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Many dynamical phenomena in the reality can be 
explained clearly by using mathematical model. A lot 
of the model that described the dynamical  are in the 
form of  IVP’s with first-order ordinary differential 
equations. Some real problems will be discussed are:

1.   Dynamics Population
2. Personal Finance 
3. Molecularity of Chemical Reaction
4. Electrical Circuit (Resistor – Inductor)



IVP’s: Dynamics of Population

Assumption: 

the change of population is only influenced by births
and deaths
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Let 
- β(t) is amount of births per population unit in
unit of time (rate of birth)
- δ(t) is amount of deaths per population unit 
in unit of time (rate of death)
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Then number of births and deaths for time interval 
[t , t + Δt] are given (approximation) by:

Births : β(t) P(t) Δt and

Deaths : δ(t) P(t) Δt, 

where P(t) is number of population at time t

Therefore, the change of population for 
interval of time s [t , t + Δt] is 

ΔP = kelahiran – kematian
 β(t) P(t) Δt – (t) P(t) Δt

so that
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So, if  Δt → 0 then the error  of approximation  
approches  zero so that
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Equation of ( 1.10 ) is called the general population 
equation



IVP’s: Dynamics of Population

IVP's of 1st-order  by Caswita, Dr.

1.12

where P(t0) is number of population on initial obser-
vation. If  β(t) and (t) are a contant functions, then 
Eq. (1.11) is to be

1.11

General solution of Eq. ( 1.10 ) is
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where k =  β – .
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Example 1.7: Let population number of alligator 
on initial observation (t0 = 0) and rate of deaths 
100 and 0, respectively. If the rate of births of 
alligator is 0,0005 P(t), find

a. number of alligator on time t (in years)

b. when the number of alligator to be twice of initial 
population, and

c. draw some of integral curves. 

Answer:
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a) Known P(t0 = 0) = 100,  = 0, and β = 0,0005 P(t), 
so that it goes to IVP as follows

Answer Ex. 1.7:
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By using separation method, the general solution of 
() is
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At  t = 0 it finds P( 0 ) = 100 so that C = 20 and Eq.
( ) becomes



IVP’s: Dynamics of Population

IVP's of 1st-order  by Casita, Dr.

b) Let t1 be time needed alligator to be twice of 
initial population. Then P(t1) = 2 P(0) = 200 = 2000/ 
(20 – t1) su that t1 = 10. Thus, after 10 years alligator 
is to be twice of initial population.

Ans. Ex. 1.7 (continued ....):
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c) Integral curves  for some initial conditions is as 
follows:
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Ans. Ex. 1.7 (continued ....):

Integral Curves for IC’s: 100, 110, 115, 120, and 125
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Let β(t) be a linear decreasing function with respect to 
P(t) so that β(t) = β0 – β1 P(t), where β0 dan β1 are both 
positive, and (t) = 0 be constant,  then Eq. (1.10) 
becomes
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where a = β0 - 0 and b = β1. If both a and b are positive
then Eq. (1.13) is called Logistic Equation. This equation 
is intruduced by the Belgian Mathematician and 
Demographer Pierre Francois Verhulst (1840).
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To see the behaviour of population clearly, it is impor-
tant to rewrite Eq. (1.13) in the form:

where k = b and M = a/b. It is obvius that P(t) = M is a 
solution of (1.14). To have solution P(t)  M,  the method 
of separation variables can be applied and we have
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where A is integration constant.
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It is clear that P(t) = M can be expressed as (1.15) by
setting A = 0 so that (1.15) is general solution of
equation. If P(t0 = 0) = P0, it follows A = (M – P0)/Po so
that (1.15) becomes

So, the solution of IVP for Logistic Eq. Is (1.16) and  P(t) 
appraoches to M as t tends to infinity. It means that the 
solution of Logistic Equation is bounded.

.
)exp()(

)(
00

0

kMtPMP

PM
tP

−−+
= (1.16)



IVP’s: Dynamics of Population

IVP's of 1st-order  by Casita, Dr.

Example 1.8: Suppose that in 1885 the population
of certain country was 50 million and was growing at
the rate of 750.000 people/year at that time. Suppose
also that in 1940 its population was 100 million and
was then growing at the rate of 1 million/year.
Assume that this population satisfies the logistic
equation. Determine both limiting population M and
the predicted population for the year 2020.

Answer:
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a) Known P(t0 = –55) = 50 million, dP(t)/dt|t=0 = 
0,75 million/thn, P(t = 0) = 100 million, and dP(0)/dt
= 1 million/year, so that we find the following system

Answer Ex. 1.8:

()

By solving that system, it finds M = 200 and k = 10–10. 
So, limit of population is 200 million and by setting    
t = 0 for 1940:

.100)100(1,50)50(75,0 −=−= MkMk


