

PENGANTAR

 Pada materi sebelumnya kita mengasumsikan bahwa pengaruh baris dan kolom bersifat aditif (penjumlahan).

Jenis	Var	ietas Gand	dum	TOTAL
Pupuk	V1	V2	V3	TOTAL
P1	64	72	74	210
P2	55	57	47	159
P3	59	66	58	183
P4	58	57	53	168
TOTAL	236	252	232	720

- Bila sifatnya aditif, maka :
- Varietas V2 menghasilkan rata2 5 kg lebih banyak dari V1 bila menggunakan pupuk P1, maka V2 tetap menghasilkan rata2 5 kg lebih banyak dari V1 meski dengan P2, P3, atau P4.
- Bila V1 secara rata-rata menghasilkan 3 kg lebih banyak per petak dengan pupuk P2 daripada P4, maka V2 atau V3 secara rata-rata juga menghasilkan 3 kg lebih banyak per petak jika menggunakan P2 daripada P4

PENGANTAR

- Dalam banyak percobaan, asumsi keaditifan seringkali tidak berlaku, sehingga analisis tersebut dapat menghasilkan kesimpulan yang salah.
- Contoh: Varietas V2 secara rata-rata menghasilkan gandum 5 kg lebih banyak per petak daripada V1 bila menggunakan P1, tetapi menghasilkan rata-rata 2 kg per petak lebih sedikit daripada V1 bila menggunakan P2.
- Dalam hal ini maka, dapat dikatakan bawha varietas gandum dan jenis pupuk memiliki interaksi. Dalam tabel pengamatan interaksi tersebut cukup terlihat. Interaksi yang tampak ini mungkin memang ada atau mungkin disebabkan dari pengaruh galat percobaan.
- Pada analisis sebelumnya kita mengasumsikan bahwa interaksi yang muncul tersebut seluruhnya disebabkan oleh galat percobaan.

PENGANTAR

 Untuk menguji apakah ada beda antar nilai tengah baris dan kolom, dengan interaksi yang tidak diabaikan. Maka hasil pengukuran harus dilakukan berulang-ulang di bawah kondisi yang sama.

Asumsi:

- Pengamatan dalam tabel merupakan suatu contoh acak berukuran n dari satu populasi yang diasumsikan menyebar normal.
- 2. Semua rc populasi diasumsikan mempunyai ragam yang sama

Hasil Gandum, dalam kilogram per petak

Hasii Gar	ndum, dalam kili	ogram per petak	(
	Jenis Pupuk		Varietas Gandum		TOTAL
	Jenis r upuk	V1	V2	V3	TOTAL
		64	72	74	
	P1	66	81	51	607
		70	64	65	
		65	57	47	
	P2	63	43	58	510
		58	52	67	
		59	66	58	
	P3	68	71	39	527
		65	59	42	
		58	57	53	
	P4	41	61	59	466
		46	53	38	
	TOTAL	723	736	651	

	Baris (i)		Kol	om (j)		Total	Niloi Tongoh
	balls (I)	1	2		С	Total	Nilai Tengah
Klasifikasi dua		X ₁₁₁	X ₁₂₁		X _{1c1}		
arah dengan	1	X ₁₁₂	X ₁₂₂	•••	X _{1c2}	_	\bar{x} 1
beberapa	1					T ₁	<i>x</i> 1
pengamatan per		X _{11n}	X _{12n}		X _{1cn}		
		X ₂₁₁	X ₂₂₁		X _{2c1}		
sel		X ₂₁₂	X ₂₂₂		X _{2c2}	_	-0
	2					T ₂	$\bar{x}2$
		X _{21n}	X _{22n}		X _{2cn}		
Susunan di atas							
terdiri dari							
r baris dan							
c kolom dengan n ulangan.		X _{r11}	X _{r21}		X _{rc1}		
ii diangan.	_	X _{r12}	X _{r22}		X _{rc2}	_	
	r					T _{r.}	\bar{x} r
		X _{r1n}	X _{r2n}		X _{rcn}		
	Total	T _{.1.}	T _{.2.}		T _{.c.}	T	
	Nilai Tengah	\bar{x} .1.	\bar{x} .2.		$ar{x}$.c.		\bar{x}

HIPOTETSIS

- Pengujian hipotesis nol bahwa r nilai tengah baris adalah sama, adalah setara dengan pengujian hipotesis :
 - H'0 : $\alpha 1 = \alpha 2 = ... = \alpha r = 0$
 - H'1 : sekurang-kurangnya satu αi tidak sama dengan nol
- Pengujian hipotesis nol bahwa c nilai tengah kolom semuanya sama adalah setara dengan pengujian hipotesis
 - $H'''0 : \beta 1 = \beta 2 = ... = \beta r = 0$
 - H"1: sekurang-kurangnya satu βj tidak sama dengan nol
- Pengujian hipotesis bahwa terdapat pengaruh interaksi baris ke-i dan kolom ke-j
 - H'''0 : $(\alpha\beta)11 = (\alpha\beta)12 = ... = (\alpha\beta)rc = 0$
 - H'''1: sekurang-kurangnya satu (αβ)ij tidak sama dengan nol
 - αi : pengaruh baris ke-i
 - βj: pengaruh kolom ke-j
 - (αβ)ij : pengaruh interaksi baris ke-l kolom ke-j

- Masing-masing uji hipotesis tersebut akan didasarkan pada pembandingan dua nilai dugaan yang bebas bagi ragam populasi.
- Nilai dugaan diperoleh dengan menguraikan jumlah kuadran total menjadi empat komponen:

JKT =
$$\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} (x_{ijk} - \bar{x}...)^2$$
 = Jumlah Kuadrat Total

JKB = $\operatorname{cn} \sum_{i=1}^{r} (\bar{x}_i - \bar{x}...)^2$ = Jumlah Kuadrat Bagi Nilai Tengah Baris

JKK =
$$\operatorname{rn} \sum_{i=1}^{c} (\bar{x}_{.i.} - \bar{x}...)^2$$
 = Jumlah Kuadrat Bagi Nilai Tengah Kolom

JK(BK) = n
$$\sum_{i=1}^r \sum_{j=1}^c (x_{ij} - \bar{x}_{i..} - \bar{x}_{.j.} - \bar{x}_{...})^2$$
 =Jumlah Kuadrat Bagi Interaksi

JKG =
$$\sum_{i=1}^{r} \sum_{i=1}^{c} \sum_{k=1}^{n} (x_{ijk} - \bar{x}_{ij.})^2$$
 =Jumlah Kuadrat Galat

Untuk menguji hipotesis, maka dihitung nilai F hitung.

Untuk menguji hipotesis H'0 bahwa pengaruh baris semuanya sama H'0 ditolak pada taraf nyata α bila f1 > f α [r-1, rc(n-1)]

Untuk menguji hipotesis H"0 bahwa pengaruh kolom semuanya sama Hipotesis H"0 ditolak pada taraf nyata α bila f2 > f α [c-1, rc(n-1)]

Untuk menguji hipotesis H'''0 bahwa pengaruh interaksi semuanya sama Hipotesis H'''0 ditolak pada taraf nyata α bila f3 > f α [(r-1)(c-1), rc(n-1)]

Adanya interaksi dalam suatu percobaan dapat menyembunyikan atau menutupi beda yang nyata antar pegaruh baris atau pengaruh kolom.

Karena alasan ini maka setiap uji yang menghasilkan **penerimaan hipotesis tersebut dianggap tidak sah bila interaksi nyata**.

RUMUS HITUNG

- Dalam prakteknya kita pertama-tama menghitung JKT, JKB, dan JKK, dan baru kemudian dengan menggunakan dalil identitas jumlah kuadrat kita memperoleh JKG melalui pengurangan.
- Rumus hitung bagi keempat jumlah kuadrat tersebut diberikan di

bowah ini :
$$\mathsf{JKT} = \sum_{i=1}^r \sum_{j=1}^c \sum_{k=1}^n x_{ijk}^2 - \frac{T^2 \dots}{rcn} \qquad \qquad = \mathsf{Jumlah \ Kuadrat \ Total}$$

JKB =
$$\frac{\sum_{i=1}^{r} T^2 i...}{cn} - \frac{T^2...}{rcn}$$
 = Jumlah Kuadrat Bagi Nilai Tengah Baris

JKK =
$$\frac{\sum_{j=1}^{c} T.j.^2}{rn} - \frac{T^2...}{rcn}$$
 = Jumlah Kuadrat Bagi Nilai Tengah Kolom

$$\mathsf{JK}(\mathsf{BK}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{c} Tij.^{2}}{n} - \frac{\sum_{i=1}^{r} Ti.^{2}}{cn} - \frac{\sum_{j=1}^{c} T.j.^{2}}{rn} - \frac{T...^{2}}{rcn} = \mathsf{Jumlah} \; \mathsf{kuadrat} \; \mathsf{bagi} \; \mathsf{interaksi}$$

$$JKG = JKT - JKB - JKK - JK(BK) = Jumlah Kuadrat Galat$$

Perhitungan dalam masalah analisis ragam untuk klasifikasi dua-arah dengan interaksi, dapat diringkas seperti berikut :

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F Hitung
Nilai Tengah Baris	JKB	r-1	$s_1^2 = \frac{JKB}{r - 1}$	$f_1 = \frac{{s_1}^2}{{s_4}^2}$
Nilai Tengah Kolom	JKK	c-1	$s_2^2 = \frac{JKK}{c-1}$	$f_2 = \frac{{s_2}^2}{{s_4}^2}$
Interaksi	JK(BK)	(r-1)(c-1)	$s_3^2 = \frac{JK(BK)}{(r-1)(c-1)}$	$f_3 = \frac{{s_3}^2}{{s_4}^2}$
Galat	JKG	rc(n-1)	$s_4^2 = \frac{JKG}{rc(n-1)}$	
Total	JKT	rcn-1		

CONTOH SOAL

Uji Hipotesis pada taraf nyata 0,05 untuk :

H'0 = Tidak ada beda rata-rata hasil gandum untuk keempat jenis pupuk yang digunakan H''0 = Tidak ada beda rata-rata hasil untuk ketiga varietas gandum tersebut H'''0 = Tidak ada interaksi antara jenispupuk dan varietas gandum

Jawab:

- 1. a. H'0: $\alpha 1 = \alpha 2 = \alpha 3 = \alpha 4 = 0$
 - b. H"0: $\beta 1 = \beta 2 = \beta 3 = 0$
 - c. H'''0: $(\alpha\beta)11 = (\alpha\beta)12 = ... = (\alpha\beta)43 = 0$
- 2. a. H'1: sekuranng-kurangnya satu αi tidak sama dengan nol
 - b. H"1: sekurang-kurangnya satu βj tidak sama dengan nol
 - c. H"11: sekurang-kurangnya satu (αβ)ij tidak sama dengan nol
- 3. Wilayah kritik: (a) fi > 3,01, (b) f2 > 3,40, (c) f3 > 2,51

Hasil Gandum, dalam kilogram per petak

nasii Gai	idum, dalam kili	ogram per petar	(
	Jenis Pupuk		Varietas Gandum		TOTAL
	Jenis r upuk	V1	V2	V3	TOTAL
		64	72	74	
	P1	66	81	51	607
		70	64	65	
		65	57	47	
	P2	63	43	58	510
		58	52	67	
		59	66	58	
	P3	68	71	39	527
		65	59	42	
		58	57	53	
	P4	41	61	59	466
		46	53	38	
	TOTAL	723	736	651	

Jawab:

	v1	v2	v3	Total
P1	200	217	190	607
P2	186	152	172	510
P3	192	196	139	527
P4	145	171	150	466
Total	723	736	651	2110

• JKT =
$$64^2 + 66^2 + \dots + 38^2 - \frac{2110^2}{36} = 127448 - 123669 = 3779$$

• JKB = $\frac{607^2 + 510^2 + 527^2 + 466^2}{9} - \frac{2110^2}{36} = 124826 - 123669 = 1157$

$$\text{JKK} = \frac{723^2 + 736^2 + 651^2}{12} - \frac{2110^2}{36} = 124019 - 123669 = 350$$

• JK(BK) =
$$\frac{200^2 + 186^2 + ... + 150^2}{3}$$
 - 124826 - 124019 + 123669 = 771

$$JKG = 3779 - 1157 - 350 - 771 = 1501$$

Jawab : Hasil analisis dicantumkan dalam tabel berikut :

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F Hitung	F Tabel
Nilai Tengah Baris	1157	3	385,66	6,17	3,01
Nilai Tengah Kolom	350	2	175,00	2,80	3,40
Interaksi	771	6	128,50	2,05	2,51
Galat	1501	24	62,54		
Total	3779	35			

Keputusan:

- (a) Tolak H'0 dan simpulkan bahwa ada beda hasil rata-rata gandum untuk keempat jenis pupuk yang digunakan
- (b) Terima H"0 dan simpulkan bahwa tidak ada beda hasil rata-rata untuk ketiga varietas gandum
- (c) Terima H'''0 dan simpulkan bahwa tidak ada interaksi antara jenis pupuk yang digunakan dengan varietas gandum tersebut.

NILAI-NILAI UNTUK DISTRIBUSI F

Baris atas untuk 5% Baris bawah untuk 1%

$v_2 = dk$											v, = dk	pemb	ilang											
penyebut	1	2	3	4	5	6	7	8	9	10	11	12	14	16	20	24	30	40	50	75	100	200	500	00
1	161 4,052		216 5,403		230 5,764					242 6,056		244 6,106	245 6,142	246 6,169	248 6,208	249 6,234	250 6,258	251 6,288	252 6,302	253 6,223	253	254	254	254
2	18,51	19,00	19,16	19,25	19,30 99,30	19,33	19,36	19,37	19,38	19,39	19,40	19,41	19,42	19,43	19.44	19.45	19.46	19 47	19 47	19 48	19.49	19.49	19 50	10.50
3	10,13	9,55	9,28	9,12	9,01 28,24	8,94	8,88	8,84	8,81	8,78	8,76	8,74	8.71	8.69	8.66	8.64	8.62	8.60	8 58	8 57	8 56	8 54	9.54	0.52
4	7,71	6,94	6,59	6,39	6,26 15,52	6,16	6,09	6,04	6,00	5,96	5,93	5,91	5.87	5.84	5.80	5.77	5.74	5.71	5.70	5.66	5.66	5.65	5.64	5.62
5	6,61	5,79	5,41	5,19	5,05 10,97	4,95	4,88	4,82	4,78	4,74	4,70	4,68	4.64	4.60	4.56	4.53	4.50	4.48	4 44	4 42	4 40	4 38	4 37	4 36
6	5,99	5,14	4,76	4,53	4,39 8,75	4,28	4,21	4,15	4,10	4,06	4.03	4.00	3.98	3.92	3.87	3.84	3.81	3,77		3,72		3,69	3,66	3,67 6,88
7	5,59 12,25	4,74 9,55	4,35 8,45	4,12 7,85	3,97 7,46	3,87 7,19	3,79 7,00	3,73 6,84	3,68 6,71	3,63 6,62	3,60 6,54	3,57 6,47	3,52 6,35	3,49 6,27	3,44 6,15	3,41 6,07	3,38 5,98	3,34 5,90	3,32 5,85	3,29 5,78		3,25 5,70		3,23 5,65
8	11,26	8,05	7,59	7,01	3,69 6,63	6,37	6,19	6,03	5,91	5,82	5,74	5,67	5,56	5,48	5,36	5,28	5,20	3,05 5,11			2,98 4,96	2,96 4,91	2,94 4,88	-100
9	10,56	8,02	6,99	6,42	3,48 6,06	5,80	5,62	5,47	5,35	5,28	5,18	5,11	5,00	4,92	4,80	4,73	4,64		4,51	4,45	4,41		2,72 4,33	V200
10	4,96 10,04	4,10 7,56	3,71 6,55	3,48 5,99	3,33 5,64	3,22 5,39	3,14 5,21	3,07 5,06	3,02 4,95	2,97 4,85	2,94 4,78	2,91 4,71	2,86 4,60	2,82 4,52	2,77 4,41	2,74 4,33	2,70 4,25	2,07 4,17		2,61 4,05			2,55 3,93	
11	4,84 9,65				3,20 5,32			2,95 4,74			2,82 4,46	2,79 4,40	2,74 4,29	2,70 4,21	2,65 4,10	2,61 4,02	2,57 3,94	2,53 3,86	2,50 3,80	2,47 3,74	2,45 3,70	2,42 3,66	2,41 3,62	0.000
12	4,75 9,33	3,88 6,93	3,49 5,95	3,26 5,41	3,11 5,06	3,00 4,82	2,92 4,65	2,85 4,50	2,80 4,39	2,76 4,30	2,72 4,22	2,69 4,16	2,64 4,05	2,60 3,98	2,54 3,86	2,50 3,78	2,46 3,70	2,42 3,61	2,40 3,56	2,36 3,49		2,32 3,41	2,31 3,38	2,30 3,36
13	4,67 9,07		5,74	5,20	3,02 4,86	4,62	4,44	4,30	4,19	4,10	4,02	3,96	3,85	3,78	3,67	3,59	3,51	3,42	2,32 3,37	2,28 3,30	2,26 3,27	2,24 3,21	2,22 3,18	
14	4,80 8,86	3,74 6,51	3,34 5,56	3,11 5,03	2,96 4,80	2,85 4,46	2,77 4,28	2,70 4,14	2,65 4,03	2,80 3,94	2,58 3,88	2,53 3,80	2,48 3,70	2,44 3,62	2,39 3,51	2,35 3,43	2,31 3,34	2,27 3,28	2,24 3,21	2,21 3,14	2,19 3,11	2,16 3,06	2,14 3,02	2,13 3,00

Т	abei N	Nilai Kri	us Seb	aran F	_{0.01} (V ₁	$, V_2)$	V.	1 : db pe	embilan	g	V_2 : db	penyek	out
V ₁	1	2	3	4	5	6	7	8	9	10	12	15	20
1	4052	4999.5	5403	5625	5764	5859	5928	5982	6022	6056	6106	6157	6209
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.42	99.43	99.45
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	27.05	26.87	26.69
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.37	14.20	14.02
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.89	9.72	9.55
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94

Tabel F untuk $\alpha = 0.05$

					ν,				
ν2	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
20	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

					1	1				
ν2	10	12	15	20	24	30	40	60	120	α
1	241.9	243.9	245.9	148.0	249.1	250.1	251.1	252.2	253.3	254.3
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3.	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5 6 7	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2,45	2.40
12	2.75	2.69	2.62	2.54	2.51	2,47	2,43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23 -	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.6
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.6
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.6
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1,6
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.5
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.3
20	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.2
00	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.0

TERIMA KASIH

