9

Software Development in Cloud

Learning Objectives

The main objective of this chapter is to introduce the concept of Software
as a Service (SaaS) and its development using Platform-as-a-Service (PaaS)
technology. After reading this chapter, you will

® Understand how SaaS applications are different from traditional
software/application

® Understand how SaaS benefits the service providers and the end
users

¢ Understand the pros and cons of different SaaS delivery models
¢ Understand the challenges that are introduced by SaaS applications

¢ Understand how to develop a cloud-aware SaaS applications using
PaaS technology

Preamble

This chapter gives an insight about SaaS applications that are different and
offer many advantages when compared to traditional applications. We cannot
choose the SaaS delivery option for all kinds of applications. The suitability
of Saa$S is also discussed in this chapter as well as the many SaaS deploy-
ment and delivery models available for SaaS development. Even though SaaS
applications offer more advantages to the consumers, they bring a lot of chal-
lenges to developers with regard to SaaS application development, and this
chapter will further discuss these challenges. An overview of other cloud
service models such as Infrastructure as a Service (IaaS) and Platform as

215

216 Essentials of Cloud Computing

a Service (PaaS) that can be leveraged to develop multitenant-aware, scal-
able, and highly available SaaS applications is detailed in this chapter. This
chapter also gives an idea about achieving secured multitenancy at the data-
base level with different multitenancy models. Finally, the chapter discusses
about the monitoring and SLA maintenance of SaaS applications.

9.1 Introduction

SaaS$ is a promising software delivery and business model in the infor-
mation technology (IT) industry. The applications will be deployed by
the SaaS provider in their managed or hosted infrastructure. The end
users can access the hosted application as a service whenever there is
a need. For using SaaS, the end users need to pay the full license fee.
They can pay for what they used or consumed. To access the SaaS applica-
tion, the customers need not install the software on their devices. It can
be accessed from the service provider infrastructure using a simple web
browser over the Internet. In the traditional software delivery model, the
relationship between the end user and the software is one to one and
licensing based. The end users have to buy the software from the ven-
dors by paying a huge licensing amount. Some heavyweight applications
need a high computing power. So, the end users have to buy the required
hardware also. So, the initial investment to use the software is high, and
if you look at the usage, it will be very low. To overcome this disadvantage
of the traditional software delivery model, companies started developing
the SaaS application, which has one-to-many relationships with the end
users and the software. SaaS follows the multitenant architecture, and it
allows many customers to share a single instance of the software, popu-
larly known as multitenancy. Because of its cost-effective nature, many
customers started moving to SaaS applications rather than the traditional
licensing-based software. Saa$S applications benefit not only the end users
but also the service providers. In the traditional application service pro-
vider (ASP) model, the service providers host the applications on their
own data center to benefit the end user. As the application delivery is
one to one, the ASPs manage dedicated infrastructure for each customers,
which forces them to invest a huge amount in managing the infrastruc-
ture, reducing their return on investment (ROI). Then the ASPs and the
independent software vendors (ISVs) started using the alternate software
delivery model (SaaS), which increased their ROI and at the same time
benefitted the users. Now, most of the traditional ASPs and ISVs started
realizing the business benefits of SaaS and started the SaaS development
business.

Software Development in Cloud 217

9.1.1 SaaS$ Is Different from Traditional Software

The Saa$S delivery model is different from the traditional license-based tra-
ditional software. The following discusses the many characteristics that dif-
ferentiate the SaaS application from traditional applications:

® SaaS provides web access to commercial software on pay-as-you-use
basis.

® SaaS applications are developed, deployed, and managed from a
central location by the service provider.

¢ It allows the same instance of the SaaS application to be shared by
multiple customers or tenants.

e Updates are performed by the service provider, not by the user.

¢ Saa$S applications allow service integration with other third-party
services through application programming interfaces (APIs) pro-
vided by them.

9.1.2 SaaS Benefits

Saa$S applications provide cost-based benefits to the customers. It is also an
on-demand, easy, and affordable way to use the application without a need
to buy it. Additionally, SaaS solutions are easy to adopt and integrate with
other software. Some of the notable benefits of SaaS are mentioned in the
following:

1. Pay per use: SaaS applications are consumed by the end users on a
pay-per-use basis. SaaS applications are on a subscription basis and
allow the customers to use and disconnect the service as they wish.
In the traditional software delivery model, the customers need to
pay the full amount even if they use it very less.

2. Zero infrastructure: For installing and running traditional software,
customers need to buy the required hardware and software, increas-
ing the capital expenditure. In SaaS customers, there is no need to
buy and maintain the infrastructure, operating system, develop-
ment platforms, and software updates.

3. Ease of access: The SaaS application requires a simple web browser
and an Internet connection to access it. The template-based respon-
sive user interface (UIl) will adapt automatically to the end user
device, increasing the user experience and ease of access.

4. Automated updates: In the traditional software delivery model,

the customers need to perform the bulk update, which is an over-
head. But in SaaS, the service provider will perform the automated

218 Essentials of Cloud Computing

updates. So, the customers can access the most recent version of the
application without any updates from their side.

5. Composite services: Using SaaS applications, we can integrate other
required third-party web services or cloud services through their
APL It allows us to create a composite service.

6. Dynamic scaling: Saa$S applications are used by a diverse user commu-
nity. The load on the application will be dynamic and unpredictable.
But with the dynamic load balancing capability, SaaS applications
can handle any additional loads effectively without affecting their
normal behavior.

7. Green IT solutions: SaaS applications are supporting the Green IT
solutions. Since SaaS applications are multitenant and share the
same resources and application instances, buying additional hard-
ware and resources can be eliminated. The high resource utiliza-
tion allows the application to consume less energy and computing
power. SaaS solutions are becoming smarter and have energy-
aware features in it that does not consume much resource for its
operation.

9.1.3 Suitability of SaaS

SaaS applications are used by many individuals and organizations for its
cost-effective nature. Their adoption by large enterprises also increases in a
fair amount. But we cannot use Saa$S applications in all places. The following
are some applications where SaaS may not be the best option:

® Some real-time applications where fast processing of data is needed

¢ Applications where the organization’s data are more confidential
and the organization does not want to host their data externally

* Applications where existing on-premise applications fulfill the orga-
nization’s needs

The following are examples where SaaS is the best option:

¢ For applications where the end user is looking for on-demand soft-
ware rather than full-term/licensing-based software

® For a start-up company that cannot invest more money on buying
licensed software

e For applications that need the accessibility from handheld devices
or thin clients

¢ For applications with unpredictable and dynamic load

Software Development in Cloud 219

9.2 Different Perspectives on SaaS Development

The SaaS model provides web access to the commercial software. Since SaaS
applications are deployed and managed by the service providers, customers
are getting access to software services without any overhead of maintaining
underlying infrastructure and platform. SaaS providers also can reduce the
maintenance overhead by choosing other appropriate cloud services such
as laaS and PaaS, reducing the capital and operation expenditure of main-
taining the servers. SaaS can be deployed and delivered from the traditional
infrastructure or cloud infrastructure. There are different SaaS deployment
and delivery models available to benefit the service provider and customer,
which is discussed in this subsection.

9.2.1 SaaS from Managed Infrastructure and Platform

This model uses the traditional infrastructure and the platform for devel-
oping and deploying the Saa$S application. Cloud computing characteristics
will be satisfied only at the SaaS layer. In the other two layers (platform and
infrastructure), the cloud characteristics will not be satisfied. This means
that the underlying infrastructure and platform are not cloud enabled. The
degree of multitenancy is also very low in this type of model as multitenancy
is not achieved at the PaaS and Iaa$ levels. The developed Saa$S application
will be delivered to the customers in a one-to-many model. Figure 9.1 illus-
trates the concept of delivering SaaS from the self-managed infrastructure
and platform.

Tenant Tenant Tenant
A B C

Managed platform

Managed infrastructure

FIGURE 9.1
Saa$ delivery from managed infrastructure and platform.

220 Essentials of Cloud Computing

Pros

e This type of SaaS delivery model ensures more security to the user
data as the infrastructure and platform are maintained by the SaaS
provider.

¢ The SaaS provider gets full control over the infrastructure and
development platform.

¢ There is no problem of vendor lock-in. The application can be easily
migrated to any other infrastructure without any major modification.

Cons

® More overhead in maintaining the underlying infrastructure and
platform.

¢ The service providers have to invest more on the infrastructure. So,
this model is not suitable for SaaS development companies that do
not have much amount to invest.

¢ Since the development environment is managed by the service pro-
vider, there is an additional overhead of maintaining the scalability
and availability of the application.

¢ Resource utilization will be very low.

9.2.2 Saa$ from laaS and Managed Platform

In this type of service delivery model, the SaaS providers can use the infra-
structure provided by any laaS provider. The infrastructure provider may
be a public or private IaaS provider. The public infrastructure will be cho-
sen if the SaaS application does not require more security to the data. If
the application needs more security and at the same time more resource
utilization, they can choose the private IaaS model. Here, the multitenancy
will be achieved at the infrastructure and application layers. The service
providers have to manage their own development platform. Since the infra-
structure is given by a third party, there is a possibility of vendor lock-in
at the IaaS layer. Figure 9.2 illustrates SaaS delivery from the IaaS and self-
managed platform.

Pros

¢ Ensures high resource utilization at the infrastructure level.
® Reduces the capital investment on the infrastructure.

* (Capital investment can be reduced.

Software Development in Cloud 221

Tenant Tenant Tenant
A B C
ﬂ WM@ L
P e S et S S e)
! |
! Shared Saa$S i
1
I 2
Managed platform

__________________________ .

]
1
! Shared IaaS
1
L

FIGURE 9.2
Saa$ delivery from shared laaS and managed platform.

Cons

¢ Still there is additional overhead in maintaining the development
platform.

¢ Has to enable highly scalable and available features manually.

¢ There is a possibility of vendor lock-in at the infrastructure layer.

9.2.3 SaaS from Managed Infrastructure and PaaS

Saa$S can be developed and delivered from self-managed infrastructure and
shared PaaS. Normally, the application developed using this model will be
deployed as an on-premise application. PaaS used here is generally a private
PaaS. There are many Paa$S providers who allow the customers to build their
own private PaaS on their managed data center. This model will best suit the
community deployment of SaaS. In the community deployment model, the
infrastructure will be maintained by a group of organizations. The devel-
opment platform (PaaS) can be accessed as a service by the different orga-
nizations. This type of model will reduce the overhead in maintaining the
platform. SaaS-specific features such as high scalability and availability will
be handled by the PaaS itself. But the overhead in maintaining the infra-
structure will remain unsolved. This type of model also provides high secu-
rity to the data. The vendor lock-in at the Paa$S level can be possible in this
type of model as the provider will be the third-party provider. This type of
problem can be avoided by building our own PaaS platform on the managed

222 Essentials of Cloud Computing

Tenant Tenant Tenant
A B C

¥y _ §F_ 5 _
©. @ @

Shared PaaS

Managed infrastructure

FIGURE 9.3
SaaS delivery from managed infrastructure and shared PaaS.

infrastructure. Figure 9.3 depicts the idea of developing and delivering SaaS
from managed infrastructure and shared PaaS.

Pros

¢ The scalability and availability of the application will be provided
by PaaS by default. So, the SaaS provider can concentrate more on
application development.

* Security will be moderated, and there is full governance over user data.
Cons

* Even though overhead in maintaining the development platform
is reduced, the overhead in maintaining the infrastructure still
remains unsolved.

e This type of model will be suitable only for private/public SaaS
applications. As the load on the public SaaS is high and unpredict-
able, the service providers may have to buy a new additional infra-
structure to handle extra load. This is not possible for small SaaS
development companies.

9.2.4 SaaS$ from laaS and PaaS

This type of SaaS development and delivery model gets all the benefits of
cloud computing. The infrastructure for developing and deploying a SaaS
application will be provided by the IaaS provider, reducing the overhead in

Software Development in Cloud 223

maintaining the underlying infrastructure. In the same way, the develop-
ment platform also can be provided by the PaaS provider. The IaaS and PaaS
provider might be public or private. The public IaaS and PaaS give more
benefits than the private IaaS and PaaS. Normally, the public IaaS and PaaS
will be selected to reduce the maintenance overhead and initial investment.
Multitenancy is provided at all layers, that is, infrastructure, platform, and
application layers. This type of multitenancy is called as high-level mult-
itenancy, which is not available in other SaaS development and delivery
models. Figure 94 illustrates the idea of developing and delivering SaaS
from the IaaS and PaaS.

Pros

¢ The best delivery model that suits public SaaS applications.

¢ Ensures high resource utilization as it enables multitenancy at all
layers of the application. It also supports Green IT applications.

® Dynamic scaling of IaaS and PaaS provider ensures the high scal-
ability of the application. SaaS development companies need not
worry about the scalability of the application.

¢ The high availability of the applications is ensured by the replica
and the backup and recovery mechanism provided by the service
provider.

* No overhead in maintaining the infrastructure and development
platform. This enables SaaS development companies to develop
more applications in a short span of time.

Tenant Tenant Tenant
A B C

vy _ ¥

®. @& @

]

1 1
! Shared IaaS i
! |

FIGURE 9.4
Saa$ delivery from shared laaS and PaaS.

224 Essentials of Cloud Computing

Cons

¢ Since this type of model mostly uses public IaaS and PaaS models,
the application will be hosted as off-premise applications. So, there
is no governance over customer data.

® There is a possibility of cross tenant attacks as multitenancy is
enabled at all levels of the application.

There are different development and deployment models discussed in this
subsection. The deployment model of SaaS (public or private or community)
will be selected based on the security requirement of the user data. The
investment of buying and managing the infrastructure also will be consid-
ered before selecting the deployment model.

9.3 New Challenges

Many on-premise web applications are replaced by SaaS applications because
of the business benefits of SaaS applications. Adoption of SaaS by large enter-
prises is increasing so as the adoption by individual users. This is due to the
security issues of the data that are stored in the cloud. Large enterprises are
worrying about data security, data governance, and availability. In this subsec-
tion, we shall discuss the challenges that make SaaS development difficult.

9.3.1 Multitenancy

Enabling multitenancy in a SaaS application is a challenge that all developers
are facing today. Multitenancy can be achieved at the infrastructure, platform,
database, and application levels for better resource utilization. Multitenancy
is a one-to-many model that allows multiple customers to share a single
instance of code and database of the SaaS application. So, developers need
to learn the required knowledge of developing a multitenant software. For
example, there are several multitenancy levels available with respect to data-
base, namely, separate database, shared database and separate schema, and
shared database and shared schema. The developer has to choose the correct
multitenancy level based on the customer’s requirement before developing
the application. The developers can make use of any PaaS to reduce the over-
head in enabling the multitenancy of the SaaS application.

9.3.2 Security

The first important consequence of the multitenancy model of the SaaS appli-
cation is data security. Since the environment is shared, there is a possibility

Software Development in Cloud 225

of data breaches. One tenant can easily get access to the other tenants’ data,
which will result in a serious issue. This is the reason why most of the enter-
prises are not ready to adopt SaaS applications for their business needs and
isolating tenants” data is one way to overcome this, which is the biggest chal-
lenge for any SaaS developer. As SaaS applications are web based, the secu-
rity threats that are applicable to traditional applications are applicable to
SaaS applications as well. Internal and external security attacks should be
detected and prevented by using proper intrusion detection and intrusion
prevention systems. The developers can incorporate other security mecha-
nisms such as strong encryption, auditing, authentication, access control,
and authorization to secure SaaS applications.

9.3.3 Scalability

A scalable SaaS application should handle the extra load on the application
efficiently. A SaaS application is said to be highly scalable if it handles the
additional load properly. The scalability of the application can be maintained
by predicting the load on the system and providing enough resources to
handle the load. Since SaaS application users are diverse and can connect
and disconnect from the system at any time, predicting the load on the appli-
cation is a big challenge to the developer. So, the software architect should
design an architecture that can handle any kind of load on the application.
The architect should use vertical scaling, horizontal scaling, and load balanc-
ers to develop a highly scalable application. The scalability at the platform and
infrastructure level also can decide the efficiency of the application. So, the
application architecture should use IaaS and PaaS to utilize the advantages
of cloud services.

9.3.4 Availability

Since SaaS users are storing their data in the service provider data center,
ensuring the 99.99% availability of the data is a challenge to SaaS developers,
and a better way to address this is to maintain a proper backup or replica
mechanism. We cannot predict the failure of data stored in advance and can-
not take preventive measures. Most of the traditional application developers
rely on third-party tools to ensure the backup and disaster recovery. A devel-
oper can use distributed NoSQL databases that support automatic replica-
tion and disaster recovery rather than relational databases.

9.3.5 Usability

A new challenge introduced by the SaaS application is multiple-device sup-
port. The user may access the application from laptops, mobiles, tablets, and
other handheld devices. Traditional web application developers used to
develop rich Internet applications that are not adaptable to mobile devices.

226 Essentials of Cloud Computing

So, by keeping the diversity of the end user devices, developers should
develop a responsive web UI that adapts automatically to all user devices.
The developers cannot develop a separate version of the application for dif-
ferent devices. The other challenge to the developer is to maintain the per
tenant customization settings. The Ul customization settings of each user
should be managed properly for each device and should not affect the others.

9.3.6 Self-Service Sign-Up

Many traditional social networking sites use the feature of self-service sign-up
for the users. But it is not mandatory for all the traditional web applications. But
for the Saa$S application, it is a mandatory feature to be incorporated, creating a
challenge to the developers. SaaS applications should be available to the users as
soon as they register. The application should not encourage any admin approval
to allow the user to access the service. In the same way, the application should
allow the users to unsubscribe from using the services at any point in time.

9.3.7 Automated Billing

The other challenge that is imposed by the unique characteristics of Saa$S is
automated billing. Most of the existing SaaS application users are facing the
problem of abusive billing even after disconnected from the services. So, the
developers should incorporate a proper mechanism to avoid abusive billing
and maintain the usage history of each tenant. The tenant may subscribe to dif-
ferent services of the same service provider, and a mechanism should be avail-
able to the customers to see their total and per service usage report and billing.

9.3.8 Nondisruptive Updates

The frequent updates of the application may result in the unavailability of the
application. Whenever the update is performed, it should not affect the normal
behavior of the user. The other consequence of the update may lead to service-
level agreement (SLA) violation. The update operation decides the downtime of
the application, which is an important SLA parameter. The update should be per-
formed in such a way that it does not increase the downtime that is mentioned in
the SLA. So, scheduling and performing the nondisruptive updates of SaaS appli-
cations are the biggest challenges that developers face to avoid SLA violation.

9.3.9 Service Integration

A good Saa$S application should be able to integrate with other third-party
services. Normally, we cannot integrate third-party services directly. We
have to use the APIs of service providers to perform service integration. So,
the architecture of the SaaS application should allow service integration of
other services through their APIs. Service integration can be achieved by

Software Development in Cloud 227

following proper service-oriented architecture (SOA). Another benefit of ser-
vice integration is that we can automate the implementation of some func-
tionalities. Many SaaS providers fail to support service integration, which
they need to improve while developing SaaS applications.

9.3.10 Vendor Lock-In

The major problem of public cloud services is vendor lock-in. There is no
global standard followed among the service providers. Each service provider
follows their own way of providing infrastructure and platform services, and
the migration of the SaaS application from one service provider to the other
becomes difficult and leads to vendor lock-in. So, developers should select
the Paa$S or IaaS that is interoperable with other service providers.

9.4 Cloud-Aware Software Development
Using PaaS Technology

PaaS is a widely used cloud service model that enables the developers to develop
an application online. PaaS provides the development PaaS on a 0 demand basis.
The developers need not install any heavyweight software in their machine to
use PaaS. The developers can develop and deploy an application online through
the client tools such as web UIl, Command Line Interface, web CLI, and repre-
sentational state transfer Representational State Transfer (REST) API provided
by the service provider. Normally, the development of SaaS application imposes
a lot of challenges as discussed in the previous section. With the traditional
development environment, it is very difficult to develop a successful Saa$S that
satisfies all the SaaS-specific requirements. To overcome these challenges, SaaS
development companies can use the popular PaaS that provides many SaaS-
specific features by default. By using PaaS, the developers can concentrate more
on application functionalities rather than struggle with enabling SaaS-specific
features. In this subsection, we shall discuss developing cloud-aware Saa$S appli-
cations using PaaS technology.

Benefits of PaaS: PaaS is used by many small SaaS development companies
and ISVs. The following discusses the many characteristics that increase
PaaS adoption by an organization:

* PaaS provides the services to develop, test, deploy, host, and main-
tain applications in one place.

® Most of the service providers offer polyglot PaaS where the develop-

ers can use a variety of application development environments in
one integrated development environment (IDE).

228 Essentials of Cloud Computing

e The variety of client tools such as web UI, web CLI, REST APIs, and
IDE integration increases the ease of application development and
deployment.

¢ PaaS offers a built-in multitenant architecture for the applications
developed using PaaS.

e PaaS provides a software load balancer that ensures the dynamic
scaling of the application.

* The replicas maintained by PaaS providers ensure the high avail-
ability of the application.

e PaaS providers also allow integrating with other web or cloud ser-
vices to develop composite cloud services.

® PaaS increases the collaboration between the development team as
the application will be deployed at a central place.

® The other important SaaS-specific features like monitoring tools and
automated billing will be offered by PaaS itself.

Before PaaS and after PaaS: PaaS changes the software development process
totally when compared to the traditional software development model. In the
traditional software development, the development process will start from
requirements analysis that involves all the stakeholders of the system. The
second phase is the design phase that includes software architecture, Ul, and
database design. The implementation phase is the actual development, or cod-
ing the application with the available development platform. Here, the devel-
opment platform will be a license-based heavyweight software that requires
machines with high computing power, forcing companies to invest more on
the development platform and hardware. The testing is the next phase of soft-
ware development that mainly ensures the nonfunctional requirements like
security, scalability, availability, and portability. There are many tools available
in carrying out the testing process of the developed application. After testing
a product, it can be deployed in suitable infrastructure and can be delivered
to the end users. Normally, if the application is a stand-alone application, it
will provide a license. If it is a web application, it will be delivered through the
Internet. Generally, each customer of the application will get a separate copy of
the application. In the case of a web application, the application will be hosted
in the service provider infrastructure or customer on-premise infrastructure.
The next step is to maintain the scalability and availability of the application.
The company should keep enough additional servers to handle the extra load
of the application. But in real time, the load on the application will be dynamic
and unpredictable. So, we cannot decide the power of the hardware, which we
need to add later. Here, buying and maintaining the additional hardware will
be an overhead to development companies. The next important thing is avail-
ability of the application. To ensure high availability, companies need to keep
replicas. Again replica management is a big issue for the companies. In the end,

Software Development in Cloud 229

the maintenance process of the application will be carried out by companies.
Normally, updates will be performed by customers from their machines. Each
copy of the application should be updated separately. Additionally, sometimes
updates through a slow Internet connection will disrupt the normal behavior
of the system. So, to avoid all these problems in traditional software develop-
ment methodologies, companies started using the PaaS technology for better
productivity.

Figure 9.5 illustrates the software development process before and after
PaaS. The main problem in traditional software development is the licensed
platform, overhead in testing, deployment, scaling, and maintenance of the
application. But Paa$S hides all of the overheads that are present in traditional
software development. Here, the PaaS platform will be provided to the devel-
opers on an on-demand basis through the Internet. So, the developers can use
the platform to develop their application. The developed application will be
automatically deployed on the service provider infrastructure by the PaaS tool
itself. The other important parameters such as dynamic scaling and availabil-
ity will be handled by the Paa$S tool. Sometimes, because of poor Internet con-
nection, the developers may not able to use PaaS online. So, to overcome this
problem, some of the PaaS vendors allow the offline software development by

Requirements Requirements

Design Design

Implementation Implementation

Testing

Deployment

Scaling

Maintenance Maintenance

()

—~

b)

FIGURE 9.5
Software development (a) before and (b) after PaaS.

230 Essentials of Cloud Computing

integrating their online repository with the local IDEs. This enables the devel-
opers to work offline in the local machine and push the application online
whenever there is an Internet connection. The other advantage is centralized
maintenance. Here, the application is hosted in a central location. So, the cus-
tomers need not perform the updates from their machine as the service pro-
vider updates the application that will be effected to all the customers.

The developed SaaS application is different from the traditional application.
SaaS application developers should enable the following features to the applica-
tion: multitenancy, dynamic scaling, and high availability. The process of devel-
oping a Saa$ application using PaaS technology is discussed in the following.

9.4.1 Requirements Analysis

The development team should cope up with frequently changing require-
ments of the SaaS application. Generally, in requirements analysis, only the
customers and the development team will be involved. Butin SaaS application
development, the service provider for the Paa$S tool should also be involved.
The requirements collection team should collect the requirements from all
the stakeholders. The requirement document should include functional,
nonfunctional, and other SaaS-specific requirements. Before developing the
application, the requirements collection team should analyze the suitability
of the SaaS delivery model for the customers’ requirements. Generally, the
SaaS delivery model will be selected based on security and ROI The next
important thing in the requirements analysis phase is the deployment model
of the SaaS application. If the application does not need more security, we
can develop the Saa$S application from any public PaaS provider. If it requires
more security, then we have to select any private PaaS provider to develop
the application. Normally, in the public deployment model, the overhead in
maintenance will be low and security threats will be high. But in the pri-
vate deployment model, overhead in maintenance will be high and security
threats will be moderate. As the SaaS application is going to be delivered
through the Internet, the SaaS development company should assign highly
skilled security experts and software architects in order to succeed in the
SaaS development business. Security experts should ensure the security at
all layers of the application. The software architect should ensure the scal-
ability and availability of the application. Once the requirements analysis is
properly done, the development team may start designing the architecture.

9.4.2 Multitenant Architecture

An important characteristic of the SaaS application is multitenancy where
multiple customers are allowed to share the same application. Achieving mul-
titenancy depends on the software architecture. The software architecture
should ensure the multitenancy of the SaaS application. Multitenancy can be
achieved at the infrastructure, development platform, database, and application

Software Development in Cloud 231

Tenant Tenant Tenant Tenant Tenant Tenant Tenant Tenant Tenant
B C B C A B C

A A
§_§_ 5 _ § _F_§_ §_ 86 _ 5 _
S 66 G GGlel

..

’
Shared SaaS] ‘ Shared SaaS ! | Shared SaaS l
Infr. | Infr. | i Infr.

< Fully isolated — - Fully shared >

Low-level High-level
multitenancy multitenancy
FIGURE 9.6

Different multitenancy levels.

levels. The architect can choose different levels of multitenancy to utilize the
resources effectively. If the software architect selects an IaaS provider for the
infrastructure needs, then the architect is relieved from enabling multitenancy
at the infrastructure level. If the architect chooses the PaaS provider, the plat-
form level and the infrastructure level multitenancy will be provided by the
Paa$S provider itself. So, the software architect’s job gets reduced to enable the
multitenancy features only at the software level. Depending on the multitenancy
level, the isolation security of the data is decided. If multitenancy is achieved at
all levels, then it is called as high-level multitenancy. If multitenancy is achieved
only at the application level, then it is called as low-level multitenancy. The secu-
rity threat to data will increase as the multitenancy level increases. Depending
on the user security requirements, the architect should select the multitenancy
level. The other advantage of multitenancy is resource utilization. If the com-
pany wants high resource utilization, they can go for a high-level multitenancy.
Figure 9.6 illustrates the different levels of multitenancy and isolation available
to ensure resource utilization and security to the software architect.

9.4.3 Highly Scalable and Available Architecture

Another important characteristic of the SaaS application is dynamic scaling. The
dynamic scaling feature is not mandatory in the case of traditional web applica-
tions. But in the case of the SaaS application, dynamic scaling is very important.

Like multitenancy, achieving dynamic scaling also depends on the soft-
ware architecture. As the load on the SaaS application becomes unpredict-
able and increases or decreases any time, the architecture should ensure the

232 Essentials of Cloud Computing

same performance on varying loads. The scalability of the SaaS application
can be achieved using horizontal scaling, vertical scaling, software load bal-
ancer, and hardware load balancer. In horizontal scaling, identical resources
(application server, database server, and infrastructure) will be added to the
application to handle the additional load. In vertical scaling, the capacity of the
server (application, database, and infrastructure) will be increased as the load
increases. The software load balancers also can be used to ensure the dynamic
scalability of the SaaS application. The role of the software load balancer is
to distribute additional user request across different application and database
servers. The hardware load balancer will distribute the load across different
virtual machines when there is a need for more computing power. If the infra-
structure and development platform is consumed from any service providers
(IaaS, PaaS), they will provide the hardware and software load balancers to
balance the load. If the platform and the infrastructure are self-managed, then
the SaaS development company should rely on third-party tools or they have
to develop their own. Figure 9.7 illustrates the typical SaaS architecture used
to achieve high scalability and availability of the SaaS application.

Tenant Tenant Tenant

A B C
@ = 6 - ¥ User tier
@ L@ L
. Software - | Load balancing tier

Application tier

Database tier

Hardware - Load balancing tier

1 1
1 - : Underlying
: y infrastructure
1
FIGURE 9.7

Typical architecture of the SaaS application.

Software Development in Cloud 233

Like multitenancy and scalability, the availability of the application is
also an important characteristic of a SaaS application. The availability of the
application decides its uptime and downtime. The availability of the applica-
tion is an important parameter of the SLA. Ensuring the 99.99% availabil-
ity of the application depends on the replica mechanism that is specified in
the software architecture. As shown in Figure 9.7, multiple copies of virtual
machines and database applications should be maintained for high avail-
ability. While maintaining the replica, another important aspect is recovery
time after any failure. The application should be fault tolerant, and the recov-
ery time should be minimal to avoid SLA violation. The replica should be
maintained near the customer location to reduce the recovery time after any
failure or disaster.

9.4.4 Database Design

Achieving multitenancy, scalability, and availability at the database level is
an important criterion for successful SaaS development. The database design
for multitenancy should consider the security requirement of the data.
Multitenancy at database level can be achieved by sharing the database
instance, sharing the database table, and sharing the database schema.
Depending on the security of the application, the database should be designed
to secure multitenancy. The database-level multitenancy can be achieved
in three different ways as illustrated in Figure 9.8. If the database designer
selects a separate database for different tenants as shown in Figure 9.8b,
the security will be ensured. If the shared database and separate schema are

Tenant Tenant Tenant Tenant Tenant Tenant Tenant Tenant Tenant
A B C A B C A B C
§_ 5. § 5§ §_ § 5. 5. §
4 P o - B 2 P roN VY
&L & @l &l &l @l &l &l .
SaaS SaaS SaaS
application| application application
L7 [=——r

e T T e T T T T T T S TS T T T e e 3
: Y = O Lo G -
1 | Tenant A || Tenant B || Tenant C : 1 Shared : 1 Shared :
I | database || database || database | | 1 database 1 1 database 1
1 P Pl |
1 1 1

| [TenantA| [TenantB| [TenantC| : | [TenantA| [TenantB| [TenantC| ! | __ L
| i | : . Tenant A :
1 1 1 1 1 Tenant B| I
! [! Tenant C 1
{ 1 [1
P We s P o s s a [R S S i e -

FIGURE 9.8
Database-level multitenancy: (a) separate database, (b) shared database and separate schema,
and (c) shared database and shared schema.

234 Essentials of Cloud Computing

selected as shown in Figure 9.8a, the security to the data will be moderated.
The third multitenancy model shares the database and the schema for the
tenants as shown in Figure 9.8c.

The scalability and availability of the database decide the performance of
the application. Most of the SaaS applications are interactive and involve a
large number of database of read and write requests from the users. When
the number of requests exceeds the actual capacity of the database server,
additional requests should be redirected to the other server. When requests
are redirected, a change of data in one database server should reflect in
other database servers also. Mostly the type of data used in the SaaS
application will be diverse and includes structured, semistructured, and
unstructured data in huge amounts. So, for SaaS applications, Not Only
Structured Query Language (NoSQL) databases will be a better option
than traditional relational, object-oriented databases. The developers can
leverage the advantages of NoSQL databases to achieve scalability and
availability at the database level in an efficient way.

9.4.5 SaaS Development

After designing the architecture and the databases, the developers need to
implement the functional requirements given by the customers. As we dis-
cussed earlier, PaaS facilitates the developers in developing highly scalable,
available, and multitenant-aware Saa$S applications.

The PaaS tools allow the developers to develop the application online, and the
application will be deployed on the service provider infrastructure as soon as the
developer pushes the application online. Here, the end users or SaaS consumers
can access the application online using the web Ul provided by the SaaS pro-
vider. Figure 99 illustrates the overview of SaaS development using PaaS tools.

The PaaS providers also provide testing tools in the same development
environment to facilitate the developers. So, the developers can use built-
in testing tools provided by the PaaS providers to test SaaS applications.
Some PaaS providers offer automated testing of the applications also. While
developing the application, the developers should incorporate the following
things for successful SaaS:

* Responsive Ul design to support multiple devices

¢ Role Based Access Control (RBAC), Access Control List (ACL) mech-
anism to uniquely identify users and tenants

* Monitoring tools that will monitor the performance and notify the
service provider frequently

¢ Control panel for the tenant and admin to manage the users

¢ User-centric customization panel that does not affect the settings of
other tenants or users

¢ Self-service sign-up for the users

Software Development in Cloud 235

@ g [App.] [App.] [App.] \ﬁelb 5
- S
e Q=S
\ o= web U, E VM VM VM 3
Developer
L | PaaS L]
FIGURE 9.9

Overview of SaaS development using PaaS.

* Usage statistics and bill calculation
¢ Help documentation to use the service
* Service integration

9.4.6 Monitoring and SLA Maintenance

As soon as the SaaS application is developed and deployed using PaaS, the
end users can access the SaaS application over the Internet from any end
user device such as desktops, laptops, tablets, and mobiles. After delivering
the application, any misbehavior, failure, security attacks, and disasters of
Saa$ applications should be monitored and prevented. Since a lot of custom-
ers are sharing the same instance of a single application, any misbehavior
from one tenant will affect the other tenants and the underlying resources.
Updates should be scheduled and performed in such a way that it does not
affect the normal behavior of the system, so updating the SaaS application
frequently will offer the its most updated version to the end users. But if
you update the application with bulk updates frequently, it may lead to
the unavailability of the application. Another important job in SaaS moni-
toring is to monitor the SLA violation by both the service provider and
customer. If there is any SLA violation, the monitoring tool should notify
the developers to correct the errors that lead to the SLA violation. The SaaS
providers should define the SLA clearly to the end users before deliver-
ing any services. The SLA should include the availability, response time,
and degree of support. The service providers also should provide 24 x 7
support to the end users. The development team should resolve the issues
frequently as soon as feedback is received from the end users. There are
many third-party monitoring tools are available to monitor SaaS applica-
tions. The SaaS development company can make use of those monitoring
tools to reduce the overhead.

236 Essentials of Cloud Computing

9.5 Summary

Saa$ is one of the important services provided by cloud computing. Usage-
based billing, high scalability, ease of access, and other benefits make the most
of the customers to move from traditional applications to SaaS applications.
Small business companies/start-up companies started using SaaS to reduce
their investment on buying software thatis underutilized in their organization.
By using on-demand Saa$ applications, any company can increase their ROL. If
you look at the usage of SaaS in large enterprises, it is very low compared to the
usage of individuals and small business companies. Large enterprises are hesi-
tant to use Saa$S applications for their organizations because of security issues.
Saa$ applications are multitenant. Whenever the users are sharing the applica-
tion, there is a possibility of security attacks between the tenants. If you remove
the multitenant features from SaaS applications at the infrastructure, platform,
and software levels, it will result in a high development cost. Obviously, the
customers need to pay more for the software they use. When someone decides
to go for SaaS applications, they have to consider its cost and security require-
ments. Based on the cost and security requirements, the service providers can
follow any of the SaaS development and deployment models discussed in this
chapter. Other than the security issues, the SaaS application introduces a lot
of challenges to the developers such as scalability, availability, usability, self-
service sign-up, and automated billing. These challenges can be addressed by
incorporating the best practices into software engineering and PaaS technol-
ogy. SaaS changes the way the software is delivered, and PaaS changes the way
the software is developed. PaaS automates the process of deployment, testing,
and scaling and reduces manual work and the cost involved in developing the
application. SaaS providers also can utilize IaaS of cloud computing to reduce
the investment on buying infrastructure.

Review Points

® Saa$ is one of the software delivery models that allow the end users
to share the application that is centrally hosted by a provider (see
Section 9.1).

® SaaS contains unique characteristics that differentiate it from tradi-
tional software (see Section 9.1.1).

® Saa$ benefits include pay per use, zero infrastructure, ease of access,
automated updates, and composite services (see Section 9.1.2).

® Saa$S does not suit the application where fast processing of data is
needed (see Section 9.1.3).

Software Development in Cloud 237

® SaaS delivery can be of many forms: managed infrastructure and
platform, IaaS and managed platform, managed infrastructure
and PaaS, and IaaS and Paa$S (see Section 9.2).

® Saa$ challenges such as multitenancy, security, scalability, availabil-
ity, and usability make SaaS development a difficult job for develop-
ers (see Section 9.3).

® Multitenancy is a one-to-many model where a single instance of an
application can be shared by multiple users (see Section 9.3.1).

® Scalability of the SaaS application depends on how well the applica-
tion will handle the extra load (see Section 9.3.3).

® Auvailability of the SaaS application can be improved by keeping
proper backup and recovery mechanisms (see Section 9.3 .4).

* Usability of the SaaS application depends on the adaptive and respon-
sive UI design that supports multiple devices (see Section 9.3.5).

e Self-service sign-up feature of the SaaS application allows the end
users to subscribe or unsubscribe from the service without the inter-
vention of the provider (see Section 9.3.6).

* Automated billing feature maintains the usage history and provides the
bill based on per tenant usage or per service usage (see Section 9.3.7).

* Nondisruptive updates ensure the uptime of the application and dur-
ing the time of application update also (see Section 9.3.8).

¢ Service integration of the SaaS application allows any SaaS application
to integrate with other services through an API (see Section 9.3.9).

e Vendor lock-in does not allow migration of application to other ser-
vice providers, which is the problem with most of the public cloud
providers (see Section 9.3.10).

® PaaS changes the way software is developed by providing develop-
ment PaaS (see Section 9.4).

e Cloud-aware software development requires multitenant, highly scal-
able architecture (see Section 9.4).

Review Questions
1. What is Software as a Service (SaaS)? How is it different from tradi-
tional software?
2. Briefly explain the benefits of the SaaS application.

3. Is it wise to choose the SaaS delivery model for all kinds of applica-
tions? Justify your answer.

238 Essentials of Cloud Computing

4. Explain the different SaaS development and deployment models
with neat diagrams.

5. List out the pros and cons of different SaaS development and deploy-
ment models.

6. List the challenges that make SaaS development a difficult task. Also,
explain any five challenges in detail.

7. Write short notes on the benefits provided by PaaS technology for
developing Saa$S applications.

8. Explainin detail how PaaS technology changes software development.
9. Briefly explain the requirements analysis for SaaS application.
10. Explain different multitenancy levels with neat diagrams.

11. Illustrate and explain the typical architecture of the SaaS applica-
tion, which is to ensure better scalability and high availability.

12. How is database-level multitenancy achieved? Explain the different
database-level multitenancies with neat diagrams.

13. List out important features that SaaS developers should incorporate
while developing Saa$S applications.

14. Write short notes on monitoring and SLA maintenance of SaaS
applications.

Further Reading

6 best practices to cloud enable your apps. White Paper, Tier 3, Inc.

Best practices for cloud computing multi-tenancy. White Paper, IBM Corporation,
2003.

Betts, D., A. Homer, A. Jezierski, M. Narumoto, and H. Zhang. Developing Multi-Tenant
Applications for the Cloud on the Microsoft Windows Azure. Microsoft Press, 2010.

Building successful enterprise SaaS apps for the cloud. White Paper. THINKSstrategies,
Inc., 2011.

Chauhan, N. S. and A. Saxena. A green software development life cycle for cloud
computing. IT Professional 15(1): 28-34, 2013.

Chong, R. E. Designing a database for multi-tenancy on the cloud: Considerations
for SaaS vendors. Technical article, IBM Developer Works. Available
[Online]: http://www.ibm.com/developerworks/data/library/techarticle/
dm-1201dbdesigncloud /dm-1201dbdesigncloud-pdf.pdf Accessed October 12,
2013.

da Silva, E.A.N. and D. Lucredio. Software engineering for the cloud: A research
roadmap. 26th Brazilian Symposium on Software Engineering (SBES), September
23-28, 2012, pp. 71-80.

Deploying software as a service (SaaS). White Paper, WebApps, Inc. a.k.a. SaaS.com.

Software Development in Cloud 239

Gagnon, S., V. Nabelsi, K. Passerini, and K. Cakici. The next web apps architecture:
Challenges for SaaS vendors. IT Professional 13(5): 44-50, 2011.

Goth, G. Software-as-a-service: The spark that will change software engineering?
Distributed Systems Online, IEEE 9(7): 3, 2008.

Kang, S., J. Myung, J. Yeon, S. Ha, T. Cho, J. Chung, and S. Lee. A general maturity
model and reference architecture for SaaS. Proceedings of Database Systems for
Advanced Applications (DASFAA 2010), Part II, LNCS 5982, pp. 337-346.

Lawton, G. Developing software online with platform-as-a-service technology.
Computer 41(6): 13-15, June 2008.

Liu, E, J. Tong,]. Mao, R. B. Bohn, J. V. Messina, M. L. Badger, and D. M. Leaf. NIST
cloud computing reference architecture. NIST Special Publication 500-292,
September 2011. Available [Online]: http:/ /www.nist.gov/customcf/get_pdf.
cfm?pub_id=909505 (accessed September 3, 2013).

Mell, P. and T. Grance. The NIST definition of cloud computing. NIST Special
Publication 800-145, September 2011. Available [Online]: http:/ /csrc.nist.gov/
publications /nistpubs/800-145/SP800-145.pdf (accessed September 3, 2013).

Yau, S. S. and H. G. An. Software engineering meets services and cloud computing.
Computer 44(10): 47-53, October 2011.

Rodero-Merino, L., L. M. Vaquero, E. Caron, A. Muresan, and F. Desprez. Building
safe PaaS clouds: A survey on security in multitenant software platforms.
Computers and Security 31(1), 96-108, 2012. ISSN 0167-4048.

SaaS Architecture. White Paper, Progress Software Corporation.

SaaS Scalability. White Paper, Progress Software Corporation.

10

Networking for Cloud Computing

Learning Objectives

After studying this chapter, you should be able to

¢ Understand the general classification of data centers
* Present an overview of the data center environment
* Understand the basic networking issues in data centers

¢ Explain the performance challenges faced by TCP/IP in data center
networks

® Describe the newly designed TCPs for data center networks and
their novelty

Preamble

This chapter provides an introduction to networking in Cloud Enabled Data
Centers (CEDCs) and the issues thereof. A general classification of data centers
and a brief overview of the data center environment are provided to familiarize
the reader with the CEDCs. Major issues related to networking in a cloud envi-
ronment are presented with an emphasis on TCP/IP-related performance issues.
Newly designed protocols tailored specifically for data center networks are
explained in detail, while mentioning advantages and disadvantages of each.

10.1 Introduction

The Internet over the past few years has transformed from an experimental
system into a gigantic and decentralized source of information. Data cen-
ters form the backbone of the Internet and host diverse applications ranging

241

