Lecture 3
Processor: Datapath and Control
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= Arithmetic Logic Unit is the hardware that
performs addition, subtraction, AND, OR ...
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CPU Time =Instruction Count x CPIx Clock Cycle Time

= CPU performance factors
= Instruction count
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* Determined by implementation of the processor
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Components of a Computer




Processor

= Datapath = Control
= Components of the = Component of the
processor that processor that
perform arithmetic commands the
operations and holds datapath, memory,
data /O devices according

to the instructions of
the memory



Buildine a Databnath
DUlding a vatapatn
= Datapath
= Elements that process data and addresses
in the CPU

* Memories, registers,ALUs, ...

= We will build a MIPS datapath incrementally

= considering only a subset of instructions

= To start, we will look at 3 elements
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Instruction
address

Instruction — — PC

Instruction
memory

a. Instruction memory b. Program counter c. Adder

= A memory unit to store instructions of a
program and supply instructions given an address

* Needs to provide only read access (once the
program is loaded).

= No control signal is need.



Instruction
address

Instruction ———» — PC }|——

Instruction
memory

a. Instruction memory b. Program counter c. Adder

= PC (Program Counter or Instruction address register)
is a register that holds the address of the current

instruction

= A new value is written to it every clock cycle. No
control signal is required to enable write



Instruction
address

Instruction ———» — PC }|——

Instruction
memory

a. Instruction memory b. Program counter c. Adder

* Adder to increment the PC to the address of the
next instruction

= An ALU permanently wired to do only addition.
No extra control signal required



Datapath portion for Instruction Fetch

PC

-
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Read
address
Instruction
Instruction
memory
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Types of Elements in the Datapath

= State element:
= A memory element,i.e,, it contains a state

= E.g., program counter, instruction memory

* Combinational element:

= Elements that operate on values
= E.g.adder, ALU
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Now, we will look at datapath elements
required by the different classes of
Instructions

Arithmetic and logical instructions
Data transfer instructions

Branch instructions



R-Format ALU Instructions
* Eg., add $tl, $t2, $t3

* Perform arithmetic/logical operation

= Read two register operands and write register
result
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R-Format ALU Instructions

\2 | Read ALU operation
register 1 Read )
—pe- —lpe-
Register ) > | Read data 1
numbers register 2
5 |write Hegisters ¢ Data >ALU ALU
\ \ result
L register Read
. data 2
Data Write /
Data
| RegWrite
a. Registers b. ALU

= Register file:A collection of the registers

= Any register can be read or written by specifying
the number of the register

= Contains the register state of the computer
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> Data

9 _|Read
register 1 Read
Register ) 5 |Read data 1
numbers " | register 2
5 |Write Registers
L : register Read
- data 2
Data — Write
Data
RegWrite
a. Registers

Read from register file
= 2 inputs to the register file specifying the numbers

* 5 bit wide inputs for the 32 registers

ALU operation

= 2 outputs from the register file with the read values
* 32 bit wide

= For all instructions. No control required.



> Data

9 _|Read
register 1 Read
Register ) 5 | Read data 1
numbers " | register 2
5 |Write Registers
L : register Read
- data 2
Data ] Write
Data
RegWrite
a. Registers

Write to register file
= | input to the register file specifying the number

* 5 bit wide inputs for the 32 registers

ALU operation

= 1 input to the register file with the value to be written
* 32 bit wide

= Only for some instructions. RegWrite control signal.



f
9 _|Read ALU operation
register 1 Read A
—d —ie-]
Register ) 5 | Read data 1
numbers " | register 2
5 | wii Registers > Data
\ rite
L register Read
e —_—
- data 2
oua { — e :
RegWrite
a. Registers b. ALU
= ALU

= Takes two 32 bit input and produces a 32 bit output
= Also, sets one-bit signal if the results is O

= The operation done by ALU is controlled by a 4 bit
control signal input. This is set according to the
Instruction
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" lw $tl, offset_value($t2)

* Load: Read memory and update register

= sw $tl, offset_value($t2)
= Store:Write register value to memory
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Ons

= Compute the memory address by adding the
value in base register and the |6 bit offset

= need the ALU

= Calculate address using |6-bit offset
* Use ALU, but sign-extend offset

" Write to or read from register

= need the register file
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MemWrite

— Address Rde:::
Data
Write memory
e
data
I MemRead

a. Data memory unit

Sign-
extend

b. Sign extension unit

= Two additional units — data memory and sign

unit extension

= Data memory

= State element with

* input for address and data to be written

* output for read result



MemWrite

Read

— Address data —

Sign-
Data extend
Write memory

data

I MemRead

a. Data memory unit b. Sign extension unit

= Data memory
= Separate control for read and write

= Control for read is required because reading from
invalid address can lead to problems

= Sign-extension unit takes a |6 bit input and
extend it to a 32 bit output



Register
numbers

oea {

a. Registers

ALU operation

> Data

9 _|Read
register 1 Read
5 |Read data 1
s ‘ register 2
5 |Write Registers
L ) register Read
Write data 2
Data
| RegWwiite
|MemWrite
Read
—
Address data
Data
Write =~ Mmemory
E ——
data
MemRead

a. Data memory unit

b. ALU

Sign-
extend

b. Sign extension unit
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Composing the Elements for R-type and
data transfer instructions

= A simple data path that does an instruction in
one clock cycle

= Each datapath element can only do one function at
a time

= Hence, we need separate instruction and data
memories
= Use multiplexers where alternate data sources
are used for different instructions

Chapter 4 — The Processor —
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= An ALU might need input from
= Two registers

= Or one registers and one immediate field
(or offset)

" To choose correctly from multiple sources, a
hardware element called multiplexor is used
with appropriate control signals
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* The data written to registers may come from

= Data memory
= Or ALU

" To choose correctly from multiple sources, a
hardware element called multiplexor is used
with appropriate control signals



Instruction

Zero

ALU Ay
result

ALU operation

MemWrite

L

D T\,~A/
=1 )’ |.) C/
Read
register 1 Read -
Read data 1
register 2 ALUSrc
Registers
write O deag 0
register ata “If
| Write 1)(
data
RegWrite
16 .| Sign- 32
N | extend

Address

Write
data

MemtoReg

Read
data

Y

Oxec=z"

Data
memory

MemRead
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beq $tl, $t2, offset

Read two registers and compare them

= Take the |6 bit offset and add it to the address

of next instruction following the branch
instruction to obtain the branch target
address
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= Read register operands

= Compare operands
= Use ALU, subtract and check Zero output

= Calculate target address
= Sign-extend the offset
= Shift left 2 places (word displacement)
= Add to PC + 4

* Already calculated by instruction fetch
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PC +4 from instruction datapath
Branch
\ Add Sumi—- oo

Read

Instruction register 1 Read
Read data 1

register 2

ALU operation

Y

To branch

control logic

Registers >ALU Zero

Write
register Read
Write data 2

data
RegWrite

Y

Sign-
extend
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Instruction fetch datapath
Datapath for R-type and memory instructions

Datapath for branches

Need an additional multiplexor to select the
sequential address after branch or the branch
target address to be written to the PC
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Datapath portion for Instruction Fetch

PC

-
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Read
address
Instruction
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memory
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Add

N

Read
address

Instruction

Instruction
memory
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Reqd ALUSrc 4 ALU operation
register 1 Read | . MemWrite
Rez:tdt , data 1 Zero MemtoReg
register

Reqist ALU
Wirite €gISiers paqg r;':h‘i-.-l- Address F:;e;g
register data 2
Write
data | write  Data
RegWrite " | data memory

MemRead
16= Sign- 32 emRea
~ | extend




PC

L

Read
address

Instruction
[31-0]

Instruction
memory

b
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Instruction [31-26]

Instruction [25—21
@

]

» Control

1 VVIUII \COIlILI Ol AND gate
for
o0 branch
DAdd St
gegDit @ /
Mfr:cl::ie_ad
MemtoReg
ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20—16]

Instruction [15—11]
[} -

Instruction [15-0]

_ | Read
register 1 Reaq
Read data 1
register 2
Write Read
register data2
Write
data Registers
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Zero
ALU pLy
result

extend

Instruction [5-0]

~

Read
Address data

write Data
data memory
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A Recap: Combinational Elements

= AND-gate = Adder

= Y=A&B

.
Da
B —

m Y=A+B

A —

B

—»

-

= Arithmetic/Logic Unit

m Multiplexer
= Y=S?I11:10

A —

10 M
u Y
11
B

S
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m Y= F(A, B)

DALU

Y
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Registers
Data Memory

Instruction Memory

yRp
O

Clocks are needed to decide when an element

that contains state should be updated
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Recap from Lecture |I:
CPU Clocking

= Operation of digital hardware governed by a
constant-rate clock

m Clock period: duration of a clock cycle
s Clock frequency (rate): cycles per second

36



0O
(@)
0
)

Falling edge

AN

Clock pericd Rising edge

" A clock is a signal with a fixed cycle time (perio

" The clock frequency is the inverse of the cycle
time
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/ Falling edge

Clock pericd Rising edge

* The clock cycle time or clock period is
divided into two portions:

= when the clock is high

= when the clock is low



Clocking Methodology

" We study
= Edge triggered methodology

* Because it is simple

= Edge triggered methodology:

= All state changes occur on a clock edge

Chapter 4 — The Processor —
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Clocking Methodology :
State Elements

= Register: stores data in a circuit
= Uses a clock signal to determine when to update
the stored value
= Edge-triggered: update when Clk changes from 0
to |

Clk —>

Chapter 4 — The Processor —
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Clocking Methodology :
State Elements
= Register with write control

= Only updates on clock edge when write control
input is |

= Used when stored value is required later

D — —>Q

Write —
Clk —>

Chapter 4 — The Processor —
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Clocking Methodology

= Combinational logic transforms data during
clock cycles
= Between clock edges

= Input from state elements, output to state element

* The state elements, whose outputs change only after
the clock edge, provide valid inputs to the
combinational logic block.

State State
element —( Combinational logic element
1 2

Clock cycle —

Chapter 4 — The Processor —
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" To ensure that the values written into the state elements on the active
clock edge are valid, the clock must have a long enough period so that all
the signals in the combinational logic block stabilize, then the clock edge
samples those values for storage in the state elements.

= This constraint sets a lower bound on the length of the clock period, which
must be long enough for all state element inputs to be valid.

= Longest delay determines clock period

State State
element —( Combinational logic element
1 2

Clock cycle —

Chapter 4 — The Processor —
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It is possible to have a state element that is used as
both an input and output to the same combinational
logic block

Ensure that the clock period is long enough

> State Combinational logic
element
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" We studied a simple implementation where a
single clock cycle is required for every
instruction. Every instruction begins on one

clock edge and completes execution on the
next
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Longest delay determines clock period
= Critical path: load instruction

= Instruction memory — register file > ALU —
data memory — register file

Not feasible to vary period for different
Instructions

The clock cycle must be extended to
accommodate the longest instruction

Improve performance by pipelining



= |ISA influences the design of datapath and
control for a processor

" We studied an implementation based on single
cycle
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