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MATHEMATICAL FORMULAS*

Quadratic Formula

—b = Vb — 4dac
2a

If ax? + bx + ¢ = 0,then x =

Binomial Theorem

-1 2
nx | on(n = Dt

1 o (x2<1)

T+x)=1+
Products of Vectors

Let #be the smaller of the two angles between @ and b.
Then

i ] k
@Xb=-bXxX7q=|a a, a,
b, b, b,

.la, a N a ~la, a

=5 z 2 X 4 k™ y

b, b, b, b, b, b,

= (aybz - byaz)f + (a,b, — bzax)j + (axby - bxay)ﬁ

Derivatives and Integrals

——sinx = CoS X fsinxdx=—cosx

dx
d . f :
——COosSX = —sinx cos x dx = sin x
dx
d
Ee":ex fﬁdx:ﬂ
fL= In(x + V% + a?)

VX2 + a?

X dx 1

- (2 + )2

(X2 + a2)3/2

dx _ X
(x2 + a2)3’2 - a2(x2 + a2)1/2
Cramer’s Rule

Two simultaneous equations in unknowns x and y,

ax +by=c and ax + byy = c,,

have the solutions

b
|@ X bl = ab sin 0 =1 bl aby — by
a, b ab, — a;b,
a, b,
Trigonometric Identities
and
sin a =+ sin 8 = 2sin J(a = B) cos 3(a F B) a; ¢
a; & a1cy; — )¢y
cos @ + cos B =2 cos 3(a + B) cos H(a — B) Y= a, by  aby— aby’
a, b,
*See Appendix E for a more complete list.
S| PREFIXES*
Factor Prefix ~ Symbol Factor  Prefix Symbol
10% yotta Y 10 deci d
102! zetta 4 1072 centi c
1018 exa E 1073 milli m
105 peta P 106 micro “
102 tera T 107 nano n
10° giga G 10712 pico P
106 mega M 1071 femto f
103 kilo k 1018 atto a
10% hecto h 10 zepto z
10! deka da 102 yocto y

*In all cases, the first syllable is accented, as in nd-no-mé-ter.
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WHY | WROTE THIS BOOK

Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the
students in a class I taught as a graduate student, suddenly demanded of me, “What has any of this
got to do with my life?” Of course I immediately responded, “Sharon, this has everything to do with
your life—this is physics.”

She asked me for an example. I thought and thought but could not come up
with a single one.That night I began writing the book The Flying Circus of Physics
(John Wiley & Sons Inc., 1975) for Sharon but also for me because I realized her
complaint was mine. I had spent six years slugging my way through many dozens of
physics textbooks that were carefully written with the best of pedagogical plans, but
there was something missing. Physics is the most interesting subject in the world
because it is about how the world works, and yet the textbooks had been thor-
oughly wrung of any connection with the real world. The fun was missing.

I have packed a lot of real-world physics into Fundamentals of Physics, con-
necting it with the new edition of The Flying Circus of Physics. Much of the mate-
rial comes from the introductory physics classes I teach, where I can judge from the
faces and blunt comments what material and presentations work and what do not.
The notes I make on my successes and failures there help form the basis of this
book. My message here is the same as I had with every student I’ve met since
Sharon so long ago: “Yes, you can reason from basic physics concepts all the way to
valid conclusions about the real world, and that understanding of the real world is
where the funis.”

I have many goals in writing this book but the overriding one is to provide in-
structors with tools by which they can teach students how to effectively read scientific material, iden-
tify fundamental concepts, reason through scientific questions, and solve quantitative problems. This
process is not easy for either students or instructors. Indeed, the course associated with this book may
be one of the most challenging of all the courses taken by a student. However, it can also be one of
the most rewarding because it reveals the world’s fundamental clockwork from which all scientific
and engineering applications spring.

Many users of the ninth edition (both instructors and students) sent in comments and
suggestions to improve the book. These improvements are now incorporated into the narrative
and problems throughout the book. The publisher John Wiley & Sons and I regard the book as
an ongoing project and encourage more input from users. You can send suggestions, corrections,
and positive or negative comments to John Wiley & Sons or Jearl Walker (mail address:
Physics Department, Cleveland State University, Cleveland, OH 44115 USA; or the blog site at
www.flyingcircusofphysics.com). We may not be able to respond to all suggestions, but we keep
and study each of them.

WHAT'S NEW?

Modules and Learning Objectives “What was I supposed to learn from this section?” Students have
asked me this question for decades, from the weakest student to the strongest. The problem is that
even a thoughtful student may not feel confident that the important points were captured while read-
ing a section. I felt the same way back when I was using the first edition of Halliday and Resnick
while taking first-year physics.

To ease the problem in this edition, I restructured the chapters into concept modules based on a
primary theme and begin each module with a list of the module’s learning objectives. The list is an
explicit statement of the skills and learning points that should be gathered in reading the module.
Each list is following by a brief summary of the key ideas that should also be gathered. For example,
check out the first module in Chapter 16, where a student faces a truck load of concepts and terms.
Rather than depending on the student’s ability to gather and sort those ideas, I now provide an
explicit checklist that functions somewhat like the checklist a pilot works through before taxiing out
to the runway for takeoff.

xvii
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PREFACE

PLUS

Links Between Homework Problems and Learning Objectives In WileyPLUS, every question and prob-
lem at the end of the chapter is linked to a learning objective, to answer the (usually unspoken) ques-
tions, “Why am I working this problem? What am I supposed to learn from it?” By being explicit
about a problem’s purpose, I believe that a student might better transfer the learning objective to
other problems with a different wording but the same key idea. Such transference would help defeat
the common trouble that a student learns to work a particular problem but cannot then apply its key
idea to a problem in a different setting.

Rewritten Chapters My students have continued to be challenged by several key chapters and by
spots in several other chapters and so, in this edition, I rewrote a lot of the material. For example, I
redesigned the chapters on Gauss’ law and electric potential, which have proved to be tough-going
for my students. The presentations are now smoother and more direct to the key points. In the quan-
tum chapters, I expanded the coverage of the Schrodinger equation, including reflection of matter
waves from a step potential. At the request of several instructors, I decoupled the discussion of the
Bohr atom from the Schrodinger solution for the hydrogen atom so that the historical account of
Bohr’s work can be bypassed. Also, there is now a module on Planck’s blackbody radiation.

New Sample Problems and Homework Questions and Problems Sixteen new sample problems have
been added to the chapters, written so as to spotlight some of the difficult areas for my students. Also,
about 250 problems and 50 questions have been added to the homework sections of the chapters.
Some of these problems come from earlier editions of the
book, as requested by several instructors.

Video lllustrations  In the eVersion of the text available in
WileyPLUS, David Maiullo of Rutgers University has
created video versions of approximately 30 of the photo-
graphs and figures from the text. Much of physics is the
study of things that move and video can often provide a
better representation than a static photo or figure.

Online Aid  WileyPLUS is not just an online grading pro-
gram. Rather, it is a dynamic learning center stocked with many different learning aids, 1nclud1ng
just-in-time problem-solving tutorials, embedded reading quizzes to encourage reading, animated
figures, hundreds of sample problems, loads of simulations and demonstrations, and over 1500 videos
ranging from math reviews to mini-lectures to examples. More of these learning aids are added every
semester. For this 10th edition of HRW, some of the photos involving motion have been converted
into videos so that the motion can be slowed and analyzed.

These thousands of learning aids are available 24/7 and can be repeated as many times as de-
sired. Thus, if a student gets stuck on a homework problem at, say, 2:00 AM (which appears to be a
popular time for doing physics homework), friendly and helpful resources are available at the click of
amouse.

LEARNINGS TOOLS

When I learned first-year phySiCS in the first edition of | Angular velocity derived from angular position
Halliday and Resnick, I caught on by repeatedly reread-
ing a chapter. These days we better understand that
students have a wide range of learning styles. So, I have
produced a wide range of learning tools, both in this new —
edition and online in WileyPLUS: i

Fundamentals of Physics, Jearl Walker

Animations of one of the key figures in each chapter. i %
Here in the book, those figures are flagged with the It
swirling icon. In the online chapter in WileyPLUS, a
mouse click begins the animation. I have chosen the fig- :

ures that are rich in information so that a student can see ©) @ ®
the physics in action and played out over a minute or two
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instead of just being flat on a printed page. Not only does this give life to the physics, but the anima-

tion can be repeated as many times as a student wants.

Videos I have made well over 1500 instructional videos, with more coming each semester. Students
can watch me draw or type on the screen as they hear me talk about a solution, tutorial, sample prob-
lem, or review, very much as they would experience were they sitting next to me in my office while I
worked out something on a notepad. An instructor’s lectures and tutoring will always be the most

valuable learning tools, but my videos are available 24 hours a day, 7 days a
week, and can be repeated indefinitely.

* Video tutorials on subjects in the chapters. I chose the subjects that chal-
lenge the students the most, the ones that my students scratch their heads
about.

* Video reviews of high school math, such as basic algebraic manipulations,
trig functions, and simultaneous equations.

* Video introductions to math, such as vector multiplication, that will be new
to the students.

* Video presentations of every Sample Problem in the textbook chapters . My
intent is to work out the physics, starting with the Key Ideas instead of just
grabbing a formula. However, I also want to demonstrate how to read a sam-
ple problem, that is, how to read technical material to learn problem-solving
procedures that can be transferred to other types of problems.

* Video solutions to 20% of the end-of chapter problems. The availability and
timing of these solutions are controlled by the instructor. For example, they
might be available after a homework deadline or a quiz. Each solution is not
simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to
the first step of reasoning and to a final solution. The student learns not just
how to solve a particular problem but how to tackle any problem, even those
that require physics courage.

* Video examples of how to read data from graphs (more than simply reading
off a number with no comprehension of the physics).

Problem-Solving Help I have written a large number of resources for
WileyPLUS designed to help build the students’ problem-solving skills.

* Every sample problem in the textbook is available online in both reading
and video formats.

° Hundreds of additional sample problems. These are available as stand-
alone resources but (at the discretion of the instructor) they are also linked
out of the homework problems. So, if a homework problem deals with, say,
forces on a block on a ramp, a link to a related sample problem is provided.
However, the sample problem is not just a replica of the homework problem
and thus does not provide a solution that can be merely duplicated without
comprehension.

* GO Tutorials for 15% of the end-of-chapter homework problems. In multi-
ple steps, I lead a student through a homework problem, starting with the Key
Ideas and giving hints when wrong answers are submitted. However, I pur-
posely leave the last step (for the final answer) to the student so that they are
responsible at the end. Some online tutorial systems trap a student when
wrong answers are given, which can generate a lot of frustration. My GO
Tutorials are not traps, because at any step along the way, a student can return
to the main problem.

* Hints on every end-of-chapter homework problem are available (at the
discretion of the instructor). I wrote these as true hints about the main ideas
and the general procedure for a solution, not as recipes that provide an
comprehension.

Starts from rest.

\..In a certain time interval, it rotates
/4 rad at constant angular
__acceleration 4.0 rad/s?, reaching
angular speed 4.5 rad/s.

How much time (from rest) to
reach that time interval?

Interval 1: From rest to the start of that time interval

GO Tutorial

This GO Tutorial will provide you with a step-by-step guide on how to approach this problem.
‘When you are finished, go back and try the problem again cn your cwn. To view the oniginal
‘question while you work, you can just drag this screen to the side. (This GO Tutorial
consists of 4 steps).

Step | : Solution Step 1 of GO Tutorial 10-30

KEY IDEAS:
(1) When an object rotates at constant angular scceleration, we can use the constant-
acceleration eguations of Table 10-1 medified for angular moticn:
(1w = wy + at
(2)8 - 8y = wpt + lat”
(3w® = wj + 2ai(f - 8;)
(4)8 = 8 = 1wy + wit
(5)8 = By = wt - jar’
Counterclocioiss is the positive direction of rotation, and clockwise is the regative direction.
(2) If & particle moves around a rotation axis at radius r, the magnitude o its radial
(centripetal) acceleration ar at any moment is related to its tangential speed v (the speed
slong the arcular path) and its angulsr speed st that moment by

v

=Y =wr
i

(3) If & particle maves around & rotation sis at radius r, the magnitude of its tangential
scceleration at (the acceleration along the circular path) at any moment is related to angular
scceleration & at that mament by

a=rm

(4) If & particle moves around a rotation axis at radius r, the angular displacement through
which it rotates is relsted to the distance s it moves along its circular path by
s=rf

GETTING STARTED: What is the radius of rotation (in meters) of a point on the rim of the
Mywheel?

Number Unit -

apsiict il 1o oliraoos

Chedk Your Input

Step ] : Solution Step 2 of GO Tutorial 10-30
What i the finasl angular speed in radians per second?

Number Unit d

Check Your Input

Step I : Solution Step 3 of GO Tutorial 10-30
What was the initisl angular speed?
Number Unit =

exact number, no tolerance

Check Your Input
Step 4 : Solution Step 4 of GO Tutorial 10-30

Through what angular distance does the flywheel rotate to reach the final angular speed?

Number Unit -

Check Your Input

MNow that you kncw how to sohve the problem, go back and try again on your awn.

answer without any
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Evaluation Materials

* Reading questions are available within each online section. I wrote these so that they do not
require analysis or any deep understanding; rather they simply test whether a student has read the
section. When a student opens up a section, a randomly chosen reading question (from a bank of
questions) appears at the end. The instructor can decide whether the question is part of the grading
for that section or whether it is just for the benefit of the student.

* Checkpoints are available within most sections. I wrote these so that they require analysis and deci-
sions about the physics in the section. Answers to all checkpoints are in the back of the book.

|ZI Checkpoint 1

Here are three pairs of initial and final positions, respectively, along an x axis. Which
pairs give a negative displacement: (a) —3 m, +5 m;(b) =3 m, —7 m; (¢) 7 m, —3 m?

* All end-of-chapter homework Problems in the book (and many more problems) are available in
WileyPLUS. The instructor can construct a homework assignment and control how it is graded when
the answers are submitted online. For example, the instructor controls the deadline for submission
and how many attempts a student is allowed on an answer. The instructor also controls which, if any,
learning aids are available with each homework problem. Such links can include hints, sample prob-
lems, in-chapter reading materials, video tutorials, video math reviews, and even video solutions
(which can be made available to the students after, say, a homework deadline).

* Symbolic notation problems that require algebraic answers are available in every chapter.

* All end-of-chapter homework Questions in the book are available for assignment in WileyPLUS.
These Questions (in a multiple choice format) are designed to evaluate the students’ conceptual un-
derstanding.

Icons for Additional Help  When worked-out solutions are provided either in print or electronically
for certain of the odd-numbered problems, the statements for those problems include an icon to alert
both student and instructor as to where the solutions are located. There are also icons indicating
which problems have GO Tutorial, an Interactive LearningWare, or a link to the The Flying Circus
of Physics. An icon guide is provided here and at the beginning of each set of problems.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at

http://www.wiley.com/college/halliday

Number of dots indicates level of problem difficulty ILW  Interactive solution is at

—%E Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

VERSIONS OF THE TEXT

To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals
of Physics is available in a number of different versions.

The Regular Edition consists of Chapters 1 through 37 (ISBN 9781118230718).

The Extended Edition contains seven additional chapters on quantum physics and cosmology,
Chapters 1-44 (ISBN 9781118230725).

Volume 1 — Chapters 1-20 (Mechanics and Thermodynamics), hardcover,
ISBN 9781118233764

Volume 2 — Chapters 21-44 (E&M, Optics, and Quantum Physics), hardcover,
ISBN 9781118230732



INSTRUCTOR SUPPLEMENTS

Instructor’s Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This man-

ual provides worked-out solutions for all problems found at the end of each chapter. It is available
in both MSWord and PDF.

Instructor Companion Site http://www.wiley.com/college/halliday

e Instructor’s Manual This resource contains lecture notes outlining the most important topics of
each chapter; demonstration experiments; laboratory and computer projects; film and video sources;
answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide to the
Questions, Exercises, and Problems in the previous edition. It also contains a complete list of all
problems for which solutions are available to students (SSM,WWW, and ILW).

e Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors,
outlining key concepts and incorporating figures and equations from the text.

e Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University.
There are two sets of questions available: Reading Quiz questions and Interactive Lecture ques-
tions. The Reading Quiz questions are intended to be relatively straightforward for any student who
reads the assigned material. The Interactive Lecture questions are intended for use in an interactive
lecture setting.

e Wiley Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier
Software. This is a collection of 50 interactive simulations (Java applets) that can be used for class-
room demonstrations.

e Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of digital
videos of 80 standard physics demonstrations. They can be shown in class or accessed from
WileyPL US.There is an accompanying Instructor’s Guide that includes “clicker” questions.

e Test Bank For the 10th edition, the Test Bank has been completely over-hauled by Suzanne Willis,
Northern Illinois University. The Test Bank includes more than 2200 multiple-choice questions.
These items are also available in the Computerized Test Bank which provides full editing features to
help you customize tests (available in both IBM and Macintosh versions).

e All text illustrations suitable for both classroom projection and printing.

Online Homework and Quizzing. 1In addition to WileyPLUS, Fundamentals of Physics, tenth edition,
also supports WebAssignPLUS and LON-CAPA, which are other programs that give instructors the
ability to deliver and grade homework and quizzes online. WebAssign PLUS also offers students an
online version of the text.

STUDENT SUPPLEMENTS

Student Companion Site. The web site http:/www.wiley.com/college/halliday was developed specifi-
cally for Fundamentals of Physics, tenth edition, and is designed to further assist students in the study
of physics. It includes solutions to selected end-of-chapter problems (which are identified with a
www icon in the text); simulation exercises; tips on how to make best use of a programmable calcu-
lator; and the Interactive LearningWare tutorials that are described below.

Student Study Guide (ISBN 9781118230787) by Thomas Barrett of Ohio State University. The Student
Study Guide consists of an overview of the chapter’s important concepts, problem solving techniques
and detailed examples.

Student Solutions Manual (ISBN 9781118230664) by Sen-Ben Liao, Lawrence Livermore National
Laboratory. This manual provides students with complete worked-out solutions to 15 percent of the
problems found at the end of each chapter within the text. The Student Solutions Manual for the
10th edition is written using an innovative approach called TEAL which stands for Think, Express,
Analyze, and Learn. This learning strategy was originally developed at the Massachusetts Institute of
Technology and has proven to be an effective learning tool for students. These problems with TEAL
solutions are indicated with an SSM icon in the text.
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Interactive Learningware. This software guides students through solutions to 200 of the end-of-chapter
problems. These problems are indicated with an ILW icon in the text. The solutions process is devel-
oped interactively, with appropriate feedback and access to error-specific help for the most common
mistakes.

Introductory Physics with Calculus as a Second Language: (ISBN 9780471739104) Mastering
Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the
student how to approach problems more efficiently and effectively. The student will learn how to
recognize common patterns in physics problems, break problems down into manageable steps, and
apply appropriate techniques. The book takes the student step by step through the solutions to
numerous examples.
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C H A P T E R 1

Measurement

1-1 MEASURING THINGS, INCLUDING LENGTHS

Learning Objectives
After reading this module, you should be able to . . .

1.01 Identify the base quantities in the Sl system.
1.02 Name the most frequently used prefixes for
Sl units.

Key Ideas

@ Physics is based on measurement of physical quantities.
Certain physical quantities have been chosen as base quanti-
ties (such as length, time, and mass); each has been defined in
terms of a standard and given a unit of measure (such as meter,
second, and kilogram). Other physical quantities are defined in
terms of the base quantities and their standards and units.

@ The unit system emphasized in this book is the International
System of Units (SI). The three physical quantities displayed
in Table 1-1 are used in the early chapters. Standards, which
must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.

What Is Physics?

1.03 Change units (here for length, area, and volume) by
using chain-link conversions.

1.04 Explain that the meter is defined in terms of the speed of
light in vacuum.

These standards are used in all physical measurement, for
both the base quantities and the quantities derived from
them. Scientific notation and the prefixes of Table 1-2 are
used to simplify measurement notation.

@ Conversion of units may be performed by using chain-link
conversions in which the original data are multiplied succes-
sively by conversion factors written as unity and the units are
manipulated like algebraic quantities until only the desired
units remain.

@ The meter is defined as the distance traveled by light
during a precisely specified time interval.

Science and engineering are based on measurements and comparisons. Thus, we
need rules about how things are measured and compared, and we need
experiments to establish the units for those measurements and comparisons. One
purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any
time or time interval can be precisely determined and compared. You may wonder
whether such accuracy is actually needed or worth the effort. Here is one example of
the worth: Without clocks of extreme accuracy, the Global Positioning System
(GPS) that is now vital to worldwide navigation would be useless.

Measuring Things

We discover physics by learning how to measure the quantities involved in
physics. Among these quantities are length, time, mass, temperature, pressure,
and electric current.

We measure each physical quantity in its own units, by comparison with a
standard. The unit is a unique name we assign to measures of that quantity—for
example, meter (m) for the quantity length. The standard corresponds to exactly
1.0 unit of the quantity. As you will see, the standard for length, which corresponds
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Table 1-1 Units for Three SI
Base Quantities

Quantity Unit Name  Unit Symbol

Length meter m
Time second s
Mass kilogram kg

Table 1-2 Prefixes for S| Units

Factor Prefix” Symbol
10% yotta- Y
10% zetta- zZ
108 exa- E
101 peta- P
10%2 tera- T
10° giga- G
10° mega- M
10° kilo- k
10? hecto- h
10! deka- da
1071 deci- d
102 centi- c
1073 milli- m
10-¢ micro- "
10~° nano- n
10-12 pico- p
1071 femto- f
10718 atto- a
1072 zepto- z
107 yocto- y

“The most frequently used prefixes are shown in
bold type.

to exactly 1.0 m, is the distance traveled by light in a vacuum during a certain
fraction of a second. We can define a unit and its standard in any way we care to.
However, the important thing is to do so in such a way that scientists around the
world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of
the standard. Rulers, which approximate our length standard, give us one such
procedure for measuring length. However, many of our comparisons must be
indirect. You cannot use a ruler, for example, to measure the radius of an atom
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to
organize them. Fortunately, they are not all independent; for example, speed is the
ratio of a length to a time. Thus, what we do is pick out—by international agree-
ment—a small number of physical quantities, such as length and time, and assign
standards to them alone. We then define all other physical quantities in terms of
these base quantities and their standards (called base standards). Speed, for example,
is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the
length standard as the distance between one’s nose and the index finger on an
outstretched arm, we certainly have an accessible standard—but it will, of course,
vary from person to person. The demand for precision in science and engineering
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units

In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system. Table 1-1 shows the units for the three base quantities—Ilength,
mass, and time—that we use in the early chapters of this book. These units were
defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the ST unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time. Thus, as you will see in Chapter 7,

1watt=1W = 1kg - m?%s’, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3560 000 000 m = 3.56 X 10° m (1-2)
and 0.000000492 s = 4.92 X 1077 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E-7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 X 10° watts = 1.27 gigawatts = 1.27 GW (1-4)
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or a particular time interval as
2.35 X 107% s = 2.35 nanoseconds = 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Changing Units

We often need to change the units in which a physical quantity is expressed. We

do so by a method called chain-link conversion. In this method, we multiply the

original measurement by a conversion factor (a ratio of units that is equal to

unity). For example, because 1 min and 60 s are identical time intervals, we have
1 min 60 s

-1 - 1.
60's and

Thus, the ratios (1 min)/(60s) and (60 s)/(1 min) can be used as conversion
factors. This is not the same as writing &= = 1 or 60 = 1; each number and its unit
must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we
can introduce conversion factors wherever we find them useful. In chain-link
conversion, we use the factors to cancel unwanted units. For example, to convert
2 min to seconds, we have

2 min = (2 min)(1) = 2 m—iﬁ)( 00s ) = 120s. (1-6)

1 min
If you introduce a conversion factor in such a way that unwanted units do not
cancel, invert the factor and try again. In conversions, the units obey the same
algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units,
including non-SI units still used in the United States. However, the conversion
factors are written in the style of “1 min = 60 s” rather than as a ratio. So, you
need to decide on the numerator and denominator in any needed ratio.

Length

In 1792, the newborn Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the north pole to the equator. Later, for practical reasons, this
Earth standard was abandoned and the meter came to be defined as the distance
between two fine lines engraved near the ends of a platinum-iridium bar, the
standard meter bar, which was kept at the International Bureau of Weights and
Measures near Paris. Accurate copies of the bar were sent to standardizing labo-
ratories throughout the world. These secondary standards were used to produce
other, still more accessible standards, so that ultimately every measuring device
derived its authority from the standard meter bar through a complicated chain
of comparisons.

Eventually, a standard more precise than the distance between two fine
scratches on a metal bar was required. In 1960, a new standard for the meter,
based on the wavelength of light, was adopted. Specifically, the standard for the
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in
a gas discharge tube that can be set up anywhere in the world. This awkward
number of wavelengths was chosen so that the new standard would be close to
the old meter-bar standard.
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Table 1-3 Some Approximate Lengths

Measurement

Distance to the first
galaxies formed
Distance to the
Andromeda galaxy
Distance to the nearby
star Proxima Centauri
Distance to Pluto
Radius of Earth
Height of Mt. Everest
Thickness of this page
Length of a typical virus
Radius of a hydrogen atom
Radius of a proton

Sample Problem 1.01

The world’s largest ball of string is about 2 m in radius. To
the nearest order of magnitude, what is the total length L

of the string in the ball?

KEY IDEA

Length in Meters

2 X 10%
2 X 1022

4 x 10
6 X 1012
6 X 10°
9 X 10°
1x107*
1x10°8
5% 101
1x 1075

By 1983, however, the demand for higher precision had reached such a point
that even the krypton-86 standard could not meet it, and in that year a bold step was
taken. The meter was redefined as the distance traveled by light in a specified time
interval. In the words of the 17th General Conference on Weights and Measures:

A%
~A' The meter is the length of the path traveled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

This time interval was chosen so that the speed of light c is exactly
¢ =299792458 m/s.

Measurements of the speed of light had become extremely precise, so it made
sense to adopt the speed of light as a defined quantity and to use it to redefine
the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line)
to those of some very small objects.

Significant Figures and Decimal Places

Suppose that you work out a problem in which each value consists of two digits.
Those digits are called significant figures and they set the number of digits that
you can use in reporting your final answer. With data given in two significant
figures, your final answer should have only two significant figures. However,
depending on the mode setting of your calculator, many more digits might be
displayed. Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least
number of significant figures in the given data. (However, sometimes an extra
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or
more, the last remaining digit is rounded up; otherwise it is retained as is. For
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is
rounded to three significant figures as 11.3. (The answers to sample problems in
this book are usually presented with the symbol = instead of = even if rounding
is involved.)

When a number such as 3.15 or 3.15 X 10% is provided in a problem, the number
of significant figures is apparent, but how about the number 30007 Is it known to
only one significant figure (3 X 10°)? Or is it known to as many as four significant
figures (3.000 X 10%)? In this book, we assume that all the zeros in such given num-
bers as 3000 are significant, but you had better not make that assumption elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they
have one, two, and five decimal places, respectively.

Estimating order of magnitude, ball of string

ball’s builder most unhappy. Instead, because we want only
the nearest order of magnitude, we can estimate any quanti-
ties required in the calculation.

Calculations: Let us assume the ball is spherical with radius

We could, of course, take the ball apart and measure the to-
tal length L, but that would take great effort and make the

R = 2 m. The string in the ball is not closely packed (there
are uncountable gaps between adjacent sections of string).
To allow for these gaps, let us somewhat overestimate



the cross-sectional area of the string by assuming the
cross section is square, with an edge length d =4 mm.
Then, with a cross-sectional area of @ and a length L, the
string occupies a total volume of

V = (cross-sectional area)(length) = d°L.
This is approximately equal to the volume of the ball, given

by 3R>, which is about 4R> because 7 is about 3. Thus, we
have the following

1-2 TIME 5

d’L = 4R3,
AR 4Q2m)
2 (4 x103m)y
=2X10°m ~10°m = 10° km.

or L=

(Answer)

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string]!

PLUS Additional examples, video, and practice available at WileyPLUS

1-2 nime

Learning Objectives
After reading this module, you should be able to . . . 1.06 Use various measures of time, such as for motion or as

1.05 Change units for time by using chain-link conversions. determined on different clocks.

Key Idea

® The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time

signals are sent worldwide by radio signals keyed to atomic
clocks in standardizing laboratories.

Time

Time has two aspects. For civil and some scientific purposes, we want to know
the time of day so that we can order events in sequence. In much scientific work,
we want to know how long an event lasts. Thus, any time standard must be able
to answer two questions: “When did it happen?” and “What is its duration?”
Table 1-4 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s
rotation, which determines the length of the day, has been used in this way for
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation.
A quartz clock, in which a quartz ring is made to vibrate continuously, can be
calibrated against Earth’s rotation via astronomical observations and used to
measure time intervals in the laboratory. However, the calibration cannot be
carried out with the accuracy called for by modern scientific and engineering
technology.

Table 1-4 Some Approximate Time Intervals

Time Interval Time Interval

Measurement in Seconds Measurement in Seconds
Steven Pitkin

Lifetime of the Time between human heartbeats 8 X 107! . .

proton (predicted) 3x 10" Lifetime of the muon 2 X 10°° Figure 1-1 When the metric system was
Age of the universe 5% 10" Shortest lab light pulse 1 % 10-16 propost?d in 1792, the hour was redeflned
Age of the pyramid of Cheops 1 X 10! Lifetime of the most to provide a 10-hour day. f['he idea did not
Human life expectancy 2% 10° unstable particle 1% 10-3 cqtch on. Tl.le maker of th‘1s 10-hour watch
Length of a day 9 % 10 The Planck time® 1% 10-8 wisely provided a small dial that kept con-

ventional 12-hour time. Do the two dials

“This is the earliest time after the big bang at which the laws of physics as we know them can be applied. indicate the same time?
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+4 To meet the need for a better time standard, atomic clocks have
been developed. An atomic clock at the National Institute of
Standards and Technology (NIST) in Boulder, Colorado, is the stan-
dard for Coordinated Universal Time (UTC) in the United States. Its
time signals are available by shortwave radio (stations WWV and
WWVH) and by telephone (303-499-7111). Time signals (and related
‘ information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a
“ (

+
o

i
H
M

!l

\l

clock extremely accurately at your particular location, you would have
to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over
a 4-year period, as determined by comparison with a cesium
(atomic) clock. Because the variation displayed by Fig. 1-2 is sea-

+
no

1
\!‘

Difference between length of
day and exactly 24 hours (ms)

M

+1 1950 1981 1982 198% sonal and repetitious, we suspect the rotating Earth when there is a
difference between Earth and atom as timekeepers. The variation is
Figure 1-2 Variations in the length of the due to tidal effects caused by the Moon and to large-scale winds.
day over a 4-year period. Note that the The 13th General Conference on Weights and Measures in 1967 adopted
entire vertical scale amounts to only a standard second based on the cesium clock:

3 ms (= 0.003 s).

"' One second is the time taken by 9 192 631 770 oscillations of the light (of a specified
wavelength) emitted by a cesium-133 atom.

Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 part in 10'*—that is, 1 sin 1 X 10'® s (which is about 3 X 10°y).

1-3 mass

Learning Objectives

After reading this module, you should be able to . .. 1.08 Relate density to mass and volume when the mass is
1.07 Change units for mass by using chain-link uniformly distributed.
conversions.

Key Ideas

@ The kilogram is defined in terms of a platinum—iridium @ The density p of a material is the mass per unit volume:
standard mass kept near Paris. For measurements on an m

atomic scale, the atomic mass unit, defined in terms of p= v

the atom carbon-12, is usually used.

Mass
The Standard Kilogram

The SI standard of mass is a cylinder of
platinum and iridium (Fig. 1-3) that is kept
at the International Bureau of Weights
and Measures near Paris and assigned, by

Figure 1-3 The international 1 kg standard of
mass, a platinum—iridium cylinder 3.9 cm in
height and in diameter.

Courtesy Bureau International des Poids et Me-
sures. Reproduced with permission of the BIPM.



international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate
copies that are used elsewhere. Since 1889, it has been taken to France twice for
recomparison with the primary standard.

A Second Mass Standard

The masses of atoms can be compared with one another more precisely than
they can be compared with the standard kilogram. For this reason, we have
a second mass standard. It is the carbon-12 atom, which, by international agree-
ment, has been assigned a mass of 12 atomic mass units (u). The relation between
the two units is

1u = 1.66053886 x 107? kg, (1-7)
with an uncertainty of =10 in the last two decimal places. Scientists can, with
reasonable precision, experimentally determine the masses of other atoms rela-
tive to the mass of carbon-12. What we presently lack is a reliable means of
extending that precision to more common units of mass, such as a kilogram.

Density

As we shall discuss further in Chapter 14, density p (lowercase Greek letter rho)
is the mass per unit volume:

pP= (1-8)

Densities are typically listed in kilograms per cubic meter or grams per cubic
centimeter. The density of water (1.00 gram per cubic centimeter) is often used as
a comparison. Fresh snow has about 10% of that density; platinum has a density
that is about 21 times that of water.

Sample Problem 1.02 Density and liquefaction

A heavy object can sink into the ground during an earthquake ~ KEY IDEA

1-3 MASS

Table 1-5 Some Approximate Masses

Mass in
Object Kilograms
Known universe 1 X 10%
Our galaxy 2 x 104
Sun 2 X 107
Moon 7 X 10%
Asteroid Eros 5 X 10
Small mountain 1 x 1012
Ocean liner 7 % 107
Elephant 5% 103
Grape 3x1073
Speck of dust 7 X 10710
Penicillin molecule 5x 107"
Uranium atom 41075
Proton 2 X 107%
Electron 9 x 10731

if the shaking causes the ground to undergo liguefaction, in

which the soil grains experience little friction as they slide
over one another. The ground is then effectively quicksand.
The possibility of liquefaction in sandy ground can be pre-
dicted in terms of the void ratio e for a sample of the ground:

V..
P = voids . (1_9)

Vgrains
Here, Vgains 1s the total volume of the sand grains in the sam-
ple and V4 is the total volume between the grains (in the
voids). If e exceeds a critical value of 0.80, liquefaction can
occur during an earthquake. What is the corresponding sand
density p,,q? Solid silicon dioxide (the primary component
of sand) has a density of pgio, = 2.600 X 10° kg/m®. =%

The density of the sand p,,,q in a sample is the mass per unit
volume — that is, the ratio of the total mass m1,,4 of the sand
grains to the total volume V,,; of the sample:

Mgand

sand . 1-10
Prand Vtota] ( )

Calculations: The total volume V, of a sample is
Vtotal = Vgrains + Vvoids-

Substituting for V.4 from Eq. 1-9 and solving for Vi
lead to

\% _ Vlolal
grains 14+ e 0

(1-11)
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From Eq. 1-8, the total mass m,,q of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

Mgang = pSiOz‘/grainS' (1'12)
Substituting this expression into Eq. 1-10 and then substitut-
ing for Vi from Eq. 1-11lead to

psio,  Viotal Psio,
= = : 1-13
Psand ‘/total 1+ e 1+ e ( )

WILEY ©

Substituting pgo, = 2.600 X 103 kg/m* and the critical value
of e = 0.80, we find that liquefaction occurs when the sand
density is less than

2,600 X 10° kg/m®
Psand = 1.80

= 1.4 X 103 kg/m?.
(Answer)

A building can sink several meters in such liquefaction.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

Sl Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.
These standards are used in all physical measurement, for both
the base quantities and the quantities derived from them.
Scientific notation and the prefixes of Table 1-2 are used to sim-
plify measurement notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

Problems

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum—
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12,is usually used.

Density The density p of a material is the mass per unit volume:

P = 7 (1-8)

@ Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

Interactive solution is at http://www.wiley.com/college/halliday

ﬂ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 1-1 Measuring Things, Including Lengths

*1 ssm Earth is approximately a sphere of radius 6.37 X 10° m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

*2 A gryisan old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry? in
points squared (points?)?

*3 The micrometer (1 wm) is often called the micron. (a) How

many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 um? (c¢) How many microns are in 1.0 yd?

*4  Spacing in this book was generally done in units of points and
picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

°5 ssm www Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods
and (b) chains? (1 furlong =201.168m, 1 rod = 5.0292 m,
and 1 chain = 20.117 m.)



**6 You can easily convert common units and measures electroni-
cally, but you still should be able to use a conversion table, such as
those in Appendix D. Table 1-6 is part of a conversion table for a
system of volume measures once common in Spain; a volume of 1
fanega is equivalent to 55.501 dm? (cubic decimeters). To complete
the table, what numbers (to three significant figures) should be en-
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar-
tilla column, and (d) the almude column, starting with the top
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu-
bic centimeters (cm?).

Tahle 1-6 Problem 6

cahiz fanega  cuartilla almude  medio
1 cahiz = 1 12 48 144 288
1 fanega = 1 4 12 24
1 cuartilla = 1 3 6
1 almude = 1 2
1 medio = 1

*7 1LW Hydraulic engineers in the United States often use, as a
unit of volume of water, the acre-foot, defined as the volume of wa-
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun-
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26
kmZ2. What volume of water, in acre-feet, fell on the town?

*8 (@ Harvard Bridge, which connects MIT with its fraternities
across the Charles River, has a length of 364.4 Smoots plus one
ear. The unit of one Smoot is based on the length of Oliver Reed
Smoot, Jr., class of 1962, who was carried or dragged length by
length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint)
1-Smoot lengths along the bridge. The marks have been repainted
biannually by fraternity pledges since the initial measurement,
usually during times of traffic congestion so that the police can-
not easily interfere. (Presumably, the police were originally up-
set because the Smoot is not an SI base unit, but these days they
seem to have accepted the unit.) Figure 1-4 shows three parallel
paths, measured in Smoots (S), Willies (W), and Zeldas (Z).
What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?

0 32 212
1 1 1 S
| | |
0 | 258
— —w
60 216
| | Z

Figure 1-4 Problem 8.

**9 Antarctica is roughly semicircular, with a radius of 2000 km
(Fig. 1-5). The average thickness of its ice cover is 3000 m. How
many cubic centimeters of ice does Antarctica contain? (Ignore
the curvature of Earth.)

‘\2.000 km

3000 m

Figure 1-5 Problem 9.

PROBLEMS 9

Module 1-2 Time

*10 Until 1883, every city and town in the United States kept its
own local time. Today, travelers reset their watches only when the
time change equals 1.0 h. How far, on the average, must you travel
in degrees of longitude between the time-zone boundaries at
which your watch must be reset by 1.0 h? (Hint: Earth rotates 360°
in about 24 h.)

*11 For about 10 years after the French Revolution, the French
government attempted to base measures of time on multiples of
ten: One week consisted of 10 days, one day consisted of 10 hours,
one hour consisted of 100 minutes, and one minute consisted of 100
seconds. What are the ratios of (a) the French decimal week to the
standard week and (b) the French decimal second to the standard
second?

°12 The fastest growing plant on record is a Hesperoyucca whip-
plei that grew 3.7 m in 14 days. What was its growth rate in micro-
meters per second?

*13 @ Three digital clocks A, B, and C run at different rates and
do not have simultaneous readings of zero. Figure 1-6 shows si-
multaneous readings on pairs of the clocks for four occasions. (At
the earliest occasion, for example, B reads 25.0 s and C reads 92.0
s.) If two events are 600 s apart on clock A, how far apart are they
on (a) clock B and (b) clock C? (c) When clock A reads 400 s, what
does clock B read? (d) When clock C reads 15.0 s, what does clock B
read? (Assume negative readings for prezero times.)

312 512
: — 40
25| 0 1?5 2(|)0 2?0
| | B (s)
92.0 142
| | C (S)

Figure 1-6 Problem 13.

*14 A lecture period (50 min) is close to 1 microcentury. (a) How
long is a microcentury in minutes? (b) Using

[— L
actual — approximation > 100,
actual

percentage difference = (

find the percentage difference from the approximation.

*15 A fortnight is a charming English measure of time equal to
2.0 weeks (the word is a contraction of “fourteen nights”). That is a
nice amount of time in pleasant company but perhaps a painful
string of microseconds in unpleasant company. How many mi-
croseconds are in a fortnight?

*16 Time standards are now based on atomic clocks. A promis-
ing second standard is based on pulsars, which are rotating neu-
tron stars (highly compact stars consisting only of neutrons).
Some rotate at a rate that is highly stable, sending out a radio
beacon that sweeps briefly across Earth once with each rotation,
like a lighthouse beacon. Pulsar PSR 1937 + 21 is an example; it
rotates once every 1.557 806 448 872 75 + 3 ms, where the trailing
+3 indicates the uncertainty in the last decimal place (it does not
mean *3 ms). (a) How many rotations does PSR 1937 + 21 make
in 7.00 days? (b) How much time does the pulsar take to rotate ex-
actly one million times and (c) what is the associated uncertainty?
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*17 ssm Five clocks are being tested in a laboratory. Exactly at
noon, as determined by the WWYV time signal, on successive days
of a week the clocks read as in the following table. Rank the five
clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock  Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40  12:36:56 12:37:12  12:37:27 12:37:44 12:37:59 12:38:14
11:59:59  12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03
15:50:45 15:51:43  15:52:41 15:53:39  15:54:37 15:55:35  15:56:33
12:03:59  12:02:52  12:01:45 12:00:38  11:59:31 11:58:24 11:57:17
12:03:59  12:02:49 12:01:54 12:01:52  12:01:32  12:01:22 12:01:12

mgaow

*18 Because Earth’s rotation is gradually slowing, the length of
each day increases: The day at the end of 1.0 century is 1.0 ms longer
than the day at the start of the century. In 20 centuries, what is the
total of the daily increases in time?

*=19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H = 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is r = 11.1 s, what is
the radius r of Earth?

Module 1-3 Mass

*20 @ The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m?>.

*21 Earth has amass of 5.98 X 10%* kg, The average mass of the atoms
that make up Earth is 40 u. How many atoms are there in Earth?

*22  Gold, which has a density of 19.32 g/cm’, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into
a leaf of 1.000 um thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
pm, what is the length of the fiber?

*23 ssm (a) Assuming that water has a density of exactly 1 g/cm?,
find the mass of one cubic meter of water in kilograms.
(b) Suppose that it takes 10.0 h to drain a container of 5700 m? of
water. What is the “mass flow rate,” in kilograms per second, of wa-
ter from the container?

*24 @ Grains of fine California beach sand are approximately
spheres with an average radius of 50 um and are made of silicon
dioxide, which has a density of 2600 kg/m>. What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

*25 -4 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide. Assume that the mud ends up
uniformly distributed over a surface area of the valley measuring
0.40 km X 0.40 km and that mud has a density of 1900 kg/m?. What
is the mass of the mud sitting above a 4.0 m? area of the valley floor?

*26 One cubic centimeter of a typical cumulus cloud contains
50 to 500 water drops, which have a typical radius of 10 um. For

that range, give the lower value and the higher value, respectively,
for the following. (a) How many cubic meters of water are in a
cylindrical cumulus cloud of height 3.0 km and radius 1.0 km? (b)
How many 1-liter pop bottles would that water fill? (c) Water has
a density of 1000 kg/m3. How much mass does the water in the
cloud have?

27 Tron has a density of 7.87 g/cm?, and the mass of an iron atom
is 9.27 X 10~* kg, If the atoms are spherical and tightly packed, (a)
what is the volume of an iron atom and (b) what is the distance be-
tween the centers of adjacent atoms?

*28 A mole of atoms is 6.02 X 10? atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

*29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul =
100 gins, 1 gin = 16 tahils, 1 tahil = 10 chees, and 1 chee =
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

*30 @ Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time ¢ by
m = 5.00/"% — 3.00¢ + 20.00, with t = 0, m in grams, and ¢ in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) r = 2.00 s and (d) ¢ = 5.00 s?

*=e31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm? and a mass of 0.0200 g. Assume that the volume
of the empty spaces between the candies is negligible. If the height
of the candies in the container increases at the rate of 0.250 cm/s, at
what rate (kilograms per minute) does the mass of the candies in
the container increase?

Additional Problems

32 In the United States, a doll house has the scale of 1:12 of a
real house (that is, each length of the doll house is 5 that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1:144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0 m,
and a standard sloped roof (vertical triangular faces on the ends)
of height 3.0 m. In cubic meters, what are the volumes of the corre-
sponding (a) doll house and (b) miniature house?

Figure 1-7 Problem 32.



33 ssm A ton is a measure of volume frequently used in ship-
ping, but that use requires some care because there are at
least three types of tons: A displacement ton is equal to 7 barrels
bulk, a freight ton is equal to 8 barrels bulk, and a register ton is
equal to 20 barrels bulk. A barrel bulk is another measure of vol-
ume: 1 barrel bulk = 0.1415 m>. Suppose you spot a shipping order
for “73 tons” of M&M candies, and you are certain that the client
who sent the order intended “ton” to refer to volume (instead of
weight or mass, as discussed in Chapter 5). If the client actually
meant displacement tons, how many extra U.S. bushels of the can-
dies will you erroneously ship if you interpret the order as (a) 73
freight tons and (b) 73 register tons? (1 m?®= 28378 U.S.
bushels.)

34 Two types of barrel units were in use in the 1920s in the
United States. The apple barrel had a legally set volume of 7056 cu-
bic inches; the cranberry barrel, 5826 cubic inches. If a merchant
sells 20 cranberry barrels of goods to a customer who thinks he is
receiving apple barrels, what is the discrepancy in the shipment
volume in liters?

35 An old English children’s rhyme states, “Little Miss Muffet
sat on a tuffet, eating her curds and whey, when along came a spi-
der who sat down beside her. . ..” The spider sat down not because
of the curds and whey but because Miss Muffet had a stash of 11
tuffets of dried flies. The volume measure of a tuffet is given by
1 tuffet = 2 pecks = 0.50 Imperial bushel, where 1 Imperial bushel
= 36.3687 liters (L). What was Miss Muffet’s stash in (a) pecks,
(b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To
complete the table, what numbers (to three significant figures)
should be entered in (a) the wey column, (b) the chaldron column,
(c) the bag column, (d) the pottle column, and (e) the gill column,
starting from the top down? (f) The volume of 1 bag is equal to
0.1091 m>. If an old story has a witch cooking up some vile liquid
in a cauldron of volume 1.5 chaldrons, what is the volume in cubic
meters?

Tahle 1-7 Problem 36

wey chaldron bag pottle gill

1wey = 1 10/9 40/3 640
1 chaldron =

1 bag =

1 pottle =

1gill =

120 240

37 A typical sugar cube has an edge length of 1 cm. If you had a
cubical box that contained a mole of sugar cubes, what would its
edge length be? (One mole = 6.02 X 10% units.)

38 An old manuscript reveals that a landowner in the time
of King Arthur held 3.00 acres of plowed land plus a live-
stock area of 25.0 perches by 4.00 perches. What was the total
area in (a) the old unit of roods and (b) the more modern unit of
square meters? Here, 1 acre is an area of 40 perches by 4 perches,
1 rood is an area of 40 perches by 1 perch, and 1 perch is the
length 16.5 ft.

39 ssm A tourist purchases a car in England and ships it home to
the United States. The car sticker advertised that the car’s fuel con-
sumption was at the rate of 40 miles per gallon on the open road.

PROBLEMS 11

The tourist does not realize that the UK. gallon differs from the
U.S. gallon:

1 UK. gallon = 4.546 090 0 liters
1 U.S. gallon = 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gallons of
fuel does (a) the mistaken tourist believe she needs and (b) the car
actually require?

40 Using conversions and data in the chapter, determine
the number of hydrogen atoms required to obtain 1.0 kg of
hydrogen. A hydrogen atom has a mass of 1.0 u.

41 ssm A cord is a volume of cut wood equal to a stack 8 ft
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42  One molecule of water (H,O) contains two atoms of hydrogen
and one atom of oxygen. A hydrogen atom has a mass of 1.0 u and an
atom of oxygen has a mass of 16 u, approximately. (a) What is the
mass in kilograms of one molecule of water? (b) How many mole-
cules of water are in the world’s oceans, which have an estimated total
mass of 1.4 X 10! kg?

43 A person on a diet might lose 2.3 kg per week. Express the
mass loss rate in milligrams per second, as if the dieter could sense
the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has
a density of 1.0 X 10° kg/m?.

45 (a) A unit of time sometimes used in microscopic physics is
the shake. One shake equals 1078 s. Are there more shakes in a
second than there are seconds in a year? (b) Humans have ex-
isted for about 10° years, whereas the universe is about 10'° years
old. If the age of the universe is defined as 1 “universe day,”
where a universe day consists of “universe seconds” as a normal
day consists of normal seconds, how many universe seconds have
humans existed?

46 A unit of area often used in measuring land areas is the hectare,
defined as 10* m?. An open-pit coal mine consumes 75 hectares of
land, down to a depth of 26 m, each year. What volume of earth, in
cubic kilometers, is removed in this time?

47 ssM  An astronomical unit (AU) is the average distance
between Earth and the Sun, approximately 1.50 X 108 km. The
speed of light is about 3.0 X 10% m/s. Express the speed of light in
astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of
75 g, which corresponds to about 7.5 moles of atoms. (A mole of
atoms is 6.02 X 10? atoms.) In atomic mass units (u), what is the
average mass of the atoms in the common Eastern mole?

49 A traditional unit of length in Japan is the ken (1 ken =
1.97 m). What are the ratios of (a) square kens to square meters
and (b) cubic kens to cubic meters? What is the volume of a cylin-
drical water tank of height 5.50 kens and radius 3.00 kens in (c) cu-
bic kens and (d) cubic meters?

50 You receive orders to sail due east for 24.5 mi to put your sal-
vage ship directly over a sunken pirate ship. However, when your
divers probe the ocean floor at that location and find no evidence of
a ship, you radio back to your source of information, only to discover
that the sailing distance was supposed to be 24.5 nautical miles, not
regular miles. Use the Length table in Appendix D to calculate how
far horizontally you are from the pirate ship in kilometers.
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51 The cubit is an ancient unit of length based on the distance
between the elbow and the tip of the middle finger of the mea-
surer. Assume that the distance ranged from 43 to 53 cm, and
suppose that ancient drawings indicate that a cylindrical pillar
was to have a length of 9 cubits and a diameter of 2 cubits. For
the stated range, what are the lower value and the upper value,
respectively, for (a) the cylinder’s length in meters, (b) the cylin-
der’s length in millimeters, and (c) the cylinder’s volume in cubic
meters?

52 As a contrast between the old and the modern and between
the large and the small, consider the following: In old rural
England 1 hide (between 100 and 120 acres) was the area of land
needed to sustain one family with a single plough for one year. (An
area of 1 acre is equal to 4047 m?.) Also, 1 wapentake was the area
of land needed by 100 such families. In quantum physics, the
cross-sectional area of a nucleus (defined in terms of the chance of
a particle hitting and being absorbed by it) is measured in units of
barns, where 1 barn is 1 X 10728 m2. (In nuclear physics jargon, if a
nucleus is “large,” then shooting a particle at it is like shooting a
bullet at a barn door, which can hardly be missed.) What is the
ratio of 25 wapentakes to 11 barns?

53 ssm  An astronomical unit (AU) is equal to the average
distance from Earth to the Sun, about 92.9 X 10° mi. A parsec
(pc) is the distance at which a length of 1 AU would subtend an
angle of exactly 1 second of
arc (Fig. 1-8). A light-year (ly)
is the distance that light, trav-
eling through a vacuum with a
speed of 186 000 mi/s, would
cover in 1.0 year. Express the
Earth—Sun distance in (a)
parsecs and (b) light-years.

An angle of
exactly 1 second

1AU
1 pc

Figure 1-8 Problem 53.

54 The description for a certain brand of house paint claims a cov-
erage of 460 ft*/gal. (a) Express this quantity in square meters per
liter. (b) Express this quantity in an SI unit (see Appendices A and
D). (c) What is the inverse of the original quantity, and (d) what is its
physical significance?

55 Strangely, the wine for a large wedding reception is to be
served in a stunning cut-glass receptacle with the interior dimen-
sions of 40 cm X 40 cm X 30 cm (height). The receptacle is to be
initially filled to the top. The wine can be purchased in bottles of
the sizes given in the following table. Purchasing a larger bottle in-
stead of multiple smaller bottles decreases the overall cost of the
wine. To minimize the cost, (a) which bottle sizes should be pur-
chased and how many of each should be purchased and, once the
receptacle is filled, how much wine is left over in terms of (b) stan-
dard bottles and (c) liters?

1 standard bottle

1 magnum = 2 standard bottles

1 jeroboam = 4 standard bottles

1 rehoboam = 6 standard bottles

1 methuselah = 8 standard bottles

1 salmanazar = 12 standard bottles

1 balthazar = 16 standard bottles = 11.356 L

1 nebuchadnezzar = 20 standard bottles

56 The corn—hog ratio is a financial term used in the pig market
and presumably is related to the cost of feeding a pig until it is
large enough for market. It is defined as the ratio of the market
price of a pig with a mass of 3.108 slugs to the market price of a
U.S. bushel of corn. (The word “slug” is derived from an old
German word that means “to hit”; we have the same meaning for
“slug” as a verb in modern English.) A U.S. bushel is equal to
35.238 L. If the corn-hog ratio is listed as 5.7 on the market ex-
change, what is it in the metric units of

price of 1 kilogram of pig 0

price of 1 liter of corn

(Hint: See the Mass table in Appendix D.)

57 You are to fix dinners for 400 people at a convention of
Mexican food fans. Your recipe calls for 2 jalapefio peppers per
serving (one serving per person). However, you have only ha-
banero peppers on hand. The spiciness of peppers is measured in
terms of the scoville heat unit (SHU). On average, one jalapeiio
pepper has a spiciness of 4000 SHU and one habanero pepper has
a spiciness of 300 000 SHU. To get the desired spiciness, how many
habanero peppers should you substitute for the jalapefio peppers
in the recipe for the 400 dinners?

58 A standard interior staircase has steps each with a rise
(height) of 19 cm and a run (horizontal depth) of 23 cm. Research
suggests that the stairs would be safer for descent if the run were,
instead, 28 cm. For a particular staircase of total height 4.57 m, how
much farther into the room would the staircase extend if this
change in run were made?

59 In purchasing food for a political rally, you erroneously order
shucked medium-size Pacific oysters (which come 8 to 12 per U.S.
pint) instead of shucked medium-size Atlantic oysters (which
come 26 to 38 per U.S. pint). The filled oyster container shipped to
you has the interior measure of 1.0 m X 12 cm X 20 ¢cm, and a U.S.
pint is equivalent to 0.4732 liter. By how many oysters is the order
short of your anticipated count?

60 An old English cookbook carries this recipe for cream of net-
tle soup: “Boil stock of the following amount: 1 breakfastcup plus
1 teacup plus 6 tablespoons plus 1 dessertspoon. Using gloves,
separate nettle tops until you have 0.5 quart; add the tops to the
boiling stock. Add 1 tablespoon of cooked rice and 1 saltspoon of
salt. Simmer for 15 min.” The following table gives some of the
conversions among old (premetric) British measures and among
common (still premetric) U.S. measures. (These measures just
scream for metrication.) For liquid measures, 1 British teaspoon =
1 U.S. teaspoon. For dry measures, 1 British teaspoon = 2 U.S. tea-
spoons and 1 British quart = 1 U.S. quart. In U.S. measures, how
much (a) stock, (b) nettle tops, (c) rice, and (d) salt are required in
the recipe?

Old British Measures U.S. Measures

teaspoon = 2 saltspoons
dessertspoon = 2 teaspoons
tablespoon = 2 dessertspoons
teacup = 8 tablespoons
breakfastcup = 2 teacups

tablespoon = 3 teaspoons
half cup = 8 tablespoons
cup = 2 half cups



C H A P T E R 2

Motion Along a Straight Line

2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

Learning Objectives
After reading this module, you should be able to ...

2.01 Identify that if all parts of an object move in the same di-
rection and at the same rate, we can treat the object as if it
were a (point-like) particle. (This chapter is about the mo-
tion of such objects.)

2.02 Identify that the position of a particle is its location as
read on a scaled axis, such as an x axis.

2.03 Apply the relationship between a particle’s
displacement and its initial and final positions.

Key Ideas

@ The position x of a particle on an x axis locates the particle
with respect to the origin, or zero point, of the axis.

@ The position is either positive or negative, according
to which side of the origin the particle is on, or zero if
the particle is at the origin. The positive direction on
an axis is the direction of increasing positive numbers;
the opposite direction is the negative direction on

the axis.

@ The displacement Ax of a particle is the change in its
position:
Ax = x, — xy.

@ Displacement is a vector quantity. It is positive if the
particle has moved in the positive direction of the x axis
and negative if the particle has moved in the negative
direction.

What Is Physics?

2.04 Apply the relationship between a particle’s average
velocity, its displacement, and the time interval for that
displacement.

2.05 Apply the relationship between a particle’s average
speed, the total distance it moves, and the time interval for
the motion.

2.06 Given a graph of a particle’s position versus time,
determine the average velocity between any two particular
times.

® When a particle has moved from position x; to position x,
during a time interval At = t, — t,, its average velocity during
that interval is
A o x

Vae T A T T
® The algebraic sign of v,,, indicates the direction of motion
(vave is @ vector quantity). Average velocity does not depend
on the actual distance a particle moves, but instead depends
on its original and final positions.

® On a graph of x versus ¢, the average velocity for a time in-
terval At is the slope of the straight line connecting the points
on the curve that represent the two ends of the interval.

® The average speed s,,, of a particle during a time interval Az
depends on the total distance the particle moves in that time

interval: )
total distance

San = At

One purpose of physics is to study the motion of objects—how fast they move, for
example, and how far they move in a given amount of time. NASCAR engineers
are fanatical about this aspect of physics as they determine the performance of
their cars before and during a race. Geologists use this physics to measure
tectonic-plate motion as they attempt to predict earthquakes. Medical
researchers need this physics to map the blood flow through a patient when
diagnosing a partially closed artery, and motorists use it to determine how they
might slow sufficiently when their radar detector sounds a warning. There are
countless other examples. In this chapter, we study the basic physics of motion
where the object (race car, tectonic plate, blood cell, or any other object) moves
along a single axis. Such motion is called one-dimensional motion.

13
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Positive direction

-

Negative direction
! ! | ! ! !
-3 2 -1 0 1 2

f‘%X(m)

Origin
Figure 2-1 Position is determined on an
axis that is marked in units of length (here
meters) and that extends indefinitely in
opposite directions. The axis name, here x,
is always on the positive side of the origin.

Motion

The world, and everything in it, moves. Even seemingly stationary things, such as a
roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s orbit
around the center of the Milky Way galaxy, and that galaxy’s migration relative to
other galaxies. The classification and comparison of motions (called kinematics) is
often challenging. What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of
motion that is restricted in three ways.

1. The motion is along a straight line only. The line may be vertical, horizontal, or
slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until
Chapter 5. In this chapter we discuss only the motion itself and changes in the
motion. Does the moving object speed up, slow down, stop, or reverse
direction? If the motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point-like object
such as an electron) or an object that moves like a particle (such that every
portion moves in the same direction and at the same rate). A stiff pig slipping
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement

To locate an object means to find its position relative to some reference point, of-
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive
direction of the axis is in the direction of increasing numbers (coordinates), which
is to the right in Fig. 2-1. The opposite is the negative direction.

For example, a particle might be located at x = 5 m, which means it is 5 m in
the positive direction from the origin. If it were at x = —5 m, it would be just as
far from the origin but in the opposite direction. On the axis, a coordinate of
—5m is less than a coordinate of —1 m, and both coordinates are less than a
coordinate of +5 m. A plus sign for a coordinate need not be shown, but a minus
sign must always be shown.

A change from position x; to position x, is called a displacement Ax, where

Ax = x, — x;. (2-1)

(The symbol A, the Greek uppercase delta, represents a change in a quantity,
and it means the final value of that quantity minus the initial value.) When
numbers are inserted for the position values x; and x, in Eq. 2-1, a displacement
in the positive direction (to the right in Fig. 2-1) always comes out positive, and
a displacement in the opposite direction (left in the figure) always comes out
negative. For example, if the particle moves from x; = 5 m to x, = 12 m, then
the displacement is Ax = (12 m) — (5 m) = +7 m. The positive result indicates
that the motion is in the positive direction. If, instead, the particle moves from
x; =5mtox, =1m,then Ax = (1 m) — (5§ m) = —4 m. The negative result in-
dicates that the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement in-
volves only the original and final positions. For example, if the particle moves
from x = 5 m out to x = 200 m and then back to x = 5 m, the displacement from
start to finishis Ax = (Sm) — (Sm) = 0.

Signs. A plus sign for a displacement need not be shown, but a minus sign
must always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For
example, a displacement of Ax = —4 m has a magnitude of 4 m.
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This is a graph

of position x x (m)
versus time t\‘
for a stationary +1
Figure 2-2 The graph of object. -1 0 1 2 3 4 £(s)
x(¢) for an armadillo that -1
is stationary at x = —2 m.
The value of x is =2 m Same position x(2)
for all times . for any time.

Displacement is an example of a vector quantity, which is a quantity that has
both a direction and a magnitude. We explore vectors more fully in Chapter 3, but
here all we need is the idea that displacement has two features: (1) Its magnitude
is the distance (such as the number of meters) between the original and final po-
sitions. (2) Its direction, from an original position to a final position, can be repre-
sented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding
with a bit of reasoning. The answers are in the back of the book.

IZ Checkpoint 1

Here are three pairs of initial and final positions, respectively, along an x axis. Which
pairs give a negative displacement: (a) =3 m, +5 m;(b) =3 m, —7 m; (c) 7 m, —3 m?

Average Velocity and Average Speed

A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(¢). (The notation x(¢) represents a function x of ¢, not
the product x times ¢.) As a simple example, Fig. 2-2 shows the position function
x(¢) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-

val. The animal’s position stays atx = —2 m.
Figure 2-3 is more interesting, because it involves motion. The armadillo is
apparently first noticed at t = 0 when it is at the position x = —5 m. It moves

This is a graph
of position x
versus time ¢
for a moving
object.

At x=2mwhent=4s.
Plotted here.

It is at position x=-5 m
when time t=0s.
Those data are plotted here.

At x=0mwhent=3s.
Plotted here.

L L 1 1 é X (m) L L L 1 1

0s

Figure 2-3 The graph of x(¢) for a moving armadillo. The path associated with the graph is also shown, at three times.
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toward x = 0, passes through that point at t = 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity v,,,, which is the ratio of the displacement Ax that
occurs during a particular time interval Az to that interval:

Ax X, — X
The notation means that the position is x; at time ¢, and then x, at time #,. A com-
mon unit for v, is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

Graphs. On a graph of x versus 1, v,,, is the slope of the straight line that
connects two particular points on the x(¢) curve: one is the point that corresponds
to x, and t,, and the other is the point that corresponds to x; and #. Like displace-
ment, v,,, has both magnitude and direction (it is another vector quantity). Its
magnitude is the magnitude of the line’s slope. A positive v,,, (and slope) tells us
that the line slants upward to the right; a negative v,,, (and slope) tells us that the
line slants downward to the right. The average velocity v,,, always has the same
sign as the displacement Ax because Az in Eq.2-2 is always positive.

Figure 2-4 shows how to find v,,, in Fig. 2-3 for the time interval t = 1sto¢ = 4s.
We draw the straight line that connects the point on the position curve at the begin-
ning of the interval and the point on the curve at the end of the interval. Then we find
the slope Ax/At of the straight line. For the given time interval, the average velocity is

Vavg = ? =2 m/s.

Average speed s,,, is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement Ax, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

total distance

savg = Af (2'3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes s,,, is the same (except for the absence of a sign) as v,,,. However, the
two can be quite different.

&‘) This is a graph

of position x 4
versus time t 3 Vayg = slope of this line
_rise _Ax
2 Trun At End of interval
i

To find average velocity, 1 :
Figure 2-4 Calculation of the first draw a straight line, e
average velocity betweent = 1's start to end, and then i/— This vertical distance is how far
and ¢t = 4 s as the slope of the line find the slope of the ! it moved, start to end:
that connects the points on the line. Ax=2m-(-4m) =6m

x(f) curve representing those times.

The swirling icon indicates that a

figure is available in WileyPLUS

as an animation with voiceover. Start of interval

|
T~ This horizontal distance is how long
it took, start to end:

At=4s-1s=3s
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Sample Problem 2.01

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another
2.0 km farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x; = 0 to a second
position of x, at the station. That second position must be at
X, = 8.4 km + 2.0 km = 10.4 km. Then your displacement Ax
along the x axis is the second position minus the first position.

Calculation: From Eq.2-1,we have
Ax =x;, —x; =104 km — 0 = 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval Af from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval At (= 0.50 h),
but we lack the driving time interval Afzy. However, we
know that for the drive the displacement Axg, is 8.4 km and
the average velocity v,y q, is 70 km/h. Thus, this average
velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Axy,
Vv = °
avg,dr Atdr
Rearranging and substituting data then give us
Axy 8.4 km
Aty = — = = 0.12 h.
C Vpgar  70km/h
SO, At = Atdr A Atwlk

=0.12h + 0.50 h = 0.62 h. (Answer)

(c) What is your average velocity v,,, from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that v,, for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time
interval of 0.62 h for the entire trip.

Average velocity, beat-up pickup truck

Calculation: Here we find

_ﬂ _ 10.4 km
Yae = AT T 70620

= 16.8 km/h =~ 17 km/h. (Answer)

To find v,,, graphically, first we graph the function x(z) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.” Your
average velocity is the slope of the straight line connecting
those points; that is, v, is the ratio of the rise (Ax = 10.4 km)
to the run (At = 0.62 h), which gives us v,, = 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your
average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km + 2.0 km + 2.0
km = 12.4 km. The total time interval is 0.12h + 0.50 h +
0.75 h = 1.37 h. Thus, Eq. 2-3 gives us

12.4 km
Save = —— o = 9.1 km/h. Answer
e 1.37h ( )
Driving ends, walking starts.
X
12
Station Slope of this
10 line gives
g 8 average
g s velocity.
2 6.5
8 S ———— How far:
4 : Ax =10.4 km
2 :
|
|
0() 0.2 0.4 0.6 !
Time (h)
How long:
At =0.62 h

Figure 2-5 The lines marked “Driving” and “Walking” are the
position—time plots for the driving and walking stages. (The plot
for the walking stage assumes a constant rate of walking.) The
slope of the straight line joining the origin and the point labeled
“Station” is the average velocity for the trip, from the beginning
to the station.

PLUS Additional examples, video, and practice available at WileyPLUS
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2-2 INSTANTANEOUS VELOCITY AND SPEED

Learning Objectives

After reading this module, you should be able to . ... 2.08 Given a graph of a particle’s position versus time, deter-
2.07 Given a particle's position as a function of time, mine the instantaneous velocity for any particular time.

calculate the instantaneous velocity for any particular time. 2.09 Identify speed as the magnitude of the instantaneous

velocity.
Key Ideas
@ The instantaneous velocity (or simply velocity) v of a moving @ The instantaneous velocity (at a particular time) may be
particle is Ax dx found as the slope (at that particular time) of the graph of x
yv=lim — = —, Versus f.
At—0 At dt

where Ax = x, — x;and At = 1, — ;. ® Speed is the magnitude of instantaneous velocity.

Instantaneous Velocity and Speed

You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval Az.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval Af closer and closer to 0. As At dwindles, the average velocity
approaches a limiting value, which is the velocity at that instant:

Ax dx
= lm — = —. 2-4
v Atlr—r>10 At dt (2-4)

Note that v is the rate at which position x is changing with time at a given instant;
that is, v is the derivative of x with respect to . Also note that v at any instant is
the slope of the position—time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of +5 m/s
and one of —5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

7I Checkpoint 2

The following equations give the position x(¢) of a particle in four situations (in each
equation, x is in meters, ¢ is in seconds, and > 0): (1) x = 3¢t — 2; (2) x = —4¢*> — 2;
(3) x = 2/t*;and (4) x = —2.(a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Sample Problem 2.02 Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(¢) plot for an elevator cab that is initially  Calculations: The slope of x(¢), and so also the velocity, is

§t?tiogary, Fhen moves upward (which we take to be the pos-  zero in the intervals from 0 to 1s and from 9 s on, so then

itive direction of x), and then stops. Plot v(?). the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant ve-

KEY IDEA locity. We calculate the slope of x(¢) then as

We can find the velocity at any time from the slope of the Ax _ 24m — 4.0 m 40 mls, (2-5)

x(¢) curve at that time. At 80s —3.0s
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Figure 2-6 (a) The x(¢) curve for an elevator cab g Op—o—"—7-—2 o
. = 1 2 3 4 5 6 7 8 9
that moves upward along an x axis. (b) The v() £ -1
curve for the cab. Note that it is the derivative 78) -2
of the x(7) curve (v = dx/dt). (c) The a(t) curve < _i
for the cab. It is the derivative of the v(f) curve - Deceleration—/

(a = dvl/dt). The stick figures along the bottom
suggest how a passenger’s body might feel dur-
ing the accelerations.

\

The plus sign indicates that the cab is moving in the posi-
tive x direction. These intervals (where v =0 and v =
4 m/s) are plotted in Fig. 2-6b. In addition, as the cab ini-
tially begins to move and then later slows to a stop,
v varies as indicated in the intervals 1 sto 3 s and 8 s to 9's.
Thus, Fig. 2-6b is the required plot. (Figure 2-6¢ is consid-
ered in Module 2-3.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(¢) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(f) graph indicates
only changes in x. To find such a change in x during any in-

i

i i What you would feel.

terval, we must, in the language of calculus, calculate the
area “under the curve” on the v(¢) graph for that interval.
For example, during the interval 3 s to 8 s in which the cab
has a velocity of 4.0 m/s, the change in x is

Ax = (4.0 m/s)(8.0s — 3.0s) = +20 m.

!

(9)

(2-6)

(This area is positive because the v(f) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by
20 m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.

PLUS Additional examples, video, and practice available at WileyPLUS
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2-3 ACCELERATION

Learning Objectives

After reading this module, you should be able to . ..

2.10 Apply the relationship between a particle’s average
acceleration, its change in velocity, and the time interval

for that change.
2.11 Given a particle’s velocity as a function of time, calcu-

late the instantaneous acceleration for any particular time.

Key Ideas

@ Average acceleration is the ratio of a change in velocity Av
to the time interval Az in which the change occurs:

Ay
Aavg = Tt

The algebraic sign indicates the direction of a,,.

2.12 Given a graph of a particle's velocity versus time, deter-
mine the instantaneous acceleration for any particular time
and the average acceleration between any two particular
times.

@ Instantaneous acceleration (or simply acceleration) a is the
first time derivative of velocity v(¢) and the second time deriv-
ative of position x(¢):
_dv dx
dt ar’
@ On a graph of v versus ¢, the acceleration a at any time ¢ is

the slope of the curve at the point that represents ¢.

Acceleration

When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration a,,, over a time
interval At is

Vo — vy Av
g = ———— = — 2-7
advg tz _ tl At B ( )

where the particle has velocity v; at time #; and then velocity v, at time #,. The
instantaneous acceleration (or simply acceleration) is

dv
=— 2-8
In words, the acceleration of a particle at any instant is the rate at which its velocity
is changing at that instant. Graphically, the acceleration at any point is the slope of
the curve of v(¢) at that point. We can combine Eq.2-8 with Eq. 2-4 to write

dv d [ dx d’x
=—=—|\—)=—5 2-9
dt dt< dt ) 29)

dr?
In words, the acceleration of a particle at any instant is the second derivative of
its position x(¢) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s - s)
or m/s%. Other units are in the form of length/(time - time) or length/time?.
Acceleration has both magnitude and direction (it is yet another vector quan-
tity). Its algebraic sign represents its direction on an axis just as for displacement
and velocity; that is, acceleration with a positive value is in the positive direction
of an axis, and acceleration with a negative value is in the negative direction.

Figure 2-6 gives plots of the position, velocity, and acceleration of an ele-
vator moving up a shaft. Compare the a(t) curve with the v(¢) curve—each
point on the a(t) curve shows the derivative (slope) of the v(f) curve at the
corresponding time. When v is constant (at either 0 or 4 m/s), the derivative is
zero and so also is the acceleration. When the cab first begins to move, the v(¢)



curve has a positive derivative (the slope is positive), which means that a(¢) is
positive. When the cab slows to a stop, the derivative and slope of the v(¢)
curve are negative; that is, a() is negative.

Next compare the slopes of the v(r) curve during the two acceleration peri-
ods. The slope associated with the cab’s slowing down (commonly called “decel-
eration”) is steeper because the cab stops in half the time it took to get up to
speed. The steeper slope means that the magnitude of the deceleration is larger
than that of the acceleration, as indicated in Fig. 2-6¢.

Sensations. The sensations you would feel while riding in the cab of
Fig. 2-6 are indicated by the sketched figures at the bottom. When the cab first
accelerates, you feel as though you are pressed downward; when later the cab is
braked to a stop, you seem to be stretched upward. In between, you feel nothing
special. In other words, your body reacts to accelerations (it is an accelerometer)
but not to velocities (it is not a speedometer). When you are in a car traveling at
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of
the motion. However, if the car or plane quickly changes velocity, you may be-
come keenly aware of the change, perhaps even frightened by it. Part of the thrill
of an amusement park ride is due to the quick changes of velocity that you un-
dergo (you pay for the accelerations, not for the speed). A more extreme example
is shown in the photographs of Fig. 2-7, which were taken while a rocket sled was
rapidly accelerated along a track and then rapidly braked to a stop. g

g Units. Large accelerations are sometimes expressed in terms of g units, with

1g =9.8m/s> (g unit). (2-10)

(As we shall discuss in Module 2-5, g is the magnitude of the acceleration of a
falling object near Earth’s surface.) On a roller coaster, you may experience brief
accelerations up to 3g, which is (3)(9.8 m/s?), or about 29 m/s?, more than enough
to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific
meaning: positive acceleration means that the speed of an object is increasing, and
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not

Figure 2-7

Colonel J. P. Stapp in
a rocket sled as it is
brought up to high
speed (acceleration
out of the page) and
then very rapidly
braked (acceleration
into the page).

Courtesy U.S. Air Force

2-3 ACCELERATION

21




22 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

whether an object’s speed is increasing or decreasing. For example, if a car with an
initial velocity v = —25 m/s is braked to a stop in 5.0s, then a,,, = +5.0 m/s%. The
acceleration is positive, but the car’s speed has decreased. The reason is the differ-
ence in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:

_A Y

"' If the signs of the velocity and acceleration of a particle are the same, the speed
of the particle increases. If the signs are opposite, the speed decreases.

IZ Checkpoint 3

A wombat moves along an x axis. What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with
decreasing speed, (¢) in the negative direction with increasing speed, and (d) in the
negative direction with decreasing speed?

Sample Problem 2.03 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by
x=4 =27t + 3,
with x in meters and ¢ in seconds.

(a) Because position x depends on time ¢, the particle must
be moving. Find the particle’s velocity function v(¢) and ac-
celeration function a(z).

KEY IDEAS

(1) To get the velocity function v(¢), we differentiate the po-

sition function x(¢) with respect to time. (2) To get the accel-

eration function a(t), we differentiate the velocity function

v(f) with respect to time.

Calculations: Differentiating the position function, we find
v= =27+ 3¢, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a = +6t,
with a in meters per second squared.

(Answer)

(b) Isthere ever a time when v = 0?

Calculation: Setting v(t) = 0 yields
0= —-27 + 3¢,
which has the solution
t==*3s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for ¢ = 0.

Reasoning: We need to examine the expressions for x(¢),
v(f),and a(t).

At t =0, the particle is at x(0) = +4 m and is moving
with a velocity of v(0) = —27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) = 0 because just
then the particle’s velocity is not changing (Fig. 2-8a).

For 0 <t < 35, the particle still has a negative velocity,
so it continues to move in the negative direction. However,
its acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing (Fig. 2-8b).

Indeed, we already know that it stops momentarily at
t = 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting ¢ = 3 s into the
expression for x(¢), we find that the particle’s position just
then is x = —50 m (Fig. 2-8¢). Its acceleration is still positive.

For ¢ > 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude (Fig.2-8d).

t=3s t=4s
v=0 v pos
apos apos
reversing speeding up
(© (d)
) L4 ° P
® ® x
f 777
-50 m 0 4m
t=0
t=1s v neg
v neg a=0
RO leftward
slowing motion

() (@)
Figure 2-8 Four stages of the particle’s motion.

PLUS Additional examples, video, and practice available at WileyPLUS
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2-4 CONSTANT ACCELERATION

Learning Objectives

After reading this module, you should be able to . . . 2.14 Calculate a particle’s change in velocity by integrating
its acceleration function with respect to time.

2.15 Calculate a particle’s change in position by integrating
its velocity function with respect to time.

2.13 For constant acceleration, apply the relationships be-
tween position, displacement, velocity, acceleration, and
elapsed time (Table 2-1).

Key Ideas
@ The following five equations describe the motion of a particle with constant acceleration:
1
v =1, + at, X — Xy = vt + gatz,
2 2 1 1 2
v: = v§ + 2a(x — xy), x—x0=7(v0+v)t, x—x0=vt—?at.

These are not valid when the acceleration is not constant.

Constant Acceleration: A Special Case

In many types of motion, the acceleration is either constant or approximately so. x
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity,
and acceleration would resemble those in Fig. 2-9. (Note that a(¢) in Fig. 2-9c is
constant, which requires that v(¢) in Fig. 2-9b have a constant slope.) Later when
you brake the car to a stop, the acceleration (or deceleration in common

Position

Slope varies

Xo
language) might also be approximately constant. @ 0 t
Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given Slopes of the position graph
in this section. A second approach is given in the next section. Throughout both are plotted on the velocity graph.
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you v
can approximate the acceleration as being constant). v(1)
First Basic Equation. When the acceleration is constant, the average accel- .
eration and instantaneous acceleration are equal and we can write Eq. 2-7, with §
some changes in notation, as < Slope = a
v =1 Vo
a = Qyg = ﬁ (b) 0 t
Here v is the velocity at time ¢t = 0 and v is the velocity at any later time ¢. We can Slope of the velocity graph is
recast this equation as plotted on the acceleration graph.
v =1, t at. (2-11) E a "
% Slope =0
As a check, note that this equation reduces to v = v, for ¢t = 0, as it must. As a fur- g
ther check, take the derivative of Eq.2-11. Doing so yields dv/dt = a, which is the %) 2 0 t

definition of a. Figure 2-9b shows a plot of Eq. 2-11, the v(¢) function; the function } N '
is linear and thus the plot is a straight line. Figure 2-8  (a) The position x(¢) of a particle
Second Basic Equation. In a similar manner, we can rewrite Eq. 2-2 (with a ~ moving with constant acceleration. (b) Its

few chanees in notation) as velocity v(f), given at each point by the
W gest ion) slope of the curve of x(7). (¢) Its (constant)

v = X~ X% acceleration, equal to the (constant) slope
ave t—0 of the curve of v(z).
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Table 2-1 Equations for Motion with
Constant Acceleration”

Equation Missing
Number Equation Quantity
2-11 v =v,+at X — X
2-15 X — Xo = vt + ja’ v
2-16  vZ=v}+ 2a(x — x) t
2-17 x = xg=3(vy + V)t a
2-18 X — X = vt — 3at’ Vo

“Make sure that the acceleration is indeed
constant before using the equations in this table.

and then as

X =X+ Vayels (2-12)

in which x; is the position of the particle at 7 = 0 and v,,, is the average velocity
between t = 0 and a later time ¢.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from ¢ = 0 to a later time ¢) is the average of the velocity at the be-
ginning of the interval (= v,) and the velocity at the end of the interval (= v). For
the interval from ¢ = 0 to the later time ¢ then, the average velocity is

Vayg = %(vo +v). (2-13)
Substituting the right side of Eq.2-11 for v yields, after a little rearrangement,
Vavg = Vo lat. (2-14)

Finally, substituting Eq.2-14 into Eq. 2-12 yields
x — xp = vt + yat>. (2-15)

As a check, note that putting r = 0 yields x = x,, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-9a
shows a plot of Eq.2-15; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2-11 and 2-15 are the basic equations for
constant acceleration; they can be used to solve any constant acceleration prob-
lem in this book. However, we can derive other equations that might prove useful
in certain specific situations. First, note that as many as five quantities can possi-
bly be involved in any problem about constant acceleration—namely, x — x, v, ,
a, and v,. Usually, one of these quantities is not involved in the problem, either as
a given or as an unknown. We are then presented with three of the remaining
quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x — x,. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate ¢ to obtain

v2 = v3 + 2a(x — xo). (2-16)

This equation is useful if we do not know ¢ and are not required to find it. Second,
we can eliminate the acceleration a between Egs. 2-11 and 2-15 to produce an
equation in which a does not appear:

x — xg = 3(vo + V). (2-17)
Finally, we can eliminate v,, obtaining
X — xo = vt — at’. (2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity vy; the other involves the velocity v at time .

Table 2-1 lists the basic constant acceleration equations (Egs. 2-11 and 2-15) as
well as the specialized equations that we have derived. To solve a simple constant ac-
celeration problem, you can usually use an equation from this list (if you have the
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Egs. 2-11 and
2-15,and then solve them as simultaneous equations whenever needed.
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The following equations give the position x(¢) of a particle in four situations: (1) x =
3t—4;(2)x = =563 + 4% + 6;(3) x = 2/t> — 4/t;(4) x = 5¢> — 3.To which of these

situations do the equations of Table 2-1 apply?

Sample Problem 2.04 Drag race of car and motorcycle

A popular web video shows a jet airplane, a car, and a mo-
torcycle racing from rest along a runway (Fig. 2-10). Initially
the motorcycle takes the lead, but then the jet takes the lead,
and finally the car blows past the motorcycle. Here let’s focus
on the car and motorcycle and assign some reasonable values
to the motion. The motorcycle first takes the lead because its
(constant) acceleration a,, = 8.40 m/s? is greater than the car’s
(constant) acceleration a, = 5.60 m/s%, but it soon loses to the
car because it reaches its greatest speed v,, = 58.8 m/s before
the car reaches its greatest speed v, = 106 m/s. How long does
the car take to reach the motorcycle?

KEY IDEAS

We can apply the equations of constant acceleration to both
vehicles, but for the motorcycle we must consider the mo-
tion in two stages: (1) First it travels through distance x,,
with zero initial velocity and acceleration a,, = 8.40 m/s?,
reaching speed v,, = 58.8 m/s. (2) Then it travels through dis-
tance x,,, with constant velocity v,, = 58.8 m/s and zero ac-
celeration (that, too, is a constant acceleration). (Note that
we symbolized the distances even though we do not know
their values. Symbolizing unknown quantities is often help-
ful in solving physics problems, but introducing such un-
knowns sometimes takes physics courage.)

Calculations: So that we can draw figures and do calcula-
tions, let’s assume that the vehicles race along the positive di-
rection of an x axis, starting from x = 0 at time ¢ = 0. (We can

Figure 2-10 A jet airplane, a car, and a motorcycle just after
accelerating from rest.

choose any initial numbers because we are looking for the
elapsed time, not a particular time in, say, the afternoon, but
let’s stick with these easy numbers.) We want the car to pass
the motorcycle, but what does that mean mathematically?

It means that at some time ¢, the side-by-side vehicles
are at the same coordinate: x, for the car and the sum x,,; +
X,,» for the motorcycle. We can write this statement mathe-
matically as

Xe = Xpy T+ X (2-19)

(Writing this first step is the hardest part of the problem.
That is true of most physics problems. How do you go from
the problem statement (in words) to a mathematical expres-
sion? One purpose of this book is for you to build up that
ability of writing the first step — it takes lots of practice just
as in learning, say, tae-kwon-do.)

Now let’s fill out both sides of Eq. 2-19, left side first. To
reach the passing point at x,, the car accelerates from rest. From
Eq. 2-15 (x — xy = vt + %atz), with x, and v, = 0, we have

x, = 1at> (2-20)

To write an expression for x,,; for the motorcycle, we
first find the time ¢, it takes to reach its maximum speed v,,,
using Eq. 2-11 (v = v + at). Substituting vy = 0, v=v,, =
58.8m/s,and a = a,, = 8.40 m/s?, that time is

=22 (2-21)

To get the distance x,,; traveled by the motorcycle during
the first stage, we again use Eq. 2-15 with x, = 0 and v, = 0,
but we also substitute from Eq. 2-21 for the time. We find

2 2
oot (V) _ L Vi
X1 = zamtm = zam P = .

- o (2-22)

For the remaining time of ¢t — ¢, the motorcycle travels
at its maximum speed with zero acceleration. To get the
distance, we use Eq. 2-15 for this second stage of the motion,
but now the initial velocity is v, = v,, (the speed at the end
of the first stage) and the acceleration is a = 0. So, the dis-
tance traveled during the second stage is

Xy = Vot — t,,) = v,,(t — 7.00 ). (2-23)
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To finish the calculation, we substitute Egs. 2-20, 2-22, and
2-23 into Eq. 2-19, obtaining
. 12

sat? = ——""=+v,(t — 7.00s).

tagr= =2 (2:24)

m

This is a quadratic equation. Substituting in the given data,
we solve the equation (by using the usual quadratic-equa-
tion formula or a polynomial solver on a calculator), finding
t=444sandr=16.6s.

But what do we do with two answers? Does the car pass
the motorcycle twice? No, of course not, as we can see in the
video. So, one of the answers is mathematically correct but
not physically meaningful. Because we know that the car
passes the motorcycle after the motorcycle reaches its maxi-
mum speed at ¢ = 7.00 s, we discard the solution with ¢ <
7.00 s as being the unphysical answer and conclude that the

passing occurs at
t=16.6s. (Answer)

Figure 2-11 is a graph of the position versus time for
the two vehicles, with the passing point marked. Notice

ILEY

LINE

that at r = 7.00 s the plot for the motorcycle switches from
being curved (because the speed had been increasing) to be-
ing straight (because the speed is thereafter constant).

800 /
Car passes
motorcycle
600

1000

\g Motorcycle —|
400 c
Acceleration — a
ends
200
0
0 5 10 15 20

t(s)

Figure 2-11 Graph of position versus time for car and motorcycle.

Wi
PLUS Additional examples, video, and practice available at WileyPLUS

Another Look at Constant Acceleration*

The first two equations in Table 2-1 are the basic equations from which the others
are derived. Those two can be obtained by integration of the acceleration with
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq.2-8) as

dv = adt.

We next write the indefinite integral (or antiderivative) of both sides:

far= [

Since acceleration a is a constant, it can be taken outside the integration. We obtain

or

o fa

v=at+ C. (2-25)

To evaluate the constant of integration C, we let ¢ = 0, at which time v = v,
Substituting these values into Eq. 2-25 (which must hold for all values of ¢,
including ¢ = 0) yields

vo=(a)(0) + C=C.

Substituting this into Eq. 2-25 gives us Eq. 2-11.
To derive Eq.2-15, we rewrite the definition of velocity (Eq.2-4) as

dx =vdt

and then take the indefinite integral of both sides to obtain

[

*This section is intended for students who have had integral calculus.



Next, we substitute for v with Eq.2-11:

fdx = f(v0 + at) dt.
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Since v, is a constant, as is the acceleration a, this can be rewritten as

dezvojdt-kajtdt.

X = vt + %at2 + C,

Integration now yields

(2-26)

where C' is another constant of integration. At time ¢ = 0, we have x = x,.
Substituting these values in Eq. 2-26 yields x, = C'. Replacing C’ with x, in Eq.

2-26 gives us Eq. 2-15.

2-0 FREE-FALL ACCELERATION

Learning Objectives
After reading this module, you should be able to . . .

2.16 Identify that if a particle is in free flight (whether
upward or downward) and if we can neglect the
effects of air on its motion, the particle has a constant

Key Ideas

@ An important example of straight-line motion with constant
acceleration is that of an object rising or falling freely near
Earth’s surface. The constant acceleration equations de-
scribe this motion, but we make two changes in notation:

downward acceleration with a magnitude g that we take to
be 9.8 m/s2.

2.17 Apply the constant-acceleration equations (Table 2-1) to
free-fall motion.

(1) we refer the motion to the vertical y axis with +y vertically
up; (2) we replace a with —g, where g is the magnitude of the
free-fall acceleration. Near Earth's surface,

g = 9.8 m/s? = 32 ft/s%.

Free-Fall Acceleration

If you tossed an object either up or down and could somehow eliminate the
effects of air on its flight, you would find that the object accelerates downward at
a certain constant rate. That rate is called the free-fall acceleration, and its magni-
tude is represented by g. The acceleration is independent of the object’s charac-
teristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-12, which is a series
of stroboscopic photos of a feather and an apple. As these objects fall, they
accelerate downward—both at the same rate g. Thus, their speeds increase at the
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level
in Earth’s midlatitudes the value is 9.8 m/s?> (or 32 ft/s?), which is what you
should use as an exact number for the problems in this book unless otherwise
noted.

The equations of motion in Table 2-1 for constant acceleration also apply to
free fall near Earth’s surface; that is, they apply to an object in vertical flight,
either up or down, when the effects of the air can be neglected. However, note
that for free fall: (1) The directions of motion are now along a vertical y axis
instead of the x axis, with the positive direction of y upward. (This is important
for later chapters when combined horizontal and vertical motions are examined.)
(2) The free-fall acceleration is negative —that is, downward on the y axis, toward
Earth’s center—and so it has the value —g in the equations.

© Jim Sugar/CORBIS

Figure 2-12 A feather and an apple free

fall in vacuum at the same magnitude of
acceleration g. The acceleration increases
the distance between successive images. In
the absence of air, the feather and apple
fall together.
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~A' The free-fall acceleration near Earth’s surface is a = —g = —9.8 m/s?, and the
magnitude of the acceleration is g = 9.8 m/s%. Do not substitute —9.8 m/s? for g.

Suppose you toss a tomato directly upward with an initial (positive) velocity v,
and then catch it when it returns to the release level. During its free-fall flight (from
just after its release to just before it is caught), the equations of Table 2-1 apply to its
motion. The acceleration is always a = —g = —9.8 m/s?, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

IZ Checkpoint 5

(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the ascent,
from the release point to the highest point? (b) What is it for the descent, from the high-
est point back to the release point? (c) What is the ball’s acceleration at its highest point?

Sample Problem 2.05 Time for full up-down flight, baseball toss

In Fig. 2-13, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall accelerationa = —g.
Because this is constant, Table 2-1 applies to the motion.
(2) The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity
vo = 12 m/s, and seeking ¢, we solve Eq. 2-11, which contains
those four variables. This yields

vV =1 0—

. B 12 m/s
a4 —-98m/s?

=12s. (Answer)

(b) What is the ball’s maximum height above its release point?

Calculation: We can take the ball’s release point to be y, = 0.
We can then write Eq.2-16 in y notation,sety — y, = yand v =
0 (at the maximum height), and solve for y. We get

vi—v§  0— (12m/s)
2a 2(—9.8 m/s?)

y = = 7.3 m. (Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know vy, a = —g, and displacement y —
Yo = 5.0 m, and we want #, so we choose Eq. 2-15. Rewriting
it for y and setting y, = 0 give us

1
y = vt — 5817,

My
v=0at

I
I

I
highest point : :

I

!

Iy

Iy

Iy

I

I

: I~ During

+ descent,
During ascent,—~_I a=-=g
B= _g’g N speed

increases,

speed decreases, ]
and velocity

and velocity

Y g =seg

|
I
I
I
becomes less I becomes
positive : LIOICy
| negative
I
Figure 2-13 A pitcher tosses a I
: . . —y-0
baseball straight up into the air.
The equations of free fall apply M
for rising as well as for falling \1“\
objects, provided any effects y
from the air can be neglected. B A A N ST ST

or 50m = (12 m/s)t — (3)(9.8 m/s?)¢%.

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

491> — 12t + 5.0 = 0.
Solving this quadratic equation for ¢ yields

t=053s and t=109s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y = 5.0 m, once on the
way up and once on the way down.

PLUS Additional examples, video, and practice available at WileyPLUS
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2-0 GRAPHICAL INTEGRATION IN MOTION ANALYSIS

Learning Objectives
After reading this module, you should be able to . . .

2.18 Determine a particle’s change in velocity by graphical 2.19 Determine a particle’'s change in position by graphical
integration on a graph of acceleration versus time. integration on a graph of velocity versus time.

Key Ideas

@ On a graph of acceleration a versus time ¢, the change in @ On a graph of velocity v versus time z, the change in the

the velocity is given by position is given by

4
V1_Vo:j adt.
I

0

L
X1 — X9 = J th,
Iy

The integral amounts to finding an area on the graph: where the integral can be taken from the graph as

and time axis, from #,to ¢,

h area between acceleration curve h
adt = . vdt =
f f

0

Graphical Integration in Motion Analysis

Integrating Acceleration. When we have a graph of an object’s acceleration a ver-
sus time ¢, we can integrate on the graph to find the velocity at any given time.
Because a is defined as a = dv/dt,the Fundamental Theorem of Calculus tells us that

L
Vi — Vg = f adt. (2-27)
)

The right side of the equation is a definite integral (it gives a numerical result rather
than a function), v, is the velocity at time #,, and v, is the velocity at later time #,. The def-
inite integral can be evaluated from an a(¢) graph, such as in Fig. 2-14a. In particular,

h area between acceleration curve
J adt = ( > (2-28)
Iy

and time axis, from ¢to ¢

If a unit of acceleration is 1 m/s? and a unit of time is 1 s, then the correspon-
ding unit of area on the graph is

(1 m/s?)(1s) =1 mis,

which is (properly) a unit of velocity. When the acceleration curve is above the time
axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of the posi-
tion x as v = dx/dt,then

L
X; — Xy = f v dt, (2-29)
[}

where x, is the position at time ¢, and x; is the position at time ¢,. The definite
integral on the right side of Eq.2-29 can be evaluated from a v(¢) graph, like that
shown in Fig. 2-14b. In particular,

f 4 bdf = (area between velocity curve)‘ (2:30)
)

and time axis, from #yto ¢

If the unit of velocity is 1 m/s and the unit of time is 1s, then the corre-
sponding unit of area on the graph is

(1m/s)(1s) =1m,

which is (properly) a unit of position and displacement. Whether this area is posi-
tive or negative is determined as described for the a(t) curve of Fig.2-14a.

area between velocity curve

and time axis, from f,to t, )

1 This area gives the
i 1 change in velocity.

<

Area This area gives the

change in position.
lo b

(®)

Figure 2-14 The area between a plotted
curve and the horizontal time axis, from
time ¢, to time ¢, is indicated for (a) a
graph of acceleration a versus ¢ and (b) a
graph of velocity v versus .
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Sample Problem 2.06 Graphical integration a versus t, whiplash injury

“Whiplash injury” commonly occurs in a rear-end collision
where a front car is hit from behind by a second car. In the
1970s, researchers concluded that the injury was due to the
occupant’s head being whipped back over the top of the seat
as the car was slammed forward. As a result of this finding,
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end collisions,
a volunteer was strapped to a seat that was then moved
abruptly to simulate a collision by a rear car moving at
10.5 km/h. Figure 2-15a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time
t = 0. The torso acceleration was delayed by 40 ms because
during that time interval the seat back had to compress
against the volunteer. The head acceleration was delayed by
an additional 70 ms. What was the torso speed when the head
began to accelerate? -

KEY IDEA

We can calculate the torso speed at any time by finding an
area on the torso a(f) graph.

Calculations: We know that the initial torso speed is vy = 0
at time ¢, = 0, at the start of the “collision.” We want the
torso speed v, at time ¢, = 110 ms, which is when the head
begins to accelerate.

100
. Head
<
50
g Torso
]
() 0 40 80 120 160

t (ms)

Combining Eqgs. 2-27 and 2-28, we can write

>. (2-31)

area between acceleration curve
Vi — Vo = . .
L ¢ and time axis, from , to ¢

For convenience, let us separate the area into three regions
(Fig.2-15b). From 0 to 40 ms, region A has no area:
area, = 0.

From 40 ms to 100 ms, region B has the shape of a triangle, with
area
areag = 2(0.060 s)(50 m/s?) = 1.5 m/s.

From 100 ms to 110 ms, region C has the shape of a rectan-
gle, with area

areac = (0.010 s)(50 m/s?) = 0.50 m/s.
Substituting these values and v, = 0 into Eq.2-31 gives us
vy —0=0+ 1.5m/s + 0.50 m/s,

or vy =2.0m/s = 7.2 km/h. (Answer)

Comments: When the head is just starting to move forward,
the torso already has a speed of 7.2 km/h. Researchers argue
that it is this difference in speeds during the early stage of a
rear-end collision that injures the neck. The backward whip-
ping of the head happens later and could, especially if there is
no head restraint, increase the injury.

change in velocity.
®)

Figure 2-15 (a) The a(f) curve of the torso and head of a volunteer
in a simulation of a rear-end collision. (b) Breaking up the region
between the plotted curve and the time axis to calculate the area.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Position The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis. The position
is either positive or negative, according to which side of the origin
the particle is on, or zero if the particle is at the origin. The positive
direction on an axis is the direction of increasing positive numbers;
the opposite direction is the negative direction on the axis.

Displacement The displacement Ax of a particle is the change
in its position:
Ax = Xy — Xp. (2-1)

Displacement is a vector quantity. It is positive if the particle has
moved in the positive direction of the x axis and negative if the
particle has moved in the negative direction.

Average Velocity When a particle has moved from position x;
to position x, during a time interval At = , — t,, its average velocity
during that interval is

_ Ax X, — X

g = o = 21 22
A VE P, (2-2)

\Z

The algebraic sign of v,,, indicates the direction of motion (v, is a
vector quantity). Average velocity does not depend on the actual
distance a particle moves, but instead depends on its original and
final positions.

On a graph of x versus ¢, the average velocity for a time interval
At is the slope of the straight line connecting the points on the curve
that represent the two ends of the interval.

The total area gives the



Average Speed The average speed s, of a particle during a
time interval Az depends on the total distance the particle moves in
that time interval:

total distance

Savg = At (2'3)

Instantaneous Velocity The instantaneous velocity (or sim-
ply velocity) v of a moving particle is

v = lim Ax —d—x
dt’

Ar—0 E (2-4)

where Ax and Ar are defined by Eq. 2-2. The instantaneous velocity
(at a particular time) may be found as the slope (at that particular
time) of the graph of x versus 7. Speed is the magnitude of instanta-
neous velocity.

Average Acceleration Average acceleration is the ratio of a
change in velocity Av to the time interval A¢in which the change occurs:

Av

Aayg = E (2-7)

The algebraic sign indicates the direction of a,,.

Instantaneous Acceleration [nstantancous acceleration (or
simply acceleration) « is the first time derivative of velocity v(r)

Questions

1 Figure 2-16 gives the velocity of a v
particle moving on an x axis. What
are (a) the initial and (b) the final di-
rections of travel? (c) Does the parti-
cle stop momentarily? (d) Is the ac-
celeration positive or negative? (e) Is
it constant or varying?

-

/

Figure 2-16 Question 1.

2 Figure 2-17 gives the accelera-
tion a(t) of a Chihuahua as it chases
a German shepherd along an axis. In
which of the time periods indicated
does the Chihuahua move at constant speed?

S

Figure 2-17 Question 2. A |B

3 Figure 2-18 shows four paths along
which objects move from a starting
point to a final point, all in the same 2
time interval. The paths pass over a
grid of equally spaced straight lines. >3
Rank the paths according to (a) the av- )
erage velocity of the objects and (b)
the average speed of the objects, great-
est first.

Figure 2-18 Question 3.

4 Figure 2-19 is a graph of a parti-
cle’s position along an x axis versus time. (a) At time ¢ = 0, what

QUESTIONS 31

and the second time derivative of position x(7):
_dv _ dx
dt  dr*’
On a graph of v versus ¢, the acceleration a at any time ¢ is the slope
of the curve at the point that represents .

(2-8,2-9)

Constant Acceleration The five equations in Table 2-1
describe the motion of a particle with constant acceleration:

v =vy+ at, (2-11)
X — Xo = vt + 3at?, (2-15)
v: = v} + 2a(x — x), (2-16)
X — Xy = 3(vy + W), (2-17)
x — xo = vt — jat’. (2-18)

These are not valid when the acceleration is not constant.

Free-Fall Acceleration An important example of straight-
line motion with constant acceleration is that of an object rising or
falling freely near Earth’s surface. The constant acceleration equa-
tions describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical y axis with +y vertically up;
(2) we replace a with —g, where g is the magnitude of the free-fall
acceleration. Near Earth’s surface, g = 9.8 m/s? (= 32 ft/s?).

//Q\X ‘e

Figure 2-19 Question 4.

v1
N £
‘ 3N/ D !
4

Figure 2-20 Question 5.

is the sign of the particle’s position?
Is the particle’s velocity positive,
negative,orOQat (b)r=1s,(c)t=2
s, and (d) ¢t =3s? (e) How many
times does the particle go through
the point x = 0?

(=

5 Figure 2-20 gives the velocity of
a particle moving along an axis.
Point 1 is at the highest point on the
curve; point 4 is at the lowest point;
and points 2 and 6 are at the same
height. What is the direction of
travel at (a) time ¢ = 0 and (b) point
4? (c) At which of the six numbered
points does the particle reverse its
direction of travel? (d) Rank the six
points according to the magnitude
of the acceleration, greatest first.

6 Att=0,aparticle moving alongan v

X axis is at position x, = —20 m. The A B
signs of the particle’s initial velocity v,
(at time #,) and constant acceleration a
are, respectively, for four situations: (1)
+,+2)+,— 06—+ @) —, —.In
which situations will the particle (a)
stop momentarily, (b) pass through the
origin, and (c) never pass through the
origin?

7 Hanging over the railing of a
bridge, you drop an egg (no initial ve-
locity) as you throw a second egg
downward. Which curves in Fig. 2-21

‘G P ME “

Figure 2-21 Question 7.



32 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

give the velocity v(7) for (a) the dropped egg
and (b) the thrown egg? (Curves A and B are i
parallel;so are C, D, and E;so are Fand G.)

8 The following equations give the velocity
v(1) of a particle in four situations: (a) v = 3; (b)
v=4r2+ 2t — 6;(c) v =3t — 4;(d) v = 5¢> — 3.
To which of these situations do the equations of

Table 2-1 apply?

9 In Fig. 2-22, a cream tangerine is thrown di- i

rectly upward past three evenly spaced windows ;

of equal heights. Rank the windows according i

to (a) the average speed of the cream tangerine :

while passing them, (b) the time the cream tan-

gerine takes to pass them, (c¢) the magnitude of w9

the acceleration of the cream tangerine while —

passing them, and (d) the change Av in the i

speed of the cream tangerine during the pas-

sage, greatest first. Figure 2-22
Question 9.

10 Suppose that a passenger intent on lunch
during his first ride in a hot-air balloon accidently drops an apple
over the side during the balloon’s liftoff. At the moment of the

Problems

apple’s release, the balloon is accelerating upward with a magni-
tude of 4.0 m/s?> and has an upward velocity of magnitude 2 m/s.
What are the (a) magnitude and (b) direction of the acceleration of
the apple just after it is released? (c) Just then, is the apple moving
upward or downward, or is it stationary? (d) What is the magni-
tude of its velocity just then? (e) In the next few moments, does the
speed of the apple increase, decrease, or remain constant?

11 Figure 2-23 shows that a particle moving along an x axis un-
dergoes three periods of acceleration. Without written computa-
tion, rank the acceleration periods according to the increases
they produce in the particle’s velocity, greatest first.

(3)

1)

Acceleration a

(2)

Time ¢

Figure 2-23 Question 11.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. L http://www.wiley.com/college/halliday
Interactive solution is at

& Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 2-1 Position, Displacement, and Average Velocity

*1 While driving a car at 90 km/h, how far do you move while
your eyes shut for 0.50 s during a hard sneeze?

*2 Compute your average velocity in the following two cases:
(a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at a
speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a
straight track. (¢c) Graph x versus ¢ for both cases and indicate how
the average velocity is found on the graph.

°*3 ssM www An automobile travels on a straight road for
40 km at 30 km/h. It then continues in the same direction for an-
other 40 km at 60 km/h. (a) What is the average velocity of the car
during the full 80 km trip? (Assume that it moves in the positive x
direction.) (b) What is the average speed? (c) Graph x versus ¢ and
indicate how the average velocity is found on the graph.

*4 A car moves uphill at 40 km/h and then back downhill at 60
km/h. What is the average speed for the round trip?

*5 ssm The position of an object moving along an x axis is given
by x = 3t — 41> + 13, where x is in meters and 7 in seconds. Find the
position of the object at the following values of #: (a) 1, (b) 2,
(c) 3s,and (d) 4 s. (¢) What is the object’s displacement between ¢ = 0
and r = 4s? (f) What is its average velocity for the time interval
froms=2stot = 4s?(g) Graphx versus ¢ for 0 =<t = 4 s and indi-
cate how the answer for (f) can be found on the graph.

°6  The 1992 world speed record for a bicycle (human-powered
vehicle) was set by Chris Huber. His time through the measured
200 m stretch was a sizzling 6.509s, at which he commented,

“Cogito ergo zoom!” (I think, therefore I go fast!). In 2001, Sam
Whittingham beat Huber’s record by 19.0 km/h. What was
Whittingham’s time through the 200 m?

*7 Two trains, each having a speed of 30 km/h, are headed at
each other on the same straight track. A bird that can fly 60 km/h
flies off the front of one train when they are 60 km apart and heads
directly for the other train. On reaching the other train, the (crazy)
bird flies directly back to the first train, and so forth. What is the to-
tal distance the bird travels before the trains collide?

8 %= @ Panic escape. Figure 2-24 shows a general situation in
which a stream of people attempt to escape through an exit door
that turns out to be locked. The people move toward the door at
speed v, = 3.50 m/s, are each d = 0.25 m in depth, and are sepa-
rated by L =1.75m. The
arrangement in Fig. 2-24
occurs at time ¢ = 0. (a) At [ ) “
what average rate does the - 13 ¢ ',c’
layer of people at the door —| g |~
increase? (b) At what time Locked /
does the layer’s depth reach door

5.0 m? (The answers reveal
how quickly such a situation
becomes dangerous.)

~—r— |~—L— ~—L—

~ldl~  —ldl~

Figure 2-24 Problem 8.

*9 LW In 1 km races,runner 1 on track 1 (with time 2 min,27.95 s)
appears to be faster than runner 2 on track 2 (2 min, 28.15s).
However, length L, of track 2 might be slightly greater than length
L, of track 1. How large can L, — L, be for us still to conclude that
runner 1 is faster?



10 =% To set a speed record in a measured (straight-line)
distance d, a race car must be driven first in one direction (in time ¢,)
and then in the opposite direction (in time 2,). (a) To eliminate the ef-
fects of the wind and obtain the car’s speed v, in a windless situation,
should we find the average of d/t; and d/t, (method 1) or should we di-
vide d by the average of ¢; and ,? (b) What is the fractional difference
in the two methods when a steady wind blows along the car’s route
and the ratio of the wind speed v,, to the car’s speed v, is 0.0240?

11 @ You are to drive 300 km to an interview. The interview is
at 11:15 A.M. You plan to drive at 100 km/h, so you leave at 8:00
A.M. to allow some extra time. You drive at that speed for the first
100 km, but then construction work forces you to slow to 40 km/h
for 40 km. What would be the least speed needed for the rest of the
trip to arrive in time for the interview?

eee12 =8 Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the
line of cars, either downstream (in the traffic direction) or up-
stream, or it can be stationary. Figure 2-25 shows a uniformly
spaced line of cars moving at speed v = 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed v, = 5.00 m/s.
Assume that each faster car adds length L = 12.0 m (car length
plus buffer zone) to the line of slow cars when it joins the line, and as-
sume it slows abruptly at the last instant. (a) For what separation dis-
tance d between the faster cars does the shock wave remain
stationary? If the separation is twice that amount, what are the (b)
speed and (c) direction (upstream or downstream) of the shock wave?

d <L — d <L =L —>~L—

Car Buffer Vs
Figure 2-25 Problem 12.

ee¢13 ILW You drive on Interstate 10 from San Antonio to Houston,
half the fime at 55 km/h and the other half at 90 km/h. On the way
back you travel half the distance at 55 km/h and the other half at
90 km/h. What is your average speed (a) from San Antonio to
Houston, (b) from Houston back to San Antonio, and (c) for the entire
trip? (d) What is your average velocity for the entire trip? (e) Sketch x
versus ¢ for (a), assuming the motion is all in the positive x direc-
tion. Indicate how the average velocity can be found on the sketch.

Module 2-2 Instantaneous Velocity and Speed

*14 @ An electron moving along the x axis has a position given
by x = 16te™" m, where ¢ is in seconds. How far is the electron from
the origin when it momentarily stops?

*15 @ (a) If a particle’s position is given by x = 4 — 12 + 3¢?
(where ¢ is in seconds and x is in meters), what is its velocity at
t = 1s? (b) Is it moving in the positive or negative direction of x
just then? (c) What is its speed just then? (d) Is the speed
increasing or decreasing just then? (Try answering the next two
questions without further calculation.) (e) Is there ever an instant
when the velocity is zero? If so, give the time #; if not, answer no.
(f) Is there a time after # = 3 s when the particle is moving in the
negative direction of x? If so, give the time #;if not, answer no.

*16 The position function x(¢) of a particle moving along an x axis
is x = 4.0 — 6.0¢%, with x in meters and ¢ in seconds. (a) At what
time and (b) where does the particle (momentarily) stop? At what
(c) negative time and (d) positive time does the particle pass
through the origin? (e) Graph x versus ¢ for the range —5sto +5s.
(f) To shift the curve rightward on the graph, should we include the
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term +20¢ or the term —20¢in x(¢)? (g) Does that inclusion increase
or decrease the value of x at which the particle momentarily stops?

*17 The position of a particle moving along the x axis is given in
centimeters by x = 9.75 + 1.50¢%, where 7 is in seconds. Calculate (a)
the average velocity during the time interval t = 2.00 s to t = 3.00 s;
(b) the instantaneous velocity at ¢ = 2.00 s; (c) the instantaneous ve-
locity at t = 3.00 s; (d) the instantaneous velocity at r = 2.50 s; and
(e) the instantaneous velocity when the particle is midway between
its positions at ¢ = 2.00 s and ¢ = 3.00 s. (f) Graph x versus ¢ and in-
dicate your answers graphically.

Module 2-3 Acceleration

*18 The position of a particle moving along an x axis is given by
x = 121> — 23, where x is in meters and  is in seconds. Determine (a)
the position, (b) the velocity, and (c) the acceleration of the particle at
t =3.0s. (d) What is the maximum positive coordinate reached by
the particle and (e) at what time is it reached? (f) What is the maxi-
mum positive velocity reached by the particle and (g) at what time is
it reached? (h) What is the acceleration of the particle at the instant
the particle is not moving (other than at r = 0)? (i) Determine the av-
erage velocity of the particle betweent = 0and ¢ = 3.

°19 ssm At a certain time a particle had a speed of 18 m/s in
the positive x direction, and 2.4 s later its speed was 30 m/s in the
opposite direction. What is the average acceleration of the particle
during this 2.4 s interval?

*20 (a) If the position of a particle is given by x = 20r — 5¢3,
where x is in meters and ¢ is in seconds, when, if ever, is the parti-
cle’s velocity zero? (b) When is its acceleration a zero? (c) For
what time range (positive or negative) is a negative? (d) Positive?
(e) Graph x(1), v(t), and a(r).

21 From t=0 to t=5.00min, a man stands still, and from
t = 5.00 min to ¢t = 10.0 min, he walks briskly in a straight line at a
constant speed of 2.20 m/s. What are (a) his average velocity v,
and (b) his average acceleration a,,, in the time interval 2.00 min to
8.00 min? What are (c) v,y, and (d) a,, in the time interval 3.00 min
to 9.00 min? (e) Sketch x versus ¢ and v versus ¢, and indicate how
the answers to (a) through (d) can be obtained from the graphs.

*22 The position of a particle moving along the x axis depends on
the time according to the equation x = ct> — bt, where x is in me-
ters and ¢ in seconds. What are the units of (a) constant ¢ and (b) con-
stant b? Let their numerical values be 3.0 and 2.0, respectively. (c) At
what time does the particle reach its maximum positive x position?
From ¢ = 0.0 s to t = 4.0 s, (d) what distance does the particle move
and (e) what is its displacement? Find its velocity at times (f) 1.0's,
(2) 2.0s,(h) 3.0s,and (i) 4.0 s. Find its acceleration at times (j) 1.0's,
(k)2.05s,(1)3.0s,and (m) 4.0 s.

Module 2-4 Constant Acceleration
*23 ssm An electron with an initial velocity vy = 1.50 X 10° m/s
enters a region of length L = 1.00

cm where it is electrically acceler- Nonaccelerating Accelerating

ated (Fig. 2-26). It emerges with region region
v = 5.70 X 10° m/s. What is its ac-
celeration, assumed constant? ~—L—
24 & Catapulting mush- ———————» ———____ —
rooms. Certain mushrooms launch Path of

electron

their spores by a catapult mecha-
nism. As water condenses from the

air onto a spore that is attached to Figure 2-26 Problem 23.
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the mushroom, a drop grows on one side of the spore and a film
grows on the other side. The spore is bent over by the drop’s weight,
but when the film reaches the drop, the drop’s water suddenly
spreads into the film and the spore springs upward so rapidly that it
is slung off into the air. Typically, the spore reaches a speed of 1.6
m/s in a 5.0 um launch; its speed is then reduced to zero in 1.0 mm
by the air. Using those data and assuming constant accelerations,
find the acceleration in terms of g during (a) the launch and (b) the
speed reduction.

°25 An electric vehicle starts from rest and accelerates at a rate
of 2.0 m/s? in a straight line until it reaches a speed of 20 m/s. The
vehicle then slows at a constant rate of 1.0 m/s? until it stops. (a)
How much time elapses from start to stop? (b) How far does the
vehicle travel from start to stop?

°26 A muon (an elementary particle) enters a region with a speed
of 5.00 X 10° m/s and then is slowed at the rate of 1.25 X 10'* m/s%.
(a) How far does the muon take to stop? (b) Graph x versus ¢ and v
versus ¢ for the muon.

*27 An electron has a constant acceleration of +3.2 m/s>. At a
certain instant its velocity is +9.6 m/s. What is its velocity (a) 2.5 s
earlier and (b) 2.5 s later?

°28 On a dry road, a car with good tires may be able to brake
with a constant deceleration of 4.92 m/s%. (a) How long does such
a car, initially traveling at 24.6 m/s, take to stop? (b) How far does
it travel in this time? (c) Graph x versus ¢ and v versus ¢ for the
deceleration.

°29 ILW A certain elevator cab has a total run of 190 m and a max-
imum speed of 305 m/min, and it accelerates from rest and then
back to rest at 1.22 m/s%. (a) How far does the cab move while ac-
celerating to full speed from rest? (b) How long does it take to
make the nonstop 190 m run, starting and ending at rest?

*30 The brakes on your car can slow you at a rate of 5.2 m/s”. (a)
If you are going 137 km/h and suddenly see a state trooper, what is
the minimum time in which you can get your car under the 90 km/h
speed limit? (The answer reveals the futility of braking to keep
your high speed from being detected with a radar or laser gun.)
(b) Graph x versus ¢ and v versus ¢ for such a slowing.

*31 ssm Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s?, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will
it take to acquire a speed one-tenth that of light, which travels at
3.0 X 108 m/s? (b) How far will it travel in so doing?

*32 <& A world’s land speed record was set by Colonel John
P. Stapp when in March 1954 he rode a rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
astopin 1.4 s. (See Fig.2-7.) In terms of g, what acceleration did he
experience while stopping?

*33 SsSM ILW A car traveling 56.0 km/h is 24.0 m from a barrier
when the driver slams on the brakes. The car hits the barrier 2.00 s
later. (a) What is the magnitude of the car’s constant acceleration
before impact? (b) How fast is the car traveling at impact?

*234 @ InFig.2-27,ared car and a green car, identical except for the
color, move toward each other in adjacent lanes and parallel to an x
axis. At time ¢ = 0, the red car is at x, = 0 and the green car is at x, =
220 m. If the red car has a constant velocity of 20 km/h, the cars pass
each other at x = 44.5 m, and if it has a constant velocity of 40 km/h,
they pass each other at x = 76.6 m. What are (a) the initial velocity
and (b) the constant acceleration of the green car?

Green
% i =081
‘ car X
T

car
Figure 2-27 Problems 34 and 35.

*35 Figure 2-27 shows a red car

and a green car that move toward "

each other. Figure 2-28 is a graph of

their motion, showing the positions

X =270m and x, = —350m at 0

time ¢ = 0. The green car has a con- X0 12
L (s)

stant speed of 20.0 m/s and the red
car begins from rest. What is the ac-
celeration magnitude of the red car?

x (m)

Figure 2-28 Problem 35.

*36 A car moves along an x axis through a distance of 900 m,
starting at rest (at x =0) and ending at rest (at x = 900 m).
Through the first % of that distance, its acceleration is +2.25 m/s2.
Through the rest of that distance, its acceleration is —0.750 m/s?.
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x, velocity v, and acceleration a
versus time ¢ for the trip.

«37 Figure 2-29 depicts the motion * (™)

of a particle moving along an x axis

with a constant acceleration. The fig- %

ure’s vertical scaling is set by x, = 6.0 m.

What are the (a) magnitude and (b) di-

rection of the particle’s acceleration?

*38 (a) If the maximum acceleration

that is tolerable for passengers in a 0 1 2 t(s)
subway train is 1.34 m/s> and subway ]

§tations are located 806 m apart, whgt Figure 2-29 Problem 37.
is the maximum speed a subway train

can attain between stations? (b) What

is the travel time between stations? (c) If a subway train stops for 20 s
at each station, what is the maximum average speed of the train, from
one start-up to the next? (d) Graph x, v, and a versus ¢ for the interval
from one start-up to the next.

*39 Cars A and B move in
the same direction in adjacent
lanes. The position x of car A is
given in Fig. 2-30, from time
t =0 to t="7.0s. The figure’s
vertical scaling is set by x, =
320m.Att=0,car Bisatx =
0, with a velocity of 12 m/s and
a negative constant accelera-
tion ag. (a) What must az be
such that the cars are (momen-
tarily) side by side (momentarily at the same value of x) at t = 4.0 s?
(b) For that value of az, how many times are the cars side by side?
(c) Sketch the position x of car B versus time ¢ on Fig. 2-30. How
many times will the cars be side by side if the magnitude of accelera-
tion ag is (d) more than and (e) less than the answer to part (a)?

x (m)

xs
0 1 2 3 4 5 6 7
)

t(s
Figure 2-30 Problem 39.

*40 =& You are driving toward a traffic signal when it turns yel-
low. Your speed is the legal speed limit of v, = 55 km/h; your best
deceleration rate has the magnitude a = 5.18 m/s?. Your best reaction
time to begin braking is 7 = 0.75 s. To avoid having the front of your
car enter the intersection after the light turns red, should you
brake to a stop or continue to move at 55 km/h if the distance to



the intersection and the duration of the yellow light are (a) 40 m and
2.8 s,and (b) 32 m and 1.8 s? Give an answer of brake, continue, either
(if either strategy works), or neither (if neither strategy works and the
yellow duration is inappropriate).

41 @ As two trains move Vs
along a track, their conductors
suddenly notice that they are
headed toward each other.
Figure 2-31 gives their velocities
v as functions of time ¢ as the
conductors slow the trains. The
figure’s vertical scaling is set by
vy, = 40.0 m/s. The slowing
processes begin when the trains are 200 m apart. What is their separa-
tion when both trains have stopped?

v (m/s)

Figure 2-31 Problem 41.

ee42 (@ You are arguing over a cell phone while trailing an
unmarked police car by 25 m; both your car and the police car are
traveling at 110 km/h. Your argument diverts your attention from
the police car for 2.0 s (long enough for you to look at the phone
and yell, “T won’t do that!”). At the beginning of that 2.0 s, the po-
lice officer begins braking suddenly at 5.0 m/s%. (a) What is the sep-
aration between the two cars when your attention finally returns?
Suppose that you take another 0.40 s to realize your danger and
begin braking. (b) If you too brake at 5.0 m/s?, what is your speed
when you hit the police car?

*e43 (@ When a high-speed passenger train traveling at
161 km/h rounds a bend, the engineer is shocked to see that a
locomotive has improperly entered onto the track from a siding
and is a distance D = 676 m ahead (Fig. 2-32). The locomotive is
moving at 29.0 km/h. The engineer of the high-speed train imme-
diately applies the brakes. (a) What must be the magnitude of the
resulting constant deceleration if a collision is to be just avoided?
(b) Assume that the engineer is at x = 0 when, at ¢ = 0, he first
spots the locomotive. Sketch x(¢) curves for the locomotive and
high-speed train for the cases in which a collision is just avoided
and is not quite avoided.

Highspeed IR e
train

Figure 2-32 Problem 43.

Module 2-5 Free-Fall Acceleration

*44  When startled, an armadillo will leap upward. Suppose it
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it
leaves the ground? (b) What is its speed at the height of 0.544 m?
(c) How much higher does it go?

°45 ssm  Www (a) With what speed must a ball be thrown verti-
cally from ground level to rise to a maximum height of 50 m?
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a
versus ¢ for the ball. On the first two graphs, indicate the time at
which 50 m is reached.
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*46 Raindrops fall 1700 m from a cloud to the ground. (a) If they
were not slowed by air resistance, how fast would the drops be
moving when they struck the ground? (b) Would it be safe to walk
outside during a rainstorm?

°47 SsM At a construction site a pipe wrench struck the ground
with a speed of 24 m/s. (a) From what height was it inadvertently
dropped? (b) How long was it falling? (c) Sketch graphs of y, v,
and a versus ¢ for the wrench.

°48 A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above the
ground. (a) How long does it take the stone to reach the ground?
(b) What is the speed of the stone at impact?

°49 ssMm A hot-air balloon is ascending at the rate of 12 m/s and
is 80 m above the ground when a package is dropped over the side.
(a) How long does the package take to reach the ground? (b) With
what speed does it hit the ground?

50 Attime ¢ = 0,apple 1is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down
from the same height. Figure 2-33 gives the vertical positions y of
the apples versus ¢ during the falling, until both apples have hit the
roadway. The scaling is set by ¢, = 2.0 s. With approximately what
speed is apple 2 thrown down?

Figure 2-33 Problem 50.

*51 As a runaway scientific bal- v
loon ascends at 19.6 m/s, one of its

harness and free-falls. Figure 2-34 ¢ N\ t(s)

instrument packages breaks free of a

gives the vertical velocity of the
package versus time, from before it
breaks free to when it reaches the
ground. (a) What maximum height
above the break-free point does it
rise? (b) How high is the break-free
point above the ground?

Figure 2-34 Problem 51.

52 @ A bolt is dropped from a bridge under construction,
falling 90 m to the valley below the bridge. (a) In how much
time does it pass through the last 20% of its fall? What is its speed
(b) when it begins that last 20% of its fall and (c) when it reaches
the valley beneath the bridge?

53 SsM ILW A key falls from a bridge that is 45 m above the
water. It falls directly into a model boat, moving with constant
velocity, that is 12 m from the point of impact when the key is re-
leased. What is the speed of the boat?

54 @ A stone is dropped into a river from a bridge 43.9 m
above the water. Another stone is thrown vertically down 1.00 s
after the first is dropped. The stones strike the water at the same
time. (a) What is the initial speed of the second stone? (b) Plot
velocity versus time on a graph for each stone, taking zero time as
the instant the first stone is released.
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*55 SsM A ball of moist clay falls 15.0 m to the ground. It is
in contact with the ground for 20.0 ms before stopping. (a) What is
the magnitude of the average acceleration of the ball during the time
itis in contact with the ground? (Treat the ball as a particle.) (b) Is the
average acceleration up or down?

56 (@ Figure 2-35 v
shows the speed v versus
height y of a ball tossed
directly upward,alongay  va
axis. Distance d is 0.40 m.

The speed at height y, is .
v4.The speed at height y; 3V4
is %VA. What is speed v,?

0 | |
*57 To test the quality

of a tennis ball, you drop
it onto the floor from a
height of 4.00 m. It re-
bounds to a height of 2.00 m. If the ball is in contact with the floor
for 12.0 ms, (a) what is the magnitude of its average acceleration
during that contact and (b) is the average acceleration up or down?

Figure 2-35 Problem 56.

*58 An object falls a distance & from rest. If it travels 0.50% in
the last 1.00 s, find (a) the time and (b) the height of its fall. (c)
Explain the physically unacceptable solution of the quadratic
equation in ¢ that you obtain.

*e59 Water drips from the nozzle of a shower onto the floor 200
cm below. The drops fall at regular (equal) intervals of time, the
first drop striking the floor at the instant the fourth drop begins to
fall. When the first drop strikes the floor, how far below the nozzle
are the (a) second and (b) third drops?

*60 @ A rock is thrown vertically upward from ground level at
time t = 0. At ¢ = 1.5 s it passes the top of a tall tower,and 1.0 s later
it reaches its maximum height. What is the height of the tower?

*s61 @ A steel ball is dropped from a building’s roof and passes
a window, taking 0.125 s to fall from the top to the bottom of the
window, a distance of 1.20 m. It then falls to a sidewalk and
bounces back past the window, moving from bottom to top in
0.125 s. Assume that the upward flight is an exact reverse of the
fall. The time the ball spends below the bottom of the window is
2.00 s. How tall is the building?

es62 =M A basketball player grabbing a rebound jumps
76.0 cm vertically. How much total time (ascent and descent) does
the player spend (a) in the top 15.0 cm of this jump and (b) in the
bottom 15.0 cm? (The player seems to hang in the air at the top.)

*63 @ A drowsy cat spots a flowerpot that sails first up and then
down past an open window. The pot is in view for a total of 0.50 s, and
the top-to-bottom height of the window is 2.00 m. How high above the
window top does the flowerpot go? 5,
ees64 A ball is shot vertically up-
ward from the surface of another
planet. A plot of y versus ¢ for the
ball is shown in Fig. 2-36, where y is
the height of the ball above its start-
ing point and ¢ = 0 at the instant the
ball is shot. The figure’s vertical scal-
ing is set by y, = 30.0 m. What are the 0

y (m)

magnitudes of (a) the free-fall accel-
eration on the planet and (b) the ini-
tial velocity of the ball?

t(s)
Figure 2-36 Problem 64.

Module 2-6 Graphical Integration in Motion Analysis

*65 %& Figure 2-15a gives the acceleration of a volunteer’s
head and torso during a rear-end collision. At maximum head ac-
celeration, what is the speed of (a) the head and (b) the torso?

*66 —®/&F In a forward punch in karate, the fist begins at rest at
the waist and is brought rapidly forward until the arm is fully ex-
tended. The speed v(¢) of the fist is given in Fig. 2-37 for someone
skilled in karate. The vertical scaling is set by v, = 8.0 m/s. How far
has the fist moved at (a) time ¢ = 50 ms and (b) when the speed of
the fist is maximum?

Vs
E
E L
-
0 50 100 140
t (ms)
Figure 2-37 Problem 66.
*s67 When a soccer a

ball is kicked to-
ward a player and
the player deflects
the ball by “head-
ing” it, the accelera-
tion of the head dur-
ing the collision can 0 2 4 6

be significant. Figure ¢ (ms)

2-38 gives the meas- Figure 2-38 Problem 67.

ured  acceleration

a(t) of a soccer player’s head for a bare head and a helmeted head,
starting from rest. The scaling on the vertical axis is set by a, = 200
m/s?. At time ¢ = 7.0 ms, what is the difference in the speed acquired
by the bare head and the speed acquired by the helmeted head?

Bare

a (m/s?)

68 M A salamander of the genus Hydromantes captures
prey by launching its tongue

as a projectile: The skeletal
part of the tongue is shot for-
ward, unfolding the rest of
the tongue, until the outer
portion lands on the prey,
sticking to it. Figure 2-39
shows the acceleration mag-
nitude a versus time ¢ for the
acceleration phase of the
launch in a typical situation.
The indicated accelerations are
a, = 400 m/s> and a; = 100 m/s’.
What is the outward speed of the
tongue at the end of the
acceleration phase?

*69 1LW How far does the run-
ner whose velocity —time graph is
shown in Fig. 2-40 travel in 16 s?
The figure’s vertical scaling is set
by v, = 8.0 m/s.

Figure 2-40 Problem 69.



ee70 Two particles move along an x axis. The position of particle 1
is given by x = 6.002 + 3.007 + 2.00 (in meters and seconds); the ac-
celeration of particle 2 is given by a = —8.00¢ (in meters per second
squared and seconds) and, at ¢ = 0, its velocity is 20 m/s. When the
velocities of the particles match, what is their velocity?

Additional Problems

71 In an arcade video game, a spot is programmed to move
across the screen according to x = 9.00z — 0.750¢3, where x is dis-
tance in centimeters measured from the left edge of the screen and
t is time in seconds. When the spot reaches a screen edge, at either
x = 0orx = 15.0 cm,¢is reset to 0 and the spot starts moving again
according to x(7). (a) At what time after starting is the spot instan-
taneously at rest? (b) At what value of x does this occur? (c) What
is the spot’s acceleration (including sign) when this occurs? (d)
Is it moving right or left just prior to coming to rest? (e) Just after?
(f) At what time ¢ > 0 does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a
tall building. The rock reaches its maximum height above the top of
the building 1.60 s after being shot. Then, after barely missing the
edge of the building as it falls downward, the rock strikes the ground
6.00 s after it is launched. In SI units: (a) with what upward velocity
is the rock shot, (b) what maximum height above the top of the
building is reached by the rock, and (c) how tall is the building?

73 @ At the instant the traffic light turns green, an automobile
starts with a constant acceleration a of 2.2 m/s%. At the same instant
a truck, traveling with a constant speed of 9.5 m/s, overtakes and
passes the automobile. (a) How far beyond the traffic signal will
the automobile overtake the truck? (b) How fast will the automo-
bile be traveling at that instant?

74 A pilot flies horizontally at 1300 km/h, at height # =35 m
above initially level ground. However, at time ¢ = 0, the pilot be-
gins to fly over ground sloping upward at angle 6 = 4.3° (Fig. 2-41).
If the pilot does not change the airplane’s heading, at what time ¢
does the plane strike the ground?

Figure 2-41 Problem 74.
75 @ To stop a car, first you require a certain reaction time to be-
gin braking; then the car slows at a constant rate. Suppose that the
total distance moved by your car during these two phases is 56.7 m
when its initial speed is 80.5 km/h, and 24.4 m when its initial speed
is 48.3 km/h. What are (a) your reaction time and (b) the magni-
tude of the acceleration?

76 (@ <% Figure 2-42 shows part of a street where traffic flow
is to be controlled to allow a platoon of cars to move smoothly
along the street. Suppose that the platoon leaders have just

@ T
® ® ®

1 2 3
e

Figure 2-42 Problem 76.
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reached intersection 2, where the green appeared when they were
distance d from the intersection. They continue to travel at a cer-
tain speed v, (the speed limit) to reach intersection 3, where the
green appears when they are distance d from it. The intersections
are separated by distances D,; and D,,. (a) What should be the
time delay of the onset of green at intersection 3 relative to that at
intersection 2 to keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red
light at intersection 1. When the green comes on there, the leaders
require a certain time ¢, to respond to the change and an additional
time to accelerate at some rate a to the cruising speed v,,. (b) If the
green at intersection 2 is to appear when the leaders are distance d
from that intersection, how long after the light at intersection 1
turns green should the light at intersection 2 turn green?

77 ssm A hot rod can accelerate from 0 to 60km/h in 54s.
(a) What is its average acceleration, in m/s?, during this time? (b)
How far will it travel during the 5.4 s, assuming its acceleration is con-
stant? (c) From rest, how much time would it require to go a distance
of 0.25 km if its acceleration could be maintained at the value in (a)?

78 @ A red train traveling at 72 km/h and a green train traveling
at 144 km/h are headed toward each other along a straight, level
track. When they are 950 m apart, each engineer sees the other’s
train and applies the brakes. The brakes slow each train at the rate
of 1.0 m/s2. Ts there a collision? If so, answer yes and give the speed
of the red train and the speed of the green train at impact, respec-
tively. If not, answer no and give the separation between the trains
when they stop.

79 @ At time t =0, a rock
climber accidentally allows a
piton to fall freely from a high
point on the rock wall to the
valley below him. Then, after a
short delay, his climbing part-
ner, who is 10 m higher on the
wall, throws a piton down-
ward. The positions y of the t(s)

pitons versus ¢ during the Figure 2-43 Problem 79.
falling are given in Fig. 2-43.

With what speed is the second piton thrown?

80 A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m farther on it
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time re-
quired to travel the 160 m mentioned, (c) the time required to at-
tain the speed of 30 m/s, and (d) the distance moved from rest to
the time the train had a speed of 30 m/s. (¢) Graph x versus ¢t and v
versus ¢ for the train, from rest.

81 ssm A particle’s acceleration along an x axis is a = 5.0¢, with ¢
in seconds and a in meters per
second squared. At ¢ = 2.0s,
its velocity is +17 m/s. What is
its velocity at ¢ = 4.0 s?

a(m/s?)
\“*
82 Figure 2-44 gives the ac-
celeration a versus time ¢ for
a particle moving along an x
axis. The a-axis scale is set by
a; =120 m/s>. Att= —20s,
the particle’s velocity is 7.0

m/s. What is its velocity at t =
6.0s?

-2 0 2

Figure 2-44 Problem 82.
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83 Figure 2-45 shows a simple device for measuring your
reaction time. It consists of a cardboard strip marked with a scale
and two large dots. A friend holds the strip vertically, with thumb
and forefinger at the dot on the right in Fig. 2-45. You then posi-
tion your thumb and forefinger at the other dot (on the left in
Fig. 2-45), being careful not to touch the strip. Your friend re-
leases the strip, and you try to pinch it as soon as possible after
you see it begin to fall. The mark at the place where you pinch the
strip gives your reaction time. (a) How far from the lower dot
should you place the 50.0 ms mark? How much higher should
you place the marks for (b) 100, (c) 150, (d) 200, and (e) 250 ms?
(For example, should the 100 ms marker be 2 times as far from
the dot as the 50 ms marker? If so, give an answer of 2 times. Can
you find any pattern in the answers?)

Reaction time (ms)

L e e O D
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Figure 2-45 Problem 8§3.

gt
(=]

00T

84 %= A rocket-driven sled running on a straight, level track is
used to investigate the effects of large accelerations on humans.
One such sled can attain a speed of 1600 km/h in 1.8 s, starting
from rest. Find (a) the acceleration (assumed constant) in terms of
g and (b) the distance traveled.

85 A mining cart is pulled up a hill at 20 km/h and then pulled
back down the hill at 35 km/h through its original level. (The time
required for the cart’s reversal at the top of its climb is negligible.)
What is the average speed of the cart for its round trip, from its
original level back to its original level?

86 A motorcyclist who is moving along an x axis directed to-
ward the east has an acceleration given by a = (6.1 — 1.2¢) m/s?
for 0 =t = 6.0s. At ¢t = 0, the velocity and position of the cyclist
are 2.7 m/s and 7.3 m. (a) What is the maximum speed achieved
by the cyclist? (b) What total distance does the cyclist travel be-
tweent = 0 and 6.0 s?

87 ssm When the legal speed limit for the New York Thruway
was increased from 55 mi/h to 65 mi/h, how much time was saved
by a motorist who drove the 700 km between the Buffalo entrance
and the New York City exit at the legal speed limit?

88 A car moving with constant acceleration covered the distance
between two points 60.0 m apart in 6.00 s. Its speed as it passed the
second point was 15.0 m/s. (a) What was the speed at the first
point? (b) What was the magnitude of the acceleration? (c) At
what prior distance from the first point was the car at rest? (d) Graph
x versus ¢ and v versus £ for the car, from rest (¢ = 0).

89 ssm ®E A certain juggler usually tosses balls vertically to
a height H.To what height must they be tossed if they are to spend
twice as much time in the air?

90 A particle starts from the ori- Vs
gin at + = 0 and moves along the
positive x axis. A graph of the veloc-
ity of the particle as a function of the
time is shown in Fig. 2-46; the v-axis
scale is set by v, = 4.0 m/s. (a) What
is the coordinate of the particle at 0o 1 2 3

t = 5.0 s? (b) What is the velocity of L(s)
the particle at ¢ = 5.0 s? (c) What is Figure 2-46 Problem 90.

v (m/s)

4 5 6

the acceleration of the particle at # = 5.0 s? (d) What is the average ve-
locity of the particle between ¢ = 1.0s and ¢ = 5.0s? (e) What is the
average acceleration of the particle betweens = 1.0sandz = 5.0 s?

91 A rock is dropped from a 100-m-high cliff. How long does it
take to fall (a) the first 50 m and (b) the second 50 m?

92 Two subway stops are separated by 1100 m. If a subway train
accelerates at +1.2 m/s? from rest through the first half of the dis-
tance and decelerates at —1.2 m/s? through the second half, what
are (a) its travel time and (b) its maximum speed? (c) Graph x, v,
and a versus ¢ for the trip.

93 A stone is thrown vertically upward. On its way up it passes
point A with speed v, and point B,3.00 m higher than A, with speed
1v. Calculate (a) the speed v and (b) the maximum height reached
by the stone above point B.

94 A rock is dropped (from rest) from the top of a 60-m-tall
building. How far above the ground is the rock 1.2's before it
reaches the ground?

95 ssm An iceboat has a constant velocity toward the east when
a sudden gust of wind causes the iceboat to have a constant accel-
eration toward the east for a period of 3.0 s. A plot of x versus ¢ is
shown in Fig. 2-47, where ¢t = 0 is taken to be the instant the wind
starts to blow and the positive x axis is toward the east. (a) What is
the acceleration of the iceboat during the 3.0 s interval? (b) What
is the velocity of the iceboat at the end of the 3.0 s interval? (c) If
the acceleration remains constant for an additional 3.0 s, how far
does the iceboat travel during this second 3.0 s interval?

30
25
20
15
10

x (m)

0() 0.5 1 1.5 2 2.5 3
t(s)

Figure 2-47 Problem 95.

96 A lead ball is dropped in a lake from a diving board 5.20 m
above the water. It hits the water with a certain velocity and then
sinks to the bottom with this same constant velocity. It reaches the
bottom 4.80 s after it is dropped. (a) How deep is the lake? What
are the (b) magnitude and (c) direction (up or down) of the aver-
age velocity of the ball for the entire fall? Suppose that all the wa-
ter is drained from the lake. The ball is now thrown from the diving
board so that it again reaches the bottom in 4.80 s. What are the
(d) magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-high
building. (a) With what speed does the elevator strike the ground?
(b) How long is it falling? (c) What is its speed when it passes the
halfway point on the way down? (d) How long has it been falling
when it passes the halfway point?

98 Two diamonds begin a free fall from rest from the same
height, 1.0 s apart. How long after the first diamond begins to fall
will the two diamonds be 10 m apart?

99 A ball is thrown vertically downward from the top of a 36.6-
m-tall building. The ball passes the top of a window that is 12.2 m
above the ground 2.00 s after being thrown. What is the speed of
the ball as it passes the top of the window?



100 A parachutist bails out and freely falls 50 m. Then the para-
chute opens, and thereafter she decelerates at 2.0 m/s>. She reaches
the ground with a speed of 3.0 m/s. (a) How long is the parachutist
in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of v,
from a height of A. (a) What is its speed just before it strikes the
ground? (b) How long does the ball take to reach the ground?
What would be the answers to (c) part a and (d) part b if the ball
were thrown upward from the same height and with the same ini-
tial speed? Before solving any equations, decide whether the an-
swers to (c) and (d) should be greater than, less than, or the same
asin (a) and (b).

102 The sport with the fastest moving ball is jai alai, where
measured speeds have reached 303 km/h. If a professional jai alai
player faces a ball at that speed and involuntarily blinks, he
blacks out the scene for 100 ms. How far does the ball move dur-
ing the blackout?

103 If a baseball pitcher throws a fastball at a horizontal speed of
160 km/h, how long does the ball take to reach home plate 18.4 m
away?

104 A proton moves along the x axis according to the equation
x = 50t + 102 where x is in meters and 7 is in seconds. Calculate (a)
the average velocity of the proton during the first 3.0 s of its motion,
(b) the instantaneous velocity of the proton at ¢t = 3.0 s, and (c) the
instantaneous acceleration of the proton at r = 3.0 s. (d) Graph x
versus ¢ and indicate how the answer to (a) can be obtained from the
plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus ¢
and indicate on it the answer to (c).

105 A motorcycle is moving at 30 m/s when the rider applies the
brakes, giving the motorcycle a constant deceleration. During the 3.0's
interval immediately after braking begins, the speed decreases to
15 m/s. What distance does the motorcycle travel from the instant
braking begins until the motorcycle stops?

106 A shuffleboard disk is accelerated at a constant rate from rest
to a speed of 6.0 m/s over a 1.8 m distance by a player using a cue. At
this point the disk loses contact with the cue and slows at a constant
rate of 2.5 m/s? until it stops. (a) How much time elapses from when
the disk begins to accelerate until it stops? (b) What total distance
does the disk travel?

107 The head of a rattlesnake can accelerate at 50 m/s?in striking
a victim. If a car could do as well, how long would it take to reach a
speed of 100 km/h from rest?

108 A jumbo jet must reach a speed of 360 km/h on the runway
for takeoff. What is the lowest constant acceleration needed for
takeoff from a 1.80 km runway?

109 An automobile driver increases the speed at a constant rate
from 25 km/h to 55 km/h in 0.50 min. A bicycle rider speeds up at a
constant rate from rest to 30 km/h in 0.50 min. What are the magni-
tudes of (a) the driver’s acceleration and (b) the rider’s acceleration?

110 On average, an eye blink lasts about 100 ms. How far does a
MiG-25 “Foxbat” fighter travel during a pilot’s blink if the plane’s
average velocity is 3400 km/h?

111 A certain sprinter has a top speed of 11.0 m/s. If the sprinter
starts from rest and accelerates at a constant rate, he is able to
reach his top speed in a distance of 12.0 m. He is then able to main-
tain this top speed for the remainder of a 100 m race. (a) What is
his time for the 100 m race? (b) In order to improve his time, the
sprinter tries to decrease the distance required for him to reach his
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top speed. What must this distance be if he is to achieve a time of
10.0 s for the race?

112 The speed of a bullet is measured to be 640 m/s as the bullet
emerges from a barrel of length 1.20 m. Assuming constant accelera-
tion, find the time that the bullet spends in the barrel after it is fired.

113 The Zero Gravity Research Facility at the NASA Glenn
Research Center includes a 145 m drop tower. This is an evacuated ver-
tical tower through which, among other possibilities, a 1-m-diameter
sphere containing an experimental package can be dropped. (a)
How long is the sphere in free fall? (b) What is its speed just as it
reaches a catching device at the bottom of the tower? (c) When
caught, the sphere experiences an average deceleration of 25g as its
speed is reduced to zero. Through what distance does it travel during
the deceleration?

114 —%& A car can be braked to a stop from the autobahn-like
speed of 200 km/h in 170 m. Assuming the acceleration is constant,
find its magnitude in (a) SI units and (b) in terms of g. (c) How much
time 7}, is required for the braking? Your reaction time T, is the time
you require to perceive an emergency, move your foot to the brake,
and begin the braking. If 7, = 400 ms, then (d) what is 7}, in terms of
T,, and (e) is most of the full time required to stop spent in reacting
or braking? Dark sunglasses delay the visual signals sent from the
eyes to the visual cortex in the brain, increasing 7. (f) In the extreme
case in which 7, is increased by 100 ms, how much farther does
the car travel during your reaction time?

115 In 1889, at Jubbulpore, India, a tug-of-war was finally won af-
ter 2 h 41 min, with the winning team displacing the center of the
rope 3.7 m. In centimeters per minute, what was the magnitude of
the average velocity of that center point during the contest?

116  Most important in an investigation of an airplane crash by the
U.S. National Transportation Safety Board is the data stored on the
airplane’s flight-data recorder, commonly called the “black box” in
spite of its orange coloring and reflective tape. The recorder is engi-
neered to withstand a crash with an average deceleration of magni-
tude 3400g during a time interval of 6.50 ms. In such a crash, if the
recorder and airplane have zero speed at the end of that time inter-
val, what is their speed at the beginning of the interval?

117 From January 26, 1977, to September 18, 1983, George
Meegan of Great Britain walked from Ushuaia, at the southern tip
of South America, to Prudhoe Bay in Alaska, covering 30 600 km. In
meters per second, what was the magnitude of his average velocity
during that time period?

118 The wings on a stonefly do not flap, and thus the insect cannot
fly. However, when the insect is on a water surface, it can sail across
the surface by lifting its wings into a breeze. Suppose that you time
stoneflies as they move at constant speed along a straight path of a
certain length. On average, the trips each take 7.1 s with the wings
set as sails and 25.0 s with the wings tucked in. (a) What is the ratio of
the sailing speed v, to the nonsailing speed v,,? (b) In terms of v,
what is the difference in the times the insects take to travel the first
2.0 m along the path with and without sailing?

119 The position of a particle as it moves along a y axis is given by
y = (2.0 cm) sin (77t/4),

with 7 in seconds and y in centimeters. (a) What is the average veloc-

ity of the particle between ¢ = 0 and ¢ = 2.0 s? (b) What is the instan-

taneous velocity of the particle at r = 0,1.0,and 2.0 s? (c) What is the

average acceleration of the particle between ¢t = 0 and ¢ = 2.0 s?

(d) What is the instantaneous acceleration of the particle at t = 0,
1.0,and 2.0s?



cmarTER 3
Vectors

3-1 VECTORS AND THEIR COMPONENTS

Learning Objectives
After reading this module, you should be able to . . .

3.01 Add vectors by drawing them in head-to-tail arrange-
ments, applying the commutative and associative laws.

3.02 Subtract a vector from a second one.

3.03 Calculate the components of a vector on a given coordi-
nate system, showing them in a drawing.

Key Ideas

@ Scalars, such as temperature, have magnitude only. They
are specified by a number with a unit (10°C) and obey the
rules of arithmetic and ordinary algebra. Vectors, such as dis-
placement, have both magnitude and direction (5 m, north)
and obey the rules of vector algebra.

@ Two vectors @ and b may be added geometrically by draw-
ing them to a common scale and placing them head to tail.
The vector connecting the tail of the first to the head of the
second is the vector sum 5. To subtract b from 4, reverse the
direction of b to get —b: then add —b to @. Vector addition is
commutative and obeys the associative law.

3.04 Given the components of a vector, draw the vector
and determine its magnitude and orientation.
3.05 Convert angle measures between degrees and radians.

® The (scalar) components a, and a, of any two-dimensional
vector d along the coordinate axes are found by dropping
perpendicular lines from the ends of @ onto the coordinate
axes. The components are given by

a,=acosf and a,=asinb,

where @ is the angle between the positive direction of the x
axis and the direction of @. The algebraic sign of a component
indicates its direction along the associated axis. Given its
components, we can find the magnitude and orientation of
the vector @ with

a
tan § = —.

ay

a=Val+a and

What Is Physics?

Physics deals with a great many quantities that have both size and direction, and it
needs a special mathematical language—the language of vectors—to describe
those quantities. This language is also used in engineering, the other sciences, and
even in common speech. If you have ever given directions such as “Go five blocks
down this street and then hang a left,” you have used the language of vectors. In
fact, navigation of any sort is based on vectors, but physics and engineering also
need vectors in special ways to explain phenomena involving rotation and mag-
netic forces, which we get to in later chapters. In this chapter, we focus on the basic

language of vectors.

Vectors and Scalars

A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

40
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A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction. Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of —40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle changes
its position by moving from A to B in Fig. 3-1a, we say that it undergoes a displace-
ment from A to B, which we represent with an arrow pointing from A to B.The ar-
row specifies the vector graphically. To distinguish vector symbols from other
kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3-1a, the arrows from A to B, from A’ to B’, and from A” to B" have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value ifits length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

Adding Vectors Geometrically

Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in a. If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

§=4d+0b, (3-1)
which says that the vector § is the vector sum of vectors @ and b. The symbol + in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors @ and b
geometrically. (1) On paper, sketch vector @ to some convenient scale and at the
proper angle. (2) Sketch vector b to the same scale, with its tail at the head of vec-
tor d@, again at the proper angle. (3) The vector sum s is the vector that extends
from the tail of @ to the head of b.

Properties. Vector addition, defined in this way, has two important proper-
ties. First, the order of addition does not matter. Adding @ to b gives the same

A

{
0

Figure 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

Actual
path

¢ C
Net displacement
is the vector sum

(a)

To add @and b,
draw them
head to tail.

@

)\ This is the
resulting vector,
from tail of @
to head of b.

Figure 3-2 (a) AC is the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.
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Vector sum

Start Finish

You get the same vector
result for either order of
adding vectors.

Figure 3-3 The two vectors @ and b can be
added in either order; see Eq. 3-2.

—

b
v

Figure 3-5 The vectors b and —b have the
same magnitude and opposite directions.

>
a

St

(a)

Note head-to-tail
— arrangement for
addition

(b)

Figure 3-6 (a) Vectors @, b, and —b.
(b) To subtract vector b from vector @,
add vector —b to vector d.

result as adding btod (Fig.3-3); that is,

i+b=b+1d (commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors @, b, and ¢ ¢, we can add @ and b
first and then add their vector sum to ¢. We can also add b and ¢ first and then
add that sum to d. We get the same result either way, as shown in Fig. 3-4. That is,

(ﬁ) + 3) +¢=4d+ (T)) + ?) (associative law). (3-3)

You get the same vector result for

. N any order of adding the vectors.
a a
X8
N
)
oV o
7N N
6X N X(’\
R

Figure 3-4 The three vectors @, b, and € can be grouped in any way as they are added; see
Eq. 3-3.

The vector —b is a vector with the same magnitude as b but the opposite
direction (see Fig. 3-5). Adding the two vectors in Fig. 3-5 would yield

b+ (=b) = 0.

Thus, adding — —D has the effect of subtractlng b. - We use this property to define
the difference between two vectors:letd = @ — b. Then
d=4-b=7+ (—B) (vector subtraction); (3-4)

that is, we find the difference vector d by adding the vector —b to the vector d.
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from
one side of a vector equation to the other, but we must change its sign. For example,
if we are given Eq. 3-4 and need to solve for @, we can rearrange the equation as

d+b=d or a=4d+Db.

Remember that, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.

IZ Checkpoint 1

The magnitudes of displacements @ and bare3mand4 m, respectively,and ¢ = @ + b.
Considering various orientations of @ and b, what are (a) the maximum possible
magnitude for ¢ and (b) the minimum possible magnitude?

Components of Vectors

Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system. The x and y axes are usually drawn in the plane of the page, as shown
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in Fig. 3-7a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In
Fig. 3-7a, for example, a, is the component of vector @ on (or along) the x axis and
a, is the component along the y axis. To find the projection of a vector along an
axis, we draw perpendicular lines from the two ends of the vector to the axis, as
shown. The projection of a vector on an x axis is its x component, and similarly the
projection on the y axis is the y component. The process of finding the
components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-7, a, and a, are both positive because @ extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector a, then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector b in
Fig. 3-8 yields a positive component b, and a negative component b,.

In general, a vector has three components, although for the case of Fig. 3-7a
the component along the z axis is zero. As Figs. 3-7a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

Finding the Components. We can find the components of @ in Fig. 3-7a geo-
metrically from the right triangle there:

— This is the y component —
of the vector.

(b)

This is the x component
of the vector.

The components af |a

and the vector

fo - , Al
rm a right triangle. (0 a.

Figure 3-7 (a) The components a, and a, of

43

vector d. (b) The components are unchanged if
the vector is shifted, as long as the magnitude
and orientation are maintained. (c) The com-
ponents form the legs of a right triangle whose
hypotenuse is the magnitude of the vector.

a,=acosf and a,=asin6,

v (3-5)

where 6 is the angle that the vector @ makes with the positive direction of the
x axis, and a is the magnitude of @. Figure 3-7¢ shows that @ and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-

This is the x component
of the vector.

ponent to the head of the other component. v by=7Tm

Once a vector has been resolved into its components along a set of axes, the o 0 } *(m)
components themselves can be used in place of the vector. For example, d@ in \\ }
Fig. 3-7a is given (completely determined) by a and 6. It can also be given by its . }
components a, and a,. Both pairs of values contain the same information. If we 0 |
know a vector in component notation (a, and a,) and want it in magnitude-angle n_ R |
notation (a and ), we can use the equations iy, B R R U Y

a
tan 0 = —
aX

———This is the y component
of the vector.

(3-6)

a=Val+a and

to transform it.
In the more general three-dimensional case, we need a magnitude and two
angles (say, a, 6, and ¢) or three components (a,, a,,and a,) to specify a vector.

M Checkpoint 2

Figure 3-8 The component of b on the
X axis is positive, and that on the y axis is
negative.

In the figure, which of the indicated methods for combining the x and y components of vector a are proper to determine that vector?

S

R
Q)
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Sample Problem 3.01

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by
making three straight-line moves. You may use the follow-
ing displacements in any order: (a) d, 2.0 km due east
(directly toward the east); (b) b, 2.0 km 30° north of east
(at an angle of 30° toward the north from due east);
(c) ¢, 1.0 km due west. Alternatively, you may substitute
either —b for b or —¢ for ¢. What is the greatest distance
you can be from base camp at the end of the third displace-
ment? (We are not concerned about the direction.)

Reasoning: Using a convenient scale, we draw vectors d,
b,¢, —B, and —¢ as in Fig. 3-9a. We then mentally slide the
vectors over the page, connecting three of them at a time
in head-to-tail arrangements to find their vector sum d.
The tail of the first vector represents base camp. The head
of the third vector represents the point at which you stop.
The vector sum d extends from the tail of the first vector
to the head of the third vector. Its magnitude d is your dis-
tance from base camp. Our goal here is to maximize that
base-camp distance.

We find that distance d is greatest for a head-to-tail
arrangement of vectors @, b,and —¢. They can be in any

Adding vectors in a drawing, orienteering

a
_— . .
a =0
- —D

= b b
- b - o .

______ ?lo_" L =b+a-c
4?— _D_? This is the vector result

for adding those three

gedlelojlon vectors in any order.

[ S
0 1 2
(a) (b)

Figure 3-9 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo
displacements @, b, and —¢, in any order.

order, because their vector sum is the same for any order.
(Recall from Eq. 3-2 that vectors commute.) The order
shown in Fig. 3-9b is for the vector sum

d=0b+d+ (-0).

Using the scale given in Fig. 3-9a, we measure the length d of
this vector sum, finding

d=48m. (Answer)

Sample Problem 3.02 Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. This means that the direction is not
due north (directly toward the north) but is rotated 22° to-
ward the east from due north. How far east and north is the
airplane from the airport when sighted?

Distance (km)

Distance (km)

Figure 3-10 A plane takes off from an airport at the origin and is
later sighted at P,

KEY IDEA

We are given the magnitude (215 km) and the angle (22° east
of due north) of a vector and need to find the components
of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
(We don’t have to do this. We could shift and misalign the
coordinate system but, given a choice, why make the prob-
lem more difficult?) The airplane’s displacement d points
from the origin to where the airplane is sighted.

To find the components of d, we use Eq. 3-5 with 0 =
68° (= 90° — 22°):

d, = dcos 6 = (215 km)(cos 68°)

= 81 km (Answer)
d, = dsin 6 = (215 km)(sin 68°)
=199 km =~ 2.0 X 10? km. (Answer)

Thus, the airplane is 81 km east and 2.0 X 10?> km north of
the airport.

PLUS Additional examples, video, and practice available at WileyPLUS
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Problem-Solving Tactics Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are
positive if they are measured in the counterclockwise direc-
tion and negative if measured clockwise. For example, 210°
and —150° are the same angle.

Angles may be measured in degrees or radians (rad). To
relate the two measures, recall that a full circle is 360° and
2mrad.To convert, say, 40° to radians, write

. 2arrad

40 360°

= 0.70 rad.

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and
tangent—because they are part of the language of science
and engineering. They are given in Fig. 3-11 in a form that
does not depend on how the triangle is labeled.

You should also be able to sketch how the trig functions
vary with angle, as in Fig. 3-12, in order to be able to judge
whether a calculator result is reasonable. Even knowing
the signs of the functions in the various quadrants can be
of help.

Tactic 3: Inverse Trig Functions When the inverse trig
functions sin !, cos™!, and tan"! are taken on a calculator,
you must consider the reasonableness of the answer you
get, because there is usually another possible answer that
the calculator does not give. The range of operation for a
calculator in taking each inverse trig function is indicated
in Fig. 3-12. As an example, sin~! 0.5 has associated angles
of 30° (which is displayed by the calculator, since 30° falls
within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note
where it cuts the sine curve. How do you distinguish a cor-
rect answer? It is the one that seems more reasonable for
the given situation.

Tactic 4: Measuring Vector Angles The equations for
cos fand sin #in Eq. 3-5 and for tan #in Eq. 3-6 are valid
only if the angle is measured from the positive direction of

sin 0 = leg opposite 6
hypotenuse
Hypotenuse e
g 8
c0s = leghadjacent to 0 opposite 0
ypotenuse 0
] Leg adjacent to 6

tan 6 leg opposite 6

leg adjacent to 6

Figure 3-11 A triangle used to define the trigonometric
functions. See also Appendix E.

Quadrants
1\Y% I 11 11 v

+1
sin

-90° 90° 180° 270° 360°

(a)

+1
-\ cos

-90° 0

gwm 270°  360°
-1

(b)

+2 tan
+1
-90° 90° 180° 270° 360°
=1
=2

(¢)

Figure 3-12 Three useful curves to remember. A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.

the x axis. If it is measured relative to some other direc-
tion, then the trig functions in Eq. 3-5 may have to be in-
terchanged and the ratio in Eq. 3-6 may have to be
inverted. A safer method is to convert the angle to one
measured from the positive direction of the x axis. In
WileyPL US, the system expects you to report an angle of
direction like this (and positive if counterclockwise and
negative if clockwise).

PLUS Additional examples, video, and practice available at WileyPLUS
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3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

Learning Objectives

After reading this module, you should be able to . ..

3.06 Convert a vector between magnitude-angle and unit-

vector notations.

3.07 Add and subtract vectors in magnitude-angle notation

and in unit-vector notation.

Key Ideas

@ Unit vectors 1, j, and k have magnitudes of unity and are
directed in the positive directions of the x, y, and z axes,
respectively, in a right-handed coordinate system. We can
write a vector @ in terms of unit vectors as

d=aj+ aj+ ak,

The unit vectors point
along axes.

=

Figure 3.13 Unit vectors i, j, and k define the
directions of a right-handed coordinate
system.

Figure 3-14 (@) The vector components
of vector 4. (b) The vector components
of vector b.

3.08 Identify that, for a given vector, rotating the coordinate
system about the origin can change the vector's compo-
nents but not the vector itself.

in which a,1, a,J, and a.k are the vector components of @ and
a,, a,, and a, are its scalar components.

® To add vectors in component form, we use the rules

re=a.+b, ry,=a,+b, r,=a,+b.

Here @ and b are the vectors to be added, and 7 is the vector
sum. Note that we add components axis by axis.

Unit Vectors

A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled f,i, and k, where the hat " is used instead of an overhead arrow
as for other vectors (Fig. 3-13). The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly. We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express @ and b of Figs. 3-7 and 3-8 as

~

=al+ ay 3-7)

= b+ byj. (3-8)

S| /)

and

These two equations are illustrated in Fig. 3-14. The quantities a,i and ayj are vec-
tors, called the vector components of @. The quantities a, and a, are scalars, called
the scalar components of @ (or, as before, simply its components).

This is the y vector component.

This is the x vector
(@) component. (b

Adding Vectors by Components

We can add vectors geometrically on a sketch or directly on a vector-capable
calculator. A third way is to combine their components axis by axis.
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To start, consider the statement
7=4d+b, (3-9)

which says that the vector 7 is the same as the vector (d + E)). Thus, each
component of 7 must be the same as the corresponding component of (¢ + b):

re=a,+b, (3-10)
ry=a,+b, (3-11)
r,=a,+b,. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors @ and b, we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum 7; and (3) combine
the components of 7 to get 7 itself. We have a choice in step 3. We can express 7
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector
subtractions. Recall that a subtraction such as d = @ — b can be rewritten as an
addition d = @ + (—b).To subtract, we add @ and — b by components, to get

d,=a,— b, dy=a,—b,, and d,=a,—- b,

where d=dji+dj+dk (3-13)
. )
IZ Checkpoint 3 |
(a) In the figure here, what are the signs of the x : -
components of d; and d,? (b) What are the signs of -/ &

the y components of d; and d,? (c) What are the
signs of the x and y components of 67; I 672?

Vectors and the Laws of Physics

So far, in every figure that includes a coordinate system, the x and y axes are par-
allel to the edges of the book page. Thus, when a vector ¢ is included, its compo-
nents a, and a, are also parallel to the edges (as in Fig. 3-15a). The only reason for
that orientation of the axes is that it looks “proper”; there is no deeper reason.
We could, instead, rotate the axes (but not the vector @) through an angle ¢ as in
Fig. 3-15b, in which case the components would have new values, call them a’, and
a',. Since there are an infinite number of choices of ¢, there are an infinite num-
ber of different pairs of components for .

Which then is the “right” pair of components? The answer is that they are all
equally valid because each pair (with its axes) just gives us a different way of de-
scribing the same vector a; all produce the same magnitude and direction for the
vector. In Fig. 3-15 we have

a=\Va?+ al = Va? + a;? (3-14)

Rotating the axes
changes the components
but not the vector.

and
=06 + ¢. (3-15)

The point is that we have great freedom in choosing a coordinate system, be-
cause the relations among vectors do not depend on the location of the origin or
on the orientation of the axes. This is also true of the relations of physics; they are ()
all independent of the choice of coordinate system. Add to that the simplicity and  Figyre 3-15 (4) The vector @ and its
richness of the language of vectors and you can see why the laws of physics are components. (b) The same vector, with the
almost always presented in that language: one equation, like Eq. 3-9, can repre-  axes of the coordinate system rotated
sent three (or even more) relations, like Egs. 3-10,3-11, and 3-12. through an angle ¢.
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Sample Problem 3.03 Searching through a hedge maze

A hedge maze is a maze formed by tall rows of hedge.
After entering, you search for the center point and then
for the exit. Figure 3-16a shows the entrance to such a
maze and the first two choices we make at the junctions
we encounter in moving from point i to point c. We un-
dergo three displacements as indicated in the overhead
view of Fig. 3-16b:

dl = 600m 01 = 40°
d, = 8.00 m 0, = 30°
d3 = 500 m 63 = 00,

where the last segment is parallel to the superimposed
x axis. When we reach point ¢, what are the magnitude and
angle of our net displacement d ., from point i?

KEY IDEAS

(1) To find the net displacement d,,, we need to sum the

three individual displacement vectors:
d=d, +d,+d,

(2) To do this, we first evaluate this sum for the x compo-
nents alone,

dnet,x = dlx + d2x + d3x» (3-16)
and then the y components alone,
dnet,y = dly + d2y + d3y- (3-17)

(3) Finally, we construct d,, from its x and y components.

(

a

s

Calculations: To evaluate Eqgs. 3-16 and 3-17, we find the x and
y components of each displacement. As an example, the com-
ponents for the first displacement are shown in Fig. 3-16¢. We
draw similar diagrams for the other two displacements and
then we apply the x part of Eq. 3-5 to each displacement, using
angles relative to the positive direction of the x axis:

di, = (6.00 m) cos 40° = 4.60 m
d>, = (8.00 m) cos (—60°) = 4.00 m
ds, = (5.00 m) cos 0° = 5.00 m.

Equation 3-16 then gives us
dyerx = 4.60m + 4.00m + 5.00 m
=13.60 m.

Similarly, to evaluate Eq. 3-17, we apply the y part of Eq. 3-5
to each displacement:

d,, = (6.00 m) sin 40° = 3.86 m
d, = (8.00 m) sin (—60°) = —6.93 m
d3, = (5.00m) sin 0° = O m.
Equation 3-17 then gives us
dyery = +3.86m — 6.93m + Om
—3.07 m.

Next we use these components of Zl)net to construct the vec-
tor as shown in Fig. 3-16d: the components are in a head-to-
tail arrangement and form the legs of a right triangle, and

N—) ¢ i
/ 32
(3
b _J
‘—D.(‘ y
Net
vector

(a) i

BN
et

d

y
Three First
vectors vector
d R
d
x ‘ h
b 33 . 7 x
() §
(o)
netx
I_ X
nety
4
(d)

Figure 3-16 (a) Three displacements through a hedge maze. (b) The displacement vectors. (¢) The first displacement vector and its

components. (d) The net displacement vector and its components.
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the vector forms the hypotenuse. We find the magnitude and
angle of d ., with Eq. 3-6. The magnitude is

dnet =V drzlel,x + drzlet,y (3'18)
=V(13.60m)? + (—3.07m)> = 13.9m.  (Answer)

To find the angle (measured from the positive direction of x),
we take an inverse tangent:

6= tan"! <—y—d"e“ >

3-19
dnet,x ( )

-3.07
= tan! (ﬁ) = —12.7°. (Answer)

The angle is negative because it is measured clockwise from
positive x. We must always be alert when we take an inverse

tangent on a calculator. The answer it displays is mathe-
matically correct but it may not be the correct answer for
the physical situation. In those cases, we have to add 180°
to the displayed answer, to reverse the vector. To check,
we always need to draw the vector and its components as
we did in Fig. 3-16d. In our physical situation, the figure
shows us that § = —12.7° is a reasonable answer, whereas
—12.7° + 180° = 167° is clearly not.

We can see all this on the graph of tangent versus angle
in Fig. 3-12¢. In our maze problem, the argument of the in-
verse tangent is —3.07/13.60, or —0.226. On the graph draw
a horizontal line through that value on the vertical axis. The
line cuts through the darker plotted branch at —12.7° and
also through the lighter branch at 167°. The first cut is what
a calculator displays.

Sample Problem 3.04 Adding vectors, unit-vector components

Figure 3-17a shows the following three vectors:
@ = (42m)i — (1.5 m)j,
b = (—L.6m)i + (29 m)j,
and ¢ = (—3.7m)j.

What is their vector sum 7 which is also shown?

)
b To add these vectors,
2( find their net x component
. and their net y component.
B3 2 4 2 3 4 |F
=1 .
a
=2
;’
=3
Y?
(a)
Then arrange the net
y ) components head to tail.
2.61
B R Qi 1 273 & |*
= .
o 7 —2.?)]
=3

(b) =—This is the result of the addition.

Figure 3-17 Vector 7 is the vector sum of the other three vectors.

KEY IDEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum 7.

_C)alculations: For the x axis, we add the x components of @,
b, and ¢, to get the x component of the vector sum 7:

r.=a,+ b, +c,
=42m—1.6m + 0= 2.6 m.

Similarly, for the y axis,

%

y=a,+b,+c,

=—15m+29m—-37m=—-23m.

We then combine these components of 7 to write the vector
in unit-vector notation:

7 = (2.6 m)i — (2.3 m)j, (Answer)

where (2.6 m)i is the vector component of 7 along the x axis
and —(2.3 m)j is that along the y axis. Figure 3-17b shows
one way to arrange these vector components to form 7.
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for 7. From Eq. 3-6, the magnitude is

r=\V(@6my + (—23m)>~35m (Answer)
and the angle (measured from the +x direction) is
—23m
— 1= ) = )
0 = tan < 2 6m ) 41°, (Answer)

where the minus sign means clockwise.

PLUS Additional examples, video, and practice available at WileyPLUS
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3-3 MuLTIPLYING VECTORS

Learning Objectives
After reading this module, you should be able to . ..

3.09 Multiply vectors by scalars.

3.10 Identify that multiplying a vector by a scalar gives a vec-
tor, taking the dot (or scalar) product of two vectors gives a
scalar, and taking the cross (or vector) product gives a new
vector that is perpendicular to the original two.

3.11 Find the dot product of two vectors in magnitude-angle
notation and in unit-vector notation.

3.12 Find the angle between two vectors by taking their dot prod-
uct in both magnitude-angle notation and unit-vector notation.

Key Ideas

® The product of a scalar s and a vector V is a new vector
whose magnitude is sv and whose direction is the same as
that of V if s is positive, and opposite that of V' if s is negative.
To divide V by s, multiply v by 1/s.

@ The scalar (or dot) product of two vectors @ and b is writ-
ten @ - b and is the scalar quantity given by

@+ b = abcos ¢,

in which ¢ is the angle between the directions of @ and b.

A scalar product is the product of the magnitude of one vec-
tor and the scalar component of the second vector along the
direction of the first vector. In unit-vector notation,

@-b=(aj+aj+ak)(bi+ bj+ bk),

which may be expanded according to the distributive law.
Notethatd@ -5 = b - @.

3.13 Given two vectors, use a dot product to find how much
of one vector lies along the other vector.

3.14 Find the cross product of two vectors in magnitude-
angle and unit-vector notations.

3.15 Use the right-hand rule to find the direction of the vector
that results from a cross product.

3.16 In nested products, where one product is buried inside
another, follow the normal algebraic procedure by starting
with the innermost product and working outward.

o The vector_gor cross) product of two vectors @ and bis
written @ X b and is a vector ¢ whose magnitude c is given by

¢ = ab sin ¢,

in which ¢ is the smaller of the angles between the directions
of @ and b. The direction of € is perpendicular to the plane
defined by @ and b and is given by a right-hand rule, as shown
in Fig. 3-19. Note that @ X b = —(b X @). In unit-vector
notation,

@ X b=(ad+aj+ak)x (bi+bj+ bk),
which we may expand with the distributive law.

® In nested products, where one product is buried inside an-
other, follow the normal algebraic procedure by starting with
the innermost product and working outward.

Multiplying Vectors™

There are three ways in which vectors can be multiplied, but none is exactly like
the usual algebraic multiplication. As you read this material, keep in mind that a
vector-capable calculator will help you multiply vectors only if you understand
the basic rules of that multiplication.

Multiplying a Vector by a Scalar

If we multiply a vector @ by a scalar s, we get a new vector. Its magnitude is
the product of the magnitude of @ and the absolute value of s. Its direction is the
direction of @ if s is positive but the opposite direction if s is negative. To divide @
by s, we multiply @ by 1/s.

Multiplying a Vector by a Vector

There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.)

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec-
tor products), and so your instructor may wish to postpone it.
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The Scalar Product

The scalar product of the vectors @ and b in Fig. 3-18a is written as @-b and
defined to be

@-b = abcos ¢, (3-20)

where a is the magnitude of @, b is the magnitude of b,and ¢ is the angle between
Gandb (or,more properly, between the directions of @ and b) There are actually
two such angles: ¢ and 360° — ¢. Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos d)) Thus d - b on the left side represents a scalar quantity. Because of
the notation, @ - b is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, d has a scalar
component a cos ¢> along the direction of b: note that a perpendicular dropped
from the head of @ onto b determines that component. Similarly, b has a scalar
component b cos ¢ along the direction of @.

AN

"' If the angle ¢ between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, ¢ is 90°,
the component of one vector along the other is zero, and so is the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:

@b = (acos )(b) = (a)(b cos }). (3-21)
The commutative law applies to a scalar product, so we can write
@-b=b-d

When two vectors are in unit-vector notation, we write their dot product as
= (ai +aj +ak)-(bi+bj+bKk), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

d-b=ab,+ab,+ab.. (3-23)

Sl

b
(a)
Component of b

along direction of
=
ais bcos ¢

Multiplying these gives
the dot product.

b
e Component of @

along direction of

Figure 3-18 (a) Two vectors @

and B, with an angle ¢ between

them. (b) Each vector has a o
component along the direction Or multiplying these
of the other vector. gives the dot product. *)

9.
bis acos ¢

51
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IZ Checkpoint 4

Vectors C and D have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of C and DifC-D equals (a) zero, (b) 12 units, and
(c) —12 units?

The Vector Product

The vector product of @ and E, written @ X E, produces a third vector ¢ whose
magnitude is

¢ = ab sin ¢, (3-24)

where ¢ is the smaller of the two angles between @ and b. (You must use the
smaller of the two angles between the vectors because sin ¢ and sin(360° — ¢)
differ in algebraic sign.) Because of the notation, @ X b is also known as the cross
product, and in speech it is “a cross b.”

." If @ and b are parallel or antiparallel, @ X b =0.The magnitude of @ X b, which can

be written as [@ X b|, is maximum when @ and b are perpendicular to each other.

The direction of ¢ is perpendicular to the plane that contams @ and b.
Figure 3-19a shows how to determine the direction of ¢ =4 X b with what is
known as a right-hand rule. Place the vectors @ and b tail to tail without altering
their orientations, and imagine a line that is perpendicular to their plane where
they meet. Pretend to place your right hand around that line in such a way that
your fingers would sweep @ into b through the smaller angle between them. Your
outstretched thumb points in the direction of ¢.

The order of the vector multlghcatlon is important. In Fig. 3-19b, we are
determlmng the direction of ¢'= b X d, so the fingers are placed to sweep b
into @ through the smaller angle. The thumb ends up in the opposite direction
from previously, and so it must be that'¢’ = —¢; that is,

bXd=—(dXDb). (3-25)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

@xb=(aj+ay +ak) X (bi+b,] +b.k), (3-26)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq.3-26, we have

ad X bi=ab,(ix1)=0,
because the two unit vectors 1 and i are parallel and thus have a zero cross prod-
uct. Similarly, we have
ai X b,j = ab,(i % ]) = ab,k.
In the last step we used Eq. 3-24 to evaluate the magnitude of i 1% ] as unity.
(These vectors 1 and ] each have a magnitude of unity, and the angle between

them is 90°.) Also, we used the right-hand rule to get the direction of 1 1% ] as
being in the positive direction of the z axis (thus in the direction of k).
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Continuing to expand Eq. 3-26, you can show that
@%b =(ab, —ba) + (ab, —b.a)j + (a,b, — b.a,)k. (3-27)

A determinant (Appendix E) or a vector-capable calculator can also be used.

To check whether any xyz coordinate system is a right-handed coordinate
system, use the right-hand rule for the cross productf X j = k with that system. If
your fingers sweep 1 (positive direction of x) into | (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

IZ Checkpoint 5

Vectors C and D have magnitudes of 3 units and 4 units, respectively. What is the an-
gle between the directions of Cand D if the magnitude of the vector product C X D
is (a) zero and (b) 12 units?

ib
a

|

()

Figure 3-19 Illustration of the right-hand rule for vector products (_) Sweep vector @ into vector b with the fingers of your right hand.
Your outstretched thumb shows the direction of vector ¢ = @ X b. (b) Showing that b X @ is the reverse of @ X b.
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Sample Problem 3.05 Angle between two vectors using dot products

What is the angle ¢ between @ = 3.0i — 4.0 and b=
—2.01 + 3.0k? (Caution: Although many of the following
steps can be bypassed with a vector-capable calculator, you
will learn more about scalar products if, at least here, you
use these steps.)

KEY IDEA

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

@b =abcos . (3-28)
Calculations: In Eq.3-28,ais the magnitude of @, or
a=V30 + (—4.0) = 5.00, (3-29)
and b is the magnitude of b,or
b= V(-2.0) + 3.0> = 3.6L. (3-30)

We can separately evaluate the left side of Eq. 3-28 by
writing the vectors in unit-vector notation and using the
distributive law:
@-b=(3.01 — 4.0)-(—2.01 + 3.0k)
= (3.01) - (—2.01) + (3.01)-(3.0k)
+ (—4.07) - (—2.01) + (—4.0)) - (3.0k).
We next apply Eq. 3-20 to each term in this last expression.

The angle between the unit vectors in the first term (i and i) is
0°,and in the other terms it is 90°. We then have

-b = —(6.0)(1) + (9.0)(0) + (8.0)(0) — (12)(0)
= —6.0.
Substituting this result and the results of Egs. 3-29 and 3-30
into Eq. 3-28 yields
—6.0 = (5.00)(3.61) cos ¢,
—6.0

o) ¢ =cos ! ———— = 109° =110°.

(5.00)(3.61) (Answer)

Sample Problem 3.06 Cross product, right-hand rule

In Fig. 3-20, vector @ lies in the xy plane, has a magnitude of
18 units, and points in a direction 250° from the positive di-
rection of the x axis. Also, vector b has a magnitude of
12 units and points in the positive direction of the z axis. What
is the vector product € = @ X b?

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-24 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write

¢ = absin ¢ = (18)(12)(sin 90°) = 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of @ and b (the line on which ¢ is shown) such that
your fingers sweep d into b. Your outstretched thumb then

Sweep 7 into b.

This is the resulting
vector, perpendicular to
both &and b.

X y
Figure 3-20 Vector ¢ (in the xy plane) is the vector (or cross)

product of vectors @ and b.

gives the direction of ¢. Thus, as shown in the figure, € lies in
the xy plane. Because its direction is perpendicular to the
direction of @ (a cross product always gives a perpendicular

vector), it is at an angle of
250° — 90° = 160° (Answer)

from the positive direction of the x axis.

Sample Problem 3.07 Cross product, unit-vector notation

Ifd =31 — 4)and b = —2i + 3k, whatis ¢ = @ X b?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

Calculations: Here we write
T =(31 —4)) X (-2i +3k)
=31 X (=2i) + 31 X 3k + (—4]) X (—2i)
+ (—4)) x 3k.



We next evaluate each term with Eq. 3-24, finding the
direction with the right-hand rule. For the first term here,
the angle ¢ between the two vectors being crossed is 0. For
the other terms, ¢ is 90°. We find

€= —6(0) + 9(—)) + 8(—k) — 12i

= —121 — 9j — 8k. (Answer)
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This vector ¢ is perpendicular to both @ and b, a fact you
can check by showing that ¢-@ = 0 and ¢+ b = 0; that is, there
is no component of ¢ along the direction of either @ or b.

In general: A cross product gives a perpendicular
vector, two perpendicular vectors have a zero dot prod-
uct, and two vectors along the same axis have a zero
cross product.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Scalars and Vectors Scalars, such as temperature, have magni-
tude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors @ and b may
be added geometrically by drawing them to a common scale
and placing them head to tail. The vector connecting the tail of
the first to the head of the second is the vector sum . To
subtract b from d, reverse the direction of b to get —F; then
add —b to @.Vector addition is commutative

i+b=b+d (3-2)
and obeys the associative law
(@+b)+c=d+ (b + 7). (3-3)

Components of a Vector The (scalar) components a, and a, of
any two-dimensional vector @ along the coordinate axes are found
by dropping perpendicular lines from the ends of @ onto the coor-
dinate axes. The components are given by

a,=acos@ and a,=asiné, (3-5)

y

where 61is the angle between the positive direction of the x axis
and the direction of @. The algebraic sign of a component indi-
cates its direction along the associated axis. Given its compo-
nents, we can find the magnitude and orientation (direction) of
the vector @ by using

a
a=Val+a} and tan § = —=
a

X

(3-6)

Unit-Vector Notation Unit vectors i,j, and k have magnitudes of
unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system (as defined
by the vector products of the unit vectors). We can write a vector @

in terms of unit vectors as
@=ad+a, +ak, (3-7)

in which a,i,a,j,and a_k are the vector components of @ and a,, a,,
and a, are its scalar components.

Adding Vectors in Component Form To add vectors in com-
ponent form, we use the rules

re=a,+ b, r

y=a,+b, r.=a,+b,. (3-10to3-12)

Here @ and b are the vectors to be added, and 7 is the vector sum.
Note that we add components axis by axis.We can then express the
sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar s and
a vector V is a new vector whose magnitude is sv and whose direc-
tion is the same as that of V if s is positive, and opposite that of V if
s is negative. (The negative sign reverses the vector.) To divide V by
s, multiply V by 1/s.

The Scalar Product The scalar (or dot) product of two vectors @
and b is written @- b and is the scalar quantity given by

@b = abcos ¢, (3-20)

in which ¢ is the angle between the directions of @ and b. A scalar
product is the product of the magnitude of one vector and the
scalar component of the second vector along the direction of the
first vector. Note that @b = b-@, which means that the scalar
product obeys the commutative law.

In unit-vector notation,

@b =(ai+aj +ak)-(bi+b,j +b.k), (3-22)

which may be expanded according to the distributive law.

The Vector Product The vector (or cross) product of two vectors
@ and b is written @ X b and is a vector ¢ whose magnitude c is
given by

¢ = absin ¢, (3-24)

in which ¢ is the smaller of the angles between the directions of @
and b. The direction of € is perpendicular to the plane
defined by @ and b and is given by a right-hand rule, as shown in
Fig. 3-19. Note that @ X b = —(b X @), which means that the vec-
tor product does not obey the commutative law.

In unit-vector notation,
@xb=(ai+a] +ak)X(bi+b)j+bk), (3-26)

which we may expand with the distributive law.
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Questions

1 Can the sum of the magnitudes )
of two vectors ever be equal to the
magnitude of the sum of the same .
two vectors? If no, why not? If yes, dy
when?

2 The two vectors shown in Fig. 3-21
lie in an xy plane. What are the signs

of the x and y components, respec- /3
tively, of (a) d, + . (b) d; — dy, and =
(©d, -

Figure 3-21 Question 2.
3 Being part of the “Gators,” the

University of Florida golfing team
must play on a putting green with an
alligator pit. Figure 3-22 shows an
overhead view of one putting chal-
lenge of the team; an xy coordinate
system is superimposed. Team mem-
bers must putt from the origin to the
hole, which is at xy coordinates (8 m,
12 m), but they can putt the golf ball
using only one or more of the fol-
lowing displacements, one or more
times:

d, = 8m)i + (6 m)j,

o Hole

Gator

D pit

Figure 3-22 Question 3.

dy=(6m), d=@Emi

The pit is at coordinates (8 m, 6 m). If a team member putts the
ball into or through the pit, the member is automatically trans-
ferred to Florida State University, the arch rival. What sequence
of displacements should a team member use to avoid the pit and
the school transfer?

4 Equation 3-2 shows that the addition of two vectors @ and b is
commutative. Does that mean subtraction is commutative, so that
i—-b=b—a?

5 Which of the arrangements of axes in Fig. 3-23 can be labeled
“right-handed coordinate system”? As usual, each axis label indi-
cates the positive side of the axis.

z x
x x y
y z y z
(@) (®) (¢)
X z
X
z y y
z X
y
(d) (e) N

Figure 3-23 Question 5.

6 Describe two vectors @ and b such that

()@+b=7¢ and a+b=c

(b)d+b=4d—b;

(c)@+b=7 and a*+b*=Cc2

7 d=a+0b+(-70), does(a)a-i—i—d)—c-i—( b),(b)d =

(-b)+d+7¢and(c) ¢+ (—d)=da+b?

8 Ifa-b =a~c,mustb equal ¢?

9 IfF= q(f X B) and V is perpendicular to B, then what is the
direction of B in the three situations shown in Fig. 3-24 when con-
stant g is (a) positive and (b) negative?

) v
FF FF ‘

x P X —,

1/7‘ B

(1) (2) (3)
Figure 3-24 Question 9.

10 Figure 3-25 shows vector A and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with A? (b)
Which have a negative dot product
with A?

o

Figure 3-25 Question 10.

11 In a game held within a three-
dimensional maze, you must move
your game piece from start, at xyz co-
ordinates (0, 0, 0), to finish, at coordinates (—2 c¢cm, 4 cm, —4 cm).
The game piece can undergo only the displacements (in centime-
ters) given below. If, along the way, the game piece lands at coordi-
nates (=5 cm, —1 cm, —1 cm) or (5 cm, 2 cm, —1 cm), you lose the
game. Which displacements and in what sequence will get your
game piece to finish?

21-3j + 2k

P=-Ti+2j-3k 7=
¥ =31+5] -3k

G=2i-]+4k
12 The x and y components of four vectors @, b,¢,and d are given
below. For which vectors will your calculator give you the correct an-

gle 6 when you use it to find 6 with Eq. 3-6? Answer first by examin-
ing Fig. 3-12, and then check your answers with your calculator.

a, =3 a,=3 c,=-3 ¢, =3
b,=-3 b,=3 d,=3 d,= —3.

y
13 Which of the following are correct (meaningful) vector
expressions? What is wrong with any incorrect expression?

(a)A-(B-C) (f)A + (B x C)
(b)Ax (B-C) (g)5+A4
(c)A-(BxC) (h)5+ (B-C)
(AXBxC) ()5+BxC)
(e)A+ (B-C) () (A-B)+ (BxC)
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@ Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. L http://www.wiley.com/college/halliday
Interactive solution is at

‘:ﬂ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 3-1 Vectors and Their Components

°1 ssm What are (a) the x component and (b) the y component of a
vector d in the xy plane if its direction is 250°

counterclockwise from the positive direction

of the x axis and its magnitude is 7.3 m? 7

*2 A displacement vector 7 in the xy plane 8 x

is 15 m long and directed at angle 6§ = 30° in

Fig. 3-26. Determine (a) the x component Figure 3-26
Problem 2.

and (b) the y component of the vector.

*3 ssm The x component of vector A is

—25.0 m and the y component is +40.0 m. (a) What is the magni-
tude of A? (b) What is the angle between the direction of A and
the positive direction of x?

°4  Express the following angles in radians: (a) 20.0°, (b) 50.0°,
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad,
(e)2.10rad, (f) 7.70 rad.

*5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its
starting point. (a) How far and (b) in what direction must it now
sail to reach its original destination?

*6 In Fig. 3-27, a heavy piece of
machinery is raised by sliding it a
distance d =12.5m along a plank
oriented at angle # =20.0° to the
horizontal. How far is it moved
(a) vertically and (b) horizontally?

°7 Consider two displacements,
one of magnitude 3 m and another
of magnitude 4 m. Show how the
displacement vectors may be combined to get a resultant displace-
ment of magnitude (a) 7 m,(b) 1 m,and (c) 5 m.

Figure 3-27 Problem 6.

Module 3-2  Unit Vectors, Adding Vectors by Components
*8 A person walks in the following pattern: 3.1 km north, then
2.4 km west, and finally 5.2 km south. (a) Sketch the vector dia-
gram that represents this motion. (b) How far and (c) in what di-
rection would a bird fly in a straight line from the same starting
point to the same final point?

*9  Two vectors are given by
@ = (40m)i — (3.0m)j + (1.0m)k
and b = (~1.0m)i + (1.0m)j + (4.0 m)k.
In unit-vector notation, find (a) @ + b,(b) @ — b, and (c) a third
vector ¢ suchthatd — b + ¢ = 0.

*10 Find the (a) x, (b) y, and (c) z components of the sum 7 of
the displacements ¢ and d whose components in meters are
¢, =T4,c, = =38,c, = —6.1;d, = 44,d, = —2.0,d, = 33.

°11 ssm (a) In unit-vector notation, what is the sum a@ + b if
@=(40m)i+ 3.0m) and b = (—13.0m)i + (7.0 m);? What
are the (b) magnitude and (c) direction of @ + b?

*12 A caris driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

*13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north—south or east—west. What is the minimum distance she
could travel to reach her destination?

*14  You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates (—140 m, 30 m). The x component and y
component of your moves are the following, respectively, in me-
ters: (20 and 60), then (b, and —70), then (—20 and c,), then (—60
and —70). What are (a) component b, and (b) component c,?
What are (c) the magnitude and (d) the angle (relative to the pos-
itive direction of the x axis) of the overall displacement?

15 SSM ILW WWW The two vec-
tors @ and b in Fig. 3-28 have equal
magnitudes of 10.0 m and the angles
are 0, = 30° and 6, = 105°. Find the
(a) x and (b) y components of their
vector sum 7, (¢) the magnitude of 7, -
and (d) the angle 7 makes with the
positive direction of the x axis.

y

St}

a
*16  For the displacement vectors 6,
@=(30m)+ (40m) and b= 0 *

(5.0m)i + (—2.0m)j,give @ + b in
(a) unit-vector notation, and as (b) a
magnitude and (c) an angle (rela-
tive to 1). Now give b — @ in (d) unit-vector notation, and as (¢) a
magnitude and (f) an angle.

Figure 3-28 Problem 15.

*17 @ 1w Three vectors @, F, and ¢ each have a magnitude of
50 m and lie in an xy plane. Their directions relative to the positive
direction of the x axis are 30°,195°, and 315°, respectively. What are
(a) the magnitude and (b) the angle of the vector @ + b + ¢, and
(c) the magnitude and (d) the angle of @ — b + ¢? What are the
(e) magnitude and (f) angle of a fourth vector d such that
(@+B)—(¢+d)=0?

*18 Inthesum A + B = C, vector A has a magnitude of 12.0 m
and is angled 40.0° counterclockwise from the +x direction, and vec-
tor C has a magnitude of 15.0 m and is angled 20.0° counterclock-
wise from the —x direction. What are (a) the magnitude and (b) the
angle (relative to +x) of B?

°19 In a game of lawn chess, where pieces are moved between
the centers of squares that are each 1.00 m on edge, a knight is
moved in the following way: (1) two squares forward, one square
rightward; (2) two squares leftward, one square forward; (3) two
squares forward, one square leftward. What are (a) the magnitude
and (b) the angle (relative to “forward”) of the knight’s overall dis-
placement for the series of three moves?
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20 «8E An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that
he actually traveled 7.8 km at 50° north of due east. (a) How far
and (b) in what direction must he now travel to reach base camp?

21 @ An ant, crazed by the Sun on a hot Texas afternoon, darts
over an xy plane scratched in the dirt. The x and y components of
four consecutive darts are the following, all in centimeters: (30.0,
40.0), (b,, —70.0), (—20.0, ¢,)), (—80.0, =70.0). The overall displace-
ment of the four darts has the xy components (—140, —20.0). What
are (a) b, and (b) ¢,? What are the (c) magnitude and (d) angle
(relative to the positive direction of the x axis) of the overall
displacement?

*22 (a) What is the sum of the following four vectors in unit-
vector notation? For that sum, what are (b) the magnitude, (c) the
angle in degrees, and (d) the angle in radians?

F-5.00m at —75.0°
H: 6.00 m at —210°

E- 6.00 m at +0.900 rad
G:4.00 m at +1.20 rad

«23 If Bisadded to C = 3.01 + 4.0j, the result is a vector in the
positive direction of the y axis, with a magnitude equal to that of C.
What is the magnitude of B?

24 (@ Vector Z, which is directed along an x axis, is to be added
to vector B, which has a magnitude of 7.0 m. The sum is a third vec-
tor that is directed along the y axis, with a magnitude that is 3.0
times that of A. What is that magnitude of A?

*25 @ Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction 15° south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

*26 What is the sum of the following four vectors in (a) unit-
vector notation, and as (b) a magnitude and (c) an angle?

A = (2.00m)i + (3.00 m)]

4.00 m, at +65.0°
C = (—-4.00m)i + (—6.00 m)j 5

B:
D:5.00 m, at —235°

w27 @ Ifd,+ d, =5d;,d, — d, = 3d;, and ds = 21 + 4], then
what are, in unit-vector notation, (a) d; and (b) d,?

*228 Two beetles run across flat sand, starting at the same point.
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east.
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due
north. What must be (a) the magnitude and (b) the direction of its
second run if it is to end up at the new location of beetle 1?

29 -4 @ Typical backyard ants often create a network of
chemical trails for guidance. Extending outward from the nest, a
trail branches (bifurcates) repeatedly, with 60° between the
branches. If a roaming ant chances upon a trail, it can tell the
way to the nest at any branch point: If it is moving away from
the nest, it has two choices of path requiring a small turn in
its travel direction, either 30° leftward or 30° rightward. If
it is moving toward the nest, it has only one such choice.
Figure 3-29 shows a typical ant trail, with lettered straight sec-
tions of 2.0 cm length and symmetric bifurcation of 60°. Path v is
parallel to the y axis. What are the (a) magnitude and (b) angle
(relative to the positive direction of the superimposed x axis) of

an ant’s displacement from the nest (find it in the figure) if the
ant enters the trail at point A? What are the (c¢) magnitude and
(d) angle if it enters at point B?

Figure 3-29 Problem 29.

30 @ Here are two vectors:
@=(40m)i — 30m)] and b = (6.0m)i + (8.0 m).

What are (a) the magnitude and (b) the angle (relative to 1) of @?
What are (c) the magnitude and (d) the angle of 5? What are (e)
the magnitude and (f) the angle of @ + b; (g) the magnitude and
(h) the angle of b — @;and (i) the magnitude and (j) the angle of
@ — b? (k) What is the angle between the directions of b — @
and@ — b?

*31 In Fig. 3-30, a vector @ with a magnitude of 17.0 m is
directed at angle 6 = 56.0° counterclockwise from the +x axis.
What are the components (a) a, and (b) a, of the vector? A sec-
ond coordinate system is inclined by angle §" = 18.0° with respect
to the first. What are the components (c) a; and (d) a; in this
primed coordinate system?

0" 0

|
|
|
|
|
|
|
|
|
|

0 N a

Figure 3-30 Problem 31.

*e32 In Fig. 3-31, a cube of edge z
length a sits with one corner at the ori-
gin of an xyz coordinate system. A
body diagonal is a line that extends
from one corner to another through y
the center. In unit-vector notation, a
what is the body diagonal that extends *
from the corner at (a) coordinates (0,

0,0), (b) coordinates (a, 0, 0), (c) coor-

dinates (0, a, 0), and (d) coordinates (a, a, 0)? (¢) Determine the

Figure 3-31 Problem 32.



angles that the body diagonals make with the adjacent edges.
(f) Determine the length of the body diagonals in terms of a.

Module 3-3 Multiplying Vectors

*33 For the vectors in Fig. 3-32, witha = 4,b =
are (a) the magnitude and (b) the direction

of @ X b, (c) the magnitude and (d) the di- y
rection of @ X ¢, and (e) the magnitude

and (f) the direction of b X ¢? (The z axis

is not shown.)

3,and ¢ = 5, what

>

S

°34 Two vectors are presented as

@ =30l +50jand b = 2.0i + 4.0j. Find 7
(a) @ X b, (b) @b, (c) (@ + b)-b, and
(d) the component of @ along the direc-
tion of b. (Hint: For (d), consider Eq.3-20
and Fig. 3-18.)

*35 Two vectors, 7 and §, lie in the xy plane. Their magnitudes are
4.50 and 7.30 units, respectively, and their directions are 320° and
85.0°, respectively, as measured counterclockwise from the positive
x axis. What are the values of (a) 7 -5 and (b) 7 X §?

36 If d =31 — 2j + 4k and d, = —5i + 2] — k, then what is
(dy + dy) - (d, X 4d,)?

°37 Three vectors are given by d = 3.01 + 3.0j — 2.0k,
b =—1.01 — 4.0) + 2.0k, and ¢ =2.01 + 2.0j + 1.0k. Find (a)
a-(bx7¢),(b)a-(b+7),and(c)d X (b +7C).

38 @ For the following three vectors, what is 3C+ (24 x B)?
A =2.001 + 3.00] — 4.00k
B = —3.001 + 4.00) + 2.00k

Figure 3-32
Problems 33 and 54.

C = 7.001 — 8.00]

%39 Vector A has a ma nEude of 6.00 units, vector Bhasa mag-
nitude of 7.00 units, and A - B has a value of 14.0. What is the angle
between the directions of A and B?

*40 @ Displacement d, isin the yz plane 63.0° from the positive
direction of the y axis, has a positive z component, and has a mag-
nitude of 4.50 m. Displacement d, is in the xz plane 30.0° from the
positive direction of the x axis, has a positive z component, and has
magnitude 1.40 m. What are (a) d, - d», (b) d; X d», and (c) the an-
gle between 31 and 22?

41 ssm I1LWw www Use the definition of scalar product,
@-b = ab cos 6,and the fact that - b = a.b, + a,b, + a.b, to cal-
culate the angle between the two vectors given by @ = 3.01 +
3.0] + 3.0kand b = 2.0i + 1.0] + 3.0k.

*e42 In a meeting of mimes, mime 1 goes through a displacement
d, = (4.0 m)i + (5.0 m)] and mime 2 goes through a displacement
d, = (—3.0m)i + (4.0m)]. What are (a) d, X d», (b) d,-d,
(c) (d, + @) -d,, and (d) the com-

ponent of d; along the direction of K Y
d,? (Hint: For (d), see Eq. 3-20 and

Fig.3-18.)

*43 ssM ILW The three vectors in

Fig. 3-33 have magnitudes a = 3.00 m,
b = 4.00 m,and ¢ = 10.0 m and angle
6 = 30.0°. What are (a) the x compo-
nent and (b) the y component of @; (c)
the x component and (d) the y com-

v\

=
a

Figure 3-33 Problem 43.
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ponent of b;and (e) the x component and (f) the y component of ¢? If
¢ = pd + gb,what are the values of (g) p and (h) g?

«e44 @ Inthe product F = gV X B,take q = 2,
V=201 +40] + 6.0k and F =4.0i — 20] + 12k.
What then is B in unit-vector notation if B, = B,?

Additional Problems

45 Vectors . A and B lie in an xy plane. A has magnitude 8.00 and
angle 130°%; B has components B, = —7.72 and B, = —9.20. (a)
What is SA B? What is 44 X 3B in (b) unit- Vector notation and
(c) magnitude-angle notation with spherical coordinates (see
Fig. 3-34)? (d) What is the angle between the directions of A and
4A X 3B? (Hint: Think a bit before you resort to a calculation.)
What is A + 3.00k in (e) unit-vector notation and (f) magnitude-
angle notation with spherical coordinates?

z

Figure 3-34 Problem 45.

46 @ Vector @ has a magnitude of 5.0 m and is directed east.
Vector b has a magnitude of 4.0 m and is directed 35° west of due
north. What are (a) the magnitude and (b) the direction of @ + b?
What are (c) the magnitude and (d) the direction of b — @2 (e)
Draw a vector diagram for each combination.

47 Vectors A and B lie in an xy plane. A has magnitude 8.00
and angle 130°; B has components B, = —7.72 and B, = —9.20.
What are the angles between the negative direction of the y axis
and (a) the direction of A, (b) the direction of the product
A X B,and (c) the direction of A X (B + 3.00k)?

48 @ Two vectors @ and b have the components, in meters,
a,=32,a,=16,b, = 050,b, = 4.5. (a) Find the angle between
the directions of @ and b. There are two vectors in the xy plane that
are perpendicular to @ and have a magnitude of 5.0 m. One, vector
¢, has a positive x component and the other, vector d,a negative x
component. What are (b) the x component and (c) the y compo-
nent of vector ¢, and (d) the x component and (e) the y component
of vector d?

49 ssm A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far
and (b) in what direction must the sailor now sail to reach the orig-
inal destination?

50 Vector 31 is in the negative direction of a y axis, and vector 32
is in the positive direction of an x axis. What are the directions of
(a) d2/4 and (b) d 1/(—4)? What are the magnitudes of products (c)
d,+d,and (d), d,- (d,/4)? What is the direction of the vector result-
ing from (¢) d, X d,and (f) d, X d,? What is the magnitude of the
vector product in (g) part (e) and (h) part (f)? What are the (i)
magnitude and (j) direction of d; X (d,/4)?
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51 Rock faults are ruptures along which opposite faces of rock
have slid past each other. In Fig. 3-35, points A and B coincided be-
fore the rock in the foreground slid down to the right. The net dis-
placement AB  is along the plane of the fault. The horizontal compo-
nent of AB is the strike-slip AC. The component of AB that is
directed down the plane of the faultis the dip-slip AD. (a) What is the
magnitude of the net displacement AB if the strike-slip is 22.0 m and
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at angle
¢ = 52.0° to the horizontal, what is the vertical component of AB ?

Dip-slip

Fault plane

Figure 3-35 Problem 51.

52 Here are three displacements, each measured in meters:
d, =401 +50] — 60k, d,=—10i +20] +3.0k, and d;=
4.01 + 3.0] + 2.0k. (a) What is 7 = d, — d, + d5? (b) What is the
angle between 7 and the positive z axis? (c) What is the compo-
nent of d; along the direction of d,? (d) What is the component of
d, that is perpendicular to the direction of d, and in the plane of d,
and d,? (Hint: For (c), consider Eq.3-20 and Fig. 3-18; for (d), con-
sider Eq.3-24.)

53 ssm A vector @ of magnitude 10 units and another vector b
of magnitude 6.0 units differ in directions by 60°. Find (a) the
scalar product of the two vectors and (b) the magnitude of the vec-
tor product @ X b.

54 For th_()a vectors in Fig. 3-3_2), witha = 4,b = 3,and ¢ = 5, calcu-
late (a) @ - b,(b)d-¢,and (c) b-C.

55 A particle undergoes three successive displacements in a
plane, as follows: 31, 4.00 m southwest; then 32, 5.00 m east; and
finally d;, 6.00 m in a direction 60.0° north of east. Choose a coor-
dinate system with the y axis pointing north and the x axis pointing
east. What are (a) the x component and (b) the y component of d,?
What are (c) the x component and (d) the y component of d,?
What are (e) the x component and (f) the y component of dy?
Next, consider the net displacement of the particle for the three
successive displacements. What are (g) the x component, (h) the y
component, (i) the magnitude, and (j) the direction of the net dis-
placement? If the particle is to return directly to the starting point,
(k) how far and (1) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector
notation, and as (b) a magnitude and (c) an angle relative to +x.

P: 10.0 m, at 25.0° counterclockwise from +x

@: 12.0 m, at 10.0° counterclockwise from +y

R: 8.00 m, at 20.0° clockwise from — y

S: 9.00 m, at 40.0° counterclockwise from —y

57 ssm If Bis added to A, the result is 6.01 + 1.0).1f B is subtracted
from A, the resultis —4.01 + 7.0j. What is the magnitude of A?

58 A vector d has a magnitude of 2.5 m and points north. What
are (a) the magnitude and (b) the direction of 4.04? What are (c)
the magnitude and (d) the direction of —3.0d4?

59 A has the magnitude 12.0 m and is angled 60.0° counterclock-
wise from the positive direction of the x axis of an xy coordinate
system. Also, B = (12.0 m)i + (8.00m)] on that same coordinate
system. We now rotate the system counterclockwise about the origin
by 20.0° to form an x’y’ system. On this new system, what are (a) A
and (b) B, both in unit-vector notation?

60 Ifd—b = 2¢. 4+ Db =4¢, and ¢ = 31 + 4j,then what are
(a) @ and (b) b?

61 (a) In unit-vector notation, what is 7 =a — b + ¢ if
@ =501 +4.0] — 6.0k, b = —2.0i + 2.0] + 3.0k, and ¢ = 4.01 +
3.0) + 2.0k? (b) Calculate the angle between 7 and the positive z
axis. (c) What is the component of @ along the direction of b? (d)
What is the component of @ perpendicular to the direction of b but
in the plane of @ and b? (Hint: For (c), see Eq. 3-20 and Fig. 3-18;
for (d),see Eq.3-24.)

62 A golfer takes three putts to get the ball into the hole. The
first putt displaces the ball 3.66 m north, the second 1.83 m south-
east, and the third 0.91 m southwest. What are (a) the magnitude
and (b) the direction of the displacement needed to get the ball
into the hole on the first putt?

63 Here are three vectors in meters:
d, = —3.01 + 3.0] + 2.0k
d, = —2.01 — 4.0] + 2.0k
dy = 2.01 + 3.0] + 1.0k.

What results from (a) d,+(dy + ds), (b) d,+(d, < ds), and
(©)dy X (dy + d3)?

64 ssm www A room has dimensions 3.00m (height) X
370 m X 4.30 m. A fly starting at one corner flies around, ending
up at the diagonally opposite corner. (a) What is the magnitude of
its displacement? (b) Could the length of its path be less than this
magnitude? (c) Greater? (d) Equal? (¢) Choose a suitable coordi-
nate system and express the components of the displacement vec-
tor in that system in unit-vector notation. (f) If the fly walks, what
is the length of the shortest path? (Hint: This can be answered
without calculus. The room is like a box. Unfold its walls to flatten
them into a plane.)

65 A protester carries his sign of protest, starting from the ori-
gin of an xyz coordinate system, with the xy plane horizontal. He
moves 40 m in the negative direction of the x axis, then 20 m
along a perpendicular path to his left, and then 25 m up a water
tower. (a) In unit-vector notation, what is the displacement of
the sign from start to end? (b) The sign then falls to the foot of
the tower. What is the magnitude of the displacement of the sign
from start to this new end?

66 Consider @ in the positive direction of x, b in the positive di-
rection of y, and a scalar d. What is the direction of b/d if d is
(a) positive and (b) negative? What is the magnitude of (c) @+ b
and (d) @- b/d? What is the direction of the vector resulting from
(e) @ X b and (f) b X @? (g) What is the magnitude of the vector
product in (e)? (h) What is the magnitude of the vector product in
(f)? What are (i) the magnitude and (j) the direction of @ X b/d if d
is positive?



67 Letibe directed to the east,j be directed to the north, and k
be directed upward. What are the values of products (a) 1k, (b)
(k) - (=]),and (c) j - (—])? What are the directions (such as east
or down) of products (d) k X j, (e) (—1) X (—}),and (f) (k) X (—])?

68 A bank in downtown Boston is robbed (see the map in
Fig. 3-36). To elude police, the robbers escape by helicopter, mak-
ing three successive flights described by the following displace-
ments: 32 km, 45° south of east; 53 km, 26° north of west; 26 km, 18°
east of south. At the end of the third flight they are captured. In
what town are they apprehended?
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Figure 3-36 Problem 68.

69 A wheel with a radius of 45.0 cm P
rolls without slipping along a hori-
zontal floor (Fig. 3-37). At time ¢,,
the dot P painted on the rim of the
wheel is at the point of contact be-
tween the wheel and the floor. Ata g
later time t,, the wheel has rolled »
through one-half of a revolution.
What are (a) the magnitude and (b)
the angle (relative to the floor) of
the displacement of P?
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Figure 3-37 Problem 69.

70 A woman walks 250 m in the direction 30° east of north, then
175 m directly east. Find (a) the magnitude and (b) the angle of her
final displacement from the starting point. (¢) Find the distance she
walks. (d) Which is greater, that distance or the magnitude of her
displacement?

71 A vector d has a magnitude 3.0 m and is directed south. What
are (a) the magnitude and (b) the direction of the vector 5.0d4? What
are (c) the magnitude and (d) the direction of the vector —2.0d?
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72 A fire ant, searching for hot sauce in a picnic area, goes
through three displacements along level ground: d, for 0.40 m
southwest (that is, at 45° from directly south and from directly
west), 32 for 0.50 m due east, 21)3 for 0.60 m at 60° north of east.
Let the positive x direction be east and the positive y direction
be north. What are (a) the x component and (b) the y compo-
nent of d,? Next, what are (c) the x component and (d) the y
component of d,? Also, what are (e) the x component and (f)
the y component of 33?

What are (g) the x component, (h) the y component, (i) the
magnitude, and (j) the direction of the ant’s net displacement? If
the ant is to return directly to the starting point, (k) how far and (1)
in what direction should it move?

73 Two vectors are given by @ = 3.01 + 5.0 and b =201+ 4.0].

Find (a) @ X b, (b) @+ B,ﬁ(c) (@ + b)-b,and (d) the component of
d along the direction of b.

74 Vector d lies in the yz plane 63.0° from the positive direction
of the y axis, has a positive z component, and has magnitude 3.20
units. Vector b lies in the xz plane 48.0° from the positive direction
of the x axis, has a positive z component, and has magnitude 1.40
units. Find (a) @ - b, (b) @ X b, and (c) the angle between @ and b.

75 Find (a) “north cross west,” (b) “down dot south,” (c) “east
cross up,” (d) “west dot west,” and (e) “south cross south.” Let each
“vector” have unit magnitude.

76 A vector E, with a magnitude of 8.0 m, is added to a vector Z,
which lies along an x axis. The sum of these two vectors is a third
vector that lies along the y axis and has a magnitude that is twice
the magnitude of A. What is the magnitude of A?

77 A man goes for a walk, starting from the origin of an xyz
coordinate system, with the xy plane horizontal and the x axis east-
ward. Carrying a bad penny, he walks 1300 m east, 2200 m north,
and then drops the penny from a cliff 410 m high. (a) In unit-vector
notation, what is the displacement of the penny from start to its
landing point? (b) When the man returns to the origin, what is the
magnitude of his displacement for the return trip?

78 What is the magnitude of @ X (b X @) if a = 3.90, b = 2.70,
and the angle between the two vectors is 63.0°?
79 In Fig. 3-38, the magnitude of @ is 4.3, the magnitude of b is

5.4, and ¢ = 46°. Find the area of the triangle contained between
the two vectors and the thin diagonal line.
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Figure 3-38 Problem 79.



C H A P T E R a4

Motion in Two and Three Dimensions

4-1 posITION AND DISPLACEMENT

Learning Objectives
After reading this module, you should be able to . . .

4.01 Draw two-dimensional and three-dimensional position
vectors for a particle, indicating the components along the
axes of a coordinate system.

4.02 On a coordinate system, determine the direction and

Key Ideas

® The location of a particle relative to the origin of a coordi-
nate system is given by a position vector 7, which in unit-
vector notation is

7=x1+y + zk.

Here x1, yf, and zk are the vector components of position
vector 7, and x, y, and z are its scalar components (as well
as the coordinates of the particle).

® A position vector is described either by a magnitude and

magnitude of a particle’s position vector from its compo-
nents, and vice versa.

4.03 Apply the relationship between a particle’s displace-
ment vector and its initial and final position vectors.

one or two angles for orientation, or by its vector or scalar
components.

@ If a particle moves so that its position vector changes from
7\ to 7,, the particle’s displacement A7 is
AF =7, — 7.
The displacement can also be written as
AF = (x, —x)i + (3 = y)) + (22 — 2k
= Axi + Ay] + Azk.

62

What Is Physics?

In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example,
medical researchers and aeronautical engineers might concentrate on the
physics of the two- and three-dimensional turns taken by fighter pilots in dog-
fights because a modern high-performance jet can take a tight turn so quickly
that the pilot immediately loses consciousness. A sports engineer might focus
on the physics of basketball. For example, in a free throw (where a player gets
an uncontested shot at the basket from about 4.3 m), a player might employ the
overhand push shot, in which the ball is pushed away from about shoulder
height and then released. Or the player might use an underhand loop shot, in
which the ball is brought upward from about the belt-line level and released.
The first technique is the overwhelming choice among professional players, but
the legendary Rick Barry set the record for free-throw shooting with the under-
hand technique. =

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.



4-1

Position and Displacement

One general way of locating a particle (or particle-like object) is with a position
vector 7, which is a vector that extends from a reference point (usually the
origin) to the particle. In the unit-vector notation of Module 3-2, 7 can be written
7 =xi+yj + zk, (4-1)

where xi, yi, and zk are the vector components of 7 and the coefficients x, y, and z
are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x,y,z).For instance, Fig. 4-1 shows a particle with position vector

7=(-3m)i + 2m)] + (5m)k

and rectangular coordinates (—3 m, 2 m, 5 m). Along the x axis the particle is
3 m from the origin, in the —1 direction. Along the y axis it is 2 m from the
origin, in the +j direction. Along the z axis it is 5 m from the origin, in the +k
direction.

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from 7, to 7, during a certain time interval—then the
particle’s displacement A7 during that time interval is

A7 = 72 - 7)]. (4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

AT = (x50 + yo] + k) — (x1 + y,j + z,k)

oras A7 = (= x)i + (3 — Wi + (22 — 20k, (4-3)
where coordinates (x;, y;, z;) correspond to position vector 7; and coordinates
(%2, ¥2, 25) correspond to position vector 7,. We can also rewrite the displacement

by substituting Ax for (x, — x;), Ay for (y, — y;),and Az for (z, — z;):
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To locate the
particle, this
is how far
parallel to z.

This is how far
parallel to y.

| This is how far
parallel to x.

Figure 4-1 The position vector 7 for a parti-
cle is the vector sum of its vector compo-
nents.

A7 = Axi + Ay] + Azk.

Sample Problem 4.01

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time ¢ (seconds) are given by

x=—0312+72t+ 28
y = 0.22¢2 — 9.1¢ + 30.

(4-5)
(4-6)

(a) Att = 15s,what is the rabbit’s position vector 7 in unit-
vector notation and in magnitude-angle notation?

and

KEY IDEA

The x and y coordinates of the rabbit’s position, as given by
Egs. 4-5 and 4-6, are the scalar components of the rabbit’s

(44)

Two-dimensional position vector, rabbit run

position vector 7. Let’s evaluate those coordinates at the
given time, and then we can use Eq. 3-6 to evaluate the mag-
nitude and orientation of the position vector.

Calculations: We can write

7(1) = x(01 + (). (4-7)
(We write 7(f) rather than 7 because the components are
functions of ¢, and thus 7 is also.)
Att = 15 s, the scalar components are
x = (—0.31)(15)* + (7.2)(15) + 28 = 66 m
and y = (0.22)(15)> — (9.1)(15) + 30 = =57 m,

SO 7 = (66 m)i — (57 m)j, (Answer)
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y (m)

40

20

—41°

0 20 40

Figure 4-2 (a) A rabbit’s position vector —60
7 at time ¢ = 15 s. The scalar compo- (@)

nents of 7 are shown along the axes.

(b) The rabbit’s path and its position at

six values of .

which is drawn in Fig. 4-2a. To get the magnitude and angle
of 7, notice that the components form the legs of a right tri-
angle and r is the hypotenuse. So, we use Eq. 3-6:

r="Vx+y*=V(66m) + (—57 m)

= 87 m,

(Answer)

—57m)

1Y -
d 6=tan! ==t 1(
an an X an 66

= —41°. (Answer)

WILEY

This is the y component.

y (m)
40
t=0s
To locate the
rabbit, this is the 20
Xx component.
60 80 ™ 0 g0
|
|
} -20
|
|
i —40 10's
r |
|
‘ —
— & 60 15
() $s 905

This is the path with
various times indicated.

Check: Although 6 = 139° has the same tangent as —41°,
the components of position vector 7 indicate that the de-
sired angle is 139° — 180° = —41°.

(b) Graph the rabbit’s pathfors = 0tos = 25s.

Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of ¢ and then plot the results. Figure 4-2b shows
the plots for six values of # and the path connecting them.

PLUS Additional examples, video, and practice available at WileyPLUS

A-2 AVERAGE VELOCITY AND INSTANTANEOUS VELOCITY

Learning Objectives
After reading this module, you should be able to . . .

4.04 |dentify that velocity is a vector quantity and thus has
both magnitude and direction and also has components.

4.05 Draw two-dimensional and three-dimensional velocity
vectors for a particle, indicating the components along the
axes of the coordinate system.

Key Ideas
@ If a particle undergoes a displacement A7 in time interval Az,
its average velocity V;vg for that time interval is
L AT
Vavg - At .
® As At is shrunk to O, V;Vg reaches a limit called either the
velocity or the instantaneous velocity V'
dr
dr’

—
Vv =

4.06 In magnitude-angle and unit-vector notations, relate a parti-
cle's initial and final position vectors, the time interval between
those positions, and the particle’s average velocity vector.

4.07 Given a particle’s position vector as a function of time,
determine its (instantaneous) velocity vector.

which can be rewritten in unit-vector notation as
V= vai + vyj + vzlz,
where v, = dx/dt, v, = dy/dt, and v, = dz/dt.
@ The instantaneous velocity v of a particle is always directed

along the tangent to the particle’s path at the particle’s
position.
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Average Velocity and Instantaneous Velocity

If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement A7 in a time interval At, then its
average velocity v, is

. displacement
average velocity = ——————,
time interval

N
-~ Ar

or Vaw = 7

(4-8)

This tells us that the direction of Vavg (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement A7 (the vector on the right side). Using
Eq.4-4, we can write Eq. 4-8 in vector components as

. Axi + Ay] + Azk Ax . Ay . Az .
go= 2 TAN T AKX AV e 22 ¢ (4-9)

= = - +
e At Ar A At
For example, if a particle moves through displacement (12 m)i + (3.0 m)ﬁ in
2.0 s, then its average velocity during that move is

- A7 (12m)i + (3.0 m)k
v = =
A 2.0

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s
instantaneous velocity v at some instant. This V is the value that V,,, approaches
in the limit as we shrink the time interval Az to 0 about that instant. Using the lan-
guage of calculus, we may write v as the derivative

= (6.0 m/s)i + (1.5 m/s)k.

_, _dr
v o (4-10)
Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval At, the position vector changes from 7, to 7, and the
particle’s displacement is A7,
To find the instantaneous velocity of the particle at, say, instant #, (when the
particle is at position 1), we shrink interval A¢ to 0 about ¢;. Three things happen
as we do so. (1) Position vector 7, in Fig. 4-3 moves toward 7, so that A7 shrinks

As the particle moves,
the position vector
must change.

Tangent x

This is the
displacement.

Figure 4-3 The displacement AF of a particle
during a time interval Az, from position 1 with
position vector 7; at time ¢, to position 2

with position vector 7, at time ,. The tangent Path
to the particle’s path at position 1 is shown.
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toward zero. (2) The direction of A7/Ar (and thus of V,,) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity V,, approaches the instantaneous velocity v at 1;.
In the limit as A — 0, we have V,,, — V and, most important here, v, takes
on the direction of the tangent line. Thus, v has that direction as well:
Ok
“" The direction of the instantaneous velocity V of a particle is always tangent to the
particle’s path at the particle’s position.

The result is the same in three dimensions: V is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for 7 from Eq. 4-1:
— dy ~ dZ n

d . dx.
=—(@i+y +zk)=—1+—]+—k
VE g Gy k) = e d

This equation can be simplified somewhat by writing it as
V=vi+ vyi + vk, (4-11)

where the scalar components of v are

_dx _dy _dz
=T WS To and v, = i (4-12)

For example, dx/dt is the scalar component of V along the x axis. Thus, we can find
the scalar components of v by differentiating the scalar components of 7.

Figure 4-4 shows a velocity vector v and its scalar x and y components. Note
that Vv is tangent to the particle’s path at the particle’s position. Caution: When a
position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that extends
from one point (a “here”) to another point (a “there”). However, when a velocity
vector is drawn, as in Fig. 4-4, it does not extend from one point to another.
Rather, it shows the instantaneous direction of travel of a particle at the tail, and
its length (representing the velocity magnitude) can be drawn to any scale.

The velocity vector is always
tangent to the path.

Tangent \
—
[

These are the x and y
components of the vector
at this instant.

Figure 4-4 The velocity Vv of a
particle, along with the scalar

- Path
components of v.

IZ Checkpoint 1

y
The figure shows a circular path taken by a particle.
If the instantaneous velocity of the particle is v =
(2m/s)i — (2 m/s)j, through which quadrant is the par- X
ticle moving at that instant if it is traveling (a) clockwise
and (b) counterclockwise around the circle? For both

cases, draw ¥ on the figure.
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Sample Problem 4.02 Two-dimensional velocity, rabbit run

For the rabbit in the preceding sample problem, find the
velocity v at time ¢ = 15 s.

KEY IDEA

We can find v by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 4-12 to Eq. 4-5,
we find the x component of V to be

dx d
== = = (—0312+ 72t + 28
Ve dt dt ( )
= —0.62t + 7.2. (4-13)

At t = 15 s, this gives v, = —2.1 m/s. Similarly, applying the
v, part of Eq.4-12 to Eq. 4-6, we find

dy d
v == (0227 = 9.1 + 30)
= 0.441 — 9.1. (4-14)

At 1= 155, this gives v, = —2.5 m/s. Equation 4-11 then yields

V= (-21m/s)i + (=2.5m/s)], (Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running atz = 15s.

To get the magnitude and angle of v, either we use a
vector-capable calculator or we follow Eq. 3-6 to write

WILEY ©

v="Vv+ vi= V(=21 m/s)? + (2.5 m/s)?

=33m/s (Answer)
12 —2.5m/s
_ -1_Y _ - = 7
and 0 = tan ) tan < olmis >
= tan"'1.19 = —130°. (Answer)

Check: Is the angle —130° or —130° + 180° = 50°?
Y (m)

40

20

x (m)

~60]

These are the x and y
components of the vector
at this instant.

Figure 4-5 The rabbit’s velocity v att = 15s.

PLUS Additional examples, video, and practice available at WileyPLUS

4-3 AVERAGE ACCELERATION AND INSTANTANEOUS ACCELERATION

Learning Objectives
After reading this module, you should be able to . . .

4.08 |dentify that acceleration is a vector quantity and thus has
both magnitude and direction and also has components.

4.09 Draw two-dimensional and three-dimensional accelera-
tion vectors for a particle, indicating the components.

4.10 Given the initial and final velocity vectors of a particle
and the time interval between those velocities, determine

Key Ideas

e If a particle’s velocity changes from v, to V, in time interval
At, its average acceleration during At is

— _ 72_;)1 _ AV
aavg_ -

At At

® As Atis shrunkto O, ﬁ;vg reaches a limiting value called

the average acceleration vector in magnitude-angle and
unit-vector notations.

4.11 Given a particle's velocity vector as a function of time,
determine its (instantaneous) acceleration vector.

4.12 For each dimension of motion, apply the constant-
acceleration equations (Chapter 2) to relate acceleration,
velocity, position, and time.

either the acceleration or the instantaneous acceleration a:
dv’
dt

—
a =

® In unit-vector notation,
a=ai+a) +ak,

where a, = dv,/dt, a, = dv,/dt, and a, = dv_/dt.
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Average Acceleration and Instantaneous Acceleration

When a particle’s velocity changes from v, to V, in a time interval Az, its average
acceleration Eavg during At is

average _ change in velocity
acceleration time interval
— Vz - 71 AV
or aavg = T = T (4-15)

If we shrink Af to zero about some instant, then in the limit Zavg approaches the
instantaneous acceleration (or acceleration) d at that instant; that is,

L dv
=— 4-16
” (4-16)

If the velocity changes in either magnitude or direction (or both), the particle

must have an acceleration.
We can write Eq. 4-16 in unit-vector form by substituting Eq.4-11 for v to obtain

— d > o '
a= E(Vxl +v,] +v.k)
_ dvx¢+ dvy¢+ dvzf(
“Ta T Ta YT T ¢
We can rewrite this as
d=a,i+aj+ak, (4-17)

where the scalar components of @ are

dv, dv, d
a.=—— a,=—— and a, =
Tdt Y dt :

dv,
: 4-18
o (4-18)

To find the scalar components of @, we differentiate the scalar components of V.
Figure 4-6 shows an acceleration vector @ and its scalar components for a
particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

These are the x and y
components of the vector
Y at this instant.

Figure 4-6 The acceleration @ of a particle and the
scalar components of d. 0 x
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IZ Checkpoint 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:
(1) x=-32+4t—2 and y=6:2—4 (3) 7 =221 — (4 + 3)]

2) x=-3—4r and y= —-5>+6

(4) 7= (42 — 201 + 3j

Are the x and y acceleration components constant? Is acceleration @ constant?

Sample Problem 4.03 Two-dimensional acceleration, rabbit run

For the rabbit in the preceding two sample problems, find
the acceleration ¢ at time ¢ = 15's.

KEY IDEA

We can find @ by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the a, part of Eq. 4-18 to Eq. 4-13,
we find the x component of a to be
dv,

d
= —— = — ([=(0), + 7. = — ()X 2'
a,= T = T (-062 +72) = ~0.62mls

Similarly, applying the a, part of Eq. 4-18 to Eq. 4-14 yields
the y component as
dv d
=—% = — (044t — 9.1) = 0.44 m/s%.
T4 T dr ( ) e

We see that the acceleration does not vary with time (it is a
constant) because the time variable ¢ does not appear in the
expression for either acceleration component. Equation 4-17
then yields

a = (—0.62m/s?)i + (0.44 m/s?)], (Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.

To get the magnitude and angle of d, either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

a=Va+a=\V(-062m/s2)? + (0.44 m/s2)?
= 0.76 m/s%.
For the angle we have

a 0.44 m/s?
= tan~! — = tan"! <—>= —35°,
0= tan an —0.62 m/s?

However, this angle, which is the one displayed on a calcula-
tor, indicates that @ is directed to the right and downward in
Fig. 4-7. Yet, we know from the components that @ must be
directed to the left and upward. To find the other angle that

(Answer)

ay

has the same tangent as —35° but is not displayed on a cal-
culator, we add 180°:

—35° + 180° = 145°. (Answer)

This is consistent with the components of @ because it gives
a vector that is to the left and upward. Note that @ has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant. That means that
we could draw the very same vector at any other point
along the rabbit’s path (just shift the vector to put its tail at
some other point on the path without changing the length
or orientation).

This has been the second sample problem in which we
needed to take the derivative of a vector that is written in
unit-vector notation. One common error is to neglect the unit
vectors themselves, with a result of only a set of numbers and
symbols. Keep in mind that a derivative of a vector is always
another vector.

y (m)

40

20

These are the x and y
components of the vector
at this instant.

Figure 4-7 The acceleration a of the rabbit at # = 15 s. The rabbit
happens to have this same acceleration at all points on its path.

PLUS Additional examples, video, and practice available at WileyPLUS
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4-4 pROJECTILE MOTION

Learning Objectives
After reading this module, you should be able to . ..

4.13 On a sketch of the path taken in projectile motion,
explain the magnitudes and directions of the velocity
and acceleration components during the flight.

Key Ideas

@ In projectile motion, a particle is launched into the air with a
speed v, and at an angle 6, (as measured from a horizontal x
axis). During flight, its horizontal acceleration is zero and its
vertical acceleration is —g (downward on a vertical y axis).

® The equations of motion for the particle (while in flight) can
be written as

x — xo = (vgcos byt

Yy — Yo = (vpsin 6yt — %8127

Yy
2
y

= v,sin 6, — gt,

vy = (vosin 9())2 —2g(y — »)-

4.14 Given the launch velocity in either magnitude-angle or
unit-vector notation, calculate the particle’s position, dis-
placement, and velocity at a given instant during the flight.

4.15 Given data for an instant during the flight, calculate the
launch velocity.

® The trajectory (path) of a particle in projectile motion is par-
abolic and is given by

2
gx
= (tan O)x — —=
y = (tan 6)x 2(vycos 6y)?’
if x, and y are zero.

® The particle’s horizontal range R, which is the horizontal
distance from the launch point to the point at which the parti-
cle returns to the launch height, is

2
R = S sin 26,.
8

Projectile Motion

We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity Vv, but its acceleration is always the free-
fall acceleration g, which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not a duck
in flight. Many sports involve the study of the projectile motion of a ball. For ex-
ample, the racquetball player who discovered the Z-shot in the 1970s easily won

his games because of the ball’s perplexing flight to the rear of the court.

-

Our goal here is to analyze projectile motion using the tools for two-

Richard Megna/Fundamental Photographs

dimensional motion described in Module 4-1 through 4-3 and making the
assumption that air has no effect on the projectile. Figure 4-9, which we shall ana-
lyze soon, shows the path followed by a projectile when the air has no effect. The
projectile is launched with an initial velocity v, that can be written as

Vo = Vol + VOyj' (4-19)

The components v, and v, can then be found if we know the angle 6, between Vo
and the positive x direction:

Vor = Vocos 6, and vy, = v,sin 6, (4-20)

During its two-dimensional motion, the projectile’s position vector 7 and velocity
vector V change continuously, but its acceleration vector @ is constant and always

directed vertically downward. The projectile has no horizontal acceleration.

Figure 4-8 A stroboscopic photograph of
a yellow tennis ball bouncing off a hard
surface. Between impacts, the ball has

projectile motion. an

Y

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

In projectile motion, the horizontal motion and the vertical motion are indepen-

dent of each other; that is, neither motion affects the other.
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Y Vertical motion + Horizontal motion - b Projectile motion

This vertical motion plus
this horizontal motion

produces this projectile motion.
Vertical velocity

0 T Vox
Launch

)
vy V4
° Speed decreasing o
— x x
0 o' o5 0
Constant velocity
) ) -
D=0 g
vy = 0
Stopped at
maximum
height
o>
— x x
0 o' 0
Constant velocity
) )
V)C
0 Speed increasing -
Yy ARG
Vx
— x x
0 o' ° 0
Constant velocity
y y
v v
-9 . @ . s
vy o o wIXe!
Constant velocity }
v

Figure 4-3 The projectile motion of an object launched into the air at the origin of a coordinate system and with launch

velocity V, at angle €. The motion is a combination of vertical motion (constant acceleration) and horizontal motion
(constant velocity), as shown by the velocity components.
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Richard Megna/Fundamental Photographs

Figure 4-10 One ball is released from rest at
the same instant that another ball is shot
horizontally to the right. Their vertical
motions are identical.

The ball and the can fall
the same distance h.

PR A AN A A AN AR AN AAR AN AR
PR DA DA DR AL DA DA D)

Figure 4-11 The projectile ball always

hits the falling can. Each falls a distance &
from where it would be were there no
free-fall acceleration.

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

Two Golf Balls

Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released and
the other shot horizontally by a spring. The golf balls have the same vertical motion,
both falling through the same vertical distance in the same interval of time. The fact
that one ball is moving horizontally while it is falling has no effect on its vertical mo-
tion, that is, the horizontal and vertical motions are independent of each other.

A Great Student Rouser

In Fig. 4-11, a blowgun G using a ball as a projectile is aimed directly at a can sus-
pended from a magnet M. Just as the ball leaves the blowgun, the can is released. If g
(the magnitude of the free-fall acceleration) were zero, the ball would follow the
straight-line path shown in Fig. 4-11 and the can would float in place after the
magnet released it. The ball would certainly hit the can. However, g is not zero,
but the ball st#ill hits the can! As Fig. 4-11 shows, during the time of flight of the
ball, both ball and can fall the same distance 4 from their zero-g locations. The
harder the demonstrator blows, the greater is the ball’s initial speed, the shorter
the flight time, and the smaller the value of A.

IZ Checkpoint 3

At a certain instant, a fly ball has velocity v = 251 — 4.9j (the x axis is horizontal, the
y axis is upward, and V is in meters per second). Has the ball passed its highest point?

The Horizontal Motion

Now we are ready to analyze projectile motion, horizontally and vertically.
We start with the horizontal motion. Because there is no acceleration in the hori-
zontal direction, the horizontal component v, of the projectile’s velocity remains
unchanged from its initial value v, throughout the motion, as demonstrated in
Fig. 4-12. At any time ¢, the projectile’s horizontal displacement x — x;, from an
initial position x, is given by Eq.2-15 with a = 0, which we write as
X — Xy = V()Xt‘

Because vy, = v, cos 6, this becomes

X — xg = (vocos Gy)t. (4-21)

The Vertical Motion

The vertical motion is the motion we discussed in Module 2-5 for a particle in
free fall. Most important is that the acceleration is constant. Thus, the equations
of Table 2-1 apply, provided we substitute —g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

Y = Yo = vt — 58t
(v sin Gp)t — 1gt2, (4-22)

where the initial vertical velocity component v, is replaced with the equivalent
Vo sin 6. Similarly, Egs. 2-11 and 2-16 become

Vy = Vo Sin 0() - gt (4-23)
and v = (vosin 6p)* — 28(y — y)- (4-24)



As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path

We can find the equation of the projectile’s path (its trajectory) by eliminating
time ¢ between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for ¢ and substituting into
Eq.4-22, we obtain, after a little rearrangement,

gx’

= (tan fp)x — ——>——
y = (tan 6)x 2(vy cos 6)?

(trajectory). (4-25)
This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x, = 0 and y, = 0 in Eqgs. 4-21 and 4-22, respectively. Because g, 6, and v, are
constants, Eq. 4-25 is of the form y = ax + bx?, in which a and b are constants.

This is the equation of a parabola, so the path is parabolic.

The Horizontal Range

The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched). To find range R, let us put x — x, = R in Eq. 4-21 and y — y, = 0 in
Eq.4-22, obtaining

R = (vycos )t

and 0 = (vosin )t — 38t%

Eliminating ¢ between these two equations yields

2% .
R = —"sin 0, cos 6.
8

Using the identity sin 26, = 2 sin 6, cos 6, (see Appendix E), we obtain

Vi .
R = —sin 26,. (4-20)
8
This equation does not give the horizontal distance traveled by a projectile when
the final height is not the launch height. Note that R in Eq. 4-26 has its maximum
value when sin 26, = 1, which corresponds to 26, = 90° or §, = 45°.

A Y

DX

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in many sports, a launch
angle of 45° does not yield the maximum horizontal distance.

The Effects of the Air

We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of
447 m/s. Path T (the baseball player’s fly ball) is a calculated path that
approximates normal conditions of play, in air. Path II (the physics professor’s fly
ball) is the path the ball would follow in a vacuum.
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Jamie Budge

Figure 4-12 The vertical component of this
skateboarder’s velocity is changing but not
the horizontal component, which matches
the skateboard’s velocity. As a result, the
skateboard stays underneath him, allowing
him to land on it.

Air reduces

height ... ... and range.

SR S RO SR N SRS P SR O SRS SR S
Figure 4-13 (T) The path of a fly ball calcu-
lated by taking air resistance into account.
(IT) The path the ball would follow in a
vacuum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Based on “The Trajectory of a Fly
Ball,” by Peter J. Brancazio, The Physics
Teacher, January 1985.)

Table 4-1 Two Fly Balls”

Path 1 Path 1T
(Air) (Vacuum)
Range 98.5 m 177 m
Maximum
height 53.0m 76.8 m
Time
of flight 6.6 79s

“See Fig.4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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IZ Checkpoint 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what
happens to its (a) horizontal and (b) vertical components of velocity? What are the (c)
horizontal and (d) vertical components of its acceleration during ascent, during de-
scent, and at the topmost point of its flight?

Sample Problem 4.04 Projectile dropped from airplane

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and
constant height # = 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle ¢ of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that ¢1is given by
X
_ -12%
¢ = tan n
where x is the horizontal coordinate of the victim (and of
the capsule when it hits the water) and 4 = 500 m. We
should be able to find x with Eq. 4-21:

(4-27)

X — Xo = (VO COS ao)t (4-28)

Here we know that x, = 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity Vv, is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude v, = 55.0 m/s and angle 6§, = 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time ¢ the capsule takes to
move from the plane to the victim.

To find ¢, we next consider the vertical motion and
specifically Eq. 4-22:

y — ¥ = (vgsin 0)t — %gtz. (4-29)

Here the vertical displacement y — y, of the capsule is
—500 m (the negative value indicates that the capsule
moves downward). So,

—500 m = (55.0 m/s)(sin 0°)¢t — (9.8 m/s?)r>.  (4-30)

Solving for ¢, we find ¢t = 10.1 s. Using that value in Eq. 4-28
yields
x — 0= (55.0m/s)(cos 0°)(10.1 s),

or x = 555.5m.

(4-31)

Figure 4-14 A plane drops a rescue capsule while moving at
constant velocity in level flight. While falling, the capsule
remains under the plane.

Then Eq. 4-27 gives us

. 555.5m
500 m

(b) As the capsule reaches the water, what is its velocity v ?

¢ = tan™ = 48.0°. (Answer)

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component v, does not change
from its initial value vy, = v, cos 6, because there is no hori-
zontal acceleration. (3) Component v, changes from its initial
value v, = v, sin ¢, because there is a vertical acceleration.

Calculations: When the capsule reaches the water,
v, = vy cos 6y = (55.0 m/s)(cos 0°) = 55.0 m/s.
Using Eq. 4-23 and the capsule’s time of fall = 10.1's, we
also find that when the capsule reaches the water,
v, = vysin 6, — gt
= (55.0 m/s)(sin 0°) — (9.8 m/s?)(10.1 s)

—99.0 m/s.
Thus, at the water

V = (55.0m/s)i — (99.0 m/s)].

y

(Answer)
From Eq. 3-6, the magnitude and the angle of v are

v=113m/s and 6= —60.9° (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 4.05 Launched into the air from a water slide

One of the most dramatic videos on the web (but entirely
fictitious) supposedly shows a man sliding along a long wa-
ter slide and then being launched into the air to land in a
water pool. Let’s attach some reasonable numbers to such
a flight to calculate the velocity with which the man would
have hit the water. Figure 4-15a indicates the launch and
landing sites and includes a superimposed coordinate sys-
tem with its origin conveniently located at the launch site.
From the video we take the horizontal flight distance as
D = 20.0 m, the flight time as ¢ = 2.50 s, and the launch an-
gle as 6, = 40.0°. Find the magnitude of the velocity at
launch and at landing.

KEY IDEAS

(1) For projectile motion, we can apply the equations for con-
stant acceleration along the horizontal and vertical axes sepa-
rately. (2) Throughout the flight, the vertical acceleration is
a, = —g = —9.8 m/s and the horizontal acceleration is a, = 0.

Calculations: In most projectile problems, the initial chal-
lenge is to figure out where to start. There is nothing wrong
with trying out various equations, to see if we can somehow
get to the velocities. But here is a clue. Because we are going
to apply the constant-acceleration equations separately to
the x and y motions, we should find the horizontal and verti-
cal components of the velocities at launch and at landing.
For each site, we can then combine the velocity components
to get the velocity.

Because we know the horizontal displacement D =
20.0 m, let’s start with the horizontal motion. Since a, = 0,

Water
pool

(a)

Vo - )
Launch Voy Landing N vy
velocit 8 ' velocit v
y - y
X

(0) (9)

Figure 4-15 (a) Launch from a water slide, to land in a water pool.
The velocity at (b) launch and (c) landing.

we know that the horizontal velocity component v, is con-
stant during the flight and thus is always equal to the hori-
zontal component v, at launch. We can relate that compo-
nent, the displacement x — x,, and the flight time ¢t = 2.50 s
with Eq. 2-15:

X — Xg = ot + 3a,t2 (4-32)

Substituting a, = 0, this becomes Eq. 4-21. With x — x, = D,
we then write

20m = ,(2.50s) + 1 (0)(2.50 5)?
Vor = 8.00 m/s.

That is a component of the launch velocity, but we need
the magnitude of the full vector, as shown in Fig. 4-15b,
where the components form the legs of a right triangle and
the full vector forms the hypotenuse. We can then apply a
trig definition to find the magnitude of the full velocity at
launch:

Vo
cosf, = —
Vo

and so
Voo _ 8.00m/s
cos 6, cos 40°

10.44 m/s = 10.4 m/s.

(Answer)

Now let’s go after the magnitude v of the landing veloc-
ity. We already know the horizontal component, which does
not change from its initial value of 8.00 m/s. To find the verti-
cal component v, and because we know the elapsed time ¢ =
2.50 s and the vertical acceleration a, = —9.8 m/s?, let’s
rewrite Eq.2-11 as

vy =V, + ayt
and then (from Fig. 4-15b) as
v, = vosin 0, + ayt. (4-33)
Substituting a, = —g, this becomes Eq.4-23. We can then write
v, = (10.44 m/s) sin (40.0°) — (9.8 m/s?)(2.50s)
= —17.78 m/s.

Now that we know both components of the landing velocity,
we use Eq. 3-6 to find the velocity magnitude:

v="\Vvi+y?

— V/(8.00 m/s)? + (—17.78 m/s)?
= 19.49 m/s?> = 19.5 m/s. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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4-3 UNIFORM CIRCULAR MOTION

Learning Objectives

After reading this module, you should be able to . . .

4.16 Sketch the path taken in uniform circular motion and ex- 4.17 Apply the relationships between the radius of the circu-
plain the velocity and acceleration vectors (magnitude and lar path, the period, the particle’s speed, and the particle's

direction) during the motion.

acceleration magnitude.

Key Ideas
@ If a particle travels along a circle or circular arc of radius r at arc, and ¢ is said to be centripetal. The time for the particle to
constant speed v, it is said to be in uniform circular motion complete a circle is
and has an acceleration @ of constant magnitude T 2ar
V2 - v
a=—.
r

T is called the period of revolution, or simply the period, of the

The direction of @ is toward the center of the circle or circular motion.

The acceleration vector
always points toward the
center.

O
<!

The velocity \i

vector is always
tangent to the path.

Figure 4-16 Velocity and acceleration
vectors for uniform circular motion.

Uniform Circular Motion

A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The accelera-
tion is always directed radially inward. Because of this, the acceleration associ-
ated with uniform circular motion is called a centripetal (meaning “center seek-
ing”) acceleration. As we prove next, the magnitude of this acceleration a is

2
v
a=— (centripetal acceleration), (4—34)
r

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the
circumference of the circle (a distance of 27r) in time

2
T = £ (period). (4-35)
1%

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34

To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed
v around a circle of radius r. At the instant shown, p has coordinates x, and y,,.

Recall from Module 4-2 that the velocity v of a moving particle is always
tangent to the particle’s path at the particle’s position. In Fig. 4-17a, that means
V is perpendicular to a radius r drawn to the particle’s position. Then the angle
6 that v makes with a vertical at p equals the angle @ that radius » makes with
the x axis.



The scalar components of v are shown in Fig. 4-17b. With them, we can write
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the velocity v as ¢
V =vi+vj=(—vsin )i + (v cos 0)j. (4-36) ?
Now, using the right triangle in Fig. 4-17a, we can replace sin 6 with y,/r and 7w
cos O with x,/r to write 0 X
X,
b

oo (e ()
r r

To find the acceleration @ of particle p, we must take the time derivative of this

(4-37)

equation. Noting that speed v and radius r do not change with time, we obtain (@)
— y
o dv v dy, )¢ (v dx, >¢ .
=—=|—=Fh+(——"; 4-38 v
CT (rdtl rodr ) (4-38) :evy
Now note that the rate dy,/dt at which y, changes is equal to the velocity Vy

component v,. Similarly, dx,/dt = v,, and, again from Fig. 4-17b, we see that v, =
—vsin #and v, = v cos 6. Making these substitutions in Eq. 4-38, we find

v? . v? -
a= <——cos 0>i + (——sin 0>j.
r r

This vector and its components are shown in Fig. 4-17¢c. Following Eq. 3-6, we find

2

2
a=Va;+a;= VT\/(cos 0)* + (sin 0)* = VT

as we wanted to prove. To orient @, we find the angle ¢ shown in Fig. 4-17¢:

a —(v?/r) sin 0
tan¢p = —— = —————— = tan 6.
¢ a,  —(?r)cos 0

Thus, ¢ = 6, which means that @ is directed along the radius r of Fig. 4-17a,

toward the circle’s center, as we wanted to prove.

M Checkpoint 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x = —2 m, its velocity is —(4 m/s)]. Give

the object’s (a) velocity and (b) acceleration at y = 2 m.

Sample Problem 4.06 Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood pres-
sure in the brain decreases, leading to loss of brain function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of ¥, = (4001 + 500j) m/s and 24.0 s later leaves the
turn with a velocity of Vf = (—4001 — 500j) m/s?

v

(4-39)

5 »

>

()
Figure 4-17 Particle p moves in counter-
clockwise uniform circular motion. (a) Its
position and velocity V at a certain
instant. (b) Velocity V. (c) Acceleration d.

KEY IDEAS

We assume the turn is made with uniform circular motion.
Then the pilot’s acceleration is centripetal and has magni-
tude a given by Eq. 4-34 (a = v*R), where R is the circle’s
radius. Also, the time required to complete a full circle is the
period given by Eq.4-35 (T = 27R/v). -
Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34. We find

27y

a T

To get the constant speed v, let’s substitute the components
of the initial velocity into Eq. 3-6:

v = V(400 m/s)? + (500 m/s)?> = 640.31 m/s.
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To find the period 7 of the motion, first note that the final 24,0 s Thus a full circle would have taken T = 48.0 s.

velocity is the reverse of the initial velocity. This means the  Sybstituting these values into our equation for a, we find
aircraft leaves on the opposite side of the circle from the ini-

tial point and must have completed half a circle in the given

ILEY

 27(640.31 m/s)

=] 2 ~
180 s 83.81 m/s* =~ 8.6g.  (Answer)

W|
PLUS Additional examples, video, and practice available at WileyPLUS

4-6 RELATIVE MOTION IN

Learning Objective

ONE DIMENSION

After reading this module, you should be able to . . .

4.18 Apply the relationship between a particle’s position, ve- frames that move relative to each other at constant velocity
locity, and acceleration as measured from two reference and along a single axis.

Key Idea

@ When two frames of reference A and B are moving relative Voa = Vpg + Via

to each other at constant velocity, the velocity of a particle P
as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are

related by

Frame B moves past
frame A while both
observe P.

Frame A Frame B
Vaa XPB
'\
= X
xm

Xpa = xPB + XA

X

Figure 4-18 Alex (frame A) and Barbara
(frame B) watch car P, as both B and P
move at different velocities along the com-
mon x axis of the two frames. At the
instant shown, x, is the coordinate of B
in the A frame. Also, P is at coordinate xpg
in the B frame and coordinate xp, = xpp +
X4 In the A frame.

where Vg, is the velocity of B with respect to A. Both ob-
servers measure the same acceleration for the particle:

- =
apy = dpp

Relative Motion in One Dimension

Suppose you see a duck flying north at 30 km/h. To another duck flying alongside,
the first duck seems to be stationary. In other words, the velocity of a particle de-
pends on the reference frame of whoever is observing or measuring the velocity.
For our purposes, a reference frame is the physical object to which we attach our
coordinate system. In everyday life, that object is the ground. For example, the
speed listed on a speeding ticket is always measured relative to the ground. The
speed relative to the police officer would be different if the officer were moving
while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4-18) is parked by the side
of a highway, watching car P (the “particle”) speed past. Barbara (at the origin of
frame B) is driving along the highway at constant speed and is also watching car P.
Suppose that they both measure the position of the car at a given moment. From
Fig.4-18 we see that

Xpy = Xpp + XBA- (4'40)

The equation is read: “The coordinate xp4 of P as measured by A is equal to the

coordinate xpp of P as measured by B plus the coordinate xp, of B as measured

by A.” Note how this reading is supported by the sequence of the subscripts.
Taking the time derivative of Eq. 4-40, we obtain

d
dr (xXpa) = ( pB) + (xBA)
Thus, the velocity components are related by

Vpa = Vpp A VBa- (4—41)

This equation is read: “The velocity vp4 of P as measured by A is equal to the
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velocity vpg of P as measured by B plus the velocity vz, of B as measured by A.”

The term vy, is the velocity of frame B relative to frame A.

Here we consider only frames that move at constant velocity relative to
each other. In our example, this means that Barbara (frame B) drives always at
constant velocity vy, relative to Alex (frame A). Car P (the moving particle),
however, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take

the time derivative of Eq. 4-41:

d d d
ar (vpa) = r (vpp) + r (VBa)-

Because v, is constant, the last term is zero and we have
apy = App-.

In other words,

an
X

(4-42)

Observers on different frames of reference that move at constant velocity relative

to each other will measure the same acceleration for a moving particle.

Sample Problem 4.07 Relative motion, one dimensional, Alex and Barbara

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vz, = 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vp, = —78 km/h for car P,
what velocity vpp will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq 4-41 (VPA = vpg t+ VBA) to relate Vpp tO Vpy and VBa-
Calculation: We find

Vpg = _130 km/h

Thus, (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time # = 10 s at constant acceleration,
what is its acceleration ap, relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the
acceleration is constant, we can use Eq. 2-11 (v = v, + ar)

WILEY ®

to relate the acceleration to the initial and final velocities
of P.

Calculation: The initial velocity of P relative to Alex is
vps = —78 km/h and the final velocity is 0. Thus, the acceler-
ation relative to Alex is
P e I 0 — (=78 km/h)
A t 10s

2.2 m/s%.

1 m/s
3.6 km/h
(Answer)

(c) What is the acceleration app of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vpp = —130 km/h). The final veloc-
ity of P relative to Barbara is —52 km/h (because this is
the velocity of the stopped car relative to the moving
Barbara). Thus,

g =Y Vo _ —52km/h — (=130 km/h) 1 m/s
e t 10s 3.6 km/h
=22 m/s%. (Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.

PLUS Additional examples, video, and practice available at WileyPLUS
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4-77 RELATIVE MOTION IN TWO DIMENSIONS

Learning Objective
After reading this module, you should be able to . . .

4.19 Apply the relationship between a particle’s position, ve- frames that move relative to each other at constant velocity
locity, and acceleration as measured from two reference and in two dimensions.

Key Idea

® When two frames of reference A and B are moving relative Vpa = Vpg + Vga

to each other at constant velocity, the velocity of a particle

P as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are N .
related by py = Qpp

where v, is the velocity of B with respect to A. Both
observers measure the same acceleration for the particle:

) Relative Motion in Two Dimensions

Our two observers are again watching a moving particle P from the origins of refer-

ence frames A and B, while B moves at a constant velocity V4 relative to A. (The

Tpp corresponding axes of these two frames remain parallel.) Figure 4-19 shows a cer-
A . tain instant during the motion. At that instant, the position vector of the origin of B
/ v relative to the origin of A is 7 5 4. Also, the position vectors of particle P are 7 p, rela-
x tive to the origin of A and 7 pj relative to the origin of B. From the arrangement of

For Frame B heads and tails of those three position vectors, we can relate the vectors with
X

Frame A N N N 443
Fpa = Tpg + Tpa -
Figure 4-19 Frame B has the constant pa = A ( )
two-dimensional velocity vy, relative to By taking the time derivative of this equation, we can relate the velocities V p,

frame A. The position vector of B relative - . . .
. " . and v pp of particle P relative to our observers:
to A is 7 z4. The position vectors of parti-

cle P are 7p, relative to A and 7 py

relative to B. Vps = Vpp + Vpa. (4-44)

By taking the time derivative of this relation, we can relate the accelerations d p,
and dpg of the particle P relative to our observers. However, note that because
V4 is constant, its time derivative is zero. Thus, we get

dpy = dpp. (4-45)

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will
measure the same acceleration for a moving particle.

Sample Problem 4.08 Relative motion, two dimensional, airplanes

In Fig. 4-20a, a plane moves due east while the pilot points KEY IDEAS
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity Vpy relative  The situation is like the one in Fig. 4-19. Here the moving par-
to the wind, with an airspeed (speed relative to the wind)  ticle P is the plane, frame A is attached to the ground (call it
of 215 km/h, directed at angle 6 south of east. The wind (), and frame B is “attached” to the wind (call it W). We need
has velocity Vi relative to the ground with speed  a vector diagram like Fig. 4-19 but with three velocity vectors.
65.0 km/h, directed 20.0° east of north. What is the magni-

tude of the velocity Vg of the plane relative to the ground,  Calculations: First we construct a sentence that relates the
and what is 6? three vectors shown in Fig. 4-20b:




velocity of wind
relative to ground.

velocity of plane  _ velocity of plane
relative to ground  relative to wind

(PG) (PW) (WG)
This relation is written in vector notation as
VPG = VPW A VWG' (4-46)

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

VeGy = Vewy T Vwey
or 0= —(215km/h)sin 6 + (65.0 km/h)(cos 20.0°).

Solving for 6 gives us

_ in-! (65.0 km/h)(cos 20.0°)

215 km/h L

0 (Answer)

Similarly, for the x components we find

VPGx = Vewx T VG
Here, because Vp is parallel to the x axis, the component
Vpe. 18 equal to the magnitude vps. Substituting this nota-
tion and the value 8 = 16.5°, we find
vpe = (215 km/h)(cos 16.5°) + (65.0 km/h)(sin 20.0°)
= 228 km/h. (Answer)
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N This is the plane's actual
direction of travel.

\ Vp > .

N
This is the plane's 209/,
: : Ywe
orientation.
This is the wind
direction.
(a)
Vre
) >
7PW 7WG

X

The actual direction

is the vector sum of

the other two vectors
(head-to-tail arrangement).

(b)
Figure 4-20 A plane flying in a wind.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Position Vector The location of a particle relative to the ori-
gin of a coordinate system is given by a position vector ¥, which in
unit-vector notation is

7=xi+y] +zk. (4-1)
Here xis yj, and zk are the vector components of position vector 7,
and x, y, and z are its scalar components (as well as the coordinates
of the particle). A position vector is described either by a magni-
tude and one or two angles for orientation, or by its vector or
scalar components.

Displacement If a particle moves so that its position vector
changes from 7, to 7,, the particle’s displacement AT is

AP =7 - 7. (4-2)

The displacement can also be written as
AF = (x, —x)i + (3 — i + (22— )k (4-3)
= Axi + Ayj + Azk. (4-4)

Average Velocity and Instantaneous Velocity If a parti-

cle undergoes a displacement A7 in time interval At its average ve-

locity VZWg for that time interval is
A7

Vae = 7 (4-8)

As Atin Eq. 4-8 is shrunk to 0, Vavg reaches a limit called either the
velocity or the instantaneous velocity v:

o dr
Vv =— 4-10
” (4-10)
which can be rewritten in unit-vector notation as
V=vi+wn]+ vk, (4-11)

where v, = dx/dt, v, = dyldt, and v, = dz/dt. The instantaneous
velocity Vv of a particle is always directed along the tangent to the
particle’s path at the particle’s position.

Average Acceleration and Instantaneous Acceleration
If a particle’s velocity changes from v, to v, in time interval Ay, its
average acceleration during At is

— T/)z - T})l A7

a. = = .
ave At At

(4-15)
As Atin Eq. 4-15 is shrunk to 0, Zavg reaches a limiting value called
either the acceleration or the instantaneous acceleration d:
dv

dt’

—
a =

(4-16)
In unit-vector notation,
@=ai+aj+ak, (4-17)

where a, = dv,/dt, a, = dv,/dt, and a, = dv_/dL.



82 CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

Projectile Motion Projectile motion is the motion of a particle
that is launched with an initial velocity v,. During its flight, the par-
ticle’s horizontal acceleration is zero and its vertical acceleration is
the free-fall acceleration —g. (Upward is taken to be a positive di-
rection.) If v, is expressed as a magnitude (the speed v;) and an an-
gle 6, (measured from the horizontal), the particle’s equations of
motion along the horizontal x axis and vertical y axis are

x — xg = (vo cos Oy)t, (4-21)
Y = o = (vosin 6p)t — 382, (4-22)
Vv, = v, sin 6, — gt, (4-23)
vy = (vosin 6p)* — 2g(y — y). (4-24)

The trajectory (path) of a particle in projectile motion is parabolic
and is given by
gx’

= (tan fp)x — ——>——
y = (tan 6)x 2(vy cos 6y)*°

(4-25)
if x, and y, of Eqs. 4-21 to 4-24 are zero. The particle’s horizontal
range R, which is the horizontal distance from the launch point to
the point at which the particle returns to the launch height, is

2

R= %;sin 26, (4-26)

Questions

1 Figure 4-21 shows the path taken by
a skunk foraging for trash food, from
initial point i. The skunk took the same
time 7 to go from each labeled point to
the next along its path. Rank points a, b,
and c according to the magnitude of the
average velocity of the skunk to reach
them from initial point i, greatest first.

Figure 4-21

2 Figure 4-22 shows the initial posi- .
Question 1.

tion i and the final position f of a parti-
cle. What are the (a) initial position
vector 7;and (b) final position vector 77, both in unit-vector nota-
tion? (c) What is the x component of displacement A7?

y

Figure 4-22 Question 2.

3 =¥ When Paris was shelled from 100 km away with the WWI
long-range artillery piece “Big Bertha,” the shells were fired at an
angle greater than 45° to give them a greater range, possibly even

Uniform Circular Motion If a particle travels along a circle or
circular arc of radius r at constant speed v, it is said to be in uniform
circular motion and has an acceleration @ of constant magnitude

(4-34)

The direction of @ is toward the center of the circle or circular arc,
and ¢ is said to be centripetal. The time for the particle to complete
acircle is

T 27Tr.

4-35
: (+35)
T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B are
moving relative to each other at constant velocity, the velocity of a par-
ticle P as measured by an observer in frame A usually differs from that
measured from frame B.The two measured velocities are related by

Vpa = Vpp + Vi, (4-44)

where Vg, is the velocity of B with respect to A. Both observers
measure the same acceleration for the particle:

(4-45)

- >
dpa = dpp-

twice as long as at 45°. Does that result mean that the air density at
high altitudes increases with altitude or decreases?

4 You are to launch a rocket, from just above the ground, with
one of the following initial velocity vectors: (1) v, = 20i + 70j,
(2) Vo = =201 + 705, (3) Vo = 201 — 70j, (4) Vo = —20i — 70j. In
your coordinate system, x runs along level ground and y increases
upward. (a) Rank the vectors according to the launch speed of the
projectile, greatest first. (b) Rank the vectors according to the time
of flight of the projectile, greatest first.

5 Figure 4-23 shows three situations in which identical projectiles
are launched (at the same level) at identical initial speeds and an-
gles. The projectiles do not land on the same terrain, however.
Rank the situations according to the final speeds of the projectiles
just before they land, greatest first.

<L\ L LT

(@) U] (0
Figure 4-23 Question 5.

6 The only good use of a fruitcake
is in catapult practice. Curve 1 in
Fig. 4-24 gives the height y of a cata- 2
pulted fruitcake versus the angle 6

between its velocity vector and its
acceleration vector during flight. (a)

Which of the lettered points on that

curve corresponds to the landing of ® ° 0
the fruitcake on the ground? (b) A B
Curve 2 is a similar plot for the same

Figure 4-24 Question 6.



launch speed but for a different launch angle. Does the fruitcake
now land farther away or closer to the launch point?

7 Anairplane flying horizontally at a constant speed of 350 km/h
over level ground releases a bundle of food supplies. Ignore the ef-
fect of the air on the bundle. What are the bundle’s initial (a) verti-
cal and (b) horizontal components of velocity? (c) What is its hori-
zontal component of velocity just before hitting the ground? (d) If
the airplane’s speed were, instead, 450 km/h, would the time of fall
be longer, shorter, or the same?

8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2,
and 3, which are identical in size and regularly spaced vertically.
Rank those three windows according to (a) the time the cream tan-
gerine takes to pass them and (b) the average speed of the cream
tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5,
and 6, which are identical in size and irregularly spaced horizon-
tally. Rank those three windows according to (c) the time the
cream tangerine takes to pass them and (d) the average speed of
the cream tangerine during the passage, greatest first.

Figure 4-25 Question 8.

9 Figure 4-26 shows three paths for a football kicked from ground
level. Ignoring the effects of air, rank the paths according to (a) time
of flight, (b) initial vertical velocity component, (c) initial horizontal
velocity component, and (d) initial speed, greatest first.

Figure 4-26 Question 9.

10 A ballis shot from ground level over level ground at a certain
initial speed. Figure 4-27 gives the range R of the ball versus its
launch angle 6,. Rank the three lettered points on the plot accord-
ing to (a) the total flight time of the ball and (b) the ball’s speed at
maximum height, greatest first.

R

6y
Figure 4-27 Question 10.

QUESTIONS 83

11 Figure 4-28 shows four tracks (either half- or quarter-circles)
that can be taken by a train, which moves at a constant speed.
Rank the tracks according to the magnitude of a train’s accelera-
tion on the curved portion, greatest first.

Figure 4-28 Question 11.

12 In Fig. 4-29, particle P is in uniform circular motion, cen-
tered on the origin of an xy coordinate system. (a) At what values
of @is the vertical component r, of the position vector greatest in
magnitude? (b) At what values of 6 is the vertical component v,
of the particle’s velocity greatest in magnitude? (c) At what val-
ues of ¢is the vertical component a, of the particle’s acceleration
greatest in magnitude?

N

Figure 4-29 Question 12.

13 (a) Is it possible to be accelerating while traveling at constant
speed? Is it possible to round a curve with (b) zero acceleration and
(c) a constant magnitude of acceleration?

14 While riding in a moving car, you toss an egg directly upward.
Does the egg tend to land behind you, in front of you, or back in your
hands if the car is (a) traveling at a constant speed, (b) increasing in
speed, and (c) decreasing in speed?

15 A snowball is thrown from ground level (by someone in a
hole) with initial speed v, at an angle of 45° relative to the (level)
ground, on which the snowball later lands. If the launch angle is in-
creased, do (a) the range and (b) the flight time increase, decrease,
or stay the same?

16 You are driving directly behind a pickup truck, going at the
same speed as the truck. A crate falls from the bed of the truck to
the road. (a) Will your car hit the crate before the crate hits the
road if you neither brake nor swerve? (b) During the fall, is the
horizontal speed of the crate more than, less than, or the same as
that of the truck?

17 At what point in the path of a projectile is the speed a minimum?

18 In shot put, the shot is put (thrown) from above the athlete’s
shoulder level. Is the launch angle that produces the greatest range
45°,1ess than 45°, or greater than 45°?
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Problems

@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual
e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. L http://www.wiley.com/college/halliday
Interactive solution is at

& Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 4-1 Position and Displacement

°1  The position vector for an electron is 7 =0 m)i -
(3.0 m)] + (2.0 m)k (a) Find the magnitude of 7. (b) Sketch the
vector on a right-handed coordinate system.

°2 A watermelon seed has the following coordinates: x = —5.0 m,
y = 8.0m, and z = 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

*3 A positron undergoes a displacement A7 = A2.Of - 3.0j + 6.0k,
ending with the position vector 7 = 3.0j — 4.0k, in meters. What
was the positron’s initial position vector?

e4  The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (¢) magnitude and (f) angle for the hour after that?

Module 4-2 Average Velocity and Instantaneous Velocity

*5 ssM A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

*6  An electron’s position is given by 7 = 3.00¢1 — 4.00tzj + 2.00k,
with 7 in seconds and 7 in meters. (a) In unit-vector notation, what
is the electron’s velocity v(r)? At ¢t = 2.00 s, what is v (b) in unit-
vector notation and as (c) a magnitude and (d) an angle relative to
the positive direction of the x axis?

°7 An ion’s position vector is initially 7 =501 — 6.0j + 2.0k,
and 10 s later it is 7 = —2.0i + 8.0j — 2.0k, all in meters. In unit-
vector notation, what is its V,,, during the 10 s?

*8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city C in 1.50 h. For the total trip,
what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude

and (d) direction of its aver- Y (m)

age velocity, and (e) its aver- S0

age speed?
*»9 Figure 4-30 gives the o5
path of a squirrel moving
about on level ground, from
point A (at time ¢=0), to
points B (at ¢ = 5.00 min), C 25 50
(att = 10.0 min), and finally D A
(at t = 15.0 min). Consider the 25—
average velocities of the squir-
rel from point A to each of the /B
other three points. Of them, -50—
what are the (a) magnitude

D

Figure 4-30 Problem 9.

and (b) angle of the one with the
least magnitude and the (c) magni-
tude and (d) angle of the one with
the greatest magnitude?

e*10  The position vector 0° : |
7 =5000 + (et + )] locates a 10 20
particle as a function of time \
Vector 7 is in meters, ¢ is in seconds, —90°|—
and factors e and f are constants.
Figure 4-31 gives the angle 6 of the t(s)

particle’s direction of travel as a Figure 4-31 Problem 10.

function of ¢ (0 is measured from
the positive x direction). What are (a) e and (b) f, including units?

20°—

Module 4-3 Average Acceleration and

Instantaneous Acceleration

*11 @ The position 7Aof a particle moving in an xy plane is given
by 7 = (2.00£ — 5.001)i + (6.00 — 7.00¢*)j , with 7 in meters and ¢
in seconds. In unit-vector notation, calculate (a) 7, (b) v, and (c) @
for t = 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t = 2.00 s?

*12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s. Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

*13 ssm A particle moves so that 1ts pos1t10n (in meters) as
a function of time (in seconds) is 7 = =i+ 4[2_] + tk. Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

14 A proton 1n1t1allAy has v = 4. 01 -2 0] + 3.0k and then
4.0s later has v = —2.0i — 2.0 + 5.0k (in meters per second) For
that 4.0 s, what are (a) the proton’s average acceleration a avg 1N UNIt-
vector notation, (b) the magnitude of @,y and (c) the angle between
4, and the positive direction of the x axis?

15 SSM ILW A particle leaves the origin with an initial veloc-
ity v = (3.00i)) m/s and a constant acceleration @ = (—1.00i —
0.500j) m/s>. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

16 @ The velocity v of a particle movmg in the xy plane is
given by Vv = (6.0t — 4. 012)1 + 8.0j, with ¥V in meters per second
and ¢ (> 0) in seconds. (a) What is the acceleration when ¢ = 3.0 s?
(b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal
10 m/s?

*17 A cartis propelled over an xy plane with acceleration compo-
nents a, = 4.0 m/s? and a, = —2.0 m/s’. Its initial velocity has com-
ponents vy, = 8.0 m/s and v, = 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

*»18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration @ = (5.00 m/sz)l + (7.00 m/s?);.



At time ¢ = 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by
12.0 m parallel to the x axis?

*e¢19 The acceleration of a particle moving only on a horizontal
xy plane is given by @ = 3 + 4tj, where @ is in meters per second-
squared and ¢ is in seconds. At ¢t =0, the position vector
7 = (20.0m)i + (40.0 m)j locates the particle, which then has the
velocity vector v = (5.00 m/s)i + (2.00 m/s)j. At t = 4.00 s, what
are (a) its position vector in unit-vector notation and (b) the angle
between its direction of travel and the positive direction of the
X axis?

020 @ In Fig. 4-32, particle A y
moves along the line y = 30m
with a constant velocity v of mag- v
nitude 3.0 m/s and parallel to the A@—>
x axis. At the instant particle A
passes the y axis, particle B leaves
the origin with a zero initial speed
and a constant acceleration @ of
magnitude 0.40 m/s?. What angle 6
between @ and the positive direc- B
tion of the y axis would result in a Figure 4-32 Problem 20.
collision?

a

Module 4-4 Projectile Motion

°21 A dart is thrown horizontally with an initial speed of
10 m/s toward point P, the bull’s-eye on a dart board. It hits at
point Q on the rim, vertically below P, 0.19 s later. (a) What is the
distance PQ? (b) How far away from the dart board is the dart
released?

°22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

*23 A projectile is fired horizontally from a gun that is
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

°24 —%& In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the
23-year long-jump record set by Bob Beamon. Assume that
Powell’s speed on takeoff was 9.5 m/s (about equal to that of a
sprinter) and that g = 9.80 m/s?> in Tokyo. How much less was
Powell’s range than the maximum possible range for a particle
launched at the same speed?

*25 =& The current world-record motorcycle jump is 77.0 m,
set by Jason Renie. Assume that he left the take-off ramp at
12.0° to the horizontal and that the take-off and landing
heights are the same. Neglecting air drag, determine his take-off
speed.

°26 A stone is catapulted at time ¢ = 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t = 1.10 s?
Repeat for the (c) horizontal and (d) vertical components at
t = 1.80 s, and for the (e) horizontal and (f) vertical components at
t=15.00s.

PROBLEMS 85

°27 ILW A certain airplane has a
speed of 290.0 km/h and is diving
at an angle of 6 = 30.0° below the
horizontal when the pilot releases
a radar decoy (Fig. 4-33). The hori-
zontal distance between the re-
lease point and the point where
the decoy strikes the ground is d =
700 m. (a) How long is the decoy in
the air? (b) How high was the re- &% 7
lease point?

e

N RN ISR
Figure 4-33 Problem 27.

28 @ In Fig. 4-34, a stone is pro-
jected at a cliff of height 4 with an initial speed of 42.0 m/s directed
at angle 6, = 60.0° above the horizontal. The stone strikes at A,
5.50 s after launching. Find (a) the height 4 of the cliff, (b) the
speed of the stone just before impact at A, and (c) the maximum
height H reached above the ground.

Figure 4-34 Problem 28.

*29 A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle 6.

30 @ A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away in
the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground?

*31 =A% In a jump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle of
the spike is difficult. Suppose a ball is spiked from a height of 2.30
m with an initial speed of 20.0 m/s at a downward angle of 18.00°.
How much farther on the opposite floor would it have landed if the
downward angle were, instead, 8.00°?

*32 @ You throw a ball toward a
wall at speed 25.0 m/s and at angle
0, = 40.0° above the horizontal
(Fig. 4-35). The wall is distance d =
22.0 m from the release point of the
ball. (a) How far above the release
point does the ball hit the wall?
What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d) When
it hits, has it passed the highest point on its trajectory?

*33 ssM A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of 730 m.
The projectile hits the ground 5.00 s after release. (a) What is the
speed of the plane? (b) How far does the projectile travel horizon-
tally during its flight? What are the (c) horizontal and (d) vertical
components of its velocity just before striking the ground?

*34 AL A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled against a
wall to break apart the wall. The machine was not placed near the
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wall because then arrows could reach it from the castle wall. Instead,
it was positioned so that the stone hit the wall during the second half
of its flight. Suppose a stone is launched with a speed of v, = 28.0 m/s
and at an angle of 6, = 40.0°. What is the speed of the stone if it hits
the wall (a) just as it reaches the top of its parabolic path and (b)
when it has descended to half that height? (c) As a percentage, how
much faster is it moving in part (b) than in part (a)?

*35 ssMm A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with the ri-
fle, how high above the target must the rifle barrel be pointed so
that the bullet hits dead center?

36 @ During a tennis match, a player serves the ball at
23.6 m/s, with the center of the ball leaving the racquet horizontally
2.37 m above the court surface. The net is 12 m away and 0.90 m
high. When the ball reaches the net, (a) does the ball clear it and
(b) what is the distance between the center of the ball and the top
of the net? Suppose that, instead, the ball is served as before but
now it leaves the racquet at 5.00° below the horizontal. When the
ball reaches the net, (c) does the ball clear it and (d) what now is
the distance between the center of the ball and the top of the net?

°37 ssm www A lowly high diver pushes off horizontally
with a speed of 2.00 m/s from the platform edge 10.0 m above the
surface of the water. (a) At what horizontal distance from the
edge is the diver 0.800 s after pushing off? (b) At what vertical
distance above the surface of the water is the diver just then?
(c) At what horizontal distance from the edge does the diver
strike the water?

*38 A golf ball is struck at vy
ground level. The speed of
the golf ball as a function of
the time is shown in Fig. 4-36,
where ¢ = 0 at the instant the
ball is struck. The scaling on
the vertical axis is set by
v, = 19m/s and v, = 31 m/s. 0 1 2 3 4 5
(a) How far does the golf t(s)

ball travel horizontally be- Figure 4-36 Problem 38.

fore returning to ground

level? (b) What is the maximum height above ground level at-
tained by the ball?

*39 In Fig. 4-37, a ball is thrown leftward from the left edge of the
roof, at height 4 above the ground. The ball hits the ground 1.50 s
later, at distance d = 25.0 m from the building and at angle 6§ = 60.0°

with the horizontal. (a) Find 4.

(Hint: One way is to reverse the |:| D |:| T
h

[FLEL]

v (m/s)

motion, as if on video.) What
are the (b) magnitude and (c)
angle relative to the horizontal
of the velocity at which the ball
is thrown? (d) Is the angle
above or below the horizontal?

4
4
6
—
Figure 4-37 Problem 39.
*40 «%& Suppose that a shot putter can put a shot at the world-
class speed v, = 15.00 m/s and at a height of 2.160 m. What hori-
zontal distance would the shot travel if the launch angle 6, is
(a) 45.00° and (b) 42.00°? The answers indicate that the angle of
45°, which maximizes the range of projectile motion, does not max-

imize the horizontal distance when the launch and landing are at
different heights.

Insect
L7 ontwig

41 @ <& Upon spotting an in-
sect on a twig overhanging water, an
archer fish squirts water drops at the
insect to knock it into the water
(Fig. 4-38). Although the fish sees the
insect along a straight-line path at an-
gle ¢ and distance d, a drop must be
launched at a different angle 6, if its
parabolic path is to intersect the
insect. If ¢ = 36.0° and d = 0.900 m,
what launch angle 6, is required for the drop to be at the top of the
parabolic path when it reaches the insect?

*42 =% In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme: After being shot from a cannon, he
soared over three Ferris wheels and into a net (Fig. 4-39). Assume
that he is launched with a speed of 26.5 m/s and at an angle of 53.0°.
(a) Treating him as a particle, calculate his clearance over the first
wheel. (b) If he reached maximum height over the middle wheel, by
how much did he clear it? (c) How far from the cannon should the
net’s center have been positioned (neglect air drag)?

Figure 4-38 Problem 41.
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Figure 4-39 Problem 42.

*43 ILw A ball is shot from the ground into the air. At a height
of 9.1 m, its velocity is v = (7. 61 + 6. l]) m/s, with 1 horizontal andj
upward. (a) To what maximum height does the ball rise? (b) What
total horizontal distance does the ball travel? What are the
(c) magnitude and (d) angle (below the horizontal) of the ball’s ve-
locity just before it hits the ground?

*44 A baseball leaves a pitcher’s hand horizontally at a speed of
161 km/h. The distance to the batter is 18.3 m. (a) How long does the
ball take to travel the first half of that distance? (b) The second half?
(c) How far does the ball fall freely during the first half? (d) During
the second half? (e) Why aren’t the quantities in (c) and (d) equal?

*45 In Fig. 4-40, a ball is launched with a velocity of magnitude
10.0 m/s, at an angle of 50.0° to the horizontal. The launch point is at
the base of a ramp of horizon-

tal length d;, = 6.00m and

height d, = 3.60 m. A plateau Vo dy

is located at the top of the Ball _L

ramp. (a) Does the ball land on

the ramp or the plateau? When |‘; & *’l

it lands, what are the (b) mag- Figure 4-40 Problem 45.
nitude and (c) angle of its dis-

placement from the launch point?

*46 @ %= In basketball, hang is an illusion in which a player
seems to weaken the gravitational acceleration while in midair. The
illusion depends much on a skilled player’s ability to rapidly shift



the ball between hands during the flight, but it might also be sup-
ported by the longer horizontal distance the player travels in the
upper part of the jump than in the lower part. If a player jumps
with an initial speed of v, = 7.00 m/s at an angle of 6, = 35.0°,
what percent of the jump’s range does the player spend in the up-
per half of the jump (between maximum height and half maxi-
mum height)?

*e47 ssM WWW A batter hits a pitched ball when the center of
the ball is 1.22 m above the ground. The ball leaves the bat at an
angle of 45° with the ground. With that launch, the ball should have
a horizontal range (returning to the launch level) of 107 m. (a)
Does the ball clear a 7.32-m-high fence that is 97.5 m horizontally
from the launch point? (b) At the fence, what is the distance be-
tween the fence top and the ball center?

48 @ In Fig. 4-41, a ball is
thrown up onto a roof, landing
4.00 s later at height 7 = 20.0 m
above the release level. The
ball’s path just before landing is
angled at 6= 60.0° with the
roof. (a) Find the horizontal dis-
tance d it travels. (See the hint
to Problem 39.) What are the ‘
(b) magnitude and (c) angle
(relative to the horizontal) of
the ball’s initial velocity?

Figure 4-41 Problem 48.

*49 ssM A football kicker can give the ball an initial speed of
25 m/s. What are the (a) least and (b) greatest elevation angles at
which he can kick the ball to score a field goal from a point 50 m in
front of goalposts whose horizontal bar is 3.44 m above the ground?

ees50 (@ Two seconds after being projected from ground level, a
projectile is displaced 40 m horizontally and 53 m vertically
above its launch point. What are the (a) horizontal and (b)
vertical components of the initial velocity of the projectile? (c)
At the instant the projectile achieves its maximum height above
ground level, how far is it displaced horizontally from the launch
point?

eee51 =4 A skilled skier knows to jump upward before reaching a
downward slope. Consider a jump in which the launch speed is
vy = 10 m/s, the launch angle is 6, = 11.3°, the initial course is
approximately flat, and the steeper track has a slope of 9.0°
Figure 4-42a shows a prejump that allows the skier to land on the top
portion of the steeper track. Figure 4-42b shows a jump at the edge
of the steeper track. In Fig. 4-42q, the skier lands at approximately
the launch level. (a) In the landing, what is the angle ¢ between the
skier’s path and the slope? In Fig. 4-42b, (b) how far below the
launch level does the skier land and (c) what is ¢? (The greater fall
and greater ¢ can result in loss of control in the landing. )

A’\ ,
.

(a) (b)
Figure 4-42 Problem 51.
ee52 A ball is to be shot from level ground toward a wall at dis-

tance x (Fig. 4-43a). Figure 4-43b shows the y component v,, of the
ball’s velocity just as it would reach the wall, as a function of that
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distance x. The scaling is set by v\, = 5.0 m/s and x, = 20 m. What
is the launch angle?

y

-

X

vy (m/s)
=

(@)
—Vy
x (m)

(b)
Figure 4-43 Problem 52.

es53 @ In Fig. 4-44, a baseball is hit at a height &~ = 1.00 m and
then caught at the same height. It travels alongside a wall, moving
up past the top of the wall 1.00 s after it is hit and then down past
the top of the wall 4.00 s later, at distance D = 50.0 m farther along
the wall. (a) What horizontal distance is traveled by the ball from
hit to catch? What are the (b) magnitude and (c) angle (relative to
the horizontal) of the ball’s velocity just after being hit? (d) How
high is the wall?

Figure 4-44 Problem 53.

ee54 @ A ball is to be shot from
level ground with a certain speed. 200
Figure 4-45 shows the range Rit will =
have versus the launch angle 6. The 2 19
value of 6, determines the flight

time; let ¢,,,, represent the maximum

flight time. What is the least speed 0
the ball will have during its flight if
6, is chosen such that the flight time
is 0.500¢,,,,?

ee55 SSM A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide.
Which step does the ball hit first?

00
Figure 4-45 Problem 54.

Module 4-5 Uniform Circular Motion

°56 An Earth satellite moves in a circular orbit 640 km
(uniform circular motion) above Earth’s surface with a period of
98.0 min. What are (a) the speed and (b) the magnitude of the
centripetal acceleration of the satellite?

*57 A carnival merry-go-round rotates about a vertical axis at a
constant rate. A man standing on the edge has a constant speed of
3.66 m/s and a centripetal acceleration @ of magnitude 1.83 m/s?.
Position vector 7 locates him relative to the rotation axis. (a) What
is the magnitude of 7? What is the direction of 7 when @ is di-
rected (b) due east and (c) due south?

°58 A rotating fan completes 1200 revolutions every minute.
Consider the tip of a blade, at a radius of 0.15 m. (a) Through what
distance does the tip move in one revolution? What are (b) the
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tip’s speed and (c) the magnitude of its acceleration? (d) What is
the period of the motion?

*59 1Lw A woman rides a carnival Ferris wheel at radius 15 m,
completing five turns about its horizontal axis every minute. What
are (a) the period of the motion, the (b) magnitude and (c) direction
of her centripetal acceleration at the highest point, and the (d) mag-
nitude and (e) direction of her centripetal acceleration at the lowest
point?

*60 A centripetal-acceleration addict rides in uniform circular
motion with radius » = 3.00 m. At one instant his acceleration is
@ = (6.00 m/s?)i + (—4.00 m/s?)]. At that instant, what are the val-
ues of (a) V-d and (b) 7 X a?

°61 When a large star becomes a supernova, its core may be
compressed so tightly that it becomes a neutron star, with a radius of
about 20 km (about the size of the San Francisco area). If a neutron
star rotates once every second, (a) what is the speed of a particle on
the star’s equator and (b) what is the magnitude of the particle’s cen-
tripetal acceleration? (c) If the neutron star rotates faster, do the an-
swers to (a) and (b) increase, decrease, or remain the same?

°62 What is the magnitude of the acceleration of a sprinter run-
ning at 10 m/s when rounding a turn of radius 25 m?

63 @ At =2.00s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s2)i + (4.00 m/s2)]. It moves at
constant speed. At time #, = 5.00s, the particle’s acceleration is
(4.00 m/s)1 + (—6.00 m/s?)]. What is the radius of the path taken
by the particle if t, — ¢, is less than one period?

**64 @ A particle moves horizontally in uniform circular motion,
over a horizontal xy plane. At one instant, it moves through the
point at coordinates (4.00 m, 4.00 m) with a velocity of —5.001 m/s
and an acceleration of +12.5) m/s2. What are the (a) x and (b) y
coordinates of the center of the circular path?

*65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel
in uniform circular motion on the floor of a merry-go-round as the
ride turns. They are on the same radial line. At one instant, the ac-
celeration of the purse is (2.00 m/s)i + (4.00 m/s?)]. At that instant
and in unit-vector notation, what is the acceleration of the wallet?

*66 A particle moves along a circular path over a horizontal xy
coordinate system, at constant speed. At time #; = 4.00 s, it is at point
(5.00 m, 6.00 m) with velocity (3.00 m/s)j and acceleration in the
positive x direction. At time £, = 10.0 s, it has velocity (—3.00 m/s)i
and acceleration in the positive y direction. What are the (a) x and
(b) y coordinates of the center of the circular path if #, — 7, is less
than one period?

ee67 SSM WWW A boy whirls a stone in a horizontal circle of
radius 1.5 m and at height 2.0 m above level ground. The string
breaks, and the stone flies off horizontally and strikes the ground
after traveling a horizontal distance of 10 m. What is the magnitude
of the centripetal acceleration of the stone during the circular
motion?

o638 (@ A cat rides a merry-go-round turning with uniform
circular motion. At time #; = 2.00s, the cat’s velocity is Vv, =
(3.00 m/s)i + (4.00 m/s)j, measured on a horizontal xy coordinate
system. At t, = 5.00 s, the cat’s velocity is v, = (—=3.00 m/s)i +
(—4.00 m/s)j. What are (a) the magnitude of the cat’s centripetal
acceleration and (b) the cat’s average acceleration during the time
interval t, — t;, which is less than one period?

Module 4-6 Relative Motion in One Dimension

*69 A cameraman on a pickup truck is traveling westward at
20 km/h while he records a cheetah that is moving westward
30 km/h faster than the truck. Suddenly, the cheetah stops, turns,
and then runs at 45 km/h eastward, as measured by a suddenly
nervous crew member who stands alongside the cheetah’s path. The
change in the animal’s velocity takes 2.0 s. What are the (a) magni-
tude and (b) direction of the animal’s acceleration according to the
cameraman and the (c) magnitude and (d) direction according to
the nervous crew member?

°70 A boat is traveling upstream in the positive direction of an x
axis at 14 km/h with respect to the water of a river. The water is
flowing at 9.0 km/h with respect to the ground. What are the (a)
magnitude and (b) direction of the boat’s velocity with respect to
the ground? A child on the boat walks from front to rear at
6.0 km/h with respect to the boat. What are the (c) magnitude and
(d) direction of the child’s velocity with respect to the ground?

*71 A suspicious-looking man runs as fast as he can along a
moving sidewalk from one end to the other, taking 2.50 s. Then se-
curity agents appear, and the man runs as fast as he can back along
the sidewalk to his starting point, taking 10.0 s. What is the ratio of
the man’s running speed to the sidewalk’s speed?

Module 4-7 Relative Motion in Two Dimensions

°72 A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He can
legally pass the ball to a teammate as long as the ball’s velocity rela-
tive to the field does not have a positive x component. Suppose the
player runs at speed 4.0 m/s relative to the field while he passes the
ball with velocity Vgp relative to himself. If vy, has magnitude
6.0 m/s, what is the smallest angle it can have for the pass to be legal?

*73 Two highways intersect as shown in Fig. 4-46. At the instant
shown, a police car P is distance dp = 800 m from the intersection
and moving at speed vp = 80 km/h. Motorist M is distance d), =
600 m from the intersection and moving at speed v, = 60 km/h.

dp

Figure 4-46 Problem 73.

(a) In unit-vector notation, what is the velocity of the motorist
with respect to the police car? (b) For the instant shown in Fig. 4-46,
what is the angle between the velocity found in (a) and the line of
sight between the two cars? (c) If the cars maintain their veloci-
ties, do the answers to (a) and (b) change as the cars move nearer
the intersection?



e74 After flying for 15 min in a wind blowing 42 km/h at an
angle of 20° south of east, an airplane pilot is over a town that is
55 km due north of the starting point. What is the speed of the air-
plane relative to the air?

75 ssM A train travels due south at 30 m/s (relative to the
ground) in a rain that is blown toward the south by the wind. The
path of each raindrop makes an angle of 70° with the vertical, as
measured by an observer stationary on the ground. An observer on
the train, however, sees the drops fall perfectly vertically.
Determine the speed of the raindrops relative to the ground.

*76 A light plane attains an airspeed of 500 km/h. The pilot sets
out for a destination 800 km due north but discovers that the plane
must be headed 20.0° east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b) direc-
tion of the wind velocity?

*77 ssm Snow is falling vertically at a constant speed of 8.0 m/s.
At what angle from the vertical do the snowflakes appear to be
falling as viewed by the driver of a car traveling on a straight, level
road with a speed of 50 km/h?

*78 In the overhead view of N
Fig. 4-47, Jeeps P and B race » 1
E

along straight lines, across flat
0, A
B

terrain, and past stationary bor-

der guard A. Relative to the

guard, B travels at a constant

speed of 20.0 m/s, at the angle

6, = 30.0°. Relative to the guard,

P has accelerated from rest at a

constant rate of 0.400 m/s” at the Figure 4-47 Problem 78.
angle 6, = 60.0°. At a certain time

during the acceleration, P has a speed of 40.0 m/s. At that time, what
are the (a) magnitude and (b) direction of the velocity of P relative to
B and the (c) magnitude and (d) direction of the acceleration of P
relative to B?

79 ssm ILW Two ships, A and B, leave port at the same time.
Ship A travels northwest at 24 knots, and ship B travels at 28 knots
in a direction 40° west of south. (1 knot = 1 nautical mile per hour;
see Appendix D.) What are the (a) magnitude and (b) direction of
the velocity of ship A relative to B? (c) After what time will the
ships be 160 nautical miles apart? (d) What will be the bearing of B
(the direction of B’s position) relative to A at that time?

80 @ A 200-m-wide river flows due east at a uniform speed of
2.0 m/s. A boat with a speed of 8.0 m/s relative to the water leaves
the south bank pointed in a direction 30° west of north. What are
the (a) magnitude and (b) direction of the boat’s velocity relative
to the ground? (c) How long does the boat take to cross the river?

«ee81 @ Ship A is located 4.0 km north and 2.5 km east of ship
B. Ship A has a velocity of 22 km/h toward the south, and ship B
has a velocity of 40 km/h in a direction 37° north of east. (a)
What is the velocity of A relative to B in unit-vector notation
with i toward the east? (b) Write an expression (in terms of i and j)
for the position of A relative to B as a function of ¢, where t = 0
when the ships are in the positions described above. (c) At what
time is the separation between the ships least? (d) What is that
least separation?

ee82 @ A 200-m-wide river has a uniform flow speed of 1.1 m/s
through a jungle and toward the east. An explorer wishes to
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leave a small clearing on the south bank and cross the river in a
powerboat that moves at a constant speed of 4.0 m/s with respect
to the water. There is a clearing on the north bank 82 m up-
stream from a point directly opposite the clearing on the south
bank. (a) In what direction must the boat be pointed in order to
travel in a straight line and land in the clearing on the north
bank? (b) How long will the boat take to cross the river and land
in the clearing?

Additional Problems

83 A woman who can row a boat at 6.4 km/h in still water faces a
long, straight river with a width of 6.4 km and a current of 3.2 km/h.
Let i point directly across the river and j point directly down-
stream. If she rows in a straight line to a point directly opposite her
starting position, (a) at what angle to 1 must she point the boat and
(b) how long will she take? (c) How long will she take if, instead,
she rows 3.2 km down the river and then back to her starting
point? (d) How long if she rows 3.2 km up the river and then back
to her starting point? (e) At what angle to 1 should she point the
boat if she wants to cross the river in the shortest possible time? (f)
How long is that shortest time?

84 In Fig. 4-48a, a sled moves in the negative x direction at con-
stant speed v, while a ball of ice is shot from the sled with a velocity
Vo = vod + vg,] relative to the sled. When the ball lands, its hori-
zontal displacement Ax,, relative to the ground (from its launch
position to its landing position) is measured. Figure 4-48b gives
Axy, as a function of v,. Assume the ball lands at approximately
its launch height. What are the values of (a) vy, and (b) v,,? The
ball’s displacement Ax,, relative to the sled can also be measured.
Assume that the sled’s velocity is not changed when the ball is
shot. What is Ax,, when v is (¢) 5.0 m/s and (d) 15 m/s?

40
Y
- Ball =
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(@)
40
v, (m/s)

(b)
Figure 4-48 Problem 84.

85 You are kidnapped by political-science majors (who are
upset because you told them political science is not a real
science). Although blindfolded, you can tell the speed of their
car (by the whine of the engine), the time of travel (by mentally
counting off seconds), and the direction of travel (by turns
along the rectangular street system). From these clues, you
know that you are taken along the following course: 50 km/h for
2.0 min, turn 90° to the right, 20 km/h for 4.0 min, turn 90° to the
right, 20 km/h for 60 s, turn 90° to the left, 50 km/h for 60 s, turn
90° to the right, 20 km/h for 2.0 min, turn 90° to the left, 50 km/h
for 30 s. At that point, (a) how far are you from your starting
point, and (b) in what direction relative to your initial direction
of travel are you?



90 CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

86 A radar station detects an airplane approaching directly from
the east. At first observation, the airplane is at distance d; = 360 m
from the station and at angle 6, = 40° above the horizon (Fig. 4-49).
The airplane is tracked through an angular change A6 = 123° in the
vertical east—west plane; its distance is then d, = 790 m. Find the
(a) magnitude and (b) direction of the airplane’s displacement dur-
ing this period.

Airplane

A G Ay

Figure 4-49 Problem 86.

87 ssm A baseball is hit at ground level. The ball reaches its
maximum height above ground level 3.0 s after being hit. Then
2.5 s after reaching its maximum height, the ball barely clears a
fence that is 97.5 m from where it was hit. Assume the ground is
level. (a) What maximum height above ground level is reached by
the ball? (b) How high is the fence? (c) How far beyond the fence
does the ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere en-
counter the jet stream, an eastward airflow that can affect a plane’s
speed relative to Earth’s surface. If a pilot maintains a certain speed
relative to the air (the plane’s airspeed), the speed relative to the sur-
face (the plane’s ground speed) is more when the flight is in the di-
rection of the jet stream and less when the flight is opposite the jet
stream. Suppose a round-trip flight is scheduled between two cities
separated by 4000 km, with the outgoing flight in the direction of the
jet stream and the return flight opposite it. The airline computer ad-
vises an airspeed of 1000 km/h, for which the difference in flight
times for the outgoing and return flights is 70.0 min. What jet-stream
speed is the computer using?

89 SSM A particle starts from the origin at ¢+ = 0 with a velocity
of 8.0] m/s and moves in the xy plane with constant acceleration
(4.01 + 2.0)) m/s2. When the particle’s x coordinate is 29 m, what
are its (a) y coordinate and (b) speed?

90 At what initial speed
must the basketball player in
Fig. 4-50 throw the ball, at an-
gle 6, = 55° above the hori-
zontal, to make the foul shot?
The horizontal distances are
d; = 1.0ftand d, = 14 ft, and
the heights are h; =7.0ft
and h, = 10 ft.

91 During volcanic erup-
tions, chunks of solid rock
can be blasted out of the vol-
cano; these projectiles are
called volcanic bombs. Figure 4-51 shows a cross section of Mt.
Fuji, in Japan. (a) At what initial speed would a bomb have to be
ejected, at angle 6, = 35° to the horizontal, from the vent at A in
order to fall at the foot of the volcano at B, at vertical distance
h = 3.30 km and horizontal distance d = 9.40 km? Ignore, for the

Figure 4-50 Problem 90.

moment, the effects of air on the bomb’s travel. (b) What would
be the time of flight? (c) Would the effect of the air increase or
decrease your answer in (a)?

Figure 4-51 Problem 91.

92 An astronaut is rotated in a horizontal centrifuge at a radius
of 5.0 m. (a) What is the astronaut’s speed if the centripetal accel-
eration has a magnitude of 7.0g? (b) How many revolutions per
minute are required to produce this acceleration? (c) What is the
period of the motion?

93 ssm Oasis A is 90 km due west of oasis B. A desert camel
leaves A and takes 50 h to walk 75 km at 37° north of due east.
Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h.
What are the (a) magnitude and (b) direction of the camel’s dis-
placement relative to A at the resting point? From the time the
camel leaves A until the end of the rest period, what are the (c)
magnitude and (d) direction of its average velocity and (e) its aver-
age speed? The camel’s last drink was at A;it must be at B no more
than 120 h later for its next drink. If it is to reach B just in time, what
must be the (f) magnitude and (g) direction of its average velocity
after the rest period?

94 & Curtain of death. A large metallic asteroid strikes Earth
and quickly digs a crater into the rocky material below ground level
by launching rocks upward and outward. The following table gives
five pairs of launch speeds and angles (from the horizontal) for such
rocks, based on a model of crater formation. (Other rocks, with inter-
mediate speeds and angles, are also launched.) Suppose that you are
at x = 20 km when the asteroid strikes the ground at time ¢ = 0 and
position x =0 (Fig. 4-52). (a) At t=20s, what are the x and y
coordinates of the rocks headed in your direction from launches A
through E? (b) Plot these coordinates and then sketch a curve
through the points to include rocks with intermediate launch speeds
and angles. The curve should indicate what you would see as you look
up into the approaching rocks.

Launch  Speed (m/s)  Angle (degrees)
A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0

y

You
I ¢/ x (km)
0 10 20

Figure 4-52 Problem 94.



95 Figure 4-53 shows the straight path of a particle B

across an xy coordinate system as the particle is ac-
celerated from rest during time interval A¢. The ac-
celeration is constant. The xy coordinates for point
A are (4.00 m, 6.00 m); those for point B are (12.0
m, 18.0 m). (a) What is the ratio a,/a, of the acceler-
ation components? (b) What are the coordinates of
the particle if the motion is continued for another
interval equal to A¢;?

)
|L
X

Figure 4-53

96 For women’s volleyball the top of the net is 2.24 m above the
floor and the court measures 9.0 m by 9.0 m on each side of the
net. Using a jump serve, a player strikes the ball at a point that is
3.0 m above the floor and a horizontal distance of 8.0 m from the
net. If the initial velocity of the ball is horizontal, (a) what mini-
mum magnitude must it have if the ball is to clear the net and (b)
what maximum magnitude can it have if the ball is to strike the
floor inside the back line on the other side of the net?

97 ssm A rifle is aimed horizontally at a target 30 m away. The
bullet hits the target 1.9 cm below the aiming point. What are (a) the
bullet’s time of flight and (b) its speed as it emerges from the rifle?

98 A particle is in uniform circular motion about the origin of an
xy coordinate system, moving clockwise with a period of 7.00 s. At
one instant, its position vector (measured from the origin) is
7 = (2.00m)i — (3.00 m)j. At that instant, what is its velocity in
unit-vector notation?

99 In Fig. 4-54, a lump of wet

putty moves in uniform circular mo-  Wheel

tion as it rides at a radius of 20.0 cm

on the rim of a wheel rotating coun- Pu:t/%_
terclockwise with a period of 5.00 —— .

ms. The lump then happens to fly off ! d !
the rim at the 5 o’clock position (as -

if on a clock face). It leaves the rim Figure 4-54 Problem 99.
at a height of 4 = 1.20 m from the floor and at a distance d = 2.50
m from a wall. At what height on the wall does the lump hit?

100 Aniceboat sails across the surface of a frozen lake with con-
stant acceleration produced by the wind. At a certain instant the
boat’s velocity is (6.301 — 8.42]) m/s. Three seconds later, because
of a wind shift, the boat is instantaneously at rest. What is its aver-
age acceleration for this 3.00 s interval?

101 In Fig. 4-55, a ball is shot di-
rectly upward from the ground with
an initial speed of v,=7.00 m/s.
Simultaneously, a construction eleva-
tor cab begins to move upward from
the ground with a constant speed of
v. = 3.00 m/s. What maximum height
does the ball reach relative to (a) the
ground and (b) the cab floor? At what rate does the speed of the ball
change relative to (c) the ground and (d) the cab floor?

Figure 4-55 Problem 101.

102 A magnetic field forces an electron to move in a circle with
radial acceleration 3.0 X 10 m/s?. (a) What is the speed of the elec-
tron if the radius of its circular path is 15 cm? (b) What is the period
of the motion?

103 In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and
2.88 km upward from its release point on the ground. Find (a) the
magnitude of its average velocity and (b) the angle its average ve-
locity makes with the horizontal.

Problem 95.
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104 A ball is thrown horizontally from a height of 20 m and hits
the ground with a speed that is three times its initial speed. What is
the initial speed?

105 A projectile is launched with an initial speed of 30 m/s at an
angle of 60° above the horizontal. What are the (a) magnitude and
(b) angle of its velocity 2.0 s after launch, and (c) is the angle above
or below the horizontal? What are the (d) magnitude and (e) angle
of its velocity 5.0 s after launch, and (f) is the angle above or below
the horizontal?

106 The position vector for a proton is initially 7=
5.01 — 6.0j + 2.0k and then later is 7 = —2.0i + 6.0j + 2.0k, all
in meters. (a) What is the proton’s displacement vector, and (b) to

what plane is that vector parallel?

107 A particle P travels with con-

stant speed on a circle of radius r =

3.00 m (Fig. 4-56) and completes one

revolution in 20.0s. The particle

passes through O at time ¢ = 0. State

the following vectors in magnitude-

angle notation (angle relative to the

positive direction of x). With respect

to O, find the particle’s position vec-

tor at the times ¢ of (a) 5.00s, (b) 0
7.50s, and (c) 10.0s. (d) For the .

5.00s inter\(/a% from t(hg end of Figure 4-56 Problem 107.
the fifth second to the end of the
tenth second, find the particle’s displacement. For that interval,
find (e) its average velocity and its velocity at the (f) beginning and
(g) end. Next, find the acceleration at the (h) beginning and (i) end
of that interval.

108 The fast French train known as the TGV (Train 2 Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train
goes around a curve at that speed and the magnitude of the accel-
eration experienced by the passengers is to be limited to 0.050g,
what is the smallest radius of curvature for the track that can be
tolerated? (b) At what speed must the train go around a curve with
a 1.00 km radius to be at the acceleration limit?

109 (a) If an electron is projected horizontally with a speed of
3.0 X 10° m/s, how far will it fall in traversing 1.0 m of horizontal
distance? (b) Does the answer increase or decrease if the initial
speed is increased?

110 A person walks up a stalled 15-m-long escalator in 90s.
When standing on the same escalator, now moving, the person is
carried up in 60 s. How much time would it take that person to
walk up the moving escalator? Does the answer depend on the
length of the escalator?

111 (a) What is the magnitude of the centripetal acceleration of
an object on Earth’s equator due to the rotation of Earth? (b)
What would Earth’s rotation period have to be for objects on the
equator to have a centripetal acceleration of magnitude 9.8 m/s>?

112 %% The range of a projectile depends not only on v, and 6,
but also on the value g of the free-fall acceleration, which varies
from place to place. In 1936, Jesse Owens established a world’s
running broad jump record of 8.09 m at the Olympic Games at
Berlin (where g = 9.8128 m/s?). Assuming the same values of v,
and 6, by how much would his record have differed if he had com-
peted instead in 1956 at Melbourne (where g = 9.7999 m/s?)?
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113 Figure 4-57 shows the path y
taken by a drunk skunk over level
ground, from initial point i to final dy
point f The angles are 6; = 30.0°, O
6, = 50.0°, and 6#; = 80.0°, and the d 6y
distances are d; = 5.00 m, d, = 8.00 ‘ 9, dy

m, and d; = 12.0 m. What are the (a) 7 x
magnitude and (b) angle of the

skunk’s displacement from i to f?

114 The position vector 7 of a
particle moving in the xy plane is

7 =24 + 2 sin[(w/4 rad/s)i]j, with /
7 in meters and ¢ in seconds. (a)
Calculate the x and y components

of the particle’s position at ¢ = 0, 1.0, 2.0, 3.0, and 4.0 s and
sketch the particle’s path in the xy plane for the interval 0 < ¢t <
4.0 s. (b) Calculate the components of the particle’s velocity at
t = 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the
path of the particle and in the direction the particle is moving at
each time by drawing the velocity vectors on the plot of the parti-
cle’s path in part (a). (c) Calculate the components of the parti-
cle’s acceleration at t = 1.0,2.0,and 3.0 s.

Figure 4-57 Problem 113.

115 Anelectron having an initial horizontal velocity of magnitude
1.00 X 10° cm/s travels into the region between two horizontal metal
plates that are electrically charged. In that region, the electron trav-
els a horizontal distance of 2.00 cm and has a constant downward ac-
celeration of magnitude 1.00 X 107 cm/s? due to the charged plates.
Find (a) the time the electron takes to travel the 2.00 cm, (b) the ver-
tical distance it travels during that time, and the magnitudes of its (c)
horizontal and (d) vertical velocity components as it emerges from
the region.

116  An elevator without a ceiling is ascending with a constant
speed of 10 m/s. A boy on the elevator shoots a ball directly up-
ward, from a height of 2.0 m above the elevator floor, just as the el-
evator floor is 28 m above the ground. The initial speed of the ball
with respect to the elevator is 20 m/s. (a) What maximum height
above the ground does the ball reach? (b) How long does the ball
take to return to the elevator floor?

117 A football player punts the football so that it will have a
“hang time” (time of flight) of 4.5 s and land 46 m away. If the ball
leaves the player’s foot 150 cm above the ground, what must be the
(a) magnitude and (b) angle (relative to the horizontal) of the
ball’s initial velocity?

118 An airport terminal has a moving sidewalk to speed passen-
gers through a long corridor. Larry does not use the moving side-
walk; he takes 150 s to walk through the corridor. Curly, who sim-
ply stands on the moving sidewalk, covers the same distance in 70 s.
Moe boards the sidewalk and walks along it. How long does Moe
take to move through the corridor? Assume that Larry and Moe
walk at the same speed.

119 A wooden boxcar is moving along a straight railroad track
at speed v;. A sniper fires a bullet (initial speed v,) at it from a
high-powered rifle. The bullet passes through both lengthwise
walls of the car, its entrance and exit holes being exactly opposite
each other as viewed from within the car. From what direction, rel-
ative to the track, is the bullet fired? Assume that the bullet is not
deflected upon entering the car, but that its speed decreases by
20%.Take v; = 85 km/h and v, = 650 m/s. (Why don’t you need to
know the width of the boxcar?)

120 A sprinter running on a circular track has a velocity of con-
stant magnitude 9.20 m/s and a centripetal acceleration of magni-
tude 3.80 m/s?>. What are (a) the track radius and (b) the period of
the circular motion?

121 Suppose that a space probe can withstand the stresses of a
20g acceleration. (a) What is the minimum turning radius of such a
craft moving at a speed of one-tenth the speed of light? (b) How
long would it take to complete a 90° turn at this speed?

122 @ You are to throw a ball with

a speed of 12.0 m/s at a target that is Target
height /& = 5.00 m above the level at /—"ﬁ
which you release the ball (Fig. 4-58). Rl

You want the ball’s velocity to be ol h
horizontal at the instant it reaches /; l
the target. (a) At what angle # above -4_L___________ -

the horizontal must you throw the
ball? (b) What is the horizontal dis-
tance from the release point to the
target? (c) What is the speed of the
ball just as it reaches the target?

Figure 4-58 Problem 122.

High trajectory

123 A projectile is fired with an N
initial speed v, = 30.0 m/s from level Y0 /" Low trajectory

ground at a target that is on the =
ground, at distance R = 20.0 m, as .
shown in Fig. 4-59. What are the (a) | R |

least and (b) greatest launch angles
that will allow the projectile to hit the
target?

Figure 4-59 Problem 123.

124 A graphing surprise. At time ¢ = 0, a burrito is launched from
level ground, with an initial speed of 16.0 m/s and launch angle 6.
Imagine a position vector 7 continuously directed from the
launching point to the burrito during the flight. Graph the magni-
tude r of the position vector for (a) 6, = 40.0° and (b) 6, = 80.0°. For
6, = 40.0°, (c) when does r reach its maximum value, (d) what is
that value, and how far (e) horizontally and (f) vertically is the bur-
rito from the launch point? For 6, = 80.0°, (g) when does r reach its
maximum value, (h) what is that value, and how far (i) horizontally
and (j) vertically is the burrito from the launch point?

125 A cannon located at sea level fires a ball with initial speed
82 m/s and initial angle 45°. The ball lands in the water after travel-
ing a horizontal distance 686 m. How much greater would the hori-
zontal distance have been had the cannon been 30 m higher?

126 The magnitude of the velocity of a projectile when it is at its
maximum height above ground level is 10.0 m/s. (a) What is the
magnitude of the velocity of the projectile 1.00 s before it achieves
its maximum height? (b) What is the magnitude of the velocity of
the projectile 1.00 s after it achieves its maximum height? If we
take x =0 and y = 0 to be at the point of maximum height and posi-
tive x to be in the direction of the velocity there, what are the (c) x
coordinate and (d) y coordinate of the projectile 1.00 s before it
reaches its maximum height and the (e) x coordinate and (f) y co-
ordinate 1.0 s after it reaches its maximum height?

127 A frightened rabbit moving at 6.00 m/s due east runs onto a
large area of level ice of negligible friction. As the rabbit slides
across the ice, the force of the wind causes it to have a constant ac-
celeration of 1.40 m/s?, due north. Choose a coordinate system with
the origin at the rabbit’s initial position on the ice and the positive
x axis directed toward the east. In unit-vector notation, what are
the rabbit’s (a) velocity and (b) position when it has slid for 3.00 s?



128 The pilot of an aircraft flies due east relative to the ground
in a wind blowing 20.0 km/h toward the south. If the speed of the
aircraft in the absence of wind is 70.0 km/h, what is the speed of the
aircraft relative to the ground?

129 The pitcher in a slow-pitch softball game releases the ball at a
point 3.0 ft above ground level. A stroboscopic plot of the position of
the ball is shown in Fig. 4-60, where the readings are 0.25 s apart and
the ball is released at ¢ = 0. (a) What is the initial speed of the ball?
(b) What is the speed of the ball at the instant it reaches its maxi-
mum height above ground level? (c) What is that maximum height?

10—
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Figure 4-60 Problem 129.

130 Some state trooper departments use aircraft to enforce
highway speed limits. Suppose that one of the airplanes has a speed
of 135 mi/h in still air. It is flying straight north so that it is at all
times directly above a north-south highway. A ground observer
tells the pilot by radio that a 70.0 mi/h wind is blowing but neglects
to give the wind direction. The pilot observes that in spite of the
wind the plane can travel 135 mi along the highway in 1.00 h. In
other words, the ground speed is the same as if there were no wind.
(a) From what direction is the wind blowing? (b) What is the head-
ing of the plane; that is, in what direction does it point?

131 A golfer tees off from the top of a rise, giving the golf ball an
initial velocity of 43.0 m/s at an angle of 30.0° above the horizontal.
The ball strikes the fairway a horizontal distance of 180 m from the
tee. Assume the fairway is level. (a) How high is the rise above the
fairway? (b) What is the speed of the ball as it strikes the fairway?

132 A track meet is held on a planet in a distant solar system. A
shot-putter releases a shot at a point 2.0 m above ground level. A
stroboscopic plot of the position of the shot is shown in Fig. 4-61,
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Figure 4-61 Problem 132.
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where the readings are 0.50 s apart and the shot is released at
time ¢ = 0. (a) What is the initial velocity of the shot in unit-vector
notation? (b) What is the magnitude of the free-fall acceleration
on the planet? (c) How long after it is released does the shot
reach the ground? (d) If an identical throw of the shot is made on
the surface of Earth, how long after it is released does it reach the
ground?

133 A helicopter is flying in a straight line over a level field at
a constant speed of 6.20 m/s and at a constant altitude of 9.50 m.
A package is ejected horizontally from the helicopter with an
initial velocity of 12.0 m/s relative to the helicopter and in a di-
rection opposite the helicopter’s motion. (a) Find the initial
speed of the package relative to the ground. (b) What is the hori-
zontal distance between the helicopter and the package at the
instant the package strikes the ground? (c) What angle does the
velocity vector of the package make with the ground at the in-
stant before impact, as seen from the ground?

134 A car travels around a flat circle on the ground, at a constant
speed of 12.0 m/s. At a certain instant the car has an acceleration of
3.00 m/s? toward the east. What are its distance and direction from
the center of the circle at that instant if it is traveling (a) clockwise
around the circle and (b) counterclockwise around the circle?

135 You throw a ball from a cliff with an initial velocity of
15.0 m/s at an angle of 20.0° below the horizontal. Find (a) its hori-
zontal displacement and (b) its vertical displacement 2.30 s later.

136 A baseball is hit at Fenway Park in Boston at a point
0.762 m above home plate with an initial velocity of 33.53 m/s di-
rected 55.0° above the horizontal. The ball is observed to clear
the 11.28-m-high wall in left field (known as the “green mon-
ster”) 5.00 s after it is hit, at a point just inside the left-field foul-
line pole. Find (a) the horizontal distance down the left-field foul
line from home plate to the wall; (b) the vertical distance by
which the ball clears the wall; (c) the horizontal and vertical dis-
placements of the ball with respect to home plate 0.500 s before
it clears the wall.

137 A transcontinental flight of 4350 km is scheduled to take
50 min longer westward than eastward. The airspeed of the air-
plane is 966 km/h, and the jet stream it will fly through is pre-
sumed to move due east. What is the assumed speed of the jet
stream?

138 A woman can row a boat at 6.40 km/h in still water. (a) If
she is crossing a river where the current is 3.20 km/h, in what di-
rection must her boat be headed if she wants to reach a point di-
rectly opposite her starting point? (b) If the river is 6.40 km
wide, how long will she take to cross the river? (c) Suppose that
instead of crossing the river she rows 3.20 km down the river and
then back to her starting point. How long will she take? (d) How
long will she take to row 3.20 km up the river and then back to
her starting point? (e) In what direction should she head the
boat if she wants to cross in the shortest possible time, and what
is that time?
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Force and Motion-|

9-1 NEWTON’S FIRST AND SECOND LAWS

Learning Objectives
After reading this module, you should be able to . . .

5.01 Identify that a force is a vector quantity and thus has object as a particle and drawing the forces acting on it as
both magnitude and direction and also components. vectors with their tails anchored on the particle.

5.02 Given two or more forces acting on the same particle, 5.06 Apply the relationship (Newton's second law) between
add the forces as vectors to get the net force. the net force on an object, the mass of the object, and the

5.03 Identify Newton's first and second laws of motion. acceleration produced by the net force.

5.04 |dentify inertial reference frames. 5.07 Identify that only external forces on an object can cause

5.05 Sketch a free-body diagram for an object, showing the the object to accelerate.

Key Ideas

@ The velocity of an object can change (the object can accel- @ The mass of a body is the characteristic of that body that

erate) when the object is acted on by one or more forces relates the body’s acceleration to the net force causing the

(pushes or pulls) from other objects. Newtonian mechanics acceleration. Masses are scalar quantities.

relates accelerations and forces. @ The net force F,; on a body with mass m is related to the

@ Forces are vector quantities. Their magnitudes are defined body's acceleration @ by

in terms of the acceleration they would give the standard kilo- A _

gram. A force that accelerates that standard body by exactly Foe = M4,

1 m/s? is defined to have a magnitude of 1 N. The direction of

a force is the direction of the acceleration it causes. Forces which maybe written in the component versions

are combined according to the rules of vector algebra. The Eyn = ma, Fou,=ma, and F.. = ma,
. . X ) 2 :

net force on a body is the vector sum of all the forces acting Y ’

on the body. The second law indicates that in Sl units

@ If there is no net force on a body, the body remains at rest if
it is initially at rest or moves in a straight line at constant
speed if it is in motion.

1N =1kg-m/s’.

@ A free-body diagram is a stripped-down diagram in which
@ Reference frames in which Newtonian mechanics holds are only one body is considered. That body is represented by

called inertial reference frames or inertial frames. Reference either a sketch or a dot. The external forces on the body are
frames in which Newtonian mechanics does not hold are drawn, and a coordinate system is superimposed, oriented
called noninertial reference frames or noninertial frames. so as to simplify the solution.

What Is Physics?

We have seen that part of physics is a study of motion, including accelerations,
which are changes in velocities. Physics is also a study of what can cause an object
to accelerate. That cause is a force, which is, loosely speaking, a push or pull on the
object. The force is said to act on the object to change its velocity. For example,
when a dragster accelerates, a force from the track acts on the rear tires to cause
the dragster’s acceleration. When a defensive guard knocks down a quarterback, a
force from the guard acts on the quarterback to cause the quarterback’s backward
acceleration. When a car slams into a telephone pole, a force on the car from the

94
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pole causes the car to stop. Science, engineering, legal, and medical journals are
filled with articles about forces on objects, including people.

A Heads Up. Many students find this chapter to be more challenging than the
preceding ones. One reason is that we need to use vectors in setting up equations—
we cannot just sum some scalars. So, we need the vector rules from Chapter 3.
Another reason is that we shall see a lot of different arrangements: objects will
move along floors, ceilings, walls, and ramps. They will move upward on ropes
looped around pulleys or by sitting in ascending or descending elevators.
Sometimes, objects will even be tied together.

However, in spite of the variety of arrangements, we need only a single key
idea (Newton’s second law) to solve most of the homework problems. The pur-
pose of this chapter is for us to explore how we can apply that single key idea to
any given arrangement. The application will take experience—we need to solve
lots of problems, not just read words. So, let’s go through some of the words and
then get to the sample problems.

Newtonian Mechanics

The relation between a force and the acceleration it causes was first understood
by Isaac Newton (1642-1727) and is the subject of this chapter. The study of that
relation, as Newton presented it, is called Newtonian mechanics. We shall focus
on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the in-
teracting bodies are very large—an appreciable fraction of the speed of light—we
must replace Newtonian mechanics with Einstein’s special theory of relativity,
which holds at any speed, including those near the speed of light. If the interacting
bodies are on the scale of atomic structure (for example, they might be electrons
in an atom), we must replace Newtonian mechanics with quantum mechanics.
Physicists now view Newtonian mechanics as a special case of these two more
comprehensive theories. Still, it is a very important special case because it applies
to the motion of objects ranging in size from the very small (almost on the scale of
atomic structure) to astronomical (galaxies and clusters of galaxies).

Newton’s First Law

Before Newton formulated his mechanics, it was thought that some influence,
a “force,” was needed to keep a body moving at constant velocity. Similarly, a
body was thought to be in its “natural state” when it was at rest. For a body to
move with constant velocity, it seemingly had to be propelled in some way, by
a push or a pull. Otherwise, it would “naturally” stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden
floor, it does indeed slow and then stop. If you want to make it move across the
floor with constant velocity, you have to continuously pull or push it.

Send a puck sliding over the ice of a skating rink, however, and it goes a lot
farther. You can imagine longer and more slippery surfaces, over which the puck
would slide farther and farther. In the limit you can think of a long, extremely
slippery surface (said to be a frictionless surface), over which the puck would
hardly slow. (We can in fact come close to this situation by sending a puck sliding
over a horizontal air table, across which it moves on a film of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

A Y
"' Newton’s First Law: If no force acts on a body, the body’s velocity cannot
change; that is, the body cannot accelerate.
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Figure 5-1 A force F on the standard
kilogram gives that body an acceleration a.

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

Force

Before we begin working problems with forces, we need to discuss several fea-
tures of forces, such as the force unit, the vector nature of forces, the combining of
forces, and the circumstances in which we can measure forces (without being
fooled by a fictitious force).

Unit. We can define the unit of force in terms of the acceleration a force
would give to the standard kilogram (Fig. 1-3), which has a mass defined to be ex-
actly 1 kg. Suppose we put that body on a horizontal, frictionless surface and pull
horizontally (Fig. 5-1) such that the body has an acceleration of 1 m/s?. Then we
can define our applied force as having a magnitude of 1 newton (abbreviated N).
If we then pulled with a force magnitude of 2 N, we would find that the accelera-
tion is 2 m/s?. Thus, the acceleration is proportional to the force. If the standard
body of 1 kg has an acceleration of magnitude a (in meters per second per sec-
ond), then the force (in newtons) producing the acceleration has a magnitude
equal to a. We now have a workable definition of the force unit.

Vectors. Force is a vector quantity and thus has not only magnitude but also
direction. So, if two or more forces act on a body, we find the net force (or result-
ant force) by adding them as vectors, following the rules of Chapter 3. A single
force that has the same magnitude and direction as the calculated net force
would then have the same effect as all the individual forces. This fact, called the
principle of superposition for forces, makes everyday forces reasonable and pre-
dictable. The world would indeed be strange and unpredictable if, say, you and a
friend each pulled on the standard body with a force of 1 N and somehow the net
pull was 14 N and the resulting acceleration was 14 m/s%.

In this book, forces are most often represented with a vector symbol such as
IT“), and a net force is represented with the vector symbol F;et.As with other vectors,
a force or a net force can have components along coordinate axes. When forces act
only along a single axis, they are single-component forces. Then we can drop the
overhead arrows on the force symbols and just use signs to indicate the directions
of the forces along that axis.

The First Law. Instead of our previous wording, the more proper statement
of Newton’s First Law is in terms of a net force:

A N
~" Newton’s First Law: If no net force acts on a body (I*_“;lel = 0), the body’s velocity

cannot change; that is, the body cannot accelerate.

There may be multiple forces acting on a body, but if their net force is zero, the
body cannot accelerate. So, if we happen to know that a body’s velocity is con-
stant, we can immediately say that the net force on it is zero.

Inertial Reference Frames

Newton’s first law is not true in all reference frames, but we can always find
reference frames in which it (as well as the rest of Newtonian mechanics) is true.
Such special frames are referred to as inertial reference frames, or simply inertial
frames.

AN

"' An inertial reference frame is one in which Newton’s laws hold.

For example, we can assume that the ground is an inertial frame provided we can
neglect Earth’s astronomical motions (such as its rotation).
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That assumption works well if, say, a puck is sent sliding along a short strip N
of frictionless ice—we would find that the puck’s motion obeys Newton’s laws. W F E —
However, suppose the puck is sent sliding along a long ice strip extending from :3
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space, S '

the puck moves south along a simple straight line because Earth’s rotation
around the north pole merely slides the ice beneath the puck. However, if we
view the puck from a point on the ground so that we rotate with Earth, the
puck’s path is not a simple straight line. Because the eastward speed of the
ground beneath the puck is greater the farther south the puck slides, from our
ground-based view the puck appears to be deflected westward (Fig. 5-2b). (a)
However, this apparent deflection is caused not by a force as required by
Newton’s laws but by the fact that we see the puck from a rotating frame. In this
situation, the ground is a noninertial frame, and trying to explain the deflection
in terms of a force would lead us to a fictitious force. A more common example
of inventing such a nonexistent force can occur in a car that is rapidly increas-
ing in speed. You might claim that a force to the rear shoves you hard into the
seat back. -

In this book we usually assume that the ground is an inertial frame and that
measured forces and accelerations are from this frame. If measurements are made
in, say, a vehicle that is accelerating relative to the ground, then the measurements
are being made in a noninertial frame and the results can be surprising.

Earth's rotation
causes an
apparent deflection.

(0)
Figure 5-2 (&) The path of a puck sliding

from the north pole as seen from a station-
checkpoint 1 ary point in space. Earth rotates to the east.
- b) The path of th k f th
Which of the figure’s six arrangements correctly show the vector addition of forces F; ér())un:; path ot Tle puck as seen from the

and 1_52 to yield the third vector, which is meant to represent their net force fnet?

(a) Fy (b) Fy () e

(d) (o) 02

Mass

From everyday experience you already know that applying a given force to bod-
ies (say, a baseball and a bowling ball) results in different accelerations. The com-
mon explanation is correct: The object with the larger mass is accelerated less.
But we can be more precise. The acceleration is actually inversely related to the
mass (rather than, say, the square of the mass).

Let’s justify that inverse relationship. Suppose, as previously, we push on the
standard body (defined to have a mass of exactly 1 kg) with a force of magnitude
1 N. The body accelerates with a magnitude of 1 m/s>. Next we push on body X
with the same force and find that it accelerates at 0.25 m/s?. Let’s make the (cor-
rect) assumption that with the same force,

My _ 4y

b

ni, ay
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and thus

1.0 m/s?
my = my = (1.0 kg) 01

ay 025 mrse _ Hke

Defining the mass of X in this way is useful only if the procedure is consis-
tent. Suppose we apply an 8.0 N force first to the standard body (getting an accel-
eration of 8.0 m/s?) and then to body X (getting an acceleration of 2.0 m/s?). We
would then calculate the mass of X as

a 8.0 m/s?
my = moa—; = (1.0 kg) W =40 kg,
which means that our procedure is consistent and thus usable.

The results also suggest that mass is an intrinsic characteristic of a body—it
automatically comes with the existence of the body. Also, it is a scalar quantity.
However, the nagging question remains: What, exactly, is mass?

Since the word mass is used in everyday English, we should have some intu-
itive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteristics
are sometimes confused with mass. We can say only that the mass of a body is
the characteristic that relates a force on the body to the resulting acceleration. Mass
has no more familiar definition; you can have a physical sensation of mass only
when you try to accelerate a body, as in the kicking of a baseball or a bowling ball.

Newton’s Second Law

All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

AN
"' Newton’s Second Law: The net force on a body is equal to the product of the
body’s mass and its acceleration.

In equation form,
F, ——— ma (Newton’s second law). (5-1)

Identify the Body. This simple equation is the key idea for nearly all the
homework problems in this chapter, but we must use it cautiously. First, we must
be certain about which body we are applying it to. Then I_V)net must be the vector
sum of all the forces that act on that body. Only forces that act on that body are to
be included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body
to which you are applying Newton’s law.

Separate Axes. Like other vector equations, Eq. 5-1 is equivalent to three
component equations, one for each axis of an xyz coordinate system:

Fretx = ma,, Fo,=ma and F , = ma,. (5-2)

y?
Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component a,
of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component a, is caused only by the sum of the
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force components along the x axis and is completely unrelated to force compo-
nents along another axis. In general,

AN

"' The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Forces in Equilibrium. Equation 5-1 tells us that if the net force on a body is
zero, the body’s acceleration @ = 0. If the body is at rest, it stays at rest; if it is
moving, it continues to move at constant velocity. In such cases, any forces on the
body balance one another, and both the forces and the body are said to be in
equilibrium. Commonly, the forces are also said to cancel one another, but the
term “cancel” is tricky. It does not mean that the forces cease to exist (canceling
forces is not like canceling dinner reservations). The forces still act on the body
but cannot change the velocity.

Units. For SI units, Eq. 5-1 tells us that

1N = (1kg)(1 m/s?) =1kg-m/s%. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.

Diagrams. To solve problems with Newton’s second law, we often draw a
free-body diagram in which the only body shown is the one for which we are sum-
ming forces. A sketch of the body itself is preferred by some teachers but, to save
space in these chapters, we shall usually represent the body with a dot. Also, each
force on the body is drawn as a vector arrow with its tail anchored on the body. A
coordinate system is usually included, and the acceleration of the body is some-
times shown with a vector arrow (labeled as an acceleration). This whole proce-
dure is designed to focus our attention on the body of interest.

Table 5-1 Units in Newton’s Second Law (Egs. 5-1 and 5-2)

System Force Mass Acceleration
SI newton (N) kilogram (kg) m/s?
CGS® dyne gram (g) cm/s?
British? pound (1b) slug ft/s?

“1 dyne = 1 g-cm/s.
b11b = 1slug - ft/s?.

External Forces Only. A system consists of one or more bodies, and any
force on the bodies inside the system from bodies outside the system is called an
external force. If the bodies making up a system are rigidly connected to one an-
other, we can treat the system as one composite body, and the net force F o onit
is the vector sum of all external forces. (We do not include internal forces—that
is, forces between two bodies inside the system. Internal forces cannot accelerate
the system.) For example, a connected railroad engine and car form a system. If,
say, a tow line pulls on the front of the engine, the force due to the tow line acts on
the whole engine—car system. Just as for a single body, we can relate the net ex-
ternal force on a system to its acceleration with Newton’s second law, F et = Md,
where m is the total mass of the system.

IZ Checkpoint 2

3N 5N
The figure here shows two horizontal forces acting

on a block on a frictionless floor. If a third horizon-
tal force F; also acts on the block, what are the magnitude and direction of F; when
the block is (a) stationary and (b) moving to the left with a constant speed of 5 m/s?
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Sample Problem 5.01

Here are examples of how to use Newton’s second law for a
puck when one or two forces act on it. Parts A, B, and C of
Fig. 5-3 show three situations in which one or two forces act
on a puck that moves over frictionless ice along an x axis, in
one-dimensional motion. The puck’s mass is m = 0.20 kg.
Forces F1 and F2 are directed along the aX1s and have
magnitudes F; = 40N and F, = 2.0 N. Force F3 is directed
at angle # = 30° and has magnitude F; = 1.0 N. In each situ-
ation, what is the acceleration of the puck?

KEY IDEA

In each situation we can relate the acceleration @ to the net
force Fnet acting on the puck with Newton’s second law,
FIlet ma. However, because the motion is along only the x
axis, we can simplify each situation by writing the second
law for x components only:

(54)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Fnet,x = ma}r

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F, = ma
which, with given data, yields

F, 40N

= il g N 2
a, . 020 ke 20 m/s*.

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, Fl in the positive direction of x and F2 in the negative
direction. Now Eq. 5-4 gives us

F, — F, = ma,,

which, with given data, yields

Fl_FZ _4.0N_2.0N
m  020kg

a, = = 10 m/s%.

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force F; is not directed along the
direction of the puck’s acceleration; only x component F;
is. (Force F, is two-dimensional but the motion is only one-

One- and two-dimensional forces, puck

A
7 The horizontal force
1 .
_ [ =——> , causes a horizontal
acceleration.
(@)

This is a free-body

diagram.
(0)
B
E R The_se forces compete.
_<H==m———->, Their net force causes
a horizontal acceleration.
()
2 B . Thisis a free-body
< —————> ,
diagram.
(d)
C
oS Only the horizontal

component of F3

§!29 * 2
Fy competes with F,.

5 . Thisis a free-body
QKZB i
i diagram.
)

Figure 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.

dimensional.) Thus, we write Eq. 5-4 as
F,—F= (5-5)

From the figure, we see that F5, = F; cos 6. Solving for the
acceleration and substituting for F; , yield

5= F3’X_F2 o F3COSO_F2
* m m
~ (LON)(cos30°) —2.0N ,
020 kg 5.7 m/s*.

(Answer)

Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 5.02 Two-dimensional forces, cookie tin

Here we find a missing force by using the acceleration. In
the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is acceler-
ated at 3.0 m/s” in the direction shown by ¢, over a friction-
less horizontal surface. The acceleration is caused by three
horizontal forces, only two of which are shown: F, of magni-
tude 10 N and F, of magnitude 20 N. What is the third force
F; in unit-vector notation and in magnitude-angle notation?

KEY IDEA

The net force F, net ON the tin is the sum of the three forces
agd is related to the acceleration @ via Newton’s second law
(F,e. = md). Thus,

F, + F, + F; = md, (5-6)
which gives us
Fy=md — F, — F,. (5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find F, merely by substituting the magnitudes for
the vector quantities on the right side of Eq. 5-7. Instead, we
must vectorially add md, —F, (the reverse of F,), and —F,
(the reverse of F,), as shown in Fig. 5-4b. This addition can
be done directly on a vector-capable calculator because we
know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis. Caution: Use only one axis at a time.

y
A

x components: Along the x axis we have
Fy=ma,—F ,—F,
= m(a cos 50°) — F, cos(—150°) — F, cos 90°.
Then, substituting known data, we find
F;, = (2.0 kg)(3.0 m/s?) cos 50° — (10 N) cos(—150°)
— (20 N) cos 90°
=125N.

y components: Similarly, along the y axis we find
Fy=ma, —F,,— F,,

= m(a sin 50°) — F; sin(—150°) — F, sin 90°

(2.0 kg)(3.0 m/s?) sin 50° — (10 N) sin(—150°)

— (20 N) sin 90°

—10.4 N.

B

Vector: In unit-vector notation, we can write

F3=Fs,1+ F;,j = (12.5N)i — (104 N);
~ (13N)i — (10N)j. (Answer)

We can now use a vector-capable calculator to get the mag-
nitude and the angle of F 3. We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

F=VFj,+F},=16N

E
and 0 = tan! —X = —40°.
3,x

(Answer)

We draw the product

These aretwo % This is the resulting y .
. . of mass and acceleration
of the three horizontal acceleration
. as a vector.
horizontal force vector.
vectors. > -FK
a
-~ \ 50° o I
{ ma
' X X
30
-
F F,
(@) (0)

Then we can add the three
vectors to find the missing
third force vector.

Figure 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie
tin, resulting in acceleration a. F5is not shown. (b) An arrangement of vectors ma, — F,

and _Fz to find force E

PLUS Additional examples, video, and practice available at WileyPLUS
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9-2 SOME PARTICULAR FORCES

Learning Objectives
After reading this module, you should be able to . . .

5.08 Determine the magnitude and direction of the gravita-
tional force acting on a body with a given mass, at a location
with a given free-fall acceleration.

5.09 Identify that the weight of a body is the magnitude of the
net force required to prevent the body from falling freely, as
measured from the reference frame of the ground.

5.10 Identify that a scale gives an object’s weight when the
measurement is done in an inertial frame but not in an ac-
celerating frame, where it gives an apparent weight.

Key Ideas

® A gravitational force F_;, on a body is a pull by another body.
In most situations in this book, the other body is Earth or
some other astronomical body. For Earth, the force is directed
down toward the ground, which is assumed to be an inertial
frame. With that assumption, the magnitude of F is

£y = mg,

where m is the body's mass and g is the magnitude of the
free-fall acceleration.

® The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body's
weight is related to the body’s mass by

W =mg.

5.11 Determine the magnitude and direction of the normal
force on an object when the object is pressed or pulled
onto a surface.

5.12 |dentify that the force parallel to the surface is a frictional
force that appears when the object slides or attempts to
slide along the surface.

5.13 Identify that a tension force is said to pull at both ends of
a cord (or a cord-like object) when the cord is taut.

@ A normal force ﬁv is the force on a body from a surface
against which the body presses. The normal force is always
perpendicular to the surface.

® A frictional force f is the force on a body when the body
slides or attempts to slide along a surface. The force is always
parallel to the surface and directed so as to oppose the slid-
ing. On a frictionless surface, the frictional force is negligible.

® When a cord is under tension, each end of the cord pulls
on a body. The pull is directed along the cord, away from the
point of attachment to the body. For a massless cord (a cord
with negligible mass), the pulls at both ends of the cord have
the same magnitude T, even if the cord runs around a mass-
less, frictionless pulley (a pulley with negligible mass and
negligible friction on its axle to oppose its rotation).

Some Particular Forces

The Gravitational Force

A gravitational force F, . on a body is a certain type of pull that is directed toward
a second body. In these early chapters, we do not discuss the nature of this force
and usually consider situations in which the second body is Earth. Thus, when we
speak of the gravitational force F on a body, we usually mean a force that pulls
on it directly toward the center of Earth—that is, directly down toward the
ground. We shall assume that the ground is an inertial frame.

Free Fall. Suppose a body of mass m is in free fall with the free-fall accelera-
tion of magnitude g.Then, if we neglect the effects of the air, the only force acting
on the body is the gravitational force Fg We can relate this downward force and
downward acceleration with Newton’s second law (F ma). We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,

Newton’s second law can be written in the form F., =
situation, becomes

or

ma,, which, in our

_Fg = m(_g)

F, = mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.
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At Rest. This same gravitational force, with the same magnitude, still acts on
the body even when the body is not in free fall but is, say, at rest on a pool table or
moving across the table. (For the gravitational force to disappear, Earth would
have to disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

~

I?g = _Fg.] = _ng = mE’ (5'9)

where j is the unit vector that points upward along a y axis, directly away from
the ground, and g is the free-fall acceleration (written as a vector), directed
downward.

Weight

The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest. The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
a of zero relative to the ground, which we again assume to be an inertial frame.
Two forces act on the body: a downward gravitational force F, ¢ and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fncw = ma,.
In our situation, this becomes
W — F, = m(0) (5-10)
or W =F,  (weight,with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

A Y
"' The weight W of a body is equal to the magnitude F, of the gravitational force
on the body.

Substituting mg for F, from Eq. 5-8, we find

W =mg (weight), (5-12)

which relates a body’s weight to its mass.

Weighing. To weigh a body means to measure its weight. One way to do this
is to place the body on one of the pans of an equal-arm balance (Fig. 5-5) and
then place reference bodies (whose masses are known) on the other pan until we
strike a balance (so that the gravitational forces on the two sides match). The
masses on the pans then match, and we know the mass of the body. If we know
the value of g for the location of the balance, we can also find the weight of the
body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in

103

y,

v

— —

FgL:mLE FgR:mlg

Figure 5-5 An equal-arm balance. When the
device is in balance, the gravitational force
F;L on the body being weighed (on the left
pan) and the total gravitational force F,
on the reference bodies (on the right pan)
are equal. Thus, the mass m; of the body
being weighed is equal to the total mass

myp of the reference bodies.

Scale marked
in either
weight or
mass units

()

.V
=m§

w3

Figure 5-6 A spring scale. The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.
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either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kgis 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s?.

The Normal Force

If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force F, ~- The name
comes from the mathematical term normal, meaning perpendicular: The force on
you from, say, the floor is perpendicular to the floor.

A Y

"' When a body presses against a surface, the surface (even a seemingly rigid one)

deforms and pushes on the body with a normal force Fy that is perpendicular to
the surface.

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force F on the block. The
table pushes up on the block with normal force Fy. The free- body diagram for the
block is given in Fig. 5-7b. Forces F and Fy are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (F, , = ma,) as

Fy — F, = ma,.

y
The normal force Normal force FN
is the force on a A
the block from the
supporting table. Block Fy

' Block
L x

The gravitational The forces
force on the block | balance.

is due to Earth's ‘ v

downward pull. (a) (b)

Figure 5-7 (a) A block resting on a table experiences a normal force F“N perpendicular to
the tabletop. (b) The free-body diagram for the block.
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From Eq. 5-8, we substitute mg for F,, finding
Fy — mg = ma,,.
Then the magnitude of the normal force is
Fy = mg + ma, = m(g + a,) (5-13)

for any vertical acceleration a, of the table and block (they might be in an accel-
erating elevator). (Caution: We have already included the sign for g but a, can be
positive or negative here.) If the table and block are not accelerating relative to
the ground, then a, = 0 and Eq. 5-13 yields

Fy = mg. (5-14)
IZ Checkpoint 3

In Fig. 5-7,1s the magnitude of the normal force Fy greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

Friction

If we either slide or attempt to slide a body over a surface, the motion is resisted Direction of
by a bonding between the body and the surface. (We discuss this bonding more in —— attempted

the next chapter.) The resistance is considered to be a single force f, called either < e slide

the frictional force or simply friction. This force is directed along the surface, op- !

posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-  Figure 5-8 A frictional force f opposes the

uation, friction is assumed to be negligible (the surface, or even the body, is said ~ attempted slide of a body over a surface.
to be frictionless).

Tension

When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force T directed away from the
body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of fension (or to be under tension), which
means that it is being pulled taut. The tension in the cord is the magnitude 7 of the
force on the body. For example, if the force on the body from the cord has magni-
tude T = 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude 7,

~
=
/
(

The forces at the two ends of
the cord are equal in magnitude.

(a) (b) (¢)

Figure 5-9 (a) The cord, pulled taut, is under jension. If its mass is negligible, the cord
pulls on the body and the hand with force T, even if the cord runs around a massless,
frictionless pulley as in (b) and (c).
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even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9¢, the net force on the pulley
from the cord has the magnitude 27.

IZ Checkpoint 4

The suspended body in Fig. 5-9¢ weighs 75 N. Is T equal to, greater than, or less than
75 N when the body is moving upward (a) at constant speed, (b) at increasing speed,
and (c) at decreasing speed?

9-3 APPLYING NEWTON'S LAWS

Learning Objectives

After reading this module, you should be able to . . .

5.14 Identify Newton's third law of motion and third-law force pairs. ~ 5.16 For an arrangement where a system of several objects

5.15 For an object that moves vertically or on a horizontal or inclined moves rigidly together, draw a free-body diagram and
plane, apply Newton's second law to a free-body diagram of the apply Newton’s second law for the individual objects
object. and also for the system taken as a composite object.

Key Ideas

@ The net force F;e[ on a body with mass 1 is related to the body’'s @ If a force F:gc acts on body B due to body C, then there is

acceleration @ by

—

—
Fnet = ma,

which may be written in the component versions

Ewt,x = may Enet,y = may and

Book % Crate C

Fpe Fms
0 00—

B C
The force on B
due to C has the same
magnitude as the
force on C due to B.

Figure 5-10 (a) Book B leans against crate

C. (b) Forces Fy (the force on the book

from the crate) and F cg (the force on the
crate from the book) have the same mag-
nitude and are opposite in direction.

aforce I?CB on body C due to body B:
Fge = —Fep

Ee, = ma,. The forces are equal in magnitude but opposite in directions.

Newton’s Third Law

Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force Fyc on the book from the crate (or due
to the crate) and a horizontal force Fp on the crate from the book (or due to the
book). This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

A N
." Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.
For the book and crate, we can write this law as the scalar relation
Fge = Fcp (equal magnitudes)
or as the vector relation
FBC = - F)CB (equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When
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Cantaloupe
F,
Cantaloupe C ‘l -
Table T TF EC
Earth

Earth E
(a) (¢)

FC’/‘ (normal force from table)

These forces T
just happen

"o [ Belerea] lFCE(gravitational force)

(b)

Figure 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are Foyand Fp. (c) The third-law force pair for the cantaloupe—Earth
interaction. (d) The third-law force pair for the cantaloupe—table interaction.

any two bodies interact in any situation, a third-law force pair is present. The
book and crate in Fig. 5-10a are stationary, but the third law would still hold if
they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the can-
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe
interacts with the table and with Earth (this time, there are three bodies whose
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force
Fcr is the normal force on the cantaloupe from the table, and force FCE is the
gravitational force on the cantaloupe due to Earth. Are they a third-law force
pair? No, because they are forces on a single body, the cantaloupe, and not on
two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the
interaction between the cantaloupe and one other body. In the cantaloupe—Earth
interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational force
FCE and the cantaloupe pulls on Earth with a gravitational force F, rc- Are these
forces a third-law force pair? Yes, because they are forces on two interacting bod-
ies, the force on each due to the other. Thus, by Newton'’s third law,

— —
Fep = —Fge (cantaloupe - Earth interaction).

Next, in the cantaloupe—table interaction, the force on the cantaloupe from
the table is FCT and, conversely, the force on the table from the cantaloupe is F, TC
(Fig. 5-11d). These forces are also a third-law force pair, and so

IZ Checkpoint 5

Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to
accelerate upward. (a) Do the magnitudes of Fycand Fypincrease, decrease, or stay
the same? (b) Are those two forces still equal in magnitude and opposite in direction?
() Do the magnitudes of F; and Fy increase, decrease, or stay the same? (d) Are those
two forces still equal in magnitude and opposite in direction?

— —
For = —Fre (cantaloupe-—table interaction).

These are
third-law force
pairs.

= So are these.




108 CHAPTER 5 FORCE AND MOTION-—I

Applying Newton’s Laws

The rest of this chapter consists of sample problems. You should pore over
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.

Sample Problem 5.03 Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M = 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m = 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block § accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?

You are given two bodies—sliding block and hanging
block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude 7.

2. The cord pulls upward on hanging block H with a force
of the same magnitude 7. This upward force keeps block
H from falling freely.

3. Earth pulls down on block § with the gravitational force

—

Fs, which has a magnitude equal to Mg.

4. l;:arth pulls down on block H with the gravitational force
F,p, which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force Fy.

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a

Sliding
block S

MW_» N

Frictionless
surface

Hanging
block H

Figure 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

PN
Fy| Block S

Block H

Figure 5-13 The forces acting on the two blocks of Fig. 5-12.

certain time, block § moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involve_d), and
they should suggest Newton’s second law of motion, F ., =
ma.That is our starting key idea.

Q IfIapply Newton’s second law to this problem, to which
body should I apply it?

We focus on two bodies, the sliding block and the hanging
block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second key
idea is to apply Newton’s second law separately to each block.

Q What about the pulley?

We cannot represent the pulley as a particle because
different parts of it move in different ways. When we dis-
cuss rotation, we shall deal with pulleys in detail.
Meanwhile, we eliminate the pulley from consideration by
assuming its mass to be negligible compared with the
masses of the two blocks. Its only function is to change the
cord’s orientation.

Q OK. Now how do I apply F net = ma to the sliding block?

Represent block § as a particle of mass M and draw all
the forces that act on it, as in Fig. 5-14a. This is the block’s
free-body diagram. Next, draw a set of axes. It makes sense



y

|

y
By — JL
= T
M A > X e X
oeF — | 2> Hanging
- Sliding a | Lo
Fyg block g block H
Y
v
(a) (b)

Figure 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.

to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven’t told me how to apply
F .. = ma to the sliding block. All you’ve done is explain
how to draw a free-body diagram.

You are right, and here’s the third key idea: The
expression F oo = M@ is a vector equation, so we can write
it as three component equations:

Fnet,x = Max Fnet,y = May Fnet,z = Maz (5_16)

in which F y, Fyety» and F, ; are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, F,, , = Ma, becomes

FN - FgS = 0 or FN = ng. (5'17)

Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,

which is 7. Thus, F, , = Ma, becomes
T = Ma. (5-18)

This equation contains two unknowns, 7" and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.
Q [Iagree. How do I apply Fnet = md to the hanging block?
We apply it just as we did for block S: Draw a free-body
diagram for block H, as in Fig. 5-14b. Then apply fnet = md in
component form. This time, because the acceleration is along
the y axis, we use the y part of Eq. 5-16 (F, , = ma,) to write

(5-19)

We can now substitute mg for F,; and —a for a, (negative

T — Fyy = ma,.
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because block H accelerates in the negative direction of the
y axis). We find

T — mg = —ma. (5-20)

Now note that Egs. 5-18 and 5-20 are simultaneous equa-

tions with the same two unknowns, 7" and a. Subtracting

these equations eliminates 7. Then solving for a yields
. (5-21)

a=———
M+ m

Substituting this result into Eq. 5-18 yields

Mm
T=—-—"-zg 5-22
M+ m < ( )
Putting in the numbers gives, for these two quantities,
. m . 2.1kg >
= M+ m T 33kg + 21kg COWS)
= 3.8 m/s? (Answer)
Mm (3.3kg)(2.1 kg)
d T= = 9.8 m/s?
an M+m® 33kg+21kg OO
=13N. (Answer)

Q The problem is now solved, right?

That’s a fair question, but the problem is not really fin-
ished until we have examined the results to see whether
they make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g
(because of the cord, the hanging block is not in free fall).

Look now at Eq. 5-22, which we can rewrite in the form

M

T:—
M+ m

mg. (5-23)
In this form, it is easier to see that this equation is also
dimensionally correct, because both 7" and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the ten-
sion in the cord is always less than mg, and thus is always
less than the gravitational force on the hanging block. That is
a comforting thought because, if 7" were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g = 0, as if the experiment were carried out
in interstellar space. We know that in that case, the blocks
would not move from rest, there would be no forces on the
ends of the cord, and so there would be no tension in the
cord. Do the formulas predict this? Yes, they do. If you put
g = 0in Egs. 5-21 and 5-22, you find a = 0 and T = 0. Two
more special cases you might try are M = 0 and m — .

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 5.04 Cord accelerates box up a ramp

Many students consider problems involving ramps (inclined
planes) to be especially hard. The difficulty is probably visual
because we work with (a) a tilted coordinate system and (b) the
components of the gravitational force, not the full force. Here is
a typical example with all the tilting and angles explained. (In
WileyPLUS, the figure is available as an animation with
voiceover.) In spite of the tilt, the key idea is to apply Newton’s
second law to the axis along which the motion occurs.

In Fig. 5-15a, a cord pulls a box of sea biscuits up along a
frictionless plane inclined at angle # = 30.0°. The box has
mass m = 5.00 kg, and the force from the cord has magni-
tude 7 = 25.0 N. What is the box’s acceleration a along the
inclined plane?

KEY IDEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendi-

Figure 5-15 (a) A box is pulled up a plane by a

) cord. (b) The three forces acting on the

box: the cord’s force T: the gravitational force
F;, and the normal force Fy. (¢)-(¢) Finding
the force components along the plane and
perpendicular to it. In WileyPLUS, this figure
is available as an animation with voiceover.

This is a right
triangle.

| Ry g S

The net of these
forces determines

k the acceleration. T
mg cos 0 mg sir/
mg

o -
\Va~ mg sin O -7

(g) ()

The box accelerates.

cular to the plane), as expressed by Newton’s second law
(Eq.5-1).

Calculations: We need to write Newton’s second law for
motion along an axis. Because the box moves along the in-
clined plane, placing an x axis along the plane seems reason-
able (Fig. 5-15b). (There is nothing wrong with using our
usual coordinate system, but the expressions for compo-
nents would be a lot messier because of the misalignment of
the x axis with the motion.)

After choosing a coordinate system, we draw a free-
body diagram with a dot representing the box (Fig. 5-15b).
Then we draw all the vectors for the forces acting on the box,
with the tails of the vectors anchored on the dot. (Drawing
the vectors willy-nilly on the diagram can easily lead to errors,
especially on exams, so always anchor the tails.)

Force T from the cord is up the plane and has magni-

tude 7 = 25.0 N. The gravitational force F‘g is downward (of

Normal force

s
Fy &

—

Cord

Cord's pull

Gravitational

force

(@) (b)

Perpendicular

component of Adjacent leg
\ l?g i (use cos 6)

Fg Hypotenuse
v Parallel v Opposite leg
() component of () (use sin6)
Fq
A\ These forces

merely balance.
X

(2)



course) and has magnitude mg = (5.00 kg)(9.80 m/s?) = 49.0N.
That direction means that only a component of the force is
along the plane, and only that component (not the full force)
affects the box’s acceleration along the plane. Thus, before we
can write Newton’s second law for motion along the x axis, we
need to find an expression for that important component.

Figures 5-15¢ to h indicate the steps that lead to the ex-
pression. We start with the given angle of the plane and
work our way to a triangle of the force components (they
are the legs of the triangle and the full force is the hy-
potenuse). Figure 5-15¢ shows that the angle between the
ramp and Fg is 90° — 6. (Do you see a right triangle there?)
Next, Figs. 5-15d to fshow F, and its components: One com-
ponent is parallel to the plane (that is the one we want) and
the other is perpendicular to the plane.

Because the perpendicular component is perpendicular,
the angle between it and F; must be 6 (Fig. 5-15d). The com-
ponent we want is the far leg of the component right trian-
gle. The magnitude of the hypotenuse is mg (the magnitude
of the gravitational force). Thus, the component we want has
magnitude mg sin 0 (Fig. 5-15g).

We have one more force to consider, the normal force
}7,)\, shown in Fig. 5-15b. However, it is perpendicular to the

Sample Problem 5.05 Reading a force graph

Here is an example of where you must dig information out
of a graph, not just read off a number. In Fig. 5-16a, two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force 1?71 is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle 6 to the posi-
tive direction of the x axis. Force F} is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration a, of the block for any given value of 4 from 0°
to 90°. What is the value of a, for § = 180°?

KEY IDEAS

(1) The horizontal acceleration a, depends on the net hori-
zontal force F, ,, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces E and }_7;

Calculations: The x component of Fz is F;, because the vector
is horizontal. The x component of F; is F cos 6. Using these
expressions and a mass m of 4.00 kg, we can write Newton’s

second law (F et = ma ) for motion along the x axis as
F, cos 0+ F, = 4.00a,. (5-25)

From this equation we see that when angle 8 = 90°, F; cos 6
is zero and F, = 4.00a,. From the graph we see that the
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plane and thus cannot affect the motion along the plane. (It
has no component along the plane to accelerate the box.)

We are now ready to write Newton’s second law for mo-
tion along the tilted x axis:

F,

net,x

= ma

x*

The component a, is the only component of the acceleration
(the box is not leaping up from the plane, which would be
strange, or descending into the plane, which would be even
stranger). So, let’s simply write a for the acceleration along the
plane. Because T is in the positive x direction and the compo-
nent mg sin 6is in the negative x direction, we next write

T — mgsin 6 = ma. (5-24)
Substituting data and solving for a, we find
a = 0.100 m/s%. (Answer)

The result is positive, indicating that the box accelerates up the
inclined plane, in the positive direction of the tilted x axis. If
we decreased the magnitude of T enough to make a = 0, the
box would move up the plane at constant speed. And if we de-
crease the magnitude of 7' even more, the acceleration would
be negative in spite of the cord’s pull.

When /-?1 is horizontal,
the acceleration is
3.0 m/s2.

3
E
y s
g N
x E
#1
(a) N
00° 90°

When /-?1 is vertical,
the acceleration is
0.50 m/s2.

Figure 5-16 (a) One of the two forces applied to a block is shown.
Its angle 6 can be varied. (b) The block’s acceleration component
a, versus 6.

corresponding acceleration is 0.50 m/s%. Thus, F, = 2.00 N
and £, must be in the positive direction of the x axis.
From Eq. 5-25, we find that when 6 = (°,

F, cos 0° + 2.00 = 4.00a,. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s%. From Eq. 5-26, we then find that F; = 10 N.

Substituting F; = 10N, F, = 2.00 N, and 6 = 180° into
Eq.5-25 leads to

a, = —2.00 m/s%. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 5.06 Forces within an elevator cab

Although people would surely avoid getting into the ele-
vator with you, suppose that you weigh yourself while on
an elevator that is moving. Would you weigh more than,
less than, or the same as when the scale is on a stationary
floor?

In Fig. 5-17a, a passenger of mass m = 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY IDEAS

(1) The reading is equal to the magnitude of the normal force
Fy on the passenger from the scale. The only other force act-
ing on the passenger is the gravitational force F 2 as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration @ by using
Newton’s second law (F et = ma). However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground
to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger and
his acceleration are all directed vertically, along the y axis in
Fig. 5-17b, we can use Newton’s second law written for y

components (F, , = ma,) to get

Fy — F, = ma

or Fy = F, + ma. (5-27)

1= Passenger

These forces

. compete.

TFg Their net force
causes a vertical

(a) (b) acceleration.

Figure 5-17 (a) A passenger stands on a platform scale that indi-
cates either his weight or his apparent weight. (b) The free-body
diagram for the passenger, showing the normal force F, yon him
from the scale and the gravitational force F i

This tells us that the scale reading, which is equal to normal
force magnitude Fy, depends on the vertical acceleration.
Substituting mg for F, gives us

Fy=m(g +a) (Answer) (5-28)

for any choice of acceleration a. If the acceleration is up-
ward, a is positive; if it is downward, a is negative.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY IDEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq.5-28, we find

Fy = (722kg)(9.8 m/s> + 0) = 708 N.
(Answer)
This is the weight of the passenger and is equal to the mag-
nitude F, of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward at
3.20 m/s? and downward at 3.20 m/s*?

Calculations: For a = 3.20 m/s?, Eq.5-28 gives
Fy = (72.2 kg)(9.8 m/s? + 3.20 m/s?)

=939 N, (Answer)
and for @ = —3.20 m/s?, it gives
Fy = (72.2 kg)(9.8 m/s* — 3.20 m/s?)
=477 N. (Answer)

For an upward acceleration (either the cab’s upward
speed is increasing or its downward speed is decreasing),
the scale reading is greater than the passenger’s weight.
That reading is a measurement of an apparent weight, be-
cause it is made in a noninertial frame. For a downward
acceleration (either decreasing upward speed or increas-
ing downward speed), the scale reading is less than the
passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude F of the net force on the passenger, and what is
the magnitude a,,,, of 1_1)is acceleration as measured in the
frame of the cab? Does Fyo = md, ,,?

Calculation: The magnitude F, of the gravitational force on
the passenger does not depend on the motion of the passen-
ger or the cab; so, from part (b), F, is 708 N. From part (c), the
magnitude Fy of the normal force on the passenger during



the upward acceleration is the 939 N reading on the scale. Thus,
the net force on the passenger is

Foep = Fy— F;,=939N — 708 N =231 N, (Answer)
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during the upward acceleration. However, his acceleration
ap o Telative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, F,. is not equal to
ma, ..., and Newton’s second law does not hold.

Sample Problem 5.07 Acceleration of block pushing on block

Some homework problems involve objects that move to-
gether, because they are either shoved together or tied to-
gether. Here is an example in which you apply Newton’s
second law to the composite of two blocks and then to the
individual blocks.

In Fig. 5-18a, a constant horizontal force Fapp of magni-
tude 20 N is applied to block A of mass m, = 4.0 kg, which
pushes against block B of mass mz = 6.0 kg. The blocks slide
over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?
Serious Error: Because force Fapp is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration @ of block A. Because the motion
is along the x axis, we use that law for x components
(Fhet.x = ma,), writing it as

F,

pp = nya.

However, this is seriously wrong because Epp is not the
only horizontal force acting on block A. There is also the

force F, from block B (Fig. 5-18b).

This force causes the
acceleration of the full
two-block system.

These are the two forces
acting on just block A.
Their net force causes

Fapp @ Fas M

(0) its acceleration.
B .
F This is the only force
24 8 X causing the acceleration
of block B.

(9)

Figure 5-18 (a) A constant horizontal force F, app 18 applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (¢) Only one horizontal force acts on block B.

Dead-End Solution: Let us now include force FA g by writ-
ing, again for the x axis,

Fopp = Fap = mya.

(We use the minus sign to include the direction of Fp.)
Because F,z is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which force
F;pp is applied, the two blocks form a rigidly connected system.
‘We can relate the net force on the system to the acceleration of
the system with Newton’s second law. Here, once again for the
X axis, we can write that law as

F,

app = (mA + mB)aa

where now we properly apply fapp to the system with
total mass m, + myp. Solving for a and substituting known
values, we find

 Fpy 20N o
T, tmy  40kg + 60kg

(Answer)

Thus, the acceleration of the system and of each block is in the
positive direction of the x axis and has the magnitude 2.0 m/s’.

(b) What is the (horizontal) force Fgz, on block B from
block A (Fig. 5-18¢)?

KEY IDEA

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

Fpa = mpa,
which, with known values, gives

Fps = (6.0kg)(2.0m/s?) = 12N.  (Answer)

Thus, force Fjg, is in the positive direction of the x axis and
has a magnitude of 12 N.

PLUS Additional examples, video, and practice available at WileyPLUS
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Review & Summary

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly
1 m/s? is defined to have a magnitude of 1 N. The direction of a
force is the direction of the acceleration it causes. Forces are com-
bined according to the rules of vector algebra. The net force on a
body is the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or
inertial frames. Reference frames in which Newtonian mechanics
does not hold are called noninertial reference frames or noniner-
tial frames.

Mass The mass of a body is the characteristic of that body that
relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force F,., on a body with
mass m is related to the body’s acceleration @ by

F = md, (5-1)
which may be written in the component versions
Foeox =ma, Fy,=ma, and Fy B =ma, (5-2)
The second law indicates that in ST units
1N =1kg -m/s%. (5-3)
Questions

1 Figure 5-19 gives the free-body diagram for four situations in
which an object is pulled by several forces across a frictionless
floor, as seen from overhead. In which situations does the accel-
eration a of the object have (a) an x component and (b) a y com-

y
7N

3N
2N 5N

4N

(1)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body is represented by either a sketch or
a dot. The external forces on the body are drawn, and a coordinate
system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force F; on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be
an inertial frame. With that assumption, the magnitude of Fg is

Fg = mg, (5-8)

where m is the body’s mass and g is the magnitude of the free-fall
acceleration.

The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W =mg. (5-12)

A normal force Fy is the force on a body from a surface
against which the body presses. The normal force is always perpen-
dicular to the surface.

A frictional force f is the force on a body when the body
slides or attempts to slide along a surface. The force is always par-
allel to the surface and directed so as to oppose the sliding. On a
frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on a
body. The pull is directed along the cord, away from the point of at-
tachment to the body. For a massless cord (a cord with negligible
mass), the pulls at both ends of the cord have the same magnitude
T, even if the cord runs around a massless, frictionless pulley (a pul-
ley with negligible mass and negligible friction on its axle to op-
pose its rotation).

Newton’s Third Law If a force Fpe acts on body B due to
body C, then there is a force F5 on body C due to body B:

= -
Fge = —Fep.

ponent? (c) In each situation, give the direction of @ by naming
either a quadrant or a direction along an axis. (Don’t reach for
the calculator because this can be answered with a few mental
calculations.)

y
3N
2N 3N
X
5N
4N
5N

Figure 5-19 Question 1.



2 Two horizontal forces,
F,=(BN)i - (4N)] and F,=—(1N)i — 2N)]

pull a banana split across a friction-
less lunch counter. Without using a
calculator, determine which of the
vectors in the free-body diagram of
Fig. 5-20 best represent (a) F,; and
(b) F,. What is the net-force compo-
nent along (c) the x axis and (d) the y
axis? Into which quadrants do (e) the
net-force vector and (f) the split’s ac-
celeration vector point?

3 In Fig. 5-21, forces fl and Fz
are applied to a lunchbox as it
slides at constant velocity over a
frictionless floor. We are to de-
crease angle 6 without changing the
magnitude of F,. For constant ve-
locity, should we increase, decreeEe, Fy
or maintain the magnitude of F,?

TS T TS A

4 . — = .
At time ¢ = 0, constant F begins Figure 5-21 Question 3.

to act on a rock moving through
deep space in the +x direction. (a)
For time ¢ > 0, which are possible functions x(¢) for the rock’s posi-
tion: (1) x =41 — 3,(2) x = =42 + 6t — 3,(3) x = 42 + 6t — 3?7 (b)
For which function is F directed opposite the rock’s initial direction
of motion?

5 Figure 5-22 shows overhead views of four situations in which
forces act on a block that lies on a frictionless floor. If the force
magnitudes are chosen properly, in which situations is it possible
that the block is (a) stationary and (b) moving with a constant
velocity?

—

Fy

()

Fy
R IR !
Iy
Iy
) 7 @w |

Figure 5-22 Question 5.

6 Figure 5-23 shows the same breadbox in four situations where
horizontal forces are applied. Rank the situations according to the
magnitude of the box’s acceleration, greatest first.

3N 6N 58 N 60 N
+—FF+— <+—FF+—>
(a) )
13N 15N 43N 25N
<+—f—> D s - =
20N
(c) (d)

Figure 5-23 Question 6.

QUESTIONS 115

7 <8&&F July 17, 1981, Kansas City: The newly opened Hyatt
Regency is packed with people listening and dancing to a band
playing favorites from the 1940s. Many of the people are crowded
onto the walkways that hang like bridges across the wide atrium.
Suddenly two of the walkways collapse, falling onto the merrymak-
ers on the main floor.

The walkways were suspended one above another on vertical
rods and held in place by nuts threaded onto the rods. In the origi-
nal design, only two long rods were to be used, each extending
through all three walkways (Fig. 5-24a). If each walkway and the
merrymakers on it have a combined mass of M, what is the total
mass supported by the threads and two nuts on (a) the lowest
walkway and (b) the highest walkway?

Apparently someone responsible for the actual construction
realized that threading nuts on a rod is impossible except at the
ends, so the design was changed: Instead, six rods were used, each
connecting two walkways (Fig. 5-24b). What now is the total mass
supported by the threads and two nuts on (c) the lowest walkway,
(d) the upper side of the highest walkway, and (e) the lower side of
the highest walkway? It was this design that failed on that tragic
night—a simple engineering error.

\ Nuts

Walkways

"

|

(a) (0)
Figure 5-24 Question 7.

8 TFigure 5-25 gives three graphs of velocity component v,(¢) and
three graphs of velocity component v,(f). The graphs are not to
scale. Which v,(¢) graph and which v (f) graph best correspond to
each of the four situations in Question 1 and Fig. 5-19?

<
=

<
=

(@) () ()
Yy
¢ \/ t t

(d) (e) N
Figure 5-25 Question 8.
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9 Figure 5-26 shows a train of four blocks being pulled across a
frictionless floor by force F. What total mass is accelerated to the
right by (a) force F, (b) cord 3, and (c) cord 1? (d) Rank the blocks
according to their accelerations, greatest first. (¢) Rank the cords
according to their tension, greatest first.

Cord Cord Cord
TR vrve BEG e=ven B e BN
10 kg | | 3kg | | 5kg | | 2kg | >
Figure 5-26 Question 9.
10 Figure 5-27 shows three blocks 5kg 10 kg
being pushed across a frictionless = 2 kg

floor by horizontal force F.What to- .’
tal mass is accelerated to the right 1 9 3
by (a) force F, (b) force F, on
block 2 from block 1, and (c) force

Figure 5-27 Question 10.

Problems

F, on block 3 from block 2? (d) Rank the blocks according to
their acceleration magnitudes, greatest first. (e) Rank forces F, F,
and F 3, according to magnitude, greatest first.

11 A vertical force F is applied to a block of mass m that lies on
a floor. What happens to the magnitude of the normal force F yon
the block from the floor as magnitude F is increased from zero if
force F is (a) downward and (b) upward?

12 Figure 5-28 shows four choices for the direction of a force of
magnitude F to be applied to a block
on an inclined plane. The directions
are either horizontal or vertical
(For choice b, the force is not
enough to lift the block off the
plane.) Rank the choices according
to the magnitude of the normal
force acting on the block from the
plane, greatest first.

Figure 5-28 Question 12.

@ Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. L http://www.wiley.com/college/halliday
Interactive solution is at

ﬂ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 5-1 Newton’s First and Second Laws

*1  Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

*2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is F, = (3.0 N)i + (4.0 N)j. Find the acceleration of the
chopping block in unit-vector notation when the other force is
(a) F, = (-3.0N)i + (—4.0N)j, (b) F, = (-3.0N)i + (4.0 N)j,
and (c) F, = 3.0N)i + (4.0 N)j.

*3 If the 1 kg standard body has an acceleration of 2.00 m/s? at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

ee4  While two forces act on it, a y
particle is to move at the constant
velocity V = (3 m/s)i — (4 m/s)]. One
of the forces is F = (2N)i+
(—6 N)j. What is the other force?

*5 @ Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F| =32N, F, = 55N,
F;=41N, 6, =30° and 6;=60°
What is the asteroid’s acceleration
(a) in unit-vector notation and as (b) a magnitude and (c) a direc-
tion relative to the positive direction of the x axis?

Figure 5-29 Problem 5.

6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire at
the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force Eof magni-
tude 220 N, and Charles pulls with
force Fe of magnitude 170 N. Note
that the direction of F¢ is not given.
What is the magnitude of Betty’s
force F“B?

*7 ssMm There are two forces on the
2.00 kg box in the overhead view of
Fig. 5-31, but only one is shown. For
F, =200N,a = 12.0 m/s?,and 6 = 30.0°, )
find the second force (a) in unit-vector
notation and as (b) a magnitude and K
(c) an angle relative to the positive di-
rection of the x axis.

Figure 5-30 Problem 6.

>— x

8 A 2.00kg object is subjected to
three forces that give it an acceleration
da = —(8.00 m/s?)i + (6.00 m/s?)}. If
two of the three forces are
F, = (30.0N)i + (16.0N)j and F, =
—(12.0 N)i + (8.00 N)j, find the third force.

9 A 0.340kg particle moves in an xy plane according
to x(f) = —15.00 + 2.00¢ — 4.007 and y(¢) = 25.00 + 7.00¢ — 9.00#,
with x and y in meters and ¢ in seconds. At t = 0.700 s, what are

Figure 5-31 Problem 7.



(a) the magnitude and (b) the angle (relative to the positive direc-
tion of the x axis) of the net force on the particle, and (c) what is
the angle of the particle’s direction of travel?

10 @ A 0.150 kg particle moves along an x axis according
to x(z) = —13.00 + 2.00z + 4.0022 — 3.00¢, with x in meters and # in
seconds. In unit-vector notation, what is the net force acting on the
particle at r = 3.40 s?

11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x =
3.0m + (4.0 m/s)t + cr> — (2.0 m/s®)¢%, with x in meters and ¢ in
seconds. The factor c is a constant. At ¢ = 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis. What is ¢?

ee12 @ Two horizontal forces F 1 and F » act on a 4.0 kg disk that
slides over frictionless ice, on which an xy coordinate system is laid
out. Force F 1 is in the positive direction of the x axis and has a mag-
nitude of 7.0 N. Force F , has a magnitude of 9.0 N. Figure 5-32
gives the x component v, of the velocity of the disk as a function of
time ¢ during the sliding. What is the angle between the constant di-
rections of forces F 1and F 2?7

v, (m/s)
4 —
9 —

I I {(s)

[
N
0o

-2

-4

Figure 5-32 Problem 12.

Module 5-2 Some Particular Forces
*13 TFigure 5-33 shows an arrangement in
which four disks are suspended by cords. The
longer, top cord loops over a frictionless pul-
ley and pulls with a force of magnitude 98 N
on the wall to which it is attached. The tensions
in the three shorter cords are 7) = 58.8 N,
T, =49.0N, and 73 = 9.8 N. What are the
masses of (a) disk A, (b) disk B, (c) disk C,
and (d) disk D?

*14 A block with a weight of 3.0 N is at
rest on a horizontal surface. A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

Figure 5-33
Problem 13.

*15 ssm (a) An 11.0 kg salami is supported by a cord that runs to
a spring scale, which is supported by a cord hung from the ceiling
(Fig. 5-34a). What is the reading on the scale, which is marked in SI
weight units? (This is a way to measure weight by a deli owner.) (b)
In Fig. 5-34b the salami is supported by a cord that runs around a
pulley and to a scale. The opposite end of the scale is attached by a
cord to a wall. What is the reading on the scale? (This is the way by
a physics major.) (c¢) In Fig. 5-34¢ the wall has been replaced with a
second 11.0 kg salami, and the assembly is stationary. What is the
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reading on the scale? (This is the way by a deli owner who was
once a physics major.)

Spring scale

()

Spring scale

(o)
Figure 5-34 Problem 15.

*»16 Some insects can walk below
a thin rod (such as a twig) by hang-
ing from it. Suppose that such an in-
sect has mass m and hangs from a
horizontal rod as shown in Fig. 5-35,
with angle 6 = 40°. Its six legs are all
under the same tension, and the leg
sections nearest the body are hori-
zontal. (a) What is the ratio of the
tension in each tibia (forepart of a leg) to the insect’s weight? (b) If
the insect straightens out its legs somewhat, does the tension in each
tibia increase, decrease, or stay the same?

/S Rod

Figure 5-35 Problem 16.

Module 5-3 Applying
Newton’s Laws

*17 ssm www In Fig. 5-36,
let the mass of the block be
8.5kg and the angle 6 be 30°.
Find (a) the tension in the cord
and (b) the normal force acting
on the block. (c) If the cord is
cut, find the magnitude of the re-
sulting acceleration of the block. Zwmwg

FENARATY
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18 =%& In April 1974, John Figure 5-36 Problem 17.
Massis of Belgium managed to

move two passenger railroad

cars. He did so by clamping his teeth down on a bit that was at-
tached to the cars with a rope and then leaning backward while
pressing his feet against the railway ties. The cars together weighed
700 kN (about 80 tons). Assume that he pulled with a constant
force that was 2.5 times his body weight, at an upward angle 6 of
30° from the horizontal. His mass was 80 kg, and he moved the cars
by 1.0 m. Neglecting any retarding force from the wheel rotation,
find the speed of the cars at the end of the pull.
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*19 ssm A 500 kg rocket sled can be accelerated at a constant
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of the
required net force?

°20 A car traveling at 53 km/h hits a bridge abutment. A passen-
ger in the car moves forward a distance of 65 cm (with respect to
the road) while being brought to rest by an inflated air bag. What
magnitude of force (assumed constant) acts on the passenger’s up-
per torso, which has a mass of 41 kg?

21 A constant horizontal force F, pushes a 2.00 kg FedEx pack-
age across a frictionless floor on which an xy coordinate system has
been drawn. Figure 5-37 gives the package’s x and y velocity com-
ponents versus time ¢t. What are the (a) magnitude and (b) direc-
tion of Fa?

v, (m/s)

10 —

(=]
—
ro
o

Figure 5-37 Problem 21.

°22 4= A customer sits in an amusement park ride in which the
compartment is to be pulled downward in the negative direction of
a y axis with an acceleration magnitude of 1.24g, with g = 9.80 m/s?.
A 0.567 g coin rests on the customer’s knee. Once the motion be-
gins and in unit-vector notation, what is the coin’s acceleration rel-
ative to (a) the ground and (b) the customer? (c) How long does
the coin take to reach the compartment ceiling, 2.20 m above the
knee? In unit-vector notation, what are (d) the actual force on the
coin and (e) the apparent force according to the customer’s meas-
ure of the coin’s acceleration?

°23 Tarzan, who weighs 820 N, swings from a cliff at the end of a
20.0 m vine that hangs from a high tree limb and initially makes an
angle of 22.0° with the vertical. Assume that an x axis extends hori-
zontally away from the cliff edge and a y axis extends upward.
Immediately after Tarzan steps off the cliff, the tension in the vine
is 760 N. Just then, what are (a) the force on him from the vine in
unit-vector notation and the net force on him (b) in unit-vector no-
tation and as (c) a magnitude and (d) an angle relative to the
positive direction of the x axis? What are the (e) magnitude and
(f) angle of Tarzan’s acceleration just then?

*24 There are two horizontal )
forces on the 2.0 kg box in the over- > x
head view of Fig. 5-38 but only one
(of magnitude F; = 20 N) is shown.
The box moves along the x axis. For
each of the following values for the acceleration a, of the box,
find the second force in unit-vector notation: (a) 10 m/s?, (b) 20 m/s?,
(c)0,(d) —10 m/s?,and (e) —20 m/s?.

*25 Sunjamming. A “sun yacht” is a spacecraft with a large sail
that is pushed by sunlight. Although such a push is tiny in everyday
circumstances, it can be large enough to send the spacecraft
outward from the Sun on a cost-free but slow trip. Suppose that
the spacecraft has a mass of 900 kg and receives a push of 20 N.
(a) What is the magnitude of the resulting acceleration? If the craft
starts from rest, (b) how far will it travel in 1 day and (c) how fast
will it then be moving?

Figure 5-38 Problem 24.

°26 The tension at which a fishing line snaps is commonly called the
line’s “strength.” What minimum strength is needed for a line that is to
stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at
2.8 m/s? Assume a constant deceleration.

*27 ssM An electron with a speed of 1.2 X 107 m/s moves hori-
zontally into a region where a constant vertical force of 4.5 X
1071 N acts on it. The mass of the electron is 9.11 X 1073 kg.
Determine the vertical distance the electron is deflected during the
time it has moved 30 mm horizontally.

*28 A car that weighs 1.30 X 10*N is initially moving at
40 km/h when the brakes are applied and the car is brought to a
stop in 15 m. Assuming the force that stops the car is constant,
find (a) the magnitude of that force and (b) the time required for
the change in speed. If the initial speed is doubled, and the car ex-
periences the same force during the braking, by what factors are
(c) the stopping distance and (d) the stopping time multiplied?
(There could be a lesson here about the danger of driving at high
speeds.)

*29 A firefighter who weighs 712 N slides down a vertical pole
with an acceleration of 3.00 m/s?, directed downward. What are the
(a) magnitude and (b) direction (up or down) of the vertical force
on the firefighter from the pole and the (c) magnitude and (d) di-
rection of the vertical force on the pole from the firefighter?

*30 =&F The high-speed winds around a tornado can drive pro-
jectiles into trees, building walls, and even metal traffic signs. In a
laboratory simulation, a standard wood toothpick was shot by
pneumatic gun into an oak branch. The toothpick’s mass was 0.13 g,
its speed before entering the branch was 220 m/s, and its penetra-
tion depth was 15 mm. If its speed was decreased at a uniform
rate, what was the magnitude of the force of the branch on the
toothpick?

31 ssm www A block is projected up a frictionless inclined
plane with initial speed v, = 3.50 y
m/s. The angle of incline is -

6 = 32.0°. (a) How far up the plane h

does the block go? (b) How long 0,

does it take to get there? (c) What is

its speed when it gets back to the 6,
bottom? F

*32 Figure 5-39 shows an overhead

view of a 0.0250 kg lemon half and Figure 5-39 Problem 32.



two of the three horizontal forces that act on it as it is on a frictionless
table. Force F| has a magnitude of 6.00 N and is at 6, = 30.0°. Force

F. , has a magnitude of 7.00 N and is at 6, = 30.0°. In unit-vector no-

tation, what is the third force if the lemon half (a) is stationary, (b)
has the constant velocity v = (13.01 — 14.0j) m/s, and (c) has the

varying velocity v = (13.0zi - 14.0tj) m/s?, where ¢ is time?

*33 An elevator cab and its load have a combined mass of 1600 kg.
Find the tension in the supporting cable when the cab, originally
moving downward at 12 m/s, is brought to rest with constant accel-
eration in a distance of 42 m.

34 @ In Fig. 5-40, a crate of mass

m =100kg is pushed at con-
stant speed up a frictionless ramp

(6 =30.0°) by a horizontal force
F.What are the magnitudes of (a) F

and (b) the force on the crate from )
the ramp?

*35 The velocity of a 3.00 kg parti-
cle is given by v = (8.004 + 3.00%)
m/s, with time ¢ in seconds. At the instant the net force on the parti-
cle has a magnitude of 35.0 N, what are the direction (relative to
the positive direction of the x axis) of (a) the net force and (b) the
particle’s direction of travel?

m

=

Figure 5-40 Problem 34.

*36 Holding on to a towrope moving parallel to a frictionless ski
slope, a 50 kg skier is pulled up the slope, which is at an angle of
8.0° with the horizontal. What is the magnitude F,,. of the force on
the skier from the rope when (a) the magnitude v of the skier’s ve-
locity is constant at 2.0 m/s and (b) v = 2.0 m/s as v increases at a
rate of 0.10 m/s??

*37 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a
frozen lake, 15 m apart but connected by a rope of negligible mass.
The girl exerts a horizontal 5.2 N force on the rope. What are the ac-
celeration magnitudes of (a) the sled and (b) the girl? (c) How far
from the girl’s initial position do they meet?

*38 A 40 kg skier skis directly down a frictionless slope angled
at 10° to the horizontal. Assume the skier moves in the negative di-
rection of an x axis along the slope. A wind force with component
F acts on the skier. What is F, if the magnitude of the skier’s veloc-
ity is (a) constant, (b) increasing at a rate of 1.0 m/s?, and (c) in-
creasing at a rate of 2.0 m/s?

*39 ILWw A sphere of mass 3.0 X 107*kg is suspended from
a cord. A steady horizontal breeze pushes the sphere so that the
cord makes a constant angle of 37° with the vertical. Find (a) the
push magnitude and (b) the tension in the cord.

40 @ A dated box of dates, of mass 5.00 kg, is sent sliding up a
frictionless ramp at an angle of 6 to the horizontal. Figure 5-41 gives,

v, (m/s)
4

21—

{£(s)
3

-4 —
Figure 5-41 Problem 40.
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as a function of time ¢, the component v, of the box’s velocity along an
x axis that extends directly up the ramp. What is the magnitude of the
normal force on the box from the ramp?

*»41 Using a rope that will snap if the tension in it exceeds 387 N,
you need to lower a bundle of old roofing material weighing 449 N
from a point 6.1 m above the ground. Obviously if you hang the bun-
dle on the rope, it will snap. So, you allow the bundle to accelerate
downward. (a) What magnitude of the bundle’s acceleration will put
the rope on the verge of snapping? (b) At that acceleration, with
what speed would the bundle hit the ground?

*42 (@ In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of 6 = 18° to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s?. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

Figure 5-42 Problem 42.

*43 ssm In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a = 2.50
m/s’. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force F on the top link from the
person lifting the chain and (f) the net force accel-
erating each link. 1

=
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*e44 A lamp hangs vertically from a cord in a de-
scending elevator that decelerates at 2.4 m/s. (a)
If the tension in the cord is 89 N, what is the lamp’s
mass? (b) What is the cord’s tension when the ele-
vator ascends with an upward acceleration of 2.4 m/s?

Figure 5-43
Problem 43.

*45 An elevator cab that weighs 27.8 kN moves upward. What is
the tension in the cable if the cab’s speed is (a) increasing at a rate
of 1.22 m/s? and (b) decreasing at a rate of 1.22 m/s*?

*46 An elevator cab is pulled upward by a cable. The cab and its
single occupant have a combined mass of 2000 kg. When that occu-
pant drops a coin, its acceleration relative to the cab is 8.00 m/s?
downward. What is the tension in the cable?

47 @ <% The Zacchini family was renowned for their hu-
man-cannonball act in which a family member was shot from a
cannon using either elastic bands or compressed air. In one version
of the act, Emanuel Zacchini was shot over three Ferris wheels to
land in a net at the same height as the open end of the cannon and
at a range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53°. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53°. Neglect air drag.)
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*48 @ In Fig. 5-44, elevator cabs A and B are con-
nected by a short cable and can be pulled upward or
lowered by the cable above cab A. Cab A has mass
1700 kg; cab B has mass 1300 kg. A 12.0 kg box of cat-
nip lies on the floor of cab A.The tension in the cable
connecting the cabs is 1.91 X 10* N. What is the mag-
nitude of the normal force on the box from the floor?

*49 In Fig. 5-45, a block of mass m = 5.00 kg is
pulled along a horizontal frictionless floor by a cord
that exerts a force of magnitude F = 12.0N at an
angle 6 =25.0°. (a) What is the magnitude of the
block’s acceleration? (b) The force magnitude F is
slowly increased. What is its value just before the
block is lifted (completely) off the floor? (c) What is
the magnitude of the block’s acceleration just before it is lifted
(completely) off the floor?

Figure 5-44
Problem 48.

Figure 5-45
Problems 49 and 60.

50 @ In Fig. 5-46, three ballot A[ ]
boxes are connected by cords, one

of which wraps over a pulley having B
negligible friction on its axle and
negligible mass. The three masses
are my =30.0kg, mp=40.0kg,
and m¢ = 10.0 kg. When the assem-
bly is released from rest, (a) what is the tension in the cord con-
necting B and C, and (b) how far does A move in the first 0.250 s
(assuming it does not reach the pulley)?

Figure 5-46 Problem 50.

51 @ Figure 5-47 shows two blocks connected by
a cord (of negligible mass) that passes over a fric-
tionless pulley (also of negligible mass). The
arrangement is known as Atwood’s machine. One
block has mass m; = 1.30 kg; the other has mass m, =
2.80 kg. What are (a) the magnitude of the blocks’ ac-
celeration and (b) the tension in the cord?

*52 An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that
runs over a frictionless pulley to a 65 kg sandbag.
With what speed does the man hit the ground if he

started from rest? Figure 5-47
*53 In Fig. 5-48, three connected blocks are Problems 51
and 65.

pulled to the right on a horizontal frictionless table

by a force of magnitude 75 = 65.0 N. If m; = 12.0 kg,

m, = 24.0 kg, and m; = 31.0 kg, calculate (a) the magnitude of the
system’s acceleration, (b) the tension 7}, and (c) the tension 7.

T T, T
my ) 3

Figure 5-48 Problem 53.

54 @ Figure 5-49 shows four penguins that are being playfully
pulled along very slippery (frictionless) ice by a curator. The masses
of three penguins and the tension in two of the cords are m; = 12 kg,
ms = 15kg, my =20kg, 7, = 111 N, and T, = 222 N. Find the pen-
guin mass m, that is not given.

Figure 5-49 Problem 54.

55 ssm ILw www Two blocks are in !
contact on a frictionless table. A horizon- o my
tal force is applied to the larger block, as —Fl>

shown in Fig. 5-50. (a) If m; = 2.3 kg,

my = 1.2kg, and F = 3.2 N, find the mag-

nitude of the force between the two Figure 5-50
blocks. (b) Show that if a force of the same Problem 55.

magnitude F is applied to the smaller

block but in the opposite direction, the magnitude of the force be-
tween the blocks is 2.1 N, which is not the same value calculated in
(a). (c) Explain the difference.

*56 @ In Fig. 5-51a, a constant horizontal force F,is applied to
block A, which pushes against block B with a 20.0 N force directed
horizontally to the right. In Fig. 5-51b, the same force fa is applied
to block B; now block A pushes on block B with a 10.0 N force
directed horizontally to the left. The blocks have a combined mass
of 12.0 kg. What are the magnitudes of (a) their acceleration in
Fig. 5-51a and (b) force F?

A B B A

(@) (b)
Figure 5-51 Problem 56.

|
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*57 1ILW A block of mass m; = 3.70 kg on a frictionless plane in-
clined at angle # = 30.0° is connected by a cord over a massless,
frictionless pulley to a second block of mass m, = 2.30 kg (Fig.
5-52). What are (a) the magnitude of the acceleration of each
block, (b) the direction of the acceleration of the hanging block,
and (c) the tension in the cord?

my
my
6

Figure 5-52 Problem 57.

*58 Figure 5-53 shows a man sitting in a bosun’s chair that dan-
gles from a massless rope, which runs over a massless, frictionless
pulley and back down to the man’s hand. The combined mass of
man and chair is 95.0 kg. With what force magnitude must the man
pull on the rope if he is to rise (a) with a constant velocity and



(b) with an upward acceleration of
1.30 m/s*? (Hint: A free-body dia-
gram can really help.) If the rope
on the right extends to the ground
and is pulled by a co-worker, with
what force magnitude must the co-
worker pull for the man to rise (c)
with a constant velocity and (d)
with an upward acceleration of
1.30 m/s?>? What is the magnitude
of the force on the ceiling from the
pulley system in (e) part a, (f) part
b, (g) part c,and (h) part d?

©

*59 ssm A 10 kg monkey climbs
up a massless rope that runs over a
frictionless tree limb and back
down to a 15kg package on the
ground (Fig. 5-54). (a) What is the oW N
magnitude of the least acceleration
the monkey must have if it is to lift
the package off the ground? If, after !
the package has been lifted, the

monkey stops its climb and holds

onto the rope, what are the (b)

magnitude and (c) direction of the Q
monkey’s acceleration and (d) the |

tension in the rope?

*60 Figure 5-45 shows a 5.00 kg
block being pulled along a friction-
less floor by a cord that applies a
force of constant magnitude 20.0 N [ H
but with an angle 6(¢) that varies

with time. When angle 6 = 25.0°, at
what rate is the acceleration of the
block changing if (a) 6(z) =
(2.00 X 1072 deg/s)t and (b) 6(t) = —(2.00 X 1072 deg/s)t? (Hint:
The angle should be in radians.)

Figure 5-53 Problem 58.

5

|

Figure 5-54 Problem 59.

*s61 SSM ILW A hot-air balloon of mass M is descending vertically
with downward acceleration of magnitude a. How much mass (ballast)
must be thrown out to give the balloon an upward acceleration of mag-
nitude a? Assume that the upward force from the air (the lift) does not
change because of the decrease in mass.

ee62 == In shot putting, many athletes elect to launch the shot
at an angle that is smaller than the theoretical one (about 42°) at
which the distance of a projected ball at the same speed and
height is greatest. One reason has to do with the speed the athlete
can give the shot during the acceleration phase of the throw.
Assume that a 7.260 kg shot is accelerated along a straight path of
length 1.650 m by a constant applied force of magnitude 380.0 N,
starting with an initial speed of 2.500 m/s (due to the athlete’s pre-
liminary motion). What is the shot’s speed at the end of the accel-
eration phase if the angle between the path and the horizontal is
(a) 30.00° and (b) 42.00°? (Hint: Treat the motion as though it
were along a ramp at the given angle.) (c) By what percent is the
launch speed decreased if the athlete increases the angle from
30.00° to 42.00°?

*s63 @ Figure 5-55 gives, as a function of time ¢, the force compo-
nent F, that acts on a 3.00 kg ice block that can move only along
the x axis. At ¢ = 0, the block is moving in the positive direction of
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the axis, with a speed of 3.0 m/s. What are its (a) speed and (b) direc-
tion of travel at# = 11 s?

I (N)
6

0 I I I I { (s)

Figure 5-55 Problem 63.

es64 (@ Figure 5-56 shows a box of mass m, = 1.0 kg on a fric-
tionless plane inclined at angle § = 30°. It is connected by a cord of
negligible mass to a box of mass m; = 3.0 kg on a horizontal fric-
tionless surface. The pulley is frictionless and massless. (a) If the
magnitude of horizontal force F is 2.3 N, what is the tension in the
connecting cord? (b) What is the largest value the magnitude of F
may have without the cord becoming slack?

my —

>

0

Figure 5-56 Problem 64.

65 @ Figure 5-47 shows Atwood’s machine, in which two con-
tainers are connected by a cord (of negligible mass) passing over a
frictionless pulley (also of negligible mass). At time ¢ = 0, container
1 has mass 1.30 kg and container 2 has mass 2.80 kg, but container 1
is losing mass (through a leak) at the constant rate of 0.200 kg/s. At
what rate is the acceleration magnitude of the containers changing
at (a) = 0and (b) r = 3.00 s? (c) When does the acceleration reach
its maximum value?

*s66 (@ Figure 5-57 shows a section of a cable-car system. The
maximum permissible mass of each car with occupants is 2800 kg.
The cars, riding on a support cable, are pulled by a second cable
attached to the support tower on each car. Assume that the cables

Support cable
Pull cable

Figure 5-57 Problem 66.
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are taut and inclined at angle # = 35°. What is the difference in
tension between adjacent sections of pull cable if the cars are at
the maximum permissible mass and are being accelerated up the

incline at 0.81 m/s??
B
A | I D c

Figure 5-58 Problem 67.

eee67 Figure 5-58 shows three
blocks attached by cords that loop
over frictionless pulleys. Block B
lies on a frictionless table; the
masses are m, = 6.00 kg, mp = 8.00
kg, and mc=10.0kg. When the
blocks are released, what is the
tension in the cord at the right?

*68 & A shot putter launches a 7.260 kg shot by pushing it
along a straight line of length 1.650 m and at an angle of 34.10°
from the horizontal, accelerating the shot to the launch speed
from its initial speed of 2.500 m/s (which is due to the athlete’s
preliminary motion). The shot leaves the hand at a height of 2.110 m
and at an angle of 34.10° and it lands at a horizontal distance of
15.90 m. What is the magnitude of the athlete’s average force on
the shot during the acceleration phase? (Hint: Treat the motion
during the acceleration phase as though it were along a ramp at
the given angle.)

Additional Problems

69 In Fig. 5-59,4.0 kg block A and 6 0 kg block B are connected by
a string of negligible mass. Force F,=(12 N)1 acts on block A;
force Fy = (24 N)1 acts on block B. What is the tension in the string?

A F, B 5y

Figure 5-59 Problem 69.

70 =%&F An 80 kg man drops to a concrete patio from a window
0.50 m above the patio. He neglects to bend his knees on landing, tak-
ing 2.0 cm to stop. (a) What is his average acceleration from when his
feet first touch the patio to when he stops? (b) What is the magnitude
of the average stopping force exerted on him by the patio?

71 ssm Figure 5-60 shows a box of dirty money (mass m; = 3.0 kg)
on a frictionless plane inclined at angle 6; = 30°. The box is con-
nected via a cord of negligible mass to a box of laundered money
(mass m, = 2.0 kg) on a frictionless plane inclined at angle 6, = 60°.
The pulley is frictionless and has negligible mass. What is the ten-
sion in the cord?

my Mo

6 6,

Figure 5-60 Problem 71.

72 Three forces act on a particle that moves with unchanging ve-
locity v = (2 m/s)1 — (7 l’I’l/S)] Two of the forces are F, =(2 N)1
(3N)j + (—=2N)k and F> = (=5 N)i + (8 N)] + (—2 N)k. What is
the third force?

73 ssm In Fig. 5-61, a tin of
antioxidants (m; = 1.0 kg) on a fric-
tionless inclined surface is con-
nected to a tin of corned beef (m, =
2.0 kg). The pulley is massless and
frictionless. An upward force of
magnitude F=6.0N acts on the

corned beef tin, which has a down-

ward acceleration of 5.5 m/s?>. What Mg

are (a) the tension in the connecting

cord and (b) angle 8? AH
7

74 The only two forces acting on a
body have magnitudes of 20 N and
35N and directions that differ by
80°. The resulting acceleration has a
magnitude of 20 m/s®.. What is the
mass of the body?

Figure 5-61 Problem 73.

75 Figure 5-62 is an overhead

view of a 12 kg tire that is to be x
pulled by three horizontal ropes. B

One rope’s force (F; = 50 N) is in-
dicated. The forces from the other
ropes are to be oriented such that
the tire’s acceleration magnitude a is
least. What is that least a if (a) F, =
30N, F;=20N; (b) F,=30N, F; =
10 N;and (c) F, = F; = 30 N? m -
76 A block of mass M is pulled
along a horizontal frictionless sur-
face by a rope of mass m, as shown
in Fig. 5-63. A horizontal force F
acts on one end of the rope.
(a) Show that the rope must sag, even if only by an imperceptible
amount. Then, assuming that the sag is negligible, find (b) the ac-
celeration of rope and block, (c) the force on the block from the
rope, and (d) the tension in the rope at its midpoint.

Figure 5-63 Problem 76.

77 ssm A worker drags a crate across a factory floor by pulling
on a rope tied to the crate. The worker exerts a force of magni-
tude F = 450 N on the rope, which is inclined at an upward angle
0 = 38° to the horizontal, and the floor exerts a horizontal force
of magnitude f= 125 N that opposes the motion. Calculate the
magnitude of the acceleration of the crate if (a) its mass is 310 kg
and (b) its weight is 310 N.

78 In Fig. 5-64, a force F of mag-

nitude 12 N is applied to a FedEx

box of mass m, = 1.0 kg. The force my
is directed up a plane tilted by 6 =
37°. The box is connected by a cord
to a UPS box of mass m; = 3.0 kg
on the floor. The floor, plane, and
pulley are frictionless, and the
masses of the pulley and cord are negligible. What is the tension in
the cord?

F

0

Figure 5-64 Problem 78.

79 A certain particle has a weight of 22 N at a point where
g = 9.8 m/s?. What are its (a) weight and (b) mass at a point where
g = 4.9 m/s?? What are its (c) weight and (d) mass if it is moved to
a point in space where g = 0?

80 An 80 kg person is parachuting and experiencing a downward
acceleration of 2.5 m/s?. The mass of the parachute is 5.0 kg. (a)



What is the upward force on the open parachute from the air? (b)
What is the downward force on the parachute from the person?

81 A spaceship lifts off vertically from the Moon, where g =
1.6 m/s2. If the ship has an upward acceleration of 1.0 m/s” as it lifts
off, what is the magnitude of the force exerted by the ship on its pi-
lot, who weighs 735 N on Earth?

82 In the overhead view of Fig. y
5-65, five forces pull on a box of
mass m = 4.0 kg. The force magni- EA
tudes are F;=11N, F,=17N,
F;=30N,F,=14N,and Fs =5.0N, 2
and angle 6, is 30°. Find the box’s F
acceleration (a) in unit-vector nota-
tion and as (b) a magnitude and .
(c) an angle relative to the positive v
direction of the x axis.

) ) Figure 5-65 Problem 82.
83 ssm A certain force gives an

object of mass m,; an acceleration

of 12.0 m/s?> and an object of mass m, an acceleration of 3.30
m/s?. What acceleration would the force give to an object of mass
(a) my — my and (b) m, + m;?

84  You pull a short refrigerator with a constant force F across a
greased (frictionless) floor, either with F horizontal (case 1) or with
F tilted upward at an angle 6 (case 2). (a) What is the ratio of the re-
frigerator’s speed in case 2 to its speed in case 1 if you pull for a cer-
tain time ¢? (b) What is this ratio if you pull for a certain distance d?

85 A 52 kg circus performer is to slide down a rope that will
break if the tension exceeds 425 N. (a) What happens if the per-
former hangs stationary on the rope? (b) At what magnitude of ac-
celeration does the performer just avoid breaking the rope?

86 Compute the weight of a 75 kg space ranger (a) on Earth,
(b) on Mars, where g = 3.7 m/s?, and (c) in interplanetary space,
where g = 0. (d) What is the ranger’s mass at each location?

87 An object is hung from a spring balance attached to the ceil-
ing of an elevator cab. The balance reads 65 N when the cab is
standing still. What is the reading when the cab is moving upward
(a) with a constant speed of 7.6 m/s and (b) with a speed of 7.6 m/s
while decelerating at a rate of 2.4 m/s>?

88 Imagine a landing craft approaching the surface of Callisto,
one of Jupiter’s moons. If the engine provides an upward force
(thrust) of 3260 N, the craft descends at constant speed; if the en-
gine provides only 2200 N, the craft accelerates downward at
0.39 m/s?. (a) What is the weight of the landing craft in the vicinity
of Callisto’s surface? (b) What is the mass of the craft? (c) What is
the magnitude of the free-fall acceleration near the surface of
Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger
jet by just three bolts (this is the usual practice). Assume that each
bolt supports one-third of the load. (a) Calculate the force on each
bolt as the plane waits in line for clearance to take off. (b) During
flight, the plane encounters turbulence, which suddenly imparts an
upward vertical acceleration of 2.6 m/s” to the plane. Calculate the
force on each bolt now.

90 An interstellar ship has a mass of 1.20 X 10° kg and is initially at
rest relative to a star system. (a) What constant acceleration is needed
to bring the ship up to a speed of 0.10c (where c is the speed of light,
3.0 X 108 m/s) relative to the star system in 3.0 days? (b) What is that
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acceleration in g units? (c) What force is required for the accelera-
tion? (d) If the engines are shut down when 0.10c is reached (the
speed then remains constant), how long does the ship take (start to
finish) to journey 5.0 light-months, the distance that light travels in
5.0 months?

91 ssm A motorcycle and 60.0 kg rider accelerate at 3.0 m/s? up
a ramp inclined 10° above the horizontal. What are the magnitudes
of (a) the net force on the rider and (b) the force on the rider from
the motorcycle?

92 Compute the initial upward acceleration of a rocket of mass
1.3 X 10* kg if the initial upward force produced by its engine (the
thrust) is 2.6 X 10° N. Do not neglect the gravitational force on the
rocket.

93 ssm Figure 5-66a shows a mobile hanging from a ceiling; it
consists of two metal pieces (m; = 3.5 kg and m, = 4.5 kg) that are
strung together by cords of negligible mass. What is the tension in
(a) the bottom cord and (b) the top cord? Figure 5-66b shows a
mobile consisting of three metal pieces. Two of the masses are m; =
4.8 kg and ms = 5.5 kg. The tension in the top cord is 199 N. What is
the tension in (c) the lowest cord and (d) the middle cord?

my

my

(a) (b)
Figure 5-66 Problem 93.

94 For sport, a 12 kg armadillo runs onto a large pond of level,
frictionless ice. The armadillo’s initial velocity is 5.0 m/s along the
positive direction of an x axis. Take its initial position on the ice as
being the origin. It slips over the ice while being pushed by a wind
with a force of 17 N in the positive direction of the y axis. In unit-
vector notation, what are the animal’s (a) velocity and (b) position
vector when it has slid for 3.0 s?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg
and 4.0 kg. (a) Which mass should the hanging block have if the
magnitude of the acceleration is to be as large as possible? What
then are (b) the magnitude of the acceleration and (c) the tension
in the cord?

96 A nucleus that captures a stray neutron must bring the neu-
tron to a stop within the diameter of the nucleus by means of the
strong force. That force, which “glues” the nucleus together, is ap-
proximately zero outside the nucleus. Suppose that a stray neutron
with an initial speed of 1.4 X 107 m/s is just barely captured by a
nucleus with diameter d = 1.0 X 107 m. Assuming the strong
force on the neutron is constant, find the magnitude of that force.
The neutron’s mass is 1.67 X 107" kg.

97 If the 1 kg standard body is accelerated by only F, =
(3.0N)i + (40N)j and F, = (—2.0N)i + (—6.0 N)j, then what
is Foo (a) in unit-vector notation and as (b) a magnitude and
(c) an angle relative to the positive x direction? What are the (d)
magnitude and (e) angle of a@?
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Force and Motion-l|

b-1 rricTION

Learning Objectives
After reading this module, you should be able to . . .

6.01 Distinguish between friction in a static situation and a 6.03 For objects on horizontal, vertical, or inclined planes in
kinetic situation. situations involving friction, draw free-body diagrams and

6.02 Determine direction and magnitude of a frictional force. apply Newton's second law.

Key Ideas

@ When aforce F tends to slide a body along a surface, a fric- ® The magnitude of 75 has a maximum value ?s,max given by

tional force from the surface acts on the body. The frictional fo = uF

force is parallel to the surface and directed so as to oppose the s HstH

sliding. It is due to bonding between the body and the surface. where u, is the coefficient of static friction and Fy is the mag-

If the body does not slide, the frictional force is a static nitude of the normal force. If the component of F parallel to

frictional force f,. If the_t)’e is sliding, the frictional force is a the surface exceeds fs’max, the body slides on the surface.

kinetic frictional force f,. A @ If the body begins to slide on the surface, the magnitude of the

@ |f a body does not move, the static frictional force f; and frictional force rapidly decreases to a constant value f; given by

the component of F parallel to the surface are equal in magni- y

tude, and 7, is directed opposite that component. If the com- Jie = muFn,

ponent increases, f; also increases. where u, is the coefficient of kinetic friction.

What Is Physics?

In this chapter we focus on the physics of three common types of force: frictional
force, drag force, and centripetal force. An engineer preparing a car for the
Indianapolis 500 must consider all three types. Frictional forces acting on the tires
are crucial to the car’s acceleration out of the pit and out of a curve (if the car hits
an oil slick, the friction is lost and so is the car). Drag forces acting on the car
from the passing air must be minimized or else the car will consume too much
fuel and have to pit too early (even one 14 s pit stop can cost a driver the race).
Centripetal forces are crucial in the turns (if there is insufficient centripetal force,
the car slides into the wall). We start our discussion with frictional forces.

Friction

Frictional forces are unavoidable in our daily lives. If we were not able to coun-
teract them, they would stop every moving object and bring to a halt every
rotating shaft. About 20% of the gasoline used in an automobile is needed to
counteract friction in the engine and in the drive train. On the other hand, if fric-
tion were totally absent, we could not get an automobile to go anywhere, and we
could not walk or ride a bicycle. We could not hold a pencil, and, if we could, it
would not write. Nails and screws would be useless, woven cloth would fall apart,
and knots would untie.

124
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Three Experiments. Here we deal with the frictional forces that exist be-
tween dry solid surfaces, either stationary relative to each other or moving across
each other at slow speeds. Consider three simple thought experiments:

1. Send a book sliding across a long horizontal counter. As expected, the book
slows and then stops. This means the book must have an acceleration parallel
to the counter surface, in the direction opposite the book’s velocity. From
Newton’s second law, then, a force must act on the book parallel to the counter
surface, in the direction opposite its velocity. That force is a frictional force.

2. Push horizontally on the book to make it travel at constant velocity along the
counter. Can the force from you be the only horizontal force on the book?
No, because then the book would accelerate. From Newton’s second law, there
must be a second force, directed opposite your force but with the same magni-
tude, so that the two forces balance. That second force is a frictional force,
directed parallel to the counter.

3. Push horizontally on a heavy crate. The crate does not move. From Newton’s
second law, a second force must also be acting on the crate to counteract your
force. Moreover, this second force must be directed opposite your force and
have the same magnitude as your force, so that the two forces balance. That
second force is a frictional force. Push even harder. The crate still does not
move. Apparently the frictional force can change in magnitude so that the two
forces still balance. Now push with all your strength. The crate begins to slide.
Evidently, there is a maximum magnitude of the frictional force. When you
exceed that maximum magnitude, the crate slides.

Two Types of Friction. Figure 6-1 shows a similar situation. In Fig. 6-1a, a block
rests on a tabletop, with the grav1tat10nal force F balanced by a normal force FN
In Fig. 6-1b, you exert a force F on the block, attemptmg to pull it to the left. In re-
sponse, a frictional force 7. is directed to the right, exactly balancing your force.
The force f.S is called the static frictional force. The block does not move.

There is no attempt FN./} k“ )
at Sh.dlr.]g' Thus, I Frictional force =0
no friction and |
no motion. $ﬁ
F/:’
(a)
Force F attempts 7 A
sliding but is balanced o |
by the frictional force. F<l-—|—-l> 1 Frictional force = F
No motion. ﬁf

. (b)
Force F is now

stronger but is still Ey4

:iigiz?f(k)):lc?e F< | >/, Frictional force = F
No motion. Ve
£y
Figure 6-1 (a) The forces on a _ ©
stationary block. (b—d) An external Force F is now even 7
force F, applied to the block, is stronger but is still 3 N4I\ 3
balanced by a static frictional force balanced by the < ~>  Frictional force = F
fs. As Fis increased, f, also increases, frictional force. L
until f; reaches a certain maximum No motion. F,

value. (Figure continues) (d)
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Figure 6-1 (Continued) (e) Once f, reaches
its maximum value, the block “breaks
away,” accelerating suddenly in the direc-
tion of F. (f) If the block is now to move
with constant velocity, F must be reduced
from the maximum value it had just
before the block broke away. (g) Some
experimental results for the sequence

(a) through (f). In WileyPLUS, this
figure is available as an animation with
voiceover.

To maintain the speed, <t
weaken force F to match  F<t==— ==/,

Finally, the applied force j FNA
has overwhelmed the F | - Weak kinetic
DA <t = /i e
static frictional force. | frictional force
Block slides and Vf
accelerates. (0 ¢
v FNA

= | = Same weak kinetic
frictional force

the weak frictional force. s
FE
)
| —Maximum value of f;
— = § | Ji is approximately e
Static frictional force 3 } constant\ Kinetic frictional force
can only match growing «g E | has only one value
applied force. & % ! (no matching).
= & | Break
| reakaway
0 el

Time

=
<

Figures 6-1c and 6-1d show that as you increase the magnitude of your
applied force, the magnitude of the static frictional force 7. also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1¢). The frictional force that then opposes the motion
is called the kinetic frictional force fk.

Usually, the magnitude of the kinetic frictional force, which acts when there is
motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

Microscopic View. A frictional force is, in essence, the vector sum of many
forces acting between the surface atoms of one body and those of another body. If
two highly polished and carefully cleaned metal surfaces are brought together in
a very good vacuum (to keep them clean), they cannot be made to slide over each
other. Because the surfaces are so smooth, many atoms of one surface contact
many atoms of the other surface, and the surfaces cold-weld together instantly,
forming a single piece of metal. If a machinist’s specially polished gage blocks are
brought together in air, there is less atom-to-atom contact, but the blocks stick
firmly to each other and can be separated only by means of a wrenching motion.
Usually, however, this much atom-to-atom contact is not possible. Even a highly
polished metal surface is far from being flat on the atomic scale. Moreover, the
surfaces of everyday objects have layers of oxides and other contaminants that
reduce cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 10*. Nonetheless,



many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force fk that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-weld.
Now getting the surfaces to slide relative to each other requires a greater applied
force: The static frictional force fs has a greater maximum value. Once the sur-
faces are sliding, there are many more points of momentary cold- -welding, so the
kinetic frictional force fk also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the two
surfaces alternately stick together and then slip. Such repetitive stick-and-slip can pro-
duce squeaking or squealing, as when tires skid on dry pavement, fingernails scratch
along a chalkboard, or a rusty hinge is opened. It can also produce beautiful and capti-
vating sounds, as in music when a bow is drawn properly across a violin string. ~ —%&&

Properties of Friction

Experiment shows that when a dry and unlubricated body presses against a surface
in the same condition and a force F attempts to slide the body along the surface,
the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force fs and the
component of F that is parallel to the surface balance each other. They are
equal in magnitude, and 1, is directed opposite that component of F.

Property 2. The magnitude of fs has a maximum value f; .., that is given by
fs,max = /*LSFNa (6'1)

where u, is the coefficient of static friction and Fy is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of F that is parallel to the surface exceeds f; ,,.x, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value f; given by

Je = mFy, (6-2)

where w is the coefficient of kinetic friction. Thereafter, during the sliding, a
kinetic frictional force fk with magnitude given by Eq. 6-2 opposes the motion.

The magnitude Fy of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, Fy is greater. Properties 1 and 2 are worded
in terms of a single applied force F,but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of f, or f, is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force FN is perpendicular to the surface.

The coefficients u, and w, are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of u, between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of
does not depend on the speed at which the body slides along the surface.
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()

Figure 6-2 The mechanism of sliding
friction. (a) The upper surface is sliding to
the right over the lower surface in this
enlarged view. (b) A detail, showing two
spots where cold-welding has occurred.
Force is required to break the welds and
maintain the motion.
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|Z| Checkpoint 1

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does
not move, what is the magnitude of the frictional force on it? (c) If the maximum
value f; ...« of the static frictional force on the block is 10 N, will the block move if the
magnitude of the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the
magnitude of the frictional force in part (c)?

Sample Problem 6.01

This sample problem involves a tilted applied force,
which requires that we work with components to find a
frictional force. The main challenge is to sort out all the
components. Figure 6-3a shows a force of magnitude F =
12.0 N applied to an 8.00 kg block at a downward angle of
0 = 30.0°. The coefficient of static friction between block
and floor is u, = 0.700; the coefficient of kinetic friction is
e = 0.400. Does the block begin to slide or does it re-
main stationary? What is the magnitude of the frictional
force on the block?

KEY IDEAS

(1) When the object is stationary on a surface, the static fric-
tional force balances the force component that is attempting
to slide the object along the surface. (2) The maximum possi-
ble magnitude of that force is given by Eq. 6-1 ( f;nax = sFy)-
(3) If the component of the applied force along the surface
exceeds this limit on the static friction, the block begins to
slide. (4) If the object slides, the kinetic frictional force is

given by Eq. 6-2 ( fi = wiFn)-

Calculations: To see if the block slides (and thus to calcu-
late the magnitude of the frictional force), we must com-
pare the applied force component F, with the maximum
magnitude f; ..« that the static friction can have. From the
triangle of components and full force shown in Fig. 6-3b,
we see that

F,= Fcos 6

= (12.0N) cos 30° = 10.39 N, (6-3)

From Eq. 6-1, we know that f; .. = u,Fy, but we need the
magnitude Fy of the normal force to evaluate f; ... Because
the normal force is vertical, we need to write Newton’s sec-
ond law (F,, = ma,) for the vertical force components act-
ing on the block, as displayed in Fig. 6-3c. The gravitational
force with magnitude mg acts downward. The applied force
has a downward component F, = F sin 6. And the vertical
acceleration a, is just zero. Thus, we can write Newton’s sec-

Angled force applied to an initially stationary block

ond law as
Fy — mg — Fsin § = m(0),
which gives us

(6-4)

Fy=mg+ Fsin 6. (6-5)

Now we can evaluate f; .. = mF:

fs,max = My (mg + F'sin 0)
= (0.700)((8.00 kg)(9.8 m/s?) + (12.0 N)(sin 30°))

Because the magnitude F, (= 10.39 N) of the force com-
ponent attempting to slide the block is less than f; .«
(= 59.08 N), the block remains stationary. That means that
the magnitude f; of the frictional force matches F,. From
Fig. 6-3d, we can write Newton’s second law for x compo-
nents as

Fx _f;“ = m(O),
fi=F,=1039N = 104 N.

(6-7)

and thus (Answer)

,_\I Block
|—x 4 Fx o
Sy K,
F F

(a) (0)

Block
L E,
<l
(d)

Figure 6-3 (a) A force is applied to an initially stationary block. (b)
The components of the applied force. (¢) The vertical force com-
ponents. (d) The horizontal force components.

PLUS Additional examples, video, and practice available at WileyPLUS
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6-1 FRICTION

Sample Problem 6.02 Sliding to a stop on icy roads, horizontal and inclined

Some of the funniest videos on the web involve motorists
sliding uncontrollably on icy roads. Here let’s compare the
typical stopping distances for a car sliding to a stop from an
initial speed of 10.0 m/s on a dry horizontal road, an icy hori-
zontal road, and (everyone’s favorite) an icy hill.

(a) How far does the car take to slide to a stop on a hori-
zontal road (Fig. 6-4a) if the coefficient of kinetic friction is
i = 0.60, which is typical of regular tires on dry pavement?
Let’s neglect any effect of the air on the car, assume that
the wheels lock up and the tires slide, and extend an x axis
in the car’s direction of motion.

KEY IDEAS

(1) The car accelerates (its speed decreases) because a hori-
zontal frictional force acts against the motion, in the negative
direction of the x axis. (2) The frictional force is a kinetic fric-
tional force with a magnitude given by Eq. 6-2 ( f, = w.Fy),in
which Fy is the magnitude of the normal force on the car from
the road. (3) We can relate the frictional force to the resulting
acceleration by writing Newton’s second law (£, = ma,) for
motion along the road.

Calculations: Figure 6-4b shows the free-body diagram for the
car. The normal force is upward, the gravitational force is down-
ward, and the frictional force is horizontal. Because the fric-
tional force is the only force with an x component, Newton’s
second law written for motion along the x axis becomes

_fk = ma,. (6'8)
Substituting f;, = w, Fy gives us
_:u“kFN = may. (6'9)

From Fig. 6-4b we see that the upward normal force bal-
ances the downward gravitational force, so in Eq. 6-9 let’s
replace magnitude Fy with magnitude mg. Then we can can-
cel m (the stopping distance is thus independent of the car’s
mass—the car can be heavy or light, it does not matter).
Solving for a, we find

Ay =~ 8- (6-10)

Because this acceleration is constant, we can use the
constant-acceleration equations of Table 2-1. The easiest
choice for finding the sliding distance x — x, is Eq. 2-16
(v* = v§ + 2a(x — x,)), which gives us

v:— v}
— Xy = g 6-11
X = X 2a, ( )
Substituting from Eq. 6-10, we then have
2 — o
X — Xy = - (6-12)

—2m8 .

y
A Ty y
N Normal force

supports the car.

This is a free-body
diagram of the
forces on the car.
Car
—< &
Ju
Frictional force
opposes the sliding.

Gravitational force mgcos6 /g| g~
pulls downward.

—

e

(b) (0)

Figure 6-4 (a) A car sliding to the right and finally stopping after
a displacement of 290 m. A free-body diagram for the car on
(b) a horizontal road and (c) a hill.

Inserting the initial speed v, = 10.0 m/s, the final speed v = 0,
and the coefficient of kinetic friction w;, = 0.60, we find that
the car’s stopping distance is

X —xo=3850m =~ 8.5m. (Answer)

(b) What is the stopping distance if the road is covered with
ice with w;, = 0.10?

Calculation: Our solution is perfectly fine through Eq. 6-12
but now we substitute this new uy, finding

X —xo=51m. (Answer)

Thus, a much longer clear path would be needed to avoid
the car hitting something along the way.

(c) Now let’s have the car sliding down an icy hill with an in-
clination of # = 5.00° (a mild incline, nothing like the hills of
San Francisco). The free-body diagram shown in Fig. 6-4c is
like the ramp in Sample Problem 5.04 except, to be consis-
tent with Fig. 6-4b, the positive direction of the x axis is
down the ramp. What now is the stopping distance?

Calculations: Switching from Fig. 6-4b to c involves two ma-
jor changes. (1) Now a component of the gravitational force is
along the tilted x axis, pulling the car down the hill. From
Sample Problem 5.04 and Fig. 5-15, that down-the-hill com-
ponent is mg sin 6, which is in the positive direction of the x
axis in Fig. 6-4c. (2) The normal force (still perpendicular to
the road) now balances only a component of the gravitational
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force, not the full force. From Sample Problem 5.04 (see Fig.
5-15i), we write that balance as

Fy=mgcos 6.

In spite of these changes, we still want to write Newton’s
second law (F,, = ma,) for the motion along the (now
tilted) x axis. We have

—fi + mgsin 6 = ma,,

— e Fy + mgsin 6 = ma,,

and — mmg cos 6 + mgsin 0 = ma,.
Solving for the acceleration and substituting the given data

WILEY ®

Nnow give us
a,= —ugcos O+ gsin
= —(0.10)(9.8 m/s?) cos 5.00° + (9.8 m/s?) sin 5.00°
= —0.122 m/s% (6-13)

Substituting this result into Eq. 6-11 gives us the stopping
distance hown the hill:

X — xo =409 m =~ 400 m, (Answer)

which is about % mi! Such icy hills separate people who can
do this calculation (and thus know to stay home) from peo-
ple who cannot (and thus end up in web videos).

PLUS Additional examples, video, and practice available at WileyPLUS

B-2 THE DRAG FORCE AND TERMINAL SPEED

Learning Objectives

After reading this module, you should be able to . ..
6.04 Apply the relationship between the drag force on an
object moving through air and the speed of the object.

Key Ideas

® When there is relative motion between air (or some other
fluid) and a body, the body experiences a drag force D that
opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of D
is related to the relative speed v by an experimentally deter-
mined drag coefficient C according to

D = 1CpAv?,

where pis the fluid density (mass per unit volume) and A
is the effective cross-sectional area of the body (the area

6.05 Determine the terminal speed of an object falling
through air.

of a cross section taken perpendicular to the relative
velocity V).
® When a blunt object has fallen far enough through air, the
magnitudes of the drag force D and the gravitational force F,
on the body become equal. The body then falls at a constant
terminal speed v, given by

2F,

v, = .

CpA

The Drag Force and Terminal Speed

A fluid is anything that can flow—generally either a gas or a liquid. When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force D that opposes the relative motion and points in the direction in
which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the
body. In such cases, the magnitude of the drag force D is related to the relative
speed v by an experimentally determined drag coefficient C according to

D = 1CpAV?, (6-14)
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Table 6-1 Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distance” (m)
Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius = 1.5 mm) 7 6
Parachutist (typical) 5 3

“This is the distance through which the body must fall from rest to reach 95% of its terminal speed.
Based on Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

where p s the air density (mass per volume) and A is the effective cross-sectional
area of the body (the area of a cross section taken perpendicular to the
velocity V). The drag coefficient C (typical values range from 0.4 to 1.0) is not
truly a constant for a given body because if v varies significantly, the value of C
can vary as well. Here, we ignore such complications.

Downbhill speed skiers know well that drag depends on A and v2 To reach
high speeds a skier must reduce D as much as possible by, for example, riding the
skis in the “egg position” (Fig. 6-5) to minimize A.

Falling. When a blunt body falls from rest through air, the drag force Dis
directed upward; its magnitude gradually increases from zero as the speed of the
body increases. This upward force D opposes the downward gravitational force }_i,
on the body. We can relate these forces to the body’s acceleration by writing
Newton’s second law for a vertical y axis (F, = ma,) as

D — F, = ma, (6-15)

where m is the mass of the body. As suggested in Fig. 6-6, if the body falls long
enough, D eventually equals F,. From Eq. 6-15, this means that a = 0, and so the
body’s speed no longer increases. The body then falls at a constant speed, called
the terminal speed v,.

To find v,, we set a = 0 in Eq. 6-15 and substitute for D from Eq. 6-14, obtaining

5CpAV? — F, = 0,

2F,
y, = [

which gives CoA”

(6-16)

Table 6-1 gives values of v, for some common objects.

According to calculations* based on Eq. 6-14, a cat must fall about six
floors to reach terminal speed. Until it does so, F, > D and the cat accelerates
downward because of the net downward force. Recall from Chapter 2
that your body is an accelerometer, not a speedometer. Because the cat also
senses the acceleration, it is frightened and keeps its feet underneath its body,
its head tucked in, and its spine bent upward, making A small, v, large, and in-
jury likely.

However, if the cat does reach v, during a longer fall, the acceleration vanishes
and the cat relaxes somewhat, stretching its legs and neck horizontally outward and

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats.” The Journal of the American
Veterinary Medical Association, 1987.

S
Karl-Josef Hildenbrand/dpa/Landov LLC

Figure 6-5 This skier crouches in an “egg

position” so as to minimize her effective

cross-sectional area and thus minimize the

air drag acting on her.

As the cat's speed
increases, the upward
drag force increases

until it balances the 2
gravitational force.
Falling 5 b
body
N .
- £y L
Fg
v v

(a) (b) ()
Figure 6-6 The forces that act on a body
falling through air: (a) the body when it
has just begun to fall and () the free-
body diagram a little later, after a drag
force has developed. (c) The drag force
has increased until it balances the
gravitational force on the body. The body
now falls at its constant terminal speed.



132 CHAPTER 6 FORCE AND MOTION-—II
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Figure 6-7 Sky divers in a horizontal
“spread eagle” maximize air drag.

straightening its spine (it then resembles a flying squirrel). These actions increase
area A and thus also, by Eq. 6-14, the drag D. The cat begins to slow because now
D > F, (the net force is upward), until a new, smaller v, is reached. The decrease
in v, reduces the possibility of serious injury on landing. Just before the end of the
fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its
body to prepare for the landing. =

Humans often fall from great heights for the fun of skydiving. However, in
April 1987, during a jump, sky diver Gregory Robertson noticed that fellow
sky diver Debbie Williams had been knocked unconscious in a collision with
a third sky diver and was unable to open her parachute. Robertson, who
was well above Williams at the time and who had not yet opened his parachute
for the 4 km plunge, reoriented his body head-down so as to minimize A and
maximize his downward speed. Reaching an estimated v, of 320 km/h, he
caught up with Williams and then went into a horizontal “spread eagle” (as in
Fig. 6-7) to increase D so that he could grab her. He opened her parachute
and then, after releasing her, his own, a scant 10 s before impact. Williams
received extensive internal injuries due to her lack of control on landing but

survived.

=

Sample Problem 6.03 Terminal speed of falling raindrop

A raindrop with radius R = 1.5 mm falls from a cloud that is
at height # = 1200 m above the ground. The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water p, is 1000 kg/m?,
and the density of air p, is 1.2 kg/m?.

(a) As Table 6-1 indicates, the raindrop reaches terminal
speed after falling just a few meters. What is the terminal
speed?

KEY IDEA

The drop reaches a terminal speed v, when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find v,, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude F, of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (7R?) that has the same radius as the sphere. To find
F,, we use three facts: (1) F, = mg, where m is the drop’s
mass; (2) the (spherical) drop’s volume is V = 37R% and
(3) the density of the water in the drop is the mass per vol-
ume, or p,, = m/V.Thus, we find

F, = Vp,g = i7nR%p,g.

‘We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

WILEY

sity p, and the water density p,,, we obtain
_ \/ 2, \/ 87Rp.g \/ 8Rp,g
"IN CpA  N3CpaRE N 3Ch,
_ \/(8)(1.5 X 1073 m)(1000 kg/m?)(9.8 m/s?)

(3)(0.60)(1.2 kg/m?)
= 7.4 m/s = 27 km/h.

(Answer)

Note that the height of the cloud does not enter into the
calculation.

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity v, is 0, and the displacement x — x, is —h, we
use Eq.2-16 to find v:

v = V2gh = V/(2)(9.8 m/s?)(1200 m)

= 153 m/s = 550 km/h.
Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the

place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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6-3 uniFoRM cIRCULAR MOTION

Learning Objectives
After reading this module, you should be able to. . .
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6.06 Sketch the path taken in uniform circular motion and 6.08 For a particle in uniform circular motion, apply the rela-
explain the velocity, acceleration, and force vectors tionship between the radius of the path, the particle’s
(magnitudes and directions) during the motion. speed and mass, and the net force acting on the particle.

6.07 Identify that unless there is a radially inward net force
(a centripetal force), an object cannot move in circular motion.

Key Ideas
@ If a particle moves in a circle or a circular arc of radius R at ® This acceleration is due to a net centripetal force on the
constant speed v, the particle is said to be in uniform circular particle, with magnitude given by

motion. It then has a centripetal acceleration @ with magni-
tude given by

where m is the particle’s mass. The vector quantities @ and F

R’ are directed toward the center of curvature of the particle’s path.

Uniform Circular Motion

From Module 4-5, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

14
@ = ? (centripetal acceleration), (6-17)

where R is the radius of the circle. Here are two examples:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly
turns left, rounding a corner in a circular arc, you slide across the seat toward the
right and then jam against the car wall for the rest of the turn. What is going on?

While the car moves in the circular arc, it is in uniform circular motion;
that is, it has an acceleration that is directed toward the center of the circle.
By Newton’s second law, a force must cause this acceleration. Moreover, the
force must also be directed toward the center of the circle. Thus, it is a cen-
tripetal force, where the adjective indicates the direction. In this example, the
centripetal force is a frictional force on the tires from the road; it makes the
turn possible.

If you are to move in uniform circular motion along with the car, there
must also be a centripetal force on you. However, apparently the frictional
force on you from the seat was not great enough to make you go in a circle
with the car. Thus, the seat slid beneath you, until the right wall of the car
jammed into you. Then its push on you provided the needed centripetal force
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As
it and you orbit Earth, you float through your cabin. What is going on?

Both you and the shuttle are in uniform circular motion and have acceler-
ations directed toward the center of the circle. Again by Newton’s second law,
centripetal forces must cause these accelerations. This time the centripetal
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex-
erted by Earth and directed radially inward, toward the center of Earth.
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In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In
the car, jammed up against the wall, you are aware of being compressed by the
wall. In the orbiting shuttle, however, you are floating around with no sensation
of any force acting on you. Why this difference?

The difference is due to the nature of the two centripetal forces. In the
car, the centripetal force is the push on the part of your body touching the car
wall. You can sense the compression on that part of your body. In the shuttle,
the centripetal force is Earth’s gravitational pull on every atom of your body.
Thus, there is no compression (or pull) on any one part of your body and no
sensation of a force acting on you. (The sensation is said to be one of “weight-
lessness,” but that description is tricky. The pull on you by Earth has certainly
not disappeared and, in fact, is only a little less than it would be with you on
the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey
puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. This time the centripetal force is the radially inward pull on
the puck from the string. Without that force, the puck would slide off in a straight
line instead of moving in a circle.

Note again that a centripetal force is not a new kind of force. The name merely
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational
force, the force from a car wall or a string, or any other force. For any situation:

A%
"' A centripetal force accelerates a body by changing the direction of the body’s
velocity without changing the body’s speed.

From Newton’s second law and Eq. 6-17 (a = v?/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

2
Vv
F=m ? (magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

The puck moves
in uniform
circular motion
only because

of a toward-the-
center force.

Figure 6-8 An overhead view of a hockey puck moving with constant speed v in a
circular path of radius R on a horizontal frictionless surface. The centripetal force on the
puck is T, the pull from the string, directed inward along the radial axis r extending
through the puck.
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As every amusement park fan knows, a Ferris wheel is a ride consisting of seats
mounted on a tall ring that rotates around a horizontal axis. When you ride in a
Ferris wheel at constant speed, what are the directions of your acceleration d and the
normal force Fy on you (from the always upright seat) as you pass through (a) the
highest point and (b) the lowest point of the ride? (c) How does the magnitude of
the acceleration at the highest point compare with that at the lowest point? (d) How

do the magnitudes of the normal force compare at those two points?

Sample Problem 6.04 Vertical circular loop, Diavolo

Largely because of riding in cars, you are used to horizon-
tal circular motion. Vertical circular motion would be a
novelty. In this sample problem, such motion seems to
defy the gravitational force.

In a 1901 circus performance, Allo “Dare Devil”
Diavolo introduced the stunt of riding a bicycle in a loop-
the-loop (Fig. 6-9a). Assuming that the loop is a circle with
radius R = 2.7 m, what is the least speed v that Diavolo and
his bicycle could have at the top of the loop to remain in
contact with it there?

FOR[P&UGH&SELIS BROTHERS SHOWS, UNII!D

Photograph reproduced with permission of

Circus World Museum

Diavolo
and bicycle

The net force
provides the
toward-the-center
acceleration.

The normal force 7 a
. N
is from the

overhead loop. F,

()

Figure 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the
loop.

WILEY ©
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KEY IDEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration @ of this particle
must have the magnitude a = v?/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the top
of the loop are shown in the free-body diagram of Fig 6-9b.
The gravitational force F is downward along a y axis; so is the
normal force Fy on the partlcle from the loop (the loop can
push down, not pull up); so also is the centripetal acceleration
of the particle. Thus, Newton’s second law for y components

(Fhety = may) gives us
—Fy— F,=m(—a)
2
and —Fy — mg = m(—?). (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that Fy = 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for Fy in Eq. 6-19, solving for v,
and then substituting known values give us

v = \/g = V(9.8 m/s?)(2.7 m)
= 5.1 m/s.

(Answer)

Comments: Diavolo made certain that his speed at the
top of the loop was greater than 5.1 m/s so that he did not
lose contact with the loop and fall away from it. Note that
this speed requirement is independent of the mass of
Diavolo and his bicycle. Had he feasted on, say, pierogies
before his performance, he still would have had to exceed
only 5.1 m/s to maintain contact as he passed through the
top of the loop.

Additional examples, video, and practice available at WileyPLUS
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Sample Problem 6.05 Car in flat circular turn

Upside-down racing: A modern race car is designed so that
the passing air pushes down on it, allowing the car to travel
much faster through a flat turn in a Grand Prix without fric-
tion failing. This downward push is called negative lift. Can a
race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass
m = 600 kg as it travels on a flat track in a circular arc of
radius R = 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift F, ;. down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.) =

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift F; acting downward on the car?

KEY IDEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force f (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
f;is equal to the maximum value f; .. = uFy, Where Fy
is the magnitude of the normal force F, v acting on the
car from the track.

Friction: toward the

center

=

The toward-the-
center force is (a)
the frictional force.

Center
N

Track-level view  (b)
of the forces

Radial calculations: The frictional force ?S is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v%/R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (F,.,, = ma,) as

7
em(-2) -
Substituting f; n.x = uEFy for f; leads us to
oo
,LLSFN =m (? ) (6-21)

Vertical calculations: Next,let’s consider the vertical forces
on the car. The normal force Fy is directed up, in the posi-
tive direction of the y axis in Fig. 6-10b. The gravitational
force I?;, = mg and the negative lift F, are directed down.
The acceleration of the car along the y axis is zero. Thus we
can write Newton’s second law for components along the
y axis (Fne, = ma,) as

FN_mg_FLZO,

or FN = mg ot FL' (6-22)

Combining results: Now we can combine our results along
the two axes by substituting Eq. 6-22 for Fy in Eq. 6-21. Doing
so and then solving for F; lead to

V2
F = —
L=m ( R g)

(28.6 m/s)? >
= ko) [ —=222) g 2
(600 g)<(0'75)(100 ) 9.8 m/s
= 663.7 N = 660 N. (Answer)

b Normal force:
Fy helps support car
Car

r

Gravitational force:
pulls car downward

F,

o

Negative lift: presses
car downward

Figure 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force f, provides the necessary centripetal force along a radial axis 7. (b) A free-body diagram
(not to scale) for the car, in the vertical plane containing r.



(b) The magnitude F; of the negative lift on a car depends
on the square of the car’s speed v, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

KEY IDEA

F, is proportional to v2.

Calculations: Thus we can write a ratio of the negative lift
F; o0 at v = 90 m/s to our result for the negative lift /; atv =
28.6 m/s as

Fo _ (90m/s)?
F (28.6 m/s)*”

Sample Problem 6.06 Car in banked circular turn

This problem is quite challenging in setting up but takes
only a few lines of algebra to solve. We deal with not only
uniformly circular motion but also a ramp. However, we will
not need a tilted coordinate system as with other ramps.
Instead we can take a freeze-frame of the motion and work
with simply horizontal and vertical axes. As always in this
chapter, the starting point will be to apply Newton’s second
law, but that will require us to identify the force component
that is responsible for the uniform circular motion.

Curved portions of highways are always banked (tilted)
to prevent cars from sliding off the highway. When a high-
way is dry, the frictional force between the tires and the road
surface may be enough to prevent sliding. When the high-
way is wet, however, the frictional force may be negligible,
and banking is then essential. Figure 6-11a represents a car

The toward-the-
center force is due
7 to the tilted track.

of the forces

(a)
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Substituting our known negative lift of F; = 663.7 N and
solving for F; ¢, give us

Fj 99 = 6572 N = 6600 N. (Answer)
Upside-down racing: The gravitational force is, of course,
the force to beat if there is a chance of racing upside down:

F, = mg = (600 kg)(9.8 m/s?)
= 5880 N.

With the car upside down, the negative lift is an upward
force of 6600 N, which exceeds the downward 5880 N. Thus,
the car could run on a long ceiling provided that it moves at
about 90 m/s (= 324 km/h = 201 mi/h). However, moving
that fast while right side up on a horizontal track is danger-
ous enough, so you are not likely to see upside-down racing
except in the movies.

of mass m as it moves at a constant speed v of 20 m/s around
a banked circular track of radius R = 190 m. (It is a normal
car, rather than a race car, which means that any vertical
force from the passing air is negligible.) If the frictional
force from the track is negligible, what bank angle 6 pre-
vents sliding?

KEY IDEAS

Here the track is banked so as to tilt the normal force F’N on
the car toward the center of the circle (Fig. 6-11b). Thus, Fy
now has a centripetal component of magnitude Fy,, directed
inward along a radial axis . We want to find the value of
the bank angle 6 such that this centripetal component
keeps the car on the circular track without need of friction.

Tilted normal force
supports car and

- provides the toward-
\Iv [Ey,  the-center force.
[ [°)
| Car
“ r
EN’V
a F,
, v ¢ _
Track-level view The gravitational force

pulls car downward.
()

Figure 6-11 (a) A car moves around a curved banked road at constant speed v. The bank angle is exaggerated for clarity. (b)
A free-body diagram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift.
The radially inward component Fy, of the normal force (along radial axis r) provides the necessary centripetal force and

radial acceleration.
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Radial calculation: As Fig. 6-11b shows (and as you
should verify), the angle that force F, n makes with the ver-
tical is equal to the bank angle 6 of the track. Thus, the ra-
dial component Fy, is equal to Fy sin 6. We can now write
Newton’s second law for components along the r axis

(Fnel,r = mar) as
2
—Fysin 6 = m(—v—>

o (6-23)

We cannot solve this equation for the value of 6 because it
also contains the unknowns F and m.

Vertical calculations: We next consider the forces and ac-
celeration along the y axis in Fig. 6-11b. The vertical com-
ponent of the normal force is Fy, = Fy cos 6, the gravita-
tional force F, on the car has the magnitude mg, and the
acceleration of the car along the y axis is zero. Thus we can

write Newton’s second law for components along the y axis
(Frery = may) as

Fycos 6 — mg = m(0),

from which
Fycos 6 = mg. (6-24)

Combining results: Equation 6-24 also contains the
unknowns Fy and m, but note that dividing Eq. 6-23 by
Eq. 6-24 neatly eliminates both those unknowns. Doing so,
replacing (sin 6)/(cos ) with tan 6, and solving for 6 then
yield
v

6 = tan™

(20 m/s)? _
(9.8 m/s*)(190 m)

=1

tan 12°. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Friction When a force F tends to slide a body along a surface, a
frictional force from the surface acts on the body. The frictional force
is parallel to the surface and directed so as to oppose the sliding. It is
due to bonding between the atoms on the body and the atoms on the
surface, an effect called cold-welding.

If the body does not slide, the frictional force is a static
frictional force f,. If there is sliding, the frictional force is a kinetic
frictional force fk

1. If a body does not move, the static frictional force 7. and the
component of F parallel to the surface are equal in magnitude,
and )_f: is directed opposite that component. If the component
increases, f; also increases.

2. The magnitude of f, has a maximum value fs.max g1ven by
f;*,max = :U‘sFNa (6_1)

where pu, is the coefficient of static friction and F, is the magni-
tude of the normal force. If the component of F parallel to the
surface exceeds f; .y the static friction is overwhelmed and the
body slides on the surface.

3. If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value f; given
by

fe = mFy, (6-2)

where u, is the coefficient of kinetic friction.

Drag Force When there is relative motion between air (or
some other fluid) and a body, the body experiences a drag force D
that opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of D is

related to the relative speed v by an experimentally determined
drag coefficient C according to

D = 1CpAV?, (6-14)

where p is the fluid density (mass per unit volume) and A is the
effective cross-sectional area of the body (the area of a cross sec-
tion taken perpendicular to the relative velocity V).

Terminal Speed When a blunt object has fallen far enough
through air, the magnitudes of the drag force D and the gravita-
tional force F‘g on the body become equal. The body then falls at a
constant terminal speed v, given by

£, (6-16)

Uniform Circular Motion If a particle moves in a circle or a
circular arc of radius R at constant speed v, the particle is said to be
in uniform circular motion. It then has a centripetal acceleration @
with magnitude given by
VZ

a=—7z
This acceleration is due to a net centripetal force on the particle,
with magnitude given by

(6-17)

F=—-1 6-18

. (6-18)
where m is the particle’s mass. The vector quantities @ and F are
directed toward the center of curvature of the particle’s path. A
particle can move in circular motion only if a net centripetal
force acts on it.



Questions

1 In Fig. 6-12, if the box is station-
ary and the angle 0 between the hor-
izontal and force F is increased
somewhat, do the following quanti-
ties increase, decrease, or remain the
same: (a) Fy; (b) f; (¢) Fy; (d) fimax? (€) If, instead, the box is sliding
and @is increased, does the magnitude of the frictional force on the
box increase, decrease, or remain the same?

N
\AF

Figure 6-12 Question 1.

2 Repeat Question 1 for force F angled upward instead of down-

ward as drawn.
3 In Fig. 6-13, horizontal force fl ,—_|_[>Fl
of magnitude 10 N is applied to a |

box on a floor, but the box does not lﬁ

slide. Then, as the magnitude of ver- 2
tical force 1?2 is increased from zero,
do the following quantities increase,
decrease, or stay the same: (a) the magnitude of the frictional
force f, on the box; (b) the magnitude of the normal force Fy on
the box from the floor; (c) the maximum value f; ,,,, of the magni-
tude of the static frictional force on the box? (d) Does the box
eventually slide?

Figure 6-13 Question 3.

4 In three experiments, three different horizontal forces are ap-
plied to the same block lying on the same countertop. The force
magnitudes are F; = 12N, F;, = 8 N, and F; = 4 N. In each experi-
ment, the block remains stationary in spite of the applied force.
Rank the forces according to (a) the magnitude f; of the static fric-
tional force on the block from the countertop and (b) the maximum
value f; . of that force, greatest first.

5 If you press an apple crate against a wall so hard that the crate
cannot slide down the wall, what is the direction of (a) the static
frictional force 7, on the crate from the wall and (b) the normal
force El, on the crate from the wall? If you increase your push,
what happens to (c) f;, (d) Fy,and (€) f;max?

6 In Fig. 6-14,a block of mass m is held sta-

tionary on a ramp by the frictional force on

it from the ramp. A force F , directed up the

ramp, is then applied to the block and grad- \6
ually increased in magnitude from zero.
During the increase, what happens to the di-
rection and magnitude of the frictional force
on the block?

S

Figure 6-14
Question 6.

7 Reconsider Question 6 but with the force F now directed
down the ramp. As the magnitude of F is increased from zero,
what happens to the direction and magnitude of the frictional
force on the block?

8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10
kg slab that is initially stationary on a frictionless floor, to acceler-
ate the slab. A 10 kg block lies on top of the slab; the coefficient of
friction u between the block and the slab is not known, and the

Block
Slab# 100 N

Figure 6-15 Question 8.
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block might slip. In fact, the contact between the block and the slab
might even be frictionless. (a) Considering that possibility, what is
the possible range of values for the magnitude of the slab’s acceler-
ation agy,,? (Hint: You don’t need written calculations; just consider
extreme values for w.) (b) What is the possible range for the mag-
nitude ay,,. of the block’s acceleration?

9 Figure 6-16 shows the overhead view of the path of an
amusement-park ride that travels at constant speed through five
circular arcs of radii Ry, 2Ry, and 3R,. Rank the arcs according to
the magnitude of the centripetal force on a rider traveling in the
arcs, greatest first.

Figure 6-16 Question 9.

10 —%F In 1987, as a Halloween stunt, two sky divers passed a
pumpkin back and forth between them while they were in free fall
just west of Chicago. The stunt was great fun until the last sky diver
with the pumpkin opened his parachute. The pumpkin broke free
from his grip, plummeted about 0.5 km, ripped through the roof of
a house, slammed into the kitchen floor, and splattered all over the
newly remodeled kitchen. From the sky diver’s viewpoint and from
the pumpkin’s viewpoint, why did the sky diver lose control of the
pumpkin?

11 A person riding a Ferris wheel moves through positions at
(1) the top, (2) the bottom, and (3) midheight. If the wheel rotates
at a constant rate, rank these three positions according to (a) the
magnitude of the person’s centripetal acceleration, (b) the magni-
tude of the net centripetal force on the person, and (c) the magni-
tude of the normal force on the person, greatest first.

12 During a routine flight in 1956, test pilot Tom Attridge put his
jet fighter into a 20° dive for a test of the aircraft’s 20 mm machine
cannons. While traveling faster than sound at 4000 m altitude,
he shot a burst of rounds. Then, after allowing the cannons to cool,
he shot another burst at 2000 m; his speed was then 344 m/s, the
speed of the rounds relative to him was 730 m/s, and he was still in
adive.

Almost immediately the canopy around him was shredded
and his right air intake was damaged. With little flying capability
left, the jet crashed into a wooded area, but Attridge managed to
escape the resulting explosion. Explain what apparently happened
just after the second burst of cannon rounds. (Attridge has been
the only pilot who has managed to shoot himself down.)

13 A box is on a ramp that is at angle 6 to the horizontal. As 6
is increased from zero, and before the box slips, do the following
increase, decrease, or remain the same: (a) the component of the
gravitational force on the box, along the ramp, (b) the magnitude
of the static frictional force on the box from the ramp, (c) the
component of the gravitational force on the box, perpendicular
to the ramp, (d) the magnitude of the normal force on the
box from the ramp, and (e) the maximum value f; ., of the static
frictional force?
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Problems

@ Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual
e —es  Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. L http://www.wiley.com/college/halliday
Interactive solution is at

ﬂ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 6-1 Friction

*1 The floor of a railroad flatcar is loaded with loose crates hav-
ing a coefficient of static friction of 0.25 with the floor. If the train
is initially moving at a speed of 48 km/h, in how short a distance
can the train be stopped at constant acceleration without causing
the crates to slide over the floor?

*2 In a pickup game of dorm shuffleboard, students crazed by fi-
nal exams use a broom to propel a calculus book along the dorm
hallway. If the 3.5 kg book is pushed from rest through a distance
of 0.90 m by the horizontal 25 N force from the broom and then
has a speed of 1.60 m/s, what is the coefficient of kinetic friction be-
tween the book and floor?

*3 ssM Www A bedroom bureau with a mass of 45 kg, includ-
ing drawers and clothing, rests on the floor. (a) If the coefficient of
static friction between the bureau and the floor is 0.45, what is the
magnitude of the minimum horizontal force that a person must ap-
ply to start the bureau moving? (b) If the drawers and clothing,
with 17 kg mass, are removed before the bureau is pushed, what is
the new minimum magnitude?

*4 A slide-loving pig slides down a certain 35° slide in twice the
time it would take to slide down a frictionless 35° slide. What is the
coefficient of kinetic friction between the pig and the slide?

*5 @ A 2.5 kg block is initially at rest on a horizontal surface. A
horizontal force F of magnitude 6.0 N and a vertical force P are
then applied to the block (Fig. 6-17). The coefficients of friction for
the block and surface are u, = 0.40 and w; = 0.25. Determine the
magnitude of the frictional force acting on the block if the magni-
tude of Pis (a) 8.0 N, (b) 10 N,and (c) 12 N.

[ F
e —

Figure 6-17 Problem 5.

*6 A baseball player with mass m = 79 kg, sliding into second
base, is retarded by a frictional force of magnitude 470 N. What is
the coefficient of kinetic friction w, between the player and the
ground?

°7 ssm ILW A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor. The coefficient
of kinetic friction between the crate and the floor is 0.35. What is
the magnitude of (a) the frictional force and (b) the acceleration of
the crate?

8 TME The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones

over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)

Figure 6-18 Problem 8. What moved the stone?

9 @ A 35kg block is pushed
along a horizontal floor by a force |

F of magnitude 15 N at an angle ¢

6= 40° with the horizontal

(Fig. 6-19). The coefficient of Kki- F
netic friction between the block Figure 6-19

and the floor is 0.25. Calculate the Problems 9 and 32.

magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

7
10  Figure 6-20 shows an initially T\ /(V
stationary block of mass m on a x ~1_ 9__
floor. A force of magnitude 0.500mg
is then applied at upward angle 6 =
20°. What is the magnitude of the ac-
celeration of the block across the
floor if the friction coefficients are (a) u, = 0.600 and w, = 0.500
and (b) u, = 0.400 and w, = 0.300?

°11 ssm A 68 kg crate is dragged across a floor by pulling on
a rope attached to the crate and inclined 15° above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving?
(b) If w, = 0.35, what is the magnitude of the initial acceleration of
the crate?

*12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each

Figure 6-20 Problem 10.



hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb
or opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

*13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of f; ., under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e)
If, instead, the second worker pulls horizontally to help out, what is
the least pull that will get the crate moving?

Figure 6-21
Problem 12.

*14 Figure 6-22 shows the cross
section of a road cut into the side of
a mountain. The solid line AA’ rep-
resents a weak bedding plane along
which sliding is possible. Block B
directly above the highway is sepa-
rated from uphill rock by a large
crack (called a joint), so that only
friction between the block and the
bedding plane prevents sliding. The
mass of the block is 1.8 X 107 kg, the dip angle 6 of the bedding
plane is 24°, and the coefficient of static friction between block
and plane is 0.63. (a) Show that the block will not slide under
these circumstances. (b) Next, water seeps into the joint and ex-
pands upon freezing, exerting on the block a force F parallel to
AA'. What minimum value of force magnitude F will trigger a
slide down the plane?

Joint with ice

—
Figure 6-22 Problem 14.

*15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?

*16 A loaded penguin sled weigh- I
ing 80 N rests on a plane inclined at

angle 6 = 20° to the horizontal (Fig.

6-23). Between the sled and the

plane, the coefficient of static 0

friction is 0.25, and the coefficient of
kinetic friction is 0.15. (a) What is
the least magnitude of the force F,
parallel to the plane, that will pre-
vent the sled from slipping down the plane? (b) What is the mini-
mum magnitude F that will start the sled moving up the plane? (c)
What value of F is required to
move the sled up the plane at con-
stant velocity?

*17 In Fig. 6-24, a force P acts on 0
a block weighing 45 N. The block is Figure 6-24 Problem 17.

Figure 6-23
Problems 16 and 22.

= X
P
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initially at rest on a plane inclined at angle 6 = 15° to the horizon-
tal. The positive direction of the x axis is up the plane. Between
block and plane, the coefficient of static friction is p, = 0.50 and
the coefficient of kinetic friction is u;, = 0.34. In unit-vector nota-
tion, what is the frictional force on the block from the plane when
Pis (a) (5.0 N)I, (b) (—8.0 N)i,and (c) (—15 N)i?

«18 @ You testify as an expert witness in a case involving an acci-
dent in which car A slid into the rear of car B, which was stopped at
a red light along a road headed down a hill (Fig. 6-25). You find
that the slope of the hill is # = 12.0°, that the cars were separated
by distance d = 24.0 m when the driver of car A put the car into a
slide (it lacked any automatic anti-brake-lock system), and that the
speed of car A at the onset of braking was v, = 18.0 m/s. With what
speed did car A hit car B if the coefficient of kinetic friction was
(a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with

wet leaves)?

Figure 6-25 Problem 18.

19 A 12N horizontal force F )
pushes a block weighing 5.0N
against a vertical wall (Fig. 6-26).
The coefficient of static friction be-
tween the wall and the block is 0.60,
and the coefficient of kinetic friction
is 0.40. Assume that the block is not
moving initially. (a) Will the block move? (b) In unit-vector nota-
tion, what is the force on the block from the wall?

20 @ In Fig. 627, a box of me.
Cheerios (mass m¢e = 1.0kg) and a
box of Wheaties (mass my = 3.0
kg) are accelerated across a hori-
zontal surface by a horizontal force
F applied to the Cheerios box. The
magnitude of the frictional force on the Cheerios box is 2.0 N,
and the magnitude of the frictional force on the Wheaties box is
4.0 N. If the magnitude of F is 12 N, what is the magnitude of the
force on the Wheaties box from the Cheerios box?

*21 An initially stationary box of sand is to be pulled across a
floor by means of a cable in which the tension should not exceed
1100 N. The coefficient of static friction between the box and the
floor is 0.35. (a) What should be the angle between the cable and
the horizontal in order to pull the greatest possible amount of sand,
and (b) what is the weight of the sand and box in that situation?

vVl

Figure 6-26 Problem 19.

—7 My

Figure 6-27 Problem 20.

22 @ In Fig. 6-23,a sled is held on an inclined plane by a cord
pulling directly up the plane. The sled is to be on the verge of
moving up the plane. In Fig. 6-
28, the magnitude F required of
the cord’s force on the sled is
plotted versus a range of values
for the coefficient of static fric-  p,
tion u, between sled and plane:

r

F1 = 2.0 N, Fz = 5.0 N, and Mo = 0 'ul My
0.50. At what angle #1is the plane :
inclined? Figure 6-28 Problem 22.
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*¢23 When the three blocks in
Fig. 6-29 are released from rest, they
accelerate with a magnitude of
0.500 m/s®. Block 1 has mass M,
block 2 has 2M, and block 3 has 2M.
What is the coefficient of Kkinetic
friction between block 2 and the
table?

24 A 4.10kg block is pushed
along a floor by a constant applied
force that is horizontal and has a
magnitude of 40.0 N. Figure 6-30
gives the block’s speed v versus
time ¢ as the block moves along an x
axis on the floor. The scale of the L |
figure’s vertical axis is set by v, = 0 05 Lo
5.0 m/s. What is the coefficient of L)

kinetic friction between the block Figure 6-30 Problem 24.
and the floor?

2]

o

Figure 6-29 Problem 23.

v (m/s)

*25 ssm www Block B in Fig.
6-31 weighs 711 N. The coefficient of
static friction between block and
table is 0.25; angle 6 is 30° assume
that the cord between B and the
knot is horizontal. Find the maxi-
mum weight of block A for which
the system will be stationary.

26 @ Figure 6-32 shows three
crates being pushed over a concrete
floor by a horizontal force F of
magnitude 440 N. The masses of the
crates are m; = 30.0 kg, m, = 10.0
kg, and m; = 20.0 kg. The coefficient my
of kinetic friction between the floor E
and each of the crates is 0.700. (a) =

Figure 6-31 Problem 25.

What is the magnitude Fs, of the .

force on crate 3 fgrom crate 2? (b) If Figure 6-32 Problem 26.
the crates then slide onto a polished
floor, where the coefficient of kinetic friction is less than 0.700, is
magnitude F3, more than, less than, or the same as it was when the
coefficient was 0.700?

*27 @ Body A in Fig. 6-33 weighs
102 N, and body B weighs 32 N. The
coefficients of friction between A F
and the incline are w, = 0.56 and & /‘
e = 0.25. Angle 0 is 40°. Let the

positive direction of an x axis be up
the incline. In unit-vector notation,

Frictionless,
massless pulley

what is the acceleration of A if A is 8
initially (a) at rest, (b) moving up Figure 6-33
the incline, and (c) moving down Problems 27 and 28.

the incline?

*28 In Fig. 6-33, two blocks are connected over a pulley. The
mass of block A is 10 kg, and the coefficient of kinetic friction be-
tween A and the incline is 0.20. Angle 6 of the incline is 30°. Block
A slides down the incline at constant speed. What is the mass of
block B? Assume the connecting rope has negligible mass. (The
pulley’s function is only to redirect the rope.)

29 @ In Fig. 6-34, blocks A and B have weights of 44 N and 22
N, respectively. (a) Determine the minimum weight of block C to
keep A from sliding if u, between A and the table is 0.20. (b) Block
C suddenly is lifted off A. What is the acceleration of block A if w;
between A and the table is 0.15?

Frictionless,
[?‘ massless pulley

Figure 6-34 Problem 29.

*30 A toy chest and its contents have a combined weight of
180 N. The coefficient of static friction between toy chest and floor
is 0.42. The child in Fig. 6-35 attempts to move the chest across the
floor by pulling on an attached rope. (a) If 6is 42°, what is the mag-
nitude of the force F that the child must exert on the rope to put
the chest on the verge of moving? (b) Write an expression for the
magnitude F required to put the chest on the verge of moving as a
function of the angle #. Determine (c) the value of # for which Fis
aminimum and (d) that minimum magnitude.

Figure 6-35 Problem 30.

*31 ssm Two blocks, of weights 3.6 N and 7.2 N, are connected
by a massless string and slide down a 30° inclined plane. The coeffi-
cient of kinetic friction between the lighter block and the plane is
0.10, and the coefficient between the heavier block and the plane is
0.20. Assuming that the lighter block leads, find (a) the magnitude
of the acceleration of the blocks and (b) the tension in the taut
string.

*32 @ A block is pushed across a floor by a constant force that is
applied at downward angle 6 (Fig. 6-19). Figure 6-36 gives the accel-
eration magnitude a versus a range of values for the coefficient of
kinetic friction u, between block and floor: a; = 3.0 m/s?, w, =
0.20, and w3 = 0.40. What is the value of 6?

a
a

Figure 6-36 Problem 32.



*e33 ssm A 1000 kg boat is traveling at 90 km/h when its engine
is shut off. The magnitude of the frictional force 7k between boat
and water is proportional to the speed v of the boat: f, = 70v, where
v is in meters per second and f; is in newtons. Find the time required
for the boat to slow to 45 km/h.

¢34 @ In Fig. 6-37, a slab of mass
m; =40 kg rests on a frictionless
floor, and a block of mass m, = 10
kg rests on top of the slab. Between
block and slab, the coefficient of
static friction is 0.60, and the coefficient of kinetic friction is 0.40. A
horizontal force F of magnitude 100 N begins to pull directly on
the block, as shown. In unit-vector notation, what are the resulting
accelerations of (a) the block and (b) the slab?

°35 LW The two blocks (m = 16
kg and M = 88 kg) in Fig. 6-38 are {
not attached to each other. The coef- ) M
ficient of static friction between the :

blocks is g = 0.38, but the surface
beneath the larger block is friction-
less. What is the minimum magnitude
of the horizontal force F required to
keep the smaller block from slipping down the larger block?

Figure 6-37 Problem 34.

l"ﬂl 3

Frictionless

Figure 6-38 Problem 35.

Module 6-2 The Drag Force and Terminal Speed

*36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

*37 =¥ Continuation of Problem 8. Now assume that
Eq. 6-14 gives the magnitude of the air drag force on the typical
20 kg stone, which presents to the wind a vertical cross-sectional
area of 0.040 m? and has a drag coefficient C of 0.80. Take the air
density to be 1.21 kg/m?, and the coefficient of kinetic friction to
be 0.80. (a) In kilometers per hour, what wind speed V along the
ground is needed to maintain the stone’s motion once it has
started moving? Because winds along the ground are retarded by
the ground, the wind speeds reported for storms are often meas-
ured at a height of 10 m. Assume wind speeds are 2.00 times
those along the ground. (b) For your answer to (a), what wind
speed would be reported for the storm? (c) Is that value reason-
able for a high-speed wind in a storm? (Story continues with
Problem 65.)

*38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the
appropriate v, value from Table 6-1, estimate the magnitudes of
(a) the drag force on the pilot + seat and (b) their horizontal de-
celeration (in terms of g), both just after ejection. (The result of
(a) should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

*39 Calculate the ratio of the drag force on a jet flying at
1000 km/h at an altitude of 10 km to the drag force on a prop-
driven transport flying at half that speed and altitude. The density
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of air is 0.38 kg/m? at 10 km and 0.67 kg/m? at 5.0 km. Assume that
the airplanes have the same effective cross-sectional area and drag
coefficient C.

«40 =¥& In downhill speed skiing a skier is retarded by both
the air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is § = 40.0°, the snow is dry snow
with a coefficient of kinetic friction w, = 0.0400, the mass of the
skier and equipment is m = 85.0 kg, the cross-sectional area of the
(tucked) skier is A = 1.30 m?, the drag coefficient is C = 0.150, and
the air density is 1.20 kg/m?>. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

Module 6-3 Uniform Circular Motion

°41 A cat dozes on a stationary merry-go-round in an amuse-
ment park, at a radius of 5.4 m from the center of the ride. Then the
operator turns on the ride and brings it up to its proper turning
rate of one complete rotation every 6.0 s. What is the least coeffi-
cient of static friction between the cat and the merry-go-round that
will allow the cat to stay in place, without sliding (or the cat cling-
ing with its claws)?

*42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

*43 1ILw What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
M, between tires and track is 0.32?

*44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

45 ssM LW =¥E A student of weight 667 N rides a
steadily rotating Ferris wheel (the student sits upright). At the
highest point, the magnitude of the normal force E:, on the student
from the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of Fy, at the lowest point? If the
wheel’s speed is doubled, what is the magnitude Fy at the (c) high-
est and (d) lowest point?

*46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg. What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

«47 THE A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

48 —AF A roller-coaster car at an amusement park has a mass
of 1200 kg when fully loaded with passengers. As the car passes
over the top of a circular hill of radius 18 m, assume that its speed
is not changing. At the top of the hill, what are the (a) magnitude
Fy and (b) direction (up or down) of the normal force on the car
from the track if the car’s speed is v = 11 m/s? What are (c) Fy and
(d) the direction if v = 14 m/s?
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*49 @ In Fig.6-39,a car is driven at constant speed over a circu-
lar hill and then into a circular valley with the same radius. At the
top of the hill, the normal force on the driver from the car seat is 0.
The driver’s mass is 70.0 kg. What is the magnitude of the normal
force on the driver from the seat when the car passes through the
bottom of the valley?

l\ Radius I’
7 S N
4 N\
/ Radius \
\
! \
I |

Figure 6-33 Problem 49.

*50 An 85.0 kg passenger is made to move along a circular path
of radius r = 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the
plot’s slope at v = 8.30 m/s? (b) Figure 6-40b is a plot of F for a
range of possible values of T, the period of the motion. What is the
plot’s slope at T = 2.50 s?

F r

(a) (b)
Figure 6-40 Problem 50.

*51 SsSM Www An airplane is fly-
ing in a horizontal circle at a speed of
480 km/h (Fig. 6-41). If its wings are
tilted at angle 6 = 40° to the horizon-
tal, what is the radius of the circle in
which the plane is flying? Assume
that the required force is provided
entirely by an “aerodynamic lift” that
is perpendicular to the wing surface.

52 —¥& An amusement park
ride consists of a car moving in a ver-
tical circle on the end of a rigid boom
of negligible mass. The combined weight of the car and riders is 5.0
kN, and the circle’s radius is 10 m. At the top of the circle, what
are the (a) magnitude Fp and (b) direction (up or down) of
the force on the car from the boom if the car’s speed is v = 5.0 m/s?
What are (c) F and (d) the direction if v = 12 m/s?

*53 An old streetcar rounds a flat corner of radius 9.1 m, at
16 km/h. What angle with the vertical will be made by the loosely
hanging hand straps?

Figure 6-41 Problem 51.

54 & In designing circular rides for amusement parks,
mechanical engineers must consider how small variations in cer-
tain parameters can alter the net force on a passenger. Consider a
passenger of mass m riding around a horizontal circle of radius r at
speed v. What is the variation dF in the net force magnitude for
(a) a variation dr in the radius with v held constant, (b) a variation

dv in the speed with r held constant, and (c) a variation d7 in the

period with r held constant?
Bolt

*s55 A bolt is threaded onto one
end of a thin horizontal rod, and
the rod is then rotated horizontally
about its other end. An engineer
monitors the motion by flashing a
strobe lamp onto the rod and bolt,
adjusting the strobe rate until the
bolt appears to be in the same
eight places during each full rota-
tion of the rod (Fig. 6-42). The strobe rate is 2000 flashes per sec-
ond; the bolt has mass 30 g and is at radius 3.5 cm. What is the
magnitude of the force on the bolt from the rod?

Strobed
positions

Figure 6-42 Problem 55.

56 @ A banked circular highway curve is designed for traffic
moving at 60 km/h. The radius of the curve is 200 m. Traffic is
moving along the highway at 40 km/h on a rainy day. What is the
minimum coefficient of friction between tires and road that will
allow cars to take the turn without sliding off the road? (Assume
the cars do not have negative lift.)

57 @ A puck of mass m = 1.50 kg slides in a circle of radius
r=20.0cm on a frictionless table while attached to a hanging
cylinder of mass M = 2.50 kg by means of a cord that extends
through a hole in the table (Fig. 6-43). What speed keeps the cylin-
der at rest?

Figure 6-43 Problem 57.

58 T&E Brake or turn? Figure 6- |
44 depicts an overhead view of a car’s !
path as the car travels toward a wall. !
Assume that the driver begins to /

brake the car when the distance to C
jar path .

the wall is d = 107 m, and take the —

car’s mass as m = 1400 kg, its initial g —

speed as vy = 35 m/s, and the coeffi- Wall

cient of static friction as u, = 0.50.

Assume that the car’s weight is dis- Figure 6-44
Problem 58.

tributed evenly on the four wheels,
even during braking. (a) What magni-
tude of static friction is needed (between tires and road) to stop
the car just as it reaches the wall? (b) What is the maximum pos-
sible static friction f; ,.«? (c) If the coefficient of kinetic friction
between the (sliding) tires and the road is u; = 0.40, at what
speed will the car hit the wall? To avoid the crash, a driver could
elect to turn the car so that it just barely misses the wall, as
shown in the figure. (d) What magnitude of frictional force would
be required to keep the car in a circular path of radius d and at
the given speed v, so that the car moves in a quarter circle and
then parallel to the wall? (e) Is the required force less than f; .,
so that a circular path is possible?



ee59 ssm ILW In Fig. 6-45, a 1.34kg

ball is connected by means of two mass- ——
less strings, each of length L = 1.70 m, to ’
a vertical, rotating rod. The strings are tied

to the rod with separation d = 1.70 m and d
are taut. The tension in the upper string is

35 N. What are the (a) tension in the lower ‘
string, (b) magnitude of the net force Fpe, —
on the ball, and (c) speed of the ball? (d) )
What is the direction of 1*_})161? C - " Rotating rod

Additional Problems

60 @ 1In Fig. 6-46,a box of ant aunts (total
mass m; = 1.65 kg) and a box of ant un-
cles (total mass m, = 3.30 kg) slide down an inclined plane while
attached by a massless rod parallel to the plane. The angle of in-
cline is 6 = 30.0°. The coefficient of kinetic friction between the
aunt box and the incline is u; = 0.226; that between the uncle box
and the incline is w, = 0.113. Compute (a) the tension in the rod
and (b) the magnitude of the common acceleration of the two
boxes. (¢) How would the answers to (a) and (b) change if the un-
cles trailed the aunts?

Figure 6-45
Problem 59.

6
Figure 6-46 Problem 60.

61 ssm A block of mass m, = 4.0 kg is put on top of a block of
mass m;, = 5.0 kg. To cause the top block to slip on the bottom one
while the bottom one is held fixed, a horizontal force of at least 12
N must be applied to the top block. The assembly of blocks is now
placed on a horizontal, frictionless table (Fig. 6-47). Find the mag-
nitudes of (a) the maximum horizontal force F that can be applied
to the lower block so that the blocks will move together and (b) the
resulting acceleration of the blocks.

my —DF

Figure 6-47 Problem 61.

62 A 5.00 kg stone is rubbed across the horizontal ceiling of a
cave passageway (Fig. 6-48). If the coefficient of kinetic friction is
0.65 and the force applied to the stone is angled at § = 70.0°, what
must the magnitude of the force be for the stone to move at constant
velocity?

F

Stone

Figure 6-48 Problem 62.
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63 —¥®&F In Fig. 6-49, a 49 kg rock climber is climbing a “chim-
ney.” The coefficient of static friction between her shoes and the
rock is 1.2; between her back and the rock is 0.80. She has reduced
her push against the rock until her back and her shoes are on the
verge of slipping. (a) Draw a free-body diagram of her. (b) What is
the magnitude of her push against the rock? (c) What fraction of
her weight is supported by the frictional force on her shoes?

Figure 6-49 Problem 63.

64 A high-speed railway car goes around a flat, horizontal circle
of radius 470 m at a constant speed. The magnitudes of the hori-
zontal and vertical components of the force of the car on a 51.0 kg
passenger are 210 N and 500 N, respectively. (a) What is the magni-
tude of the net force (of all the forces) on the passenger? (b) What
is the speed of the car?

65 —¥& Continuation of Problems 8 and 37. Another explana-
tion is that the stones move only when the water dumped on the
playa during a storm freezes into a large, thin sheet of ice. The
stones are trapped in place in the ice. Then, as air flows across
the ice during a wind, the air-drag forces on the ice and stones
move them both, with the stones gouging out the trails. The magni-
tude of the air-drag force on this horizontal “ice sail” is given by
Di.. = 4Ci.pAicev?, where Ci is the drag coefficient (2.0 X 1073), p
is the air density (1.21 kg/m?), A, is the horizontal area of the ice,
and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m
by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the
ground and a density of 917 kg/m3. Also assume that 100 stones
identical to the one in Problem 8 are trapped in the ice. To main-
tain the motion of the sheet, what are the required wind speeds (a)
near the sheet and (b) at a height of 10 m? (c) Are these reason-
able values for high-speed winds in a storm?

66 @ In Fig. 6-50, block 1 of mass m; = 2.0 kg and block 2 of
mass m, = 3.0 kg are connected by a string of negligible mass and
are initially held in place. Block 2 is on a frictionless surface tilted
at # = 30°. The coefficient of kinetic friction between block 1 and
the horizontal surface is 0.25. The pulley has negligible mass and
friction. Once they are released, the blocks move. What then is the
tension in the string?

my

0
Figure 6-50 Problem 66.
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67 In Fig. 6-51, a crate slides down an inclined right-angled
trough. The coefficient of kinetic friction between the crate and the
trough is w,. What is the acceleration of the crate in terms of wy, 6,
and g?

90°

Figure 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too
fast, the car tends to slide out of the curve. For a banked curve with
friction, a frictional force acts on a fast car to oppose the tendency
to slide out of the curve; the force is directed down the bank (in the
direction water would drain). Consider a circular curve of radius
R = 200 m and bank angle 6, where the coefficient of static friction
between tires and pavement is u,. A car (without negative lift) is
driven around the curve as shown in Fig. 6-11. (a) Find an expres-
sion for the car speed v, that puts the car on the verge of sliding
out. (b) On the same graph, plot v,,,, versus angle 6 for the range 0°
to 50°, first for wu,=0.60 (dry pavement) and then for
s = 0.050 (wet or icy pavement). In kilometers per hour, evaluate
Vmax TOT @ bank angle of 6 = 10° and for (c) u, = 0.60 and (d) pu, =
0.050. (Now you can see why accidents occur in highway curves
when icy conditions are not obvious to drivers, who tend to drive at
normal speeds.)

69 A student, crazed by final exams, uses a force Pof magnitude
80 N and angle 6 = 70° to push a 5.0 kg block across the ceiling of
his room (Fig. 6-52). If the coefficient of kinetic friction between the
block and the ceiling is 0.40, what is the magnitude of the block’s
acceleration?
71 P
CJ

fo |

Figure 6-52 Problem 69.

70 @ Figure 6-53 shows a conical
pendulum, in which the bob (the
small object at the lower end of the
cord) moves in a horizontal circle at
constant speed. (The cord sweeps
out a cone as the bob rotates.) The

bob has a mass of 0.040 kg, the (-~ Cord
string has length L =0.90m and

negligible mass, and the bob follows

a circular path of circumference L

0.94 m. What are (a) the tension in
the string and (b) the period of the
motion?

71 An 8.00 kg block of steel is at

rest on a horizontal table. The co-

efficient of static friction between -
the block and the table is 0.450. A Bob !
force is to be applied to the block. Figure 6-53 Problem 70.

To three significant figures, what is the magnitude of that applied
force if it puts the block on the verge of sliding when the force is
directed (a) horizontally, (b) upward at 60.0° from the horizontal,
and (c) downward at 60.0° from the horizontal?

72 A box of canned goods slides down a ramp from street level
into the basement of a grocery store with acceleration 0.75 m/s? di-
rected down the ramp. The ramp makes an angle of 40° with the
horizontal. What is the coefficient of kinetic friction between the
box and the ramp?

73 In Fig. 6-54, the coefficient of kinetic friction
between the block and inclined plane is 0.20, and
angle 6 is 60°. What are the (a) magnitude a and
(b) direction (up or down the plane) of the block’s

acceleration if the block is sliding down the plane? o
What are (c) a and (d) the direction if the block is Figure 6-54
sent sliding up the plane? Problem 73.

74 A 110 g hockey puck sent sliding over ice is

stopped in 15 m by the frictional force on it from the ice. (a) If its ini-
tial speed is 6.0 m/s, what is the magnitude of the frictional force? (b)
What is the coefficient of friction between the puck and the ice?

75 A locomotive accelerates a 25-car train along a level track.
Every car has a mass of 5.0 X 104 kg and is subject to a frictional
force f = 250v, where the speed v is in meters per second and the
force fis in newtons. At the instant when the speed of the train is
30 km/h, the magnitude of its acceleration is 0.20 m/s>. (a) What
is the tension in the coupling between the first car and the
locomotive? (b) If this tension is equal to the maximum force the
locomotive can exert on the train, what is the steepest grade up
which the locomotive can pull the train at 30 km/h?

76 A house is built on the top of a hill with a nearby slope at angle
6 = 45° (Fig. 6-55). An engineering study indicates that the slope an-
gle should be reduced because the top layers of soil along the slope
might slip past the lower layers. If the coefficient of static friction be-
tween two such layers is 0.5, what is the least angle ¢ through which
the present slope should be reduced to prevent slippage?

New slope E
Original slope — _\/— CQ e
i " Wy,
- - ik

e
- /6
Figure 6-55 Problem 76.

77 What is the terminal speed of a 6.00 kg spherical ball that has
a radius of 3.00 cm and a drag coefficient of 1.60? The density of
the air through which the ball falls is 1.20 kg/m?>.

78 A student wants to determine the coefficients of static fric-
tion and kinetic friction between a box and a plank. She places
the box on the plank and gradually raises one end of the plank.
When the angle of inclination with the horizontal reaches 30°, the
box starts to slip, and it then slides 2.5 m down the plank in 4.0 s
at constant acceleration. What are (a) the coefficient of static
friction and (b) the coefficient of kinetic friction between the box
and the plank?



79 ssm Block A in Fig. 6-56 has mass m, = 4.0 kg, and block B has
mass mp = 2.0 kg. The coefficient of kinetic friction between block B
and the horizontal plane is u; = 0.50.The inclined plane is frictionless
and at angle 6 = 30°.The pulley serves only to change the direction
of the cord connecting the blocks. The cord has negligible mass.
Find (a) the tension in the cord and (b) the magnitude of the accel-
eration of the blocks.

Frictionless,
massless pulley

Figure 6-56 Problem 79.

80 Calculate the magnitude of the drag force on a missile 53 cm
in diameter cruising at 250 m/s at low altitude, where the density of
air is 1.2 kg/m?. Assume C = 0.75.

81 ssm A bicyclist travels in a circle of radius 25.0 m at a con-
stant speed of 9.00 m/s. The bicycle-rider mass is 85.0 kg. Calculate
the magnitudes of (a) the force of friction on the bicycle from the
road and (b) the net force on the bicycle from the road.

82 In Fig. 6-57, a stuntman drives
a car (without negative lift) over g N
the top of a hill, the cross section of / R AN
which can be approximated by a / !
circle of radius R = 250 m. What is Figure 6-57 Problem 82.

the greatest speed at which he can
drive without the car leaving the road at the top of the hill?

83 You must push a crate across a floor to a docking bay. The
crate weighs 165 N. The coefficient of static friction between crate
and floor is 0.510, and the coefficient of kinetic friction is 0.32.
Your force on the crate is directed horizontally. (a) What magni-
tude of your push puts the crate on the verge of sliding? (b) With
what magnitude must you then push to keep the crate moving at a
constant velocity? (c) If, instead, you then push with the same
magnitude as the answer to (a), what is the magnitude of the
crate’s acceleration?

84 In Fig. 6-58, force F is applied ! e
to a crate of mass m on a floor S
where the coefficient of static fric-
tion between crate and floor is wu.
Angle 6 is initially 0° but is gradu-
ally increased so that the force vec-
tor rotates clockwise in the figure. During the rotation, the mag-
nitude F of the force is continuously adjusted so that the crate is
always on the verge of sliding. For w, = 0.70, (a) plot the ratio
Fimg versus 6 and (b) determine the angle 6, at which the ratio
approaches an infinite value. (c) Does lubricating the floor in-
crease or decrease 6, or is the value unchanged? (d) What is 6,
for u, = 0.60?

85 In the early afternoon, a car is parked on a street that runs
down a steep hill, at an angle of 35.0° relative to the horizontal. Just
then the coefficient of static friction between the tires and the
street surface is 0.725. Later, after nightfall, a sleet storm hits the
area, and the coefficient decreases due to both the ice and a chemi-

Figure 6-58 Problem 84.
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cal change in the road surface because of the temperature de-
crease. By what percentage must the coefficient decrease if the car
is to be in danger of sliding down the street?

86 —%&F A sling-thrower puts a stone (0.250 kg) in the sling’s
pouch (0.010 kg) and then begins to make the stone and pouch
move in a vertical circle of radius 0.650 m. The cord between the
pouch and the person’s hand has negligible mass and will break
when the tension in the cord is 33.0 N or more. Suppose the sling-
thrower could gradually increase the speed of the stone. (a) Will
the breaking occur at the lowest point of the circle or at the highest
point? (b) At what speed of the stone will that breaking occur?

87 ssm A car weighing 10.7 kN and traveling at 13.4 m/s without
negative lift attempts to round an unbanked curve with a radius of
61.0 m. (a) What magnitude of the frictional force on the tires is re-
quired to keep the car on its circular path? (b) If the coefficient of
static friction between the tires and the road is 0.350, is the attempt
at taking the curve successful?

88 In Fig. 6-59, block 1 of mass
m; =2.0kg and block 2 of mass m
m, =1.0kg are connected by a
string of negligible mass. Block 2 is
pushed by force F of magnitude 20
N and angle ¢ = 35°. The coefficient
of kinetic friction between each block and the horizontal surface is
0.20. What is the tension in the string?

Figure 6-59 Problem 88.

89 ssm A filing cabinet weighing 556 N rests on the floor. The
coefficient of static friction between it and the floor is 0.68, and the
coefficient of kinetic friction is 0.56. In four different attempts to
move it, it is pushed with horizontal forces of magnitudes (a) 222 N,
(b) 334N, (c) 445N, and (d) 556 N. For each attempt, calculate the
magnitude of the frictional force on it from the floor. (The cabinet is
initially at rest.) (e) In which of the attempts does the cabinet move?

90 In Fig. 6-60, a block weighing 22 N is held at
rest against a vertical wall by a horizontal force F
of magnitude 60 N. The coefficient of static friction
between the wall and the block is 0.55, and the co-
efficient of kinetic friction between them is 0.38. In
six experiments, a second force Pis applied to the
block and directed parallel to the wall with these
magnitudes and directions: (a) 34 N, up, (b) 12 N,
up, (c) 48 N, up, (d) 62 N, up, (¢) 10 N, down, and
(f) 18 N, down. In each experiment, what is the
magnitude of the frictional force on the block? In
which does the block move (g) up the wall and (h) down the wall?
(1) In which is the frictional force directed down the wall?

|

Figure 6-60
Problem 90.

91 ssm A block slides with constant velocity down an inclined
plane that has slope angle 6. The block is then projected up the same
plane with an initial speed v,. (a) How far up the plane will it move
before coming to rest? (b) After the block comes to rest, will it slide
down the plane again? Give an argument to back your answer.

92 A circular curve of highway is designed for traffic moving at
60 km/h. Assume the traffic consists of cars without negative lift.
(a) If the radius of the curve is 150 m, what is the correct angle of
banking of the road? (b) If the curve were not banked, what would
be the minimum coefficient of friction between tires and road that
would keep traffic from skidding out of the turn when traveling at
60 km/h?
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93 A 1.5 kg box is initially at rest on a horizontal surface when at
¢ = 0 a horizontal force F = (1.81)i N (with 7 in seconds) is applied
to the box. The acceleration of the box as a function of time 7 is
givenbyd =0 for0=r=28sandd = (1.2t — 2.4)i m/s? for ¢ >
2.8 s. (a) What is the coefficient of static friction between the box
and the surface? (b) What is the coefficient of kinetic friction be-
tween the box and the surface?

94 A child weighing 140 N sits at rest at the top of a playground
slide that makes an angle of 25° with the horizontal. The child keeps
from sliding by holding onto the sides of the slide. After letting go
of the sides, the child has a constant acceleration of 0.86 m/s? (down
the slide, of course). (a) What is the coefficient of kinetic friction be-
tween the child and the slide? (b) What maximum and minimum
values for the coefficient of static friction between the child and the
slide are consistent with the information given here?

95 In Fig. 6-61 a fastidious worker /™
'%\AF

pushes directly along the handle of

a mop with a force F. The handle is

at an angle 6 with the vertical, and

u, and u, are the coefficients of

static and kinetic friction between

the head of the mop and the floor.

Ignore the mass of the handle and

assume that all the mop’s mass m is

in its head. (a) If the mop head Figure 6-61 Problem 95.
moves along the floor with a con-

stant velocity, then what is F? (b) Show that if #is less than a cer-
tain value 6, then F (still directed along the handle) is unable to
move the mop head. Find 6.

96 A child places a picnic basket on the outer rim of a merry-
go-round that has a radius of 4.6 m and revolves once every 30 s.
(a) What is the speed of a point on that rim? (b) What is the lowest
value of the coefficient of static friction between basket and
merry-go-round that allows the basket to stay on the ride?

97 ssm A warchouse worker exerts a constant horizontal force
of magnitude 85 N on a 40 kg box that is initially at rest on the hor-
izontal floor of the warehouse. When the box has moved a distance
of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic fric-
tion between the box and the floor?

98 In Fig.6-62,a 5.0 kg block is sent sliding up a plane inclined at
6 = 37° while a horizontal force F of magnitude 50 N acts on it.
The coefficient of kinetic friction between block and plane is 0.30.
What are the (a) magnitude and (b) direction (up or down the
plane) of the block’s acceleration? The block’s initial speed is 4.0
m/s. (c) How far up the plane does the block go? (d) When it
reaches its highest point, does it remain at rest or slide back down
the plane?

=)

0

Figure 6-62 Problem 98.

99 An 11 kg block of steel is at rest on a horizontal table. The
coefficient of static friction between block and table is 0.52. (a)
What is the magnitude of the horizontal force that will put the
block on the verge of moving? (b) What is the magnitude of a
force acting upward 60° from the horizontal that will put the
block on the verge of moving? (c) If the force acts downward at
60° from the horizontal, how large can its magnitude be without
causing the block to move?

100 A ski that is placed on snow will stick to the snow. However,
when the ski is moved along the snow, the rubbing warms and par-
tially melts the snow, reducing the coefficient of kinetic friction
and promoting sliding. Waxing the ski makes it water repellent and
reduces friction with the resulting layer of water. A magazine
reports that a new type of plastic ski is especially water repellent
and that, on a gentle 200 m slope in the Alps, a skier reduced his
top-to-bottom time from 61 s with standard skis to 42 s with the
new skis. Determine the magnitude of his average acceleration
with (a) the standard skis and (b) the new skis. Assuming a 3.0°
slope, compute the coefficient of kinetic friction for (c) the stan-
dard skis and (d) the new skis.

101 Playing near a road construction site, a child falls over a
barrier and down onto a dirt slope that is angled downward at 35°
to the horizontal. As the child slides down the slope, he has an
acceleration that has a magnitude of 0.50 m/s? and that is directed
up the slope. What is the coefficient of kinetic friction between the
child and the slope?

102 A 100 N force, directed at an angle 6 above a horizontal
floor, is applied to a 25.0 kg chair sitting on the floor. If 8 = 0°, what
are (a) the horizontal component F, of the applied force and
(b) the magnitude Fy of the normal force of the floor on the chair?
If # = 30.0°, what are (c) F,, and (d) Fy? If 6 = 60.0°, what are (¢) F,
and (f) Fy? Now assume that the coefficient of static friction be-
tween chair and floor is 0.420. Does the chair slide or remain at rest
if fis (g) 0°, (h) 30.0°,and (i) 60.0°?

103 A certain string can withstand a maximum tension of 40 N
without breaking. A child ties a 0.37 kg stone to one end and, hold-
ing the other end, whirls the stone in a vertical circle of radius 0.91
m, slowly increasing the speed until the string breaks. (a) Where is
the stone on its path when the string breaks? (b) What is the speed
of the stone as the string breaks?

104 =%& A four-person bobsled (total mass = 630 kg) comes
down a straightaway at the start of a bobsled run.The straightaway
is 80.0 m long and is inclined at a constant angle of 10.2° with the
horizontal. Assume that the combined effects of friction and air
drag produce on the bobsled a constant force of 62.0 N that acts
parallel to the incline and up the incline. Answer the following
questions to three significant digits. (a) If the speed of the bobsled
at the start of the run is 6.20 m/s, how long does the bobsled take to
come down the straightaway? (b) Suppose the crew is able to re-
duce the effects of friction and air drag to 42.0 N. For the same ini-
tial velocity, how long does the bobsled now take to come down the
straightaway?

105 Asa40 N block slides down a plane that is inclined at 25° to
the horizontal, its acceleration is 0.80 m/s?, directed up the plane.
What is the coefficient of kinetic friction between the block and
the plane?
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Kinetic Energy and Work

7-1 KINETIC ENERGY

Learning Objectives
After reading this module, you should be able to . ..

7.01 Apply the relationship between a particle’s kinetic 7.02 Identify that kinetic energy is a scalar quantity.

energy, mass, and speed.

Key Idea

@ The kinetic energy K associated with the motion of a particle of mass 71 and speed v, where v is well below the speed of light, is

2

K= %mv (kinetic energy).

What Is Physics?

One of the fundamental goals of physics is to investigate something that every-
one talks about: energy. The topic is obviously important. Indeed, our civilization
is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of an
office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use energy.
Wars have been started because of energy resources. Wars have been ended
because of a sudden, overpowering use of energy by one side. Everyone knows
many examples of energy and its use, but what does the term energy really mean?

What Is Energy?

The term energy is so broad that a clear definition is difficult to write. Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict the
outcomes of experiments and, even more important, to build machines, such as fly-
ing machines. This success is based on a wonderful property of our universe:
Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing
money in many types of bank accounts. Rules have been made about what such
money numbers mean and how they can be changed. You can transfer money
numbers from one account to another or from one system to another, perhaps

149
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electronically with nothing material actually moving. However, the total amount
(the total of all the money numbers) can always be accounted for: It is always
conserved. In this chapter we focus on only one type of energy (kinetic energy)
and on only one way in which energy can be transferred (work).

Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

K = %mvz (kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of

6.0 kg - m?%/s?; that is, we associate that number with the duck’s motion.
The SI unit of kinetic energy (and all types of energy) is the joule (J), named
for James Prescott Joule, an English scientist of the 1800s and defined as

1joule = 17J = 1kg-m?¥s?. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

Sample Problem 7.01 Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomotives
at opposite ends of a 6.4-km-long track, fired them up, tied
their throttles open, and then allowed them to crash head-on at
full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of
people were hurt by flying debris; several were killed.
Assuming each locomotive weighed 1.2 X 10° N and its accel-
eration was a constant 0.26 m/s?, what was the total kinetic en-
ergy of the two locomotives just before the collision? =

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:
v =g + 2a(x — xp).

With vy = 0 and x — x;, = 3.2 X 103 m (half the initial sepa-
ration), this yields

v2 =0 + 2(0.26 m/s?)(3.2 X 10° m),
or v = 40.8 m/s = 147 km/h.

ILEY

We can find the mass of each locomotive by dividing its
given weight by g:
1.2 X 106N
= ————— =122 X 10°kg.
T T o8 mig 0"ke
Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as
K =2(mv?) = (1.22 X 10° kg)(40.8 m/s)?
=2.0 X 1031J. (Answer)
This collision was like an exploding bomb.

Courtesy Library of Congress

Figure 7-1 The aftermath of an 1896 crash of two locomotives.

W
PLUS Additional examples, video, and practice available at WileyPLUS



7-2 WORK AND KINETIC ENERGY

Learning Objectives
After reading this module, you should be able to . ..

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle
or unit-vector notation.

Key Ideas

® Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

® The work done on a particle by a constant force F during
displacement d is

W=chos¢=F)-El)

(work, constant force),

in which ¢ is the constant angle between the directions of F
and d.

@ Only the component of F thatis along the displacement d
can do work on the object.

Work
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7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work—kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

@ When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force ﬁnet of those forces.

@ For a particle, a change AK in the kinetic energy equals the
net work W done on the particle:

AK=K;— K, =W
in which K; is the initial kinetic energy of the particle and K is

the kinetic energy after the work is done. The equation
rearranged gives us

(work —kinetic energy theorem),

K=K+ W.

If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy K (= 1 m1?) of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

A Y
.A' Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred

from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes

down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and

thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work

and shall represent a weight with its equivalent mg.
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This component

Work and Kinetic Energy

Finding an Expression for Work

Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force F, directed at an angle ¢ to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

F, = ma,, (7-3)

where m is the bead’s mass. As the bead moves through a displacement d, the
force changes the bead’s velocity from an initial value v, to some other value V.
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

V2 =V} + 2a.d. (7-4)
Solving this equation for a,, substituting into Eq. 7-3, and rearranging then give us
vt = Imv} = F.d. (7-5)

The first term is the kinetic energy K of the bead at the end of the displacement
d, and the second term is the kinetic energy K; of the bead at the start. Thus, the
left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and
the right side tells us the change is equal to F,d. Therefore, the work W done on
the bead by the force (the energy transfer due to the force) is

W= Fd. (7-6)
If we know values for F, and d, we can use this equation to calculate the work W.

i

'5 To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.
The force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can writg) F, as F cos ¢, where ¢ is the angle
between the directions of the displacement d and the force F. Thus,

W = Fdcos ¢ (work done by a constant force). (7-7)

g ) Small initial This force does positive work
OES (O Wl kinetic energy on the bead, increasing speed
_____ 7 F and kinetic energy.
ﬁWirex K; [} - X
Bead—/ Vo

Figure 7-2 A constant force F directed at
angle ¢ to the displacement d of a bead
on a wire accelerates the bead along the
wire, changing the velocity of the bead
from v, to V. A “kinetic energy gauge”
indicates the resulting change in the kinet-
ic energy of the bead, from the value K; to
the value K;.

In WileyPLUS, this figure is available as
an animation with voiceover.

This component N

does work. F
a//v
Larger final F
kinetic energy I KM

—_ 7
>

Displacement d
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We can use the definition of the scaler (dot) product (Eq. 3-20) to write

W = ﬁ © 3 (work done by a constant force), (7—8)

where Fis the magnitude of F. (‘You may wish to review the discussion of scaler
products in Module 3-3.) Equation 7-8 is especially useful for calculating the
work when F and d are given in unit-vector notation.

Cautions. There are two restrictions to using Egs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive
work or negative work. For example, if angle ¢ in Eq.7-7 is less than 90°, then cos ¢ is
positive and thus so is the work. However, if ¢ is greater than 90° (up to 180°), then
cos ¢ is negative and thus so is the work. (Can you see that the work is zero when
¢ = 90°?) These results lead to a simple rule. To find the sign of the work done by a
force, consider the force vector component that is parallel to the displacement:

A Y
"' A force does positive work when it has a vector component in the same direction

as the displacement, and it does negative work when it has a vector component in
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Egs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N-m). The corresponding unit in the British system is the foot-pound
(ft-1b). Extending Eq. 7-2, we have

1J=1kg-m¥s?®=1N-m=0.738 ft-1b. (7-9)

Net Work. When two or more forces act on an object, the net work done on
the object is the sum of the works done by the individual forces. We can
calculate the net work in two ways. (1) We can find the work done by each force
and then sum those works. (2) Alternatively, we can first find the net force Fou
of those forces. Then we can use Eq. 7-7, substituting the magnitude F, for F
and also the angle between the directions of F,.. and d for ¢. Similarly, we can
use Eq. 7-8 with IT“)net substituted for F.

Work-Kinetic Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial
K; = imv} to a later K, = Imv?) to the work W (= F,d) done on the bead. For
such particle-like objects, we can generalize that equation. Let AK be the change
in the kinetic energy of the object, and let W be the net work done on it. Then

AK=Ky— K; =W, (7-10)
which says that I .
F
change in the kinetic\  (net work done on f:
energy of a particle /| the particle
We can also write ¢
Kf =K +W, (7-11) Figure 7-3 A contestant in a bed race. We
which says that can approximate the bed and its occupant

as being a particle for the purpose of cal-
kinetic energy after | kinetic energy the net culating the work done on them by the
the net work is done/ = \before the net work work done /° force applied by the contestant.
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These statements are known traditionally as the work—kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

IZ Checkpoint 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from —3 m/s to —2 m/s
and (b) from —2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

Sample Problem 7.02 Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d of magnitude
8.50 m. The push F, of spy 001 is 12.0 N at an angle of 30.0°
downward from the horizontal; the pull F2 of spy 002 is
10.0 N at 40.0° above the horizontal. The magnitudes and di-
rections of these forces do not change as the safe moves, and
the floor and safe make frictionless contact.

(a) What is the net work done on the safe by forces F,and F,
during the displacement d?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W = Fd cos ¢) or Eq. 7-8 (W = F-d) to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by F is

W, = Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)
= 88.33J,

and the work done by F,is

W, = F,d cos ¢, = (10.0 N)(8.50 m)(cos 40.0°)
= 65.11 J.
Thus, the net work Wis
W=W,+ W,=8833] +6511J

=1534J =153 1. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

Spy 00
py 002 Only force components

parallel to the displacement
do work.

Spy 001

Safe

(a) ()
Figure 7-4 (a) Two spies move a floor safe through a displacement
d. (b) A free-body diagram for the safe.

(b) During the displacement, what is the work W, done on the
safe by the gravitational force F and what is the work Wy
done on the safe by the normal force F v from the floor?

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgd cos 90° = mgd(0) = 0
and Wy = Fyd cos 90° = Fyd(0) = 0

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(Answer)

(Answer)

(c) The safe is initially stationary. What is its speed v at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by F, 1 and F2
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Calculations: We relate the speed to the work done by
combining Egs. 7-10 (the work—kinetic energy theorem) and
7-1 (the definition of kinetic energy):

W =K;— K, = ;mv} — 3nn2.

The initial speed v; is zero, and we now know that the work
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done is 153.4 J. Solving for v, and then substituting known
data, we find that

_ \/ZW _ \/2(153.4 J)
TINTm 225 kg

= 1.17 m/s.

(Answer)

Sample Problem 7.03 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (—3.0 m)i
while a steady wind pushes against the crate with a force
F= (20N)i + (=6.0N)j. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W =
Fd cos ¢) or Eq.7-8 (W = F-d) to calculate the work. Since
we know F and d in unit-vector notation, we choose Eq.7-8.

Calculations: We write
W =TF-d=[20N)i + (=6.0 N)j]-[(—3.0 m)i].

Of the possible unit-vector dot products, only i-1, j-j, and
k -k are nonzero (see Appendix E). Here we obtain
W= (20N)(=3.0m)ii+ (—6.0 N)(—3.0m)j-i
=(-6.0J)(1) + 0= —6.01. (Answer)

WILEY O
P

The parallel force component does
negative work, slowing the crate.
y
= NG

<t \F
d

Figure 7-5 Force F slowsa ~
crate during displacement d.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement d, what is its kinetic energy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem in

the form of Eq. 7-11, we have
K;=K;,+W=10J + (-6.0J) =4.01. (Answer)

Less kinetic energy means that the crate has been slowed.

Us Additional examples, video, and practice available at WileyPLUS

7-3 WORK DONE BY THE GRAVITATIONAL FORCE

Learning Objectives
After reading this module, you should be able to . ..

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas

® The work W, done by the gravitational force F)g ona
particle-like object of mass m as the object moves through a
displacement d is given by

W, = mgd cos ¢,

in which ¢ is the angle between I?g and d.

® The work W, done by an applied force as a particle-like
object is either lifted or lowered is related to the work W,

7.08 Apply the work—kinetic energy theorem to situations
where an object is lifted or lowered.

done by the gravitational force and the change AK in the
object’s kinetic energy by
AK=K;— K, =W, + W,
If K, = K; then the equation reduces to
W,=-W,,
which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.
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The force does negative
work, decreasing speed
and kinetic energy.
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Figure 7-6 Because the gravitational force F <
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity v, to
velocity v during displacement d. A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from
K; (= 5 mv}) to K; (= 3 mv?).
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Figure 7-7 (a) An applied force F lifts an
object. The object’s displacement d makes
an angle ¢ = 180° with the gravitational
force Fg on the object. The applied force
does positive work on the object. (b) An
applied force F lowers an object. The dis-
placement d of the object makes an angle
¢ = 0° with the gravitational force I?g. The
applied force does negative work on the
object.

CHAPTER 7 KINETIC ENERGY AND WORK

Work Done by the Gravitational Force

We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v, and thus with initial kinetic energy K; = %mvﬁ. As the tomato
rises, it is slowed by a gravitational force F,; that is, the tomato’s kinetic energy
decreases because F, does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W = Fd cos ¢) to express the work
done during a displacement d. For the force magnitude F, we use mg as the mag-
nitude of Fg. Thus, the work W, done by the gravitational force Ii,) is
Wg = mgd cos ¢  (work done by gravitational force). (7-12)

For a rising object, force F; is directed opposite the displacement d, as indi-

cated in Fig. 7-6. Thus, ¢ = 180° and

W, = mgd cos 180° = mgd(—1) = —mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle ¢ between force F . and displacement d is zero. Thus,

W, = mgd cos 0° = mgd(+1) = +mgd. (7-14)

The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the falling object (it speeds up, of course).

Work Done in Lifting and Lowering an Object

Now suppose we lift a particle-like object by applying a vertical force F toit.
During the upward displacement, our applied force does positive work W, on the
object while the gravitational force does negative work W, on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change AK in the kinetic energy of the
object due to these two energy transfers is
AK=K;,— K, =W, + W,, (7-15)

in which K is the kinetic energy at the end of the displacement and K; is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy to the object while our
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from
the floor to a shelf), then Kyand K; are both zero, and Eq. 7-15 reduces to

W,+W,=0
or W,=—-W,. (7-16)

Note that we get the same result if K, and K; are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from
the object. Using Eq. 7-12, we can rewrite Eq.7-16 as

W, = —mgdcos ¢ (work done in lifting and lowering; K=K, (7-17)
with ¢ being the angle between F;, and d.1If the displacement is vertically upward
(Fig. 7-7a), then ¢ = 180° and the work done by the applied force equals mgd.
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If the displacement is vertically downward (Fig. 7-7b), then ¢ = 0° and the work

done by the applied force equals —mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift. They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor
to over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Egs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of

the mug and d is the distance you lift it.

Sample Problem 7.04 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the ob-
ject starts and ends at rest and thus has no overall change in
its kinetic energy (that is important). Figure 7-8a shows the
situation. A rope pulls a 200 kg sleigh (which you may know)
up a slope at incline angle 6 = 30°, through distance d = 20 m.
The sleigh and its contents have a total mass of 200 kg. The
snowy slope is so slippery that we take it to be frictionless.
How much work is done by each force acting on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in magnitude
and direction and thus we can calculate the work done by
each with Eq. 7-7 (W = Fd cos ¢) in which ¢ is the angle be-
tween the force and the displacement. We reach the same
result with Eq. 7-8 (W = F-d) in which we take a dot prod-
uct of the force vector and displacement vector. (2) We can
relate the net work done by the forces to the change in
kinetic energy (or lack of a change, as here) with the
work—kinetic energy theorem of Eq.7-10 (AK = W).

Calculations: The first thing to do with most physics prob-
lems involving forces is to draw a free-body diagram to organ-
ize our thoughts. For the sleigh, Fig.7-8b is our free-body dia-
gram, showing the gravitatignal force F., o> the force T from the
rope, and the normal force Fy from the slope.

Work W)y, by the normal force. Let’s start with this easy cal-
culation. The normal force is perpendicular to the slope and
thus also to the sleigh’s displacement. Thus the normal force
does not affect the sleigh’s motion and does zero work. To
be more formal, we can apply Eq. 7-7 to write

Wy = Fyd cos 90° = 0. (Answer)

Work W, by the gravitational force. We can find the work
done by the gravitational force in either of two ways (you
pick the more appealing way). From an earlier discussion
about ramps (Sample Problem 5.04 and Fig. 5-15), we know
that the component of the gravitational force along the
slope has magnitude mg sin 6 and is directed down the
slope. Thus the magnitude is

F,, = mgsin 6 = (200 kg)(9.8 m/s?) sin 30°
=980 N.

The angle ¢ between the displacement and this force com-
ponent is 180°. So we can apply Eq. 7-7 to write

W, = Fy,d cos 180° = (980 N)(20 m)(—1)

=—1.96 X 10*1J. (Answer)

The negative result means that the gravitational force re-
moves energy from the sleigh.

The second (equivalent) way to get this result is to use
the full gravitational force F, instead of a component. The
angle between F, and d is 120° (add the incline angle 30°
t0 90°). So, Eq. 7-7 gives us

W, = F,d cos 120° = mgd cos 120°
= (200 kg)(9.8 m/s?)(20 m) cos 120°

=—1.96 X 10*]. (Answer)

Work Wr by the rope’s force. We have two ways of calculat-
ing this work. The quickest way is to use the work—kinetic en-
ergy theorem of Eq. 7-10 (AK = W), where the net work W
done by the forces is Wy + W, + Wy and the change AK in the
kinetic energy is just zero (because the initial and final kinetic
energies are the same—namely, zero). So, Eq. 7-10 gives us

0=Wy+W,+W;=0-196Xx10'] + Wy
and Wr=1.96 X 10*]. (Answer)
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Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The free-
body diagram for the sleigh.
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Instead of doing this, we can apply Newton’s second law for
motion along the x axis to find the magnitude F; of the rope’s
force. Assuming that the acceleration along the slope is zero
(except for the brief starting and stopping), we can write

Frerx = may,
F7 — mg sin 30° = m(0),
to find
Fr = mgsin 30°.

Sample Problem 7.05 Work done on an accelerating elevator cab ‘

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig. 7-9a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F,?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12
(W, = mgd cos ¢) to find the work W,.

Calculation: From Fig.7-9b, we see that the angle between
the directions of F, and the cab’s displacement d is 0°. So,

W, = mgd cos 0° = (500 kg)(9.8 m/s*)(12 m)(1)
=5.88 X 10*J = 59 kJ.

(b) During the 12 m fall, what is the work W7 done on the
cab by the upward pull 7 of the elevator cable?

(Answer)

KEY IDEA

We can calculate work W with Eq. 7-7 (W = Fd cos ¢) by
first writing F,., = ma, for the components in Fig. 7-9b.
Calculations: We get
T — F, = ma. (7-18)
Solving for T, substituting mg for F,, and then substituting
the result in Eq. 7-7, we obtain
W= Tdcos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration a
and then 180° for the angle ¢ between the directions of
forces T'and mg, we find

4
W = m(—% 4 g>dcos ¢ = ?mgdcos¢>

4
=3 (500 kg)(9.8 m/s?)(12 m) cos 180°

= —470 X 10*J = —47 k. (Answer)
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This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two
vectors is zero. So, we can now write Eq. 7-7 to find the work
done by the rope’s force:

Wy = Fpd cos 0° = (mg sin 30°)d cos 0°
= (200 kg)(9.8 m/s?)(sin 30°)(20 m) cos 0°

=1.96 X 10*J. (Answer)
Elevator
r cable

Ai /|\
Figure 7-9 An elevator Does
cab, descending with 7 negative
speed v;, suddenly E Cab \ work
begins to accelerate
downward. (a) It ” N
moves through a dis- 7 Doe§
placement d with VvV 7 ¢ positive
constant acceleration work
d = g/5. (b) A free- - T
body diagram for the “
cab, displacement v
included. (a) (b)

Caution: Note that W is not simply the negative of W, be-
cause the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the fall?
Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+ Wr=588X10*] — 470 X 10*J
=118 X 10*J = 12 kJ.

(d) What is the cab’s kinetic energy at the end of the 12 m fall?

(Answer)

KEY IDEA

The kinetic energy changes because of the net work done on
the cab,according to Eq.7-11 (K, = K; + W).

Calculation: From Eq. 7-1, we write the initial Kkinetic
energy as K; = %mv?. We then write Eq. 7-11 as

K;=K; + W=1mv}+ W
= 1(500 kg)(4.0 m/s)> + 1.18 X 10*J

=1.58 X 10*J =~ 16 kJ. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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Learning Objectives
After reading this module, you should be able to . . .

7.09 Apply the relationship (Hooke's law) between the force
on an object due to a spring, the stretch or compression
of the spring, and the spring constant of the spring.

7.10 Identify that a spring force is a variable force.

7.11 Calculate the work done on an object by a spring force
by integrating the force from the initial position to the final

Key Ideas

@ The force E from a spring is
F; = —kd (Hooke’s law),

where d is the displacement of the spring’s free end from

its position when the spring is in its relaxed state (neither

compressed nor extended), and k is the spring constant

(a measure of the spring’s stiffness). If an x axis lies along the

spring, with the origin at the location of the spring’s free end

when the spring is in its relaxed state, we can write
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position of the object or by using the known generic result
of that integration.

7.12 Calculate work by graphically integrating on a graph of
force versus position of the object.

7.13 Apply the work—kinetic energy theorem to situations in
which an object is moved by a spring force.

@ A spring force is thus a variable force: It varies with the
displacement of the spring'’s free end.

@ If an object is attached to the spring's free end, the work W,
done on the object by the spring force when the object is

moved from an initial position x; to a final position x;is
1 2 1 2
VV‘Y = §kx,- Ekxf.

If x; = 0 and x; = x, then the equation becomes

F.= —kx (Hooke’s law).

Work Done by a Spring Force

We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force

Figure 7-10a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say —is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-10b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-10c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force F, froma spring is pro-
portional to the displacement d of the free end from its position when the spring
is in the relaxed state. The spring force is given by

F, = —kd

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement. The SI unit for
k is the newton per meter.

In Fig. 7-10 an x axis has been placed parallel to the length of the spring, with
the origin (x = 0) at the position of the free end when the spring is in its relaxed

W, = —Lkx2

0 Block
0 attached
to spring

X positive

d
F, negative f P
}fmmcj e ;b

X negative
I, positive

i
3§
|

‘&x—‘
0

(0)
Figure 7-10 (@) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by d, and
the spring is stretched by a positive amount
x. Note the restoring force I_ﬂexerted by
the spring. (c¢) The spring is compressed by
a negative amount x. Again, note the
restoring force.
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state. For this common arrangement, we can write Eq. 7-20 as
F.= —kx (Hooke’slaw), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then F, is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then F, is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end. Thus F, can be symbolized as F(x). Also
note that Hooke’s law is a linear relationship between F, and x.

The Work Done by a Spring Force

To find the work done by the spring force as the block in Fig. 7-10a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force F, does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find this
work by using Eq. 7-7 (W = Fd cos ¢) because there is no one value of F to plug
into that equation—the value of Fincreases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation
in F in each segment. (2) Then in each segment, the force has (approximately) a
single value and thus we can use Eq. 7-7 to find the work in that segment. (3)
Then we add up the work results for all the segments to get the total work. Well,
that is our intent, but we don’t really want to spend the next several days adding
up a great many results and, besides, they would be only approximations. Instead,
let’s make the segments infinitesimal so that the error in each work result goes to
zero. And then let’s add up all the results by integration instead of by hand.
Through the ease of calculus, we can do all this in minutes instead of days.

Let the block’s initial position be x; and its later position be x,. Then divide
the distance between those two positions into many segments, each of tiny length
Ax. Label these segments, starting from x;, as segments 1, 2, and so on. As the
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force magni-
tude as being constant within the segment. Label these magnitudes as F,; in
segment 1, F, in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here ¢ = 180°, and so cos ¢ = —1. Then
the work done is —F,; Ax in segment 1, —F,, Ax in segment 2, and so on. The net
work W done by the spring, from x; to xy, is the sum of all these works:

W, = X —F,Ax, (7-22)
where j labels the segments. In the limit as Ax goes to zero, Eq. 7-22 becomes

W, = f Y _F. dx. (7-23)
From Eq. 7-21, the force magnitude F, isl kx.Thus, substitution leads to

Xy Xf
Wszf —kxdx=—kf X dx

= (k)L = (—5k) (2 — xD). (7-24)
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Multiplied out, this yields

W, = %kx% — %kx% (work by a spring force). (7-25)

This work W, done by the spring force can have a positive or negative value,
depending on whether the ner transfer of energy is to or from the block as the
block moves from x; to x;. Caution: The final position x; appears in the second
term on the right side of Eq. 7-25. Therefore, Eq. 7-25 tells us:

A Y

"' Work W, is positive if the block ends up closer to the relaxed position (x = 0) than
it was initially. It is negative if the block ends up farther away from x = 0. It is zero
if the block ends up at the same distance from x = 0.

If x; = 0 and if we call the final position x, then Eq. 7-25 becomes
W, = -3 kx? (work by a spring force). (7-26)

The Work Done by an Applied Force

Now suppose that we displace the block along the x axis while continuing to apply a
force F, to it. During the displacement, our applied force does work W, on the block
while the spring force does work W,. By Eq. 7-10, the change AK in the kinetic en-
ergy of the block due to these two energy transfers is

AK =K, — K, = W, + W, (7-27)

in which K is the kinetic energy at the end of the displacement and K; is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then K;and K; are both zero and Eq. 7-27 reduces to

W, = —W. (7-28)

VA Y

"' If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the
work done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

IZ Checkpoint 2

For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-10 are (a) —3 cm, 2 cm; (b) 2 cm, 3 cm; and (¢) —2 cm, 2 cm. In each sit-
uation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the .
- L. . . The spring force does
work by simply multiplying the spring force by the object’s . .
. : . negative work, decreasing

displacement. The reason is that there is no one value for O -

. . . speed and kinetic energy. v
the force—it changes. However, we can split the displace- T
ment up into an infinite number of tiny parts and then ap-
proximate the force in each as being constant. Integration

Frictionless w

161

sums the work done in all those parts. Here we use the
generic result of the integration. —d —

In Fig. 7-11, a cumin canister of mass m = 0.40 kg slides Stop First touch
across a horizontal frictionless counter with speed v = 0.50 m/s. ~ Figure 7-11 A canister moves toward a spring.
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It then runs into and compresses a spring of spring constant
k =750 N/m. When the canister is momentarily stopped by
the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work W, done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (W, =
—1kx?), with d replacing x.

2. The work Wi is also related to the kinetic energy of the
canister by Eq.7-10 (Ky — K; = W).

3. The canister’s kinetic energy has an initial value of K =
%mv2 and a value of zero when the canister is momen-
tarily at rest.

WILEY ©

Calculations: Putting the first two of these ideas together,
we write the work—kinetic energy theorem for the canister as

K;— K, = —5kd?

Substituting according to the third key idea gives us this
expression:

0 —3mv? = —3kd

Simplifying, solving for d, and substituting known data then

give us
m 0.40 kg
Vaf P (0.50 m/s) 4 750 N/

12X 102m = 1.2 cm.

QU
Il

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

7-3 WORK DONE BY A GENERAL VARIABLE FORCE

Learning Objectives
After reading this module, you should be able to . . .

7.14 Given a variable force as a function of position, calculate
the work done by it on an object by integrating the function
from the initial to the final position of the object, in one or
more dimensions.

7.15 Given a graph of force versus position, calculate the
work done by graphically integrating from the initial
position to the final position of the object.

Key Ideas

® When the force F on a particle-like object depends on
the position of the object, the work done by F on the ob-
ject while the object moves from an initial position r; with
coordinates (x;, y;, z;) to a final position r, with coordinates
(x5 ys 7p) must be found by integrating the force. If we as-
sume that component F, may depend on x but not on y or
z, component F, may depend on y but not on x or z, and
component F, may depend on z but not on x or y, then the

7.16 Convert a graph of acceleration versus position to a
graph of force versus position.

7.17 Apply the work—kinetic energy theorem to situations
where an object is moved by a variable force.

work is
Xy Vi 2z
W= | F.dx+ | Fydy+ | F.dz.
Xi Vi Zi

o If F has only an x component, then this reduces to

*r
W = J F(x) dx.

Work Done by a General Variable Force

One-Dimensional Analysis

Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.



7-5 WORK DONE BY A GENERAL VARIABLE FORCE 163

Figure 7-12a shows a plot of such a one-dimensional variable force. We want
an expression for the work done on the particle by this force as the particle
moves from an initial point x; to a final point x;. However, we cannot use Eq. 7-7
(W = Fd cos ¢) because it applies only for a constant force F. Here, again, we
shall use calculus. We divide the area under the curve of Fig. 7-12a into a number
of narrow strips of width Ax (Fig. 7-12b). We choose Ax small enough to permit us
to take the force F(x) as being reasonably constant over that interval. We let F ,,,
be the average value of F(x) within the jth interval. Then in Fig. 7-12b, F; ,,, is the
height of the jth strip.

With F,,,, considered constant, the increment (small amount) of work
AW; done by the force in the jth interval is now approximately given by Eq.
7-7 and is

AW, = Fj,, Ax. (7-29)

javg

In Fig. 7-12b, AW; is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves
from x; to x;, we add the areas of all the strips between x; and x,in Fig. 7-12b:

W =AW, = D F, ., Ax (7-30)

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-12b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width Ax and
using more strips (Fig. 7-12¢). In the limit, we let the strip width approach
zero; the number of strips then becomes infinitely large and we have, as an ex-
act result,

W = lim X F),, Ax. (7-31)
Ax—0
This limit is exactly what we mean by the integral of the function F(x) between
the limits x; and x. Thus, Eq. 7-31 becomes

X
W = f F(x) dx  (work:variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits x; and
x; (shaded in Fig. 7-12d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

F = Fi+ Fj + Fk, (7-33)

in which the components F,, F,, and F, can depend on the position of the particle;
that is, they can be functions of that position. However, we make three simplifica-
tions: F, may depend on x but not on y or z, F, may depend on y but not on x or z,
and F, may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement

d¥ = dxi + dy] + dzk. (7-34)

The increment of work dW done on the particle by F during the displacement d7’
is,by Eq. 7-8,
dW = F-d7 = F,dx + F,dy + F. dz. (7-35)

Work is equal to the
area under the curve.

F(x)

j==
-
=&

We can approximate that area
with the area of these strips.

We can do better with
more, narrower strips.

F(x)

For the best, take the limit of
strip widths going to zero.

F(x)

|

\

\

\

|

|

|
| ‘
| \ x

0 X Xy

Figure 7-12 (a) A one-dimensional force
F(x) plotted against the displacement x of
a particle on which it acts. The particle
moves from x; to x;. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (c¢) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force
is given by Eq. 7-32 and is represented by
the shaded area between the curve and
the x axis and between x; and x;.
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The work W done by F while the particle moves from an initial position r; having
coordinates (x;,y;,z;) to a final position r;having coordinates (xf, yy, z;) is then

7 X, Yy, Zf
W= f’dW: ijxdx + fnydy + JJFZ dz. (7-36)
r; X; Vi %

If F has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work-Kinetic Energy Theorem with a Variable Force

Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work —kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a
net force F(x) that is directed along that axis. The work done on the particle
by this force as the particle moves from position x; to position x; is given by
Eq.7-32 as

Xr X5
W= f F(x) dx = f ma dx, (7-37)
in which we use Newton’s second law to replace F(x) with ma. We can write the

quantity ma dx in Eq. 7-37 as

madx =m % dx. (7-38)

From the chain rule of calculus, we have

dv dv dx dv
W d (7-39)

and Eq.7-38 becomes
d
madx = m _d; vdx = mvdv. (7-40)

Substituting Eq. 7-40 into Eq. 7-37 yields

Ve Vf
szfmvdvsz vdy

= mv} — smv2. (7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W=K,— K, = AK,

which is the work —kinetic energy theorem.

Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor ~ example, from x = 0 to x = 1 m, the force is positive (in
as a force acts on it, starting at x; = 0 and ending at x; = 6.5m.  the positive direction of the x axis) and increases in mag-
As the block moves, the magnitude and direction of the nitude from O to 40 N. And from x = 4 m to x = 5 m, the
force varies according to the graph shown in Fig. 7-13a. For ~ force is negative and increases in magnitude from 0 to 20 N.
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(Note that this latter value is displayed as —20 N.) The
block’s kinetic energy at x; is K; = 280 J. What is the
block’s speed at x; = 0,x, = 4.0 m, and x; = 6.5 m?

KEY IDEAS

(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (K = Jmv?). (2) We can relate
the kinetic energy Ky at a later point to the initial kinetic K;
and the work W done on the block by using the work-
kinetic energy theorem of Eq. 7-10 (K; — K; = W). (3) We
can calculate the work W done by a variable force F(x) by
integrating the force versus position x. Equation 7-32 tells
us that

W= f /F(x) dx.

We don’t have a function F(x) to carry out the integration,
but we do have a graph of F(x) where we can integrate by
finding the area between the plotted line and the x axis.
Where the plot is above the axis, the work (which is equal to
the area) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x = 0 is easy because
we already know the kinetic energy. So, we just plug the
kinetic energy into the formula for kinetic energy:

Kl = %mv%7
2807 = (8.0 kg,
and then

vy = 837 m/s = 8.4 m/s. (Answer)

As the block moves from x = 0 to x = 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left, a rectangle in the center, and a
triangle at the right. Their total area is

(40 N)(1 m) + (40N)(2m) + L(40N)(1 m) = 120N -m
=1201.
This means that between x = 0 and x = 4.0 m, the force
does 120 J of work on the block, increasing the kinetic en-
ergy and speed of the block. So, when the block reaches

x = 4.0 m, the work—kinetic energy theorem tells us that
the kinetic energy is

K,=K +W
= 2807 + 1207 = 400 J.
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Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
a floor, (b) The location of the block at several times.

Again using the definition of kinetic energy, we find
KZ = %mv%a
4007 = X(8.0 kg)v},
and then

v, = 10 m/s. (Answer)

This is the block’s greatest speed because from x = 4.0 m to
x = 6.5 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
area between the plot and the x axis is
120 N)(1 m) + (20 N)(1 m) + 2(20N)(0.5m) = 35N m
=351.
This means that the work done by the force in that range is
—35 J. At x = 4.0, the block has K = 400 J. At x = 6.5 m, the
work—kinetic energy theorem tells us that its kinetic energy is
Ki=K,+W
=400J —35J = 3651.
Again using the definition of kinetic energy, we find
K3 = %mv%,
365J = (8.0 kg3,
and then

v3 = 9.55m/s = 9.6 m/s. (Answer)

The block is still moving in the positive direction of the
X axis, a bit faster than initially.

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 7.08 Work, two-dimensional integration

When the force on an object depends on the position of the
object, we cannot find the work done by it on the object by
simply multiplying the force by the displacement. The rea-
son is that there is no one value for the force—it changes.
So, we must find the work in tiny little displacements and
then add up all the work results. We effectively say, “Yes, the
force varies over any given tiny little displacement, but the
variation is so small we can approximate the force as being
constant during the displacement.” Sure, it is not precise, but
if we make the displacements infinitesimal, then our error
becomes infinitesimal and the result becomes precise. But,
to add an infinite number of work contributions by hand
would take us forever, longer than a semester. So, we add
them up via an integration, which allows us to do all this in
minutes (much less than a semester).

Force F = (3x*N)i + (4 N)j, with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqgs.7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

3 0 3 0
W=f3x2dx+J4dy=3fx2dx+4fdy
2 3 2 3

= 3[°B + 4yl = [3° — 2°] + 4[0 — 3]

=701. (Answer)

The positive result means that energy is transferred to the
particle by force F . Thus, the kinetic energy of the particle
increases and, because K = %mvz, its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

PLUS Additional examples, video, and practice available at WileyPLUS
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Learning Objectives
After reading this module, you should be able to . ..

7.18 Apply the relationship between average power, the
work done by a force, and the time interval in which that
work is done.

7.19 Given the work as a function of time, find the instanta-
neous power.

Key Ideas

@ The power due to a force is the rate at which that force
does work on an object.

o If the force does work W during a time interval At, the aver-
age power due to the force over that time interval is

w
P, =—
™ Ar

Power

7.20 Determine the instantaneous power by taking a dot
product of the force vector and an object’s velocity vector,
in magnitude-angle and unit-vector notations.

@ Instantaneous power is the instantaneous rate of doing work:
4
=—
@ Foraforce F atan angle ¢ to the direction of travel of the
instantaneous velocity V, the instantaneous power is

P=Fvcosp=F-V.

The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time Az, the average
power due to the force during that time interval is

P j—

- 42
avg At (7 )

(average power).
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The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

aw
P= o (instantaneous power). (7-43)

Suppose we know the work W(¢) done by a force as a function of time. Then to

get the instantaneous power P at, say, time ¢ = 3.0 s during the work, we would

first take the time derivative of W(¢) and then evaluate the result for t = 3.0 s.
The ST unit of power is the joule per second. This unit is used so often that it

has a special name, the watt (W), after James Watt, who greatly improved the  © Reglin/ZUMA

rate at which steam engines could do work. In the British system, the unit of Figure 7-14 The power due to the truck’s

power is the foot-pound per second. Often the horsepower is used. These are  ypplied force on the trailing load is the

related by rate at which that force does work on the

load.
Iwatt=1W =11J/s =0.738 ft -1b/s (7-44)

and 1 horsepower = 1 hp = 550 ft-1b/s = 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour. Thus,

1 kilowatt-hour = 1 kW -h = (10° W)(3600 s)
= 3.60 X 10°J = 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as,say,4 X 107 kW -h (or more conveniently as 4 mW -h).

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force F directed at some angle ¢ to that line, Eq. 7-43 becomes

_dW _ Fcos ¢pdx dx
P=a = dt _Fcosd)(dt>’
or P = Fv cos ¢. (7-47)

Reorganizing the right side of Eq.7-47 as the dot product F-7,we may also write
the equation as

P=Fv (instantaneous power). (7-48)

For example, the truck in Fig. 7-14 exerts a force F on the trailing load, which
has velocity V' at some instant. The instantaneous power due to F is the rate at
which F does work on the load at that instant and is given by Egs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

M Checkpoint 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the
cord positive, negative, or zero?



168

Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces
F 1 and F ,acting on a box as the box slides rightward across a
frictionless floor. Force F 1 is horizontal, with magnitude 2.0 N;
force F, is angled upward by 60° to the floor and has magni-
tude 4.0 N. The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Negative power.
(This force is
removing energy.)

Positive power.
(This force is

supplying energy.)

pel

Frictionless I

Figure 7-15 Two forces Fl and Fz act on a box that slides
rightward across a frictionless floor. The velocity of the box is V.
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Calculation: We use Eq.7-47 for each force. For force F, at
angle ¢, = 180° to velocity v, we have

P, = Fv cos ¢ = (2.0 N)(3.0 m/s) cos 180°
= —6.0W.

This negative result tells us that force F,is transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F. »,at angle ¢, = 60° to velocity v, we have

P, = F,v cos ¢, = (4.0 N)(3.0 m/s) cos 60°
= 6.0 W. (Answer)

(Answer)

This positive result tells us that force F,is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Pnet P1+P2

=—6.0W +6.0W =0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero. Thus, the kinetic energy (K = 3mv?)
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces F ; and F , nor the
velocity vV changing, we see from Eq. 7-48 that P, and P, are
constant and thus so is P,;.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

1
K =;mv?

(7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

(kinetic energy).

Work Done by a Corlstant Force The work done on a par-
ticle by a constant force F* during displacement d is

W =Fdcos¢=F-d (7-7,7-8)

(work, constant force),

in which ¢ is the constant angle between the directions of Fandd.
Only the component of F that is along the displacement d can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force ﬁnet of those forces.

Work and Kinetic Energy For a particle, a change AK in the
kinetic energy equals the net work W done on the particle:

AK = K;— K; = W (work-kinetic energy theorem), (7-10)

in which K; is the initial kinetic energy of the particle and Kis the ki-
netic energy after the work is done. Equation 7-10 rearranged gives us

Ki=K;+ W. (7-11)
Work Done by the Gravitational Force The work W,
done by the gravitational force F on a particle-like object of mass
m as the object moves through a dlsplacement dis given by

W, = mgd cos ¢, (7-12)

in which ¢ is the angle between F, gand d.

Work Done in Lifting and Lowering an Object The work
W, done by an applied force as a particle-like object is either lifted
or lowered is related to the work W, done by the gravitational
force and the change AK in the object’s kinetic energy by

AK =K, — K, =W, + W, (7-15)
If K; = K;, then Eq. 7-15 reduces to
W,=—-W,, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.



Spring Force The force F, from a spring is

F = —kd (Hooke’s law), (7-20)

where d is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

F, = —kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work W, done on the object by the spring
force when the object is moved from an initial position x; to a final
position x;is

W, = 3kx? — Sk (7-25)
If x; = 0 and x; = x, then Eq. 7-25 becomes
W, = —1kx?. (7-26)

Work Done by a Variable Force When the force F on a particle-
like object depends on the position of the object, the work done by F
on the object while the object moves from an initial position r; with co-
ordinates (x;, y;, z;) to a final position 7, with coordinates (xy, y;, z/)

Questions

1 Rank the following velocities according to the kinetic energy a
particle will have with each velocity, greatest first: (a) v = 41 + 3],
(b) V=—41+3],(c) V=—31+4],(d) V=314 (e) V = 5i,
and (f) v = 5 m/s at 30° to the horizontal.

2 Figure 7-16a shows two horizontal forces that act on a block
that is sliding to the right across a frictionless floor. Figure 7-16b
shows three plots of the block’s kinetic energy K versus time t.
Which of the plots best corresponds to the following three situ-
ations: (a) F; = F,, (b) F; > F,,(c) F; < F,?

Figure 7-16 Question 2.

3 Ispositive or negative work done by a constant force Fona par-
ticle during a straight-line displacement d if (a) the angle between F
and d is 30°% (b) the angle is 100% (c) F = 21 — 3jandd = —41?

4 In three situations, a briefly applied horizontal force changes the
velocity of a hockey puck that slides over frictionless ice. The over-
head views of Fig. 7-17 indicate, for each situation, the puck’s initial
speed v, its final speed v/, and the directions of the corresponding ve-
locity vectors. Rank the situations according to the work done on the
puck by the applied force, most positive first and most negative last.
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must be found by integrating the force. If we assume that component
F, may depend on x but not on y or z,component F, may depend on y
but not on x or z,and component F, may depend on z but not on x or
y,then the work is

x; iz zy
W= f F.dx + f Fydy + f F.dz. (7-36)
X Vi z
If F has only an x component, then Eq. 7-36 reduces to
X
W= J F(x) dx. (7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val At, the average power due to the force over that time interval is

w

Ppy=——
avg At

(7-42)
Instantaneous power is the instantaneous rate of doing work:
dwW

P=—

e (7-43)

For a force F at an angle ¢ to the direction of travel of the instan-
taneous velocity v, the instantaneous power is

P=Fvcos¢=F-V.

(7-47,7-48)

?’/ =3m/s
(a) ()

Figure 7-17 Question 4.

5 The graphs in Fig. 7-18 give the x component F, of a force act-
ing on a particle moving along an x axis. Rank them according to
the work done by the force on the particle from x = 0 to x = x,
from most positive work first to most negative work last.

I F,

X X

Figure 7-18
Question 5.
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6 Figure 7-19 gives the x com- I
ponent F, of a force that can act -
on a particle. If the particle be- !
gins at rest at x = 0, what is its . B P (m)

coordinate when it has (a) its
greatest kinetic energy, (b) its -1
greatest speed, and (c) zero
speed? (d) What is the particle’s
direction of travel after it
reachesx = 6 m?

Figure 7-19 Question 6.

7 In Fig. 7-20, a greased pig has a choice of three frictionless slides
along which to slide to the ground. Rank the slides according to how
much work the gravitational force does on the pig during the descent,
greatest first.

Figure 7-20
Question 7.

8 Figure 7-21a shows four situations in which a horizontal force acts
on the same block, which is initially at rest. The force magnitudes are
F, = F, = 2F, = 2F;. The horizontal component v, of the block’s ve-
locity is shown in Fig. 7-21b for the four situations. (a) Which plot in
Fig. 7-21b best corresponds to which force in Fig. 7-21a? (b) Which

i 5k 7
= B— < <—f

(@)

X

Figure 7-21 Question 8.

Problems

CHAPTER 7 KINETIC ENERGY AND WORK

plot in Fig. 7-21c¢ (for kinetic energy K versus time #) best corre-
sponds to which plot in Fig. 7-215?

9 Spring A is stiffer than spring B (k, > kg). The spring force of
which spring does more work if the springs are compressed (a) the
same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a
cliff. Which of the graphs in Fig. 7-22 could possibly show how the
kinetic energy of the glob changes during its flight?

K K K K ,
r\t R t V\ t :
(a) (b) (¢) (d)
K K K K
L / t \/ I3 L/ I3 V 13
(o) f) (9 (h)

Figure 7-22 Question 10.

11 In three situations, a single force acts on a moving particle.
Here are the velocities (at that instant) and the forces:
(1) V=(-4)ms, F=(6i—-20)N; (2) v=(2—3j)mis,
F=(-2+7k)N; 3) vV = (=31 +j)m/s, F = (21 + 6)) N. Rank
the situations according to the rate at which energy is being trans-
ferred, greatest transfer to the particle ranked first, greatest trans-
fer from the particle ranked last.

12 Figure 7-23 shows three arrangements of a block attached to
identical springs that are in their relaxed state when the block is
centered as shown. Rank the arrangements according to the mag-
nitude of the net force on the block, largest first, when the block is
displaced by distance d (a) to the right and (b) to the left. Rank the
arrangements according to the work done on the block by the
spring forces, greatest first, when the block is displaced by d (c) to
the right and (d) to the left.

Figure 7-23 Question 12.

@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

. . http://www.wiley.com/college/halliday
Interactive solution is at

'& Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 7-1

*1 ssM A proton (mass m = 1.67 X 107" kg) is being acceler-
ated along a straight line at 3.6 X 10'> m/s? in a machine. If the pro-
ton has an initial speed of 2.4 X 107 m/s and travels 3.5 cm, what
then is (a) its speed and (b) the increase in its kinetic energy?

Kinetic Energy

°2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 X 10° kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

*3 &= On August 10, 1972, a large meteorite skipped across the
atmosphere above the western United States and western Canada,



much like a stone skipped across water. The accompanying fireball
was so bright that it could be seen in the daytime sky and was
brighter than the usual meteorite trail. The meteorite’s mass was
about 4 X 10° kg; its speed was about 15 km/s. Had it entered the
atmosphere vertically, it would have hit Earth’s surface with about
the same speed. (a) Calculate the meteorite’s loss of kinetic energy
(in joules) that would have been associated with the vertical impact.
(b) Express the energy as a multiple of the explosive energy of
1 megaton of TNT, which is 4.2 X 10% J. (c) The energy associated
with the atomic bomb explosion over Hiroshima was equivalent to
13 kilotons of TNT. To how many Hiroshima bombs would the me-
teorite impact have been equivalent?

*4 %G An explosion at ground level leaves a crater with a diam-
eter that is proportional to the energy of the explosion raised to
the % power; an explosion of 1 megaton of TNT leaves a crater
with a 1 km diameter. Below Lake Huron in Michigan there ap-
pears to be an ancient impact crater with a 50 km diameter. What
was the kinetic energy associated with that impact, in terms of
(a) megatons of TNT (1 megaton yields 4.2 X 10°J) and
(b) Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly
altered the climate, killing off the dinosaurs and other life-forms.)

*5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father. The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son. What are the origi-
nal speeds of (a) the father and (b) the son?

*6 A bead with mass 1.8 X 1072 kg is moving along a wire in
the positive direction of an x axis. Beginning at time ¢ = 0, when
the bead passes through x = 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-24 indicates the bead’s position at
these four times: t, = 0,7 =1.0 s, =2.0 s, and t; = 3.0s. The
bead momentarily stops at ¢t = 3.0 s. What is the kinetic energy of
the bead att = 10 s?

l !
J'[OI IR N |1|\£ [
0 5 10
x (m)

Figure 7-24 Problem 6.
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Module 7-2 Work and Kinetic Energy

*7 A 3.0kg body is at rest on a frictionless horizontal air track
when a constant horizontal force F acting in the positive direction of
an x axis along the track is applied to the body. A stroboscopic graph
of the position of the body as it slides to the right is shown in Fig. 7-
25.The force F is applied to the body at ¢ = 0, and the graph records
the position of the body at 0.50 s intervals. How much work is done
on the body by the applied force F betweent = 0and ¢ = 2.0s?

t=0_~05s 1.0s 1.5s 2.0s
J[ J./l [ T N I L
0 0.2 0.4 0.6 0.8
x (m)

Figure 7-25 Problem 7.

*8 A ice block floating in a river is pushed through a displacement
d = (15m)i — (12 m)j along a straight embankment by rushing wa-
ter, which exerts a force F = (210 N)i — (150 N);j on the block. How
much work does the force do on the block during the displacement?

*9  The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N. The canister initially has a veloc-
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ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

*10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.0 N and is directed at a counterclockwise angle of 100°
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

11 A 12.0 N force with a fixed orientation does work on a
particle as the particle moves through the three-dimensional dis-
placement d = (2.00i — 4.00] + 3.00k) m. What is the angle be-
tween the force and the displacement if the change in the particle’s
kinetic energy is (a) +30.0 J and (b) —30.0J?

12 A can of bolts and nuts is W,
pushed 2.00 m along an x axis by a
broom along the greasy (friction-
less) floor of a car repair shop in a
version of shuffleboard. Figure 7-26
gives the work W done on the can
by the constant horizontal force
from the broom, versus the can’s po- 0 1 2
sition x. The scale of the figure’s ver- x (m)

tical axis is set by W, = 6.0 J. (a) Figure 7-26 Problem 12.
What is the magnitude of that

force? (b) If the can had an initial kinetic energy of 3.00 J, moving
in the positive direction of the x axis, what is its kinetic energy at
the end of the 2.00 m?

*13 A luge and its rider, with a total mass of 85 kg, emerge from a
downbhill track onto a horizontal straight track with an initial speed
of 37 m/s. If a force slows them to a stop at a constant rate of 2.0
m/s?, (a) what magnitude F is required for the force, (b) what dis-
tance d do they travel while slowing, and (c) what work W is done
on them by the force? What are (d) F, (e) d, and (f) W if they, in-
stead, slow at 4.0 m/s2?

14 @ Figure 7-27 shows an over-
head view of three horizontal forces
acting on a cargo canister that was
initially stationary but now moves
across a frictionless floor. The force
magnitudes are F; =3.00N, F, =
4.00 N, and F; = 10.0 N, and the indi-
cated angles are 6, = 50.0° and 6; =
35.0°. What is the net work done on
the canister by the three forces dur-
ing the first 4.00 m of displacement?

15 @ Figure 7-28 shows three
forces applied to a trunk that moves
leftward by 3.00 m over a friction- -

W)

less floor. The force magnitudes are B /
L AN I R

F;=500N, F,=9.00N, and F;= I

3.00 N, and the indicated angle is § =

60.0°. During the displacement, -

(a) what is the net work done on the I

trunk by the three forces and (b)
does the kinetic energy of the trunk
increase or decrease?

Figure 7-28 Problem 15.

16 @ An 8.0 kg object is moving in the positive direction
of an x axis. When it passes through x = 0, a constant force directed
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along the axis begins to act on it.
Figure 7-29 gives its kinetic energy
K versus position x as it moves g,
from x = 0 tox = 5.0 m; K, = 30.0
J. The force continues to act. What
is v when the object moves back
throughx = —3.0 m?

Module 7-3 Work Done by
the Gravitational Force

°17 ssm  www A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

*18 &&= (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about } of the car’s weight) by
5.0 cm, how much work did her force do on the car?

19 @ In Fig. 7-30, a block of ice
slides down a frictionless ramp at angle
0 = 50° while an ice worker pulls on
the block (via a rope) with a force F,
that has a magnitude of 50 N and is di-
rected up the ramp. As the block slides
through distance d = 0.50 m along the
ramp, its kinetic energy increases by 80
J. How much greater would its kinetic
energy have been if the rope had not
been attached to the block?

K@)

0 5

Figure 7-29 Problem 16.

F.

Figure 7-30 Problem 19.

*20 A block is sent up a frictionless K
ramp along which an x axis extends up-
ward. Figure 7-31 gives the kinetic en-
ergy of the block as a function of posi-
tion x; the scale of the figure’s vertical
axis is set by K, = 40.0 J. If the block’s
initial speed is 4.00 m/s, what is the nor-
mal force on the block?

K (I

0 1 2
x (m)

. . Figure 7-31 Problem 20.
*21 ssMm A cord is used to vertically
lower an initially stationary block of
mass M at a constant downward acceleration of g/4. When the block
has fallen a distance d, find (a) the work done by the cord’s force on
the block, (b) the work done by the gravitational force on the block,
(c) the kinetic energy of the block, and (d) the speed of the block.

*22 A cave rescue team lifts an injured spelunker directly upward
and out of a sinkhole by means of a motor-driven cable. The lift is
performed in three stages, each requiring a vertical distance of 10.0
m: (a) the initially stationary spelunker is accelerated to a speed of
5.00 m/s; (b) he is then lifted at the con-
stant speed of 5.00 m/s; (c) finally he is
decelerated to zero speed. How much
work is done on the 80.0 kg rescuee by
the force lifting him during each stage?

[

I |
*23 InFig 7-32,a constant force F, of !
magnitude 82.0 N is applied to a 3.00 !

kg shoe box at angle ¢ = 53.0°, causing  Figure 7-32 Problem 23.
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the box to move up a frictionless ramp at constant speed. How
much work is done on the box by F, when the box has moved

through vertical distance & = 0.150 m?

24 @ In Fig. 7-33, a horizontal force /
F, of magnitude 20.0 N is applied to a Py

3.00 kg psychology book as the book /
slides a distance d = 0.500 m up a fric-

tionless ramp at angle 6= 30.0°. (a)

During the displacement, wllat is the net > T
work done on the book by F,, the gravi- 0

tational force on the book, and the nor-

mal force on the book? (b) If the book Figure 7-33 Problem 24.

has zero kinetic energy at the start of the
displacement, what is its speed at the end of the displacement?

225 @ In Fig.7-34,a0.250 kg block of cheese lies on
the floor of a 900 kg elevator cab that is being pulled
upward by a cable through distance d; = 2.40 m and
then through distance d, = 10.5 m. (a) Through d, if
the normal force on the block from the floor has con-
stant magnitude Fyy = 3.00 N, how much work is done =
on the cab by the force from the cable? (b) Through d,,
if the work done on the cab by the (constant) force
from the cable is 92.61 kJ, what is the magnitude of F?

Figure 7-34
Problem 25.

Module 7-4 Work Done by a Spring Force

°26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the
block stationary at x = —2.0 cm. From that position, we then slowly
move the block so that our force does +4.0J of work on the
spring—block system; the block is then again stationary. What is the
block’s position? (Hint: There are two answers.)

°27 A spring and block are in the arrangement of Fig. 7-10. When the
block is pulled out to x = +4.0 cm, we must apply a force of magnitude
360 N to hold it there. We pull the block to x = 11 cm and then release
it. How much work does the spring do on the block as the block
moves from x; = +5.0cm to (a) x = +3.0 cm, (b) x = =3.0 cm,
(¢)x = =5.0cm,and (d) x = —9.0 cm?

°28 During spring semester at MIT, residents of the parallel build-
ings of the East Campus dorms battle one another with large cata-
pults that are made with surgical hose mounted on a window frame.
A balloon filled with dyed water is placed in a pouch attached to the
hose, which is then stretched through the width of the room. Assume
that the stretching of the hose obeys Hooke’s law with a spring con-
stant of 100 N/m. If the hose is stretched by 5.00 m and then released,
how much work does the force from the hose do on the balloon in
the pouch by the time the hose reaches its relaxed length?

*29 In the arrangement of Fig. 7-10, we gradually pull the block
from x = 0 to x = +3.0 cm, where it is stationary. Figure 7-35 gives

W.—

s

wQ)

Figure 7-35 Problem 29.

x (cm)



the work that our force does on the block. The scale of the figure’s
vertical axis is set by W, = 1.0 J. We then pull the block out to x =
+5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from x; = +5.0 cm to
(a) x = +4.0 cm, (b) x = —2.0 cm,and (c) x = —5.0 cm?

*30 In Fig. 7-10a, a block of mass K,
m lies on a horizontal frictionless ~
surface and is attached to one end
of a horizontal spring (spring con- 0
stant k) whose other end is fixed. 0 05 1 15 2
The block is initially at rest at the x (m)

position where the spring is Figure 7-36 Problem 30.
unstretched (x =0) when a con-

stant horizontal force F in the positive direction of the x axis is ap-
plied to it. A plot of the resulting kinetic energy of the block versus
its position x is shown in Fig. 7-36. The scale of the figure’s vertical
axis is set by K, = 4.0 J. (a) What is the magnitude of F? (b) What
is the value of k?

31 ssm www The only force acting on a 2.0 kg body as it
moves along a positive x axis has an x component F, = —6x N,
with x in meters. The velocity at x = 3.0 m is 8.0 m/s. (a) What is the
velocity of the body at x = 4.0 m? (b) At what positive value of x
will the body have a velocity of 5.0 m/s?

*32 Figure 7-37 gives spring force
F, versus position x for the
spring—block arrangement of Fig. 7-
10. The scale is set by F; = 160.0 N.
We release the block at x = 12 cm.
How much work does the spring do
on the block when the block moves _F
from x; = +8.0cm to (a) x = +5.0
cm, (b) x = =5.0cm, (c) x = —8.0
cm,and (d) x = —10.0 cm?

*e33 (@ The block in Fig. 7-10a lies on a horizontal frictionless
surface, and the spring constant is 50 N/m. Initially, the spring is at
its relaxed length and the block is stationary at position x = 0.
Then an applied force with a constant magnitude of 3.0 N pulls the
block in the positive direction of the x axis, stretching the spring
until the block stops. When that stopping point is reached, what are
(a) the position of the block, (b) the work that has been done on
the block by the applied force, and (c) the work that has been done
on the block by the spring force? During the block’s displacement,
what are (d) the block’s position when its kinetic energy is maxi-
mum and (e) the value of that maximum kinetic energy?

Figure 7-37 Problem 32.

Module 7-5 Work Done by a General Variable Force

*34 LW A 10 kg brick moves along an x axis. Its acceleration as a
function of its position is shown in Fig. 7-38. The scale of the figure’s
vertical axis is set by a, = 20.0 m/s%. What is the net work per-
formed on the brick by the force causing the acceleration as the
brick moves fromx = 0 tox = 8.0 m?

A

a (m/s%)

00 2 4 6 3
x (m)

Figure 7-38 Problem 34.
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*35 ssm  www The force on a particle is directed along an x axis
and given by F = Fy(x/xy — 1). Find the work done by the force in
moving the particle from x = 0 to x = 2x, by (a) plotting F(x) and
measuring the work from the graph and (b) integrating F(x).

*36 @ A 5.0kg block moves in a
straight line on a horizontal friction- P
less surface under the influence of a ’

force that varies with position as \
shown in Fig. 7-39. The scale of the fig- 0 2 4
ure’s vertical axis is set by F; = 10.0 N.

How much work is done by the force I
as the block moves from the origin
tox = 8.0m?

«37 @ Figure 7-40 gives the accel- -
eration of a 2.00 kg particle as an applied force F, moves it from rest

Force (N)

N

Position (m)

Figure 7-39 Problem 36.

along an x axis from x = 0 tox = 9.0 m. The scale of the figure’s verti-
cal axis is set by a, = 6.0 m/s>. How much work has the force done on
the particle when the particle reaches (a) x =4.0m, (b) x = 7.0 m,
and (c) x = 9.0 m? What is the particle’s speed and direction of travel
when it reaches (d) x = 4.0 m,(e) x = 7.0 m,and (f) x = 9.0 m?

g

a (m/s?)

Figure 7-40 Problem 37.

*38 A 1.5kg block is initially at rest on a horizontal frictionless
surface when a horizontal force along an x axis is applied to the block.
The force is given by F(x) = (2.5 — x?)i N, where x is in meters and
the initial position of the block isx = 0.(a) What is the kinetic energy
of the block as it passes through x = 2.0 m? (b) What is the maximum
kinetic energy of the block between x = 0 and x = 2.0 m?

«39 @ A force F = (cx — 3.00x?)i acts on a particle as the parti-
cle moves along an x axis, with Fin newtons, x in meters, and ¢ a
constant. At x = 0, the particle’s kinetic energy is 20.0 J;at x = 3.00 m,
itis 11.0 J. Find c.

*40 A can of sardines is made to move along an x axis from
x=025m to x=125m by a force with a magnitude given by
F = exp(—4x?), with x in meters and F in newtons. (Here exp is the ex-
ponential function.) How much work is done on the can by the force?

*41 A single force acts on a 3.0 kg particle-like object whose posi-
tion is given by x = 3.0r — 4.02 + 1.0#, with x in meters and ¢ in
seconds. Find the work done by the force from¢=0tot = 4.0s.

eee42 (@ Figure 7-41 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left

T

T
h
12

Figure 7-41 Problem 42.
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end of the cord is pulled over a pulley, of negligible mass and friction
and at cord height 2 = 1.20 m, so the cart slides from x; = 3.00 m to
X, = 1.00 m. During the move, the tension in the cord is a constant
25.0 N. What is the change in the kinetic energy of the cart during
the move?

Module 7-6 Power

°43 ssMm A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

*44 A skier is pulled by a towrope up a frictionless ski slope
that makes an angle of 12° with the horizontal. The rope moves
parallel to the slope with a constant speed of 1.0 m/s. The force
of the rope does 900 J of work on the skier as the skier moves a
distance of 8.0 m up the incline. (a) If the rope moved with a
constant speed of 2.0 m/s, how much work would the force of the
rope do on the skier as the skier moved a distance of 8.0 m up
the incline? At what rate is the force of the rope doing work on
the skier when the rope moves with a speed of (b) 1.0 m/s and
(c) 2.0 m/s?

°45 ssm 1LW A 100 kg block is pulled at a constant speed of
5.0 m/s across a horizontal floor by an applied force of 122 N di-
rected 37° above the horizontal. What is the rate at which the force
does work on the block?

*46 The loaded cab of an elevator has a mass of 3.0 X 10° kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

*e47 A machine carries a 4.0 kg package from an initial position
of d; = (0.50 m)i + (0.75 m)j + (0.20 m)k at = 0 to a final posi-
tion of ﬁf = (7.50 m)i + (120 m)j + (720 m)k at r = 12s. The
constant force applied by the machine on the package is
F = (200N)i + (4.00N)j + (6.00 N)k. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

*48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k = 500 N/m) whose
other end is fixed. The ladle has a kinetic energy of 107 as it
passes through its equilibrium position (the point at which the
spring force is zero). (a) At what rate is the spring doing work on
the ladle as the ladle passes through its equilibrium position?
(b) At what rate is the spring doing work on the ladle when the
spring is compressed 0.10 m and the ladle is moving away from the
equilibrium position?

*49 ssm A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward
54 m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

*50 (a) At a certain instant, a particle-like object is acted on by a
force F = (4.0N)i — (20 N)j + (9.0 N)k while the object’s veloc-
ityis v = —(2.0m/s)i + (4.0 m/s)k. What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is —12 W, what is the veloc-
ity of the object?

«51 A force F = (3.00N)i + (7.00N)j + (7.00N)k acts on a
2.00 kg mobile object that moves from an initial position of
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d, = (3.00m)i — (2.00m)j + (5.00m)k to a final position of
dy= —(5.00m)i + (4.00m)j + (7.00 m)k in 4.00s. Find (a) the
work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors 21- and Zi}.

*=e52 A funny car accelerates from rest through a measured track
distance in time 7" with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems

53 Figure 7-42 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d = 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F; = 5.00 N and F, = 1.00 N; the third is
angled down by 6 = 60.0° and has the magnitude F; = 4.00 N.
(a) For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

| d |
Iy Hot Dogs B
Vo
7
Figure 7-42 Problem 53.
54 @ The only force acting on a F, (N)
2.0 kg body as the body moves along £
an x axis varies as shown in Fig. 7-43. 1 2 3 4 5

The scale of the figure’s vertical axis 0
is set by F; = 4.0 N. The velocity of

the body at x = 0is 4.0 m/s. (a) What ~&
is the kinetic energy of the body at

x = 3.0m? (b) At what value of x will

the body have a kinetic energy of
8.0J? (c) What is the maximum kinetic energy of the body between
x=0andx =5.0m?

55 ssm A horse pulls a cart with a force of 40 1b at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

Figure 7-43 Problem 54.

56 An initially stationary 2.0 kg object accelerates horizontally and
uniformly to a speed of 10 m/s in 3.0s. (a) In that 3.0 s interval, how
much work is done on the object by the

force accelerating it? What is the instan- T §
taneous power due to that force (b) at AN
the end of the interval and (c) at the end N\
of the first half of the interval? A\

57 A 230 kg crate hangs from the end
of a rope of length L = 12.0 m. You push AN
horizontally on the crate with a 3\
varying force F to move it distance d =

—_—
4.00 m to the side (Fig. 7-44). (a) What is _L@—D .

the magnitude of F when the crate is r

in this final position? During the crate’s b—d—

displacement, what are (b) the total  Figure 7-44 Problem 57.



work done on it, (¢) the work done by the gravitational force on the
crate, and (d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displace-
ment, use the answers to (b), (c), and (d) to find the work your force
F does on the crate. (f) Why is the work of your force not equal to
the product of the horizontal displacement and the answer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a
worker applies a force of 210 N, directed 20° above the horizontal.
As the crate moves 3.0 m, what work is done on the crate by (a) the
worker’s force, (b) the gravitational force, and (c) the normal force?
(d) What is the total work?

59 A force Fa is applied to a bead as
the bead is moved along a straight wire
through displacement +5.0 cm. The mag- =
nitude of F, is set at a certain value, but
the angle ¢ between Fa and the bead’s

Wo

displacement can be chosen. Figure 7-45 0

gives the work W done by F, on the ¢
bead for a range of ¢ values; W, =251J. Figure 7-45
How much work is done by F, if ¢ is (a) Problem 59.

64° and (b) 147°?

60 A frightened child is restrained by her mother as the child slides
down a frictionless playground slide. If the force on the child from the
mother is 100 N up the slide, the child’s kinetic energy increases by 30 J
as she moves down the slide a distance of 1.8 m. (a) How much work is
done on the child by the gravitational force during the 1.8 m descent?
(b) If the child is not restrained by her mother, how much will the
child’s kinetic energy increase as she comes down the slide that same
distance of 1.8 m?

61 How much work is done by a force F = (2x N)i + (3 N)],
with x in meters, that moves a particle from a position 7=
(2m)i + (3 m)j to aposition 7y = —(4m)1 — (3 m))?

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k =
2.5 N/em (Fig. 7-46). The block becomes attached to
the spring and compresses the spring 12 cm before
momentarily stopping. While the spring is being
compressed, what work is done on the block by
(a) the gravitational force on it and (b) the spring
force? (c) What is the speed of the block just before
it hits the spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is doubled, what is
the maximum compression of the spring?
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Figure 7-46
Problem 62.
63 ssm To push a 25.0 kg crate up a frictionless
incline, angled at 25.0° to the horizontal, a worker exerts a force of
209 N parallel to the incline. As the crate slides 1.50 m, how much
work is done on the crate by (a) the worker’s applied force, (b) the
gravitational force on the crate, and (c) the normal force exerted
by the incline on the crate? (d) What is the total work done on the
crate?

64 Boxes are transported from one location to another in a ware-
house by means of a conveyor belt that moves with a constant
speed of 0.50 m/s. At a certain location the conveyor belt moves for
2.0 m up an incline that makes an angle of 10° with the horizontal,
then for 2.0 m horizontally, and finally for 2.0 m down an incline
that makes an angle of 10° with the horizontal. Assume that a 2.0 kg
box rides on the belt without slipping. At what rate is the force of
the conveyor belt doing work on the box as the box moves (a) up
the 10° incline, (b) horizontally, and (c) down the 10° incline?

PROBLEMS 175

65 In Fig. 7-47, a cord runs around
two massless, frictionless pulleys. A
canister with mass m = 20 kg hangs
from one pulley, and you exert a
force F on the free end of the cord.
(a) What must be the magnitude of F
if you are to lift the canister at a con-
stant speed? (b) To lift the canister & f;\\
by 2.0 cm, how far must you pull the
free end of the cord? During that lift, g T
what is the work done on the canister _
-
Figure 7-47 Problem 65.

by (c) your force (via the cord) and
(d) the gravitational force? (Hint:
When a cord loops around a pulley
as shown, it pulls on the pulley with a
net force that is twice the tension in the cord.)

66 If a car of mass 1200 kg is moving along a highway at
120 km/h, what is the car’s kinetic energy as determined by some-
one standing alongside the highway?

67 ssm A spring with a pointer attached is hanging next to a
scale marked in millimeters. Three different packages are hung
from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on
the scale will the pointer indicate when no package is hung from
the spring? (b) What is the weight W of the third package?

S
S
S

Qo
=}

IS
==

\‘\‘\‘\‘\‘\E

2
=

3
ENRNRNRRRRRN NN
3
TS

110 N 7

240 N
Figure 7-48 Problem 67.

68 Aniceboatis at rest on a frictionless frozen lake when a sud-
den wind exerts a constant force of 200 N, toward the east, on the
boat. Due to the angle of the sail, the wind causes the boat to
slide in a straight line for a distance of 8.0 m in a direction 20°
north of east. What is the kinetic energy of the iceboat at the end
of that 8.0 m?

69 If a ski lift raises 100 passengers averaging 660 N in weight to
a height of 150 m in 60.0 s, at constant speed, what average power
is required of the force making the lift?

70 A force F = (4.0N)i + ¢ acts on a particle as the particle
goes through displacement d = (3.0 m)i — (2.0 m)]. (Other forces
also act on the particle.) What is ¢ if the work done on the particle
by force F is (a) 0, (b) 17 J,and (c) —18 J?

71 A constant force of magnitude 10 N makes an angle of 150°
(measured counterclockwise) with the positive x direction as it acts
on a 2.0 kg object moving in an xy plane. How much work is done
on the object by the force as the object moves from the origin to
the point having position vector (2.0 m)i — (4.0 m);?
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72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a
downward angle 6 as the block moves rightward through 1.0 m
across a frictionless floor. Find an expression for the speed v, of the
block at the end of that distance if the block’s initial velocity is
(a) 0 and (b) 1.0 m/s to the right. (c) The situation in Fig. 7-49b is
similar in that the block is initially moving at 1.0 m/s to the right,
but now the 2.0 N force is directed downward to the left. Find an
expression for the speed v, of the block at the end of the 1.0 m dis-
tance. (d) Graph all three expressions for v, versus downward
angle @ for 6 = 0° to # = 90°. Interpret the graphs.

<L oA
F F

(a) ()
Figure 7-49 Problem 72.

73 A force F in the positive direction of an x axis acts on an object
moving along the axis. If the magnitude of the force is F = 10e 20
N, with x in meters, find the work done by F as the object moves
from x = 0 to x = 2.0 m by (a) plotting F(x) and estimating the area
under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement
d = (8 m)i + ¢] while force F = (2 N)i — (4 N)j acts on it. (Other
forces also act on the particle.) What is the value of ¢ if the work
done by F on the particle is (a) zero, (b) positive, and (c) negative?

75 ssm What is the power of the force required to move a 4500
kg elevator cab with a load of 1800 kg upward at constant speed
3.80 m/s?

76 A 45 kg block of ice slides down a frictionless incline 1.5 m
long and 0.91 m high. A worker pushes up against the ice, parallel
to the incline, so that the block slides down at constant speed.
(a) Find the magnitude of the worker’s force. How much work is
done on the block by (b) the worker’s force, (c) the gravitational
force on the block, (d) the normal force on the block from the sur-
face of the incline, and (e) the net force on the block?

77 As aparticle moves along an x axis, a force in the positive direc-
tion of the axis acts on it. Figure 7-50 shows the magnitude F of the
force versus position x of the particle. The curve is given by F = a/x?,
with a = 9.0 N-m?. Find the work done on the particle by the force
as the particle moves from x = 1.0 m to x = 3.0 m by (a) estimating
the work from the graph and (b) integrating the force function.
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Figure 7-50 Problem 77.

78 A CD case slides along a floor in the positive direction of an
x axis while an applied force F, acts on the case. The force is di-
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rected along the x axis and has the x component F,, = 9x — 3x?,
with x in meters and F,, in newtons. The case starts at rest at the
position x = 0, and it moves until it is again at rest. (a) Plot the
work F, does on the case as a function of x. (b) At what position is
the work maximum, and (c) what is that maximum value? (d) At
what position has the work decreased to zero? (e) At what position
is the case again at rest?

79 ssm A 2.0kg lunchbox is sent sliding over a frictionless
surface, in the positive direction of an x axis along the surface.
Beginning at time ¢ = 0, a steady wind pushes on the lunchbox in the
negative direction of the x axis. Figure 7-51 shows the position x of
the lunchbox as a function of time ¢ as the wind pushes on the lunch-
box. From the graph, estimate the kinetic energy of the lunchbox at
(a) t=1.0s and (b) = 5.0s. (c) How much work does the force
from the wind do on the lunchbox from¢ = 1.0stot = 5.0 s?

1 2 3 4 b 6 7 8
t(s)
Figure 7-51 Problem 79.

80 Numerical integration. A breadbox is made to move along an
x axis from x = 0.15 m to x = 1.20 m by a force with a magnitude
given by F = exp(—2x?), with x in meters and F in newtons. (Here
exp is the exponential function.) How much work is done on the
breadbox by the force?

81 In the block—spring arrangement of Fig. 7-10, the block’s mass
is 4.00 kg and the spring constant is 500 N/m. The block is released
from position x; = 0.300 m. What are (a) the block’s speed at x = 0,
(b) the work done by the spring when the block reaches x = 0, (c)
the instantaneous power due to the spring at the release point x;,
(d) the instantaneous power at x = 0, and (e) the block’s position
when the power is maximum?

82 A 4.00 kg block is pulled up a frictionless inclined plane by a
50.0 N force that is parallel to the plane, starting from rest. The nor-
mal force on the block from the plane has magnitude 13.41 N. What
is the block’s speed when its displacement up the ramp is 3.00 m?

83 A spring with a spring constant of 18.0 N/cm has a cage at-
tached to its free end. (a) How much work does the spring force do
on the cage when the spring is stretched from its relaxed length by
7.60 mm? (b) How much additional work is done by the spring force
when the spring is stretched by an additional 7.60 mm?

84 A force F = (2.001 +9.00] + 5.30k) N acts on a 2.90 kg
object that moves in time interval 2.10 s from an initial posi-
tion 7, = (2.701 — 2.90] + 5.50k) m to a final position 7, =

(—4.10i + 3.30] + 5.40k) m. Find (a) the work done on the object
by the force in that time interval, (b) the average power due to the
force during that time interval, and (c) the angle between vectors
7iand 7,.

85 Att=0,force F = (—5.00i + 5.00] + 4.00k) N begins to act
on a 2.00 kg particle with an initial speed of 4.00 m/s. What is the

particle’s speed when its displacement from the initial point is
d = (2.001 + 2.00; + 7.00k) m?
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Potential Energy and

Conservation of Energy

8-1 POTENTIAL ENERGY

Learning Objectives

After reading this module, you should be able to . ..

8.01 Distinguish a conservative force from a nonconservative
force.

8.02 For a particle moving between two points, identify that
the work done by a conservative force does not depend on
which path the particle takes.

Key Ideas

@ A force is a conservative force if the net work it does on

a particle moving around any closed path, from an initial
point and then back to that point, is zero. Equivalently, a force
is conservative if the net work it does on a particle moving
between two points does not depend on the path taken by
the particle. The gravitational force and the spring force are
conservative forces; the kinetic frictional force is a noncon-
servative force.

@ Potential energy is energy that is associated with the con-
figuration of a system in which a conservative force acts.
When the conservative force does work W on a particle
within the system, the change AU in the potential energy of
the system is

AU = —-W.

If the particle moves from point x; to point x;; the change in
the potential energy of the system is

X1
AU = —f F(x) dx.

What Is Physics?

8.03 Calculate the gravitational potential energy of a particle
(or, more properly, a particle—Earth system).

8.04 Calculate the elastic potential energy of a block—spring
system.

@ The potential energy associated with a system consisting of
Earth and a nearby particle is gravitational potential energy. If
the particle moves from height y; to height y;, the change in the
gravitational potential energy of the particle—Earth system is

AU = mg(y;— y;) = mg Ay.

@ If the reference point of the particle is set as y; = 0 and the
corresponding gravitational potential energy of the system is
set as U; = 0, then the gravitational potential energy U when
the particle is at any height y is

U(y) = mgy.

@ Elastic potential energy is the energy associated with the
state of compression or extension of an elastic object. For a
spring that exerts a spring force F = —kx when its free end
has displacement x, the elastic potential energy is

U(x) = Tkx?.

@ The reference configuration has the spring at its relaxed
length, at whichx = 0 and U = 0.

One job of physics is to identify the different types of energy in the world,
especially those that are of common importance. One general type of energy is
potential energy U. Technically, potential energy is energy that can be associated
with the configuration (arrangement) of a system of objects that exert forces on

one another.
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Rough Guides/Greg Roden/Getty Images, Inc.

Figure 8-1 The kinetic energy of a bungee-
cord jumper increases during the free fall,
and then the cord begins to stretch, slow-
ing the jumper.

This is a pretty formal definition of something that is actually familiar to you.
An example might help better than the definition: A bungee-cord jumper plunges
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the
jumper. The force between the objects is the gravitational force. The configuration
of the system changes (the separation between the jumper and Earth decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion
and increase in kinetic energy by defining a gravitational potential energy U. This
is the energy associated with the state of separation between two objects that at-
tract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the
plunge, the system of objects consists of the cord and the jumper. The force
between the objects is an elastic (spring-like) force. The configuration of the sys-
tem changes (the cord stretches). We can account for the jumper’s decrease in
kinetic energy and the cord’s increase in length by defining an elastic potential
energy U.This is the energy associated with the state of compression or extension
of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so
that energy might be stored or put to use. For example, before any particular
bungee-cord jumper takes the plunge, someone (probably a mechanical engi-
neer) must determine the correct cord to be used by calculating the gravitational
and elastic potential energies that can be expected. Then the jump is only thrilling
and not fatal.

Work and Potential Energy

In Chapter 7 we discussed the relation between work and a change in kinetic energy.
Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2). We already know that as the tomato
rises, the work W, done on the tomato by the gravitational force is negative
because the force transfers energy from the kinetic energy of the tomato. We can
now finish the story by saying that this energy is transferred by the gravitational
force to the gravitational potential energy of the tomato—Earth system.

The tomato slows, stops, and then begins to fall back down because of the
gravitational force. During the fall, the transfer is reversed: The work W, done on
the tomato by the gravitational force is now positive—that force transfers energy
from the gravitational potential energy of the tomato—Earth system fo the
kinetic energy of the tomato.

For either rise or fall, the change AU in gravitational potential energy is
defined as being equal to the negative of the work done on the tomato by the
gravitational force. Using the general symbol W for work, we write this as

AU = —W. (8-1)
Negative Positive
work done work done
by the by the
gravitational gravitational
force force

Figure 8-2 A tomato is thrown upward. As it rises, the ‘
gravitational force does negative work on it, decreasing ¢

its kinetic energy. As the tomato descends, the
gravitational force does positive work on it, increasing
its kinetic energy.



This equation also applies to a block—spring system, as in Fig. 8-3. If we
abruptly shove the block to send it moving rightward, the spring force acts leftward
and thus does negative work on the block, transferring energy from the kinetic
energy of the block to the elastic potential energy of the spring—block system. The
block slows and eventually stops, and then begins to move leftward because the
spring force is still leftward. The transfer of energy is then reversed —it is from
potential energy of the spring—block system to kinetic energy of the block.

Conservative and Nonconservative Forces
Let us list the key elements of the two situations we just discussed:

1. The system consists of two or more objects.

2. A force acts between a particle-like object (tomato or block) in the system and
the rest of the system.

3. When the system configuration changes, the force does work (call it W;) on
the particle-like object, transferring energy between the kinetic energy K of
the object and some other type of energy of the system.

4. When the configuration change is reversed, the force reverses the energy
transfer, doing work W, in the process.

In a situation in which W, = —W, is always true, the other type of energy is
a potential energy and the force is said to be a conservative force. As you might
suspect, the gravitational force and the spring force are both conservative (since
otherwise we could not have spoken of gravitational potential energy and elastic
potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic
frictional force and drag force are nonconservative. For an example, let us send
a block sliding across a floor that is not frictionless. During the sliding, a kinetic
frictional force from the floor slows the block by transferring energy from its
kinetic energy to a type of energy called thermal energy (which has to do with the
random motions of atoms and molecules). We know from experiment that this
energy transfer cannot be reversed (thermal energy cannot be transferred back
to kinetic energy of the block by the kinetic frictional force). Thus, although we
have a system (made up of the block and the floor), a force that acts between
parts of the system, and a transfer of energy by the force, the force is not conser-
vative. Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly
simplify otherwise difficult problems involving motion of the object. Let’s next
develop a test for identifying conservative forces, which will provide one means
for simplifying such problems.

Path Independence of Conservative Forces

The primary test for determining whether a force is conservative or nonconserva-
tive is this: Let the force act on a particle that moves along any closed path, begin-
ning at some initial position and eventually returning to that position (so that the
particle makes a round trip beginning and ending at the initial position). The
force is conservative only if the total energy it transfers to and from the particle
during the round trip along this and any other closed path is zero. In other words:

A Y

"' The net work done by a conservative force on a particle moving around any
closed path is zero.

We know from experiment that the gravitational force passes this closed-
path test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the
launch point with speed v, and kinetic energy %mv% The gravitational force acting
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Figure 8-3 A block, attached to a spring and
initially at rest at x = 0, is set in motion
toward the right. (a) As the block moves
rightward (as indicated by the arrow), the
spring force does negative work on it.
(b) Then, as the block moves back toward
x = 0, the spring force does positive work
on it.
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1 ,  Theforceis
conservative. Any
choice of path

“ 2 Dbetween the points
(@ gives the same
amount of work.

1 b
And a round trip
a 9 gives a total work
of zero.
()

Figure 8-4 (a) As a conservative force acts
on it, a particle can move from point a to
point b along either path 1 or path 2.

(b) The particle moves in a round trip,
from point a to point b along path 1 and
then back to point a along path 2.

on the tomato slows it, stops it, and then causes it to fall back down. When the
tomato returns to the launch point, it again has speed v, and kinetic energy
Imv3. Thus, the gravitational force transfers as much energy from the tomato dur-
ing the ascent as it transfers fo the tomato during the descent back to the launch
point. The net work done on the tomato by the gravitational force during the
round trip is zero.

An important result of the closed-path test is that:

A Y

"' The work done by a conservative force on a particle moving between two points
does not depend on the path taken by the particle.

For example, suppose that a particle moves from point a to point b in Fig. 8-4a
along either path 1 or path 2. If only a conservative force acts on the particle, then
the work done on the particle is the same along the two paths. In symbols, we can
write this result as

Wi = Wapo, (8-2)

where the subscript ab indicates the initial and final points, respectively, and the
subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems
when only a conservative force is involved. Suppose you need to calculate the
work done by a conservative force along a given path between two points, and
the calculation is difficult or even impossible without additional information.
You can find the work by substituting some other path between those two points
for which the calculation is easier and possible.

Proof of Equation 8-2

Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single
force. The particle moves from an initial point @ to point b along path 1 and then
back to point a along path 2. The force does work on the particle as the particle
moves along each path. Without worrying about where positive work is done and
where negative work is done, let us just represent the work done from a to b along
path 1 as W,,; and the work done from b back to a along path 2 as W, ,. If the force
is conservative, then the net work done during the round trip must be zero:

Wab,l + Wba,Z = 0,
and thus
Wap1 = = Whpao. (8-3)
In words, the work done along the outward path must be the negative of the work
done along the path back.
Let us now consider the work W,,, done on the particle by the force when

the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is
conservative, that work is the negative of W, ,:

Waio = = Wiao. (8-4)
Substituting W, , for —W,,,, in Eq. 8-3, we obtain

Wuh,l = Wab,Za
which is what we set out to prove.

IZ Checkpoint 1

The figure shows three paths connecting points a
and b. A single force F does the indicated work on
a particle moving along each path in the indicated
direction. On the basis of this information, is force
F conservative?




Sample Problem 8.01

The main lesson of this sample problem is this: It is perfectly
all right to choose an easy path instead of a hard path.
Figure 8-5a shows a 2.0 kg block of slippery cheese that
slides along a frictionless track from point a to point b. The
cheese travels through a total distance of 2.0 m along the
track, and a net vertical distance of 0.80 m. How much work is
done on the cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (W, =
mgd cos ¢). The reason is that the angle ¢ between the
directions of the gravitational force F and the displacement
d varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate ¢ along it,
the calculation could be very difficult.) (2) Because F is a
conservative force, we can find the work by choosing some
other path between a and b—one that makes the calcula-
tion easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle ¢ is a constant 90°. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work W), done there is

W), = mgd cos 90° = 0

Along the vertical segment, the displacement d is 0.80 m
and, with F and d both downward, the angle ¢ is a constant

0°. Thus, Eq. 7-12 gives us, for the work W, done along the
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Equivalent paths for calculating work, slippery cheese

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

() ()
Figure 8-5 (a) A block of cheese slides along a frictionless track
from point a to point b. (b) Finding the work done on the cheese by
the gravitational force is easier along the dashed path than along
the actual path taken by the cheese; the result is the same for
both paths.

vertical part of the dashed path,
W, = mgd cos 0°
= (2.0 kg)(9.8 m/s?)(0.80 m)(1) = 15.7 J.

The total work done on the cheese by F:g as the cheese

moves from point a to point b along the dashed path is then
W=W,+W,=0+157J =16 . (Answer)

This is also the work done as the cheese slides along the
track from a to b.

PLUS Additional examples, video, and practice available at WileyPLUS

Determining Potential Energy Values

Here we find equations that give the value of the two types of potential energy
discussed in this chapter: gravitational potential energy and elastic potential
energy. However, first we must find a general relation between a conservative

force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative
force F acts. When that force does work W on the object, the change AU in
the potential energy associated with the system is the negative of the work done.
We wrote this fact as Eq. 8-1 (AU = —W). For the most general case, in which the
force may vary with position, we may write the work W as in Eq. 7-32:

Xy
W= f F(x) dx.

(8-5)

This equation gives the work done by the force when the object moves from
point x; to point x;, changing the configuration of the system. (Because the
force is conservative, the work is the same for all paths between those two

points.)
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Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy
due to the change in configuration is, in general notation,

AU = — f er(x) dx. (8-6)

XL

Gravitational Potential Energy

We first consider a particle with mass m moving vertically along a y axis (the
positive direction is upviard). As the particle moves from point y; to point yy,
the gravitational force F, does work on it. To find the corresponding change in
the gravitational potential energy of the particle—Earth system, we use Eq. 8-6
with two changes: (1) We integrate along the y axis instead of the x axis, because
the gravitational force acts vertically. (2) We substitute —mg for the force symbol F,
because Fg has the magnitude mg and is directed down the y axis. We then have

Vr Yy Yy
AU = —f (—mg) dy = ng dy = mgM ,
Yi

Yi Vi

which yields
AU = mg(y;— y;) = mgAy. (8-7)

Only changes AU in gravitational potential energy (or any other type of
potential energy) are physically meaningful. However, to simplify a calculation or
a discussion, we sometimes would like to say that a certain gravitational potential
value U is associated with a certain particle—Earth system when the particle is at
a certain height y.To do so, we rewrite Eq. 8-7 as

U— U =mg(y — y) (8-8)

Then we take U, to be the gravitational potential energy of the system when it is
in a reference configuration in which the particle is at a reference point y,.
Usually we take U; = 0 and y; = 0. Doing this changes Eq. 8-8 to

U(y) = mgy (gravitational potential energy). (8-9)

This equation tells us:

VA Y

"' The gravitational potential energy associated with a particle—Earth system
depends only on the vertical position y (or height) of the particle relative to the
reference position y = 0, not on the horizontal position.

Elastic Potential Energy

We next consider the block—spring system shown in Fig. 8-3, with the block
moving on the end of a spring of spring constant k. As the block moves from
point x; to point x, the spring force F, = —kx does work on the block. To find the
corresponding change in the elastic potential energy of the block—spring system,
we substitute —kx for F(x) in Eq. 8-6. We then have

)Cf xf Xf
AU = —f (—kx) dx = kf x dx =;k[x2} ,

xt xl

or AU = Jkx} — Skx?. (8-10)

To associate a potential energy value U with the block at position x, we
choose the reference configuration to be when the spring is at its relaxed length
and the block is at x; = 0. Then the elastic potential energy U, is 0, and Eq. 8-10



becomes

U-0=3kx* -0,
which gives us

U (x) = %kx2 (elastic potential energy).

IZ Checkpoint 2

A particle is to move along an x axis from x = 0 to x; while a conser-
vative force, directed along the x axis, acts on the particle. The figure
shows three situations in which the x component of that force varies
with x. The force has the same maximum magnitude F| in all three sit-
uations. Rank the situations according to the change in the associated
potential energy during the particle’s motion, most positive first.
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(8-11)

k k
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Sample Problem 8.02 Choosing reference level for gravitational potential energy, sloth

Here is an example with this lesson plan: Generally you can
choose any level to be the reference level, but once chosen,
be consistent. A 2.0 kg sloth hangs 5.0 m above the ground
(Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth—Earth system if we take the reference point y = 0 to be
(1) at the ground, (2) at a balcony floor that is 3.0 m above

| 6 3 1

-i b) 2 0

0 -3 -5
I I I I
(1) (2) (3) (4)
Figure 8-6 Four choices of reference point y = 0. Each y axis is marked
in units of meters. The choice affects the value of the potential energy
U of the sloth—Earth system. However, it does not affect the change
AU in potential energy of the system if the sloth moves by, say, falling.

ILEY

the ground, (3) at the limb, and (4) 1.0 m above the limb?
Take the gravitational potential energy to be zero aty = 0.

KEY IDEA

Once we have chosen the reference point for y = 0, we can
calculate the gravitational potential energy U of the system
relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the slothis at y = 5.0 m, and
U = mgy = (2.0 kg)(9.8 m/s?)(5.0 m)
=981J. (Answer)

For the other choices, the values of U are
2) U=mgy=mg(2.0m)=39],
(3) U=mgy=mg(0)=0]J,
4) U=mgy=mg(—1.0m)

=-19.6J = -201. (Answer)

(b) The sloth drops to the ground. For each choice of refer-
ence point, what is the change AU in the potential energy of
the sloth—Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the
choice of the reference point for y = 0; instead, it depends
on the change in height Ay.

Calculation: For all four situations, we have the same Ay =
—5.0 m. Thus, for (1) to (4), Eq. 8-7 tells us that

AU = mg Ay = (2.0 kg)(9.8 m/s?)(—5.0 m)
= —981. (Answer)

Wi
PLUS Additional examples, video, and practice available at WileyPLUS
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8-2 CONSERVATION OF MECHANICAL ENERGY

Learning Objectives
After reading this module, you should be able to . . .

8.05 After first clearly defining which objects form a system,
identify that the mechanical energy of the system is the
sum of the kinetic energies and potential energies of those
objects.

Key Ideas

® The mechanical energy E,.. of a system is the sum of its
kinetic energy K and potential energy U:

Epee = K+ U.

8.06 For an isolated system in which only conservative forces
act, apply the conservation of mechanical energy to relate
the initial potential and kinetic energies to the potential and
kinetic energies at a later instant.

system cannot change. This principle of conservation of
mechanical energy is written as

K2+U2:K1+Ul,

in which the subscripts refer to different instants during an
energy transfer process. This conservation principle can also
be written as

@ An isolated system is one in which no external force causes
energy changes. If only conservative forces do work within

an isolated system, then the mechanical energy E .. of the AE,..=AK + AU = 0.

Conservation of Mechanical Energy

The mechanical energy E .. of a system is the sum of its potential energy U and
the kinetic energy K of the objects within it:

Ene=K+U (8-12)

(mechanical energy).

In this module, we examine what happens to this mechanical energy when only
conservative forces cause energy transfers within the system—that is, when
frictional and drag forces do not act on the objects in the system. Also, we shall
assume that the system is isolated from its environment; that is, no external force
from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, that
force transfers energy between kinetic energy K of the object and potential
energy U of the system. From Eq. 7-10, the change AK in kinetic energy is

AK =W (8-13)
and from Eq. 8-1, the change AU in potential energy is
AU = —-W. (8-14)
Combining Egs. 8-13 and 8-14, we find that
AK = —AU. (8-15)

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8-15 as

K, - K= _(Uz - U1)7

©AP/Wide World Photos

(8-16)
In olden days, a person would be tossed
via a blanket to be able to see farther
over the flat terrain. Nowadays, it is

done just for fun. During the ascent of

the person in the photograph, energy is
transferred from kinetic energy to gravita-
tional potential energy. The maximum
height is reached when that transfer is
complete. Then the transfer is reversed
during the fall.

where the subscripts refer to two different instants and thus to two different
arrangements of the objects in the system. Rearranging Eq. 8-16 yields

K, + U, = K| + U; (conservation of mechanical energy). (8-17)

In words, this equation says:

the sum of K and U for
any state of a system

the sum of K and U for
any other state of the system )
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when the system is isolated and only conservative forces act on the objects in the
system. In other words:

A Y

"' In an isolated system where only conservative forces cause energy changes, the
kinetic energy and potential energy can change, but their sum, the mechanical
energy E .. of the system, cannot change.

This result is called the principle of conservation of mechanical energy. (Now you
can see where conservative forces got their name.) With the aid of Eq. 8-15, we
can write this principle in one more form, as

AE .. =AK + AU = 0. (8-18)
The principle of conservation of mechanical energy allows us to solve
problems that would be quite difficult to solve using only Newton’s laws:

A Y

"' When the mechanical energy of a system is conserved, we can relate the sum of kinetic
energy and potential energy at one instant to that at another instant without consider-
ing the intermediate motion and without finding the work done by the forces involved.

Figure 8-7 shows an example in which the principle of conservation of
mechanical energy can be applied: As a pendulum swings, the energy of the

V= +vmax

All kinetic energy

=~
S

/UK » UK\

Figure 8-7 A pendulum, with its mass N
concentrated in a bob at the lower end, T=0

swings back and forth. One full cycle of

the motion is shown. During the cycle the All potential The total energy All potential
values of the potential and kinetic ener- energy does not change
gies of the pendulum-Earth system vary (it is conserved).
as the bob rises and falls, but the mechani- U K U K
cal energy E,... of the system remains (9

constant. The energy E,.. can be

described as continuously shifting between \ /
the kinetic and potential forms. In stages

(a) and (e), all the energy is kinetic energy.

The bob then has its greatest speed and is

at its lowest point. In stages (c) and (g), all - V= O/
v

0
the energy is potential energy. The bob '

then has zero speed and is at its highest j_l

point. In stages (b), (d), (f), and (h), half A .

the energy is kinetic energy and half is U K
potential energy. If the swinging involved o
a frictional force at the point where the

pendulum is attached to the ceiling, or a All kinetic energy
drag force due to the air, then E,.. would

not be conserved, and eventually the U K
pendulum would stop. ©

S
\
[

Q

<
Il
=

energy
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pendulum-—Earth system is transferred back and forth between kinetic energy K
and gravitational potential energy U, with the sum K + U being constant. If we
know the gravitational potential energy when the pendulum bob is at its highest
point (Fig. 8-7¢), Eq. 8-17 gives us the kinetic energy of the bob at the lowest
point (Fig. 8-7e).

For example, let us choose the lowest point as the reference point, with the
gravitational potential energy U, = 0. Suppose then that the potential energy at
the highest point is U; = 20 J relative to the reference point. Because the bob mo-
mentarily stops at its highest point, the kinetic energy there is K; = 0. Putting these
values into Eq. 8-17 gives us the kinetic energy K, at the lowest point:

K,+0=0+20J or K, =201

Note that we get this result without considering the motion between the highest
and lowest points (such as in Fig. 8-7d) and without finding the work done by any

forces involved in the motion.

IZ Checkpoint 3

The figure shows four
situations—one in

which an initially sta-
tionary block is dropped
and three in which the

block is allowed to slide B
down frictionless ramps.

(a) Rank the situations M @ ) )
according to the kinetic energy of the block at point B, greatest first. (b) Rank them
according to the speed of the block at point B, greatest first.

Sample Problem 8.03 Conservation of mechanical energy, water slide

The huge advantage of using the conservation of energy in-
stead of Newton’s laws of motion is that we can jump from
the initial state to the final state without considering all the
intermediate motion. Here is an example. In Fig. 8-8, a child
of mass m is released from rest at the top of a water slide,
at height 4 =85m above the bottom of the slide.
Assuming that the slide is frictionless because of the water
on it, find the child’s speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her ac-
celeration along the slide as we might have in earlier chap-
ters because we do not know the slope (angle) of the slide.
However, because that speed is related to her kinetic en-
ergy, perhaps we can use the principle of conservation of
mechanical energy to get the speed. Then we would not
need to know the slope. (2) Mechanical energy is conserved
in a system if the system is isolated and if only conservative
forces cause energy transfers within it. Let’s check.

Forces: Two forces act on the child. The gravitational
force, a conservative force, does work on her. The normal
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicular
to the direction in which the child moves.

The total mechanical

.
energy at the top

is equal to the total
at the bottom. —&
_Q

EANEE
Figure 8-8 A child slides down a water slide as she descends a
height A.

h

System: Because the only force doing work on the child
is the gravitational force, we choose the child—Earth system
as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in
an isolated system, so we can use the principle of conserva-
tion of mechanical energy.

Calculations: Let the mechanical energy be E,.., when the
child is at the top of the slide and E,,.., when she is at the
bottom. Then the conservation principle tells us

Emec,b = Emec,t- (8'19)
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To show both kinds of mechanical energy, we have

K, +U,=K,+ U, (8-20)
or Imv} + mgy, = tmv? + mgy,.
Dividing by m and rearranging yield
v = vi +28(y — »)-
Putting v, = O and y, — y, = hleads to
v, = V2gh = V(2)(9.8 m/s%)(8.5 m)
= 13 m/s. (Answer)

ILEY
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This is the same speed that the child would reach if she fell
8.5 m vertically. On an actual slide, some frictional forces
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly
with Newton’s laws, using conservation of mechanical en-
ergy makes the solution much easier. However, if we were
asked to find the time taken for the child to reach the bot-
tom of the slide, energy methods would be of no use; we
would need to know the shape of the slide, and we would
have a difficult problem.

Wi
PLUS Additional examples, video, and practice available at WileyPLUS

8-3 READING A POTENTIAL ENERGY CURVE

Learning Objectives
After reading this module, you should be able to . ..

8.07 Given a particle’s potential energy as a function of its
position x, determine the force on the particle.

8.08 Given a graph of potential energy versus x, determine
the force on a particle.

8.09 On a graph of potential energy versus x, superimpose a
line for a particle’s mechanical energy and determine the
particle’s kinetic energy for any given value of x.

Key Ideas
@ If we know the potential energy function U(x) for a system
in which a one-dimensional force F(x) acts on a particle, we
can find the force as

dU(x)
o dx

e If U(x) is given on a graph, then at any value of x, the force
F(x) is the negative of the slope of the curve there and the

Fx) =

Reading a Potential Energy Curve

8.10 If a particle moves along an x axis, use a potential-
energy graph for that axis and the conservation of mechan-
ical energy to relate the energy values at one position to
those at another position.

8.11 On a potential-energy graph, identify any turning points
and any regions where the particle is not allowed because
of energy requirements.

8.12 Explain neutral equilibrium, stable equilibrium, and
unstable equilibrium.

kinetic energy of the particle is given by

K(.X) = Emec - U(X),
where E,.. is the mechanical energy of the system.
@ A turning point is a point x at which the particle reverses its
motion (there, K = 0).
® The particle is in equilibrium at points where the slope of
the U(x) curve is zero (there, F(x) = 0).

Once again we consider a particle that is part of a system in which a conservative
force acts. This time suppose that the particle is constrained to move along an
x axis while the conservative force does work on it. We want to plot the potential
energy U(x) that is associated with that force and the work that it does, and then
we want to consider how we can relate the plot back to the force and to the kinetic
energy of the particle. However, before we discuss such plots, we need one more

relationship between the force and the potential energy.

Finding the Force Analytically

Equation 8-6 tells us how to find the change AU in potential energy between two
points in a one-dimensional situation if we know the force F(x). Now we want to
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go the other way; that is, we know the potential energy function U(x) and want
to find the force.

For one-dimensional motion, the work W done by a force that acts on a parti-
cle as the particle moves through a distance Ax is F(x) Ax. We can then write
Eq.8-1as

AU(x) = =W = —F(x) Ax. (8-21)
Solving for F(x) and passing to the differential limit yield

dU(x)

Fox) = - dx

(one-dimensional motion), (8-22)

which is the relation we sought.

We can check this result by putting U(x) = %kxz, which is the elastic poten-
tial energy function for a spring force. Equation 8-22 then yields, as expected,
F(x) = —kx, which is Hooke’s law. Similarly, we can substitute U(x) = mgx,
which is the gravitational potential energy function for a particle—Earth system,
with a particle of mass m at height x above Earth’s surface. Equation 8-22 then
yields F = —mg, which is the gravitational force on the particle.

The Potential Energy Curve

Figure 8-9a is a plot of a potential energy function U(x) for a system in which a
particle is in one-dimensional motion while a conservative force F(x) does work
on it. We can easily find F(x) by (graphically) taking the slope of the U(x) curve at
various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the
U(x) curve.) Figure 8-9b is a plot of F(x) found in this way.

Turning Points

In the absence of a nonconservative force, the mechanical energy E of a system
has a constant value given by

U(x) + K(x) = Epce (8-23)

Here K(x) is the kinetic energy function of a particle in the system (this K(x)
gives the kinetic energy as a function of the particle’s location x). We may
rewrite Eq. 8-23 as

K(x) = Epec — U(x). (8-24)

Suppose that E .. (Which has a constant value, remember) happens to be 5.0 J. It
would be represented in Fig. 8-9c by a horizontal line that runs through the value
5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy K for
any location x of the particle: On the U(x) curve, find U for that location x and
then subtract U from E,,... In Fig. 8-9¢ for example, if the particle is at any point
to the right of x5, then K = 1.0 J. The value of K is greatest (5.0 J) when the parti-
cle is at x, and least (0 J) when the particle is at x;.

Since K can never be negative (because v? is always positive), the particle can
never move to the left of x;, where E .. — U is negative. Instead, as the particle
moves toward x; from x,, K decreases (the particle slows) until K = 0 at x; (the
particle stops there).

Note that when the particle reaches x;, the force on the particle, given by
Eq. 8-22, is positive (because the slope dU/dx is negative). This means that the
particle does not remain at x; but instead begins to move to the right, opposite its
earlier motion. Hence x; is a turning point, a place where K = 0 (because U = E)
and the particle changes direction. There is no turning point (where K = 0) on
the right side of the graph. When the particle heads to the right, it will continue
indefinitely.
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This is a plot of the potential Force is equal to the negative of
U(x) energy U versus position x. the slope of the U(x) plot.

6 F (N) Strong force, +x direction
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(@) X1 X X3 Xy X5 (b)
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the total mechanical energy Eec- and the potential energy is the
U(x) U(x) kinetic energy K.
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— At this position, K'is zero (a turning point).
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— At this position, K'is greatest and the particle is trapped (cannot escape
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Figure 8-9 (a) A plot of U(x), the potential energy function of a system containing a particle confined to move along an x axis. There is no
friction, so mechanical energy is conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential energy plot by
taking its slope at various points. (c)—(¢) How to determine the kinetic energy. (f) The U(x) plot of (a) with three possible values of E, ..
shown. In WileyPLUS, this figure is available as an animation with voiceover.
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Equilibrium Points

Figure 8-9f shows three different values for E, .. superposed on the plot of the
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa-
tion. If E,..=4.0J (purple line), the turning point shifts from x, to a point
between x; and x,. Also, at any point to the right of xs, the system’s mechanical
energy is equal to its potential energy; thus, the particle has no kinetic energy and
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a
position is said to be in neutral equilibrium. (A marble placed on a horizontal
tabletop is in that state.)

If E...=3.0J (pink line), there are two turning points: One is between
x; and x,, and the other is between x, and xs. In addition, x5 is a point at which
K = 0. If the particle is located exactly there, the force on it is also zero, and the
particle remains stationary. However, if it is displaced even slightly in either
direction, a nonzero force pushes it farther in the same direction, and the particle
continues to move. A particle at such a position is said to be in unstable equilib-
rium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle’s behavior if .. = 1.0 J (green line). If we place it
at xy, it is stuck there. It cannot move left or right on its own because to do so would
require a negative kinetic energy. If we push it slightly left or right, a restoring force
appears that moves it back to x,. A particle at such a position is said to be in stable
equilibrium. (A marble placed at the bottom of a hemispherical bowl is an example.)
If we place the particle in the cup-like potential well centered at x,, it is between two

turning points. It can still move somewhat, but only partway to x; or x;.

IZ Checkpoint 4

The figure gives the potential energy function

U(x) for a system in which a particle is in one-
dimensional motion. (a) Rank regions AB, BC, and
CD according to the magnitude of the force on the
particle, greatest first. (b) What is the direction of
the force when the particle is in region AB?

Sample Problem 8.04 Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between x = 0 and x = 7.00 m, it would have the
plotted value of U. At x = 6.5 m, the particle has velocity
vy = (—4.00 m/s)i.

(a) From Fig. 8-10a, determine the particle’s speed at
X1 = 45 m.

KEY IDEAS

(1) The particle’s kinetic energy is given by Eq. 7-1
(K = imv?). (2) Because only a conservative force acts on
the particle, the mechanical energy E,..(= K + U) is con-
served as the particle moves. (3) Therefore, on a plot of U(x)
such as Fig. 8-10q, the kinetic energy is equal to the differ-
ence between E,,.. and U.

Calculations: Atx = 6.5 m,the particle has kinetic energy
K, = lmvi = 1(2.00 kg)(4.00 m/s)?
=16.01J.

Because the potential energy there is U = 0, the mechanical
energy is

Epee =Ky + Uy = 1607 + 0 = 1607.

This value for E,,. is plotted as a horizontal line in Fig. 8-10a.
From that figure we see that at x = 4.5 m, the potential
energy is U; = 7.0 J. The kinetic energy K; is the difference
between E,..and U, :

K=E..—U =160J —70J =901.
Because K; = mv}, we find

vy = 3.0 m/s. (Answer)

(b) Where is the particle’s turning point located?
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KEY IDEA

The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has v = 0 and thus K = 0.

Calculations: Because K is the difference between
E...and U, we want the point in Fig. §-10a where the plot of
U rises to meet the horizontal line of E ., as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-105b,
we can draw nested right triangles as shown and then write
the proportionality of distances

16-70  20-70
d 40 - 1.0°

which gives us d = 2.08 m. Thus, the turning point is at

x=40m —-d=19m. (Answer)
(c) Evaluate the force acting on the particle when it is in the
region 1.9 m < x < 4.0 m.

KEY IDEA

The force is given by Eq. 8-22 (F(x) = —dU(x)/dx): The force
is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for
the range 1.0 m < x < 4.0 m the force is
20J —7.01

= Tom—4om N

(Answer)
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The kinetic energy is zero
at the turning point (the
particle speed is zero).
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(b)
Figure 8-10 (a) A plot of potential energy U versus position x.
(b) A section of the plot used to find where the particle turns
around.

Thus, the force has magnitude 4.3 N and is in the positive
direction of the x axis. This result is consistent with the fact
that the initially leftward-moving particle is stopped by the
force and then sent rightward.

Wi
PLUS Additional examples, video, and practice available at WileyPLUS

8-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

Learning Objectives

After reading this module, you should be able to . ..

8.13 When work is done on a system by an external force
with no friction involved, determine the changes in kinetic
energy and potential energy.

Key Ideas

® Work W is energy transferred to or from a system by means
of an external force acting on the system.

©® When more than one force acts on a system, their net work
is the transferred energy.

® When friction is not involved, the work done on the system

and the change AE,.. in the mechanical energy of the system
are equal:

W = AE,.. = AK + AU.

8.14 When work is done on a system by an external force
with friction involved, relate that work to the changes in
kinetic energy, potential energy, and thermal energy.

@ When a kinetic frictional force acts within the system, then
the thermal energy E, of the system changes. (This energy is
associated with the random motion of atoms and molecules
in the system.) The work done on the system is then

W= AE .. + AEy,.
@ The change AEy, is related to the magnitude f; of the frictional
force and the magnitude d of the displacement caused by the

external force by
AEy, = fid.
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Figure 8-11 (a) Positive work W done on an
arbitrary system means a transfer of
energy to the system. (b) Negative work
W means a transfer of energy from the
system.
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Figure 8-12 Positive work W is done on a
system of a bowling ball and Earth, caus-
ing a change AE,.. in the mechanical
energy of the system, a change AK in the
ball’s kinetic energy, and a change AU in

the system’s gravitational potential energy.
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Work Done on a System by an External Force

In Chapter 7, we defined work as being energy transferred to or from an object
by means of a force acting on the object. We can now extend that definition to an
external force acting on a system of objects.

A Y

"' Work is energy transferred to or from a system by means of an external force
acting on that system.

Figure 8-11a represents positive work (a transfer of energy fo a system), and
Fig. 8-11b represents negative work (a transfer of energy from a system). When
more than one force acts on a system, their net work is the energy transferred to
or from the system.

These transfers are like transfers of money to and from a bank account. If a
system consists of a single particle or particle-like object, as in Chapter 7, the
work done on the system by a force can change only the kinetic energy of the
system. The energy statement for such transfers is the work—kinetic energy theo-
rem of Eq. 7-10 (AK = W); that is, a single particle has only one energy account,
called kinetic energy. External forces can transfer energy into or out of that
account. If a system is more complicated, however, an external force can change
other forms of energy (such as potential energy); that is, a more complicated
system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situa-
tions, one that does not involve friction and one that does.

No Friction Involved

To compete in a bowling-ball-hurling contest, you first squat and cup your hands
under the ball on the floor. Then you rapidly straighten up while also pulling your
hands up sharply, launching the ball upward at about face level. During your
upward motion, your applied force on the ball obviously does work; that is, it is an
external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change AK in
the ball’s kinetic energy and, because the ball and Earth become more sepa-
rated, there is a change AU in the gravitational potential energy of the
ball-Earth system. To include both changes, we need to consider the ball-Earth
system. Then your force is an external force doing work on that system, and the
work is

W = AK + AU, (8-25)

or W = AE . (8-26)

(work done on system, no friction involved),

where AE .. is the change in the mechanical energy of the system. These two
equations, which are represented in Fig. 8-12, are equivalent energy statements
for work done on a system by an external force when friction is not involved.

Friction Involved

We next consider the example in Fig. 8-13a. A constant horizontal force F pulls a
block along an x axis and through a displacement of magnitude d, increasing the
block’s velocity from V, to V. During the motion, a constant kinetic frictional
force ]7; from the floor acts on the block. Let us first choose the block as our
system and apply Newton’s second law to it. We can write that law for compo-
nents along the x axis (F . = ma,) as

F — fi, = ma. (8-27)
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The applied force supplies energy. So, the work done by the applied

The frictional force transfers some force goes into kinetic energy

of it to thermal energy. and also thermal energy.
/Block —floor
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(a) (b)
Figure 8-13 (a) A block is pulled across a floor by force F while a kinetic frictional
force fk opposes the motion. The block has velocity vV, at the start of a displacement d
and velocity V at the end of the displacement. (b) Positive work W is done on the
block —floor system by force F, resulting in a change AE,.. in the block’s mechanical
energy and a change AE,; in the thermal energy of the block and floor.

Because the forces are constant, the acceleration @ is also constant. Thus, we can
use Eq.2-16 to write

v2 = v} + 2ad.

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging
then give us

Fd =1mv —1mv} + f.d (8-28)

or, because %mv2 - %mv% = AK for the block,
Fd = AK + f.d. (8-29)

In a more general situation (say, one in which the block is moving up a ramp), there
can be a change in potential energy. To include such a possible change, we general-
ize Eq. 8-29 by writing

Fd = AE,. + fid. (8-30)

By experiment we find that the block and the portion of the floor along
which it slides become warmer as the block slides. As we shall discuss in
Chapter 18, the temperature of an object is related to the object’s thermal energy
E, (the energy associated with the random motion of the atoms and molecules in
the object). Here, the thermal energy of the block and floor increases because
(1) there is friction between them and (2) there is sliding. Recall that friction is
due to the cold-welding between two surfaces. As the block slides over the floor,
the sliding causes repeated tearing and re-forming of the welds between the
block and the floor, which makes the block and floor warmer. Thus, the sliding
increases their thermal energy Ey,.

Through experiment, we find that the increase AEy, in thermal energy is
equal to the product of the magnitudes f; and d:

AEy, = fid (increase in thermal energy by sliding). (8-31)

Thus, we can rewrite Eq. 8-30 as
Fd = AE .. + AEy, (8-32)
Fd is the work W done by the external force F (the energy transferred by the

force), but on which system is the work done (where are the energy transfers made)?
To answer, we check to see which energies change. The block’s mechanical energy
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changes, and the thermal energies of the block and floor also change. Therefore, the
work done by force F is done on the block—floor system. That work is

W =AE,.. + AEy

(8-33)

(work done on system, friction involved).

This equation, which is represented in Fig. 8-13b, is the energy statement for the
work done on a system by an external force when friction is involved.

IZ Checkpoint 5

In three trials, a block is pushed
by a horizontal applied force
across a floor that is not friction- a
less, as in Fig. 8-13a. The magni-
tudes F of the applied force and
the results of the pushing on the

Trial F Result on Block’s Speed

50N decreases
70N remains constant
G 8.0N increases

block’s speed are given in the

table. In all three trials, the block is pushed through the same distance d. Rank the
three trials according to the change in the thermal energy of the block and floor that
occurs in that distance d, greatest first.

Sample Problem 8.05 Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass m = 14kg) across a concrete floor with a constant
horizontal force F of magnitude 40 N. In a straight-line dis-
placement of magnitude d = 0.50 m, the speed of the crate
decreases from v, = 0.60 m/stov = 0.20 m/s.

(a) How much work is done by force F,and on what system
does it do the work?

KEY IDEA

Because the applied force F is constant, we can calculate
the work it does by using Eq.7-7 (W = Fd cos ¢).

Calculation: Substituting given data, including the fact that
force F and displacement d are in the same direction, we
find

W = Fd cos ¢ = (40 N)(0.50 m) cos 0°

=201. (Answer)

Reasoning: To determine the system on which the work is
done, let’s check which energies change. Because the crate’s
speed changes, there is certainly a change AK in the crate’s
kinetic energy. Is there friction between the floor and the
crate, and thus a change in thermal energy? Note that F and
the crate’s ve1001ty have the same direction. Thus, if there is
no friction, then F should be accelerating the crate to a
greater speed. However, the crate is slowing, so there must

be friction and a change AE,;, in thermal energy of the crate
and the floor. Therefore, the system on which the work is
done is the crate—floor system, because both energy
changes occur in that system.

(b) What is the increase AEy, in the thermal energy of the
crate and floor?

KEY IDEA

We can relate AE,, to the work W done by F with the energy
statement of Eq. 8-33 for a system that involves friction:

W = AE, .. + AEy,. (8-34)
Calculations: We know the value of W from (a). The
change AE,.. in the crate’s mechanical energy is just the

change in its kinetic energy because no potential energy
changes occur, so we have

AE, mec = AK =
Substituting this into Eq. 8-34 and solving for AE,;,, we find

2 1 2
2mv 7 MV,

AE, =W — Gmv? — 1) = W — Im(v? — v})
= 207 — Y14 kg)[(0.20 m/s)? — (0.60 m/s)’]
=222)=22]. (Answer)

Without further experiments, we cannot say how much of
this thermal energy ends up in the crate and how much in
the floor. We simply know the total amount.

PLUS Additional examples, video, and practice available at WileyPLUS
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Learning Objectives
After reading this module, you should be able to . ..

8.15 For an isolated system (no net external force), apply the
conservation of energy to relate the initial total energy
(energies of all kinds) to the total energy at a later instant.

8.16 For a nonisolated system, relate the work done on the
system by a net external force to the changes in the vari-
ous types of energies within the system.

Key Ildeas

@ The total energy E of a system (the sum of its mechanical
energy and its internal energies, including thermal energy)
can change only by amounts of energy that are transferred to
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8.17 Apply the relationship between average power, the
associated energy transfer, and the time interval in which
that transfer is made.

8.18 Given an energy transfer as a function of time (either as
an equation or a graph), determine the instantaneous
power (the transfer at any given instant).

@ The power due to a force is the rate at which that force
transfers energy. If an amount of energy AL is transferred by
a force in an amount of time At, the average power of the

or from the system. This experimental fact is known as the law force is
of conservation of energy. AE

@ If work W is done on the system, then mEOAr

W= AE = AEmec + AEth + AEint-
If the system is isolated (W = 0), this gives

@ The instantaneous power due to a force is

dE
AE e + AEg + AEy, =0 P=—
and Emch = Emccl - AE‘th - Alzim’ . .
' ' On a graph of energy E versus time t, the power is the slope

where the subscripts 1 and 2 refer to two different instants. of the plot at any given time.

Conservation of Energy

We now have discussed several situations in which energy is transferred to or
from objects and systems, much like money is transferred between accounts.
In each situation we assume that the energy that was involved could always be
accounted for; that is, energy could not magically appear or disappear. In more
formal language, we assumed (correctly) that energy obeys a law called the law of
conservation of energy, which is concerned with the total energy E of a system.
That total is the sum of the system’s mechanical energy, thermal energy, and any
type of internal energy in addition to thermal energy. (We have not yet discussed
other types of internal energy.) The law states that

A%
"' The total energy E of a system can change only by amounts of energy that are
transferred to or from the system.

The only type of energy transfer that we have considered is work W done on a
system by an external force. Thus, for us at this point, this law states that
W= AE = AE, .. + AE; + AE;,, (8-35)

where AE,. is any change in the mechanical energy of the system, AEy, is any
change in the thermal energy of the system, and 