Lecture PowerPoints

Chapter 7

Physics: Principles with
Applications, 6t edition

Giancoli

© 2005 Pearson Prentice Hall

This work is protected by United States copyright laws and is provided solely for
the use of instructors in teaching their courses and assessing student learning.
Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials
from it should never be made available to students except by instructors using
the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and
the needs of other instructors who rely on these materials.



Chapter 7

w Linear Momentum
Q\m,v, (before)
\

7 |
7/ \mﬁa
\ \ . .

m v’ (after)

J

Copyright © 2005 Pearson Prentice Hall, Inc.



Units of Chapter 7

‘Momentum and Its Relation to Force
Conservation of Momentum
Collisions and Impulse

Conservation of Energy and Momentum in
Collisions

Elastic Collisions In One Dimension



Units of Chapter 7

*Inelastic Collisions

*Collisions in Two or Three Dimensions
Center of Mass (CM)

*CM for the Human Body

Center of Mass and Translational Motion



7-1 Momentum and Its Relation to Force

Momentum is a vector symbolized by the
symbol p, and is defined as

The rate of change of momentum is equal to the
net force:

(7-2)

st s o
This can be shown using Newton’s second law.



7-2 Conservation of Momentum

During a collision, measurements show that the
total momentum does not change:
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7-2 Conservation of Momentum

More formally, the law of conservation of
momentum states:

The total momentum of an isolated system of
objects remains constant.

_ — VA=24.Om/s - @_ . - — VB:O
(at rest)

(b) After collision
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7-2 Conservation of Momentum

Momentum conservation works for arocket as
long as we consider the rocket and its fuel to
be one system, and account for the mass loss

of the rocket.

(a) ol —

procket
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/-3 Collisions and Impulse

During a collision, objects
are deformed due to the
large forces involved.

. Ap

Since F = . we can
At

write F At = Ap (7-5)

The definition of impulse:

‘ Impulse = F At
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/-3 Collisions and Impulse

Since the time of the collision is very short, we
need not worry about the exact time dependence
of the force, and can use the average force.

Impulse = F At
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/-3 Collisions and Impulse

The impulse tells us that we can get the same
change in momentum with a large force acting for a
short time, or a small force acting for a longer time.

This is why you should bend
your knees when you land;
A y-77m Whyairbags work; and why

' landing on a pillow hurts less
- than landing on concrete.

v=0

,' \

y=0— y.g b
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/-4 Conservation of Energy and Momentum

(c) If elastic

Vi R Z
- &=

(d) If inelastic
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In Collisions
@ VA VB B-
(a) Approach _
Momentum is conserved
E'{"E In all collisions.

(b) Collision C.O||IS.IOI’]S N W!’]ICh
y _ kinetic energy Is
YA o - VB
—@— —@— conserved as well are

called elastic collisions,
and those in which itis
not are called inelastic.



7-5 Elastic Collisions in One Dimension

Here we have two objects
colliding elastically. We
my Mg know the masses and the
VA VB Initial speeds.

*  Since both momentum and
Kinetic energy are
conserved, we can write
two equations. This allows
us to solve for the two
unknown final speeds.

VA Vg myvy; + move; = myuy T mavyy

or

I 9 1 2 1 2 I 2
X gmuyT T ogmete;T = omy Uy g = 5 MaVays

(b)
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muy; T mave; = muy T Molas

1 s 1 9 1 9 1 9
oMUy~ T gmave;” = oMUy = s Malss

ml[unﬂ = zrlfr) = mgfngﬁ = 1;252]
and then factor both sides:
my(vy; — vyp) (v + vyy) = mo(vey = ve) (Vo + V) (9.17)
Next, let us separate the terms containing m; and ms in Equation 9.15 to obtain
my(vy; — vip) = ma(vey — Vgy) (9.18)
To obtain our final result, we divide Equation 9.17 by Equation 9.18 and obtain
vy T vy = UQI-I— Uo;

h; = Ug; = _(IflJlr_ [.'Ej') {9191

There are two important points from eq. (9.19)
e Ifml=m27?
e Ifv2=07?



7-6 Inelastic Collisions

With inelastic collisions, some of

the initial kinetic energy iIs lost to
1 thermal or potential energy. It
may also be gained during
—:«?-—;—"— M explosions, as there is the
=" addition of chemical or nuclear
i energy.

A completely inelastic collision is
one where the objects stick
-~ together afterwards, so there is
= only one final velocity.

|\|:
'
-

(b)
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7-6 Inelastic Collisions

An inelastic collision is one in which the total kinetic energy of the system is
not the same before and after the collision (even though the momentum of the
system is conserved). Inelastic collisions are of two types. When the colliding objects
stick together after the collision, as happens when a meteorite collides with the Earth,
the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

that the total momentum before the collision equals the total momentum of the com-

posite system after the collision:

mVy; + move; = (my + ma)Vvy (9.13)

Solving for the final velocity gives

mvy; + meoVe;
v, = (9.14)
m; + Mo



7-6 Inelastic Collisions

The important distinction between these two
types of collisions (perfectly inelastic and
elastic collisions) Is that momentum of the
system is conserved in all collisions,

but

kinetic enerqgy of the system Is conserved
only in elastic collisions.




1
® o000

v

This can happen.

(b)

— 2 34 5

v

Can this htlppt n:

(c)

Example

5

—- 2 3 4 5 1 2 3 4 e—

v

vf’é

Explain how the state of the
system in figure (a) and figure
(b) is related to momentum and
Kinetic energy?

Assuming, (b) the collision is
almost-elastic, (c) the collision
IS elastic



7-7 Collisions in Two or Three Dimensions

Conservation of energy and momentum can also
be used to analyze collisions in two or three
dimensions, but unless the situation is very
simple, the math quickly becomes unwieldy.

g Here, a moving object

va=7? collides with an object
) Initially at rest. Knowing

. /ﬂQ'A=45° the masses and initial
x Vvelocities Is not enough;

g = —45° we need to know the
angles as well in order to
find the final velocities.




/-7 Collisions in Two or Three Dimensions

We need 2 component:

MUy T Malajy = MUype T Molagy

my Uy jy + MoUgjy = MUy sy + Molajy

Y
and 3 subscripts: /
1. The identification of the VA=
object y
2. Initial and final values v /ﬂG’A=45°

VA 7
3. Velocity component <:>_’""@J\
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/-7 Collisions in Two or Three Dimensions
Problem solving:

1. Choose the system. If it is complex,
subsystems may be chosen where one or
more conservation laws apply.

2. Is there an external force? If so, Is the
collision time short enough that you can
ignore it?

3. Draw diagrams of the initial and final
situations, with momentum vectors labeled.

4. Choose a coordinate system.



/-7 Collisions in Two or Three Dimensions

5. Apply momentum conservation; there will be
one equation for each dimension.

6. If the collision is elastic, apply conservation
of kinetic energy as well.

7. Solve.

8. Check units and magnitudes of result.



7-7 Collisions in Two or Three Dimensions

. Appl}'ing the law of conservation of momentum in component form and nc:-ting
that the initial y component of the momentum of the two-particle system 1s zero, we

obtain
H’Il'b'“ = ?.i"flﬂlf COS H + ?.F'.’E,_}IJEJ' COSs qb

0 = muvy; sin § — mavyy sin ¢

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic en-
ergy) with vy; = 0 to give

1 2 _ 1 2 ¢ 1 2
Emlvli = Eﬂllv]f + Elﬂg'b'gf




Example

Sebuah proton bertabrakan secara elastis dengan proton lain yang
awalnya diam. Proton yang datang memiliki kecepatan awal 3,50 x
10° m/s dan membuat tumbukan sekilas dengan proton kedua,
seperti pada gambar . (pada jarak yang dekat, proton mengerahkan
gaya elektrostatik repulsive satu sama lain). Setelah tumbukan, satu
proton bergerak dengan sudut 37,0° (theta) terhadap arah gerak
awalnya, dan proton kedua membelok pada sudut theta terhadap
sumbu yang sama. Tentukan kecepatan akhir kedua proton dan
sudut phi?

E
ol
—Tp SIN QL — ==

(a) Before the collision (b) After the collision



7-8 Center of Mass

In (a), the diver’s motion is pure translation; in (b)
It Is translation plus rotation.

There is one point that moves in the same path a
particle would

take if subjected
to the same force
as the diver. This
point is called the
center of mass
(CM).




7-8 Center of Mass

The general motion of an object can be
considered as the sum of the translational
motion of the CM, plus rotational, vibrational, or
other forms of motion about the CM.
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7-8 Center of Mass

For two particles, the center of mass lies closer
to the one with the most mass:

s XA T HlgXp MiasXa T+ Mg Xp

mA T mB M

where M Is the total mass.

Y
AB 4
-y AQL
o O X
ma mg
——AcM T
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7-8 Center of Mass

The center of gravity is the point where the
gravitational force can be considered to act. It Is
the same as the center of mass as long as the

gravitational force does not vary among different

parts of the object. ° , ,
Pivot point

Copyright © 2005 Pearson Prentice Hall, Inc.



7-8 Center of Mass

The center of gravity can be found experimentally
by suspending an object from different points.
The CM need not be within the actual object —a

doughnut’s CM is in the center of the hole.
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/-9 CM for the Human Body

The x’s in the small diagram mark the CM of
the listed body segments.

TABLE 7-1 Center of Mass of Parts of Typical Human Body
(full height and mass = 100 units)

Distance Above Floor Hinge Points (°) Center of Mass (x) Percent
of Hinge Points (%) (Joints) (% Height Above Floor) Mass
91.2 Base of skull : Head 93.5 6.9
81.2 Shoulder joint Trunk and neck 7Ll 46.1
elhow 633 —i 1 Upper arms L 6.6
] Lower arms 50 4.2
52.1 Hip joint B ands 431 1.7
Upper legs (thighs) 42.5 21.5
28.5 Knee joint
Lower legs 18.2 9.6
4.0 Ankle joint & ectl i 3.4
Body cm = 58.0 100.0
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7-9 CM for the Human Body
50.3 >

“«——33.9
~<9.6>

The location of the center of
mass of the leg (circled) will

" depend on the position of
' the leg.
©
X }28.5
v 18.2
T - — 1%81 !

(b)
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7-9 CM for the Human Body
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High jJumpers have
developed atechnique

passes under the bar as
they go over it. This allows
them to clear higher bars.



7-10 Center of Mass and Translational Motion

The total momentum of a system of particles is
equal to the product of the total mass and the
velocity of the center of mass.

The sum of all the forces acting on a system is
equal to the total mass of the system multiplied
by the acceleration of the center of mass:

M ey = LMpet (7-11)



7-10 Center of Mass and Translational Motion

This is particularly useful in the analysis of
separations and explosions; the center of
mass (which may not correspond to the

position of any particle) continues to move
according to the net force.
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Summary of Chapter 7

 Momentum of an object: p = mv
e Newton’s second law: . Ap
K=

*Total momentum of an isolated system of objects is
conserved.

* During a collision, the colliding objects can be
considered to be an isolated system even if external
forces exist, as long as they are not too large.

« Momentum will therefore be conserved during
collisions.



a

Summary of Chapter 7, cont.

Impulse = F At = Ap

n an elastic collision, total kinetic energy Is
SO conserved.

n an inelastic collision, some kinetic energy

IS |ost.

* In a completely inelastic collision, the two
objects stick together after the collision.

* The center of mass of a system is the point at
which external forces can be considered to
act.



