3
secondary winding, transformer,

931
second law of thermodynamics,

588–590
second minima:

and interference patterns, 1057
for single-slit diffraction, 1084,

1087–1088
second-order bright fringes,

1056–1057
second-order dark fringes, 1057
second-order line, 1099
second reflection point, 1006
second side maxima, interference

patterns of, 1056–1057
secular equilibrium, 1304
seismic waves, 445, 512
self-induced emf, 881, 881
self-induction, 881, 881–882, 890
semi-classical angle, 1223
semiconducting devices, 762
semiconductors, 612, 1261–1265.

See also p-n junctions; tran-
sistors

doped, 1263, 1263–1265
electrical properties, 1262, 1262
LEDs, 1268–1270, 1269
nanocrystallites, 1198, 1198
n-type, 1263, 1263–1264. See

also p-n junctions
p-type, 1264, 1264
resistance in, 762–763
resistivities of, 754t
unit cell, 1253

semimajor axis, of orbits, 369, 369,
370t

series, of spectral lines, 1206
series circuits:

capacitors, 724–727, 725, 783t
RC, 788–792, 789
resistors, 776, 776–777, 783t
RLC, 911, 921–926, 922
summary of relations, 783t

series limit, 1206, 1207

shake (unit), 11
shearing stress, 340, 340
shear modulus, 341
shells, 1211, 1225

and characteristic x-ray
spectrum, 1237–1238

and electrostatic force, 615
and energy levels in crystalline

solids, 1254
and periodic table, 1234–1236

shell theorem, 356
SHM, see simple harmonic

motion
shock waves, 33, 503, 503
short wave radiation, 974
side maxima:

diffraction patterns, 1082, 1082
interference patterns,

1056–1057
sievert (unit), 1297
sigma particles, 1335, 1346, 1347t
sign:

acceleration, 21–22
displacement, 14–15
heat, 523
velocity, 21–22, 29
work, 153

significant figures, 4
silicon:

doping of, 1265
electric properties of copper

vs., 762–763, 762t, 1253t, 1262
in MOSFETs, 1270
properties of n- vs. p-doped,

1264t
resistivity of, 754t
as semiconductor, 612, 762–763,

1262
unit cell, 1253, 1253

silk, rubbing glass rod with, 610,
610, 621

simple harmonic motion (SHM),
413–434, 415, 417

acceleration, 418, 418, 420
angular, 423, 423–424
damped, 430, 430–432, 431
energy in, 421–423, 422
force law for, 419
freeze-frames of, 414–416, 415
pendulums, 424–428, 425, 426
quantities for, 416, 416–417
sample problems involving,

420–424, 427–428, 432
and uniform circular motion,

428–429, 428–429
velocity, 417, 417–418, 418, 421
waves produced by, 445–446

simple harmonic oscillators:
angular, 423, 423–424
linear, 419, 419–421

simple magnifying lens, 1031,
1031–1032

simple pendulum, 425, 425–426
simultaneity:

and Lorentz transformation
equations, 1131

relativity of, 1120, 1120–1121

sine, 45, 45
single-component forces, 96
single-loop circuits, 771–780, 914

charges in, 772
current in, 774, 774–775
internal resistance, 776, 776
potential difference between

two points, 777, 777–780, 779
with resistances in series, 776,

776–777
work, energy, and emf, 773,

773–774
single-slit diffraction, 1081–1090

intensity in, 1086–1090, 1087,
1089

minima for, 1083, 1083–1085,
1084

and wave theory of light,
1081–1083

Young’s interference experi-
ment, 1053–1054, 1055

sinusoidal waves, 446–448, 447, 448
siphons, 412
Sirius B, escape speed for, 367t
SI units, 2–3
skateboarding, motion analyzed, 73
slab (rotational inertia), 274t
sliding block, 108, 108–109
sliding friction, 126, 127
slope, of line, 15–16, 16
Snell’s law, 992, 1048–1049
snorkeling, 407
soap bubbles, interference pat-

terns from, 1064, 1067, 1067
sodium, 1235
sodium chloride, 1236

index of refraction, 992t
x-ray diffraction, 1105, 1105

sodium doublet, 1250
sodium vapor lamp, 1155
soft reflection, of traveling waves

at boundary, 467
solar system, 1361
solar wind, 1002
solenoids, 848–851, 849

induced emf, 867–868
inductance, 880
magnetic energy density, 889
magnetic field, 848–851, 849
real, 849

solids:
compressibility, 342
crystalline, 1252–1261, 1253,

1254
elasticity and dimensions of,

340, 340
heat absorption, 524–527
polycrystalline, 963
specific heats of selected, 525t
speed of sound in, 481t
thermal conductivity of

selected, 535t
thermal expansion, 520–522,

521
solid bodies:

center of mass, 216–219
Newton’s second law, 221

solid state, 525
solid-state electronic devices, 1253
sonar, 480
sonic boom, 503
sound intensity, 488–492, 489
sound levels, 488–492, 490t
sound waves, 445–446, 479–504

beats, 496–498, 497
defined, 479–480
Doppler effect, 498–502
intensity and sound level,

488–492, 489, 490t
interference, 485–488, 486
sample problems involving, 485,

487–488, 491–492, 495–496,
498, 502

sources of musical, 492–496,
493, 495

speed of, 480–482, 481t
supersonic speed, 503, 503–504
traveling waves, 482–485, 483

south pole, magnet’s, 807, 807,
942, 942

space charge, 1266
space curvature, 375, 375–376
space time, 375, 1153, 1359
spacetime coordinates, 1118–1119
spark, see electric spark
special theory of relativity, 95, 977,

1117
specific heat, 524–525, 525t. See

also molar specific heat
speckle, 1059
spectral radiancy, 1165–1166
spectroscope, grating, 1100,

1100–1101
spectrum, 1206
speed:

average in one-dimensional
motion, 16

drift, 749, 749–750, 752,
810–813, 811

escape, 704, 713
Fermi, 1255–1256
most probable, 1322, 1333
one-dimensional motion, 18
recessional, of universe, 1357
relating linear to angular, 269
relative, 242
in rolling, 296–297, 297
waves, see wave speed

speed amplifier, 254
speed deamplifier, 254
speed of light, 445, 977, 1117–1118
speed of light postulate,

1117–1118
speed of sound, 480–482

and RMS speed in gas, 556
in various media, 481t

speed parameter, in time dilation,
1122–1123, 1123

spherical aberrations, 1033
spherical capacitors, 722, 730
spherical conductors, Coulomb’s

law for, 615–619
spherically symmetric charge dis-

tribution, 675–677, 676, 695
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spherical mirrors, 1015, 1016
focal points, 1015–1016, 1016
images from, 1014–1020, 1015,

1016, 1033, 1033–1034
spherical refracting surfaces,

1020–1022, 1021, 1034, 1034
spherical shell:

Coulomb’s law for, 615–619
electric field and enclosed

charge, 670
rotational inertia of, 274t

spherical symmetry, Gauss’ law,
675–677, 676

spherical waves, 480
spin, 1223t, 1336–1337

electron, 1336–1337, 1337
isospin, 1364
nuclear, 1284
nuclides, 1280t, 1284

spin angular momentum, 953–954,
1223t, 1224, 1225

spin-down electron state, 953,
1224, 1229, 1229

spin-flipping, 966, 1229, 1230
spin magnetic dipole moment,

953–954, 954, 1225, 1225
diamagnetic materials, 957
ferromagnetic materials, 957
paramagnetic materials, 957, 959

spin magnetic quantum number,
953, 1223t, 1224, 1335–1336

spin quantum number, 1223t,
1225, 1335–1336

spin-up electron state, 953, 1224,
1229, 1229

spontaneous emission, 1242,
1242–1243

spontaneous otoacoustic
emission, 508

spring constant, 159
spring force, 159–161

as conservative force, 179, 179
work done by, 159, 159–162

spring scale, 103, 103–104
sprites, 637, 637–638
s subshells, 1235
stable equilibrium potential

energy curves, 190
stable static equilibrium, 328,

328–329, 329
stainless steel, thermal

conductivity of, 535t
standards, 1–2
standard kilogram, 6, 6–7
standard meter bar, 3
Standard Model, of elementary

particles, 1336
standing waves, 465–470, 466, 467,

1187
reflections at boundary,

466–467, 467
and resonance, 467, 467–470,

468
transverse and longitudinal

waves on, 445, 446, 446
wave equation, 456–457
wave speed on, 452–453, 453

stars, 1153
Doppler shift, 1135–1136
formation in early universe,

1360
fusion in, 1284, 1322, 1324,

1324–1326
matter and antimatter in,

1338–1339
neutron, 806t
orbiting, 382
rotational speed as function of

distance from galactic center,
1358, 1358

state, 525
state function, entropy as,

586–587
state properties, 585–586
static equilibrium, 327–329, 328,

329
fluids, 389, 390
indeterminate structures,

338–339, 339
requirements of, 329–330
sample problems involving,

332–337
static frictional force, 125–126,

125–127, 299
statistical mechanics, 598–602
steady flow, 398
steady-state current, 746, 923
Stefan–Boltzmann constant, 536,

1166
step-down transformer, 931
step-up transformer, 931
Stern–Gerlach experiment, 1226,

1226–1228
stick-and-slip, 127
stimulated emission, 1242–1243
Stirling engines, 594, 594
Stirling’s approximation, 601
STM, see scanning tunneling

microscope
stopping potential, photoelectric

effect, 1057, 1156, 1157
straight line charge distributions,

642–643
strain, 339–342, 340
strain gage, 341, 341
strangeness, conservation of,

1346–1357
strange particles, 1346
strange quark, 1349, 1350, 1350t
streamlines:

in electric fields, 749
in fluid flow, 399, 400

strength:
ultimate, 340, 340, 341t
yield, 340, 340, 341t

stress, 340, 340
compressive, 340–341
electrostatic, 744
hydraulic, 341–342, 341t
shearing, 340, 340
tensile, 340, 340

stress-strain curves, 340, 340
stress-strain test specimen, 340
stretched strings, 480

energy and power of traveling
wave on, 454, 454–455

harmonics, 469–470
resonance, 467, 467–470

strike-slip, 60
string theory, 1354
string waves, 451–455
strokes, 591
strong force, 123, 1284, 1338

conservation of strangeness, 1346
messenger particle, 1353–1354

strong interaction, 1340–1341
strong nuclear force, 621
subcritical state, nuclear reactors,

1318
submarines:

rescue from, 578
sonar, 480

subshells, 1211, 1223t, 1225
and energy levels in crystalline

solids, 1254
and periodic table, 1234–1236

substrate, MOSFET, 1270
subtraction:

of vectors by components, 49
of vectors geometrically, 42, 42

Sun, 1361
convection cells in, 536
density at center of, 387t
escape speed, 367t
fusion in, 1284, 1322, 1324,

1324–1326
monitoring charged particles

from, 745
neutrinos from, 1293
period of revolution about

galactic center, 382
pressure at center of, 388t
randomly polarized light, 986
speed distribution of photons

in core, 562
sunglasses, polarizing, 998
sunjamming, 118
sunlight, coherence of, 1059
superconductivity, 763
superconductors, 612, 763
supercooling, 605
supercritical state, nuclear

reactors, 1318
supermassive black holes, 355
supernovas, 88, 367t, 1325,

1325–1326, 1361
supernova SN1987a, 1325
supernumeraries, 1052, 1052
superposition, principle of, see

principle of superposition
supersonic speed, 503, 503–504
surface charge density, 629, 639t
surface wave, 512
S waves, 506
symmetric lenses, 1025–1026
symmetry:

axis of, 632
center of mass of bodies

with, 217
cylindrical, Gauss’ law, 671,

671–672

importance in physics, 659
of messenger particles, 1354
planar, Gauss’ law, 673,

673–675, 674
rotational, 632, 633
spherical, Gauss’ law, 675–677,

676
system, 99, 523. See also particle

systems
systolic blood pressure, normal,

387t

T
tangent, 45, 45
tangential component:

of linear acceleration, 269–270
of torque, 278

target:
collisions in two dimensions,

240, 240–241
elastic collisions in one dim-

ension, with moving, 238–239
elastic collisions in one

dimension, with stationary,
237, 237–238

inelastic collisions in one
dimension, 234

series of collisions, 228, 228
single collision, 226–227

tattoo inks, magnetic particles in,
941, 941

tau neutrinos, 1344, 1344t
tau particles, 1344, 1344t
teapot effect, 406
telescopes, 1030, 1032–1033, 1033
television, 803–804, 950
television waves, 445
temperature, 514–519

defined, 515
for fusion, 1323
and heat, 523, 523–524, 526–527
and ideal gas law, 550–554
measuring, 516–517
and RMS speed of ideal gas,

554–556
sample problems involving, 519,

522
scalar nature of, 41
selected values, 518t
as state property, 585
work done by ideal gas at

constant, 552, 552–553
and zeroth law of thermody-

namics, 515–516, 516
temperature coefficient of

resistivity, 755, 1253
selected materials, 754t
semiconductors, 1262
silicon vs. copper, 762t, 1253t

temperature field, 631
temperature scales:

Celsius, 518–519
compared, 518
Fahreheit, 518–519
Kelvin, 515, 516–517

temporal separation, of events,
1121
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10-hour day, 5
tensile stress, 340, 340
tension force, 105, 105–106

and elasticity, 340–341
and wave speed on stretched

string, 453
terminals, battery, 718–719, 773
terminal speed, 130–132, 131
tertiary rainbows, 1007
tesla (unit), 806
test charge, 631, 631, 632
Tevatron, 1352
theories of everything (TOE), 1354
thermal agitation:

of ferromagnetic materials, 962
of paramagnetic materials,

959–960
thermal capture, of neutrons, 1317
thermal conduction, 535, 535
thermal conductivity, 535, 535t
thermal conductor, 535
thermal efficiency:

Carnot engines, 592–593
Stirling engines, 594

thermal energy, 179, 195, 514, 873
thermal equilibrium, 515
thermal expansion, 520, 520–522
thermal insulator, 535
thermal neutrons, 1311–1315, 1317
thermal radiation, 536–538
thermal reservoir, 528, 529
thermal resistance to conduction,

535
thermodynamics:

defined, 514
first law, 528–533
second law, 588–590
zeroth law, 515–516, 516

thermodynamic cycles, 529, 530,
532

thermodynamic processes,
528–531, 529, 575

thermometers, 515
constant-volume gas, 516,

516–517
liquid-in-glass, 520

thermonuclear bomb, 1326–1327
thermonuclear fusion, 1140, 1284,

1322–1329
controlled, 1326–1329
process of, 1322–1323
in Sun and stars, 1322, 1324,

1324–1326
thermopiles, 772
thermoscope, 515, 515
thin films, interference, 1064,

1064–1071
thin lenses, 1023–1030

formulas, 1024
images from, 1023–1030, 1025,

1026, 1034–1036, 1035
two-lens systems, 1027,

1027–1029
thin-lens approximation, 1035–1036
third-law force pair, 106, 356
three-dimensional electron traps,

1200, 1200–1201

three-dimensional motion:
acceleration, 66, 66
position and displacement,

63, 63
velocity, 64–66, 65, 66

three-dimensional space, center of
mass in, 216

thrust, 242
thunderstorm sprites, 637, 637–638
time:

directional nature of, 584
for free-fall flight, 28
intervals of selected events, 5t
proper, 1122
between relativistic events,

1121, 1121–1125
relativity of, 1121, 1121–1125,

1131
sample problems involving, 7–8
scalar nature of, 41
space, 1153, 1359
units of, 5–6

time constants:
inductive, 884–885
for LC oscillations, 904
for RC circuits, 789, 790
for RL circuits, 884–885

time dilation, 1122
and length contraction,

1127–1128
and Lorentz transformation,

1131
tests of, 1123–1125

time intervals, 5, 5t
time signals, 6
TOE (theories of everything),

1354
tokamak, 1327
ton, 11
top gun pilots, turns by, 77–78
top quark, 1350t, 1351, 1352
toroids, 850, 850
torque, 277–281, 302–304, 312t

and angular momentum of sys-
tem of particles, 310–311

and conservation of angular
momentum, 313

for current loop, 822–824, 823
of electric dipole in electric

field, 650
and gyroscope precession, 317,

317
internal and external, 310–311
and magnetic dipole moment,

825
net, 278, 310–311
Newton’s second law in angular

form, 307
particle about fixed point, 303,

303–304
restoring, 425–426
rolling down ramp, 299–300
sample problems involving, 304,

308–309
and time derivative of angular

momentum, 308–309
torr, 388

torsion constant, 423
torsion pendulum, 423, 423
total energy, relativity of,

1139–1140
total internal reflection, 996–997,

997
tour jeté, 314, 314–315
Tower of Pisa, 337
tracer, for following fluid flow,

398–399, 399
trajectory, in projectile motion, 73
transfer:

collisions and internal energy
transfers, 196–197

heat, 534–538
transformers, 930–933

energy transmission require-
ments, 930–931

ideal, 931, 931–932
impedance matching, 932
in LC oscillators, 974

transient current series RLC
circuits, 923

transistors, 762, 1270–1271
FET, 1270, 1270–1271
MOSFET, 1270, 1270–1271

transition elements, paramagnet-
ism of, 957

translation, 258, 295–297, 296
translational equilibrium, 329
translational kinetic energy:

ideal gases, 557
of rolling, 298
yo-yo, 301–302

translational variables, 312t
transmission coefficient, 1176,

1177
transparent materials, 991

in Michelson’s interferometer,
1071

thin-film interference in,
1068–1070, 1069

transuranic nuclides, 1319
transverse Doppler effect, 1136,

1136–1137
transverse motion, 446
transverse waves, 445, 445–446,

450–451, 975
travel distance, for relativistic

particle, 1124–1125
traveling waves, 446, 1187

electromagnetic, 974–980, 976,
977

energy and power, 454,
454–455

hard vs. soft reflection of, at
boundary, 467

sound, 482–485, 483
speed, 449, 449–451
wave function, 1170–1172

travel time, 1119, 1142–1143
triangular prisms, 994, 994
trigonometric functions, 45, 45
triple point cell, 516, 516
triple point of water, 516–517
tritium, 1294, 1327, 1328
triton, 1327

tube length, compound micro-
scope, 1032

tunneling, barrier, 1176–1179,
1177, 1290–1291

turbulent flow, 398
turns:

in coils, 823–824
in solenoids, 848–849

turning points, in potential energy
curves, 188–189, 189

turns ratio, transformer, 932, 933
two-dimensional collisions, 240,

240–241
two-dimensional electron traps,

1200, 1200–1201
two-dimensional explosions,

232, 232
two-dimensional motion:

acceleration, 67–69, 68
position and displacement,

63–64, 64
projectile motion, 70–75
relative, 80, 80–81
sample problems involving,

63–64, 67, 69, 74–78, 80–81,
229

uniform circular motion, 76–78
velocity, 64–67

U
ultimate strength, 340, 340, 341t
ultrarelativistic proton, 1142–1143
ultrasound (ultrasound imaging),

480, 480
bat navigation using, 502
blood flow speed measurement

using, 511
ultraviolet light, 445
ultraviolet radiation, 950
uncertainty principle, 1172,

1172–1174
underwater illusion, 506
uniform charge distributions:

electric field lines, 631, 631–632,
632

types of, 642–643
uniform circular motion, 76–78

centripetal force in, 133–138,
134

sample problems involving,
135–138

and simple harmonic motion,
428–429, 428–429

velocity and acceleration for,
76, 77

uniform electric fields, 632
electric potential of, 692
flux in, 660–662

units, 1–2
changing, 3
heat, 524
length, 3–4
mass, 6–8
time, 5–6

unit cell, 1105
determining, with x-ray

diffraction, 1106
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metals, insulators, and semicon-
ductors, 1253, 1253

United States Naval Observatory
time signals, 6

unit vectors, 46, 46, 49, 54–55
universe:

Big Bang, 1358–1361, 1359
color-coded image of universe

at 379 000 yrs old, 1360, 1360
cosmic background radiation,

1357–1358, 1361
dark energy, 1361
dark matter, 1358
estimated age, 1356
expansion of, 1356–1357
temperature of early, 515

unoccupied levels, 1231, 1255, 1299
unpolarized light, 986, 986
unstable equilibrium, 190
unstable static equilibrium, 328–329
up quark, 1349, 1350t, 1351
uranium, 387t

enrichment of, 1317
mass energy of, 1139t

uranium228:
alpha decay, 1289–1290
half-life, 1290, 1291t

uranium235:
enriching fuel, 1317
fission, 1311–1315, 1313
fissionability, 1314–1316,

1314t, 1321
in natural nuclear reactor,

1320–1321
uranium236, 1312, 1314t
uranium238, 621–622, 1286

alpha decay, 1289–1291, 1290
binding energy per nucleon,

1283
fissionability, 1314–1315, 1314t,

1321
half-life, 1291, 1291t

uranium239, 1314t
UTC (Coordinated Universal

Time), 6

V
vacant levels, 1255
valence band, 1262, 1262, 1263
valence electrons, 1187, 1235, 1256
valence number, 1263
valley of nuclides, 1294, 1294
vaporization, 526
vapor state, 526
variable capacitor, 742
variable force:

work done by general variable,
162–166, 163

work done by spring force, 159,
160–162

variable-mass systems, rockets,
241–243, 242

vector(s), 40–55, 631
adding, by components,

46–47, 49
adding, geometrically, 41,

41–42, 42, 44

area, 661
for a coil of current loop, 824
coupled, 1221
and laws of physics, 47
multiplying, 50–55, 51, 53
Poynting, 980–983, 982
problem-solving with, 45
resolving, 43
sample problems involving,

44–45, 48–49, 54–55
scalars vs., 40–41
unit, 46, 46, 49, 54–55
velocity, 41

vector angles, 43, 43, 45
vector-capable calculator, 46
vector components, 42–44, 43

addition, 46–49
rotating axes of vectors and, 47

vector equation, 41
vector fields, 631
vector product, 50, 52–55, 53
vector quantities, 15, 41, 96
vector sum (resultant), 41, 41–42
velocity, 283t

angular, 260–265, 265, 283t
average, 15–17, 16, 24, 65
graphical integration in motion

analysis, 29, 29
instantaneous, 18–19
line of sight, 382
and Newton’s first law, 95–98
and Newton’s second law,

98–101
one-dimensional motion, 15–19
projectile motion, 70–75
reference particle, 429
relative motion in one dimen-

sion, 78–79
relative motion in two dimen-

sions, 80–81
relativity of, 1133, 1133–1134
rockets, 241–243
sign of, 21–22
simple harmonic motion, 417,

417–418, 418, 421
two- and three-dimensional

motion, 64–67, 65–67
uniform circular motion, 76,

76–78, 77
as vector quantity, 41

velocity amplitude:
forced oscillations, 433, 433
simple harmonic motion, 418

velocity vectors, 41
venturi meter, 411
vertical circular loop, 135
vertical motion, in projectile

motion, 72–73, 73
virtual focal point, 1016, 1016
virtual images:

defined, 1011
spherical mirrors, 1017
spherical refracting surfaces,

1020–1021, 1021
thin lenses, 1025, 1025

virtual photons, 1353
viscous drag force, 398

visible light, 445, 974, 1118
vision, resolvability in, 1092–1093
volcanic bombs, 90
volt, 687, 689
voltage. See also potential

difference
ac circuits, 920t
transformers, 931–932

voltage law, Kirchoff’s, 775
volt-ampere, 761
voltmeters, 788, 788
volume:

and ideal gas law, 550–554
as state property, 585
work done by ideal gas at

constant, 553
volume charge density, 626, 628,

639t
volume expansion, 521–522
volume flow rate, 400, 660–661
volume flux, 660
volume probability density, 1209,

1210, 1211

W
water:

boiling/freezing points of,
in Celsius and Fahrenheit,
518t

bulk modulus, 341, 481
as conductor, 612
density, 387t
dielectric properties, 732t,

733–734
diffraction of waves, 1053
as electric dipole, 648, 648
heats of transformation,

525–526, 526t
index of refraction, 992t
as insulator, 612
in microwave cooking, 649
as moderator for nuclear

reactors, 1317
polarization of light by

reflection in, 998
RMS speed at room

temperature, 556t
specific heats, 525t
speed of sound in, 481, 481t
thermal properties, 521
thin-film interference of, 1067
triple point, 516

water waves, 445
watt (W), 2, 167
Watt, James, 167
wave(s), 444–470. See also

electromagnetic waves;
matter waves

amplitude, 447, 447, 448
lagging vs. leading, 461
light as, 1047–1052
net, 458, 495
phasors, 462–464, 463
principle of superposition for,

458, 458
probability, 1162–1164, 1167
resultant, 458, 458

sample problems involving,
450–452, 455, 461, 464,
469–470

seismic, 512
shock, 33, 503, 503
sinusoidal, 446–448, 447
sound, see sound waves
speed of traveling waves, 449–451
standing, see standing waves
on stretched string, 452
string, 451–455
transverse and longitudinal,

445, 445–446, 446, 450–451
traveling, see traveling waves
types of, 445
wavelength and frequency of,

446–449
wave equation, 456–457
wave forms, 445, 446
wavefronts, 480, 480, 966
wave function, 1170–1172. See also

Schrödinger’s equation
hydrogen ground state,

1208–1210, 1209
normalizing, 1193–1195
of trapped electrons,

1191–1195, 1192
wave interference, 459, 459–461,

460, 485–488, 486
wavelength, 447, 447

Compton, 1161
cutoff, 1156–1157, 1237
de Broglie, 1167, 1171, 1189
determining, with diffraction

grating, 1099
and frequency, 446–449
of hydrogen atom, 1203
and index of refraction,

1050–1052
proper, 1135
sound waves, 483

wavelength Doppler shift, 1136
wave shape, 446
wave speed, 449, 449–453

sound waves, 483
on stretched string, 452–453, 453
traveling waves, 449, 449–451

wave theory of light, 1047–1052,
1081–1083

wave trains, 1241
weak force, 1338, 1353
weak interaction, 1341
weber (unit), 866
weight, 103–104

apparent, 104, 396–397
mass vs., 104

weightlessness, 134
whiplash injury, 30
white dwarfs, 367t, 387t
white light:

chromatic dispersion, 993,
993–994, 994

single-slit diffraction pattern,
1085
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Wien’s law, 1166
Wilkinson Microwave Anisotropy

Probe (WMAP), 1360
windings, solenoid, 848–849
window glass, thermal

conductivity of, 535t
Wintergreen LifeSaver, blue

flashes from, 613
WMAP (Wilkinson Microwave

Anisotropy Probe), 1360
W messenger particle, 1353
work, 283t

and applied force, 688
for capacitor with dielectric,

733
Carnot engines, 592
and conservation of mechanical

energy, 184–187
and conservation of total

energy, 195–199, 197
defined, 151
done by electric field, 688–689
done by electrostatic force,

688–689
done by external force with

friction, 192–194

done by external force without
friction, 192

done by gravitational force,
155–158, 156

done by ideal gas, 552–554
done by spring force, 159,

159–162
done by variable force,

162–166, 163
done in lifting and lowering

objects, 156, 156–158
done on system by external

force, 191–194, 193
and energy/emf, 773–774
first law of thermodynamics,

531–533
and heat, 524, 528–530
and induction, 872, 873
and kinetic energy, 152,

152–155, 1141
and magnetic dipole moment,

825–826
negative, 530
net, 153, 592
path-dependent quantity,

530

path independence of
conservative forces,
179–181, 180

and photoelectric effect, 1158
and potential energy, 178,

178–181, 179
and power, 166–168, 167
and rotational kinetic energy,

282–284
sample problems involving,

154–155, 157–158, 161–162,
164–166, 533

signs for, 153
work function, 1157
working substance, 590–591
work-kinetic energy theorem,

153–155, 164–166, 283t

X
x component, of vectors, 42–43, 43
xenon, decay chain, 1311
xi-minus particle, 1347t,

1348–1349, 1352
x rays, 445, 974

characteristic x-ray spectrum,
1237–1238, 1238

continuous x-ray spectrum,
1237, 1237

and ordering of elements,
1236–1240

radiation dosage, 1296
x-ray diffraction, 1104–1106, 1105

Y
y component, of vectors, 42–43, 43
yield strength, 340, 340, 341t
Young’s double-slit interference

experiment, 1054–1058, 1055
single-photon version, 1162,

1162–1164
wide-angle version, 1163–1164,

1164
Young’s modulus, 341, 341t
yo-yo, 301–302, 302

Z
zero angular position, 259
zero-point energy, 1193–1194
zeroth law of thermodynamics,

515–516, 516
zeroth-order line, 1099
Z messenger particle, 1353
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THE GREEK ALPHABET
Alpha ) Iota * Rho +

Beta , Kappa - Sigma
Gamma Lambda Tau .

Delta Mu / Upsilon 0

Epsilon 1 e Nu 2 Phi , w

Zeta 3 Xi Chi 4

Eta 5 Omicron 6 o Psi � c

Theta u Pi p Omega v�78

h

xj"z

f�n

ymd


tl�g9

s�kb

ria

SOME PHYSICAL CONSTANTS*
Speed of light c 2.998 � 108 m/s
Gravitational constant G 6.673 � 10–11 N � m2/kg2

Avogadro constant NA 6.022 � 1023 mol–1

Universal gas constant R 8.314 J/mol � K
Mass–energy relation c2 8.988 � 1016 J/kg

931.49 MeV/u
Permittivity constant ´0 8.854 � 10–12 F/m
Permeability constant m0 1.257 � 10–6 H/m
Planck constant h 6.626 � 10–34 J � s

4.136 � 10–15 eV � s
Boltzmann constant k 1.381 � 10–23 J/K

8.617 � 10–5 eV/K
Elementary charge e 1.602 � 10–19 C
Electron mass me 9.109 � 10–31 kg
Proton mass mp 1.673 � 10–27 kg
Neutron mass mn 1.675 � 10–27 kg
Deuteron mass md 3.344 � 10–27 kg
Bohr radius a 5.292 � 10–11 m
Bohr magneton mB 9.274 � 10–24 J/T

5.788 � 10–5 eV/T
Rydberg constant R 1.097 373 � 107 m–1

*For a more complete list, showing also the best experimental values, see Appendix B.



Mass and Density
1 kg � 1000 g � 6.02 � 1026 u
1 slug � 14.59 kg
1 u � 1.661 � 10–27 kg
1 kg/m3 � 10–3 g/cm3

Length and Volume
1 m � 100 cm � 39.4 in. � 3.28 ft
1 mi � 1.61 km � 5280 ft
1 in. � 2.54 cm
1 nm � 10–9 m � 10 Å
1 pm � 10–12 m � 1000 fm
1 light-year � 9.461 � 1015 m
1 m3 � 1000 L � 35.3 ft3 � 264 gal

Time
1 d � 86 400 s

1 y � 365 d � 3.16 � 107 s

Angular Measure
1 rad � 57.3# � 0.159 rev
p rad � 180# � rev

Speed
1 m/s � 3.28 ft/s � 2.24 mi/h
1 km/h � 0.621 mi/h � 0.278 m/s

Force and Pressure
1 N � 105 dyne � 0.225 lb
1 lb � 4.45 N
1 ton � 2000 lb
1 Pa � 1 N/m2 � 10 dyne/cm2

� 1.45 � 10–4 lb/in.2

1 atm � 1.01 � 105 Pa � 14.7 lb/in.2

� 76.0 cm Hg

Energy and Power
1 J � 107 erg � 0.2389 cal � 0.738 ft � lb
1 kW � h � 3.6 � 106 J
1 cal � 4.1868 J
1 eV � 1.602 � 10–19 J
1 horsepower � 746 W � 550 ft � lb/s

Magnetism
1 T � 1 Wb/m2 � 104 gauss

1
2

1
4

SOME CONVERSION FACTORS*

*See Appendix D for a more complete list.
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