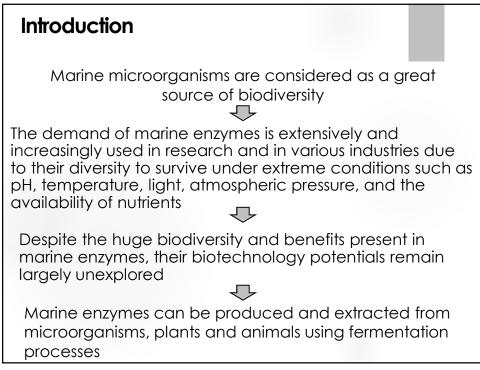
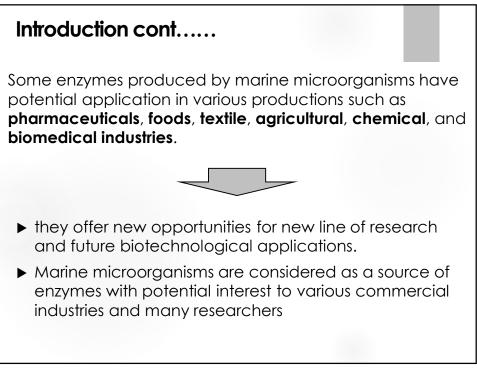
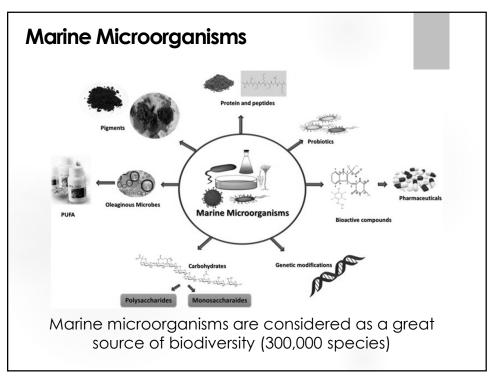

3


Bioteknologi pada pengembangbiakan ikan


- ▶ Reproduksi: GnRH tool
- Induksi kematangan gonad ikan melalui kontrol lingkungan;
- Induksi kematangan gonad ikan melaui hormonal
- Kontrol Fertilitas
- ► Poliploidisasi
- Kontrol proporsi sex pada keturunan
- ► Transplantasi Germ cell



1. Industrial Enzymes Production

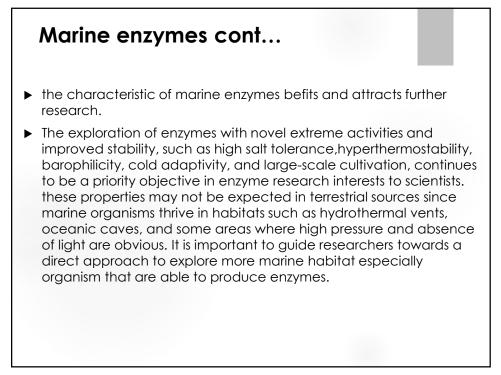
The use of microorganisms as a source material for enzyme production has developed for several important reasons:

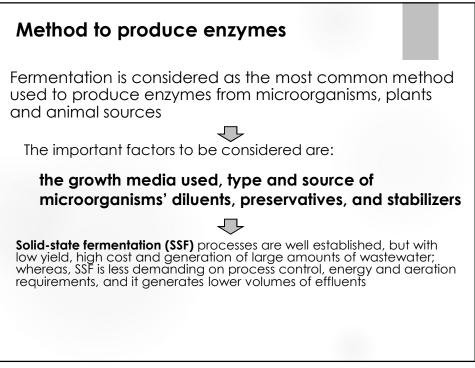
- \checkmark There is a high activity per unit dry weight of product.
- Seasonal fluctuations of raw materials and possible shortages due to climatic change or political upheavals do not occur.
- In microbes a wide spectrum of enzyme characteristics, as pH range and high-temperature resistance, is available for selection.
- Industrial genetics has greatly increased the possibilities for optimizing enzyme yield

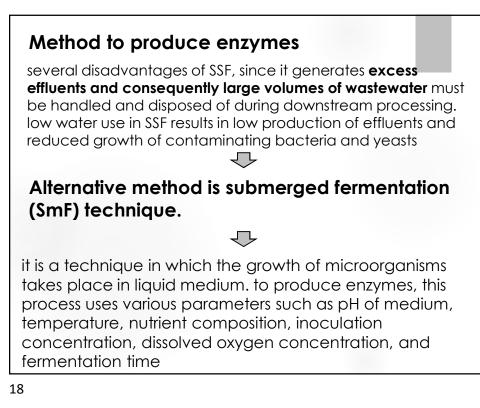
- The organism producing the enzymes should have a GRASstatus, which means that it is Generally Regarded as Safe.
- Most of the industrially used microorganisms have been genetically modified to overproduce the desired activity.
- Several thermostable enzymes, like the Taq polymerase have been identified and widely used in PCR from Thermus aquaticus.
- Cellulase is obtained from E . coli and degrades cellulose.
- Xylanase from fungus Trichoderma is used in paper industry

- Bacterial proteases are still the most important detergent enzymes. Some products have been genetically engineered to be more stable in the hostile environment of washing machines.
- Protease and lipase containing enzyme solutions are used for lens cleaning.
- Some toothpaste contains glucoamylase and glucose oxidase.
- Also enzymes are also used for applications in skin and hair care products.
- The use of starch degrading enzymes, amylase, was the first large-scale application of microbial enzymes in food industry.

13

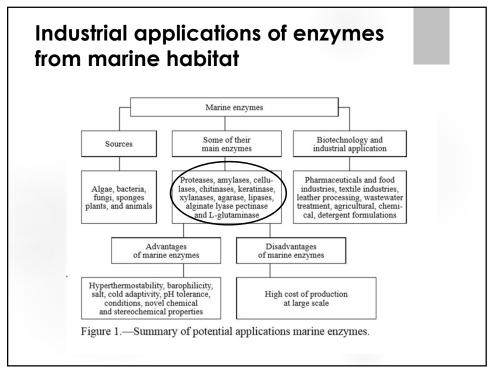

Bioactive compounds of marine habitats products:


Marine habitats products contain a wide range of bioactive compounds with various activities which include antibacterial, antidiabetic, antifungal, antiinflammatory, antiprotozoal, antituberculosis, antiviral, antitumor, and antioxidant properties


Marine enzymes

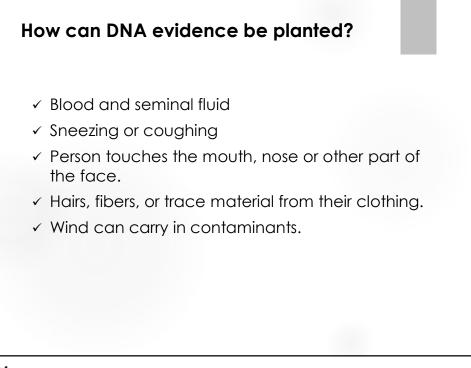
- a large number of marine enzymes have been detected, isolated purified, and characterized for various industries such as:
- ✓ Proteases, Chitinases,
- ✓ Keratinases, Pullulanase,
- Amylases, Xylanases,
- ✓ Agarases, Lipases,
- Peroxidase, Tyrosinases,
- ✓ Polysaccharases, and Laccases.

Algae as source of enzymes


- the interest for the marine algae has increased considerably due to conditions to survive such as high salinity, heat, cold, varied light sources, osmotic pressure, and anaerobiosis
- They are considered as a source to produce cell and bioactive compounds useful in food, aquaculture, and pharmaceutical industries.
- Green, brown, red, and green algae such as Chlorophyceae, Chlorella vulgaris, Haematococcus pluvialis, Dunaliella salina, Saccharina japonica, Cylindrotheca, Closterium, Dunaliella salina, Chaetoceros muelleri, Polysiphonia species, Delesseria species, Adonostroma fuscum, and Porphyridium species are used as genera to produce enzymes with potential application in various industries.

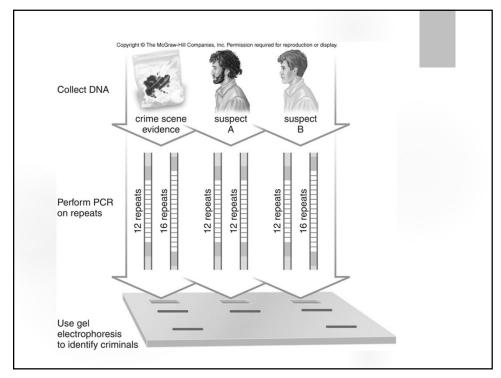
Bacteria and fungi as sources of enzymes														
A summa	A summary of enzymes derived from marine fungi													
TABLE I.—A summary of e			Tem-	<i>ungi.^{2, 3}</i> Time	3, 39-48 Agitation									
0														
Source	Enzyme	pH	perature (°C)	(h)	(rpm)	Enzyme activity	Application							
Scopulariopsis spp. ³⁹	Enzyme Alkaline protease	рН 9.0				Enzyme activity 5.4 U/mg	Application Detergent formulations							
	Alkaline		(°C)	(h)	(rpm)									
Scopulariopsis spp. ³⁹ Aspergillus awamori	Alkaline protease	9.0	(°C) 50	(h) 24	(rpm) 10,000	5.4 U/mg	Detergent formulations Useful in beer, and fruit juice clarification, to							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰	Alkaline protease Tannase	9.0 8.0	(°C) 50 30	(h) 24 24	(rpm) 10,000 10,000	5.4 U/mg 436.72 U/mg	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³	Alkaline protease Tannase Protease	9.0 8.0 5.0	(°C) 50 30 24.5	(h) 24 24 24	(rpm) 10,000 10,000 150	5.4 U/mg 436.72 U/mg 7200 U/L	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations							
Scopulariopsis spp. ³⁹ Aspergillus avamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³ Aureobasidium pullulans ²	Alkaline protease Tannase Protease Glucoamylase	9.0 8.0 5.0 4.0	(°C) 50 30 24.5 28	(h) 24 24 24 24 72	(rpm) 10,000 10,000 150 300	5.4 U/mg 436.72 U/mg 7200 U/L 10.04 U/mL	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofuel, and agricultural industries							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³ Aureobasidium pullulans ² Aspergillus sp. AS58 ⁴¹	Alkaline protease Tannase Protease Glucoamylase Glucosidase	9.0 8.0 5.0 4.0 5.0	(°C) 50 30 24.5 28 45	(h) 24 24 24 72 96	(rpm) 10,000 10,000 150 300 120	5.4 U/mg 436.72 U/mg 7200 U/L 10.04 U/mL 80,000 U/L	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofuel, and agricultural industries Detoxification of industrial effluents, paper and pulp,							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³ Aureobasidium pullulans ² Aspergillus sp. ASS8 ⁴¹ Cerrena unicolor ⁴²	Alkaline protease Tannase Protease Glucoamylase Glucosidase Laccase	9.0 8.0 5.0 4.0 5.0 N* 4.5-8.5	(°C) 50 30 24.5 28 45 30	(h) 24 24 24 72 96 24	(rpm) 10,000 10,000 150 300 120 N*	5.4 U/mg 436.72 U/mg 7200 U/L 10.04 U/mL 80,000 U/L 24,000 U/L	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofuel, and agricultural industries Detoxification of industrial effluents, paper and pulp, textile and petrochemical industries							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³ Aureobasidium pullulans ² Aspergillus sp. AS58 ⁴¹ Cerrena unicolor ⁴² Aspergillus niger ⁴³	Alkaline protease Tannase Protease Glucoamylase Glucosidase Laccase Xylanase Alginate lyase	9.0 8.0 5.0 4.0 5.0 N* 4.5-8.5	(°C) 50 30 24.5 28 45 30 28-30	(h) 24 24 24 24 72 96 24 168	(rpm) 10,000 10,000 150 300 120 N* N*	5.4 U/mg 436.72 U/mg 7200 U/L 10.04 U/mL 80,000 U/L 24,000 U/L 580 U/L	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofuel, and agricultural industries Detoxification of industrial effluents, paper and pulp, textile and petrochemical industries Biobleaching of paper pulp							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW03240 Aureobasidium pullulans ³ Aureobasidium pullulans ² Aspergillus sp. AS5841 Cerrena unicolor ⁴² Aspergillus niger ⁴³ Aspergillus oryzae ⁴⁴	Alkaline protease Tannase Protease Glucoamylase Glucosidase Laccase Xylanase Alginate lyase	9.0 8.0 5.0 4.0 5.0 N* 4.5-8.5 6.5	(°C) 50 30 24.5 28 45 30 28-30 35	(h) 24 24 24 24 72 96 24 168	(rpm) 10,000 10,000 150 300 120 N* N* 12,000	5.4 U/mg 436.72 U/mg 7200 U/L 10.04 U/mL 80,000 U/L 24,000 U/L 580 U/L 67.24 U/mg	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofiuel, and agricultural industries Detoxification of industrial effluents, paper and pulp, textile and petrochemical industries Biobleaching of paper pulp Biochemicals and biofuels							
Scopulariopsis spp. ³⁹ Aspergillus awamori BTMFW032 ⁴⁰ Aureobasidium pullulans ³ Aureobasidium pullulans ² Aspergillus sp. ASS8 ⁴¹ Cerrena unicolor ⁴² Aspergillus oryzae ⁴⁴ Aspergillus oryzae ⁴⁴	Alkaline protease Tannase Protease Glucoamylase Glucosidase Laccase Xylanase Alginate lyase Chitinase	9.0 8.0 5.0 4.0 5.0 N* 4.5-8.5 6.5 3.0-4.0	(°C) 50 30 24.5 28 45 30 28-30 35 37	(h) 24 24 24 72 96 24 168 72	(rpm) 10,000 10,000 150 300 120 N* N* 12,000 10,000	5.4 U/mg 436.72 U/mg 7200 U/L 80.000 U/L 24.000 U/L 580 U/L 67.24 U/mg 0.01 U/mL	Detergent formulations Useful in beer, and fruit juice clarification, to enhance antioxidant activity of green tea Detergent formulations Food industry Food, surfactant, biofuel, and agricultural industries Detoxification of industrial effluents, paper and pulp, textile and petrochemical industries Biobleaching of paper pulp Biochemicals and biofuels Polycyclic hydrocarbons							

Bacteria and fungi as sources of enzymes


A summary of enzymes derived from marine bacteria

Source	Enzyme	pH	Tempera- ture (°C)	Time (h)	Agitation (rpm)	Enzymes activity	Application
Vibrio alginolyticus ³⁴	Amylase	6.0	60	2	10,000	N*	Implications in food, pharmaceutical, and chemical industry
Halophilic strain of SD1136	Alkaline protease	10.0	60	24	10,000	182.47 U/mg	Industrial applications
Oceanobacillus sp. PUMB0249	Lipase	8.0	30	24	2300	58.84 U/mL	Disruption of bacterial biofilms
Paenibacillus sp. CHE-N1 ⁵⁰	Chitinase	7.0	34.3	56	300	11.8 U/mL	Hemolytic and anticancer activity
Vibrio sp. strain JT010751	Agarase	8.0	25	10	600	625 U/L	Food industry pharmaceutical, and chemical industry
Saccharophagus degradans ⁵²	Alginases	7.6	25	36	N*	1690 alginase units	Biochemicals and biofuels
Paenibacillus sp. BME-1453	Endoglucanase (Cel9P)	6.5	35	2	N*	70%	Cellulase activity, cold-active mechanism, and industry applications
Rhodococcus sp. strain YM12 ⁵⁴	N-acetyltransferase	8.0	35	2	12,000	60%	Herbicide detoxification by transgenic crops
Vibrio costicola55	L-glutaminase	7.0	25	24	N*	N*	Anticancer properties
Vibrio harveyi56	Protease	7.2	30	9	16,000	4.28 U/mg	Detergent formulations

2. Application in Forensics


- ✓ Forensic science can be defined as the intersection of law and science.
- DNA profiling (also called DNA testing, DNA typing, or genetic fingerprinting) is a technique employed by forensic scientists to assist in the identification of individuals via their DNA profiles
- DNA profiling has helped to acquit or convict suspects in many of the most violent crimes, including rape and murder.
- Because DNA evidence is so specific, it is actually much easier to exclude a suspect than to convict someone based on a DNA match.

Criminal Investigation Steps

- > DNA Collection & Comparison
- > PCR: Polymerase Chain Reaction
- > Digestion of DNA using restriction enzymes.
- Separation of the DNA fragments by size using gel electrophoresis.
- Transfer of fragments to a nitrocellulose or nylon membrane.
- Hybridization of a probe to the fragment or fragments of interest.
- > Probe detection (autorad development).

3. Gene Therapy

Gene therapy is a process where cells are taken from the patient, alter their chromosomes by adding genes, and then replace the cells back into the patient using a carrier such as a virus.