
4 Transmission System Effects 

As we saw in the previous chapter, the transmission network’s incremental 
power losses may cause a bias in the optimal economic scheduling of the 
generators. The coordination equations include the effects of the incremental 
transmission losses and complicate the development of the proper schedule. 
The network elements lead to two other, important effects: 

1. The total real power loss in the network increases the total generation 
demand, and 

2.  The generation schedule may have to be adjusted by shifting generation 
to reduce flows on transmission circuits because they would otherwise 
become overloaded. 

It is the last effect that is the most difficult to include in optimum dispatching. 
In order to include constraints on flows through the network elements, the 
flows must be evaluated as an integral part of the scheduling effort. This means 
we must solve the power flow equations along with the generation scheduling 
equations. (Note that earlier texts, papers, and even the first edition of this 
book referred to these equations as the “load flow” equations.) 

If the constraints on flows in the networks are ignored, then it is feasible to 
use what are known as loss formulae that relate the total and incremental, real 
power losses in the network to the power generation magnitudes. Development 
of loss formulae is an art that requires knowledge of the power flows in the 
network under numerous “typical” conditions. Thus, there is no escaping the 
need to understand the methods involved in formulating and solving the power 
flow equations for an AC transmission system. 

When the complete transmission system model is included in the development 
of generation schedules, the process is usually imbedded in a set of computer 
algorithms known as the optimal powerflow (or OPF). The complete OPF is 
capable of establishing schedules for many controllable quantities in the bulk 
power system (i.e., the generation and transmission systems), such as transformer 
tap positions, VAR generation schedules, etc. We shall defer a detailed 
examination of the O P F  until Chapter 13. 

Another useful set of data that are obtainable when the transmission network 
is incorporated in the scheduling process is the incremental cost of power at 
various points in the network. With no transmission effects considered (that is, 
ignoring all incremental losses and any constraints on power flows), the network 
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is assumed to be a single node and the incremental cost of power is equal to 
i everywhere. That is, 

dF. -.-!=A 
d e  

Including the effect of incremental losses will cause the incremental cost of real 
power to vary throughout the network. Consider the arrangement in Figure 
3.2 and assume that the coordination equations have been solved so the values 
of dFJd4 and A are known. Let the “penalty factor” of bus i be defined as 

so that the relationship between the incremental costs at any two buses, i and 
j ,  is 

Pf,FI = P h F J  

where F; = dFk/dPk is the bus incremental cost. There is no requirement that 
bus i is a generator bus. If the network effects are included using a network 
model or a loss formula, bus i might be a load bus or a point where power is 
delivered to an interconnected system. The incremental cost (or “value”) of 
power at bus i is then, 

Incremental cost at i = FI = ( P f j / P f , ) F J  

where j is any real generator bus where the incremental cost of production is 
known. So if we can develop a network model to be used in optimum generation 
scheduling that includes all of the buses, or at  least those that are of importance, 
and if the incremental losses (dP,/dP‘) can be evaluated, the coordination 
equations can be used to compute the incremental cost of power at any point 
of delivery. 

When the schedule is determined using a complete power flow model by 
using an OPF, the flow constraints can be included and they may affect the 
value of the incremental cost of power in parts of the network. Rather than 
attempt a mathematical demonstration, consider a system in which most of the 
low cost generation is in the north, most of the load is in the south along with 
some higher cost generating units, and the northern and southern areas are 
interconnected by a relatively low capacity transmission network. The network 
north-to-south transfer capability limits the power that can be delivered from 
the northern area to satisfy the higher load demands. Under a schedule that is 
constrained by this transmission flow limitation, the southern area’s generation 
would need to be increased above an unconstrained, optimal level in order to 
satisfy some of the load in that region. The constrained economic schedule 
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would split the system into two regions with a higher incremental cost in the 
southern area. In most actual cases where transmission does constrain the 
economic schedule, the effect of the constraints is much more significant than 
the effects of incremental transmission losses. 

This chapter develops the power flow equations and outlines methods of 
solution. Operations control centers frequently use a version of the power flow 
equations known as the “decoupled power flow.” The power flow equations 
form the basis for the development of loss formulae. Scheduling methods 
frequently use penalty factors to incorporate the effect of incremental real power 
losses in dispatch. These can be developed from the loss formulae or directly 
from the power flow relationships. 

Power flow is the name given to a network solution that shows currents, 
voltages, and real and reactive power flows at every bus in the system. It is 
normally assumed that the system is balanced and the common use of the term 
power flow implies a positive sequence solution only. Full three-phase power- 
flow solution techniques are available for special-purpose calculations. As used 
here, we are only interested in balanced solutions. Power flow is not a single 
calculation such as E = I R  or E = [2]1 involving linear circuit analysis. Such 
circuit analysis problems start with a given set of currents or voltages, and one 
must solve for the linearly dependent unknowns. In the power-flow problem 
we are given a nonlinear relationship between voltage and current at each bus 
and we must solve for all voltages and currents such that these nonlinear 
relationships are met. The nonlinear relationships involve, for example, the real 
and reactive power consumption at a bus, or the generated real power and 
scheduled voltage magnitude at a generator bus. As such, the power flow gives 
us the electrical response of the transmission system to a particular set of loads 
and generator unit outputs. Power flows are an important part of power system 
design procedures (system planning). Modern digital computer power-flow 
programs are routinely run for systems with up to 5000 or more buses and also 
are used widely in power system control centers to study unique operating 
problems and to provide accurate calculations of bus penalty factors. Present, 
state-or-the-art system control centers use the power flow as a key, central 
element in the scheduling of generation, monitoring of the system, and 
development of interchange transactions. O P F  programs are used to develop 
optimal economic schedules and control settings that will result in flows that 
are within the capabilities of the elements of the system, including the 
transmission network, and bus voltage magnitudes that are within acceptable 
tolerances. 

4.1 THE POWER FLOW PROBLEM AND ITS SOLUTION 

The power flow problem consists of a given transmission network where all 
lines are represented by a Pi-equivalent circuit and transformers by an ideal 
voltage transformer in series with an impedance. Generators and loads represent 



94 TRANSMISSION SYSTEM EFFECTS 

the boundary conditions of the solution. Generator or load real and reactive 
power involves products of voltage and current. Mathematically, the power flow 
requires a solution of a system of simultaneous nonlinear equations. 

4.1.1 

The problems involved in solving a power flow can be illustrated by the use of 
direct current (DC) circuit examples. The circuit shown in Figure 4.1 has a 
resistance of 0.25 0 tied to a constant voltage of 1.0 V (called the reference 
ooltage). We wish to find the voltage at bus 2 that results in a net inflow of 
1.2 W. Buses are electrical nodes. Power is said to be “injected” into a network; 
therefore, loads are simply negative injections. 

The Power Flow Problem on a Direct Current Network 

The current from bus 2 to bus 1 is 

1 2 ,  = (E2 - 1.0) x 4 
Power P2 is 

or 
P2 = 1.2 = EzZ,,  = EZ(E2 - 1) x 4 

4E: - 4E2 - 1.2 = 0 

The solutions to this quadratic equation are E, = 1.24162 V and E, = 
-0.24162 V. Note that 1.2 W enter bus 2, producing a current of 0.96648 A 
( E ,  = 1.24162), which means that 0.96648 W enter the reference bus and 
0.23352 W are consumed in the 0.25-0 resistor. 

Let us complicate the problem by adding a third bus and two more lines 
(see Figure 4.2). The problem is more complicated because we cannot simply 
write out the solutions using a quadratic formula. The admittance equations are 

Bus 1 (reference) 

P ,  = 1.2 w 

(4.4) 

FIG. 4.1 Two-bus DC network. 
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Bus 1 (reference) 

FIG. 4.2 Three-bus DC network. 

In this case, we know the power injected at buses 2 and 3 and we know the 
voltage at bus 1. To solve for the unknowns (E,, E3 and PI) ,  we write Eqs. 4.5, 
4.6, and 4.7. The solution procedure is known as the Gauss-Seidel procedure, 
wherein a calculation for a new voltage at each bus is made, based on the most 
recently calculated voltages at all neighbouring buses. 

Bus 2 

where EO,Id and &Id are the initial values for E, and E3, respectively. 

Bus 3: ~So(1 .0 )  - 5Ey" + 15E3 j 3 = - =  p3 

E3 

1 + 10 + 5E'leW 

where E;'" is the voltage found in solving Eq. 4.5, and 
of E3. 

is the initial value 

Bus 1: Pl = Ell';'" = l.OI';ew = 14 - 4Ey" - 10EYW (4.7) 

The Gauss-Seidel method first assumes a set of voltages at buses 2 and 3 
and then uses Eqs. 4.5 and 4.6 to solve for new voltages. The new voltages are 
compared to the voltage's most recent values, and the process continues until 
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SAVE MAXIMUM 
VOLTAGE CHANGE 

1 

OEMAx=IEP -E”“ , I M A X O V E R ~  

the change in voltage is very small. This is illustrated in the flowchart in Figure 
4.3 and in Eqs. 4.8 and 4.9. 

E ( O )  = Ei0) = 1.0 First iteration: 2 

(4.8) 
[ -15  + 10 + 5(1.133) = 0.944 1 E:” = 15 

AE,,, = 0.133 too large 

Note: In calculating E Y )  we used the new value of E ,  found in the first 
correction. 
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+ 4 + 5(0.944) = 1.087 1 
1 

Second iteration: Ei2' = 

+ 10 + 5(1.087) = 0.923 (4.9) 

AEmax = 0.046 

And so forth until AE,,, < E .  

4.1.2 The Formulation of the AC Power Flow 

AC power flows involve several types of bus specifications, as shown in Figure 
4.4. Note that [PI el, [Q, IEl], and [Q, 191 combinations are generally not used. 

The transmission network consists of complex impedances between buses 
and from the buses to ground. An example is given in Figure 4.5. The equations 
are written in matrix form as 

(All I", E", Y ' ~  complex) 

This matrix is called the network Y matrix, which is written as 

y12 

y2  2 

r , 2  

y3 2 

The rules for forming a Y matrix are 

If a line exists from i to . j  

i j over all lines connected to i. 

(4.10) 

(4.1 1) 
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BusType P Q IEl 0 
Load J J  

J J Voltage 

Generator or 4 4 
Controlled 

Synchronous when 

Comments 
Usual load representation 
Assume IEI is held constant 

no matter what Q is 
Generator or synchronous 

condenser (P = 0) has 

Q' maximum VAR limit 

JEl is held as long as Q, is 
within limit 

Condenser 

4 J  

VAR limits 

Q- minimum VAR limit i Q- < Q, < Q' 
____.__---_I---------------- 

FIG. 4.4 
conditions). 

Power-flow bus specifications (quantities checked are the bus boundary 

Fixed Z 

Reference 
to Ground 

I 

FIG. 4.5 Four-bus AC network. 

1 I I /  

Only Z is given 

"Swing bus" must adjust 
net power to hold 

(essential for 
solution) 

4 J voltage constant 
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The equation of net power injection at a bus is usually written as 

~- pk - j Q k  - 
K j E j  + K k E k  

E: j =  I 
(4.12) 

i # k  

4.1.2.1 The Gauss-Seidel Method 
The voltages at each bus can be solved for by using the Gauss-Seidel method. 
The equation in this case is 

Voltage at 
iteration R 

The Gauss-Seidel method was the first AC power-flow method to be 
developed for solution on digital computers. This method is characteristically 
long in solving due to its slow convergence and often difficulty is experienced 
with unusual network conditions such as negative reactance branches. The 
solution procedure is the same as shown in Figure 4.3. 

4.1.2.2 The Newton-Raphson Method 
One of the disadvantages of the Gauss-Seidel method lies in the fact that each 
bus is treated independently. Each correction to one bus requires subsequent 
correction to all the buses to which it is connected. The Newton-Raphson 
method is based on the idea of calculating the corrections while taking account 
of all the interactions. 

Newton's method involves the idea of an error in a function f(x) being driven 
to zero by making adjustments Ax to the independent variable associated with 
the function. Suppose we wish to solve 

f(x) = K (4.14) 

In Newton's method, we pick a starting value of x and call it xo. The error 
is the difference between K and f(xo). Call the error E.  This is shown in Figure 
4.6 and given in Eq. 4.15. 

f(xo) + E = K (4.15) 

To drive the error to zero, we use a Taylor expansion of the function about xo, 

df(xO) 
dx 

f(xO) + __ A x + E = K  (4.16) 
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FIG. 4.6 Newton’s method. 

Setting the error to zero, we calculate 

df(xo) - 
A x  = ( -z--) [ K  - f(xo)] (4.17) 

When we wish to solve a load flow, we extend Newton’s method to the 
multivariable case (the multivariable case is called the Newton-Raphson 
method). An equation is written for each bus “i.” 

where 

then 

pi + jQi = E,lT (4.18) 

N 
= (E i l*Y;  + c Yi*kEiEk* 

k =  1 
k # i  

As in the Gauss-Seidel method, a set of starting voltages is used to get things 
going. The P + j Q  calculated is subtracted from the scheduled P + j Q  at the 
bus, and the resulting errors are stored in a vector. As shown in the following, 
we will assume that the voltages are in polar coordinates and that we are going 
to adjust each voltage’s magnitude and phase angle as separate independent 
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variables. Note that at this point, two equations are written for each bus: one 
for real power and one for reactive power. For each bus, 

All the terms are arranged in a matrix (the Jacobian matrix) as follows. 

L A  

(4.19) 

(4.20) 

v 
Jacobian matrix 

The Jacobian matrix in Eq. 4.20 starts with the equation for the real and reactive 
power at each bus. This equation, Eq. 4.18, is repeated below: 

N 
8 + j Q i  = Ei YZE: 

k =  1 

This can be expanded as: 

where 

Bi, 8, = the phase angles at buses i and k ,  respectively; 

1 Eil, 1 Ekj = the bus voltage magnitudes, respectively 

Gik + jB, = x k  is the ik term in the Y matrix of the power system. 
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The general practice in solving power flows by Newton’s method has been 
to use 

AIEil 
lEil 
__ 

instead of simply A I Ei 1 ;  this simplifies the equations. The derivatives are: 

For i = k: 

ap,  
= pl. + GiiE? 

Equation 4.20 now becomes 

(4.23) 
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UPDATE BUS VOLTAGE: 
0” = e : - ’  +no, 

lE,ln = IE, lu- ’  +AIE,I 

START 

SET ALL  VOLTAGES TO 
STARTING VALUE’ 

DO FOR ALL  i 

i t ref 
i = l  . . . N  

L I 
‘THIS USUALLY MEANS 
1.0 LOo per unit VOLTAGE. 
A PREVIOUS SOLUTION 
MAY BE USED IF 
AVAI  LABLE -CALCULATE A L L  AP, 

AND AQ, SAVE THE 
MAX AP AND MAX AQ 

JACOBIAN MATRIX 

E = SPECIFIED BUS 
MISMATCH 
TOLERANCE 

-CALCULATE THE 

MAX AP < E 

MAX AQ Q E YES 

CALCULATE LINE 
FLOWS, LOSSES, 
MISMATCH, ETC. I 

AlE,I AND Ae, 
UStNG JACOBIAN 

INVERSE 
STOP 

a 
FIG. 4.7 Newton-Raphson power-flow solution. 

The solution to the Newton-Raphson power flow runs according to the 
flowchart in Figure 4.7. Note that solving for A0 and AIEl requires the solution 
of a set of linear equations whose coefficients make up the Jacobian matrix, 
The Jacobian matrix generally has only a few percent of its entries that are 
nonzero. Programs that solve an AC power flow using the Newton-Raphson 
method are successful because they take advantage of the Jacobian’s “sparsity.” 
The solution procedure uses Gaussian elimination on the Jacobian matrix and 
does not calculate J -  explicitly. (See reference 3 for introduction to “sparsity” 
techniques.) 

EXAMPLE 4A 

The six-bus network shown in Figure 4.8 will be used to demonstrate several 
aspects of load flows and transmission loss factors. The voltages and flows 
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- 2.9 2.9- 
+12.3 5.7+ 

B 
241.5kV & 

0- - 50.0 
4 74.4 

60.0- 
89.6 4- 

Bus 6 - 19.1 
f-, 23.2 - 43.8 + 42.8 
4 60.7 57.9 - 1.6 

-+ 3.9 

33.1- 

4 6 . 1 4  - 26.2 --3 25.7 
12.4 + 16.0 

I - 15.5 +15.4 

- 27.8 
12.8 

e 
24 1.5k V ,!Qo 

21 f 70 70 

0- 
--t 107.9 
4 16.0 

BI 

- 31.6 
4 45.1 

I 4 

C- 42.5 
4 19.9 

--t 4.1 
4 4.9 

t 
70 70 

=p+ 70 t 70 

226.7 /-5.3" 

where -j. MW 
+ MVAR 

generator 

tl load 227.6kV a" 
FIG. 4.8 Six-bus network base case AC power flow. 
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shown are for the “base case” of 210 MW total load. The impedance values 
and other data for this system may be found in the appendix of this 
chapter. 

4.1.3 The Decoupled Power Flow 

The Newton power flow is the most robust power flow algorithm used in 
practice. However, one drawback to its use is the fact that the terms in the 
Jacobian matrix must be recalculated each iteration, and then the entire set of 
linear equations in Eq. 4.23 must also be resolved each iteration. 

Since thousands of complete power flows are often run for a planning or 
operations study, ways to speed up this process were sought. Reference 11 shows 
the development of a technique known as the “fast decoupled power flow” (it 
is often referred to as the “Stott decoupled power flow,” in reference to its first 
author). 

Starting with the terms in the Jacobian matrix (see Eq. 4.22), the following 
simplications are made: 

0 Neglect and interaction between P;. and any IEkI (it was observed by power 
system engineers that real power was little influenced by changes in voltage 
magnitude-so this effect was incorporated in the algorithm). Then, all 
the derivatives 

a4 

will be considered to be zero. 
0 Neglect any interaction between Q i  and 8, (see the note above-a similar 

observation was made on the insensitivity of reactive power to changes 
in phase angle). Then, all the derivatives 

aQi 

aek 

are also considered to be zero. 

usually small. 
0 Let cos (d i  - d j )  z 1 which is a good approximation since ( Q i  - e j )  is 

0 Assume that 
G i k  Sin (8i - 8,) << Bik 

0 Assume that 
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This leaves the derivatives as: 

If we now write the power flow adjustment equations as: 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

then, substituting Eq. 4.24 into Eq. 4.26, and Eq. 4.25 into Eq. 4.27, we obtain: 

Further simplification can then be made: 

0 Divide Eqs. 4.28 and 4.29 by I Eil. 
0 Assume IEk( E 1 in Eq. 4.28. 

which results in: 

We now build Eqs. 4.30 and 4.31 into two matrix equations: 

(4.29 

(4.30) 

(4.3 1) 

(4.32) 
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Note that both Eqs. 4.32 and 4.33 use the same matrix. Further simplification, 
however, will make them different. 

Simplifying the A P  - Ad relationship of Eq. 4.32: 

0 Assume rik << xik; this changes -Bik to - i/xik. 
0 Eliminate all shunt reactances to ground. 
0 Eliminate all shunts to ground which arise from autotransformers. 

Simplifying the AQ - AIEl relationship of Eq. 4.33: 

0 Omit all effects from phase shift transformers. 

The resulting equations are: 

where the terms in the matrices are: 

1 
BIk = - -, assuming a branch from i to k (zero otherwise) 

X i k  

(4.34) 

(4.35) 
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N 

BI: = 1 -Bik  
k =  1 

The decoupled power flow has several advantages and disadvantages over 
the Newton power flow. (Note: Since the introduction and widespread use of 
the decoupled power flow, the Newton power flow is often referred to as the 
“full Newton” power flow.) 

Advantages: 

0 B‘ and B“ are constant; therefore, they can be calculated once and, except 
for changes to B” resulting from generation VAR limiting, they are not 
updated. 

0 Since B’ and B” are each about one-quarter of the number of terms in 
[ J ]  (the full Newton power flow Jacobian matrix), there is much less 
arithmetic to solve Eqs. 4.34 and 4.35. 

Disadvantages: 

0 The decoupled power flow algorithm may fail to converge when some of 
the underlying assumptions (such as rik << X i k )  do not hold. In such cases, 
one must switch to using the full Newton power flow. 

Note that Eq. 4.34 is often referred to as the P-8 Eq. and Eq. 4.35 as the Q-E 
(or Q-V)  equation. 

A flowchart of the algorithm is shown in Figure 4.9. A comparison of the 
convergence of the Gauss-Seidel, the full Newton and the decoupled power 
flow algorithms is shown in Figure 4.10. 

4.1.4 The “DC” Power Flow 

A further simplification of the power flow algorithm involves simply dropping 
the Q-V equation (Eq. 4.35) altogether. This results in a completely linear, 
noniterative, power flow algorithm. To carry this out, we simply assume that 
all lEi l  = 1.0 per unit. Then Eq. 4.34 becomes: 

(4.36) 
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Begin power flow solution 

Build B’ and B” matrices and 
calculate the sparse matrix factors 
for each matrix 

Solve the equation 4.34 for 
the 

1 

1 
eyw = ep ld+Aei  I 

Solve the equation 4.35 for the 
A(E1‘S 

1 
= IEIp’d+AIEli 

No Yes 
Done 

FIG. 4.9 Decoupled power flow algorithm. 

where the terms in B’ are as described previously. The DC power flow is only 
good for calculating MW flows on transmission lines and transformers. It gives 
no indication of what happens to voltage magnitudes, or MVAR or MVA flows. 
The power flowing on each line using the DC power flow is then: 

1 
Pik = - (ei - ek> 

X i k  
(4.37) 

and 

k = buses 
connected lo i 
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log (rnax I A P  

\Gal uss-Seidel 

Decoupled 

\ Newton \ 

I I I I I 1 I 
Iteration 

Comparison of three power flow algorithm convergence characteristics. FIG. 4.10 

EXAMPLE 4B 

The megawatt flows on the network in Figure 4.1 1 will be solved using the DC 
power flow. The B’ matrix equation is: 

7.5 -5.0 61 [ - 5.0 9.0][ 8J = [ 
e, = o 

Note that all megawatt quantities and network quantities are expressed in pu 
(per unit on 100 MVA base). All phase angles will then be in radians. 

The solution to  the preceding matrix equation is: 

0.2 1 18 0.1 177][ 0.651 - - [ 0.021 [::I = [ o . ~  177 0.1765 - 1.00 -0.1 

The resulting flows are shown in Figure 4.12 and calculated using Eq. 4.37. 
Note that all flows in Figure 4.12 were converted to actual megawatt values. 
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Bus 2 Bus 1 X,, = 0.2 per unit 

- 1 0 0 M W  - 
4 -  

65 M W  
X,, = 0.25 per unit 

X,, = 0.4 per unit 

X,, = 0.2 per unit 

100  M W  

65 M W  
X,, = 0.25 per unit 

Bus 1 

BUS 3 (reference) 

FIG. 4.11 Three-bus network. 

Bus 2 
I 

40 MW$ 

Bus 3 

FIG. 4.12 Three-bus network showing flows calculated by DC power flow. 

EXAMPLE 4C 

The network of Example 4A was solved using the DC power flow with resulting 
power flows as shown in Figure 4.13. The DC power flow is useful for rapid 
calculations of real power flows, and, as will be shown later, it is very useful in 
security analysis studies. 

4.2 TRANSMISSION LOSSES 

4.2.1 A Two-Generator System 

We are given the power system in Figure 4.14. The losses on the transmission 
line are proportional to the square of the power flow. The generating units are 
identical, and the production cost is modeled using a quadratic equation. If 
both units were loaded to 250 MW, we would fall short of the 500 MW load 
value by 12.5 MW lost on the transmission line, as shown in Figure 4.15. 



24.8 - -+ 24.8 

-16.2 

+ 25.3 

-0.3 

76.0 

- 16.2 - 33.1 

- 
1 o o w  4 3 3 . 1  

generator 

-0.3 

FIG. 4.13 Six-bus network base case DC power flow for Example 4C. 

-4.1 + 41.6 

Where should the extra 12.5 MW be generated? Solve the Lagrange equation 
that was given in Chapter 3. 

2 = F,(P,) + FZ(P2) + R(500 + s,,, - PI - Pz) (4.38) 
where 

~,,, = 0.0002P: 

r 

-16.9 
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I 
Losses = 0.0002 P: 

PI - 500 MW 
Min = 70 MW 
Max = 400 MW 

---t 

p2 
Min = 70 MW 
Max = 400 MW 

FIG. 4.14 Two-generator system. 

I 
Losses = 12.5 MW 

Pl - 
250 MW 

p2 - 
250 MW 

I 
Losses = 12.5 MW 

Pl - 
250 MW 487.5 4' 250 MW 

MW 

FIG. 4.15 Two-generator system with both generators at 250 MW output. 

then 

PI + P2 - 500 - ~,,, = 0 

Substituting into Eq. 4.39, 

7.0 + 0.004P1 - A(1  - 0.0004P1) = 0 

7.0 + O.OO4P2 - E, = 0 

PI + P2 - 500 - 0.0002P: = 0 

Solution: Pl = 178.882 

P2 = 327.496 

Fl(Pl) + F2(P2) = 4623.15ql/h Production cost: 

Losses: 6.378 MW 

(4.39) 
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Losses = 13.932 MW 
---t 

250 MW 
Pl - 

. 263.932 MW 

.--f 
250 MW 

500MW 

Suppose we had decided simply to ignore the economic influence of losses 
and ran unit 1 up until i t  supplied all the losses. It would need to be run at 
263.932 MW, as shown in Figure 4.16. In this case, the total production cost 
would be 

F1(263.932) + F2(250) = 4661.84 P/h 

Note that the optimum dispatch tends toward supplying the losses from the 
unit close to the load, and it also resulted in a lower value of losses. Also note 
that best economics are not necessarily attained at minimum losses. The 
minimum loss solution for this case would simply run unit 1 down and unit 2 
up as far as possible. The result is unit 2 on high limit. 

Pl = 102.084 MW 

Pz = 400.00 MW (high limit) 

The minimum loss production cost would be 

F1(102.084) + F2(400) = 4655.43 P/h 

Min losses = 2.084 M W 

4.2.2 Coordination Equations, Incremental Losses, and Penalty Factors 

The classic Lagrange multiplier solution to the economic dispatch problem was 
given in Chapter 3. This is repeated here and expanded. 

Minimize: 

Where: 

Solution: 

Sf = FT + 2 4  

_ _  - 0 dY 
api 

for all pimin I pi I pi,,, 
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Then 

The equations are rearranged 

where 

is called the incremental loss for bus i, and 

(4.40) 

is called the penalty factor for bus i. Note that if the losses increase for an 
increase in power from bus i, the incremental loss is positive and the penalty 
factor is greater than unity. 

When we did not take account of transmission losses, the economic dispatch 
problem was solved by making the incremental cost at each unit the same. We 
can still use this concept by observing that the penalty factor, PA, will have 
the following effect. For PJ > 1 (positive increase in pi results in increase in 
1 o s ses) 

acts as if 

had been slightly increased (moved up). For PA. < 1 (positive increase in P, 
results in decrease in losses) 

acts as if 
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had been slightly decreased (moved down). The resulting set of equations look 
like 

d F.( P.)  
dpi 

PJ;: = 1” for all emin 5 pi I pi,,, (4.41) 

and are called coordination equations. The Pi values that result when penalty 
factors are used will be somewhat different from the dispatch which ignores 
the losses (depending on the Pf;. and d&(&)/dP;: values). This is illustrated in 
Figure 4.17. 

4.2.3 The B Matrix Loss Formula 

The B matrix loss formula was originally introduced in the early 1950s as a 
practical method for loss and incremental loss calculations. At the time, 
automatic dispatching was performed by analog computers and the loss formula 
was “stored” in the analog computers by setting precision potentiometers. The 
equation for the B matrix loss formula is as follows. 

&,, = PT[B]P + B,TP + B,, (4.42) 

where 
P = vector of all generator bus net MW 

[ B ]  = square matrix of the same dimension as P 

B ,  = vector of the same length as P 
Boo = constant 

dF3 

dP3 
- 

P; P, Pl P‘; P; PZ 
Pf, = 1.05 Pfi = 1.10 

P!! P; P, 

Pf3 = 0.90 

P; = Dispatch ignoring losses 
P;= Dispatch with penalty factors 

h 
(With 

penalty 
factors) 

FIG. 4.17 Economic dispatch, with and without penalty factors. 
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This can be written: 

60,s = C 1 PiBijPj + C B i d  + Boo (4.43) 
i j  i 

Before we discuss the calculation of the B coefficients, we will discuss how 
the coefficients are used in an economic dispatch calculation. Substitute Eq. 
4.43 into Eqs. 3.7, 3.8, and 3.9. 

N 

4 =  - i =  C 1 &+e,,,+ ( i  C C P , B , ~ P ~ + C B ~ , P , + B , ,  j i ) (4.44) 

Then 

(4.45) 

Note that the presence of the incremental losses has coupled the coordination 
equations; this makes solution somewhat more difficult. A method of solution 
that is often used is shown in Figure 4.18. 

EXAMPLE 4D 

The B matrix loss formula for the network in Example 4A is given here. (Note 
that all P, values must be per unit on 100 MVA base, which results in e,,, in 
per unit on 100 MVA base.) 

0.0676 

e,,, = [Pi Pz P3] 

- 0.00507 

+ [ - 0.0766 - 0.00342 

0.00953 -0.00507 Pl 

0.052 1 0.00901 ][ ;] 
0.00901 0.0294 

rpll 
0.01891 P + 0.040357 1;l 

From the base case power flow we have 

Pl = 107.9 MW 

Pz = 50.0 MW 

Pz = 60.0 MW 

e,,, = 7.9 MW (as calculated by the power flow) 
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START 

1- GIVEN TOTAL LOAD P, 

GET STARTING VALUE 

CALCULATE PLoss USING B MATRIX 
DEMAND PD = PI-OAD + PLOSS 

.c 
I CALCULATE BUS PENALTY FACTORS 1 

Pfi = 
1 - 2 ,I Bii Pi - Bi0 

r-+ PICK STARTING A 

SOLVE FOR EACH Pi 

SUCH THAT pfi -- dFi (Pi) 
dPi - A  

ADJUST A 

A F O R i = l . < . N  

* CHECK DEMAND E = TOTAL DEMAND > TOLERANCE 

COMPARE Pi TO Pi OF 
LAST ITERATION 

SAVE MAX I P ia - ’  - Pia[  

6 = SOLUTION 
MAX I p ia - ’  - pia 1 < 6 CONVERGENCE > TOLERANCE 1 YES 

Economic dispatch with updated penalty factors. 
DONE 

FIG. 4.18 
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With these generation values placed in the B matrix, we see a very close 
agreement with the power flow calculation. 

P,,,, = C1.079 0.50 

+ [ -0.0766 

= 0.07877 pu (or 7.877 MW) loss 

EXAMPLE 4E 

Let the fuel cost curves for the three units in the six-bus network of Example 
4A be given as 

F,(P,) = 213.1 + 1 1.669P1 + 0.00533P: P/h 

F2(P2) = 200.0 + 10.333P2 + 0.00889Pi P/h 

F3(P3) = 240.0 + 10.833P3 + 0.00741P: P/h 

with unit dispatch limits 

50.0 MW I PI I 200 MW 

45.0 MW s P3 I 180 MW 

37.5 MW 5 P2 5 150 MW 

A computer program using the method of Figure 4.17 was run using: 

eoad (total load to be supplied) = 210 MW 

The resulting iterations (Table 4.1) show how the program must redispatch 
again and again to account for the changes in losses and penalty factors. 

Note that the flowchart of Figure 4.18 shows a “two-loop” procedure. The 
“inner” loop adjusts 1, until total demand is met; then the outer loop recalculates 
the penalty factors. (Under some circumstances the penalty factors are quite 
sensitive to changes in dispatch. If the incremental costs are relatively “flat,” 
this procedure may be unstable and special precautions may need to be 
employed to insure convergence.) 
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TABLE 4.1 iterations for Example 4E 

Iteration i. 50,s P D  PI pz p3 

1 12.8019 17.8 227.8 50.00 85.34 92.49 
2 12.7929 11.4 22 1.4 74.59 71.15 75.69 
3 12.8098 9.0 2 19.0 73.47 70.14 75.39 
4 12.81 56 8.8 218.8 73.67 69.98 75.18 
5 12.8189 8.8 218.8 73.65 69.98 75.18 
6 12.8206 8.8 218.8 73.65 69.98 75.18 

4.2.4 Exact Methods of Calculating Penalty Factors 

4.2.4.1 
The B matrix assumes that all load currents conform to an equivalent total 
load current and that the equivalent load current is the negative of the sum of 
all generator currents. When incremental losses are calculated, something is 
implied. 

A Discussion of Reference Bus Versus Load Center Penalty Factors 

Total loss = PT[B]P + BCP + Boo 

ap,,,, 
ap1: 

Incremental loss at generator bus i = - 

The incremental loss is the change in losses when an increment is made 
in generation output. As just derived, the incremental loss for bus i assumed 
that all the other generators remained fixed. By the original assumption, 
however, the load currents all conform to each other and always balance 
with the generation; then the implication in using a B matrix is that an 
incremental increase in generator output is  matched by an equivalent increment 
in load. 

An alternative approach to economic dispatch is to use a reference bus that 
always moves when an increment in generation is made. Figure 4.19 shows a 

FIG. 4.19 Power system with reference generator. 
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power system with several generator buses and a reference-generator bus. 
Suppose we change the generation on bus i by Api, 

p;'" = ppld + AP, (4.46) 

Furthermore, we will assume that load stays constant and that to compensate 
for the increase in A&, the reference bus just drops off by APref. 

(4.47) 

If nothing else changed, APref would be the negative of Api; however, the 
flows on the system can change as a result of the two generation adjustments. 
The change in flow is apt to cause a change in losses so that AP,,, is not 
necessarily equal to A e .  That is, 

AP,,, = - Api + A&,,, (4.48) 

Next, we can define pi as the ratio of the negative change in the reference-bus 
power to the change A&. 

or 

We can define economic dispatch as follows. 

(4.49) 

(4.50) 

All generators are in economic dispatch when a shift of A P  MW from 
any generator to the reference bus results in no change in net production 
cost; where A P  is arbitrarily small. 

That is, if 
Total production cost = 1 &(pi) 

then the change in production cost with a shift Api from plant i is 

but 
APr,f = -fliApi 
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then 

To satisfy the economic conditions, 

AProduction cost = 0 
or 

which could be written as 

This is very similar to Eq. 4.40. To obtain an ec nomic dispatch 

(4.52) 

(4.53) 

(4.54) 

olution, 
pick a value of generation o n  the reference bus and then set all other generators 
according to Eq. 4.54, and check for total demand and readjust reference 
generation as needed until a solution is reached. 

Note further that this method is exactly the first-order gradient method with 
losses. 

(4.55) 

4.2.4.2 
The reference-bus penalty factors may be derived using the Newton-Raphson 
power flow. What we wish to know is the ratio of change in power on the 
reference bus when a change Api is made. 

Where Pref is a function of the voltage magnitude and phase angle on the 
network, when a change in AP;. is made, all phase angles and voltages in the 
network will change. Then 

Reference-Bus Penalty Factors Direct porn the AC Power Flow 

To carry out the matrix manipulations, we will also need the following. 

(4.56) 

(4.57) 
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The terms 2Pr,,ldOi and dPref/jEi/ are derived by diflerentiating Eq. 4.18 for 
the reference bus. The terms dOi/aPi and d I Ei I/dPi are from the inverse Jacobian 
matrix (see Eq. 4.20). We can write Eqs. 4.56 and 4.57 for every bus i in the 
network. The resulting equation is 

By transposing we get 

= [ J ' - ' ]  (4.59) 

In practice, instead of calculating J T -  ' explicitly, we use Gaussian elimina- 
tion on J T  in the same way we operate on J in the Newton power flow 
solution. 

APPENDIX 
Power Flow Input Data for Six-Bus System 

Figure 4.20 lists the input data for the six-bus sample system used in the 
examples in Chapter 4. The impedances are per unit on a base of 100 MVA. 
The generation cost functions are contained in Example 4E. 
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Line Data 

From bus 

1 
1 
1 
2 
2 
2 
2 
3 
3 
4 
5 

To bus WPU) X(PU) BCAP" (pu) 

2 0.10 0.20 0.02 
4 0.05 0.20 0.02 
5 0.08 0.30 0.03 
3 0.05 0.25 0.03 
4 0.05 0.10 0.01 
5 0.10 0.30 0.02 
6 0.07 0.20 0.025 
5 0.12 0.26 0.025 
6 0.02 0.10 0.01 
5 0.20 0.40 0.04 
6 0.10 0.30 0.03 

a BCAP = half total line charging suseptance 

Bus Data 

Voltage 
Bus Bus schedule P,," 'load 

number type ( P U  V) (PU MW) ( P U  MW) (pu MVAR) 

1 Swing 1.05 
2 Gen. 1.05 0.50 0.0 0.0 
3 Gen. 1.07 0.60 0.0 0.0 
4 Load 0.0 0.7 0.7 
5 Load 0.0 0.7 0.7 
6 Load 0.0 0.7 0.7 

~ ~ ~ 

FIG. 4.20 Input data for six-bus sample power system. 

PROBLEMS 

4.1 The circuit elements in the 138 kV circuit in Figure 4.21 are in per unit 
on a 100 MVA base with the nominal 138 kV voltage as base. The P + j Q  
load is scheduled to be 170 MW and 50 MVAR. 

Z = 0.01 + j 0.04 pu - Load 

Bus 1 
E ,  = l.0Ln0 

FIG. 4.21 Two-bus AC system for Problem 4.1. 

a. Write the Y matrix for this two-bus system. 
b. Assume bus 1 as the reference bus and set up the Gauss-Seidel 

correction equation for bus 2.  (Use 1.0 L 0" as the initial voltage on 
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bus 2. )  Carry out two or three iterations and show that you are 
converging. 

c. Apply the “DC” load flow conventions to this circuit and solve 
for the phase angle at bus 2 for the same load real power of 1.7 
per unit. 

4.2 Given the network in Figure 4.22 (base = 100 MVA): 

Bus 5 Bus 3 

Bus 1 Bus 2 

,c- X = j0.03 ‘5 X = j0.06 
R = 0.01 R = 0.09 R = 0.03 p3 + - 

Pl 
R = 0.03 
X = j0.05 

Bus 4 
J /  

p.4 

FIG. 4.22 Five-bus network for Problem 4.2. 

a. Develop the [B’] matrix for this system. 

P in per unit MW 
8 in radians (rad) 

b. Assume bus 5 as the reference bus. To carry out a “DC” load flow, we 
will set O 5  = 0 rad. Row 5 and column 5 will be zeroed. 

Remainder 
of B’ 

0 0 0 0  

0 f;] 0 0 
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Solve for the [B’I-’ matrix. 

81 

(32 

(33 

(34 

(35  

PI 

p2 

= [B’] - 1 P3 

p4 I p5 

c. Calculate the phase angles for the set of power injections. 

PI = 100 MW generation 

P2 = 120 MW load 

P3 = 150 MW generation 

P4 = 200 MW load 

d. Calculate P5 according to the “DC” load flow. 
e. Calculate all power flows on the system using the phase angles found 

f. (Optional) Calculate the reference-bus penalty factors for buses 1, 2, 3, 
in part c. 

and 4. Assume all bus voltage magnitudes are 1.0 per unit. 

4.3 Given the following loss formula (use P values in MW): 

1 2 3 
1.36255 x 1.753 x 1.8394 x 

1.754 x 1.5448 x 2.82765 x lop4 

1.8394 x 2.82765 x 1.6147 x 

Bio and Boo are neglected. Assume three units are on-line and have the 
following characteristics. 

Unit 2: 

Unit 1: Hl = 312.5 + 8.25P1 + O.OOSP;, MBu/h 

50 I Pl I 250 MW 

Fuel cost = 1.05 P/MBtu 

H2 = 112.5 + 8.25P2 + O.OOSP:, MBtu/h 

5 I Pz I 150 MW 

Fuel cost = 1.217 e/MBtu 
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Unit 3: H3 = 50 + 8.25P3 + O.O05P:, MBtu/h 
15 I P3 I 100 MW 

Fuelcost = 1.1831 F/MBtu 

a. No Losses Used in Scheduling 
i. Calculate the optimum dispatch and total cost neglecting losses for 

ii. Using this dispatch and the loss formula, calculate the system losses. 

i. Find the optimum dispatch for a total generation of Po = 190 MW* 

ii. Calculate the cost rate. 
iii. Calculate the total losses using the loss formula. 
iv. Calculate the resulting load supplied. 

PD = 190 MW.* 

b. Losses Included in Scheduling 

using the coordination equations and the loss formula. 

4.4 All parts refer to the three-bus system shown in Figure 4.23. 
P1 PL 1 P2 

BUS 1 

I I 
LINE A 

LINE73 I BUS 3 I L m  

P3 PL3 

FIG. 4.23 Network for Problem 4.4. 

Data for this problem is as follows: 

Unit 1: 
Unit 2: 

Unit 3 

Loads: 

Pl = 570 MW 
P2 = 330 MW 

P3 = 200 MW 

PL1 = 200 MW 

PL2 = 400 MW 

PL3 = 500 MW 

* Pdrmand = PI + P2 + P3 = PD 
P,o,, = power loss 
Plaad = PD - PI,,, = net load 

_t"' BUS 2 
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Transmission line data: 

P,,,, in line A = 0.02Pi (where PA = P flow from bus 1 to bus 2) 

fi,,, in line B = 0.02Pi (where P, = P flow from bus 1 to bus 3) 

P,,,, in line C = 0.02Pg (where Pc = P flow from bus 2 to bus 3) 

Note: the above data are for P,,,, in per unit when power flows PA or P, 
or Pc are in per unit. 

Line reactances: 
X ,  = 0.2 per unit 

X ,  = 0.3333 per unit 

X ,  = 0.05 per unit 

(assume 100-MVA base when converting to per unit). 

a. Find how the power flows distribute using the DC power flow 
approximation. Use bus 3 as the reference. 

b. Calculate the total losses. 
c. Calculate the incremental losses for bus 1 and bus 2 as follows: assume 

that APl is balanced by an equal change on the reference bus. Use the 
DC power flow data from part a and calculate the change in power 
flow on all three lines APA, APE, and AP,. Now calculate the line 
incremental loss as: 

Similarly, calculate for lines B and C. 

found in part c. 
d. Find the bus penalty factors calculated from the line incremental losses 

4.5 The three-bus, two-generator power system shown in Figure 4.24 is to be 
dispatched to supply the 500-MW load. Each transmission line has losses 

1 2 

500 Mw 

FIG. 4.24 Circuit for Problem 4.5. 
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that are given by the equations below. 

~,,,,, = 0.0001P: 

~,,,,, = 0.0002P; 

Fi(P1) = 500 + 8Pi + 0.002P: 

50 MW < Pi < 500 MW 

F2(P2) = 400 + 7.9p2 + 0.0025Pi 

50 MW < P2 < 500 MW 

You are to attempt to solve for both the economic dispatch of this system 
and the “power flow.” The power flow should show what power enters 
and leaves each bus of the network. If you use an iterative solution, show 
at least two complete iterations. You may use the following initial 
conditions: PI = 250 MW and P2 = 250 MW. 

FURTHER READING 

The basic papers on solution of the power flow can be found in references 1-5. The 
development of the loss-matrix equations is based on the work of Kron (reference 6), 
who developed the reference-frame transformation theory. Other developments of the 
transmission-loss formula are seen in references 7 and 8. Meyer’s paper (9) is representa- 
tive of recent adaptation of sparsity programming methods to calculation of the loss 
matrix. 

The development of the reference-bus penalty factor method can be seen in 
references 10 and 11. Reference 12 gives an excellent derivation of the reference-bus 
penalty factors derived from the Newton power-flow equations. Reference 12 provides an 
excellent summary of recent developments in power system dispatch. 
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