Lecture 3
Processor: Datapath and Control

Al 1l
ML\J

= Arithmetic Logic Unit is the hardware that
performs addition, subtraction, AND, OR ...

I‘:A HA B e

eriormance

V o 3

I\CLle I

CPU Time =Instruction Count x CPIx Clock Cycle Time

= CPU performance factors
= Instruction count

° | g YRS I [SRR (I i Coee A L e cmm mom A e 0
LcLcrimineda Dy Imsuructorn oct Arcritecurc ard cormpilicr
= CPl and Cycle time

* Determined by implementation of the processor

Chapter 4 — The Processor —
3

Components of a Computer

Processor

= Datapath = Control
= Components of the = Component of the
processor that processor that
perform arithmetic commands the
operations and holds datapath, memory,
data /O devices according

to the instructions of
the memory

Buildine a Databnath
DUlding a vatapatn
= Datapath
= Elements that process data and addresses
in the CPU

* Memories, registers,ALUs, ...

= We will build a MIPS datapath incrementally

= considering only a subset of instructions

= To start, we will look at 3 elements

Chapter 4 — The Processor — 6

Instruction
address

Instruction — — PC

Instruction
memory

a. Instruction memory b. Program counter c. Adder

= A memory unit to store instructions of a
program and supply instructions given an address

* Needs to provide only read access (once the
program is loaded).

= No control signal is need.

Instruction
address

Instruction ———» — PC }|——

Instruction
memory

a. Instruction memory b. Program counter c. Adder

= PC (Program Counter or Instruction address register)
is a register that holds the address of the current

instruction

= A new value is written to it every clock cycle. No
control signal is required to enable write

Instruction
address

Instruction ———» — PC }|——

Instruction
memory

a. Instruction memory b. Program counter c. Adder

* Adder to increment the PC to the address of the
next instruction

= An ALU permanently wired to do only addition.
No extra control signal required

Datapath portion for Instruction Fetch

PC

-

Chapter 4 — The Processor —
10

4
Read
address
Instruction
Instruction
memory

N

Types of Elements in the Datapath

= State element:
= A memory element,i.e,, it contains a state

= E.g., program counter, instruction memory

* Combinational element:

= Elements that operate on values
= E.g.adder, ALU

11

Now, we will look at datapath elements
required by the different classes of
Instructions

Arithmetic and logical instructions
Data transfer instructions

Branch instructions

R-Format ALU Instructions
* Eg., add $tl, $t2, $t3

* Perform arithmetic/logical operation

= Read two register operands and write register
result

Chapter 4 — The Processor —
13

R-Format ALU Instructions

\2 | Read ALU operation
register 1 Read)
—pe- —lpe-
Register) > | Read data 1
numbers register 2
5 |write Hegisters ¢ Data >ALU ALU
\ \ result
L register Read
. data 2
Data Write /
Data
| RegWrite
a. Registers b. ALU

= Register file:A collection of the registers

= Any register can be read or written by specifying
the number of the register

= Contains the register state of the computer

Chapter 4 — The Processor —

> Data

9 _|Read
register 1 Read
Register) 5 |Read data 1
numbers " | register 2
5 |Write Registers
L : register Read
- data 2
Data — Write
Data
RegWrite
a. Registers

Read from register file
= 2 inputs to the register file specifying the numbers

* 5 bit wide inputs for the 32 registers

ALU operation

= 2 outputs from the register file with the read values
* 32 bit wide

= For all instructions. No control required.

> Data

9 _|Read
register 1 Read
Register) 5 | Read data 1
numbers " | register 2
5 |Write Registers
L : register Read
- data 2
Data] Write
Data
RegWrite
a. Registers

Write to register file
= | input to the register file specifying the number

* 5 bit wide inputs for the 32 registers

ALU operation

= 1 input to the register file with the value to be written
* 32 bit wide

= Only for some instructions. RegWrite control signal.

f
9 _|Read ALU operation
register 1 Read A
—d —ie-]
Register) 5 | Read data 1
numbers " | register 2
5 | wii Registers > Data
\ rite
L register Read
e —_—
- data 2
oua { — e :
RegWrite
a. Registers b. ALU
= ALU

= Takes two 32 bit input and produces a 32 bit output
= Also, sets one-bit signal if the results is O

= The operation done by ALU is controlled by a 4 bit
control signal input. This is set according to the
Instruction

n‘ [1 e ‘A A l
1= Ul

o A= deppre pa o~ P
Ld LI AlDICI

ALI- -L
190U UCL

" lw $tl, offset_value($t2)

* Load: Read memory and update register

= sw $tl, offset_value($t2)
= Store:Write register value to memory

18

[[o I‘: -

| P Sy Sy o
LA LI AliDICTY

ALI- -L
190U UCL

Ons

= Compute the memory address by adding the
value in base register and the |6 bit offset

= need the ALU

= Calculate address using |6-bit offset
* Use ALU, but sign-extend offset

" Write to or read from register

= need the register file

19

MemWrite

— Address Rde:::
Data
Write memory
e
data
I MemRead

a. Data memory unit

Sign-
extend

b. Sign extension unit

= Two additional units — data memory and sign

unit extension

= Data memory

= State element with

* input for address and data to be written

* output for read result

MemWrite

Read

— Address data —

Sign-
Data extend
Write memory

data

I MemRead

a. Data memory unit b. Sign extension unit

= Data memory
= Separate control for read and write

= Control for read is required because reading from
invalid address can lead to problems

= Sign-extension unit takes a |6 bit input and
extend it to a 32 bit output

Register
numbers

oea {

a. Registers

ALU operation

> Data

9 _|Read
register 1 Read
5 |Read data 1
s ‘ register 2
5 |Write Registers
L) register Read
Write data 2
Data
| RegWwiite
|MemWrite
Read
—
Address data
Data
Write =~ Mmemory
E ——
data
MemRead

a. Data memory unit

b. ALU

Sign-
extend

b. Sign extension unit

22

Composing the Elements for R-type and
data transfer instructions

= A simple data path that does an instruction in
one clock cycle

= Each datapath element can only do one function at
a time

= Hence, we need separate instruction and data
memories
= Use multiplexers where alternate data sources
are used for different instructions

Chapter 4 — The Processor —
23

M.
|u

P s

= An ALU might need input from
= Two registers

= Or one registers and one immediate field
(or offset)

" To choose correctly from multiple sources, a
hardware element called multiplexor is used
with appropriate control signals

M.
|u

P s

* The data written to registers may come from

= Data memory
= Or ALU

" To choose correctly from multiple sources, a
hardware element called multiplexor is used
with appropriate control signals

Instruction

Zero

ALU Ay
result

ALU operation

MemWrite

L

D T\,~A/
=1)’ |.) C/
Read
register 1 Read -
Read data 1
register 2 ALUSrc
Registers
write O deag 0
register ata “If
| Write 1)(
data
RegWrite
16 .| Sign- 32
N | extend

Address

Write
data

MemtoReg

Read
data

Y

Oxec=z"

Data
memory

MemRead

Chapter 4 — The Processor —

26

Ons

A o B L [" H m

D ... - | [Py Ry
=] ICITI ETISOUT UIC U

beq $tl, $t2, offset

Read two registers and compare them

= Take the |6 bit offset and add it to the address

of next instruction following the branch
instruction to obtain the branch target
address

Chapter 4 — The Processor —

27

Ons

D ... ol 0on -
=] ¢ iICI |

ALI- -L
190U UCL

= Read register operands

= Compare operands
= Use ALU, subtract and check Zero output

= Calculate target address
= Sign-extend the offset
= Shift left 2 places (word displacement)
= Add to PC + 4

* Already calculated by instruction fetch

Chapter 4 — The Processor —
28

| " L IIA | I | P o l &
1 Ol1o

Dmg\ o~ Py 7 o~
DI 4AllCl1] ISLI UC

.

PC +4 from instruction datapath
Branch
\ Add Sumi—- oo

Read

Instruction register 1 Read
Read data 1

register 2

ALU operation

Y

To branch

control logic

Registers >ALU Zero

Write
register Read
Write data 2

data
RegWrite

Y

Sign-
extend

Chapter 4 — The Processor —
29

 ARARACHA S ~ll AlAanAaAa

\.—UIIIPU)IIIS all €iIeinme
Instruction fetch datapath
Datapath for R-type and memory instructions

Datapath for branches

Need an additional multiplexor to select the
sequential address after branch or the branch
target address to be written to the PC

30

Datapath portion for Instruction Fetch

PC

-

Chapter 4 — The Processor —
31

4
Read
address
Instruction
Instruction
memory

N

Add

N

Read
address

Instruction

Instruction
memory

Chapter 4 — The Processor —
32

Reqd ALUSrc 4 ALU operation
register 1 Read | . MemWrite
Rez:tdt , data 1 Zero MemtoReg
register

Reqist ALU
Wirite €gISiers paqg r;':h‘i-.-l- Address F:;e;g
register data 2
Write
data | write Data
RegWrite " | data memory

MemRead
16= Sign- 32 emRea
~ | extend

PC

L

Read
address

Instruction
[31-0]

Instruction
memory

b

Chapter 4 — The Processor —

33

Instruction [31-26]

Instruction [25—21
@

]

» Control

1 VVIUII \COIlILI Ol AND gate
for
o0 branch
DAdd St
gegDit @ /
Mfr:cl::ie_ad
MemtoReg
ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20—16]

Instruction [15—11]
[} -

Instruction [15-0]

_ | Read
register 1 Reaq
Read data 1
register 2
Write Read
register data2
Write
data Registers

16

Sign- ?2

-‘n:g-o\

Zero
ALU pLy
result

extend

Instruction [5-0]

~

Read
Address data

write Data
data memory

Cxez—

A Recap: Combinational Elements

= AND-gate = Adder

= Y=A&B

.
Da
B —

m Y=A+B

A —

B

—»

-

= Arithmetic/Logic Unit

m Multiplexer
= Y=S?I11:10

A —

10 M
u Y
11
B

S

Chapter 4 — The Processor —
34

—>]

m Y= F(A, B)

DALU

Y

A B S B

Cltnt &
™ I\CLle; DLALET LICIITICII

Registers
Data Memory

Instruction Memory

yRp
O

Clocks are needed to decide when an element

that contains state should be updated

35

Recap from Lecture |I:
CPU Clocking

= Operation of digital hardware governed by a
constant-rate clock

m Clock period: duration of a clock cycle
s Clock frequency (rate): cycles per second

36

0O
(@)
0
)

Falling edge

AN

Clock pericd Rising edge

" A clock is a signal with a fixed cycle time (perio

" The clock frequency is the inverse of the cycle
time

37

0O
(@)
0
)

/ Falling edge

Clock pericd Rising edge

* The clock cycle time or clock period is
divided into two portions:

= when the clock is high

= when the clock is low

Clocking Methodology

" We study
= Edge triggered methodology

* Because it is simple

= Edge triggered methodology:

= All state changes occur on a clock edge

Chapter 4 — The Processor —
39

Clocking Methodology :
State Elements

= Register: stores data in a circuit
= Uses a clock signal to determine when to update
the stored value
= Edge-triggered: update when Clk changes from 0
to |

Clk —>

Chapter 4 — The Processor —
40

Clocking Methodology :
State Elements
= Register with write control

= Only updates on clock edge when write control
input is |

= Used when stored value is required later

D — —>Q

Write —
Clk —>

Chapter 4 — The Processor —
41

Clocking Methodology

= Combinational logic transforms data during
clock cycles
= Between clock edges

= Input from state elements, output to state element

* The state elements, whose outputs change only after
the clock edge, provide valid inputs to the
combinational logic block.

State State
element —(Combinational logic element
1 2

Clock cycle —

Chapter 4 — The Processor —
42

Cln
10

I"M athadaAalaaw
Sll GIIVUNAVIV 5’

" To ensure that the values written into the state elements on the active
clock edge are valid, the clock must have a long enough period so that all
the signals in the combinational logic block stabilize, then the clock edge
samples those values for storage in the state elements.

= This constraint sets a lower bound on the length of the clock period, which
must be long enough for all state element inputs to be valid.

= Longest delay determines clock period

State State
element —(Combinational logic element
1 2

Clock cycle —

Chapter 4 — The Processor —
43

It is possible to have a state element that is used as
both an input and output to the same combinational
logic block

Ensure that the clock period is long enough

> State Combinational logic
element

pan | @l PR
Ig 10 y

C
=)

" We studied a simple implementation where a
single clock cycle is required for every
instruction. Every instruction begins on one

clock edge and completes execution on the
next

45

DA-Q‘A-QM, e I nnnnnn
IFCrivori

o
)
(")
v
v
(-
a
v

Longest delay determines clock period
= Critical path: load instruction

= Instruction memory — register file > ALU —
data memory — register file

Not feasible to vary period for different
Instructions

The clock cycle must be extended to
accommodate the longest instruction

Improve performance by pipelining

= |ISA influences the design of datapath and
control for a processor

" We studied an implementation based on single
cycle

47

