

# HUKUM GRAVITASI EINSTEIN & GERAK PARTIKEL BEBAS

#### **TEORI RELATIVITAS**

Dosen pengampu: Hervin Maulina, S.Pd., M.Sc.

### **OUTLINE PERKULIAHAN**

- 1. Gravitasi Menurut Newton
- 2. Gravitasi Menurut Einstein (Relativitas Umum)
- 3. Hubungan Matematis antara Einstein dan Newton
- 4. Analogi Fisis
- 5. Perbandingan Inti Konseptual
- 6. Contoh Perhitungan Batas Newton
- 7. Contoh Nyata dalam Kehidupan

## Tujuan Pembelajaran

- Menjelaskan bagaimana teori gravitasi Newton muncul sebagai pendekatan batas (limit) dari relativitas umum.
- Mengidentifikasi perbedaan utama antara pandangan Newton (gaya tarik) dan Einstein (kelengkungan ruang-waktu).
- 3. Menunjukkan contoh fenomena di mana hukum Newton gagal dan teori Einstein diperlukan.

## 1. Gravitasi Menurut Newton

Dalam mekanika klasik gravitasi dianggap sebagai gaya traik-menarik antara dua massa.

$$F = \frac{GMm}{r^2}$$

#### Dengan:

F= Gaya gravitasi (gaya traik) (N)

G= Tetapan universal gravitasi, 6.67x10<sup>-11</sup> Nm<sup>2</sup>/kg<sup>2</sup>)

M= massa benda pertamam=massa benda keduar=jarak pusat massa kedua benda (m)

#### Ciri utamanya:

- Gaya bekerja instan (tanpa penundaan waktu).
- Ruang dan waktu dianggap terpisah dan absolut.
- Medan gravitasi adalah vektor gaya yang tergantung pada jarak.

#### Namun, teori ini gagal menjelaskan beberapa fenomena:

- Pergeseran orbit Merkurius (precession).
  yang dikenal sebagai presesi perihelion, adalah fenomena di mana titik terdekat Merkurius dengan Matahari (perihelion) bergeser sedikit pada setiap orbitnya.
- Pembelokan cahaya oleh gravitasi. fenomena di mana cahaya dibelokkan saat melewati objek bermassa besar, seperti bintang atau galaksi.
- Perbedaan waktu di medan gravitasi kuat (gravitational time dilation), terjadi karena gravitasi yang lebih kuat memperlambat waktu.

# 2. Gravitasi Menurut Einstein (Relativitas Umum)

Einstein mengganti konsep gaya dengan geometri ruang-waktu.

Massa dan energi tidak menarik benda lain, tetapi melengkungkan ruang-waktu di sekitarnya.

Benda bergerak mengikuti lintasan geodesik, yaitu jalur terpendek dalam ruang-waktu yang melengkung yang memenuhi persamaan:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

 $G_{\mu 
u}$ : kelengkungan ruang-waktu

 $T_{\mu 
u}$ : distribusi energi-momentum

Hubungan ini menggantikan F=ma dalam skala kosmik

# 3. Hubungan Matematis antara Einstein dan Newton

Dalam kondisi medan lemah dan kecepatan rendah  $(v \ll c)$ :

 $g_{00}pprox 1+rac{2\phi}{c^2}$ 

dengan φ adalah **potensial gravitasi Newton**. Jika kita substitusi ke dalam persamaan Einstein, hasilnya:

$$abla^2 \phi = 4\pi G 
ho$$

Jadi, gravitasi Newton muncul sebagai batas klasik dari relativitas umum.

#### Jadi, gravitasi Newton muncul sebagai batas klasik dari relativitas umum.

| Asumsi                        | Akibat                      |
|-------------------------------|-----------------------------|
| Medan gravitasi lemah         | ruang hampir datar          |
| Kecepatan benda kecil         | efek relativistik diabaikan |
| Waktu mengalir hampir seragam | mendekati hukum Newton      |

## 4. Analogi Fisis

Bayangkan dua situasi:

**□** Pandangan Newton:

Bumi menarik apel ke bawah melalui gaya

$$F = \frac{GMm}{r^2}$$

□ Pandangan Einstein:

Bumi melengkungkan ruang-waktu di sekitarnya; apel hanya mengikuti "jalur lurus" (geodesik) dalam ruang yang melengkung.

Jadi "jatuh" bukan karena gaya, tapi karena ruang tempat apel bergerak tidak lurus lagi.

## 5. Perbandingan Inti Konseptual

| Aspek            | Newton                 | Einstein                                                        |
|------------------|------------------------|-----------------------------------------------------------------|
| Konsep gravitasi | Gaya tarik antar massa | Kelengkungan ruang-waktu                                        |
| Ruang & waktu    | Terpisah, absolut      | Menyatu, dinamis                                                |
| Medan            | Vektor gaya            | Tensor metrik $g_{\mu  u}$                                      |
| Propagasi        | Instan                 | Terbatas oleh kecepatan cahaya                                  |
| Hukum            | F=ma                   | Persamaan Einstein $G_{\mu  u} = rac{8 \pi G}{c^4} T_{\mu  u}$ |

## 6. Contoh Perhitungan Batas Newton

Misal: medan gravitasi Bumi ( $r\gg R_s$ )

$$g_{00}=1-\frac{2GM}{rc^2}$$

Untuk  $GM/(rc^2)\ll 1$ :

$$ds^2 \approx (1 + 2\phi/c^2)c^2dt^2 - dx^2 - dy^2 - dz^2$$

Dengan  $\phi = -rac{GM}{r}$ , maka:

$$a=-
abla \phi=rac{GM}{r^2}$$

muncul kembali gravitasi Newton.

## 7. Contoh Nyata dalam Kehidupan

| Fenomena              | Penjelasan Relativitas Umum                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------------|
| GPS                   | Satelit mengalami waktu berbeda karena medan gravitasi<br>lebih lemah (gravitational time dilation). |
| Orbit Merkurius       | Pergeseran kecil orbit (43 detik busur/abad) dijelaskan oleh<br>kelengkungan ruang-waktu.            |
| Gravitational lensing | Cahaya dari bintang jauh dibelokkan oleh gravitasi galaksi<br>besar.                                 |

### **KESIMPULAN**

- 1. Relativitas Umum = perluasan teori Newton, bukan penghapusan.
- 2. Dalam kondisi ekstrem (massa besar, kecepatan tinggi, jarak kosmik), Einstein memberi hasil baru.
- Dalam kondisi biasa (medan lemah, kecepatan kecil), Einstein "kembali" ke Newton.

## **SOAL LATIHAN**

## SOAL 1

Sebuah kawat logam panjang dialiri arus listrik searah. Dalam kerangka laboratorium, kawat tersebut netral secara listrik (jumlah muatan positif dan negatif seimbang), tetapi ternyata menghasilkan medan magnet di sekitarnya.

- a) Jelaskan bagaimana menurut relativitas khusus, kawat yang netral bisa tetap menghasilkan medan magnet.
- b) Mengapa fenomena ini tidak bisa dijelaskan sepenuhnya hanya dengan konsep gaya Coulomb dalam fisika Newton?

## **SOAL 2**

Misal kita berada di dekat permukaan Bumi dengan percepatan gravitasi  $\approx 9.8 \text{ m/s}^2$ . Dalam relativitas umum, gravitasi dijelaskan sebagai kelengkungan ruang waktu, tetapi dalam praktik kita tetap memakai F = mg.

- a) Jelaskan mengapa pada skala laboratorium (misal kabel, rangkaian listrik di kelas), kita boleh menggunakan hukum gravitasi Newton dan tidak perlu menggunakan persamaan medan Einstein
- b) Kaitkan jawabanmu dengan istilah "medan lemah" dan "kecepatan rendah".

## SOAL 3

#### Diketahui data Bumi:

- $G = 6.67 \times 10^{-11} \,\mathrm{N m^2/kg^2}$
- $M_{\oplus} = 5.97 \times 10^{24} \, \mathrm{kg}$
- $R_{\oplus} = 6.37 \times 10^6 \,\mathrm{m}$
- 1. Hitung percepatan gravitasi Newton di permukaan Bumi:

$$g=\frac{GM_{\oplus}}{R_{\oplus}^2}$$

2. Hitung potensial gravitasi Newton di permukaan Bumi:

$$\phi = -rac{GM_{\oplus}}{R_{\oplus}}$$

3. Gunakan aproksimasi relativitas umum:

$$g_{00} pprox 1 + rac{2\phi}{c^2}, \qquad c = 3.0 imes 10^8 \, \mathrm{m/s}$$

Hitung nilai  $g_{00}$  di permukaan Bumi dan tunjukkan bahwa penyimpangannya dari 1 sangat kecil.