

Ruang Riemannian & Kalkulus Tensor

TEORI RELATIVITAS

Dosen Pengajar: Hervin Maulina, S.Pd., M.Sc.

Tujuan Pembelajaran

Setelah mengikuti perkuliahan ini, mahasiswa mampu:

- 1. Menjelaskan secara konseptual apa yang dimaksud dengan ruang Riemannian dan mengapa ruang-waktu dapat melengkung.
- 2. Memahami peran tensor dalam menggambarkan kelengkungan ruang dan gravitasi.
- 3. Menerapkan konsep dasar ruang melengkung dalam contoh fisika dan kehidupan sehari-hari.
- 4. Menyelesaikan soal konseptual dan perhitungan sederhana terkait jarak dan
 - kelengkungan ruang.

1. Latar Belakang

Mengapa kita perlu ruang melengkung?

Pada zaman Newton:

- ➤ Ruang → dianggap datar dan tidak berubah.
- ➤ Waktu → mutlak, berjalan sama di mana pun.
- ➤ Gravitasi → gaya tarik antar benda.

Gravitasi = gaya tarik antara dua massa.

Einstein (1915) mengubah cara pandang ini dengan ide:

"Gravitasi bukan gaya, melainkan akibat kelengkungan ruang dan waktu karena keberadaan massa dan energi."

1. Latar Belakang

Analogi visual

Bayangkan kain elastis direntangkan datar → ruang datar (Euclidean).

Letakkan bola berat di tengah kain \rightarrow kain melengkung \rightarrow ruang melengkung (Riemannian).

Bola kecil di sekitar bola besar bergerak melingkar, bukan karena gaya tarik, tetapi karena permukaannya melengkung.

2. Ruang Riemannian

GEOMETRI ALAM SEMESTA

Bernhard Riemann memperluas geometri Euclid menjadi geometri melengkung. Dalam fisika, ruang-waktu empat dimensi (x, y, z, t) dapat melengkung karena massa dan energi.

Rumus Umum Jarak (metrik)

• Ruang datar (Euclid):

$$ds^2 = dx^2 + dy^2 + dz^2$$

Ruang melengkung (Riemannian):

$$ds^2 = g_{ij} \, dx^i \, dx^j$$

di mana g_{ij} disebut **komponen metrik**, yang menentukan bentuk dan kelengkungan ruang.

Ruang Euclidean adalah ruang yang:

- Tidak memiliki kelengkungan.
- Sifat geometrinya mengikuti hukum Pythagoras.
- Semua garis lurus tetap lurus di mana pun.
- lacksquare Contoh: papan tulis, lantai datar, atau bidang koordinat biasa x,y,z.

Misalkan ada dua titik di bidang datar:

$$P_1(x_1, y_1), P_2(x_2, y_2)$$

Jarak antara keduanya (dari teorema Pythagoras):

$$s = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Jika kita kuadratkan:

$$s^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Untuk dua titik yang sangat berdekatan, beda koordinatnya sangat kecil:

$$ds^2 = dx^2 + dy^2$$

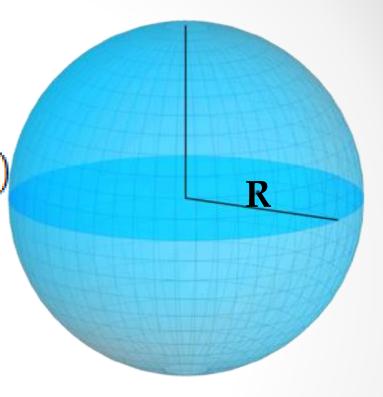
Inilah bentuk diferensial jarak dalam ruang datar dua dimensi.

Contoh nyata:

Pada permukaan bola berjari-jari *r*,

$$ds^2 = R^2(d\theta^2 + \sin^2\theta\,d\phi^2)$$

→ menunjukkan bahwa jarak antara dua titik di bola **tidak linear**, tetapi mengikuti kelengkungan permukaan.



Kalau dua titik jauh, hasil akhirnya bisa diringkas dengan sudut pusat γ :

$$s = R\gamma$$

di mana:

$$\cos \gamma = \sin \theta_1 \sin \theta_2 \cos(\phi_1 - \phi_2) + \cos \theta_1 \cos \theta_2$$

3. Hubungan dengan Gravitasi

Massa besar seperti Matahari membuat ruang di sekitarnya melengkung. Planet tidak "ditarik" oleh gaya, tapi **bergerak mengikuti lekukan ruang-waktu**. Lintasan ini disebut **geodesik** — yaitu "garis lurus" di ruang yang melengkung.

Makna fisis: Gravitasi = geometri ruang-waktu.

4. Kalkulus Tensor: Bahasa Ruang-Waktu

Untuk menggambarkan kelengkungan, digunakan alat matematika bernama tensor.

Jenis	Contoh	Makna Fisis
Skalar	Suhu, energi	Tak memiliki arah
Vektor	Kecepatan, gaya	Satu arah
Tensor	Metrik, tekanan, kelengkungan	Banyak arah (multi-dimensi)

Tensor adalah generalisasi dari vektor agar ddapat diguanakan di ruang melengkung

Tensor penting dalam relativitas:

- $g_{\mu\nu}$: Tensor metrik (bentuk ruang-waktu)
- $T_{\mu\nu}$: Tensor energi-momentum (isi energi & massa)
- $R_{\mu\nu}$: Tensor kelengkungan Ricci (melengkungnya ruang-waktu)

Einstein merangkum gravitasi dalam satu persamaan:

$$G_{\mu
u} = rac{8 \pi G}{c^4} T_{\mu
u}$$

Artinya:

Massa memberi tahu ruang-waktu bagaimana melengkung. Ruang-waktu memberi tahu materi bagaimana bergerak.

Persamaan ini menghubungkan dua dunia:			
Bagian	Makna Fisis		
$G_{\mu u}$	Geometri ruang-waktu → bagaimana ruang dan waktu melengkung		
$T_{\mu u}$	Energi dan momentum → apa yang mengisi ruang-waktu (materi, energi, tekanan)		
Dan konstanta $\frac{8\pi G}{c^4}$ adalah kelengkungan ruang-wak	n "jembatan" yang menyatakan seberapa kuat energi memengaruhi		

$$G_{\mu
u} = rac{8 \pi G}{c^4} T_{\mu
u}$$

5. Analisis Matematis Sederhana

a) Ruang datar (Euclidean 2D)

$$ds^2 = dx^2 + dy^2$$

b) Ruang melengkung (permukaan bola)

$$ds^2 = R^2(d\theta^2 + \sin^2\theta\,d\phi^2)$$

Kalau dua titik jauh, hasil akhirnya bisa diringkas dengan sudut pusat γ :

$$s = R\gamma$$

di mana:

$$\cos \gamma = \sin \theta_1 \sin \theta_2 \cos(\phi_1 - \phi_2) + \cos \theta_1 \cos \theta_2$$

c) Gerak partikel bebas di ruang melengkung

$$rac{d^2x^\mu}{ds^2} + \Gamma^\mu_{lphaeta}rac{dx^lpha}{ds}rac{dx^eta}{ds} = 0$$

Partikel bebas tetap bergerak "lurus" dalam ruang-waktu, tetapi "lurus" di sini mengikuti bentuk kelengkungan ruang (geodesik).

Simbol	Arti Fisis	
x^{μ}	Koordinat ruang-waktu	
s	Parameter panjang lintasan (jarak ruang- waktu)	
$\Gamma^{\mu}_{lphaeta}$	Simbol Christoffel	
$\frac{dx^{\alpha}}{ds}$	Komponen kecepatan ruang-waktu	
$\frac{d^2x^{\mu}}{ds^2}$	Percepatan ruang-waktu	

6. Contoh Fisis dan Kehidupan Nyata

Fenomena	Penjelasan Riemannian	Bukti Nyata
Orbit planet	Planet mengitari Matahari mengikuti kelengkungan ruang-waktu	Pergeseran orbit Merkurius
Pembelokan cahaya	Cahaya melengkung karena ruang-waktu melengkung di dekat massa besar	Eksperimen Eddington 1919
GPS satelit	Jam satelit berjalan lebih cepat (gravitasi lemah) dibanding di Bumi (gravitasi kuat)	Koreksi waktu ±38 mikrodetik per hari
Lubang hitam	Massa besar melengkungkan ruang-waktu ekstrem hingga cahaya tak bisa keluar	Citra lubang hitam (EHT, 2019)

• 14

Contoh Latihan Soal 1

Soal 1 – Jarak di permukaan bola

Hitung jarak dua titik di permukaan bola R=1 m dengan d heta=0.2 rad dan $d\phi=0.1$ rad pada $heta=\pi/4$.

$$ds^2 = R^2(d\theta^2 + \sin^2\theta\,d\phi^2)$$

Contoh Latihan Soal 2

Pada bola berjari-jari $R=6.371 imes 10^6\,\mathrm{m}$ terdapat dua titik:

$$A(\theta_1 = 60^{\circ}, \phi_1 = 0^{\circ}), \quad B(\theta_2 = 30^{\circ}, \phi_2 = 90^{\circ})$$

Tentukan jarak antara A dan B jika dihitung dengan:

- 1. Geometri Euclidean (ruang datar)
- 2. Geometri Riemannian (permukaan bola)

TUGAS

Seorang mahasiswa sedang mempelajari bagaimana benda jatuh bebas dapat dijelaskan melalui teori relativitas umum.

Dalam teori ini, Einstein mengatakan bahwa **gravitasi bukan gaya**, tetapi akibat **kelengkungan ruang-waktu** yang digambarkan oleh **tensor metrik** $g_{\mu\nu}$.

- a. Jelaskan secara sederhana bagaimana ruang-waktu bisa "melengkung" di sekitar Bumi.
- b. Jika di dekat permukaan Bumi, kelengkungan ini sangat kecil, tunjukkan bagaimana hasilnya hampir sama dengan hukum gravitasi Newton F=ma.
- c. Berikan satu contoh nyata di mana efek kelengkungan ruang-waktu dapat *diukur* dalam kehidupan modern.