Some Application of IVP's with 1st-Order ODE's

Many dynamical phenomena in the reality can be explained clearly by using mathematical model. A lot of the model that described the dynamical are in the form of IVP's with first-order ordinary differential equations. Some real problems will be discussed are:

- 1. Dynamics Population
- 2. Personal Finance
- 3. Molecularity of Chemical Reaction
- 4. Electrical Circuit (Resistor Inductor)

Assumption:

the change of population is only influenced by births and deaths

Let

- β(t) is amount of births per population unit in unit of time (rate of birth)
- $\delta(t)$ is amount of deaths per population unit in unit of time (rate of death)

Then number of births and deaths for time interval $[t, t + \Delta t]$ are given (approximation) by:

```
Births: \beta(t) P(t) \Delta t and
```

Deaths: $\delta(t) P(t) \Delta t$,

where P(t) is number of population at time t

Therefore, the change of population for interval of time s [t , t + Δ t] is

```
\Delta P = kelahiran – kematian

\approx \beta(t) P(t) \Delta t - \delta(t) P(t) \Delta t
```

so that

$$\frac{\Delta P}{\Delta t} \approx (\beta(t) - \delta(t)) P(t).$$
 1.9

So, if $\Delta t \rightarrow 0$ then the error of approximation approaches **zero** so that

$$\frac{dP(t)}{dt} = (\beta(t) - \delta(t))P(t)$$
1.10

Equation of (1.10) is called the general population equation

General solution of Eq. (1.10) is

$$P(t) = P(t_0) Exp\left(\int (\beta(t) - \delta(t)) dt\right), \quad 1.11$$

where $P(t_0)$ is number of population on initial observation. If $\beta(t)$ and $\delta(t)$ are a contant functions, then Eq. (1.11) is to be

$$P(t) = P(t_0) e^{kt},$$
 1.12

where $k = \beta - \delta$.

- **Example 1.7:** Let population number of alligator on initial observation ($t_0 = 0$) and rate of deaths 100 and 0, respectively. If the rate of births of alligator is 0,0005 P(t), find
- a. number of alligator on time t (in years)
- b. when the number of alligator to be twice of initial population, and
- c. draw some of integral curves.

Answer:

- **Example 1.7:** Let population number of alligator on initial observation ($t_0 = 0$) and rate of deaths 100 and 0, respectively. If the rate of births of alligator is 0,0005 P(t), find
- a. number of alligator on time t (in years)
- b. when the number of alligator to be twice of initial population, and
- c. draw some of integral curves.

Answer:

Answer Ex. 1.7:

a) Known P($t_0 = 0$) = 100, $\delta = 0$, and $\beta = 0,0005$ P(t), so that it goes to IVP as follows

$$\frac{dP}{dt} = (0,0005)P^{2}(t), P(t_{0}) = 100. (*)$$

By using separation method, the general solution of (*) is

$$\int \frac{1}{P^2} dP = \int (0,0005) dt \iff P(t) = \frac{2000}{C - t}.$$
 (**)

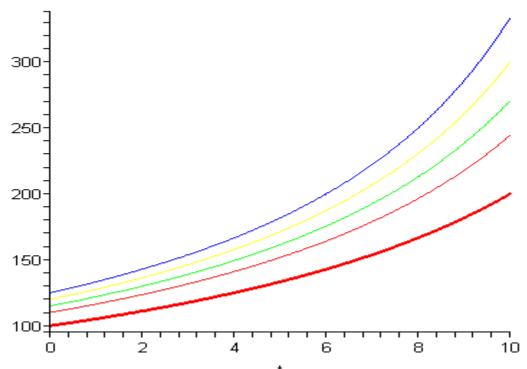
At t = 0 it finds P(0) = 100 so that C = 20 and Eq. (**) becomes

Ans. Ex. 1.7 (continued):

$$P(t) = \frac{2000}{20 - t}. (* * *)$$

- b) Let t_1 be time needed alligator to be twice of initial population. Then $P(t_1) = 2 P(0) = 200 = 2000/(20 t_1)$ su that $t_1 = 10$. Thus, after 10 years alligator is to be twice of initial population.
- c) Integral curves for some initial conditions is as follows:

Ans. Ex. 1.7 (continued):



Integral Curves for IC's: 100, 110, 115, 120, and 125

Let $\beta(t)$ be a linear decreasing function with respect to P(t) so that $\beta(t) = \beta_0 - \beta_1 P(t)$, where β_0 dan β_1 are both positive, and $\delta(t) = \delta_0$ be constant, then Eq. (1.10) becomes

$$\frac{dP(t)}{dt} = aP(t) - bP^{2}(t), \qquad (1.13)$$

where $a = \beta_0 - \delta_0$ and $b = \beta_1$. If both **a** and **b** are positive then Eq. (**1.13**) is called **Logistic Equation**. This equation is intruduced by the Belgian Mathematician and Demographer Pierre Francois Verhulst (1840).

To see the behaviour of population clearly, it is important to rewrite Eq. (1.13) in the form:

$$\frac{dP(t)}{dt} = kP(t)(M - P(t)), \qquad 1.14$$

where k = b and M = a/b. It is obvius that P(t) = M is a solution of (1.14). To have solution $P(t) \neq M$, the method of separation variables can be applied and we have

$$P(t) = \frac{M}{1 + A \exp(-kMt)},$$
 1.15

where A is integration constant.

It is clear that P(t) = M can be expressed as (1.15) by setting A = 0 so that (1.15) is general solution of equation. If $P(t_0 = 0) = P_0$, it follows $A = (M - P_0)/P_0$ so that (1.15) becomes

$$P(t) = \frac{M P_0}{P_0 + (M - P_0) \exp(-kMt)}.$$
 (1.16)

So, the solution of IVP for Logistic Eq. Is (1.16) and P(t) appraoches to M as t tends to infinity. It means that the solution of Logistic Equation is bounded.

Example 1.8: Suppose that in 1885 the population of certain country was 50 million and was growing at the rate of 750.000 people/year at that time. Suppose also that in 1940 its population was 100 million and was then growing at the rate of 1 million/year. Assume that this population satisfies the logistic equation. Determine both limiting population M and the predicted population for the year 2020.

Answer:

Answer Ex. 1.8:

a) Known $P(t_0 = -55) = 50$ million, dP(t)/dt | t=0 = 0.75 million/thn, P(t = 0) = 100 million, and dP(0)/dt = 1 million/year, so that we find the following system

$$0.75 = k(M - 50)50$$
, $1 = k(M - 100)100$. (*)

By solving that system, it finds M = 200 and $k = 10^{-10}$. So, limit of population is 200 million and by setting t = 0 for 1940: